吉林省松原市第一中学2018-2019年九年级数学上第一次月考试卷(有解析)
2018—2019学年第一学期第一次月考试卷九年级数学(试卷+答案)2019.09.20
捷 二、三两个月平均每月营业额的增长率是( )
迅A.25%
B.20%
C.15%
D.10%
6.小强、小亮、小文三位同学玩投硬币游戏.三人同时各投出一枚均匀硬币,
若出现三个正面向上或三个反面向上,则小强赢;若出现 2 个正面向上一个反面
向上,则小亮赢;若出现一个正面向上 2 个反面向上,则小文赢.下面说法正确
7 种,
∴一个球为白球,一个球为红球的概率是 7 ; 12
器 (2)由(1)中树状图可知,P(甲获胜)= 2 = 1 ,P(乙获胜)= 3 = 1 ,
12 6
12 4
∵1 1 ,
辑 6 4
∴该游戏规则不公平.
F编 22.(9 分)(1)解:设经过 x 秒,△ CPQ 的面积等于 3cm2.则
1 x8 2x 3 ,
次摸到黄球,由此估计袋中的黄球有
个.
14.如图,将一个长为 10cm,宽为 8cm 的矩形纸片对折两次后,沿所得矩形两
邻边中点的连线(虚线)剪下,再打开,得到菱形的面积为
cm2.
第 14 题图
第 15 题图
器 15.如图,正方形 ABCD 中,AB=4,E 是边 AD 上一点,将△EDC 沿 EC 翻折,
点 D 的对应点 D′落在正方形内部,若 △ AD′E 恰是以 D′E 为腰的等腰三角形,
辑 那么 DE 的长为
.
编 三.解答题(共 75 分) F 16.(8 分)解方程
(1) 2x 1 x 3 6
(2) 2x 12 2 2x 1 0
迅捷PD 17.(9 分)已知关于 x 的方程 x2+ax+a 2=0.
2018—2019 学年上学期第一次月考 九年级数学试卷
吉林省吉林市九年级上学期数学第一次月考试卷
吉林省吉林市九年级上学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、选择题(本题有10小题,每小题3分,共30分) (共10题;共30分)1. (3分) (2019九上·如东月考) 二次函数的图像的顶点坐标是()A . (2,3)B . (﹣2,3)C . (﹣2,﹣3)D . (2,﹣3)2. (3分)二次函数的最小值是()A . 1B . -1C . 3D . -33. (3分) (2018九下·潮阳月考) 二次函数()的图像如图所示,下列结论:① ;②当时,y随x的增大而减小;③ ;④ ;⑤ ,其中正确的个数是()A . 1B . 2C . 3D . 44. (3分)(2018·鹿城模拟) 事件:“在只装有2个红球和8个黑球的袋子里,摸出一个白球”是)A . 可能事件B . 随机事件C . 不可能事件D . 必然事件5. (3分)(2019·平谷模拟) 如图是二次函数y=ax2+bx+c的图象,下列结论:①二次三项式ax2+bx+c的最大值为4;②4a+2b+c<0;③一元二次方程ax2+bx+c=1的两根之和为﹣2;④使y≤3成立的x的取值范围是﹣3≤x≤1.其中正确有()A . 1个B . 2个C . 3个D . 4个6. (3分)某小组做“用频率估计概率”的实验时,绘出的某一结果出现的频率折线图,则符合这一结果的实验可能是()A . 抛一枚硬币,出现正面朝上B . 掷一个正六面体的骰子,出现3点朝上C . 一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃D . 从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球7. (3分)将抛物线y=2x2向左平移1个单位,再向上平移3个单位得到的抛物线,其表达式为()A . y=2(x+1)2+3B . y=2(x-1)2-3C . y=2(x+1)2-3D . y=2(x-1)2+38. (3分)(2019·本溪) 如图,点是以为直径的半圆上的动点,于点,连接,设,则下列函数图象能反映与之间关系的是()A .B .C .D .9. (3分)图中有相同对称轴的两条抛物线,下列关系不正确的是()A . h=mB . k>nC . k=nD . h>0,k>010. (3分) (2019九上·博白期中) 在同一坐标系中,一次函数y=ax+2与二次函数y=x2﹣a的图象可能是()A .B .C .D .二、填空题(本题有6小题,每小题4分,共24分) (共6题;共24分)11. (4分) (2017八下·徐汇期末) 2名男生和2名女生抓阄分派2张电影票,恰好2名女生得到电影票的概率是________.12. (4分)(2019·新宾模拟) 二次函数y=x2的图象如图,点A0位于坐标原点,点A1 , A2 ,A3…An 在y轴的正半轴上,点B1 , B2 ,B3…Bn在二次函数位于第一象限的图象上,点C1 , C2 ,C3…∁n在二次函数位于第二象限的图象上,四边形A0B1A1C1 ,四边形A1B2A2C2 ,四边形A2B3A3C3…四边形An﹣1BnAn∁n都是正方形,则正方形An﹣1BnAn∁n的周长为________.13. (4分) (2016九上·庆云期中) 已知点A(4,y1),B(,y2),C(﹣2,y3)都在二次函数y=(x ﹣2)2﹣m的图象上,则y1 , y2 , y3的大小关系为________.14. (4分)(2015·衢州) 如图,已知直线y=﹣ x+3分别交x轴、y轴于点A、B,P是抛物线y=﹣ x2+2x+5的一个动点,其横坐标为a,过点P且平行于y轴的直线交直线y=﹣ x+3于点Q,则当PQ=BQ时,a的值是________.15. (4分)(2017·普陀模拟) 若点A(3,n)在二次函数y=x2+2x﹣3的图象上,则n的值为________.16. (4分)(2017·房山模拟) 若把代数式x2-4x-5化成(x-m)2+k的形式,其中m,k为常数,则m+k=________三、解答题(本题有8小题,共66分) (共8题;共66分)17. (6分) (2017九上·台江期中) 某衬衣店将进价为30元的一种衬衣以40元售出,平均每月能售出600件,调查表明:这种衬衣售价每上涨1元,其销售量将减少10件.(1)写出月销售利润y(单位:元)与售价x(单位:元/件)之间的函数解析式.(2)当销售价定为45元时,计算月销售量和销售利润.(3)当销售价定为多少元时会获得最大利润?求出最大利润.18. (6分) (2018九上·宁江期末) 如图,抛物线y=ax2+bx+c的顶点为M(﹣2,﹣4),与x轴交于A、B 两点,且A(﹣6,0),与y轴交于点C.(1)求抛物线的函数解析式;(2)求△ABC的面积;(3)能否在抛物线第三象限的图象上找到一点P,使△APC的面积最大?若能,请求出点P的坐标;若不能,请说明理由.19. (6分)已知抛物线的顶点坐标为M(1,﹣2),且经过点N(2,3),求此二次函数的解析式.20. (8分) (2016九上·重庆期中) 已知抛物线顶点坐标为(1,3),且过点A(2,1).(1)求抛物线解析式;(2)若抛物线与x轴两交点分别为点B、C,求线段BC的长度.21. (8.0分) (2019九上·泰山期末) 为调查达州市民上班时最常用的交通工具的情况,随机抽取了部分市民进行调查,要求被调查者从“A:自行车,B:电动车,C:公交车,D:家庭汽车,E:其他”五个选项中选择最常用的一项.将所有调查结果整理后绘制成如下不完整的条形统计图和扇形统计图,请结合统计图回答下列问题.(1)本次调查中,一共调查了________名市民;扇形统计图中,B项对应的扇形圆心角是________度;补全条形统计图;(2)若甲、乙两人上班时从A,B,C,D四种交通工具中随机选择一种,请用列表法或画树状图的方法,求出甲、乙两人恰好选择同一种交通工具上班的概率.22. (10.0分) (2018九上·杭州月考) 已知二次函数.(1)将解析式化成顶点式;(2)写出它的开口方向、对称轴和顶点坐标;(3) x取什么值时,随的增大而增大;取什么值时,随增大而减小.23. (10分)(2019·泰兴模拟) 已知二次函数与一次函数,令W=.(1)若、的函数图像交于x轴上的同一点.①求的值;②当为何值时,W的值最小,试求出该最小值;(2)当时,W随x的增大而减小.①求的取值范围;②求证: .24. (12分)(2019·抚顺模拟) 如图1,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴分别交于A(﹣3,0),B两点,与y轴交于点C,点D为抛物线的顶点,抛物线的对称轴是x=﹣1,且与x轴交于E点.(1)请直接写出抛物线的解析式及顶点D的坐标;(2)如图2,连接AD,设点P是线段AD上的一个动点,过点P作x轴的垂线交抛物线于点G,交x轴于点H,连接AG、GD,当△ADG的面积为1时,①求点P的坐标;②连接PC、PE,探究PC、PE的数量关系和位置关系,并说明理由;(3)设M为抛物线上一动点,N为抛物线的对称轴上一动点,Q为x轴上一动点,当以Q、M、N、E为顶点的四边形为正方形时,请直接写出点Q的坐标.参考答案一、选择题(本题有10小题,每小题3分,共30分) (共10题;共30分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题(本题有6小题,每小题4分,共24分) (共6题;共24分) 11-1、12-1、13-1、14-1、15-1、16-1、三、解答题(本题有8小题,共66分) (共8题;共66分)17-1、17-2、17-3、18-1、18-2、18-3、19-1、20-1、20-2、21-1、21-2、22-1、22-2、22-3、23-1、23-2、24-1、24-2、24-3、。
