集合的含义与表示
集合的含义与表示
集合的含义与表示知识点1集合的含义与表示(1)元素与集合的关系:属于记为∈;不属于记为∉.(2)集合的三种表示法:列举法、描述法、图示法.思考:集合A={x|y=x2},B={y|y=x2},C={(x,y)|y=x2}是同一个集合吗?提示:不是.集合A是函数y=x2的定义域,集合B是函数y=x2的值域,集合C 是函数y=x 2图象上的点集.知识点2集合间的基本关系(1)集合间的基本关系:子集、真子集、相等.(2)“⊆”与“”的区别:A⊆B⇒A=B或A B,若A⊆B和A B同时成立,则AB更准确.思考:若{x|ax+1=0}⊆{x|x2-1=0},则实数a的值为________.提示:0或-1或1.[拓展]1.集合的子集和真子集具有传递性:若A⊆B,B⊆C,则A⊆C;若A B,B C,则A C.2.含有n个元素的集合有2n个子集,有2n-1个非空子集,有2n-1个真子集,有2n -2个非空真子集.知识点3集合的基本运算和性质集合的并集集合的交集集合的补集符号表示A∪B A∩B 若全集为U,则集合A 的补集为∁U A图形表示意义{x|x∈A,或x∈B}{x|x∈A,且x∈B}{x|x∈U,且x∉A}性质A∪∅=A;A∪A=A;A∪B=B∪A;A∪B=A⇔B⊆AA∩∅=∅;A∩A=A;A∩B=B∩A;A∩B=A⇔A⊆BA∪(∁U A)=U;A∩(∁U A)=∅;∁U(∁U A)=A;∁U(A∩B)=(∁U A)∪(∁U B);∁U(A∪B)=(∁U A)∩(∁U B)1.思考辨析(在括号内打“√”或“×”)(1)若{x2,1}={0,1},则x=0,1.()(2){x|x≤1}={t|t≤1}.()(3)对于任意两个集合A、B,关系(A∩B)⊆(A∪B)恒成立.()(4)若A∩B=A∩C,则B=C.()答案:(1)×(2)√(3)√(4)×2.(知识点2)若集合A={x∈N|x≤10},a=22,则下面结论中正确的是()A.{a}⊆A B.a⊆AC.{a}∈A D.a∉A解析:选D.A={0,1,2,3},a=22∉A,故选D.3.(知识点3)已知集合A={x|3≤x<7},B={x|2<x<10},则(∁R A)∩B=.⇐源自必修一P11例9解析:因为∁R A={x|x<3或x≥7},所以(∁R A)∩B={x|2<x<3或7≤x<10}.答案:{x|2<x<3或7≤x<10}4.(知识点3)设集合A={1,2,4},B={x|x2-4x+m=0}. 若A∩B={1},则B=()⇐源自必修一P12A组T6A.{1,-3}B.{1,0}C.{1,3} D.{1,5}解析:选C.∵A∩B={1},∴1∈B,∴1-4+m=0,∴m=3.由x2-4x+3=0,解得x=1或x=3.∴B={1,3}.经检验符合题意.故选C.。
集合的含义及其表示
集合的含义及其表示一、集合的相关概念元素集合一般用大括号”{}”表示集合,也常用大写的拉丁字母A、B、C…表示集合.用小写的拉丁字母a,b,c…表示元素二、集合三大特性:思考:判断以下元素的全体是否组成集合,并说明理由;(1) 大于3小于11的偶数;(2) 我国的小河流。
三、重要数集:四、元素对于集合的关系五、集合的分类有限集:无限集:空集:六、集合的表示方法1、列举法:例1 用列举法表示下列集合:(1)小于10的所有自然数组成的集合;(2)方程x2=x的所有实数根组成的集合;(3)由1~20以内的所有质数组成的集合。
思考题 (1)你能用自然语言描述集合{2,4,6,8}吗? (2)你能用列举法表示不等式x-7<3吗?2、描述法:3、Venn图:例2 试分别用列举法和描述法表示下列集合:(1)方程x2-2=0的所有实数根组成的集合;(2)由大于10小于20的所有整数组成的集合。
课堂小结集合间的基本关系观察以下几组集合,并指出它们元素间的关系:① A={1,2,3}, B={1,2,3,4,5};② A={x| x>1}, B={x | x2>1};③ A={四边形}, B={多边形};④ A={x | x是两边相等的三角形},B={x| x是等腰三角形} .一、子集的定义:一般地,对于两个集合A与B,如果集合A中的任何一个元素都是集合B的元素,我们就说这两个集合有包含关系,称集合A为集合B 的子集。
记作:读作:Venn图表示:判断集合A是否为集合B的子集,若是则在()打√,若不是则在()打×:①A={1,3,5}, B={1,2,3,4,5,6} ( )②A={1,3,5}, B={1,3,6,9} ( )③A={0}, B={x x2+2=0} ( )④A={a,b,c,d}, B={d,b,c,a} ( )二、集合相等的定义:一般地,对于两个集合A与B, 如果集合A中的都是集合B的元素,同时集合B中的都是集合A的元素,则称集合A等于集合B,记作三、真子集对于两个集合A与B,如果A B,但存素 ,则称集合A 是集合B的真子集.记作A B四、几个结论①空集是任何集合的子集Φ A②空集是任何非空集合的真子集Φ A (A ≠ Φ)③任何一个集合是它本身的子集,即 A A④对于集合A ,B ,C ,如果 A B,且B C ,则A C例3 设A={x,x 2,xy}, B={1,x,y},且A=B ,求实数x,y 的值.例4 已知集合 与集合 满足Q P , 求a 的取值组成的集合A 作业布置1.教材P.12 A 组 5 B 组2.2. 若A={x |-3≤x≤4}, B={x | 2m -1≤x≤m+1},当B A 时,求实数m 的取值范围.3.已知}06|{2=-+=x x x P },01|{=+=ax x Q {}{}AC B C A B A 求,8,4,2,0,5,3,2,1,,==⊆⊆1.1.3 集合的基本运算(1)观察集合A,B,C元素间的关系:(1) A={4,5,6,8}B={3,5,7,8} C={3,4,5,6,7,8}(2) A={x|x是有理数},B={x|x是无理数}, C={x|x是实数}一、并集一般地,由属于集合A或属于集合B的所有元素组成的集合叫做A与B的并集,记作读作即A∪B=例1. A={4,5,6,8},B={3,5,7,8},求A∪B.例2.设A={x|-1<x<2},B={x|1<x<3},求A∪B性质1A∪A = A∪φ = A∪B B∪A二、交集观察集合A,B,C元素间的关系:A={4,5,6,8}, B={3,5,7,8},C={5,8}一般地,由既属于集合A又属于集合B的元素组成的集合叫做A与B的交集。
集合的含义与表示
称这两个集合相等
湖南省长沙市一中卫星远程学校
练习1.下列指定的对象,能构成一个集合 ( B ) 的是 ①很小的数 ②不超过 30的非负实数 ③直角坐标平面的横坐标与纵坐标相等的点 ④的近似值 ⑤高一年级优秀的学生 ⑥所有无理数 ⑦大于2的整数 ⑧正三角形全体 A. ②③④⑥⑦⑧ C. ②③⑥⑦ B. ②③⑥⑦⑧ D. ②③⑤⑥⑦⑧
解:当a=0时,x=-1.
