第十章 重积分

合集下载

高等数学(下)课件D10_习题课

高等数学(下)课件D10_习题课
1 2 2 x − x2 2− x
f ( x, y )dy
(2) I= ∫1 dy ∫1 f ( x, y )dx + ∫ dy ∫ f ( x, y )dx
2 y 1 y
2
2
2
2
解:根据积分限可得积分区域
1 1 D = {( x, y ) | ≤ y ≤ 1, ≤ x ≤ 2} 2 y U{( x, y ) |1 ≤ y ≤ 2, y ≤ x ≤ 2}
2 2 1 1 D − x 1
1 1 1[+−)1x 1(|−x 2 2 2 d − | 31 = ∫( x y ] = ∫ x ) − 1 d x − − 1 1 3 3 1 2 x1 = =∫3 ) 1 − ( −x . d 0 3 2 3
D 直x 及 2 3 ∫ y ,其是 =2 物 线 线 例算 σ 中由y − 抛yx 计x = d ∫
6、会用二重积分计算质量、质心、一阶矩和转动惯 量等。 7、掌握第一型曲面积分的概念,会确定曲面在坐标 平面上的投影区域,会计算简单曲面上的第一型 曲面积分。 8、对三重积分可以理解为密度函数为的所占的区域 为的物体的质量。理解这一点对三重积分的许多 性质的理解有极大的帮助。 9、还应将三重积分和以前各类积分比较,一方面可 以加强理解,另一方面也使同学不易忘记和混淆。
xσ [ xx d ∫ y = yy] ∫ d ∫∫ dy 1
22 D
3 4 2 x2y 2 yyd [2 y2 9 = y ] = 2 ) = −] . [ ( y 1 ∫ ⋅2d ∫ − y y 8= 1 1 8 2 2
D 直1 = 2 ∫ +−d 其是 = x 1 线 − 例算12 yσ 中由y 、 计y x 2 , ∫