吉林省松原市九年级上学期数学第一次月考试卷
吉林省松原市九年级上学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共5题;共10分)1. (2分) (2018八下·韶关期末) 在学校举行的“阳光少年,励志青年”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组数据的众数是()A . 95B . 90C . 85D . 802. (2分)湖南路大桥于今年5月1日竣工,为徒骇河景区增添了一道亮丽的风景线.某校数学兴趣小组用测量仪器测量该大桥的桥塔高度,在距桥塔AB底部50米的C处,测得桥塔顶部A的仰角为41.5°(如图).已知测量仪器CD的高度为1米,则桥塔AB的高度约为()(参考数据:sin41.5°≈0.663,cos41.5°≈0.749,tan41.5°≈0.885)A . 34米B . 38米C . 45米D . 50米3. (2分)(2017·乐清模拟) 如图,已知点A、B分别是反比例函数y= (x>0),y= (x<0)的图象上的点,且,∠AOB=90°,则的值为()A . 4B .C . 2D .4. (2分)(2020·淮安模拟) 如图,在Rt△ABC中,∠C=90°,sinA=,AC=6cm,则BC的长度为()A . 6cmB . 7cmC . 8cmD . 9cm5. (2分)(2020·顺德模拟) 如图,在平面直角坐标系中,点M的坐标为M(,2),那么cosα的值是()A .B .C .D .二、填空题 (共10题;共10分)6. (1分)(2017·武汉模拟) 如图,在▱ABCD中,对角线AC、BD相交于点O.如果AC=8,BD=14,AB=x,那么x的取值范围是________.7. (1分) (2019八上·普陀期中) 若x=1是关于x的方程的一个根,则a=________;8. (1分) (2019九上·天河月考) 一元二次方程的根是________.9. (1分)把方程(x+1)(3x﹣2)=10化为一元二次方程的一般形式后为________.10. (1分)关于x的一元二次方程-x2+(2m+1)x+1-m2=0无实数根,则m的取值范围是________ 。
2018-2019学年度数学第一次月考试题(含答案)
-1Ox =1yx2018--2019学年度(上)九年级第一次月考试卷数学试题(试题卷)说明:1.全卷共23题,共4页,考试时间120分钟,满分150分; 2.答案必须书写在答题卡上,否则不给分。
一、选择题(本大题共10小题,每小题4分,满分40分)每小题有四个选项,其中只有一个是正确的,请把正确的答案填到相应位置上.1、下列方程中是一元二次方程的是( )A .02=++c bx axB .3)2(2++=x x x C .012=-x D .2122=+xx 2.用配方法解方程x 2+2x -1=0时,配方结果正确的是( )A .(x +2)2=2B .(x +2)2=3 C.(x +1)2=3 D .(x +1)2=2 3.对于二次函数y =-(x -1)2+2的图象与性质,下列说法正确的是( )A .对称轴是直线x =1,最小值是2B .对称轴是直线x =-1,最小值是2C .对称轴是直线x =1,最大值是2D .对称轴是直线x =-1,最大值是24.一元二次方程x 2-2x +14=0的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法判断 5.二次函数2y ax bx c =++(0a ≠)的图象如右图所示,有下列4个结论:①0abc >;②b a c <+;③420a b c ++>;④240b ac ->;其中正确的结论有( ) 第5题图 A .1个 B .2个 C .3个 D .4个6.组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排3场比赛.设比赛组织者应邀请x 个队参赛,则x 满足的关系式为( )A .x (x +1)=21B .21x (x +1)=21 C .21x (x ﹣1)=21 D .x (x ﹣1)=21 7.抛物线y =x 2-2x +m 2+2(m 是常数)的顶点在( )A .第一象限B .第二象限C .第三象限D .第四象限8.若一次函数y =(a +1)x +a 的图象过第一、三、四象限,则二次函数y =ax 2-ax( )A .有最大值a 4B .有最大值-a 4C .有最小值a 4D .有最小值-a49.已知3是关于x 的方程x 2-(m +1)x +2m =0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC 的两条边长,则△ABC 的周长为( )A .7B .10C .11D .10或1110.已知a ≠0,在同一直角坐标系中,函数y =ax 与y =ax 2的图象有可能是( )A B C D二、填空题(本大题共4小题,每小题5分,满分20分)11.抛物线y =-2(x +5)2-3的顶点是 .12.已知x =1是关于x 的方程ax 2-2x +3=0的一个根,则a =________.13.已知方程ax 2+bx+c=0(a ≠0)的两个根为x 1=2.3和x 2=5.7,那么可知抛物线y=ax 2+bx+c (a ≠0)的对称轴为 .14.点P 1(﹣1,y 1),P 2(3,y 2),P 3(5,y 3)均在二次函数y=﹣x 2+2x +c 的图象上,则y 1,y 2,y 3的大小关系是________.三、(本大题共2小题,每小题8分,满分16分)15.已知一个二次函数y=x 2+bx+c 的图象经过点(4,1)和(-1,6).求这个二次函数的解析式.16.解一元二次方程: 02522=+-x x四、(本大题共2小题,每小题8分,满分16分)17.当m 为何值时,关于x 的一元二次方程02142=-+-m x x 有两个相等的实数根?此时这两个实数根是多少?18.如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN 最长可利用25 m),现在已备足可以砌50 m 长的墙的材料,当矩形花园的面积为300 m 2时,求AB 的长.第18题图五、(本大题共2小题,每小题10分,满分20分)19.为了巩固全国文明城市建设成果,突出城市品质的提升,近年来,某市积极落实节能减排政策,推行绿色建筑,据统计,该市2015年的绿色建筑面积约为950万平方米,2017年达到了1862万平方米.若2016年、2017年的绿色建筑面积按相同的增长率逐年递增,请解答下列问题:(1)求这两年该市推行绿色建筑面积的年平均增长率;(2)2018年该市计划推行绿色建筑面积达到2400万平方米.如果2018年仍保持相同的年平均增长率,请你预测2018年该市能否完成计划目标.20.如图,一次函数y1=kx+b与二次函数y2=ax2的图象交于A,B两点.(1)利用图中条件,求两个函数的解析式;(2)根据图象写出使y1>y2的x的取值范围.六、(本题满分12分)21.如图,二次函数y=-x2+2x+m的图象与x轴的一个交点为A(3,0),另一个交点为B,且与y轴交于点C.(1)求m的值;(2)求点B的坐标;(3)该二次函数第一象限图像上有一点D(x,y),使S△ABD=S△ABC,则D点的坐标为多少?七、(本题满分12分)22、某玩具店将进价为每个8元的“佩琪”玩偶按每个10元出售,每天可销出100个.玩具店想采用提高售价的办法来增加利润.经试验,发现这种玩偶每个每提价1元,每天的销售量就会减少10个.(1)玩具店要想实现一天的利润为200元,需把这种玩偶每个售价定为多少元?(2)玩具店要想实现一天的利润最大,每个售价需定为多少元?八、(本题满分14分)23.(12分)如图,抛物线经过A(﹣1,0),B(5,0),C(0,﹣)三点.(1)求抛物线的解析式;(2)如图(1),请在抛物线的对称轴作一点P,使PA+PC的值最小,并求出点P的坐标.(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求直接写出点N的坐标;若不存在,请说明理由.23题图(1)23题图(2)第20题图第20题图参考答案及评分意见一、选择题(本大题共10小题,每小题4分,满分40分) 1--5 C D C A B; 6--10 C A B D A二、填空题(本大题共4小题,每小题5分,满分20分) 11.(-5,-3) 12.-1 13. x=4 14.y 1=y 2>y 3 三、(本大题共2小题,每小题8分,满分16分)15. 由题意得+c =642+b•4+c =1……………3分解这个方程组得c=1b=-4, ……………7分 所以所求二次函数的解析式是y=x 2-4x+1; ……………8分16.(参考) 解:(1)移项,得, ……………1分二次项系数化为1,得, ……………2分配方,得, ……………4分即……………6分∴或,∴,……………8分四、(本大题共2小题,每小题8分,满分16分) 17. 