当a≠0时,=16-4×4a=0. a=1. 此时x=-2. ∴a=1时这个元素为-2. ∴a=0时这个元素为-1.
课堂练习
1.教科书5面练习第1、2题
2.教科书11面习题1.1第1、2题
课堂小结
1.集合的定义 2.集合元素的性质 3.集合与元素的关系 4.集合的表示 5.集合的分类
解:当a=0时,x=-1.
例4已知集合
A={x|ax2+4x+4=0,x∈R,a∈R} 只有一个元素,求a的值与这个元素.
解:当a=0时,x=-1.
当a≠0时,=16-4×4a=0. a=1. 此时x=-2.
例4已知集合
A={x|ax2+4x+4=0,x∈R,a∈R} 只有一个元素,求a的值与这个元素.
2.集合的表示:
集合常用大写字母A,B,C,…表示,元素常用 小写字母a,b,c,…表示.
3.集合与元素的关系:
如果a是集合A的元素,就说a属于集 合A,记作a∈A. 如果a不是集合A的元素,就说a不属 于集合A,记作aA.
例如:A表示方程x2=1的解. 2A,1∈A.
4.常用数集及记法:
N:自然数集(含0)
-1 3
x | 0
x | x
x 2
1.1.1集合的含义与表示
1.1.1集合的含义与表⽰1.1.1集合的含义与表⽰1. 元素:我们把研究的对象统称为元素;常⽤⼩写字母a , b , c …表⽰元素。
2. 集合:把能够确定的不同元素的全体叫做集合,简称集.常⽤⼤写字母A ,B ,C …表⽰。
3. 集合的性质:(1)确定性:元素必须是确定的。
是否有⼀个明确的客观标准来鉴定这些对象,若有,则能构成集合,否则不能构成集合。
(2)互异性:元素必须是互异不相同的。
(3)⽆序性: 元素是⽆先后顺序的. 如:{1,2},{2,1}为同⼀集合。
4. 集合相等:构成两个集合的元素是⼀样的。
5. 集合与元素的关系:如果a 是集合A 的元素,就说a 属于集合A ,记作a ∈A . 如果a 不是集合A 的元素,就说a 不属于集合A ,记作a ?A . 6. 重要的数集:N :⾃然数集(含0)N+:正整数集(不含0) Z :整数集 Q :有理数集 R :实数集7. 空集(?):把没有元素的集合叫做空集,记作?。
8. 集合的表⽰⽅法:列举法、描述法、区间表⽰列举法:将集合中元素⼀⼀列举出来,元素之间⽤逗号隔开,⽤花括号{ }括起来。
描述法:⽤集合所含元素的共同特征表⽰集合的⽅法,称为描述法。
如:在⼤括号内先写上表⽰这个集合元素的⼀般符号及取值(或变化)范围,再画⼀条竖线,在竖线后写出这个集合中元素所具有的共同特征。
区间表⽰:设a 、b 是两个实数,且a①满⾜不等式a ≤x ≤b 的实数x 的集合, 叫作闭区间,记作 [a,b];②满⾜不等式a③满⾜不等式a ≤x{}|10x R x ∈<{}|∈⼀般符号范围共同特征{x| a练习:⼀、说法正确的是( ) 1. 接近于0的数的全体构成⼀个集合 2. 棱柱的全体构成⼀个集合 3. 未来世界的⾼科技产品构成⼀个集合 4. 不⼤于3的所有⾃然数构成⼀个集合 5. 漂亮的花 6. 正三⾓形全体⼆、集合{1,2}与集合{(1,2)}是否相等?集合{(1,2),(2,1)}与集合{(2,1),(1,2)}是否相等?三、⑴ 0 ? ⑵ {0} ? 四、⽤列举法表⽰下列集合:(1) ⽅程x x =2 的所有实数根组成的集合; (2) ⽅程0)1(2=-x 的所有实数根组成的集合;(3) 由1~20以内的所有质数组成的集合。
集合的含义及表示方法
确定性
集合中的元素具有确定性,即每个元素是否属于某个集合是明确的。对于任意一 个元素,如果它属于某个集合,则它只属于该集合;如果不属于该集合,则它与 该集合没有关系。
确定性的性质使得集合可以准确地描述事物的分类和归属问题,是数学和计算机 科学中基本的概念之一。
集合的含义及表示方法
• 集合的基本概念 • 集合的运算 • 集合的性质 • 集合的应用
01
集合的基本概念
集合的定义
01 集合是由确定的、不同的元素所组成的总体 。
02
集合中的元素具有确定性,即每一个对象是 否属于某个集合是确定的。
03
集合中的元素具有互异性,即集合中不会有 重复的元素。
04
集合中的元素具有无序性,即集合中元素的 排列顺序不影响集合本身。
数据库系统
数据库系统是计算机科学中用来存储和管理大量数据的重要工具。集合理论在数据库设计 中起着重要的作用,例如关系数据库中的表可以看作是集合的表示。
在日常生活中的应用
分类问题
在生活中,我们经常需要对事物进行分类。集合可以用来表示不同的类别,帮助我们更好地组织 和理解事物。
决策制定
在决策制定过程中,我们经常需要考虑多个因素或条件。集合可以帮助我们表示这些因素或条件 ,并分析它们之间的关系,从而做出更好的决策。
03
补集
补集是指全集中不属于某个集合的元素组成的集合。
补集的表示方法是在一个集合后面加上"′",例如:A′。
补集运算满足反演律,即A′=(全集−A)∪(全集−B)。
03
集合的性质
无序性
集合中的元素没有固定的顺序,即元素的位置不影响集合的性质。例如,集合A={1,2,3}和集合B={3,2,1}是同一个集合,因为 元素的无序性,集合A和集合B具有相同的性质。
高中数学知识点总结:集合的含义与表示
高中数学知识点总结 第 1 页 共 1 页 高中数学知识点总结:集合的含义与表示
集合的含义与表示
(1)集合的概念
集合中的元素具有确定性、互异性和无序性.