同济大学(高等数学)-第十章-重积分

同济大学(高等数学)-第十章-重积分

同济大学(高等数学)-第十章-重积分第十章重积分一元函数积分学中,我们曾经用和式的极限来上的定积分,并已经建定义一元函数()f x在区间,a b⎡⎤⎣⎦立了定积分理论,本章将把这一方法推广到多元函数的情形,便得到重积分的概念. 本章主要讲述多重积分的概念、性质、计算方法以及应用.第1节二重积分的概念与性质1.1 二重积分的概念下面我们通过计算曲顶柱体的体积和平面薄片的质量,引出二重积分的定义.1.1.1. 曲顶柱体的体积曲顶柱体是指这样的立体,它的底是x Oy平面上的一个有界闭区域D,其侧面是以D的边界为准线的母线平行于z轴的柱面,其顶部是在区域D上的连续函数(),=,且(),0z f x yf x y≥所表示的曲面(图10—1).234分为n 个小曲顶柱体.(2)在每个小闭区域上任取一点()()()1122,, ,, , ,n n ξηξηξη对第i 个小曲顶柱体的体积,用高为,()i i f ξη而底为iΔσ的平顶柱体的体积来近似代替.(3)这n 个平顶柱体的体积之和1(,)ni i ii f ξησ=∆∑ 就是曲顶柱体体积的近似值.(4)用λ表示n 个小闭区域i Δσ的直径的最大值,即()max 1i i n λd Δσ≤≤=.当0λ→ (可理解为i Δσ收缩为一点)时,上述和式的极限,就是曲顶柱体的体积:01lim (,).ni i ii V f λξησ→==∆∑ 1.1.2 平面薄片的质量设薄片在x Oy 平面占有平面闭区域D ,它在点,()x y 处的面密度是,()ρρx y =.设()0x y ρ>,且在D 上连续,求薄片的质量(见图10-3).图10-3先分割闭区域D 为n 个小闭区域n σσσ∆∆∆12,,, 在每个小闭区域上任取一点5()()()1122,, ,, , ,n n ξηξηξη 近似地,以点,()i i ξη处的面密度,()i i ρξη代替小闭区域i Δσ上各点处的面密度,则得到第i 块小薄片的质量的近似值为,()i i iρξηΔσ,于是整个薄片质量的近似值是1(,)ni i ii ρξησ=∆∑ 用()max 1i i n λd Δσ≤≤=表示n 个小闭区域i Δσ的直径的最大值,当D 无限细分,即当0λ→时,上述和式的极限就是薄片的质量M ,即01lim (,)ni i iλi M ρξηΔσ→==∑. 以上两个具体问题的实际意义虽然不同,但所求量都归结为同一形式的和的极限.抽象出来就得到下述二重积分的定义.定义1 设D 是x Oy 平面上的有界闭区域,二元函数,()z f x y =在D 上有界.将D 分为n 个小区域n σσσ∆∆∆12,,,同时用i Δσ表示该小区域的面积,记i Δσ的直径为()i d Δσ,并令()max 1i i n λd Δσ≤≤=.在i Δσ上任取一点,, 1,2,,()()i i ξηi n =,作乘积()Δ,i i i f ξησ并作和式Δ1(,)ni i ii n S f ξησ==∑. 若0λ→时,n S 的极限存在(它不依赖于D 的分法及点(,)i iεη的取法),则称这个极限值为函数,()z f x y =在D6上的二重积分,记作(,)d Df x y σ⎰⎰,即01(,)d lim (,)Δn i ii i D f x y f λσξησ→==∑⎰⎰,(10-1-1)其中D 叫做积分区域,,()f x y 叫做被积函数,d σ叫做面积元素,,d ()f x y σ叫做被积表达式,x 与y 叫做积分变量,Δ1(,)ni i ii f ξησ=∑叫做积分和. 在直角坐标系中,我们常用平行于x 轴和y 轴的直线(y =常数和x =常数)把区域D 分割成小矩形,它的边长是x ∆和Δy ,从而ΔΔΔσx y =⋅,因此在直角坐标系中的面积元素可写成d dx dy σ=⋅,二重积分也可记作01(,)d d lim (,)ni i ii D f x y x y f λξησ→==∆∑⎰⎰. 有了二重积分的定义,前面的体积和质量都可以用二重积分来表示.曲顶柱体的体积V 是函数,()z f x y =在区域D 上的二重积分(,)d DV f x y σ=⎰⎰;薄片的质量M 是面密度,()ρρx y =在区域D 上的二重积分(,)d DM x y ρσ=⎰⎰.因为总可以把被积函数,()z f x y =看作空间的一曲面,所以当,()f x y 为正时,二重积分的几何意义就是曲顶柱体的体积;当,()f x y 为负时,柱体就在x Oy 平面下方,二重积分就是曲顶柱体体积的负值. 如果,()f x y 在某部分区域上是正的,而在其余的部分区域7上是负的,那么,()f x y 在D 上的二重积分就等于这些部分区域上柱体体积的代数和.如果,()f x y 在区域D 上的二重积分存在(即和式的极限(10-1-1)存在),则称,()f x y 在D 上可积.什么样的函数是可积的呢?与一元函数定积分的情形一样,我们只叙述有关结论,而不作证明.如果,()f x y 是闭区域D 上连续,或分块连续的函数,则,()f x y 在D 上可积.我们总假定,()z f x y =在闭区域D 上连续,所以,()f x y 在D 上的二重积分都是存在的,以后就不再一一加以说明.1.1.3 二重积分的性质设二元函数,,,()()f x y g x y 在闭区域D 上连续,于是这些函数的二重积分存在.利用二重积分的定义,可以证明它的若干基本性质.下面列举这些性质.性质1 常数因子可提到积分号外面.设k 是常数,则(,)d (,)d D Dkf x y k f x y σσ=⎰⎰⎰⎰.性质 2 函数的代数和的积分等于各函数的积分的代数和,即[]()()d ()d ()d D D Df x yg x y f x y g x y σσσ±=±⎰⎰⎰⎰⎰⎰,,,,.8性质3 设闭区域D 被有限条曲线分为有限个部分闭区域,则D 上的二重积分等于各部分闭区域上的二重积分的和.例如D 分为区域1D 和2D (见图10-4),则12(,)d (,)d (,)d D D D f x y f x y f x y σσσ=+⎰⎰⎰⎰⎰⎰. (10-1-2)图10-4性质3表示二重积分对积分区域具有可加性. 性质4 设在闭区域D 上,1()f x y =,σ为D 的面积,则1d d D D σσσ==⎰⎰⎰⎰.从几何意义上来看这是很明显的.因为高为1的平顶柱体的体积在数值上就等于柱体的底面积.性质5 设在闭区域D 上有,,()()f x y g x y ≤,则(,)d (,)d D Df x yg x y σσ≤⎰⎰⎰⎰.由于 (,)(,)(,)f x y f x y f x y -≤≤又有(,)d (,)d D D f x y f x y σσ≤⎰⎰⎰⎰.9这就是说,函数二重积分的绝对值必小于或等于该函数绝对值的二重积分.性质 6 设、M m 分别为()f x y ,在闭区域D 上的最大值和最小值,σ为D 的面积,则有(,)d Dm f x y M σσσ≤≤⎰⎰.上述不等式是二重积分估值的不等式.因为()m f x y M ≤≤,,所以由性质5有d (,)d d D D Dm f x y M σσσ≤≤⎰⎰⎰⎰⎰⎰,即 d (,)d d D D D m m f x y M M σσσσσ=≤≤=⎰⎰⎰⎰⎰⎰.性质7 设函数,()f x y 在闭区域D 上连续,σ是D 的面积,则在D 上至少存在一点,()ξη使得(,)d ()Df x y f σξησ=⋅⎰⎰,.这一性质称为二重积分的中值定理.证 显然0σ≠.因,()f x y 在有界闭区域D 上连续,根据有界闭区域上连续函数取到最大值、最小值定理,在D 上必存在一点()11x y ,使()11f x y ,等于最大值M ,又存在一点22()x y ,使22()f x y ,等于最小值m ,则对于D 上所有点,()x y ,有()()()2211.m f x y f x y f x y M =≤≤=,,,由性质1和性质5,可得d (,)d d D D Dm f x y M σσσ≤≤⎰⎰⎰⎰⎰⎰.10 再由性质4得(,)d D m f x y M σσσ≤≤⎰⎰,或 1(,)d Dm f x y M σσ≤≤⎰⎰.根据闭区域上连续函数的介值定理知,D 上必存在一点,()ξη,使得1(,)d ()Df x y f σξησ=⎰⎰,, 即(,)d ()D f x y f σξησ=⎰⎰,,,()ξηD ∈.证毕.二重积分中值定理的几何意义可叙述如下: 当:,()S z f x y =为空间一连续曲面时,对以S 为顶的曲顶柱体,必定存在一个以D 为底,以D 内某点,()ξη的函数值,()f ξη为高的平顶柱体,它的体积,()f ξησ⋅就等于这个曲顶柱体的体积.习题10—11.根据二重积分性质,比较ln()d D x y σ+⎰⎰与[]2ln()d Dx y σ+⎰⎰的大小,其中(1)D 表示以10,()、1,0()、1,1()为顶点的三角形;(2)D 表示矩形区域(){}|35,2,0x y x y ≤≤≤≤.2.根据二重积分的几何意义,确定下列积分的值:(1)(22d Da x y σ+⎰⎰,()222{|}D x y x y a =+≤,;(2)Dσ,()222{|}D x y xy a =+≤,.3.设(),f x y 为连续函数,求21lim (,)d πr Df x y rσ→⎰⎰,()()()22200{,}D x y x x y y r =-+-≤|.4.根据二重积分性质,估计下列积分的值:(1)DI σ=,()22{|00}D x y x y =≤≤≤≤,,;(2)22sinsin d DI x y σ=⎰⎰,()ππ{,|00}D x y x y =≤≤≤≤,; (3)()2249d DI xy σ=++⎰⎰,()224{,|}D x y x y =+≤.5.设[][]0,10,1D =⨯,证明函数()()()()1,,,,,为内有理点即均为有理数,,为内非有理点0x y D x y f x y x y D ⎧⎪=⎨⎪⎩在D 上不可积.第2节 二重积分的计算只有少数二重积分(被积函数和积分区域特别简单)可用定义计算外,一般情况下要用定义计算二重积分相当困难.下面我们从二重积分的几何意义出发,来介绍计算二重积分的方法,该方法将二重积分的计算问题化为两次定积分的计算问题.2.1 直角坐标系下的计算在几何上,当被积函数(),0f x y ≥时,二重积分(,)d Df x y σ⎰⎰的值等于以D 为底,以曲面,()z f x y =为顶的曲顶柱体的体积.下面我们用“切片法”来求曲顶柱体的体积V .设积分区域D 由两条平行直线,x a x b ==及两条连续曲线()()y x y x ϕϕ==12,(见图10—5)所围成,其中()()a b x x ϕϕ<<12,,则D 可表示为()()(){}12,,|D x y a x b φx y φx =≤≤≤≤.图10—5用平行于y Oz 坐标面的平面()0x x a x b =≤≤去截曲顶柱体,得一截面,它是一个以区间()()12x x φφ⎡⎤⎣⎦,为底,以,0()z f x y =为曲边的曲边梯形(见图10—6),所以这截面的面积为()d 2010()()(,)φx φx f x y y A x =⎰.图10—6由此,我们可以看到这个截面面积是0x 的函数.一般地,过区间[,]a b 上任一点且平行于y Oz 坐标面的平面,与曲顶柱体相交所得截面的面积为()d 21()()(,)φx φx f x y A y x =⎰,其中y 是积分变量,x 在积分时保持不变.因此在区间[,]a b 上,()A x 是x 的函数,应用计算平行截面面积为已知的立体体积的方法,得曲顶柱体的体积为d d d 21()()()(,)bbφx aaφx A x x f x y V y x ⎡⎤=⎢⎥⎣=⎦⎰⎰⎰, 即得21()()(,)d (,)d d b x a x Df x y f x y y xϕϕσ⎡⎤=⎢⎥⎣⎦⎰⎰⎰⎰, 或记作21()()(,)d d (,)d bx a x Df x y x f x y yϕϕσ=⎰⎰⎰⎰.上式右端是一个先对y ,后对x 积分的二次积分或累次积分.这里应当注意的是:做第一次积分时,因为是在求x 处的截面积()A x ,所以x 是,a b 之间任何一个固定的值,y 是积分变量;做第二次积分时,是沿着x 轴累加这些薄片的体积()A x dx ⋅,所以x 是积分变量.在上面的讨论中,开始假定了,()0f x y ≥,而事实上,没有这个条件,上面的公式仍然正确.这里把此结论叙述如下:若,()z f x y =在闭区域D 上连续,()():D a x b x y x ϕϕ≤≤≤≤12,,则21()()(,)d d d (,)d bx ax Df x y x y x f x y y ϕϕ=⎰⎰⎰⎰. (10-2-1)类似地,若,()z f x y =在闭区域D 上连续,积分区域D 由两条平行直线y a y b ==,及两条连续曲线()()x y x y ϕϕ==12,(见图10—7)所围成,其中()()c d x x ϕϕ<<12,,则D 可表示为()()(){},|D x y c y d y x y ϕϕ=≤≤≤≤12,.则有21()()(,)d d d (,)d dx cx Df x y x y y f x y x ϕϕ=⎰⎰⎰⎰. (10-2-2)图10—7以后我们称图10-5所示的积分区域为X 型区域,X 型区域D 的特点是:穿过D 内部且平行于y 轴的直线与D 的边界的交点不多于两个.称图10—7所示的积分区域为Y 型区域,Y 型区域D 的特点是:穿过D 内部且平行于x 轴的直线与D 的边界的交点不多于两个.从上述计算公式可以看出将二重积分化为两次定积分,关键是确定积分限,而确定积分限又依赖于区域D 的几何形状.因此,首先必须正确地画出D 的图形,将D 表示为X 型区域或Y 型区域.如果D 不能直接表示成X 型区域或Y 型区域,则应将D 划分成若干个无公共内点的小区域,并使每个小区域能表示成X 型区域或Y 型区域,再利用二重积分对区域具有可加性相加,区域D 上的二重积分就是这些小区域上的二重积分之和(图10—8).图10-8例1 计算二重积分d Dxy σ⎰⎰,其中D 为直线y x =与抛物线2y x =所包围的闭区域.解 画出区域D 的图形,求出y x =与2y x =两条曲线的交点,它们是()0,0及()1,1.区域D (图10—9)可表示为:20.x x y x ≤≤≤≤1,图10—9因此由公式(10-2-1)得()221120d d d 2x x xxDx xy x x ydy y xσ==⎰⎰⎰⎰⎰d 135011()224x x x -==⎰.本题也可以化为先对x ,后对y 的积分,这时区域D 可表为:1,0y y y x ≤≤≤≤.由公式(10-2-2)得1d d d yyDxy y y x x σ=⎰⎰⎰⎰.积分后与上面结果相同.例2 计算二重积分221d Dyx y σ+-⎰⎰,其中D 是由直线,1y x x ==-和1y =所围成的闭区域.解 画出积分区域D ,易知D :11,1x x y -≤≤≤≤ (图10-10),若利用公式(10-2-1),得图10-1011222211d (1d )d xDy x y y x y y xσ-+-=+-⎰⎰⎰⎰()d 1312221113xx y x -⎡=⎤-+-⎢⎥⎣⎦⎰()d 113310121(33x x -=--=--⎰⎰x 12=.若利用公式(10-2-2),就有()1222211d 1d d Dx y y x y x yσ--+-=+-⎰⎰⎰⎰,也可得同样的结果.例3 计算二重积分22d Dxyσ⎰⎰,其中D 是直线2,y y x==和双曲线1x y =所围之闭区域.解 求得三线的三个交点分别是1,(1,1)2,2⎛⎫ ⎪⎝⎭及2,2().如果先对y 积分,那么当121x ≤≤时,y 的下限是双曲线1y x =,而当12x ≤≤时,y 的下限是直线y x =,因此需要用直线x =1把区域D 分为1D 和2D 两部分(图10—11).1211, 21:D x y x≤≤≤≤; 22, 2:1D x x y ≤≤≤≤.图10—11于是12222221222112222212d d d d d d d x x DD D x x x x x x y x yy y y y y σσσ=+=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰d d 2222121112x x x x x xy y ⎡⎤⎡⎤=-+-⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰ d d 2212311222x x x x x x⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭⎰⎰ 1243231124626x x x x ⎡⎤⎡⎤=-+-⎢⎥⎢⎥⎣⎦⎣⎦812719264==.如果先对x 积分,那么:12, 1 D y x y y≤≤≤≤,于是 223221222111d d d d 3yy y Dy x x x y x y y y y σ⎡⎤==⎢⎥⎣⎦⎰⎰⎰⎰⎰ d 22254111136312y y y y y ⎡⎤⎡⎤=-=+⎢⎥⎢⎥⎣⎦⎣⎦⎰2764=.由此可见,对于这种区域D ,如果先对y 积分,就需要把区域D 分成几个区域来计算.这比先对x 积分繁琐多了.所以,把重积分化为累次积分时,需要根据区域D 和被积函数的特点,选择适当的次序进行积分.例4 设,()f x y 连续,求证d d d d (,)(,)bxbbaaayx f x y y y f x y x =⎰⎰⎰⎰.证 上式左端可表为d d d (,)(,)b xaaDx f x y y f x y σ=⎰⎰⎰⎰,其中,:D a x b a y x ≤≤≤≤ (图10—12)区域D 也可表为:,a y b y x b ≤≤≤≤,图10—12于是改变积分次序,可得(,)d d (,)d bbayDf x y y f x y xσ=⎰⎰⎰⎰由此可得所要证明的等式.例5 计算二重积分d sin Dxσx⎰⎰,其中D 是直线y x =与抛物线2y x =所围成的区域. 解 把区域D 表示为x型区域,即(){}2D =x ,y |0x 1,x y x ≤≤≤≤.于是d d d d 221100sin sin sin xx x x Dxx x σx y y x x x x ⎛⎫== ⎪⎝⎭⎰⎰⎰⎰⎰()sin d 11x x x=-⎰()10cos cos sin x x x x =-+-1sin 10.1585=-≈ 注:如果化为y 型区域即先对x 积分,则有d d d 1sin sin yyDx xσy x x x =⎰⎰⎰⎰.由于sin x x的原函数不能由初等函数表示,往下计算就困难了,这也说明计算二重积分时,除了要注意积分区域D 的特点(区分是x 型区域,还是y 型区域)外,还应注意被积函数的特点,并适当选择积分次序.2.2 二重积分的换元法与定积分一样,二重积分也可用换元法求其值,但比定积分复杂得多.我们知道,对定积分()d b af x x ⎰作变量替换()x φt =时,要把()f x 变成()()f φt ,d x 变成d ()φt t ',积分限,a b 也要变成对应t 的值.同样,对二重积分(),d Df x y σ⎰⎰作变量替换()(),,,,x x u v y y u v ⎧=⎪⎨=⎪⎩时,既要把(),f x y 变成()()(),,,f x u v y u v ,还要把x Oy 面上的积分区域D 变成uOv 面上的区域uvD ,并把D 中的面积元素d σ变成uvD 中的面积元素d *σ.其中最常用的是极坐标系的情形.2.2.1 极坐标系的情形下面我们讨论利用极坐标变换,得出在极坐标系下二重积分的计算方法.把极点放在直角坐标系的原点,极轴与x 轴重合,那么点P 的极坐标(),P r θ与该点的直角坐标(),P x y 有如下互换公式:πcos ,sin ;0,02x r θy r θr θ==≤<+∞≤≤;22,arctan ;,yr x y θx y x=+=-∞<<+∞. 我们知道,有些曲线方程在极坐标系下比较简单,因此,有些二重积分(),d Df x y σ⎰⎰用极坐标代换后,计算起来比较方便,这里假设(),z f x y =在区域D 上连续.在直角坐标系中,我们是以平行于x 轴和y 轴的两族直线分割区域D 为一系列小矩形,从而得到面积元素d d d σx y =.在极坐标系中,与此类似,我们用“常数r =”的一族同心圆,以及“常数θ=”的一族过极点的射线,将区域D 分成n 个小区域(),1,2,,ijσi j n ∆=,如图10—13所示.图10—13小区域面积()2212ij i i j i j σr r θr θ⎡⎤∆=+∆∆-∆⎣⎦212i i j i jr r θr θ=∆∆+∆∆.记 ()()()22,,1,2,,iji j ρr θi j n ∆=∆+∆=,则有 ()ij i i j ijσr r θορ∆=∆∆+∆,故有d d d σr r θ=.则()()DD⎰⎰⎰⎰这就是直角坐标二重积分变换到极坐标二重积分的公式.在作极坐标变换时,只要将被积函数中的,x y 分别换成cos ,sin r θr θ,并把直角坐标的面积元素d d d σx y =换成极坐标的面积元素d d r r θ即可.但必须指出的是:区域D 必须用极坐标系表示.在极坐标系下的二重积分,同样也可以化为二次积分计算.下面分三种情况讨论:(1) 极点O 在区域D 外部,如图10—14所示.图10—14设区域D 在两条射线,θαθβ==之间,两射线和区域边界的交点分别为,A B ,将区域D 的边界分为两部分,其方程分别为()()12,r r θr r θ==且均为[],αβ上的连续函数.此时()()(){}12,|,D r θr θr r θαθβ=≤≤≤≤.于是()()()()d d d d 21cos ,sin cos ,sin βr θαr θDf r θr θr r θθf r θr θr r =⎰⎰⎰⎰(2) 极点O 在区域D 内部,如图10—15所示.若区域D 的边界曲线方程为()r r θ=,这时积分区域D 为()(){}且()r θ在π0,2⎡⎤⎣⎦上连续.图10—15于是()()()πd d d d 200cos ,sin cos ,sin r θDf r θr θr r θθf r θr θr r=⎰⎰⎰⎰.(3) 极点O 在区域D 的边界上,此时,积分区域D 如图10—16所示.图10—16()(){},|,0D r θαθβr r θ=≤≤≤≤, 且()r θ在π0,2⎡⎤⎣⎦上连续,则有()()()d d d d 0cos ,sin cos ,sin βr θαDf r θr θr r θθf r θr θr r=⎰⎰⎰⎰.在计算二重积分时,是否采用极坐标变换,应根据积分区域D 与被积函数的形式来决定.一般来说,当积分区域为圆域或部分圆域,及被积函数可表示为()22f x y +或y f x ⎛⎫ ⎪⎝⎭等形式时,常采用极坐标变换,简化二重积分的计算.例6 计算二重积分22221d d 1Dx y I x yx y --=++⎰⎰,其中()(){}222,|01D x y x y a a =+≤<<.解 在极坐标系中积分区域D 为(){}π,|0,02D r θr a θ=≤≤≤≤,则有2222π22211d d d d 11aDx y r I x y r r x y rθ---==+++⎰⎰⎰⎰ 222200211πd πd 11aa t r t r r r t r t--=+-=⎰⎰令()()22220πarcsin 1πarcsin 11a t ta a =+-=+--.