解:由题意,得=(-4)2-4(m -)=0,即16-4m +2=0,解得m =. ……………4分当m =时,方程有两个相等的实数根x 1=x 2=2. ……………8分18. 解:设AB 为x m ,则BC 为(50-2x)m. ……………1分 x(50-2x)=300. ……………4分 解得x 1=10,x 2=15. ……………6分 当x =10时,AD =BC =50-2x =30>25,不合题意,舍去;当x =15时,AD =BC =50-2x =20<25. ……………7分 答:AB 的长15 m. ……………8分五、(本大题共2小题,每小题10分,满分20分)19. 解:(1)设这两年该市推行绿色建筑面积的年平均增长率为x , (1)分950(1+x )2=1862. ……………4分 解得,x 1=0.4,x 2=-2.4(舍去), ……………6分 所以这两年该市推行绿色建筑面积的年平均增长率为40%. ……………8分 (2)1862(1+40%)=2606.8. ∵2606.8>2400,∴2018年我市能完成计划目标.所以如果2018年仍保持相同的年平均增长率,2018年该市能完成计划目标………10分.20.解:(1)由图象可知:B(2,4)在二次函数y 2=ax 2图象上,∴4=a·22.∴a =1.则y 2=x 2. ……………4分 又∵A(-1,n)在二次函数y 2=x 2图象上, ∴n =(-1)2.∴n =1.则A(-1,1).又∵A ,B 两点在一次函数y 1=kx +b 图象上, ∴4=2k +b.1=-k +b ,解得b =2.k =1,则y 1=x +2.∴一次函数解析式为y 1=x +2,二次函数解析式为y 2=x 2. ……………8分 (2)根据图象可知:当-1<x<2时,y 1>y 2. ……………10分六、(本题满分12分)21.(1)∵二次函数y=-x 2 +2x+m的图象与x轴的一个交点为A(3,0),∴-9+2×3+m=0,解得:m=3;……………2分(2)∵二次函数的解析式为:y=-x 2 +2x+3,∴当y=0时,-x 2 +2x+3=0,解得:x=3或x=-1,∴B(-1,0);……………6分(3)如图,连接BD、AD,过点D作DE⊥AB,∵当x=0时,y=3,∴C(0,3),若S △ABD =S △ABC ,则可得OC=DE=3,∴当y=3时,-x 2 +2x+3=3,解得:x=0或x=2,∴点D的坐标为(2,3).……………12分七、(本题满分12分)22.解:(1)10或18元(6分)(2)14元。
2018-2019新人教版九年级数学上学期第一次月考试卷(含答案解析)
2018-2019学年九年级(上)第一次月考数学试卷一、选择题:(本大题共12小题,每小题3分,共36分)1.下列各式是一元二次方程的是()A.3﹣5x2=x B. +x2﹣1=0 C.ax2+bx+c=0 D.4x﹣1=02.已知关于x的一元二次方程x2﹣x+k=0的一个根是2,则k的值是()A.﹣2 B.2 C.1 D.﹣13.用配方法解下列方程,配方正确的是()A.2y2﹣4y﹣4=0可化为(y﹣1)2=4 B.x2﹣2x﹣9=0可化为(x﹣1)2=8C.x2+8x﹣9=0可化为(x+4)2=16 D.x2﹣4x=0可化为(x﹣2)2=44.关于x的一元二次方程(m﹣2)x2+5x+m2﹣2m=0的常数项为0,则m的值为()A.1 B.2 C.1或2 D.05.在下列二次函数中,其图象对称轴为x=﹣2的是()A.y=(x+2)2B.y=2x2﹣2 C.y=﹣2x2﹣2 D.y=2(x﹣2)26.把抛物线y=2x2先向左平移3个单位,再向上平移4个单位,所得抛物线的函数表达式为()A.y=2(x+3)2+4 B.y=2(x+3)2﹣4 C.y=2(x﹣3)2﹣4 D.y=2(x﹣3)2+47.已知二次函数y=x2+x+m,当x取任意实数时,都有y>0,则m的取值范围是()A.m≥B.m>C.m≤D.m<8.若抛物线y=(x﹣a)2+(a﹣1)的顶点在第一象限,则a的取值范围为()A.a>1 B.a>0 C.a>﹣1 D.﹣1<a<09.在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为()A.B.C.D.10.若二次函数y=x2﹣6x+c的图象过A(﹣1,y1),B(2,y2),C(,y3),则y1,y2,y3的大小关系是()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.y3>y1>y211.如果抛物线y=x2﹣6x+c﹣2的顶点到x轴的距离是3,那么c的值等于()A.8 B.14 C.8或14 D.﹣8或﹣1412.军事演习时发射一颗炮弹,经xs后炮弹的高度为ym,且时间x(s)与高度y(m)之间的函数关系为y=ax2+bx(a≠0),若炮弹在第8s与第14s时的高度相等,则在下列哪一个时间的高度是最高的()A.第9s B.第11s C.第13s D.第15s二、填空题:(本大题共6小题,每小题4分,共24分).13.已知函数,当m= 时,它是二次函数.14.请你写一个一元二次方程,使该方程有一根为0,则这个方程可以是.15.如图所示,在同一平面直角坐标系中,作出①y=﹣3x2,②y=﹣,③y=﹣x2的图象,则从里到外的三条抛物线对应的函数依次是(填序号)16.已知二次函数y=﹣x2+4x+m的部分图象如图,则关于x的一元二次方程﹣x2+4x+m=0的解是.17.已知二次函数y=﹣x2+4x﹣2与x轴交于A,B两点,与y轴交于点C,则△ABC的面积为.18.抛物线y=﹣x2+bx+c的图象如图所示,则此抛物线的解析式为.三、解答题(共60分)19.(20分)解方程:(1)x2﹣x﹣1=0(2)(x﹣1)2=4(3)(x+8)(x+1)=﹣12(4)(2x﹣3)2=5(2x﹣3)20.(5分)已知方程x2+2x﹣1=0的两根分别是x1,x2,求的值.21.(5分)求证:代数式3x2﹣6x+9的值恒为正数.22.(10分)已知二次函数y=ax2+b的图象与直线y=x+2相交于点A(1,m)和点B(n,0).(1)试确定二次函数的解析式;(2)在给出的平面直角坐标系中画出这个函数图象的草图,并结合图象直接写出ax2+b>x+2时x的取值范围.23.(8分)今年,我国政府为减轻农民负担,决定在5年内免去农业税.某乡今年人均上缴农业税25元,若两年后人均上缴农业税为16元,假设这两年降低的百分率相同.(1)求降低的百分率;(2)若小红家有4人,明年小红家减少多少农业税?(3)小红所在的乡约有16000农民,问该乡农民明年减少多少农业税?24.(12分)某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围.(2)每件玩具的售价定为多少元时,月销售利润恰为2520元?(3)每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?参考答案与试题解析一、选择题:(本大题共12小题,每小题3分,共36分)1.下列各式是一元二次方程的是()A.3﹣5x2=x B. +x2﹣1=0 C.ax2+bx+c=0 D.4x﹣1=0【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:A、符合一元二次方程的定义,正确;B、不是整式方程,故错误;C、方程二次项系数可能为0,故错误;D、方程未知数为1次,故错误;故选A.【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.已知关于x的一元二次方程x2﹣x+k=0的一个根是2,则k的值是()A.﹣2 B.2 C.1 D.﹣1【考点】一元二次方程的解.【分析】知道方程的一根,把该根代入方程中,求出未知量k.【解答】解:由题意知,关于x的一元二次方程x2﹣x+k=0的一个根是2,故4﹣2+k=0,解得k=﹣2,故选A.【点评】本题主要考查了方程的根的定义,把求未知系数的问题转化为解方程的问题,是待定系数法的应用.3.用配方法解下列方程,配方正确的是()A.2y2﹣4y﹣4=0可化为(y﹣1)2=4 B.x2﹣2x﹣9=0可化为(x﹣1)2=8C.x2+8x﹣9=0可化为(x+4)2=16 D.x2﹣4x=0可化为(x﹣2)2=4【考点】解一元二次方程-配方法.【分析】利用完全平方公式的结构特点判断即可得到结果.【解答】解:A、2y2﹣4y﹣4=0可化为(y﹣1)2=5,故选项错误;B、x2﹣2x﹣9=0可化为(x﹣1)2=10,故选项错误;C、x2+8x﹣9=0可化为(x+4)2=25,故选项错误;D、x2﹣4x=0可化为(x﹣2)2=4,故选项正确.故选D.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.4.关于x的一元二次方程(m﹣2)x2+5x+m2﹣2m=0的常数项为0,则m的值为()A.1 B.2 C.1或2 D.0【考点】一元二次方程的一般形式.【分析】根据一元二次方程的定义可知m﹣2≠0,再根据常数项为0,即可得到m2﹣2m=0,列出方程组求解即可.【解答】解:∵关于x的一元二次方程(m﹣2)x2+5x+m2﹣2m=0的常数项为0,∴,解m﹣2≠0得m≠2;解m2﹣2m=0得m=0或2.∴m=0.