(2)常用数集及其记法
N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.
(3)集合与元素间的关系
对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一.
(4)集合的表示法
①自然语言法:用文字叙述的形式来描述集合.
②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.
③描述法:{x |x 具有的性质},其中x 为集合的代表元素.
④图示法:用数轴或韦恩图来表示集合.
(5)集合的分类
①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).。
集合的含义与表示
集合的含义与表示目录集合的含义与表示 (1)知识点: (1)一、集合的三性:确定性、互异性、无序性 (3)①确定性 (3)②互异性 (4)二、集合的表示方法 (7)①元素与集合的关系 (7)②列举法 (8)③描述法 (10)三、区别点集与数集 (11)知识点:1.集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个整体。
一般的研究对象统称为元素,一些元素组成的总体叫集合,简称为集。
2.集合的中元素的三个特性:(1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。
例:世界上最高的山、中国古代四大美女、教室里面所有的人……(2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。
例:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合例:{a,b,c}和{a,c,b}是表示同一个集合.3.集合的表示:{…} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。
①列举法:将集合中的元素一一列举出来{a,b,c……}②描述法:将集合中元素的公共属性描述出来,写在大括号内表示集合。
{x∈R| x-3>2} ,{x| x-3>2}③语言描述法:例:{不是直角三角形的三角形}4.集合的分类:(1)有限集:含有有限个元素的集合(2)无限集:含有无限个元素的集合(3)空集:不含任何元素的集合例:{x|x2=-5}5.元素与集合的关系:(1)元素在集合里,则元素属于集合,即:a∈A∉(2)元素不在集合里,则元素不属于集合,即:a A注意:常用数集及其记法:非负整数集(即自然数集)记作:N;正整数集N*或N+;整数集Z;有理数集Q;实数集R.一、集合的三性:确定性、互异性、无序性①确定性1.下列各组对象能够构成集合的是( )A. 我国所有的老人B. 我们班的高个子C. 长命万岁的人D. 我国的小河流答案:C。
1.1集合的概念及表示
1.1集合的概念及表示【知识储备】1.集合的概念(1)含义:一般地,我们把所研究对象统称为元素,把一些元素组成的总体叫做集合(简称为集).(2)集合相等:只要构成两个集合的元素是一样的,即这两个集合中的元素完全相同,就称这两个集合相等.[知识点拨]集合中的元素必须满足如下性质:(1)确定性:指的是作为一个集合中的元素,必须是确定的,即一个集合一旦确定,某一个元素属于或不属于这个集合是确定的,要么是该集合中的元素,要么不是,二者必居其一.(2)互异性:集合中的元素必须是互异的,就是说,对于一个给定的集合,它的任何两个元素都是不同的.(3)无序性:集合中的元素是没有顺序的,比如集合{1,2,3}与{2,3,1}表示同一集合.2.元素与集合的关系关系概念记法读法属于如果a是集合A中的元素,就说a属于集合Aa∈A a属于集合A不属于如果a不是集合A中的元素,就说a不属于集合Aa∉A a不属于集合A[知识点拨]符号“∈”和“∉”只能用于元素与集合之间,并且这两个符号的左边是元素,右边是集合,具有方向性,左右两边不能互换.3.集合的表示法(1)自然语言表示法:用文字语言形式来表示集合的方法.例如:小于3的实数组成的集合.(2)字母表示法:用一个大写拉丁字母表示集合,如A,B,C等,用小写拉丁字母表示元素,如a,b,c等.常用数集的表示:名称非负整数集(自然数集)正整数集整数集有理数集实数集符号N N*或N+Z Q R(3)列举法:把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.(4)描述法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.这种用集合所含元素的共同特征表示集合的方法叫做描述法.【题型精讲】【题型一集合概念的理解】必备技巧判断一组对象是否能构成集合的三个依据判断一组对象能否组成集合,关键看该组对象是否满足确定性,如果此组对象满足确定性,就可以组成集合;否则,不能组成集合.同时还要注意集合中元素的互异性、无序性.例1下列对象中不能构成一个集合的是()A.某校比较出名的教师B.方程−2=0的根C.不小于3的自然数D.所有锐角三角形例2(多选)下列各组对象能构成集合的是()A.拥有手机的人B.2024年高考数学难题C.所有有理数D.小于π的正整数【题型精练】1.给出下列说法:①在一个集合中可以找到两个相同的元素;②好听的歌能组成一个集合;③高一(1)班所有姓氏能构成集合;④把1,2,3三个数排列,共有6种情况,因此由这三个数组成的集合有6个.其中正确的个数为()A.0B.1C.2D.32.下列各组对象中能构成集合的是()A.充分接近的实数的全体B.数学成绩比较好的同学C.小于20的所有自然数D.未来世界的高科技产品【题型二用列举法表示集合】例3用列举法表示下列集合(1)11以内非负偶数的集合;(2)方程(+1)(2−4)=0的所有实数根组成的集合;(3)一次函数=2与=+1的图象的交点组成的集合.【题型精练】1.用列举法表示下列给定的集合:(1)大于1且小于6的整数组成的集合A;(2)方程2−9=0的实数根组成的集合B;(3)一次函数=+2与=−2+5的图象的交点组成的集合C.2.用列举法表示下列集合.(1)不大于10的非负偶数组成的集合A;(2)小于8的质数组成的集合B;(3)方程22−−3=0的实数根组成的集合C;(4)一次函数=+3与=−2+6的图象的交点组成的集合D.【题型三用描述法表示集合】必备技巧利用描述法表示集合的关注点(1)写清楚该集合代表元素的符号.(2)所有描述的内容都要写在花括号内.(3)在通常情况下,集合中竖线左侧元素的所属范围为实数集时可以省略不写.