例7 计算二重积分2d Dxy σ⎰⎰,其中D 是单位圆在第I 象限的部分.解 采用极坐标系. D可表示为π, 1002θr ≤≤≤≤(图10-17),图10-17于是有π12222d d cos sin d Dxy r r r r σθθθ=⋅⋅⎰⎰⎰⎰ πd d 12421cos sin 15θθθr r ==⎰⎰.例8 计算二重积分Dx σ⎰⎰2d ,其中D 是二圆221xy +=和224x y +=之间的环形闭区域.解 区域D :2,120θπr ≤≤≤≤,如图10—18所示.图10—18于是2π22π22230111cos 215d cos d d d π24Dx r r r r r θσθθθ+=⋅==⎰⎰⎰⎰⎰⎰2d .2.2.2. 直角坐标系的情形我们先来考虑面积元素的变化情况.设函数组,,,()()x x u v y y u v ==为单值函数,在uvD 上具有一阶连续偏导数,且其雅可比行列式(,)0(,)J x y u v ∂≠∂=, 则由反函数存在定理,一定存在着D 上的单值连续反函数,,,()()u u x y v v x y ==.这时uvD 与D 之间建立了一一对应关系,uOv 面上平行于坐标轴的直线在映射之下成为x Oy 面上的曲线,,,0()()u x y u v x y v ==.我们用uOv 面上平行于坐标轴的直线,1,,,1,,,(2;2)i j u u v v i n j m ====将区域uvD 分割成若干个小矩形,则映射将uOv 面上的直线网变成x Oy 面上的曲线网(图10—19).图10—19在uv D 中任取一个典型的小区域ΔuvD (面积记为*Δσ)及其在D 中对应的小区域ΔD (面积记为Δσ),如图10—20所示.图10—20设ΔD 的四条边界线的交点为1211322,,,,,0()()()P x y P x x y y P x x y y +∆+∆+∆+∆和ΔΔ433,0()P x x y y ++.当ΔΔ,u v 很小时,()ΔΔ123,,,iix y i =也很小,ΔD 的面积可用12P P 与14P P 构成的平行四边形面积近似.即Δ1214P P P P σ⨯≈.而 ()()ΔΔ1112x y P P =+i j()()()ΔΔ[][]00000000,,,(,x u u v x u v y u u v y u v =+-++-i j()()ΔΔ[][]0000,,u u x u v u y u v u ≈'+'i j.同理()()ΔΔ[][]001400,,v v P P x u v v y u v v ≈'+'i j.从而得ΔΔΔΔΔ1214y xu u u u P P P σP y x v v vv∂∂∂∂⨯=∂∂∂=∂的绝对值*(,)(,)(,)(,)x y x y Δu Δv u v u v Δσ∂∂==∂∂.因此,二重积分作变量替换,,,()()x x u v y y u v ==后,面积元素d σ与d *σ的关系为*(,),(,)x y d d u v σσ∂=∂ 或(,)(,)x y dxdy dudv u v ∂=∂.由此得如下结论:定理 1 若,()f x y 在x Oy 平面上的闭区域D 上连续,变换:,,,()()T x x u v y y u v ==,将uOv 平面上的闭区域uvD 变成x Oy 平面上的D ,且满足:(1),,,()()x u v y u v 在uvD 上具有一阶连续偏导数, (2)在uvD 上雅可比式(0(,),)x y J u v ∂∂=≠;(3)变换:uvT DD→是一对一的,则有[](,)d d (,),(,)d d .uvDD f x y x y f x u v y u v J u v =⎰⎰⎰⎰例9 计算二重积分e d d y x y x Dx y -+⎰⎰,其中D 是由x 轴,y 轴和直线2x y +=所围成的闭区域.解 令,u y x v y x =-=+,则,22x y v u v u -==+. 在此变换下,x Oy 面上闭区域D 变为uOv 面上的对应区域D '(图10—21).图10—21雅可比式为11(,)122(,)21122x y u v J -∂==-∂=, 则得1ed de d d 2y x u y xvDD x y u v -+'=-⎰⎰⎰⎰-1d e d (e e )22001122uv v v v u -==-⎰⎰⎰e e 1=--.例10 设D 为x Oy 平面内由以下四条抛物线所围成的区域:222,,x ay x by y px ===,2y qx =,其中<<, <<00a b p q ,求D 的面积.解 由D 的构造特点,引入两族抛物线22,y ux x vy ==,则由u 从p 变到q ,v 从a 变到b 时,这两族抛物线交织成区域D '(图10—22).图10—22雅可比行列式为(,)1(,)(,)(,)J x y u v u v x y ∂=∂∂∂= 222211322y y x x x x yy==---,则所求面积()()11d d d d 33D D S x y u v b a q p '===--⎰⎰⎰⎰.习题10—21.画出积分区域,把(,)d Df x y σ⎰⎰化为二次积分:(1)()1,1,{,0}D x y x y y x y =+≤-≤≥|;(2)()22{,}D x y y x x y =≥-≥|,.2.改变二次积分的积分次序: (1)2d d 22(,)yy y f x y x⎰⎰;(2)e1d d ln 0(,)xx f x y y ⎰⎰;(3)()220,xxdx f x y dy⎰⎰; (4)1-1d (,)d x f x y y ⎰.3.设(,)f x y 连续,且(,)(,)d Df x y xy f x y σ=+⎰⎰,其中D 是由直线0,1y x ==及曲线2y x =所围成的区域,求(,).f x y4.计算下列二重积分:(1)()22Dx y d σ+⎰⎰,(){},|1,1D x y x y =≤≤;(2)d sin Dxσx⎰⎰,其中D 是直线y x =与抛物线y x π=所围成的区域;(3)Dσ,(){}22,|D x y xy x =+≤;(4)22-y ed d ⎰⎰Dx x y,D 是顶点分别为()0,0O ,(),11A ,()0,1B 的三角形闭区域.5.求由坐标平面及2,3,4x y x y z ==++=所围的角柱体的体积.6.计算由四个平面0,0,1,1x y x y ====所围的柱体被平面0z =及236x y z ++=截得的立体的体积.7.在极坐标系下计算二重积分: (1)d Dx y ⎰⎰, ()ππ22224{,|}D x y x y =≤+≤;(2)()d d D x y x y +⎰⎰,(){},|22D x y x y x y =+≤+; (3)d d Dxy x y ⎰⎰,其中D 为圆域222x y a +≤;(4)22ln(1)d d Dxy x y++⎰⎰,其中D 是由圆周221xy +=及坐标轴所围成的在第一象限内的闭区域.8. 将下列积分化为极坐标形式:(1) 2d d 22)x x y y +⎰a;(2) d 0xx y ⎰⎰a.9.求球体2222x y z R ++≤被圆柱面222x y Rx +=所割下部分的体积.10.作适当坐标变换,计算下列二重积分:(1)22d d Dx x y y⎰⎰,由12,,xy x y x ===所围成的平面闭区域; (2)d d y x yDex y+⎰⎰,(){,|0,0}1,D x y x y x y =+≤≥≥;(3)d Dx y , 其中D 是椭圆22221y x a b +=所围成的平面闭区域;(4)()()sin d d Dx y x y x y +-⎰⎰,(){,|0,0}D x y x y x y ππ=≤+≤≤-≤.11.设闭区域D 由直线100,,x y x y +===所围成,求证:1cos d d sin1.2Dx y x y x y +⎛⎫= ⎪-⎝⎭⎰⎰ 12.求由下列曲线所围成的闭区域的面积:(1) 曲线334,8,5,15xy xy xy xy ====所围成的第一象限的平面闭区域;(2) 曲线,,,x y a x y b y x y x αβ+=+===所围的闭区域0,0()a b αβ<<<<.第3节 三重积分3.1 三重积分的概念三重积分是二重积分的推广,它在物理和力学中同样有着重要的应用.在引入二重积分概念时,我们曾考虑过平面薄片的质量,类似地,现在我们考虑求解空间物体的质量问题.设一物体占有空间区域Ω,在Ω中每一点,,()x y z 处的体密度为,,()ρx y z ,其中,,()ρx y z 是Ω上的正值连续函数.试求该物体的质量.先将空间区域Ω任意分割成n 个小区域12, , , nΔv Δv Δv(同时也用iΔv 表示第i 个小区域的体积).在每个小区域i Δv 上任取一点,,()i i iξηζ,由于,,()ρx y z 是连续函数,当区域iΔv 充分小时,密度可以近似看成不变的,且等于在点,,()i i i ξηζ处的密度,因此每一小块iΔv 的质量近似等于,,()i i i iρξηζΔv ,物体的质量就近似等于1(,,)ni i ii ρξηζΔv =∑i .令小区域的个数n 无限增加,而且每个小区域iΔv 无限地收缩为一点,即小区域的最大直径()max 10ii nλd Δv ≤≤=→时,取极限即得该物体的质量1lim (,,)ni i iλi ρξηζΔv M →==∑i .由二重积分的定义可类似给出三重积分的定义:定义1 设Ω是空间的有界闭区域,,,()f x y z 是Ω上的有界函数,任意将Ω分成n 个小区域12,,,nΔv Δv Δv ,同时用i Δv 表示该小区域的体积,记iΔv 的直径为()id Δv ,并令()max 1i i nλd Δv ≤≤=,在i Δv 上任取一点,,()i i iξηζ,1,2,,()i n =,作乘积,,()i i i if ξηζΔv ,把这些乘积加起来得和式1(,,)n i i ii f ξηζΔv =∑i ,若极限01lim (,,)ni i iλi f ξηζΔv →=∑i 存在(它不依赖于区域Ω的分法及点(,,)iiiξηζ的取法),则称这个极限值为函数,,()f x y z 在空间区域Ω上的三重积分,记作(),,f x y z dv Ω⎰⎰⎰,即 ()01,,lim (,,)ni i i ii f x y z dv f v λξηζ→=Ω=∆∑⎰⎰⎰,其中,,()f x y z 叫做被积函数,Ω叫做积分区域,d v 叫做体积元素.在直角坐标系中,若对区域Ω用平行于三个坐标面的平面来分割,于是把区域分成一些小长方体.和二重积分完全类似,此时三重积分可用符号(),,d d d f x y z x y z Ω⎰⎰⎰来表示,即在直角坐标系中体积元素d v可记为d d d x y z .有了三重积分的定义,物体的质量就可用密度函数,,()ρx y z 在区域Ω上的三重积分表示,即(),,M x y z dv Ωρ=⎰⎰⎰,如果在区域Ω上,,1()f x y z =,并且Ω的体积记作V ,那么由三重积分定义可知1d v dv V ΩΩ==⎰⎰⎰⎰⎰⎰.这就是说,三重积分dv Ω⎰⎰⎰在数值上等于区域Ω的体积.三重积分的存在性和基本性质,与二重积分相类似,此处不再重述.3.2 三重积分的计算 为简单起见,在直角坐标系下,我们采用微元分析法来给出计算三重积分的公式.三重积分(,,)d f x y z v Ω⎰⎰⎰表示占空间区域Ω的物体的质量.设Ω是柱形区域,其上、下分别由连续曲面()()z z x y z z x y ==12,,,所围成,它们在x Oy 平面上的投影是有界闭区域D ;Ω的侧面由柱面所围成,其母线平行于z 轴,准线是D 的边界线.这时,区域Ω可表示为(){}12,,, ,,,|()()()Ωx y z z x y z z x y x y D =≤≤∈ 先在区域D 内点,()x y 处取一面积微元d d d σx y =,对应地有Ω中的一个小条,再用与x Oy 面平行的平面去截此小条,得到小薄片(图10—23).图10—23于是以d σ为底,以dz 为高的小薄片的质量为,,d d d ()f x y z x y z .把这些小薄片沿z 轴方向积分,得小条的质量为d d d 21(,)(,)(,,)z x y z x y f x y z z x y ⎡⎤⎢⎥⎣⎦⎰. 然后,再在区域D 上积分,就得到物体的质量21(,)(,)(,,)d d d z x y z x y Df x y z z x y ⎡⎤⎢⎥⎣⎦⎰⎰⎰. 也就是说,得到了三重积分的计算公式(),,f x y z dv Ω⎰⎰⎰=21(,)(,)(,,)d d d z x y z x y Df x y z z x y ⎡⎤⎢⎥⎣⎦⎰⎰⎰21(,)(,)d d (,,)d z x y z x y Dx y f x y z z=⎰⎰⎰.(10-3-1)例1 计算三重积分d d d x x y z Ω⎰⎰⎰,其中Ω是三个坐标面与平面1x y z ++=所围成的区域(图10—24).图10—24解 积分区域Ω在x Oy 平面的投影区域D 是由坐标轴与直线1x y +=围成的区域:10x ≤≤,10y x ≤≤-,所以11110d d d d d d d d d x yxx yDx x y z x y x z x y x z -----Ω==⎰⎰⎰⎰⎰⎰⎰⎰⎰ d d 110(1)xx x x y y --=-⎰⎰d 21(1)1224x x x -==⎰.例2 计算三重积分d z vΩ⎰⎰⎰,其中2222:,,, 000Ωx y z x y z R ≥≥≥++≤(见图10—25).图10—25解 区域Ω在x Oy 平面上的投影区域222:,,00D x y x y R ≥≥+≤.对于D 中任意一点,()x y ,相应地竖坐标从0z =变到222R x z y --=.因此,由公式(10-3-1),得()2222221d d d d d d 2R x y DDz v x y z R x y x y --Ω==--⎰⎰⎰⎰⎰⎰⎰ π01d d 2222()R θR ρρρ-=⎰⎰221π240224RρρR ⎛⎫⋅⋅- ⎪ ⎪⎭=⎝π416R =.三重积分化为累次积分时,除上面所说的方法外,还可以用先求二重积分再求定积分的方法计算.若积分区域Ω如图10-26所示,它在z 轴的投影区间为[,]A B ,对于区间内的任意一点z ,过z 作平行于x Oy 面的平面,该平面与区域Ω相交为一平面区域,记作D (z ).这时三重积分可以化为先对区域()D z 求二重积分,再对z 在[]A B ,上求定积分,得()(,,)d d (,,)d d BAD z f x y z v z f x y z x y Ω=⎰⎰⎰⎰⎰⎰.(10-3-2)图10—26我们可利用公式(10-3-2)重新计算例2中的积分.区域Ω在z 轴上的投影区间为[,]0R ,对于该区间中任意一点z ,相应地有一平面区域():,00D z x y ≥≥与2222R x y z +≤-与之对应.由公式(10-3-2),得()zd d d d RD z v z z x y Ω=⎰⎰⎰⎰⎰⎰.求内层积分时,z 可以看作常数:并且()2222:R D z x y z +≤-是14个圆,其面积为()π224R z =-,所以 ()01πzd π416Rv =z R z z R Ω⋅-=⎰⎰⎰⎰224d . 例3 计算三重积分2d z v Ω⎰⎰⎰,其中:1222222y x z a b Ωc+≤+.解 我们利用公式(10-3-2)将三重积分化为累次积分.区域Ω在z 轴上的投影区间为[,]c c -,对于区间内任意一点z ,相应地有一平面区域()D z :122222222(1)(1)y xz za b c c --≤+ 与之相应,该区域是一椭圆(图10—27),其面积为π221z c ab ⎛⎫- ⎪⎝⎭.所以22222()d d d d π1d ccc c D z z z v =z z x y abz z c --Ω⎛⎫=- ⎪⎝⎭⎰⎰⎰⎰⎰⎰⎰π3415abc =π3415abc =.图10—27 3.3 三重积分的换元法对于三重积分(,,)f x y z dv Ω⎰⎰⎰作变量替换:(,,)(,,)(,,)x x r s t y y r s t z z r s t =⎧⎪=⎨⎪=⎩它给出了Orst 空间到Ox yz 空间的一个映射,若()()(),,,,,,,,x r s t y r s t z r s t 有连续的一阶偏导数,且(,,)(,,)0x y z r s t ∂≠∂,则建立了Orst 空间中区域*Ω和Ox yz 空间中相应区域Ω的一一对应,与二重积分换元法类似,我们有d d d d (,,)(,,)x y z r s t v r s t ∂∂=. 于是,有换元公式[]*(,,)(,,)(,,),(,,),(,,)d d d (,,)x y z f x y z dv f x r s t y r s t z r s t r s tr s t ΩΩ∂=⋅∂⎰⎰⎰⎰⎰⎰.作为变量替换的实例,我们给出应用最为广泛的两种变换:柱面坐标变换及球面坐标变换.3.3.1 柱面坐标变换三重积分在柱面坐标系中的计算法如下: 变换cos ,sin ,x r θy r θz z =⎧⎪=⎨⎪=⎩称为柱面坐标变换,空间点(),,M x y z 与,,()r θz 建立了一一对应关系,把,,()r θz 称为点(),,M x y z 的柱面坐标.不难看出,柱面坐标实际是极坐标的推广.这里,r θ为点M在x Oy 面上的投影P 的极坐标.π<,2,<<00r θz ≤+∞≤≤-∞+∞(图10—28).图10—28柱面坐标系的三组坐标面为 (1)常数r =,以z 为轴的圆柱面; (2)常数θ=,过z 轴的半平面; (3)常数z =,平行于x Oy 面的平面. 由于cos sin 0(,,)sin cos 0(,,)001θr θx y z θr r rθθz -∂==∂,则在柱面坐标变换下,体积元素之间的关系式为:d d d d d d x y z r r θz=.于是,柱面坐标变换下三重积分换元公式为:(,,)d d d (cos ,sin ,)d d d f x y z x y z =f r r z r r z θθθ'ΩΩ⎰⎰⎰⎰⎰⎰.(10-3-3)至于变换为柱面坐标后的三重积分计算,则可化为三次积分来进行.通常把积分区域Ω向x Oy 面投影得投影区域D ,以确定,r θ的取值范围,z 的范围确定同直角坐标系情形.例4 计算三重积分22d d d z x y x y z Ω+⎰⎰⎰,其中Ω是由锥面22z x y =+与平面1z =所围成的区域.解 在柱面坐标系下,积分区域Ω表示为π1,1,200r z r θ≤≤≤≤≤≤ (图10—29).图10—29所以有2π11222d d d d d d rz x y x y z r z r z θΩ+=⋅⎰⎰⎰⎰⎰⎰d π1221220(1)r r r =-⎰.例5 计算三重积分()22d d d xy x y zΩ+⎰⎰⎰,其中Ω是由曲线22,0yz x ==绕z 轴旋转一周而成的曲面与两平面2,8z z ==所围之区域.解 曲线2=2,0y z x =绕z 旋转,所得旋转面方程为222x y z +=.设由旋转曲面与平面2z =所围成的区域为1Ω,该区域在x Oy 平面上的投影为1D ,(){}4221|D x ,y x +y =≤.由旋转曲面与8z =所围成的区域为2Ω,2Ω在x Oy 平面上的投影为2D ,()21622{|}D x ,y x +y =≤.则有21ΩΩΩ=,如图10—30所示.图10—30()21288223322d d d d d d d d d r D D xy x y z r r z r r zθθΩ+=+⎰⎰⎰⎰⎰⎰⎰⎰⎰2d d d 8d 222243326ππθr r θr r ⎛⎫=+- ⎪⎝⎭⎰⎰⎰⎰r π336=.3.3.2 球面坐标变换三重积分在球面坐标系中的计算法如下: 变换sin cos ,sin sin ,cos x r φθy r φθz r φ=⎧⎪=⎨⎪=⎩称为球面坐标变换,空间点(),,M x y z 与,,()r φθ建立了一一对应关系,把,,()r φθ称为点(),,M x y z 的球面坐标(图10-31),其中ππ<,,2000r φθ≤+∞≤≤≤≤.图10-31球面坐标系的三组坐标面为: (1)常数r =,以原点为中心的球面;(2)常数φ=,以原点为顶点,z 轴为轴,半顶角为φ的圆锥面;(3)常数θ=,过z 轴的半平面.由于球面坐标变换的雅可比行列式为sin cos cos cos sin sin (,,)sin sin cos sin sin cos (,,)cos sin 0φθr φθr φθx y z φθr φθr φθr φθφr φ-∂=∂-2sin r φ=,则在球面坐标变换下,体积元素之间的关系式为:2d d d sin d d d x y z r φr θφ=.于是,球面坐标变换下三重积分的换元公式为 2(,,)d d d (sin cos ,sin sin ,cos )sin d d d f x y z x y z =f r r r r r ϕθϕθϕϕϕθ'ΩΩ⋅⎰⎰⎰⎰⎰⎰. (10-3-4)例6 计算三重积分222()d d d xy z x y zΩ++⎰⎰⎰,其中Ω表示圆锥面222x y z +=与球面2222x y z R z ++=所围的较大部分立体.解 在球面坐标变换下,球面方程变形为2cos r R φ=,锥面为π4φ=(图10—32).这时积分区域Ω表示为π2, , 2cos 4000θπφr R φ≤≤≤≤≤≤,图10—32所以22222()d d d sin d d d x y z x y z =r r r ϕϕθ'ΩΩ++⋅⎰⎰⎰⎰⎰⎰ππd d d 22cos 44sin R φθφr φr =⎰⎰⎰ππd π52cos 0540228sin ()515R φφr φR ==⎰.例7 计算三重积分22(2)d d d y x z x y zΩ++⎰⎰⎰,其中Ω是由曲面2222x y z a ++=,22224x y z a ++=,22x y z +=所围成的区域.解 积分区域用球面坐标系表示显然容易,但球面坐标变换应为sin cos sin sin cos ,,x r φθz r φθy r φ===,这时2d sin d d d v r φr φθ=,积分区域Ω表示为ππ224,00,a r a φθ≤≤≤≤≤≤ (图10—33).图10—33所以π2π2222400(2)d d d d d (2cos sin )sin d a a y x z x y z =r r r r θϕϕϕϕΩ+++⎰⎰⎰⎰⎰⎰ππ41515816a ⎛⎫ ⎪⎝⎭=+.值得注意的是,三重积分的计算是选择直角坐标,还是柱面坐标或球面坐标转化成三次积分,通常要综合考虑积分域和被积函数的特点.一般说来,积分域Ω的边界面中有柱面或圆锥面时,常采用柱面坐标系;有球面或圆锥面时,常采用球面坐标系.另外,与二重积分类似,三重积分也可利用在对称区域上被积函数关于变量成奇偶函数以简化计算.习题10-31.化三重积分(,,)d d d I f x y z x y z Ω=⎰⎰⎰为三次积分,其中积分区域Ω分别是.(1) 由双曲抛物面x y z =及平面100x y z +-==,所围成的闭区域;(2) 由曲面22z x y =+及平面1z =所围成的闭区域. 2.在直角坐标系下计算三重积分: (1)()d d d 2+xy z x y z Ω⎰⎰⎰,其中[][][]-2,5-3,30,1Ω=⨯⨯;。