故选D.【点评】此题考查了一元二次方程的定义.判断一个方程是否是一元二次方程必须具备以下3个条件:(1)是整式方程,(2)只含有一个未知数,(3)方程中未知数的最高次数是2.这三个条件缺一不可,尤其要注意二次项系数a≠0这个最容易被忽略的条件.5.在下列二次函数中,其图象对称轴为x=﹣2的是()A.y=(x+2)2B.y=2x2﹣2 C.y=﹣2x2﹣2 D.y=2(x﹣2)2【考点】二次函数的性质.【分析】根据二次函数的性质求出各个函数的对称轴,选出正确的选项.【解答】解:y=(x+2)2的对称轴为x=﹣2,A正确;y=2x2﹣2的对称轴为x=0,B错误;y=﹣2x2﹣2的对称轴为x=0,C错误;y=2(x﹣2)2的对称轴为x=2,D错误.故选:A.【点评】本题考查的是二次函数的性质,正确求出二次函数图象的对称轴是解题的关键.6.把抛物线y=2x2先向左平移3个单位,再向上平移4个单位,所得抛物线的函数表达式为()A.y=2(x+3)2+4 B.y=2(x+3)2﹣4 C.y=2(x﹣3)2﹣4 D.y=2(x﹣3)2+4【考点】二次函数图象与几何变换.【分析】抛物线y=2x2的顶点坐标为(0,0),则把它向左平移3个单位,再向上平移4个单位,所得抛物线的顶点坐标为(﹣3,4),然后根据顶点式写出解析式.【解答】解:把抛物线y=2x2先向左平移3个单位,再向上平移4个单位,所得抛物线的函数解析式为y=2(x+3)2+4.故选A.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.7.已知二次函数y=x2+x+m,当x取任意实数时,都有y>0,则m的取值范围是()A.m≥B.m>C.m≤D.m<【考点】抛物线与x轴的交点.【分析】由题意二次函数y=x 2+x+m 知,函数图象开口向上,当x 取任意实数时,都有y >0,可以推出△<0,从而解出m 的范围.【解答】解:已知二次函数的解析式为:y=x 2+x+m ,∴函数的图象开口向上,又∵当x 取任意实数时,都有y >0,∴有△<0,∴△=1﹣4m <0,∴m >,故选B .【点评】此题主要考查二次函数与一元二次方程的关系,当函数图象与x 轴无交点时,说明方程无根则△<0,若有交点,说明有根则△≥0,这一类题目比较常见且难度适中.8.若抛物线y=(x ﹣a )2+(a ﹣1)的顶点在第一象限,则a 的取值范围为( )A .a >1B .a >0C .a >﹣1D .﹣1<a <0【考点】二次函数的性质.【分析】求得抛物线y=(x ﹣a )2+(a ﹣1)的顶点在第一象限,即可得出a 的取值范围.【解答】解:∵物线y=(x ﹣a )2+(a ﹣1)的顶点在第一象限,∴, ∴a 的取值范围为a >1,故选A .【点评】本题考查了二次函数的性质,掌握抛物线的顶点坐标的求法是解题的关键.9.在同一直角坐标系中,一次函数y=ax+c 和二次函数y=ax 2+c 的图象大致为( )A .B .C .D .【考点】二次函数的图象;一次函数的图象.【分析】根据二次函数的开口方向,与y轴的交点;一次函数经过的象限,与y轴的交点可得相关图象.【解答】解:∵一次函数和二次函数都经过y轴上的(0,c),∴两个函数图象交于y轴上的同一点,故B选项错误;当a>0时,二次函数开口向上,一次函数经过一、三象限,故C选项错误;当a<0时,二次函数开口向下,一次函数经过二、四象限,故A选项错误;故选:D.【点评】本题考查二次函数及一次函数的图象的性质;用到的知识点为:二次函数和一次函数的常数项是图象与y轴交点的纵坐标;一次函数的一次项系数大于0,图象经过一、三象限;小于0,经过二、四象限;二次函数的二次项系数大于0,图象开口向上;二次项系数小于0,图象开口向下.10.若二次函数y=x2﹣6x+c的图象过A(﹣1,y1),B(2,y2),C(,y3),则y1,y2,y3的大小关系是()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.y3>y1>y2【考点】二次函数图象上点的坐标特征.【分析】根据二次函数图象上点的坐标特征,将A(﹣1,y1),B(2,y2),C(,y3)分别代入二次函数的解析式y=x2﹣6x+c求得y1,y2,y3,然后比较它们的大小并作出选择.【解答】解:根据题意,得y1=1+6+c=7+c,即y1=7+c;y2=4﹣12+c=﹣8+c,即y2=﹣8+c;y3=9+2+6﹣18﹣6+c=﹣7+c,即y3=﹣7+c;∵7>﹣7>﹣8,∴7+c>﹣7+c>﹣8+c,即y1>y3>y2.故选B.【点评】本题主要考查了二次函数图象上点的坐标特征(图象上的点都在该函数的图象上).解答此题时,还利用了不等式的基本性质:在不等式的两边加上同一个数,不等式仍成立.11.如果抛物线y=x2﹣6x+c﹣2的顶点到x轴的距离是3,那么c的值等于()A.8 B.14 C.8或14 D.﹣8或﹣14【考点】待定系数法求二次函数解析式.【分析】根据题意,知顶点的纵坐标是3或﹣3,列出方程求出解则可.【解答】解:根据题意=±3,解得c=8或14.故选C.【点评】本题考查了求顶点的纵坐标公式,比较简单.12.军事演习时发射一颗炮弹,经xs后炮弹的高度为ym,且时间x(s)与高度y(m)之间的函数关系为y=ax2+bx(a≠0),若炮弹在第8s与第14s时的高度相等,则在下列哪一个时间的高度是最高的()A.第9s B.第11s C.第13s D.第15s【考点】二次函数的应用.【分析】由于炮弹在第8s与第14s时的高度相等,即x取8和14时y的值相等,根据抛物线的对称性可得到抛物线y=ax2+bx的对称轴为直线x=8+=11,然后根据二次函数的最大值问题求解.【解答】解:∵x取6和14时y的值相等,∴抛物线y=ax2+bx的对称轴为直线x=8+=11,即炮弹达到最大高度的时间是11s.故选:B.【点评】本题考查了二次函数的应用:先通过题意确定出二次函数的解析式,然后根据二次函数的性质解决问题;实际问题中自变量x的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量x的取值范围.二、填空题:(本大题共6小题,每小题4分,共24分).13.已知函数,当m= ﹣1 时,它是二次函数.【考点】二次函数的定义.【分析】根据二次函数的定义列出关于m的方程,求出m的值即可.【解答】解:∵y=(m﹣1)x m2+1是二次函数,∴m2+1=2,∴m=﹣1或m=1(舍去此时m﹣1=0).故答案为:﹣1.【点评】此题考查了二次函数的定义,关键是根据定义列出方程,在解题时要注意m﹣1≠0.14.请你写一个一元二次方程,使该方程有一根为0,则这个方程可以是x2﹣x=0 .【考点】一元二次方程的解.【分析】以0和1为根写一个一元二次方程即可.【解答】解:x=0是方程x2﹣x=0的一个根.故答案为x2﹣x=0.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.15.如图所示,在同一平面直角坐标系中,作出①y=﹣3x2,②y=﹣,③y=﹣x2的图象,则从里到外的三条抛物线对应的函数依次是①③②(填序号)【考点】二次函数的图象.【分析】抛物线的形状与|a|有关,根据|a|的大小即可确定抛物线的开口的宽窄.【解答】解:①y=﹣3x2,②y=﹣x2,③y=﹣x2中,二次项系数a分别为﹣3、﹣、﹣1,∵|﹣3|>|﹣1|>|﹣,∴抛物线②y=﹣x2的开口最宽,抛物线①y=﹣3x2的开口最窄.故答案为:①③②.【点评】本题考查了二次函数的图象,抛物线的开口大小由|a|决定,|a|越大,抛物线的开口越窄;|a|越小,抛物线的开口越宽.16.已知二次函数y=﹣x2+4x+m的部分图象如图,则关于x的一元二次方程﹣x2+4x+m=0的解是x1=﹣1,x2=5 .【考点】抛物线与x轴的交点.【分析】由二次函数y=﹣x2+4x+m的部分图象可以得到抛物线的对称轴和抛物线与x轴的一个交点坐标,然后可以求出另一个交点坐标,再利用抛物线与x轴交点的横坐标与相应的一元二次方程的根的关系即可得到关于x的一元二次方程﹣x2+4x+m=0的解.【解答】解:根据图示知,二次函数y=﹣x2+4x+m的对称轴为x=2,与x轴的一个交点为(5,0),根据抛物线的对称性知,抛物线与x轴的另一个交点横坐标与点(5,0)关于对称轴对称,即x=﹣1,则另一交点坐标为(﹣1,0)则当x=﹣1或x=5时,函数值y=0,即﹣x2+4x+m=0,故关于x的一元二次方程﹣x2+4x+m=0的解为x1=﹣1,x2=5.故答案是:x1=﹣1,x2=5.【点评】本题考查了抛物线与x轴的交点.解答此题需要具有一定的读图的能力.17.已知二次函数y=﹣x2+4x﹣2与x轴交于A,B两点,与y轴交于点C,则△ABC的面积为2.【考点】抛物线与x轴的交点.【分析】根据抛物线与x轴的交点问题,通过解方程﹣x2+4x﹣2=0得到A(2﹣,0),B(2+,0),再计算自变量为0时的函数值得到C点坐标,然后根据三角形面积公式计算.【解答】解:当y=0时,﹣x2+4x﹣2=0,解得x1=2+,x2=2﹣,则A(2﹣,0),B(2+,0),所以AB=2+﹣(2﹣)=2,当x=0时,y=﹣x2+4x﹣2=﹣2,则C(0,﹣2),所以△ABC的面积=×2×2=2.故答案2.