例4用适当的方法表示下列集合:(1)方程组2314,328x y x y -=⎧⎨+=⎩的解集;(2)方程2210x x -+=的实数根组成的集合;(3)平面直角坐标系内所有第二象限的点组成的集合;(4)二次函数2210y x x =+-的图象上所有的点组成的集合;(5)二次函数2210y x x =+-的图象上所有点的纵坐标组成的集合.【题型精练】1.用描述法表示下列集合:(1)不等式3+2>5的解集;(2)平面直角坐标系中第二象限的点组成的集合;(3)二次函数=2−2+3图象上的点组成的集合.(4)平面直角坐标系中第四象限内的点组成的集合;(5)集合1,12,13,14(6)所有被3整除的整数组成的集合;(7)方程2++1=0的所有实数解组成的集合.2.试说明下列集合各表示什么?1|A y yx ⎧⎫==⎨⎬⎩⎭;{|B x y ==;()1,|C x y y x ⎧⎫==⎨⎬⎩⎭(),|13y D x y x ⎧⎫==⎨⎬-⎩⎭;{}0,1E x y ===;{}1,1F x y x y =+=-=-.【题型四元素与集合的关系】必备技巧判断元素和集合关系的两种方法(1)直接法:集合中的元素是直接给出的.(2)推理法:对于某些不便直接表示的集合,只要判断该元素是否满足集合中元素所具有的特征即可.例5用符号“∈”或“∉”填空:(1)0______∅;(2)2-_______2{|5}x x <;(3)(2,3)_______{(,)|23}x y x y +=;(4)2017_______{|41,}x x n n =-∈Z .例6(吉林长春市期中)已知集合M=6*,5a N a ⎧∈⎨-⎩且}a Z ∈,则M 等于()A .{2,3}B .{1,2,3,4}C .{1,2,3,6}D .{1-,2,3,4}【题型精练】1.(多选)(浙江高一期末)若集合{}22|,,A x x m n m n ==+∈Z ,则()A .1A∈B .2A∈C .3A∈D .4A∈2.已知集合{},M m m a a b Q ==+∈,则下列四个元素中属于M 的元素的个数是()①1+;;A .4B .3C .2D .1【题型五确定集合中的元素】必备技巧确定集合中的元素(1)充分理解集合的描述法,(2)注意检验元素互异性.例7(1)(山东济南高一期末)已知集合(){},2,,A x y x y x y N =+≤∈,则A 中元素的个数为()A .1B .5C .6D .无数个(2)集合*12|x N Z x ⎧⎫∈∈⎨⎬⎩⎭中含有的元素个数为()A .4B .6C .8D .12例8(1)(江苏苏州市期中)设集合{123}{45}}A C x B y x A y B ===+∈∈,,,,,,,则C 中元素的个数为()A .3B .4C .5D .6(2)(江苏南通市月考)已知集合(){},2,,A x y x y x Z y Z =+≤∈∈,则A 中元素的个数为()A .9B .10C .12D .13(3)(黑龙江大庆市期中)由实数2,,|,x x x -所组成的集合,最多可含有()个元素A .2B .3C .4D .51.若集合()(){}326A x N x x =∈--<,则A 中的元素个数为()A .3B .4C .5D .62.若集合{}0123A =,,,,()}{,,B x y x A y A x y A =∈∈-∈,,则B 中所含元素的个数为()A .4B .6C .7D .103.(青海高一月考)已知集合{1,2,3,4,5}A ={},(,),,B x y x A y A x y A =∈∈-∈,则B 中所含元素的个数为()A .3B .6C .8D .10【题型六元素特性中的求参问题】必备技巧利用集合中元素的确定性、互异性求参数的策略及注意点(1)策略:根据集合中元素的确定性,可以解出参数的所有可能值,再根据集合中元素的互异性对求得的参数值进行检验.(2)注意点:利用集合中元素的互异性解题时,要注意分类讨论思想的应用.例9(上海市进才中学高一期末)已知集合22{2,(1),33}Aa a a =+++,且1A∈,则实数a 的值为________.例10(山东济南月考)已知集合{}2210,A x ax x a R =++=∈.(1)若A 中只有一个元素,求a 的值;(2)若A 中至少有一个元素,求a 的取值范围;(3)若A 中至多有一个元素,求a 的取值范围.1.(吴起高级中学高一月考)若{}22111a a ∈++,,,则a =()A .2B .1或-1C .1D .-12.已知{}222,(1),33A a a a a =++++,若1A∈,则实数a 构成的集合B 的元素个数是()A .0B .1C .2D .33.(云南丽江市期末)若集合2{|210}A x kx x =++=中有且仅有一个元素,则k 的值为___________.。
集合含义及表示
集合的含义及其表示【知识要点】1、集合一般地,一定范围内某些确定的、不同的对象的全体所构成的就是一个集合。
2、元素集合中的每一个对象称为该集合的元素。
3、元素与集合的关系元素与集合有属于和不属于两种关系4、特定集合的表示非负整数集(或自然数集)——记作N正整数集——记作,或整数集——记作Z有理数集——记作Q实数集——记作R5、集合的分类按集合中元素的个数分为有限集和无限集。
有限集是指含有有限个元素的集合;无限集是指含有无限个元素的集合。
我们把不含任何元素的集合称为空集。
记作。
6、集合的表示方法列举法:将集合中的元素一一列举出来,写在花括号内表示集合的方法。
描述法:用集合所含元素的共同特征表示集合的方法。
Venn图示法(文氏图法):用封闭曲线(内部区域)表示集合及其关系的图形【方法与应用】1、集合的概念是一种描述性说明,用‘{}’表示,表示所有的、全部的,具有共同特征的研究对象都在花括号内,集合中的元素必须是确定的。
【J】例1、下列各组对象:1、接近于0的数的全体 2、比较小的正整数全体 3、平面上到点O的距离等于1的点的全体 4、正三角形的全体 5、的近似值的全体,其中能构成集合的组数是( A )A,2 B. 3 C. 4 D.5【L】例2、中国的直辖市是否是一个集合。
()【C】例3、下列各种对象,可以构成集合的是()A、某班身高超过1米8的女学生B、某班比较聪明的学生C、某书中的难题D、使||最小的x的值2、元素是指在集合中的每一个具体的对象。
(强行记忆)判定一个元素是不是某个集合的元素,就是判断这个元素是否具有这个集合的元素的共同特征。
【J】例1、下列各组中,(A D )是集合{b,o,k}中的元素,(BC )不是集合{b,o,k}的元素。
A、oB、cC、uD、 k【L】例2、已知集合{1,2,3,4,5,6,7},那么这个集合中有()个元素【C】例3、由实数x,-x,|x|,,-所组成的集合,最多含有元素()个A、2B、3C、4D、53、当元素a属于集合A时,记作aA,读作a属于集合A;当元素a不属于集合A,记作aA,读作a不属于集合A.。
1.1.1集合的含义与表示
一、集合的含义 1.什么是集合?