高等数学重积分

高等数学重积分


D
f ( x, y )d
f ( x, y) d .
D
在 D 上存在最大值 M 和最小值 m , 用 A
m A f ( x, y ) d MA.
D
表示D 的面积. 则有
(6) (积分中值定理)
用 A 表示D 的面积. 则存在点
在闭区域D上连续, 使

(7) 若在 D上
( k ,k ), 则第 k 小块的质量
x
( k , k )
k
(3) 求和: 得到质量的近似值
n
»
å
k= 1
( k , k ) k .
(4) 取极限: 令λ为个小区域直径的最大值, 则
n
M = lim å ( k , k ) k .
® 0
k= 1
两个问题的 共性: (1) 解决问题的步骤相同: “分割, 近似, 求和, 取极限” (2) 所求量的结构式相同
n
曲顶柱体体积: 平面薄片的质量:
V = lim å
® 0
k= 1
f ( k , k ) k .
n
M = lim å ( k , k ) k .
® 0
k= 1
定义 1.1 设 f ( x , y ) 是有界闭区域 D 上的有界函数. 将 D 任意分成 n 个小区域
上任取一点 径的最大值 . 若当 作和式
I
D
d xd y 100 cos x cos y
2
2
2
D : x y 10
y
10
解 D 的面积为 A = (10 2) = 200.
由于
1 102
1 100 cos x cos y

高等数学-重积分PPT课件

高等数学-重积分PPT课件

重积分的性质
线性性质
若α、β为常数,则∫[αf+βg]=α∫f+β∫g。
积分区域的可加性
若D1、D2是两个不相交的区域,则∫[D1∪D2]f=∫[D1]f+∫[D2]f。
保序性
若在D上,f(x,y)≤g(x,y),则∫[D]f≤∫[D]g。
绝对可积性
若f在D上可积,则|f|在D上也可积,且|∫[D]f|≤∫[D]|f|。
课件内容与结构
课件内容
本课件主要介绍重积分的基本概念、性质、计算方法和应用实例,包括二重积分和三重积分的定义、性质、计算 方法和应用等。
课件结构
课件按照“概念引入-性质探讨-计算方法-应用实例”的逻辑顺序进行编排,层次分明,条理清晰,便于学生理解 和掌握。
02
重积分的定义与性质
重积分的定义
二重积分的定义
计算消费者剩余和生产者剩余
02 重积分可用于计算消费者剩余和生产者剩余,通过对
需求函数和供给函数进行积分得到。
计算社会福利
03
重积分可用于计算社会福利,通过对消费者剩余和生
产者剩余进行加总得到。
06
重积分的数值计算方法
矩形法则与梯形法则
矩形法则
将积分区间划分为若干个小矩形,每个小矩形的面积近似等于其底边长度与高的乘积,将所有小矩形 的面积相加得到积分的近似值。
计算转动惯量
重积分可用于计算物体绕某轴的 转动惯量,通过对物体质量分布 和到轴距离的平方进行积分得到。
计算引力
重积分可用于计算两个物体之间 的引力,通过对两物体间的质量 分布和距离进行积分得到。
在工程学中的应用
计算面积和体积
重积分可用于计算平面图形或立体图形的面积和体积,通过对图形 的边界函数进行积分得到。