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a ≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.18.抛物线y=﹣x2+bx+c的图象如图所示,则此抛物线的解析式为y=﹣x2+2x+3 .【考点】待定系数法求二次函数解析式.【分析】此图象告诉:函数的对称轴为x=1,且过点(3,0);用待定系数法求b,c的值即可.【解答】解:据题意得解得∴此抛物线的解析式为y=﹣x2+2x+3.【点评】本题考查了用待定系数法求函数解析式的方法,同时还考查了方程组的解法,考查了数形结合思想.三、解答题(共60分)19.(20分)(2016秋•夏津县月考)解方程:(1)x2﹣x﹣1=0(2)(x﹣1)2=4(3)(x+8)(x+1)=﹣12(4)(2x﹣3)2=5(2x﹣3)【考点】解一元二次方程-因式分解法;解一元二次方程-直接开平方法.【分析】(1)根据公式法,可得答案;(2)根据开平方,可得答案;(3)根据因式分解,可得答案(4)根据因式分解,可得答案.【解答】解:(1)a=1=,b=﹣1,c=﹣1,△=b2﹣4ac=5>0,x1=,x2=;(2)开平方,得x﹣1=±2,x1=3,x2=﹣1;.(3)方程化简,得x2+9x+20=0,因式分解,得(x+4)(x+5)=0,x1=﹣4,x2=﹣5.(4)因式分解,得(2x﹣3)(x﹣4)=0,x1=,x2=4.【点评】本题考查了因式分解法解一元二次方程,解题的关键是将x2+x﹣12分解成(x+4)(x﹣3).本题属于基础题,难度不大,解决该题型题目时,牢记因式分解法解一元二次方程的一般步骤是关键.20.已知方程x2+2x﹣1=0的两根分别是x1,x2,求的值.【考点】根与系数的关系.【分析】先根据根与系数的关系得出x1•x2与x1+x2的值,再代入代数式进行计算即可.【解答】解:∵方程x2+2x﹣1=0的两根分别是x1,x2,∴x1•x2=﹣1,x1+x2=﹣2,∴===﹣6.【点评】本题考查的是根与系数的关系,熟记一元二次方程的根与系数的关系是解答此题的关键.21.求证:代数式3x2﹣6x+9的值恒为正数.【考点】配方法的应用;非负数的性质:偶次方.【分析】将代数式前两项提取3,配方后根据完全平方式为非负数,得到代数式大于等于6,即对于任何实数x,代数式3x2﹣6x+9的值总大于0,得证.【解答】证明:∵对于任何实数x,(x﹣1)2≥0,∴3x2﹣6x+9=3(x2﹣2x)+9=3(x2﹣2x+1)+9﹣3=3(x﹣1)2+6≥6>0,则对于任何实数x,代数式3x2﹣6x+9的值恒为正数.【点评】此题考查了配方法的应用,以及非负数的性质:偶次幂,灵活应用完全平方公式是解本题的关键.22.(10分)(2016秋•宁津县校级月考)已知二次函数y=ax2+b的图象与直线y=x+2相交于点A(1,m)和点B(n,0).(1)试确定二次函数的解析式;(2)在给出的平面直角坐标系中画出这个函数图象的草图,并结合图象直接写出ax2+b>x+2时x的取值范围.【考点】二次函数与不等式(组);待定系数法求二次函数解析式.【分析】(1)先求出AB两点的坐标,再代入二次函数y=ax2+b求出ab的值即可得出其解析式;(2)在同一坐标系内画出一次函数及二次函数的图象,利用函数图象可直接得出结论.【解答】解:(1)∵直线y=x+2经过点A(1,m)和点B(n,0),∴m=1+2=3,n+2=0,即n=﹣2,∴A(1,3),B(﹣2,0),∵二次函数y=ax2+b的图象经过A(1,3),B(﹣2,0),∴,解得,∴二次函数的解析式为y=﹣x2+4;(2)如图,由函数图象可知,当﹣2<x<1时,ax2+b>x+2.【点评】本题考查的是二次函数与不等式,能根据题意画出图形,利用数形结合求出不等式的解集是解答此题的关键.23.今年,我国政府为减轻农民负担,决定在5年内免去农业税.某乡今年人均上缴农业税25元,若两年后人均上缴农业税为16元,假设这两年降低的百分率相同.(1)求降低的百分率;(2)若小红家有4人,明年小红家减少多少农业税?(3)小红所在的乡约有16000农民,问该乡农民明年减少多少农业税?【考点】一元二次方程的应用.【分析】(1)设降低的百分率为x,则降低一次后的数额是25(1﹣x),再在这个数的基础上降低x,则变成25(1﹣x)(1﹣x)即25(1﹣x)2,据此即可列方程求解;(2)每人减少的税额是25x,则4个人的就是4×25x,代入(1)中求得的x的值,即可求解;(3)每个人减少的税额是25x,乘以总人数16000即可求解.【解答】解:(1)设降低的百分率为x,依题意有,25(1﹣x)2=16,解得,x1=0.2=20%,x2=1.8(舍去);(2)小红全家少上缴税25×20%×4=20(元);(3)全乡少上缴税16000×25×20%=80 000(元).答:降低的增长率是20%,明年小红家减少的农业税是20元,该乡农民明年减少的农业税是80 000元.【点评】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.24.(12分)(2012•锦州)某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围.(2)每件玩具的售价定为多少元时,月销售利润恰为2520元?(3)每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?【考点】二次函数的应用;一元二次方程的应用.【分析】(1)根据题意知一件玩具的利润为(30+x﹣20)元,月销售量为(230﹣10x),然后根据月销售利润=一件玩具的利润×月销售量即可求出函数关系式.(2)把y=2520时代入y=﹣10x2+130x+2300中,求出x的值即可.(3)把y=﹣10x2+130x+2300化成顶点式,求得当x=6.5时,y有最大值,再根据0<x≤10且x为正整数,分别计算出当x=6和x=7时y的值即可.【解答】解:(1)根据题意得:y=(30+x﹣20)(230﹣10x)=﹣10x2+130x+2300,自变量x的取值范围是:0<x≤10且x为正整数;(2)当y=2520时,得﹣10x2+130x+2300=2520,解得x1=2,x2=11(不合题意,舍去)当x=2时,30+x=32(元)答:每件玩具的售价定为32元时,月销售利润恰为2520元.(3)根据题意得:y=﹣10x2+130x+2300=﹣10(x﹣6.5)2+2722.5,∵a=﹣10<0,∴当x=6.5时,y有最大值为2722.5,∵0<x≤10且x为正整数,∴当x=6时,30+x=36,y=2720(元),当x=7时,30+x=37,y=2720(元),答:每件玩具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.【点评】本题主要考查了二次函数的实际应用,解题的关键是分析题意,找到关键描述语,求出函数的解析式,用到的知识点是二次函数的性质和解一元二次方程.。
吉林省松原市九年级上学期数学第一次月考试卷
吉林省松原市九年级上学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、单选题。
(共12题;共24分)1. (2分)(2019·新泰模拟) 在- 、- 、-|-2|、- 这四个数中,最大的数是()A . -B . -C . -|-2|D . -2. (2分)下列图形中,不是轴对称图形的是()A .B .C .D .3. (2分) (2017九下·莒县开学考) 下列计算正确的是()A . x2+x3=x5B . x2·x3=x6C . x6÷x3=x3D . (x3)2=x94. (2分)已知x为整数,且分式的值为整数,则x可取的值有()A . 1个B . 2个C . 3个D . 4个5. (2分) (2020九上·诸暨期末) 若两个相似三角形的周长之比为1∶4,则它们的面积之比为()A . 1∶2B . 1∶4C . 1∶8D . 1∶166. (2分) (2016八上·太原期末) 估计的值在()A . 1和2之间B . 2和3之间C . 3和4之间D . 4和5之间7. (2分) (2020九下·西安月考) 如图,在△ABC中,AC=3,BC=4,AB=5,则tanB的值是()A .B .C .D .8. (2分) (2019七上·吉林月考) 方程的解是()A .B .C .D .9. (2分) (2020九上·遂宁期末) 已知:△ABC中,∠BCA=90°,CD⊥A B于D,若AD=1,AB=3,那么的值是()A .B .C .D .10. (2分) (2019七上·北流期中) 如图,下列图形都是由相同的花按照一定的规律摆成的,按照此规律摆下去,第个的图形中有160朵花,则的值是()A . 40B . 41C . 42D . 4311. (2分)如图,已知点A是双曲线在第一象限的分支上的一个动点,连接AO并延长交另一分支于点B,过点A作y轴的垂线,过点B作x轴的垂线,两垂线交于点C,随着点A的运动,点C的位置也随之变化.设点C的坐标为(m,n),则m,n满足的关系式为()A . n=﹣2mB . n=C . n=﹣4mD . n=12. (2分)关于x的不等式组有四个整数解,则a的取值范围是()A . -<a≤-B . -≤a<-C . -≤a≤-D . -<a<-二、填空题。
2018-2019年九年级上第一次月考数学试题含答案