一般的,我们把研究对象统称为元素,把一些元 素组成的总体叫做集合(简称为集)。
元素:用小写字母a,b,c...表示 集合:用大写字母A,B,C...表示
2.集合与元素的关系 • 如果a是集合A的元素,就说a属于集合A,记作 a A 如果a不是集合A中的元素,就说a不属于集合A,
• 正整数集:N*或N+ • 整数集:Z
• 有理数集:Q
• 实数集:R
二、集合的表示
• 列举法:把集合的元素一一列举出来,写在大括号内 注:1.元素之间要用逗号隔开 2.元素不能重复
如:地球上的四大洋组成的集合表示为{太平洋,大西洋, 印度洋,北冰洋}
方程(x 1)( x 2) 0 组成的集合表示为{1,-2}
梦 境
集合? 例:(1)1~20内的所有整数 1,2,3,4,5..... • (2)亚洲的所有国家 中国,韩国,日本,印度..... • (3)所有的正方形 • (4)方程x2 3x 2 0 的所有实数根 - 1 , - 2 • (5)化德一中2020年9月入学的所有高一学生
二、集合的表示
• 描述法:用集合所含元素的共同特征表示集合 注:集合的代表元素
如:不等式 x 7 3的解集,共同特征:x R ,且 x 7 3
集合表示为:{x R x 10}
列举法主要针对集合中元素个数较少的情况,而描述法 主要适用于集合中的元素个数无限或不宜一一列举的情况
记作 a A
• 例:1~20内的所有素数记为集合A,则 3 A,4 A
素数:除1和它本身外,不能被其他自然数整除的 数。
判断下列对象能否组成集合: • 1.小于6的正整数 • 2.大于3小于11的偶数 • 3.中国男子足球队中技术很差的队员 • 4.中国的富翁 • 5.爱好足球的人 • 6.世界上所有的高山
集合的含义与表示
例1:判断下列各组对象能否组成一个集合:
(1)9以内的正偶数;
(2)篮球打得好的人;
(3)2012年伦敦奥运会的所有参赛运动员;
(4)高一(1)班所有高个子同学.
练习1:有下列4组对象:(1)某校2015级新生;(2)小于0的自然数;(3)所有数学难题;(4)接近1的数.其中能构成集合的是________.
记作: , 读作: 包含于 或 包含 。
特别提醒:1、“ 是 的子集”的含义是:集合 的任何一个元素都是集合 的元素,即由 ,能推出 。如: ; 。2、当“ 不是 的子集”时,我们记作:“ ”,读作:“ 不包含于 ,(或 不包含 )”。如: 。3、任何集合都是它本身的子集。即对于任何一集合 ,它的任何一个元素都属于集合 本身,记作 。4、我们规定:空集是任何集合的子集,即对于任一集合 ,有 。5、在子集的定义中,不能理解为子集 是集合 中部分元素组成的集合。因为若 ,则 中不含有任何元素;若 = ,则 中含有 中的所有元素,但此时都说集合 是集合 的子集。
特别提醒:1、写清楚该集合中元素的代号;2、说明该集合中元素的特征;3、不能出现未被说明的字母;4、多层描述时,应当准确使用“或”、“且”、“非”;5、所有描述的内容都要写在大括号内;6、用于描述的语言要力求简明、确切。7、错误表示法: {实数集}或 {全体实数};正确的表示方法为:
(3)韦恩图法:用一条封闭的曲线的内部来表示一个集合的方法。如:集合 可用韦恩图表示为:
练习2:下列各组对象中,不能组成集合的是()
A.所有的正数B.所有的老人C.不等于零的数D.我国古代四大发明
类型二集合中元素的特性
例2:集合A是含有两个不同实数a-3,2a-1的集合,求实数a的取值范围.
集合的含义和表示
集合的含义和表示知识点一:集合的含义集合的概念:一般地,我们将研究对象称为元素,把一些元素组成的总体叫为集合(简称集)。
元素用小写字母a,b,c表示,集合用大写字母A,B,C表示。
集合中元素的性质:确定性:即那些元素是属于这个集合的,那些元素不属于这个集合是明确的。
比如高山就不构成集合,胖人也不构成集合。
互异性:集合中的元素互不相同。
无序性:元素之间是没有顺序的,如:{0,1}={1,0}元素与集合的关系:“属于”和“不属于”(1)如果a是集合A的元素,就说a属于A,记作a∈A(2)如果a不是集合A的元素,就说a不属于A,记作a A(“∈”的开口方向,不能把a∈A颠倒过来写)集合的分类:1、有限集:含有有限个元素的集合。
2、无限集:含有无限个元素的集合。
3、空集:不含任何元素的集合。
记作Φ,如:例:1,①接近于0的数的全体;②比较小的正整数全体;③平面上到点O的距离等于1的点的全体;④正三角形的全体;⑤2的近似值的全体.其中能构成集合的组数有( )A.2组B.3组C.4组D.5组2对于集合A={2,4,6},若a∈A,则6-a∈A,那么a的值是______.3集合{3,x,x2-2x}中,x应满足的条件是______知识点二:常用数集的记法(1)非负整数集(自然数集):全体非负整数的集合记作N ,{} ,2,1,0=N(2)正整数集:非负整数集内排除0的集记作N*或N+{} ,3,2,1*=N (3)整数集:全体整数的集合记作Z , {} ,,,210±±=Z (4)有理数集:全体有理数的集合记作Q , {}整数与分数=Q (5)实数集:全体实数的集合记作R {}数数轴上所有点所对应的=R 注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0(2)非负整数集内排除0的集记作N*或N+。
例: ①1______N ,0______N .-3______Q ,0.5______Z ,2______R .②21______R ,5______Q ,|-3|______N +,|-3|______Z .知识点三:集合的表示方法(1)列举法:把集合中的元素一一列举出来,写在大括号内。
集合的含义与表示