重积分(解题方法归纳)Word版

重积分(解题方法归纳)Word版

第十章 重积分解题方法归纳一、重积分的概念、性质重积分的定义是一个黎曼和的形式,对于一些和式的极限问题,有时可根据定义,将其转化为重积分,再利用重积分的计算方法求解. 另外很多考试在选择题或填空题中,直接考查重积分的性质,常考的性质一般有:比较性质、对称性质、中值定理等.例1 (2010年考研 数一、数二)2211lim ()()→∞==++∑∑nnn i j nn i n j =( ) 11211()()(1)(1)(1)(1)++++⎰⎰⎰⎰xxA dx dyB dx dy x y x y11112000011()()(1)(1)(1)(1)++++⎰⎰⎰⎰C dx dyD dx dy x y x y解 由于 222211111()()=====++++∑∑∑∑nnnni j i j n nn i n j n i n j而 10111111lim lim 11→∞→∞====+++∑∑⎰nn n n i i dx i n in x n12220211111lim lim 11()→∞→∞====+++∑∑⎰nn n n j j n dy j n j n y n 因此 1122200111lim ()()(1)(1)→∞===++++∑∑⎰⎰nnn i j n dx dy n i n j x y 故选()D .『方法技巧』 当遇到黎曼和的形式时,经常考查积分的定义式,在积分中,积分变量的符号是任意的,可根据题目的要求选取.例2 设(,,)f x y z 在{}2222(,,)Ω=++≤R x y z x y z R 上连续,又(0,0,0)0≠f ,则0→R 时,(,,)Ω⎰⎰⎰Rf x y z dv 是R 的 阶无穷小.解 由题意 要确定 0(,,)lim0Ω→=≠⎰⎰⎰RnR f x y z dva R 中的n .由积分中值定理知,存在000(,,)∈ΩR x y z ,使得30004(,,)(,,)3πΩ=⎰⎰⎰Rf x y z dv f x y z R 因此 30003300(,,)(,,)4lim lim (0,0,0)03πΩ→→==≠⎰⎰⎰RR R f x y z dvf x y z R f R R故 3=n ,即(,,)Ω⎰⎰⎰Rf x y z dv 是R 的3阶无穷小.『方法技巧』 要将被积函数从积分号内取出时,常会用到积分中值定理,尤其在证明题中经常遇到.二、重积分的计算方法当给定被积函数和积分区域时,重积分是一个确定的数值.对于简单的函数,用性质或几何意义即可求得积分值;对一般函数,需要化为累次积分计算.1.重积分的计算方法归纳如下:(1) 利用重积分的性质计算重积分.(2) 利用重积分的几何意义(针对二重积分)计算重积分. (3) 直角坐标系下计算重积分.(4) 极坐标系、柱面坐标系和球面坐标系下,计算重积分. (5) 利用换元法计算重积分.2. 在具体计算时,常用到如下一些结论: (1)若积分区域D 关于x (或y )轴对称,则10 (,)(,)(,)2(,)(,)(,)DD f x y f x y f x y d f x y d f x y f x y σσ-=-⎧⎪=⎨-=⎪⎩⎰⎰⎰⎰(或10 (,)(,)(,)2(,)(,)(,)σσ-=-⎧⎪=⎨-=⎪⎩⎰⎰⎰⎰DD f x y f x y f x y d f x y d f x y f x y )其中1D 是D 在x (或y )轴上(或右)方的部分. (2)若积分区域D 关于直线y x =对称,则10 (,)(,)(,)2(,)(,)(,)DD f x y f x y f x y d f x y d f x y f x y σσ=-⎧⎪=⎨=⎪⎩⎰⎰⎰⎰其中1D 是D 在直线y x =上方的部分.(3)若积分区域Ω关于xOy (或,yOz zOx )面对称,则10 (,,)(,,)(,,)2(,,)(,,)(,,)ΩΩ-=-⎧⎪=⎨-=⎪⎩⎰⎰⎰⎰⎰⎰f x y z f x y z f x y z dv f x y z dv f x y z f x y z (或10 (,,)(,,)(,,)2(,,)(,,)(,,)ΩΩ-=-⎧⎪=⎨-=⎪⎩⎰⎰⎰⎰⎰⎰f x y z f x y z f x y z dv f x y z dv f x y z f x y z , 10 (,,)(,,)(,,)2(,,)(,,)(,,)ΩΩ-=-⎧⎪=⎨-=⎪⎩⎰⎰⎰⎰⎰⎰f x y z f x y z f x y z dv f x y z dv f x y z f x y z ) 其中1Ω是Ω在xOy (或,yOz zOx )面上(或前,右)方的部分.(4)若积分区域D 是X (或Y )型域,即12:()()a x b D x y x ϕϕ≤≤⎧⎨≤≤⎩(或12:()()c y d D y x y ψψ≤≤⎧⎨≤≤⎩),则二重积分 21()()(,)(,)ϕϕσ=⎰⎰⎰⎰bx a x Df x y d dx f x y dy (或21()()(,)(,)ψψσ=⎰⎰⎰⎰dy cy Df x y d dy f x y dx )(5)若极点O 在积分区域D 内或边界上,即02:0()D θπρϕθ≤≤⎧⎨≤≤⎩,则二重积分2()(,)(cos ,sin )(cos ,sin )DDf x y d f d d d f d πϕθσρθρθρρθθρθρθρρ==⎰⎰⎰⎰⎰⎰(6)若极点O 在积分区域D 外,即12:()()D αθβϕθρϕθ≤≤⎧⎨≤≤⎩,则二重积分21()()(,)(cos ,sin )(cos ,sin )DDf x y d f d d d f d βϕθαϕθσρθρθρρθθρθρθρρ==⎰⎰⎰⎰⎰⎰(7)若积分区域{}12(,,)(,)(,),(,)Ω=≤≤∈xy x y z z x y z z x y x y D (或{}12(,,)(,)(,),(,)Ω=≤≤∈yz x y z x y z x x y z y z D , {}12(,,)(,)(,),(,)Ω=≤≤∈zx x y z y z x y y z x z x D )则三重积分(投影法)21(,)(,)(,,)(,,)Ω=⎰⎰⎰⎰⎰⎰xyz x y z x y D f x y z dv dxdy f x y z dz (或21(,)(,)(,,)(,,)Ω=⎰⎰⎰⎰⎰⎰yzx y z x y z D f x y z dv dydz f x y z dx21(,)(,)(,,)(,,)Ω=⎰⎰⎰⎰⎰⎰zxy z x y z x D f x y z dv dzdx f x y z dy )(8)若积分区域{}(,,),(,)Ω=≤≤∈z x y z a z b x y D (或{}(,,),(,)Ω=≤≤∈x x y z c x d y z D ,{}(,,),(,)Ω=≤≤∈y x y z m y n z x D ) 则三重积分(截痕法)(,,)(,,)Ω=⎰⎰⎰⎰⎰⎰zbaD f x y z dv dz f x y z dxdy (或(,,)(,,)Ω=⎰⎰⎰⎰⎰⎰xdcD f x y z dv dx f x y z dydz ,(,,)(,,)Ω=⎰⎰⎰⎰⎰⎰ynmD f x y z dv dy f x y z dzdx )(9)若积分区域{}12(,,)(,)(,),(,)ρρθρθρθρθΩ=≤≤∈O z z z z D (或{}12(,,)(,)(,),(,)ρρθρθρθρθΩ=≤≤∈O x x x x D ,{}12(,,)(,)(,),(,)ρρθρθρθρθΩ=≤≤∈O y y y y D )则三重积分(柱面坐标)(,,)(cos ,sin ,)ρθρθρρθΩΩ=⎰⎰⎰⎰⎰⎰f x y z dv f z d d dz21(,)(,)(cos ,sin ,)ρρθρθρρθρθρθ=⎰⎰⎰O z z D d d f z dz(或(,,)(cos ,sin ,)ρθρθρρθΩΩ=⎰⎰⎰⎰⎰⎰f x y z dv f z d d dz21(,)(,)(cos ,sin ,)ρρθρθρρθρθρθ=⎰⎰⎰O x x D d d f x dx(,,)(cos ,sin ,)ρθρθρρθΩΩ=⎰⎰⎰⎰⎰⎰f x y z dv f z d d dz21(,)(,)(cos ,sin ,)ρρθρθρρθρθρθ=⎰⎰⎰O y y D d d f y dy )(10)若积分区域{}1212(,,)(,)(,),()(),ϕθϕθϕθϕθϕϕθαθβΩ=≤≤≤≤≤≤r r r r则三重积分(球面坐标)2(,,)(sin cos ,sin sin ,cos )sin f x y z dv f r r r rdrd d ϕθϕθϕϕϕθΩΩ=⎰⎰⎰⎰⎰⎰2211()(,)2()(,)sin (sin cos ,sin sin ,cos )r r d d f r r r r dr βϕθϕθαϕθϕθθϕϕϕθϕθϕ=⎰⎰⎰(1) 计算重积分的步骤:(1)二重积分画出积分区域D 的草图;三重积分想象出积分区域Ω的图形; (2)选取坐标系(依据D 或Ω的形状和被积函数(,)f x y 或(,,)f x y z 的形式);(3)选择积分次序;(4)确定累次积分的上、下限,分别计算定积分.例3 设{}222(,),0D x y x y a a =+≤>,若Dπ=,则a =( ).()1()()()A B C D 解由于被积函数z =a 的上半个球面,根据二重积分的几何意义知,D等于以D 为底,z =31423Da ππ==因此 a =()B . 『方法技巧』 当被积函数是我们比较熟悉的曲面时,首先要考虑二重积分的几何意义.本题也可直接利用极坐标计算二重积分.例4 设{}(,)1D x y x y =+≤,计算二重积分()Dx y dxdy +⎰⎰.解 积分区域D 如图10.35所示,它关于x 轴、y 轴及原点对称,1D 为D 在第一象限部分.()DDDx y dxdy x dxdy ydxdy +=+⎰⎰⎰⎰⎰⎰对于二重积分Dx dxdy ⎰⎰,由于被积函数对变量x均为偶函数,由二重积分的对称性知14DD x dxdy xdxdy =⎰⎰⎰⎰.对于二重积分Dydxdy ⎰⎰,由于被积函数对y 为奇函数,由二重积分的对称性知0Dydxdy =⎰⎰.故1110()44xDD x y dxdy xdxdy dx xdy -+==⎰⎰⎰⎰⎰⎰124(1)3x x dx =-=⎰ 『方法技巧』 当积分区域关于x 轴或y 轴对称时,首先要考虑被积函数是否存在对变量x 和y 的奇、偶性,若存在,可以先化简,再计算,这样会简化运算过程. 本题也可直接利用直角坐标计算二重积分.例5 设{}22(,)1,1D x y x y x y =+≤+≥,计算二重积分22x ydxdy x y++⎰⎰. 解 积分区域D 如图10.36所示,由于积分区域 与圆有关,被积函数中含有22x y +,因此采用极坐标.2211x y ρ+=⇒=11sin cos x y ρθθ+=⇒=+所以 1(,)1,0sin cos 2D πρθρθθθ⎧⎫=≤≤≤≤⎨⎬+⎩⎭,故222cos sin (cos sin )D D Dx y dxdy d d d d x y ρθρθρρθθθρθρ++==++⎰⎰⎰⎰⎰⎰ 1221sin cos (cos sin )(cos sin 1)22d d d ππθθπθθθρθθθ+=+=+-=-⎰⎰⎰『方法技巧』 当积分区域与圆(圆、圆环、扇形)有关,被积函数中含有22x y +、x y 或yx时,一般计算二重积分时,会考虑利用极坐标. 例6 设{}22(,)D x y x y x y =+≤+,计算二重积分()Dx y dxdy +⎰⎰.解 积分区域是由圆周22111()()222x y -+-=围成的,令1212u x v y ⎧=-⎪⎪⎨⎪=-⎪⎩,则作变换11,22x u y v =+=+,将xOy 面上的闭区域D 转化为uOv 面上的闭区域221(,)2D u v u v ⎧⎫'=+≤⎨⎬⎩⎭,则 10(,)(,)1001(,)x y J u v u v ∂===≠∂因此()(1)(1)DD D x y dxdy u v J dudv u v dudv ''+=++=++⎰⎰⎰⎰⎰⎰又由于D '关于u 轴、v 轴均对称,所以()0D u v dudv '+=⎰⎰,故2()()22DD x y dxdy dudv ππ'+===⎰⎰⎰⎰『方法技巧』 当复杂的积分区域D 可经过坐标变换(平移或旋转),变成简单区域D '时,一般会用二重积分的换元法.例7 设{}2222222(,,),,0Ω=++≤+≤≥x y z x y z R x y z z ,将三重积分(,,)Ω⎰⎰⎰f x y z dv 在三种坐标系下化为累次积分.解 积分区域Ω如图10.37所示.在直角坐标系下,先对z 积分,作平行于z 轴并与其方向一致的射线穿入Ω,穿进的曲面=z 是变量z 的下限,穿出的曲面=z是变量z 的下限,再将Ω投影 到xOy 面得闭区域(,)⎧⎫⎪⎪=≤≤≤≤⎨⎬⎪⎪⎩⎭xy D x yy x在xy D 上将二重积分转化为二次积分,故(,,)(,,)Ω=⎰⎰⎰f x y z dv dx f x y z dz在柱面坐标系下,将Ω转化为柱面坐标系下的积分区域,即(,,),022ρθρρθπ⎧⎫⎪⎪Ω=≤≤≤≤≤≤⎨⎬⎪⎪⎩⎭z z R则(,,)(cos,sin,)ρθρθρρθΩΩ=⎰⎰⎰⎰⎰⎰f x y z dv f z d d dz200(cos,sin,)πρθρρθρθρ=⎰d d f z dz 在球面坐标系下,将Ω转化为球面坐标系下的积分区域,即(,,)0,0,024πϕθϕθπ⎧⎫Ω=≤≤≤≤≤≤⎨⎬⎩⎭r r R则2(,,)(sin cos,sin sin,cos)sinf x y z dv f r r r r d d dϕθϕθϕϕρθϕΩΩ=⎰⎰⎰⎰⎰⎰224000sin(sin cos,sin sin,cos)ππθϕϕϕθϕθϕ=⎰⎰⎰Rd d f r r r r dr『方法技巧』有些三重积分既可用直角坐标计算,也可用柱面坐标和球面坐标计算,甚至直角坐标可以用投影法计算,还可用截痕法计算,但计算的难易程度还是有区别的,需要同学加强这方面的练习,以便在考试中,以最快的速度找出最简单的计算方法.三、交换积分次序交换积分次序的题目,在考试中选择题和填空题居多,且大多数为二重积分,题型可分为以下几类:(1)给出一种次序的二次积分,要求交换成另一种次序的二次积分;(2)给出一种次序的二次积分,要求计算此积分(一般按给定次序不能进行计算);(3)计算一个二重积分(只有一种次序的二次积分可以计算);(4)直角坐标系下的二次积分与极坐标系下的二次积分互相转化.(5)证明一个二次积分等于一个定积分时,需要先交换二次积分的积分次序.例8计算sin=⎰⎰DxI dxdyx,其中积分区域D是由直线=y x及抛物线2=y x围成的闭区域.解积分区域D如图10.38所示.积分区域既是X型又是Y型区域,但被积函数为sin =xy x,若对x 积分时,不能得到原函数,故化为二次积分时,只能先对y 后对x 积分,故21100sin sin (1)sin 1sin1===-=-⎰⎰⎰⎰⎰x x Dxx I dxdy dx dy x xdx x x『方法技巧』 二重积分用任何次序都可转化为二次积分,但并不代表用任何次序的二次积分都可以求出结果,因此,做题时,若一种次序的二次积分计算非常繁琐,就需要考虑换一种积分次序试一试,尤其当被积函数中含有sin xx、2x e 等函数时,要特别注意. 例9 证明211()()=-⎰⎰y x dy f x dx e e dx证 在左边的二次积分中,由于被积函数含有 未知函数()f x ,而积分变量又是x ,因此不能按给 定次序求出定积分,需要交换积分次序. 首先还原成 二重积分的积分区域D ,如图10.39所示.左边=2211111()()()==⎰⎰⎰⎰⎰y y y xxdy f x dx dx e f x dy f x dx e dy221110()()()()==-⎰⎰yx x f x e dx e e f x dx =右边 证毕.四、重积分的几何应用和物理应用在几何上,二重积分可以求平面图形的面积、曲顶柱体的体积及空间曲面的面积等,三重积分可以求空间区域的体积.在物理上,重积分可以求物体的质量、质心(形心)坐标及转动惯量等. 在具体计算时,常用到如下一些结论: (1)()σ=⎰⎰Dd A D 的面积(2)(,)((,))σ=⎰⎰Df x y d V D f x y 以为底,为顶的曲顶柱体的体积(3)()Ω=Ω⎰⎰⎰dv V 的体积(4)()=∑DA 的面积其中D 为曲面:(,)∑=z f x y 在xOy 面的投影区域.(5)(,)()ρσ=⎰⎰Dx y d M xOy D 占平面上区域的物体的质量(,,)()ρΩ=Ω⎰⎰⎰x y z dv M 占空间区域的物体的质量(6) 质心坐标平面物体的质心坐标: (,)(,),(,)(,)ρσρσρσρσ==⎰⎰⎰⎰⎰⎰⎰⎰DDDDx x y d y x y d x y x y d x y d空间物体的质心坐标:(,,)(,,)(,,),,(,,)(,,)(,,)ρρρρρρΩΩΩΩΩΩ===⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰x x y z dvy x y z dvz x y z dvx y z x y z dvx y z dvx y z dv当密度均匀时,质心也称为形心.(7) 转动惯量平面物体的转动惯量:22(,),(,)ρσρσ==⎰⎰⎰⎰x y DDI y x y d I x x y d空间物体的转动惯量:2222()(,,),()(,,)ρρΩΩ=+=+⎰⎰⎰⎰⎰⎰x y I y z x y z dv I z x x y z dv22()(,,)ρΩ=+⎰⎰⎰z I x y x y z dv在(5)—(7)中,(,)ρx y 和(,,)ρx y z 分别表示物体的面密度和体密度.例10 设{}2222(,,)()()()Ω=-+-+-≤x y z x a y b z c R ,则()Ω++⎰⎰⎰x y z dv = .解 利用球的形心坐标公式31(,,)(,,),,,,43πΩΩΩΩΩΩΩΩΩ⎛⎫⎛⎫ ⎪=== ⎪ ⎪⎝⎭ ⎪⎝⎭⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰xdv ydv zdv a b c x y z xdv ydv zdv dv dv dv R 因此 333444,,333πππΩΩΩ===⎰⎰⎰⎰⎰⎰⎰⎰⎰xdv aR ydv bR zdv cR 故34()()3πΩΩΩΩ++=++=++⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰x y z dv xdv ydv zdv a b c R例11 设{}22(,)2=+≤D x y x y y ,计算(4)σ--⎰⎰Dx y d .解 由于积分区域D 是圆域,关于y 轴对称,且形心(圆心)为(0,1),半径为1,因此,1σσσπ===⎰⎰⎰⎰⎰⎰DDDxd yd d故(4)4403σσσσπππ--=--=--=⎰⎰⎰⎰⎰⎰⎰⎰DDDDx y d d xd yd『方法技巧』 以上两题说明,若积分区域的形状是规则的(如圆形、球形、柱形等),形心坐标很容易看出,在计算被积函数为x 、y 或z 的积分时,可以逆向利用形心坐标公式,使得计算更加简单(此方法非常实用).友情提示:范文可能无法思考和涵盖全面,供参考!最好找专业人士起草或审核后使用,感谢您的下载!。