2018年秋季九年级上册数学月考考试试卷时间:120分钟总分:120分姓名:得分:一、选择题:(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.有下列关于x的方程:①ax2+bx+c=0,②3x(x﹣4)=0,③x2+y﹣3=0,④+x=2,⑤x3﹣3x+8=0,⑥x2﹣5x+7=0,⑦(x﹣2)(x+5)=x2﹣1.其中是一元二次方程的有()A.2 B.3 C.4 D.52. 已知m,n是方程x2-2x-1=0的两实数根,则+的值为( )A.-2B.-C.D.23. 对于抛物线,有下列说法:①抛物线的开口向上;②顶点坐标为(2,﹣3);③对称轴为直线;④点(﹣2,-17)在抛物线上.其中正确的有()A. 0个B. 1个C. 2个D. 3个4. 抛物线y=x2﹣2x﹣3的图象向左平移2个单位,再向上平移2个单位,所得图象的解析式为y=x2+bx+c,则b、c的值为()A.b=2,c=2 B.b=2,c=﹣1 C.b=﹣2,c=﹣1 D.b=﹣3,c=25. 若抛物线y=x2﹣x﹣1与x轴的交点坐标为(m,0),则代数式m2﹣m+2017的值为()A.2019B.2018C.2017D.20166. 在同一直角坐标系中,函数y=kx2﹣k和y=kx+k(k≠0)的图象大致是()A.B.C.D.7. 已知函数y=kx+b的图象如图所示,则一元二次方程x2+x+k-1=0根的存在情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法确定8.下列图形中,是中心对称图形的是()9.在平面直角坐标系中,若点P(m,m﹣n)与点Q(﹣2,3)关于原点对称,则点M(m,n)在()A.第一象限B.第二象限C.第三象限D.第四象限10.如图,在△ABC中,∠ACB=90°,将△ABC绕点A顺时针旋转90°,得到△ADE,连接BD,若AC=3,DE=1,则线段BD的长为()EDCBAA.5B.3C.4 D.1011.在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,则x满足的方程是()A.213014000x x+-= B.2653500x x+-=C.213014000x x--= D.2653500x x--=12.已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:①abc<0;②3a+c>0;③4a+2b+c>0;④2a+b=0;⑤b2>4ac.其中正确的结论的有()A. 1个B. 2个C. 3个D. 4个二、填空题:(本大题共6小题,每小题3分,共18分。
吉林省松原市九年级上学期数学第一次阶段性检测试卷
吉林省松原市九年级上学期数学第一次阶段性检测试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)抛物线y=2x2+1的顶点坐标是()A . (2,1)B . (0,1)C . (1,0)D . (1,2)2. (2分) (2020八下·射阳期中) 平面内,若⊙O的半径为3,OP=2,则点P在()A . ⊙O内B . ⊙O上C . ⊙O外D . 以上都有可能3. (2分)(2019·河池模拟) 下列事件中,是随机事件的是()A . 任意画一个三角形,其内角和为180°B . 经过有交通信号的路口,遇到红灯C . 太阳从东方升起D . 任意一个五边形的外角和等于540°4. (2分)(2020·合肥模拟) 如图,与相切于点,若,则的度数为()A . 40°B . 50°C . 60°D . 70°5. (2分)(2017·台湾) 阿信、小怡两人打算搭乘同一班次电车上学,若此班次电车共有5节车厢,且阿信从任意一节车厢上车的机会相等,小怡从任意一节车厢上车的机会相等,则两人从同一节车厢上车的概率为何()A .B .C .D .6. (2分) (2020九上·鄞州期末) 如果两个相似多边形的面积之比为1:4,那么它们的周长之比是()A . 1:2B . 1:4C . 1:8D . 1:167. (2分)如图,AD∥BE∥CF,直线l1、l2与这三条平行线分别交于点A、B、C和点D、E、F.若AB=4.5,BC=3,EF=2,则DE的长度是()A .B . 3C . 5D .8. (2分) (2019八下·深圳期末) 如图,BE、CD相交于点A ,连接BC , DE ,下列条件中不能判断△ABC∽ADE 的是()A . ∠B=∠DB . ∠C=∠EC .D .9. (2分) (2019九下·巴东月考) 二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①3a+2b+c<0;②3a+c<b2-4ac;③方程2ax2+2bx+2c-5=0没有实数根;④m(am+b)+b<a(m≠-1).其中正确结论的个数是()A . 4个B . 3个C . 2个D . 1个10. (2分)如图,等边边长为a,点O是的内心,,绕点O旋转,分别交线段AB,BC于D,E两点,连接DE,给出下列四个结论:① 形状不变;② 的面积最小不会小于四边形的面积的四分之一;③四边形的面积始终不变;④ 周长的最小值为1.5a.上述结论中正确的个数是()A . 4B . 3C . 2D . 111. (2分)如图,AB是⊙O的直径,点E为BC的中点,AB=4,∠BED=120°,则图中阴影部分的面积之和为().A .B . 2C .D . 112. (2分)如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交AB于G,连接DG,现在有如下4个结论:①△ADG≌△FDG;②GB=2AG;③△GDE∽△BEF;④S△BEF=.在以上4个结论中,正确的有()A . 1B . 2C . 3D . 4二、填空题 (共6题;共6分)13. (1分)(2020·锦州模拟) 若,则 ________.14. (1分) (2018七下·腾冲期末) 如图,△ABC的顶点都在网格点上,将△ABC向右平移3个单位长度,再向上平移2个单位长度,则平移后得到的△A′B′C′三个顶点A′、B′、C′的坐标分别是________.15. (1分) (2017八上·揭西期末) 如图,ABO是边长为3 的等边三角形,则A点的坐标是________.16. (1分)(2017·合川模拟) 如图,▱ABCD中,M、N是BD的三等分点,连接CM并延长交AB于点E,连接EN并延长交CD于点F,以下结论:①E为AB的中点;②FC=4DF;③S△ECF= ;④当CE⊥BD时,△DFN是等腰三角形.其中一定正确的是________.17. (1分) (2020八上·沈阳期末) 如图,长方形ABOC中点A坐标为(4,5),点E是x轴上一动点,连接AE,把∠B沿AE折叠,当点B落在y轴上时点E的坐标为________.18. (1分) (2019九上·南岗期中) 如图,在矩形中,,.E、F分别是、的中点,G是对角线上的点,,则的长为________.三、解答题 (共8题;共84分)19. (5分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC于点E,交BC于点D.求证:(1)D是BC的中点;(2)△BEC∽△ADC.20. (12分) (2016九上·仙游期末) 某中学为了预测本校应届毕业女生“一分钟跳绳”项目考试情况,从九年级随机抽取部分女生进行该项目测试,并以测试数据为样本,绘制出如图所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图.根据统计图提供的信息解答下列问题:(1)补全频数分布直方图________,并指出这个样本数据的中位数落在第________小组;(1)(2)若测试九年级女生“一分钟跳绳”次数不低于130次的成绩为优秀,本校九年级女生共有260人,请估计该校九年级女生“一分钟跳绳”成绩为优秀的人数;(3)如测试九年级女生“一分钟跳绳”次数不低于170次的成绩为满分,在这个样本中,从成绩为优秀的女生中任选一人,她的成绩为满分的概率是多少?21. (5分) (2019九上·陵县月考) 在△ABC中,∠BAC=90°,AB=AC,点D是BC边上一点,过点D作∠ADE =45°,DE交AC于点E,求证:△ABD∽△DCE.22. (15分)(2016·齐齐哈尔) 如图,对称轴为直线x=2的抛物线y=x2+bx+c与x轴交于点A和点B,与y 轴交于点C,且点A的坐标为(﹣1,0)注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,)(1)求抛物线的解析式;(2)直接写出B、C两点的坐标;(3)求过O,B,C三点的圆的面积.(结果用含π的代数式表示)23. (15分)(2017·建昌模拟) 如图,抛物线y=﹣ x2+bx+c与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的解析式(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,请直接写出P点的坐标;如果不存在,请说明理由.(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,△CBF 的面积最大?