集合的含义与表示☆知识点☆★1、集合的概念:一般地, 一定范围内某些确定的、不同的对象的全体构成一个集合, 集合中每一个对象叫做这个集合的元素★2、集合元素的特征:确定性,互异性,无序性(1)确定性:设A 是一个给定的集合,x 是某一个具体对象,则或者是A 的元素,或者不是A 的元素,两种情况必有一种且只有一种成立.(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素.(3)无序性:一般不考虑元素之间的顺序,但在表示数列之类的特殊集合时,通常按照习惯的由小到大的顺序书写即时练习:判断下列各组对象能否构成一个集合? ① 2,3,4②(2,3),(3,4) ③ 三角形④ 2,4,6,8,…⑤ 1,2,(1,2),{1,2} ⑥ 我国的小河流⑦ 方程042=+x 的所有实数解 ⑧ 好心的人 ⑨ 著名的数学家 ⑩ 方程0122=++x x 的解★3、集合相等: 一般地,对于两个集合A 与B ,如果集合A 的任何一个元素都是集合B 的元素,同时集合B 的任何一个元素都是集合A 的元素.我们就说集合A 等于集合B.记作A =B.如:{a ,b ,c ,d}与{b ,c ,d ,a}相等; {2,3,4}与{3,4,2}相等; {2,3}与{3,2}相等.“与2相差3的所有整数所组成的集合”,即{}{}5,132-==-∈x N x 思考:A ={x |x =2m +1,m ∈Z},B ={x |x =2n -1,n ∈Z}相等吗? ★4、集合元素与集合的关系:集合元素与集合的关系用“属于”和“不属于”表示: (1)如果a 是集合A 的元素,就说a 属于A ,记作A a ∈ (2)如果a 不是集合A 的元素,就说a 不属于A ,记作A a ∉ ★5、常用数集及其记法:N 表示:非负整数集(或自然数集) N*或N+表示:除0的非负整数集 Z 表示:整数集 Q 表示:有理数集R 表示:实数集 ★6、集合的分类:2、无限集:含有无限个元素的集合。
集合的含义与表示
集合的含义与表示1元素与集合的概念一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集),构成集合的每个对象叫做这个集合的元素(或成员).2集合的元素特征①确定性:给定一个集合,那么任何一个元素在不在这个集合中就确定了.Eg:街上叫声帅哥,是男的都回个头,帅哥没有明确的标准,故“帅哥”不能组成集合.②互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的.Eg:两个学生名字都是“熊涛”,老师也要给他们起小名"熊大""熊二",以视区别.若集合A={1,2,a},就意味a≠1且a≠2.③无序性:集合中的元素无顺序,可以任意排列、调换.Eg:高一(1)班每月都换座位也改变不了它是(1)班的事实,{1,2,3}={2,3,1}.3元素与集合的关系若a是集合A的元素,则称a属于集合A,记作a∈A;若a不是集合A的元素,则称a不属于集合A,记作a∉A.Eg:菱形∈{平行四边形},0∈N,0∉{1,2,3,4}.脑筋急转弯你能证明上帝不是万能的么?答案:如果上帝万能,他能否创造一块他举不起来的石头么?(这跟集合有什么关系呢?)4常用数集自然数集(或非负整数集),记作N;正整数集,记作N∗或N+;整数集,记作Z;有理数集,记作Q;实数集,记作R.5集合的分类有限集,无限集,空集∅.Eg:奇数集{x|x=2n+1 ,n∈Z}属于无限集,{x∈R|x2+1=0}=∅.6集合的表示方法①列举法把集合中的元素一一列举出来,并用花括号“{ }”括起来表示集合的方法叫列举法.②描述法用集合所含元素的共同特征表示集合的方法,称为描述法.方法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征. 一般格式:{x∈A|p(x)}.用符号描述法表示集合时应注意:(1)弄清元素所具有的形式(即代表元素是什么)是数还是点、还是集合、还是其他形式?(2)元素具有怎么的属性?当题目中用了其他字母来描述元素所具有的属性时,要去伪存真,而不能被表面的字母形式所迷惑.(3)Eg:A={x|x2−x−2=0}———方程x2−x−2=0的解,即A={−1,2};B={x|x2−x−2<0}———不等式x2−x−2<0的解集,即B={x|−1<x<2};C={x|y=x2−x−2}———函数y=x2−x−2的定义域,即C=R;D={y|y=x2−x−2}———函数y=x2−x−2的值域,即D={y|y>−94};E={(x ,y)|y=x2−x−2}———函数y=x2−x−2的图像,它是个点集.【典题1】下列说法正确的是( )A.某个村子里的高个子组成一个集合;B.所有小的正数组成的集合;C.集合{1 ,2 ,3 ,4 ,5}和{5 ,4 ,3 ,2 ,1}表示同一个集合;D.1 ,0.5 ,12 , 32, 64,√14这些数组成的集合有五个元素.【解析】由于“高个子”、“小的”没有一个明确的标准,A ,B的对象不具备确定性;D中的0.5 ,12 ,√14三个数相等,32,64相等,故集合只有3个元素;集合具有无序性,所以C是正确的;故选C.【点拨】本题考核集合元素的三要素.【典题2】设集合A={2 , 1−a , a2−a+2},若4∈A,则a=.【解析】∵4∈A∴1−a=4或a2−a+2=4,(i)若1−a=4,则a=−3,此时a2−a+2=14,∴A={2 ,4 ,14};(ii)若a2−a+2=4,则a=2或a=−1,a=2时,此时1−a=−1,∴A={2 ,−1 ,4};a=−1时,此时1−a=2,则A={2 ,2 ,4}不符合集合的"互异性”,故a≠−1.综上a=−3或2.【点拨】本题考核集合元素的特征和元素与集合的关系;当a=−1时,1−a=2,此时A={2 ,2 ,4}不符合集合的"互异性”,故a≠−1.故求出集合后最好做下检查.【典题3】用列举法表示集合A={6x−2∈Z|x∈N}=.【解析】根据x∈N,且6x−2∈Z可得:x=0时,6x−2=−3;x=1时,6x−2=−6;x=3时,6x−2=6;x=4时,6x−2=3;x=5时,6x−2=2;x=8时,6x−2=1;∴A={-3 ,-6 ,6 ,3 ,2 ,1}.【点拨】①看集合先确定元素类型(本题中元素是“6x−2”,而不是“x”),再看元素需要满足的条件;②集合若能化简先化简,用最简洁的形式表示能让我们更好理解集合.【典题4】若集合A={x|ax2+2x+1=0 ,a∈R}至多有一个元素,则a的取值范围是.【解析】∵集合A={x|ax2+2x+1=0 ,a∈R}至多有一个元素,∴a=0或{a≠0△=4−4a≤0,解得a=0或a≥1,∴a的取值范围是{a|a=0或a≥1}.【点拨】注意二次项系数是否等于0,先确认函数类型.巩固练习1 (★) 下列各组对象能构成集合的是()A.充分接近的所有实数B.所有的正方形C.著名的数学家D.1,2,3,3,4,4,4,4【答案】B【解析】选项A、C不满足集合的确定性;集合B正方形是确定的,故能构成集合;选项D不满足集合的互异性.故选:B.2(★) 以实数x,−x,|x|,√x2,−√x33为元素所组成的集合最多含有()个元素.A.0B.1C.2D.3【答案】C【解析】当x>0时,x=|x|=√x2>0,−√x33=−x<0,此时集合共有2个元素;当x=0时,x=|x|=√x2=−√x33=−x=0,此时集合共有1个元素;当x<0时,−x=|x|=√x2=−√x33>0,x<0,此时集合共有2个元素,故由以实数x,−x,|x|,√x2,−√x33为元素所组成的集合最多含有元素的个数为2个.