高等数学(II)(第十章、重积分)

高等数学(II)(第十章、重积分)

27
Z
A ( x )

(x)
z f ( x, y)
2
1
(x)
f ( x , y ) dy
y
1( x )
所以:
2(x)
2 (x)

D
f(x,y)dxdy


b
A(x)dx
a

[
a
b
f(x .y ) dy ]dx
1 (x)
3-12
28
注意: 1)上式说明: 二重积分可化为二次定 积分计算;
2)积分次序: X-型域 3)积分限确定法: 先Y后X;
域中一线穿—定内限, 域边两线夹—定外限
为方便,上式也常记为:

b
dx
a

2 (x)
f(x .y ) dy
1 (x)
29
3、Y-型域下二重积分的计算:
同理:
d
x 1( y)
D
x 2( y)
c

D
f ( x, y )d
6
得 (3) 求和. 将这 n 个小平顶柱体的体积相加,
到原曲顶柱体体积的近似值,即
V

i1
n
V i f ( i , i ) i .
i1
n
(4) 取极限. 将区域 D 无限细分且每一个子域趋 向于缩成一点, 这个近似值就趋向于曲顶柱体的体
积, 即
V lim
0
将区域 D 任意分成 n 个小区域
任取一点 若存在一个常数 I , 使 记作
则称 f ( x , y )
可积 , 称 I 为 f ( x , y ) 在D上的二重积分.

高等数学第十章重积分

高等数学第十章重积分

高等数学第十章重积分1. 引言在高等数学中,积分是一个重要的概念。

在之前的学习中,我们学习了定积分和不定积分的概念和性质。

在本章中,我们将进一步学习一种扩展的积分形式,即重积分。

2. 重积分的引入和定义重积分是一种将函数在二维或更高维空间内的区域上进行积分的方法。

它的引入主要是为了解决在二维平面上对非矩形区域进行积分的问题。

在计算重积分之前,我们首先需要定义积分区域。

对于二维平面上的区域,我们可以使用极坐标或直角坐标来描述。

对于更高维的区域,我们则需要使用其他的坐标系。

一般来说,重积分可以分为两类:累次积分和二重积分。

累次积分是指先对一个变量进行积分,然后再对另一个变量进行积分。

而二重积分则是指在一个积分符号下同时对两个变量进行积分。

对于二重积分,我们可以使用迭代积分和换元积分的方法来计算。

迭代积分是将一个二重积分转化为两个累次积分的过程,而换元积分是利用变量替换的方法来简化计算。

3. 重积分的性质重积分具有一些和定积分相似的性质。

例如,重积分具有线性性质和保号性质。

线性性质指的是对于两个函数的重积分,其和函数的重积分等于两个函数分别取重积分后再相加。

保号性质指的是如果函数在积分区域上恒大于等于0,则函数的重积分也大于等于0。

此外,重积分还具有可加性和可积性。

可加性指的是如果一个积分区域可以被分割为多个不相交的子区域,则重积分可以拆分成多个子区域的重积分之和。

可积性指的是如果一个函数在有界闭区域上连续或只有有限个间断点,那么该函数的重积分存在。

4. 重积分的应用重积分在物理学、经济学和几何学等领域中有着广泛的应用。

在物理学中,我们可以使用重积分来计算物体的质心、面积、体积等性质。

在经济学中,我们可以使用重积分来计算市场需求曲线和供给曲线之间的面积,从而得到市场的总需求量和总供给量。

在几何学中,重积分可以用来计算平面和空间中的曲线长度、曲面面积和体积。

例如,我们可以使用重积分来计算球体的体积和球冠的体积。

第十章重积分

第十章重积分

f (x, y)

xoy 面所围的
曲顶柱体的体积的代数和.
当 f ( x, y) 1,( x, y) D 时,得二重积分
问:1d =? D (D的面积)
3.可积条件
若函数 f ( x, y) 在有界闭区域 D 上连续,
则二重积分 f ( x, y) d 一定存在.
D
(不证)
二、二重积分的性质
z z f (x, y)
xO
y
DLeabharlann ( i )(i ,i )
3. 求和
n
n
V Vi f (i ,i ) . i
i 1
i 1
z z f (x, y) 4. 将 D 分得越细,
近似值
n
f (i ,i ). i
i 1
xO
y
( i ) D
就越接近于精确值 V
记 ( i )的直径为 di ,最大直径 max di
1 i n
n
lim
0i1
f (i ,i ) i
存在 ,且该极限值与
D 的分法以及点 (i ,i ) 的取法无关,
则称该极限值为函数 f (x, y) 在闭区域 D
上的二重积分,记为 f ( x, y)d ,即
D
n
f (x, y)d
D
=
lim
0
i 1
f
( i
,i
)
i
说明 按定义
n
f ( x, y) d =
§1 二重积分的概念与性质
一、二重积分的概念
1.两个实例
z 曲顶柱体
例1 求曲顶柱体的体积
xO
y
z
z f (x, y)