请求出△CBF的最大面积及此时E点的坐标.24. (7分) (2019八下·辉期末) 如图,直线与x轴y轴分别相交于点A和点B.(1)直接写出坐标:点A________,点B________.(2)以线段AB为一边在第一象限内作正方形ABCD.则:①顶点D的坐标是▲ ,②若点D在双曲线上,试探索:将正方形ABCD沿X轴向左平移多少个单位长度时,点C恰好落在该双曲线上.25. (10分) (2020八下·郑州月考) 如图,在△ABC中,∠BAC=90°,AB=AC,点D在BC上,且BD=BA,点E在BC的延长线上,且CE=CA.(1)试求∠DAE的度数;(2)如果把原题中“AB=AC”的条件去掉,其余条件不变,那么∠DAE的度数会改变吗?为什么?26. (15分)(2020·深圳模拟) 如图,为的直径,于点,是上一点,且,延长至点,连接,使,延长与交于点,连结,.(1)连结,求证:;(2)求证:是的切线;(3)若,,求的值.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共84分)19-1、20-1、20-2、答案:略20-3、答案:略21-1、22-1、答案:略22-2、22-3、答案:略23-1、答案:略23-2、答案:略23-3、答案:略24-1、24-2、答案:略25-1、答案:略25-2、答案:略26-1、答案:略26-2、答案:略26-3、答案:略第11 页共11 页。
吉林省吉林市九年级上学期数学第一次月考试卷
吉林省吉林市九年级上学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、选择题(每小题3分,共30分) (共10题;共30分)1. (3分) (2016九上·萧山期中) 有下列事件,其中是必然事件的有()①367人中必有2人的生日相同;②在标准大气压下,温度低于0℃时冰融化;③抛掷一只均匀的骰子两次,朝上一面的点数之和一定大于等于2;④如果a、b为实数,那么a+b=b+a.A . 1个B . 2个C . 3个D . 4个2. (3分) (2019九上·诸暨月考) 抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,则朝上一面的数字是2的概率是()A .B .C .D .3. (3分)将抛物线y=2x2如何平移可得到抛物线y=2(x﹣4)2﹣1()A . 向左平移4个单位,再向上平移1个单位B . 向左平移4个单位,再向下平移1个单位C . 向右平移4个单位,再向上平移1个单位D . 向右平移4个单位,再向下平移1个单位4. (3分)(2020·长沙模拟) 二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=1,下列结论:①2a+b=0;②9a+c>3b;③若点A(﹣3,y1)、点B(﹣,y2)、点C(,y3)在该函数图象上,则y1<y3<y2:④若方程ax2+bx+c=﹣3(a≠0)的两根为x1和x2 ,且x1<x2 ,则x1<﹣1<3<x2;⑤m(am+b)﹣b<a .其中正确的结论有()A . 1个B . 2个C . 3个D . 4个5. (3分)(2016·襄阳) 一次函数y=ax+b和反比例函数y= 在同一平面直角坐标系中的图象如图所示,则二次函数y=ax2+bx+c的图象大致为()A .B .C .D .6. (3分)有2名男生和2名女生,王老师要随机地、两两一对地为他们排座位,一男一女排在一起的概率是()A .B .C .D .7. (3分)小明在一只装有红色和白色球各一只的口袋中摸出一只球,然后放回搅匀再摸出一只球,反复多次实验后,发现某种“状况”出现的机会约为50%,则这种状况可能是().A . 两次摸到红色球B . 两次摸到白色球C . 两次摸到不同颜色的球D . 先摸到红色球,后摸到白色球8. (3分)(2019·开江模拟) 下列说法中正确的是()A . 同一平面内,过一点有且只有一条直线与已知直线平行B . 三张分别画有菱形、等边三角形、圆的卡片,从中随机抽取一张,恰好抽到中心对称图形卡片的概率是C . 一组对边平行,一组对边相等的四边形是平行四边形D . 当时,关于的方程有实数根9. (3分) (2017九上·婺源期末) 已知二次函数y=ax2+bx+c的图象如图,则下列叙述正确的是()A . abc<0B . ﹣3a+c<0C . b2﹣4ac≥0D . 将该函数图象向左平移2个单位后所得到抛物线的解析式为y=ax2+c10. (3分)(2020·龙东) 如图,正方形的边长为a,点E在边上运动(不与点A,B重合),,点在射线上,且,与相交于点G,连接、、.则下列结论:① ;② 的周长为;③ ;④ 的面积的最大值是;⑤当时,G是线段的中点.其中正确的结论是()A . ①②③B . ②④⑤C . ①③④D . ①④⑤二、填空题(每小题4分,共24分) (共6题;共24分)11. (4分)小强与小红两人下军棋,小强获胜的概率为46%,小红获胜的概率是30%,那么两人下一盘棋小红不输的概率是________.12. (4分)(2020·梧州模拟) 已知二次函数y=ax2+bx+c(a≠0)经过点A(1,-1)、B(3,3),且当1≤x≤3时,-1≤y≤3,则a的取值范围是________13. (4分)(2020·长春模拟) 跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位;米)与水平距离a(单位:米)近似满足函数关系y=ax2+bx+c(a≠0) 。
吉林省松原市九年级数学中考一模试卷
吉林省松原市九年级数学中考一模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分)(2017·雁塔模拟) 下列计算错误的是()A . a•a=a2B . 2a+a=3aC . (a3)2=a5D . a3÷a﹣1=a42. (2分) (2019八下·重庆期中) 对于函数,下列结论不正确的是()A . 它的图象必经过点(-1,-2)B . 图象与y轴的交点是(-2,0)C . 当 x<-2时,y>0D . 它的图象不经过第一象限3. (2分) (2019八下·岱岳期末) 下列式子运算正确的是()A .B .C .D .4. (2分) (2016九上·嘉兴期末) 如图,点G是△ABC的重心,下列结论:① ;② ;③△EDG∽△CGB;④ .其中正确的个数有()A . 1个B . 2个C . 3个D . 4个5. (2分) (2017九上·柘城期末) 已知:如图,DE∥BC,AD:DB=1:2,则下列结论不正确的是()A .B . =C . =D . =6. (2分)在四边形ABCD中,如果AB与CD不平行,AC与BD相交于点O,那么下列条件中能判定四边形ABCD 是等腰梯形的是()A . AC=BD=BCB . AB=AD=CDC . OB=OC,OA=ODD . OB=OC,AB=CD二、填空题 (共12题;共12分)7. (1分)(2019·乐清模拟) 分解因式: ________.8. (1分) (2017八上·天津期末) 若分式有意义,则x的取值范围是________.9. (1分)(2017·历下模拟) 若关于x的一元二次方程x2+4x+k=0有两个不相等的实数根,则k的取值范围是________.10. (1分) (2016九上·长春期中) 二次函数y=(x﹣2)2﹣1的顶点坐标为________.11. (1分)已知二次函数的顶点坐标为,并且经过平移后能与抛物线重合,那么这个二次函数的解析式是________.12. (1分) (2018八下·肇源期末) 高6cm的旗杆在水平面上的影长为8cm,此时测得一建筑物的影长为28cm,则该建筑物的高为________.13. (1分)(2017·邵阳模拟) 如图,AB是⊙O的直径,AB=15,AC=9,则tan∠ADC=________.14. (1分) (2020九下·静安期中) 如图,已知在平行四边形ABCD中,点E在边AB上,且AB=3EB .设,,那么=________(结果用、表示).15. (1分)(2012·抚顺) 如图,平行四边形ABCD的面积是16,对角线AC、BD相交于点O,点M1、N1、P1分别为线段OD、DC、CO的中点,顺次连接M1N1、N1 P1、P1M1得到第一个△P1M1N1 ,面积为S1 ,分别取M1N1、N1P1、P1M1三边的中点P2、M2、N2 ,得到第二个△P2M2N2 ,面积记为S2 ,如此继续下去得到第n个△PnMnNn ,面积记为Sn ,则Sn﹣Sn﹣1=________.(用含n的代数式表示,n≥2,n为整数)16. (1分)(2017·呼兰模拟) 已知:如图,在△ABC中,∠BAC=90°,点D在AB上,点E在CA的延长线上,连接DC、DE,∠EDC=45°,BD=EC,DE=5 ,tan∠DCB= ,则CE=________.17. (1分) (2017七下·潮南期末) 如图,C岛在A岛的北偏东60°方向,在B岛的北偏西45°方向,则∠ACB=________.18. (1分)(2019·哈尔滨模拟) 正方形ABCD的边长为3,点E为射线AD上一点连接CE ,设直线CE与BD交于点F ,若AD=2DE ,则BF的长为________.