故选:C.3(★) 下面有四个命题:(1)集合N中最小的数是1;(2)0是自然数;(3){1,2,3}是不大于3的自然数组成的集合;(4)a∈N,b∈N,则a+b不小于2. .其中正确的命题的个数是()A.1个B.2个C.3个D.4个【答案】A【解析】(1)集合N中最小的数是0,(2)对,(3)不大于3的自然数组成的集合是{0,1,2,3},(4)因为0∈N,所以a+b可能小于2,因此只有(2)是对的,故选A.4(★★) 设集合M={x|x=3k ,k∈Z},P={x|x=3k+1 ,k∈Z},Q={x|x=3k−1 ,k∈Z},若a∈M ,b∈P ,c∈Q,则a+b−c∈()A.MB.PC.QD.M∪P【答案】A5(★★) 已知x,y,z为非零实数,代数式x|x|+y|y|+z|z|+xyz|xyz|的值所组成的集合是M,则下列判断正确的是()A.4∈M B.2∈M C.0∉M D.−4∉M【答案】A【解析】根据题意,分4种情况讨论;①、x、y、z全部为负数时,则xyz也为负数,则x|x|+y|y|+z|z|+xyz|xyz|=−4,②、x、y、z中有一个为负数时,则xyz为负数,则x|x|+y|y|+z|z|+xyz|xyz|=0,③、x、y、z中有两个为负数时,则xyz为正数,则x|x|+y|y|+z|z|+xyz|xyz|=0,④、x、y、z全部为正数时,则xyz也正数,则x|x|+y|y|+z|z|+xyz|xyz|=4;则M={4,−4,0};分析选项可得A符合.6(★★) 点的集合M={(x,y)|xy≥0}是指()A.第一象限内的点集B.第三象限内的点集C.第一、第三象限内的点集D.不在第二、第四象限内的点集【答案】D【解析】xy≥0指x和y同号或至少一个为零,故为第一或第三象限内的点或坐标轴上的点.故选D7(★★) 已知含有三个实数的集合既可表示成{a,ba,1},又可表示成{a2,a+b,0},则a2017+b2018=.【答案】−1【解析】根据题意,由{a,ba ,1}={a2,a+b,0}可得a=0或ba=0,又由ba 的意义,则a≠0,必有ba=0,则b=0,则{a,0,1}={a2,a,0},则有a2=1,即a=1或a=−1,集合{a,0,1}中,a≠1,则必有a=−1则a2017+b2018=(−1)2017+02018=−1故答案为:−18(★★)若集合A={x|kx2+4x+4=0 ,x∈R}中只有一个元素,则实数k的值为.【答案】0或1【解析】由集合A={x|kx2+4x+4=0,x∈R}中只有一个元素,当k=0时,4x+4=0,即x=−1,A={−1},成立;当k≠0时,△=16−4•k•4=0,解得k=1.A={x|x2+4x+4=0}={−2},成立.综上,k =0或1.9 (★★) 用列举法表示集合{m|m−23∈N ,m ∈N ,m ≤10}= . 【答案】 {2 ,5 ,8}.【解析】根据题意,∵m ∈N,m ≤10,∴m −2≤8,且(m −2)∈Z又因m−23∈N ,∴(m −2)∈N ,且是3的整数倍,∴m −2=0或3或6,∴m =2或5或8,∴集合{m|m−23∈N,m ∈N,m ≤10}={2,5,8}.故答案为:{2,5,8}.10 (★★) 集合A ={x ∈Z ∣y =12x+3,y ∈Z}的元素个数为【答案】 12【解析】由题意,集合{x ∈Z ∣y =12x+3∈Z}中的元素满足x 是整数,且y 是整数, 由此可得x =−15,−9,−7,−6,−5,−4,−2,−1,0,1,3,9; 此时y 的值分别为:−1,−2,−3,−4,−6,−12,12,6,4,3,3,1,符合条件的x 共有12个,11 (★★) 用列举法表示下列集合(1)11以内偶数的集合;(2)方程(x +1)(x 2−4)=0的所有实数根组成的集合;(3)一次函数y =2x 与y =x +1的图象的交点组成的集合.【解析】(1){2,4,6,8,10};(2)解方程(x +1)(x 2−4)=0,得x 1=−1,x 2=−2,x 3=2,故方程(x +1)(x 2−4)=0的所有实数根组成的集合为{−2,−1,2};(3)解方程组{y =2x y =x +1得{x =1y =2, 因此一次函数y =2x 与y =x +1的图象的交点为(1,2),故所求的集合为{(1,2)}. 12 (★★★) 已知集合A ={x ∣ax 2−3x +2=0,a ∈R }1)若A 是空集,求a 的取值范围;2)若A 中只有一个元素,求a 的值,并把这个元素写出来;3)若A 中至多只有一个元素,求a 的取值范围【答案】 1) a >98; 2) 若a =0,则有A ={23};若a =98 ,则有A ={43};3) a =0或a ≥98.【解析】 1)若A 是空集,则方程ax 2−3x +2=0无解,此时a ≠0且Δ=9−8a <0,即a >98. 2)若A 中只有一个元素则方程ax 2−3x +2=0有且只有一个实根 当a =0时,方程为一元一次方程,满足条件; 当a ≠0,此时Δ=9−8a =0,解得a =98. ∴a =0或a =98若a =0,则有A ={23};若a =98 ,则有A ={43}; 3)若A 中至多只有一个元素,则A 为空集,或有且只有一个元素由(1),(2)得满足条件的a 的取值范围是:a =0或a ≥98.。
集合的含义及表示