高等数学同济第七版7版下册习题 全解

高等数学同济第七版7版下册习题 全解

第十章重积分95数,故/, = Jj( x2 + y1)3d(j = 2jj(x2+ y1) 3dcr.fh i)i又由于D3关于;t轴对称,被积函数(/+r2)3关于y是偶函数,故jj(x2+j2)3dcr=2j(x2+y2)3da=2/2.Dy1):从而得/, = 4/2.(2)利用对称性来计算二重积分还有以下两个结论值得注意:如果积分区域关于^轴对称,而被积函数/(x,y)关于y是奇函数,即fix, -y) = -f(x,y) ,PJjf/(x,y)da =0;D如果积分区域D关于:K轴对称,而被积函数/(x,y)关于:c是奇函数,即/(~x,y)=-/(太,y),则=0.D«3.利用二重积分定义证明:(1)jj da=(其中(7为的面积);IJ(2)JJ/c/( X ,y)drr =Aj|y’(A:,y)do■(其中A:为常数);o n(3 ) JJ/( x,y)clcr = JJ/( x,y)drr + jJ/( x ,y) dcr ,其中 /) = /)! U /)2,, A 为两个I)b\lh尤公共内点的WK域.96一、《高等数学》(第七版)下册习题全解jj'ltr = Hm y^/( ,rji) A<r, = lim ^ Ac,=l i m cr= a.A—0n(2)Ji/(x,j)(Ic7=lim^i)1n=A lim y/(^(,i7,)A(7-,=k\\f{x,y)Aa.A-°台•{!(3)因为函数/U,y)在闭区域/)上可积,故不论把£»怎样分割,积分和的极限总是不变的.因此在分割D时,可以使和/)2的公共边界永远是一条分割线.这样fix.y)在A U D2上的积分和就等于&上的积分和加D2上的积分和,记为^/(^, ,17,) A CT, = ^/( ^, , 17,) A CT, + ^/(^, ,17,) A CT,./)(U0,",l):令所有的直径的最大值A-0,上式两端同时取极限,即得Jf(x,y)i\a=jjf(x,y)da+JJ/(x f y)da.p,un}V,n;Sa4.试确定积分区域/),使二重积分][(1-2x2-y2)d«l y达到最大值.I)解由二重积分的性质可知,当积分区域/>包含了所有使被积函数1-2.v2-V2 大于等于零的点,而不包含使被积函数1-2/-y2小于零的点,即当£»是椭圆2/+y2= l所围的平面闭区域时,此二重积分的值达到最大.& 5.根据二重积分的性质,比较下列积分的大小:(1)Ju+y)2山7与J[U,其中积分区域D是由x轴、^轴与直线A+.、=D I)1所围成;(2)J(x+7)2如与■,其中积分区域0是由圆周(.r-2)2+(.v-l)2=t)n2所围成;(3)I'M A;+y)(lor与!"[In(X+y)]2(1(7,其中Z>是三角形闭K域,三顶点分别为l)"(1,0),(1,1),(2,0);(4)Jpn(:r+y)dcr与In(:t+y)]2fW,其中/)=|(.r,.v)|3,0彡、彡1 .i)i)解(1)在积分K域0上,故有(x + j) 3 ^ (x + y) 2.根据二重积分的性质4,可得J(.r + y) \lrx ^ J (.\ + v)0D(2)由于积分区域0位于半平面|(A:,V) | .V+ •、彡1第十章重积分97(3)由于积分区域D位于条形区域1U,y)|1彡1+7彡2丨内,故知区域/)上的点满足0彡InU+y)彡1,从而有[lnU+y)]2彡lnU+.y).因此jj[ln(A:+y)]2(Jo-^+y)d(4)由于积分区域/)位于半平面丨(x,y)| .v+y彡e|内,故在Z)上有ln(x+y)彡1,从而:In(-v+)')]2彡In(:c+)').因此Jj^ 1 n(.r + y) ] 2dcr ^ Jln( x + y) da.i)a36.利用二重积分的性质估计下列积分的值:(1) / = |^7(文+7)心,其中/)= \ (x ,y)1,01|;n(2)/=j^sin^sin^do■,其中/)=j(A:,y)|0^^^TT,0^y^TT1;i)(3)/= J*(A:+y + l)d(7,其中/>= { {x,y) |0^x^l,0^j^2[;it(4)/=J(x2 +4y2 +9)do•,其中D= \{x,y) \x2 +y2 ^ 4|.I)解(1)在积分区域D上,0矣;<:矣1,0英y矣1,从而0矣巧•(*+y)矣2•又£»的面积等于1,因此(2)在积分区域/)上,0矣sin J:矣1,0^sin1,从而0彡sin2A:sin2y彡1,又0的面积等于TT2,W此(3)在积分K域"上有\^x+y +\«4,/)的而积等于2,因此(4)W为在积分K域/>»上有0矣;t2+y2苳4,所以有9^+4r2+9^4( x2+y2)+9矣25.34I)的酣枳等于4TT,W此36TT^[[(x2+4/+9)(Ur^lOO-ir.二重积分的计算法.^1.计算下列二甩积分:98{高等数学> (第七叛)下册习题全第十) ;,其中"是由两坐标轴及直线-- + =听围成的闭区域;b ( 3 J jj( x J + 3x 2 \ + v 3 ) da ,其中 D =( x , v )0 ^ A : ^ 1 .0 ^ v ^ 1;u( 4 ) jjxcas( X + Y j do ■,其中Z >是顶点分别为( 0 .0 j < 77 ,0 )和( 77 , 77 )的三角形闭区域. 4- 2 2 ) dx fh 2) D 可用不等式表示为 2 r 3xy +y 2 ]l~x dx = | (4 + 2x - 2x 2 ) dx 203(+ + 3 > (文3+ 3.2 +、、).+ + "JC di (4l )可用不等式表示为0 ^ V ^ A : ,0 ^ .t ^ 7T .于是|A :COS JC + ) = + ) d I [ sin (.t + y ) ]Q ()^ = J V ( sin 2.v - sin .v ) <1 x x(\( cos .v —丄(.<,s 2.v )卜(1X (-TT r T X cos .v —rus TT.& 2. _出枳分ix:域,斤i 卜r): v 列m 分:第十章重积分99 x2^y^J^,0矣x矣1(图10-2).0«^^/4-y2,-2矣7矣2(图10-3),(1)J^^do■,其中/)是由两条抛物线7=v^,y=*2所围成的闭区域;D(2)jfxy2dcr,其中D是由圆周x2+J2=4及y轴所围成的右半闭区域;I)(3)JV+'dcr,其中/)=I(%,)•)||A;|+|J|^1!;D(4)|"U2+/-x)<lo•,其中D是由直线y:l、y二xh :2*所围成的闭区域.D解(1)0可用不等式表示为于是(2)D可用不等式表示为(3)如阁I()-4,W=/\U"2,其中/>1= \(x,y)\-x-\ ^y^Jc + 1,-1 ^a;^0|,I)2=\(x,y) |*-1+因此100一、《高等数学》(第七版)下册习题全解Ea 3.如果二重积分|/( .r ,y )心办的被积函数/( x ,v )是两个函数/] ( O 及)的乘n积,即/(X ,y) = f\(x) ./“y ),积分区域/) = { (.V , y ) I (1 ^ V ^ />, r ^,证叫这个二重积分等于两个单积分的乘枳,即|*/|U) -/2(r) flatly = [ J/, (.v)(l.v] - [ [/:( > )^v]-证Jj./1 ( x ) • .,2 ( / ) dvd V ~ J [ f J \ ( v ) ■ ./: t ^] l ^x *在上式右端的第一次单枳分f /,(.V )•/2(.V )dv 中,./,(A .)1Jfut 变招:、无关,nn 见为 常数提到积分5外,W 此上式“端笏T第十章重积分101fix/ = j [ dy ^/(*,y )tk.而在这个积分中,由于f/2 (y ) d y 为常数,故又可提到积分号外,从而得到• f 2<,y)^xAy= [| /2(y )dj ] - [ J n /, (x )dx ]证毕.^4.化二重积分/ = Jf(x ,y )daI)为二次积分(分别列出对两个变量先后次序不同的两个二次积分),其中积分区域£>是:(1)由直线及抛物线y 2 =4x 所围成的闭区域;(2)由x 轴及半圆周/ +y 2 =r 2(y 英0)所围成的闭区域;(3)由直线y =x ,;c = 2及双曲线:K = ^-(*>0)所围成的闭区域;X(4)环形闭区域 IU ,y ) | 1+y 2^4(.解(1)直线y =x 及抛物线y 2 =4;c 的交点为(0,0)和(4,4)(图10-6).于是f(x,y)dy,(2)将/)用不等式表示'fyO^y^r 2 -x 2,- r ^ W /•,于是可将/化为如下的先对y 、后对*的二次积分:r/ = J (1文Jf(x ,y)(\y ;如将0叫不等式表示为~Vr 2 -y 2^x^Vr 2 - y 2 ,0各/•,则可将/化为如卜的先对*、后对y 的二次枳分:102一、《高等数学》(第七版)下册习题全解dr x,y) dx.(3)如图 10-7.:条边界曲线两两相交,先求得3个交点为(1 ,1 ),2,y 和(2,2).于是dy (i_/(^,y)+ tlj /( x ,y)dx.dx • \/4J\x y y)dy + d.vl(1%/T /(A :,y)clr +d.vl■ yA -x 2/(.r ,v )d > -f/(.v V v ) dv ./(.v ,v )d.v -f.\/4-、/( \ , > ) d.v -f厂、/4 -、•'•I-v^ W"/( v , y) (l .\.| dxj[f(x,y)dy.注本题说明,将二重积分化为二次积分时,需注意根据积分区域的边界曲线的情况,选取恰当的积分次序.本题中的积分区域/)的上、下边界曲线均分别由—个方程给出,而左边界曲线却分为两段,由两个不同的方程给出,在这种情况下采取先对y 、后对^的积分次序比较有利,这样只需做一个二次积分,而如果采用相反的枳 分次序则需计算两个二次积分.需要指出,选择积分次序时,还需考虑被积函数/U , y )的特点.具体例子n ]'见教材下册第144页上的例2.(4)将D 按图10 - 8( a )和图10 - 8( 1>)的两种不同方式則分为4块,分別得o 第十章重积分103x ,r)d.t.(5) (lx\ f{x,y)Ay\广2 f yix -x2(4)|叫2f{x,y)dy-,fix /-sin x(6)I Ax\J(x,y)Ay.JO J - siny图10-8,5.设/U,Y)在D上连续,其中/)是由直线;==所围成的闭区域,证明dx| f(x,y)Ay证等式两端的二次积分均等于二重积分J/U,y)d o•,因而它们相等.I)^6.改换下列二次积分的积分次序:(2) J) dj|:f(x,y)dx;解(丨)所给二次积分等于二重积分J[/U,;K)(^,其中o=丨h,y)1°^^^r-"0 ^ j ^ I(. /> n|■改写为 | Uj) | * 矣y矣 1,0 ^^ I | (罔 10 - 9),于是原式=丄<ixj/(x,y)dy.(2)所给一.次枳分等于二'Ti积分|/U,y)山,.K:中/)=I|.y2^^<2y,0^21. M I) njm为{u’y) I 音矣 j ^ 7^,0 ^ x 在4)( 1冬1 1(> - I0),W此原式=J,i\xjy/(x,y)i\y.104一、《高等数学>(第七版)下册习题全解-y2^.V ^1$、飞V彡1(3)所给二次积分等于二重积分.其中D=:(.v.v)|-V 1UX^J1-y2,0彡>•彡1;•又D可表示为:(JC,)*)丨0彡y 彡V 1- .r2,-1=(图10-11),因此f 1 f V1 -X~原式=J^dxj/(x,v)dy.(4)所给二次积分等于二重积分其中D=:(.v.v)'2-hs/lx -x1%\彡.r彡2:.又D可表示为:(A:,V)|2-1彡.t•彡1+Y1—v2,0:(图10-12),故原式=丄d)j f(x %y)dx.(5)所给二次积分等于二重积分]|/(.10)(1^,)1:中/)=1(.v.v)|0^v^I)x彡e|•又/)可表示为|(A:,>•)|e、彡A•彡e,0彡、彡1i(|劄10-1,故原式=L(I.、|,./X .、,.、)(l.v.(6)m1()-14,将积分|><:域/)丧示为/),U/)2,其中A),=j U,、)|arcsin>^o 第十章重积分105/(x,y)dx.y广 1r ir - arcsin >原式=I dyf(x y y)c\xJO Jarcsin )T T - arcsin y ,0彡 y 彡 1 | 1 ,D 2 = |(.r, y)一 2arcsin, 一1彡)'彡0|.于是rt-x + xydrAy~d\2x c\)''i x E | o»•Y = s i n A 的反闲数足A = i i r r s »M y- -1 x足ih y - H in x = sin ( T T - x) "n!J T T - x ^ arcKiny,从ifii 得反闲数 ^(子•中,TTT T - iin-Hiny.^7.设平面薄片所占的闭区域D 由直线;t = 2,y = 和;r 轴所围成,它的面密度/x (.t ,v ) = x 2 +y 2,求该薄片的质量.解 D 如图10-15所示.所求薄片的质M = jJ/Lt( x 9y) dcr = ^ dyj ( x 2 + y 2 ) dxr[+(2”)3+2,12| 冬| 10 - 158. i |灯|l |四个平而A : = 0,y = 0,;t = I ,v = I 所闲成的柱休被平面z = 0及2.r +3y+z6藏得的立休的体积.V - (I 6 - ^ x 2 + y 2 ) dx(\y6 ( 1 - x ) - x 2 +——f 1\1_6"*10-17m 10 - 18解江力一 E J .它??芪是;c 0:. S 二苎泛7:省•。

重积分课件

重积分课件

详细描述
在计算电场时,我们需要对电荷的分布和位置进行积分 ,以确定电荷对其他电荷的作用力。这个积分过程也是 重积分。通过重积分,我们可以得到电荷之间的电场强 度和电势,进一步得到整个电场的分布情况。
05
重积分的数学性质
重积分的可加性
总结词
重积分具有可加性,即对于可加函数,其在两个不相交区域的积分之和等于其在整个区 域的积分。
微分方程的数值解法
欧拉方法
一种简单而常用的数值解法,通过迭代的方式逐步逼近微分方程的 解。
龙格-库塔方法
一种高精度的数值解法,适用于求解非刚性问题,具有更高的计算 精度和稳定性。
谱方法
利用傅里叶变换或小波变换将微分方程转化为频域或时域中的多项 式方程,通过求解多项式方程得到原微分方程的数值解。
THANKS。
04
重积分的物理应用Biblioteka 质量分布的计算总结词
质量分布是物理学中一个重要的概念,它描 述了物体内部各点的质量分布情况。
详细描述
在计算物体质量时,我们需要对物体的密度 函数进行积分,以确定物体内部所有点的质 量总和。这个积分过程就是重积分。通过重 积分,我们可以得到物体的总质量、质心位
置等重要物理量。
引力场的计算
详细描述
重积分的可乘性是指,如果函数在两个区域上进行积分 ,那么这些积分的结果之积等于函数在它们所围成的区 域上的积分结果。这个性质在处理多变量函数的积分问 题时非常有用,因为它允许我们将问题简化为更简单的 形式,从而更容易计算出积分的结果。同时,这个性质 也为我们提供了一种计算多变量函数积分的有效方法。
体积的计算
总结词
重积分是计算三维空间中物体体积的有 效工具,通过重积分可以计算出各种形 状的物体体积。

高等数学第十章第四节重积分的应用课件.ppt

高等数学第十章第四节重积分的应用课件.ppt
2 1 M a2
4
y
D o ax
例7.求均匀球体对于过球心的一条轴 l 的转动惯量.
解: 取球心为原点, z 轴为 l 轴, 设球
z
所占域为

l
(x2 y2 ) dxdydz (用球坐标) x o
y
( r 2 sin2 cos2 r 2 sin2 sin2 )
r 2 sin drd d
连续体的转动惯量可用积分计算.
设物体占有空间区域 , 有连续分布的密度函数
(x, y, z). 该物体位于(x , y , z) 处的微元
z
对 z 轴的转动惯量为
d I z (x2 y2 ) (x, y, z) d v
因此物体 对 z 轴 的转动惯量:
o
y
I z (x2 y2 ) (x, y, z) dxdydz x
2
Fz G (z a)dz d
R
0
R2 z2
rd r
0
[r
2
(z
a)2
3
]2
R
2
G
(
R
z
a)
a
1
z
1 R2 2az a2
dz
2
G
2R
1 a
R
(z a)
d
R2
2az
a2
R
G
M a2
M 4 R3 为球的质量
3
ex 设有一高度为 h(t)( t 为时间) 的雪堆在融化过程中,其
y2
y
x2
D
o
Io D (x2 y2 ) (x, y) dxdy
x
例6.求半径为 a 的均匀半圆薄片对其直径

第十章重积分

第十章重积分
n n
V f ( , )
i 1 i i 1 i i
n
i
4)取极限: V lim f i ,i i
0
i 1
其中 max i的直径
1 i n
10
z
z f ( x, y)
o x
D
n

y
( i ,i )
i
曲顶柱体的体积 V lim f ( i ,i ) i . 0
25
4 设D为 x 1 ( y) 与 y 1 ( x)
x 2 ( y)
c yd
y 2 ( x)
2 ( x)
1 ( x)
a x b同时表示则
d
f ( x, y)dxdy dx
D a
b
f ( x, y )dy dy
c
2 ( y )
(0,1) 0 (1,0)
D
( x y)2 d ( x y)3 d
D D
.
(3,0)
22
x
例2:估计 I ( x y 1) d ,
D
其中 D是矩形闭区域: 0 x 1,0 y 2
解:f ( x, y) x y 1
在D内的最大值为4,最小值为1 区域D的面积为2 所以由性质6得
D
证明: m f ( x) M
由性质5
md f ( x, y)d Md
D D D
m f ( x, y)d M
D
20
7.中值定理 : 设 f ( x, y )在闭区域 D上连续, 是 D的面积 则:在 D内至少存在一点( , )使