三、解答题 (共7题;共65分)19. (10分)(2019·诸暨模拟)(1)计算(2)解分式方程:=220. (5分) (2019七上·潮安期末) 解方程:.21. (10分)(2019·湘西) 如图,△ABC内接于⊙O,AC=BC,CD是⊙O的直径,与AB相交于点G,过点D 作EF∥AB,分别交CA、CB的延长线于点E、F,连接BD.(1)求证:EF是⊙O的切线;(2)求证:BD2=AC•BF.22. (5分)如图,防洪大堤的横断面是梯形ABCD,其中AD//BC,坡长AB=10cm,坡角,汛期来临前对其进行了加固,改造后的背水面坡角.(注:请在结果中保留根号)(1)试求出防洪大堤的横断面的高度;(2)请求出改造后的坡长AE.23. (10分)如图,AB是⊙O的直径,C为⊙O上一点,AC平分∠BAD,AD⊥DC,垂足为D,OE⊥AC,垂足为E.(1)求证:DC是⊙O的切线;(2)若OE=cm,AC=cm,求DC的长(结果保留根号).24. (15分)(2019·霞山模拟) 如图,四边形ABCD的顶点在⊙O上,BD是⊙O的直径,延长CD、BA交于点E ,连接AC、BD交于点F ,作AH⊥CE ,垂足为点H ,已知∠ADE=∠ACB .(1)求证:AH是⊙O的切线;(2)若OB=4,AC=6,求sin∠ACB的值;(3)若,求证:CD=DH .25. (10分) (2019九上·道里期末) 已知,在中,,,D是AB上的一点不与点A,B重合,连接CD,以点C为中心,把CD顺时针旋转,得到CE,连接AE.(1)如图1,求证:;(2)如图2,若,点G为BC上一点,连接GD并延长,与EA的延长线交于点H,且,连接DE与AC相交于点F,请写出图2中所有正切值为2的角.参考答案一、单选题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共12题;共12分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共7题;共65分)19-1、19-2、20-1、21-1、21-2、22-1、23-1、23-2、24-1、24-2、24-3、25-1、25-2、第11 页共11 页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题(每题3分,共39分)
1.一元二次方程x2+6x﹣6=0配方后化为()
A.(x﹣3)2=3 B.(x﹣3)2=15 C.(x+3)2=15 D.(x+3)2=3
2、已知点P(﹣1,4)在反比例函数
k
y
x
=(k≠0)的图象上,则k的值是()
A.
1
4
- B.
1
4
C.4 D.﹣4
3、【2018广东省东莞市二模】下列函数中,当x>0时,y随x的增大而减小的是()
A.y=
2
x
B.y=﹣
4
x
C.y=3x+2 D.y=x2﹣3
4.【2018广州市番禹区】二次函数y=x2+bx的图象如图,对称轴为直线x=1,若关于x的一元二
次方程x2+bx﹣t=0(t为实数)在﹣1<x<4的范围内有解,则t的取值范围是()
A.t≥﹣1 B.﹣1≤t<3 C.﹣1≤t<8 D.3<t<8
5、抛物线2
2
2+
+
-
=kx
x
y与x轴交点的个数为()
A、0
B、1
C、2
D、以上都不对
6、某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送
1035张照片,如果全班有x名同学,根据题意,列出方程为()
A.x(x+1)=1035 B.x(x﹣1)=1035
C.x(x+1)=1035 D.x(x﹣1)=1035
7.二次函数c
bx
ax
y+
+
=2的y与x的部分对应值如下表:则下列判断正确的是()
A.抛物线开口向上B.抛物线与y轴交于负半轴
C.当x=4时,y>0 D.方程0
2=
+
+c
bx
ax的正根在3与4之间
8、(3分)某市2004年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增
加,到2006年底增加到363公顷.设绿化面积平均每年的增长率为x,由题意,所
列方程正确的是()
A.300(1+x)=363 B.300(1+x)2=363
C.300(1+2x)=363 D.363(1﹣x)2=300
二、填空题(每题3分,共21分)
9.(3分)关于x的方程x2+5x﹣m=0的一个根是2,则m=____________
10、已知二次函数244
y ax x
=++的图象与x轴有两个交点,则a的取值范围是_____________
11、若二次函数y=2x2的图象向左平移2个单位长度后,得到函数y=2(x+h)2的图象,则
h= .
12.如图,A、B是反比例函数y=
k
x
图象上关于原点O对称的两点,
BC⊥x轴,垂足为C,连线AC过点D(0,﹣1.5).若△ABC的面积
为7,则点B的坐标为.
13、当a,二次函数224
y ax x
=+-的值总是负值.
14、A市“安居工程”新建成的一批楼房都是8层高,房子的价格y(元/平方米)随楼层数x
(楼)的变化而变化(x=1,2,3,4,5,6,7,8);已知点(x,y)都在一个二次函数的图像
上(如下图所示),则6楼房子的价格为元/平方米.
x
数学(共6页) 物理 (共6页)
2
15、如下图为二次函数y=ax 2
+b x +c 的图象,在下列说法中:①ac <0; ②方程ax 2
+b x +c=0的根是x 1= -1, x 2= 3 ③a +b +c >0 ④当x >1时,y 随x 的增大而增大. 以上说法中,正确的有________ _____。
三、解答题(共40分)
16.(6分)若抛物线的顶点坐标是A (1,16),并且抛物线与x 轴一个交点坐标为(5 ,0). (1)求该抛物线的关系式; (2)求出这条抛物线上纵坐标为10的点的坐标。
17.(6分25.(14分)今年,我国政府为减轻农民负担,决定在5年内免去农业税.某
乡今年人均上缴农业税25元,若两年后人均上缴农业税为16元,假设这两年降低的百分率相同. (1)求降低的百分率;
(2)若小红家有4人,明年小红家减少多少农业税?
(3)小红所在的乡约有16000农民,问该乡农民明年减少多少农业税?
18 (7分)二次函数2
y ax bx c =++的部分图象如图所示,其中图象与x 轴交于点A (-1,0),与y 轴交于点C (0,-5),且经过点D (3,-8).(1)求此二次函数的解析式; (2)用配方法将将此二次函数的解析式写成2
()y a x h k =-+的形式,并直接写出此二次函数图象的顶点坐标以及它与x 轴的另一个交点B 的坐标.
19.(7分)抛物线y =ax 2与直线y =2x -3交于点A (1,b ). (1)求a ,b 的值;
(2)求抛物线y =ax 2与直线y =-2的两个交点B ,C 的坐标(B 点在C 点右侧); (3)求△OBC 的面积.
20. (12分)西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价
格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元?
21.(7分)如图①,已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1,0)和
点 B (-3,0),与y 轴交于点C . (1) 求抛物线的解析式;
(2) 设抛物线的对称轴与x 轴交于点M ,问在对称轴上是否存在点P ,使△CMP 为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.
(3) 如图②,若点E 为第二象限抛物线上一动点,连接BE 、CE ,求四边形BOCE 面积的最大值,并求此时E 点的坐标.
第一次月考数学试卷参考答案
一、选择题
1、C
2、D
3、A
4、C
5、C
6、B
7、D
8、B 二、填空题:
9、14
10、a<1且a 0≠ 11、2
12、(7
3
,3)
13、4
1-
<x
14、2230元
15、②④
16题:(1)16)1(2
+--=x y (2)坐标为(,61+
0)(,61-0)
17.解:(1)设降低的百分率为x ,依题意有,25(1﹣x )2=16,
解得,x 1=0.2=20%,x 2=1.8(舍去);
(2)小红全家少上缴税25×20%×4=20(元); (3)全乡少上缴税16000×25×20%=80 000(元).
答:降低的增长率是20%,明年小红家减少的农业税是20元,该乡农民明年减少的农业税是80 000元.
20.解:设应将每千克小型西瓜的售价降低x 元.
根据题意,得[(3﹣2)﹣x ](200
+)﹣24=200.
方程可化为:50x 2﹣25x +3=0, 解这个方程,得x 1=0.2,x 2=0.3.
答:应将每千克小型西瓜的售价降低0.2元或0.3元.
18题:(1)542
--=x x y (2)9)2(2
--=x y 顶点(2,-9) B (5, 0)
19题:(1)a= -1 b= -1 (2) B(,2-2) C( -,2-2) (3)面积是2,2
20题:(1)m= 1 2-≤x 1-≥x 或
21题:(1)322
+--=x x y (2)坐标为P 1(-1 ,10-)P 2(-1 ,10)P 3 (-1 , 6)
(3) 839)21(232+
+-
=x S 当8
39
21最大值是时y x -=。