高等数学下册第十章 重积分

高等数学下册第十章 重积分

sin x dxd y
π sin x dx
x
dy
Dx
0x
0
π
0 sin x dx
y yx
D xπ
o
πx
2
说明: 有些二次积分为了积分方便, 还需交换积分顺序.
DMU
第二节 直角坐标系中二重积分的计算
例 交换下列积分顺序
2
x2
22
8 x 2
I
0
dx
2 0
f (x, y)dy 2
dx0
f (x, y)dy
y y 2(x) D
D
:
1(
x) a
y x
b
2
(
x)
x o a y 1(x)b x

f (x, y) dx d y
b
dx
a
2 (x) 1( x)
f (x, y) dy
D
即先对y后对x积分
y d
x 2(y)
(2)
若D为Y -型区域
D
:
1(
y) c
x y
2 ( y)
d
y
x 1(y)
例 计算二重积分
exyds 其中D {(x, y) x y 1}
D
答案为 e e1
-1
1
DMU
第二节 直角坐标系中二重积分的计算
例 求两个底圆半径为R 的直角圆柱面所围的体积.
解 设两个直圆柱方程为
z
x2 y2 R2, x2 z2 R2
利用对称性, 考虑第一卦限部分, R
其曲顶柱体的顶为 z R2 x2
D2
为D 的面积, 则
1d d
D

高等数学第十章重积分PPT课件

高等数学第十章重积分PPT课件

总结词
矩形区域上的重积分计算是重积分中最基础的一种计算方 法。
详细描述
在矩形区域上,可以将积分区域划分为若干个小矩形,然后对每个小矩形进行 积分,最后将所有小矩形的积分结果相加即可得到整个矩形区域的积分值。
公式
$int_{a}^{b}int_{c}^{d}f(x,y)dxdy$
圆形区域上的重积分计算
公式
根据具体情况而定,一般需要通过微分几何和拓扑学知识 进行推导和计算。
03
重积分的应用
重积分在几何学中的应用
80%
计算立体体积
通过重积分可以计算三维空间中 物体的体积,如旋转体、曲面和 不规则体的体积。
100%
计算表面积
重积分可以用来计算封闭曲面或 复杂曲面的表面积,如球面、椭 球面和抛物面等。
化简积分表达式
在计算过程中,尽量化简积分 表达式,以减少计算量。
避免重积分的常见错误
上下限错误
确保上下限的确定是正确的,特别是对于复杂区 域。
公式应用不当
使用不合适的公式可能导致计算错误或无法得出 结果。
积分次序错误
选择错误的积分次序可能导致计算结果不正确。
计算失误
在计算过程中,可能会因为疏忽或笔误导致结果 不准确。
求解流体动力学问 题
重积分在流体动力学中有重要应 用,如计算流体压力、速度和密 度等。
重积分济活动中 涉及到的成本和收益,如生产成 本、销售收入和利润等。
预测经济趋势
通过重积分可以建立经济模型, 预测未来经济趋势和市场变化, 为决策提供依据。
优化资源配置
二重积分的定义
二重积分是计算平面区域上的面积的数学工具,其值等于二元函数在平面区域上的所有点的函数值与该点处面积微元 相乘后累加的总和。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十章 重积分定积分是一种以固定模式构造的和式的极限,它解决了一类依赖于某区间的量的计算问题,当所求的量依赖于一个平面区域或空间区域时,我们将建立定积分的思想方法推广过来,就可以得到重积分的概念。

本章以二重积分为重点,首先介绍二重积分和三重积分的概念与性质,难点是重积分的计算。

由于课时少,我们只介绍二重积分的概念及计算。

§ 1 重积分的概念与性质一、 重积分的概念在一元函数中,我们曾以几何问题——求曲边梯形的面积,为实例引入了定积分的概念,完全类似地,我们仍以几何问题为引例来引入二重积分的概念。

1. 引例若有一立体,在直角坐标系下其底是xO y 面上的有界闭 区域D ,其侧面是以D 的边界曲线为准线,母线平行于z 轴 的柱面,其顶是曲面D y x y x f z ∈=),(),,(,其中0),(≥y x f且在D 上连续,则称此柱体为曲顶柱体 ( 图10—1)。

下面讨论如何定义并计算曲顶柱体的体积V 。

若柱体的高不变,其体积可用公式 体积 = 底面积 × 高来计算。

对于曲顶柱体,当点),(y x 在D 上变动时,其相应的 图10—1高度),(y x f 是个变量,因此它的体积不能直接用上面的公式计算。

回想第五章第一节中,采用“分割、近似代替、作和、取极限”的步骤去求平面曲边梯形面积的思想方法,这里再次应用这个思想方法解决曲顶柱体的体积问题。

用任意曲线网将区域D 分成n 个小闭区域 n D D D ∆∆∆,,,21 ,小闭区域i D ∆的面积记作i σ∆ (i = 1,2,…,n ),分别以这些小区域的边界曲线为准线、作准线平行于z 轴的柱面。

这些 柱面将原曲顶柱体分割为n 个细小的曲顶柱体 ( 图10—2 )。

设以i D ∆为底的细曲顶柱体的体积 为),,2,1(n i V i =∆,则∑==ni iV V 1∆. 图10—2当小闭区域i D ∆),,2,1(n i =的直径很小时,由于),(y x f 连续,所以在同一个i D ∆上),(y x f 也变化很小,这时曲顶柱体可近似的看作平顶柱体。

在i D ∆上任取一点),(i i ηξ,以),(i i f ηξ为高的小平顶柱体的体积i i i f σ∆ηξ),(可近似替代细曲顶柱体的体积i V ∆,即),,2,1(),(n i f V i i i i =≈σ∆ηξ∆.所求曲顶柱体体积近似地等于这n 个小平顶柱体体积之和,即 i ni i i ni i f V V σ∆ηξ∆∑∑==≈=11),(.将区域D 无限细分,并使每个小区域的直径都趋于零。

令},,2,1max{n i D i ==的直径∆λ,则λ趋于零的过程就是将D 无限细分的过程。

如果当λ→0时上式右端和式的极限存在,则定义此极限为所求曲顶柱体的体积V ,即.),(lim10ini i i f V σ∆ηξλ∑=→=这虽然是一个几何问题,但处理问题的思想方法就是经过“分割、近似代替、作和、取极限”的步骤,将所求量归结为同一形式的和的极限。

还有许多物理、几何、经济学上的量都可归结为这种形式和的极限,因此有必要在普遍意义下研究这种形式的极限。

首先抛开实际意义,从中抽象出下述二重积分的定义。

2. 二重积分的定义定义1 设),(y x f 是有界闭区域D 上的有界函数,将闭区域D 任意划分成n 个小闭区域n D D D ∆∆∆,,,21 ,记小闭区域i D ∆的面积为i σ∆ (i = 1,2,…,n )。

在i D ∆上任取一点),(i i ηξ,作乘积i i i f σ∆ηξ),( ),,2,1(n i =,再作和.),(1i ni i i f σ∆ηξ∑=记},,2,1max{n i D i =∆=的直径λ. 如果不论对区域D 怎样分割,也不论在小区域i D ∆上怎样选取),(i i ηξ,λ→0时,和式i ni i i f σ∆ηξ∑=1),(总趋于确定的常数J ,则称常数J 为函数),(y x f 在闭区域D 上的二重积分,记作⎰⎰Dd y x f σ),(,即.),(lim ),(10i ni i i Df d y x f σ∆ηξσλ∑⎰⎰=→=(1)其中),(y x f 称为被积函数,σd y x f ),(称为积分表达式,σd 称为面积元素,x , y 称为积分变量,D 称为积分区域,i ni i i f σ∆ηξ∑=1),(称为积分和。

注 ❶ 二重积分的存在性:若(1)式右端的极限存在,则称函数),(y x f 在闭区域D 上的二重积分存在,或称),(y x f 在D 上可积。

对一般的函数),(y x f 和区域D ,(1)式右端的极限未必存在。

可以证明只要函数),(y x f 满足下面条件之一,二重积分⎰⎰Dd y x f σ),(就必定存在:① 若),(y x f 在有界闭区域D上连续。

② 若用一些分段光滑的曲线将D 分成有限多个小区域后,),(y x f 在每个小区域上连续。

一般地,我们总假定函数),(y x f 在有界闭区域D 上连续。

❷ 二重积分记号中的面积元素σd 象征和式中的i σ∆. 因为二重积分定义中对区域的划分是任意的,如果在直角坐标系中用平行于坐标轴的直线网来划分区域D 时,除含有D 的边界点的一些小区域外,绝大多数小区域都是矩形,设矩形小区域i σ∆的边长为i x ∆和i y ∆,则i i i y x ∆∆σ∆=,因此也把在直角坐标系中的面积元素σd 记作dxdy ,即直标系中二重积分可记作⎰⎰Dxdy d y x f ),(.❸ 几何解释:由二重积分定义知,曲顶柱体的体积就是其高度函数),(y x f 在底D 上(),(y x f 在D 上非负)的二重积分,即⎰⎰=Dd y x f V σ),(;当),(y x f 为负时,柱体在y xO 面的下方,二重积分等于柱体体积的负值。

二、 二重积分的性质由于重积分定义与定积分定义是同一类型和式的极限,因此它们有类似的性质。

叙述如下 设D 是y xO 平面上的有界闭区域,σ 为D 的面积。

性质1 (线性性) 如果函数),(y x f 、),(y x g 都在D 上可积,则对任意的常数βα、函数),(),(y x g y x f βα+也在D 上可积,且.),(),()],(),([⎰⎰⎰⎰⎰⎰+=+DDDd y x g d y x f d y x g y x f σβσασβα性质2 (区域可加性) 如果函数),(y x f 在D 上可积,用曲线将D 分割成两个闭区域D 1与D 2,则在D 1或D 2上),(y x f 也可积,且.),(),(),(21⎰⎰⎰⎰⎰⎰+=D D Dd y x f d y x f d y x f σσσ性质3 (常数1的积分) 如果在D 上, 1),(≡y x f ,则.1σσσ==⎰⎰⎰⎰DDd d性质4 (保号性) 如果函数),(y x f 在D 上可积,且在D 上0),(≥y x f ,则.0),(≥⎰⎰Dd y x f σ推论1 (保序性) 函数),(y x f 、),(y x g 都在D 上可积,且在D 上),(),(y x g y x f ≤,则.),(),(⎰⎰⎰⎰≤DDd y x g d y x f σσ推论2 (绝对值性质) 如果函数),(y x f 在D 上可积,则函数),(y x f 也在D 上可积,且.),(),(⎰⎰⎰⎰≤DDd y x f d y x f σσ性质5 (估值不等式) 如果函数),(y x f 在D 上可积,且在D 上取得最大值M 和最小值m ,则 .),(σσσM d y x f m D⎰⎰≤≤性质6 (积分中值定理) 如果函数),(y x f 在D 上连续,则在D 上至少存在一点),(ηξ,使得σηξ),(),(f y d x d y x f D=⎰⎰积分中值定理的几何意义:任意曲顶柱体的体积必等于某同底、高为),(ηξf 的平顶柱体的体积。

§ 2 二重积分的计算类似于定积分,由于二重积分是一种和式的极限,按照定义来计算二重积分是不切实际的。

本节介绍将二重积分转化为两次定积分——二次积分进行计算的方法。

一、利用直角坐标计算二重积分就象任一平面多边形都是由三角形和矩形构成的一样,任一平面曲边图形都是由两种基本图形——上下曲边两侧直边(图10-3)或左右曲边、上下直边(图10-4)——构成的。

图10—3 图10—4注意:上面所讨论的区域D 都满足条件——过D 的内点、且平行于x 轴或y 轴的直线与D 的边界曲线相交不 多于两点。

如果D 不满足此条件,如图10—5,我们可将 D 分成若干部分,使其每一部分都符合这个条件,再分别 在各部分上应用公式(1)或(2),最后把各个积分加起来,即可得到在整个区域上的积分。

图10—5下面按积分区域的两种不同类型,借助几何直观来说明将二重积分⎰⎰Dd y x f σ),(转化为二次积分进行计算的方法:(I )首先假定0),(≥y x f .设积分区域D 可用不等式b x a x y y x y ≤≤≤≤,)()(21来表示(图10—3),其中)(,)(21x y x y 在 [a , b ]上连续。

由二重积分几何意义知,⎰⎰Dd y x f σ),(的值等于以D 为底,以),(y x f z =为顶的曲顶柱体(图10—6) 的体积。

我们只学过两种计算立体体积的方法——已知平行截面面积函数的立体体积和旋转体的体积。

我们应用计算“已知平行截面面积函数的立体体积”的方法来计算这个曲顶柱体的体积。

为此先计算截面面积:任取[a , b ]上一点x 0, 用平面x=x 0 去截曲顶柱体,得到一个以y 轴上区间])(,)([0201x y x y 为底,以),(0y x f z =为曲边的曲边梯形(图10—6中阴影部分)),故截面面积为.),()()()(000201dy y x f x S x y x y ⎰=一般地,用过区间[a , b ]上任一点x 且平行于yOz 面 的平面截曲顶柱体,所得截面的面积为.),()()()(21dy y x f x S x y x y ⎰=于是曲顶柱体的体积为.),()()()(21⎰⎰⎰⎥⎦⎤⎢⎣⎡==b a x y x y b a dx dy y x f dx x S V 图10—6上式右端是一个先对y 、后对x 的二次积分,即先将x 看作常数,对y 计算定积分,再将所得结果对x 计算定积分,这个二次积分也可记作.),()()(21⎰⎰x y x y bady y x f dx即.),(),()()(21⎰⎰⎰⎰=x y x y baDdy y x f dx dxdy y x f (1)注 虽然在上面讨论中假定0),(≥y x f ,但实际上公式(1)的成立并不受此限制。

相关文档
最新文档