集合的含义及表示一. 知识卡片1. 一般地,我们把研究对象统称为元素(element ),把一些元素组成的总体叫做集合(set ).2. 集合元素的特征对于一个给定的集合,集合中的元素是确定的,是互异的,是无序的,即集合元素三特征.确定性:某一个具体对象,它或者是一个给定的集合的元素,或者不是该集合的元素,两种情况必有一种且只有一种成立.互异性:同一集合中不应重复出现同一元素.无序性:集合中的元素没有顺序.3. 集合的字母表示集合通常用大写的拉丁字母表示,集合的元素用小写的拉丁字母表示. 如果a 是集合A 的元素,就说a 属于(belong to)集合A ,记作:a ∈A ; 如果a 不是集合A 的元素,就说a 不属于(not belong to)集合A ,记作:a A .4. 常见数集的表示非负整数集(自然数集):全体非负整数组成的集合,记作N ;正整数集:所有正整数的集合,记作N *或N +;整数集:全体整数的集合,记作Z ;有理数集:全体有理数的集合,记作Q ;实数集:全体实数的集合,记作R .5. 列举法把集合的元素一一列举出来,并用花括号“{ }”括起来,这种表示集合的方法叫做列举法.注意:不必考虑顺序,“,”隔开;a 与{a }不同.6. 描述法用集合所含元素的共同特征表示集合的方法称为描述法,一般形式为,其中x 代表元素,P 是确定条件.7. 反思与小结:① 描述法表示集合时,应特别注意集合的代表元素,如与不同.② 只要不引起误解,集合的代表元素也可省略,例如,. ③ 集合的{ }已包含“所有”的意思,例如:{整数},即代表整数集Z ,所以不必写{全体整数}.下列写法{实数集},{R }也是错误的.④ 列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法.∉{|}x A P ∈2{(,)|1}x y y x =-2{|1}y y x =-{|1}x x >{|3,}x x k k Z =∈二. 高考预测本部分内容为高考中频考点,多见于选择题、填空题。
集合的概念和表示
x,x, | x |, x 2 ,3 x 3 所组成的集合,最多 5.由实数
含有 2 个元素; 6.求数集{1,x,x2-x}中的元素x应满足的条件; 7.表示所有正偶数组成的集合; {x|x=2n,n∈N*},是无限集; 8.用描述法表示不超过30的非负偶数的集合是 9.用列举法表示
{x | x 2k,0 k 15, k Z}
说明:两个集合求并集,结果还是一个集合,是由集合A 与B 的所有元素组成的集合(重复元素只看成一个元素).
Venn图表示: A B
A
A∪B
B
A
A∪B
B
A∪B
并集例题
例1.设A={4,5,6,8},B={3,5,7,8}, 求AUB. 解:A B {4,5,6,8} {3,5,7,8} {3,4,5,6,7,8}
我们把不含任何元素的集合叫做 空集,符号记为 例如:方程x2+1=0没有实数根, 所以方程x2+1=0的实数根组成 的集合为
5.空集
规定:空集是任何集合的子集. 空集也是任何非空集合的真子集.
6.子集的有关性质
(1)任何一个集合都是它本身的子集,即AA (2)对于集合A、B、C, 如果AB,BC,则AC
答:方程组的解集为 x y 4 {(x,y,z)│ y z 5 } z x 3 ={(x,y,z)│x=1,y=3,z=2} ={(1,3,2)}
的解集。
3. 图示法(Venn图)
我们常常画一条封闭的曲线,用它的内部表示 一个集合. 例如,图1-1表示任意一个集合A; 图1-2表示集合{1,2,3,4,5} .
A
图1-1
1,2,3, 5, 4.
图1-2
集合的含义与表示
集合的含义与表示一、引言:“物以类聚,人以群分”数学中也有类似的分类.如:用到过的“正数的集合”、“负数的集合”如:2x-1>3,x>2所有大于2的实数组成的集合称为这个不等式的解集.如:几何中,圆是到定点的距离等于定长的点的集合.如:自然数的集合0,1,2,3,……如:高一(4)全体同学组成的集合.结论:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素.●对于集合中的元素人们能意识到,并能判断一个给定的元素是否属于这个集合.●集合是数学中最原始的概念之一,我们不能用其他的概念下定义,只能作描述性说明,是不定义概念,即原始概念,和点、直线、平面等基本概念及原理构成了整个数学大厦的基石,是从现实世界中总结出来的.●集合理论是由德国数学家康托尔发现的,他创造的集合论是近代许多数学分支的基础.集合的三要素:1.元素的确定性;2.元素的互异性;3.元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素.(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素.(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样.(4)集合元素的三个特性使集合本身具有了确定性和整体性.例1:判断下列一组对象是否属于一个集合呢?(1)很大的数的全体(2)所有的偶数(3)一些四边形(4)高一、二十班所有胖的同学(5)所有3的倍数.评注:判断集合要注意有三点:范围是否确定;元素是否明确;能不能指出它的属性.二、集合的表示:{…}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}1.用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}2.集合的表示方法:列举法与描述法.常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+整数集Z有理数集Q实数集R关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作a A(或a A)列举法:把集合中的元素一一列举出来,然后用一个大括号括上.例2:由方程x2-1=0的所有解组成的集合可表示为{-1,1}例3:所有大于0且小于10的奇数组成的集合可表示为{1,3,5,7,9}例4:用列举法表示下列列集合(1)小于10的所有自然数组成的集合(2)方程x2=x的所有实数根组成的集合(3)由1~20以内的所有质数组成的集合解:(1){0,1,2,3,4,5,6,7,8,9}(2){0,1}(3){2,3,5,7,11,13,17,19}练习:1.你能用自然语言描述集合{2,4,6,8}2.你能用列举法表示不等式x-7<3的解集吗?描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法.用确定的条件表示某些对象是否属于这个集合的方法.①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3>2的解集是{x R|x-3>2}或{x|x-3>2}例5:试分别用列举法和描述法表示下列集合:(1)方程x2-2=0的所有实数根组成的集合;(2)由大于10小于20的所有整数组成的集合.解:(1)描述法{x∈R|x2-2=0}列举法{,-}(2)描述法{x∈Z|10<x<20}列举法{11,12,13,14,15,16,17,18,19}集合的分类:1.有限集含有有限个元素的集合2.无限集含有无限个元素的集合3.空集不含任何元素的集合人物介绍创立“实无穷”观念的数学家——康托康托(GeorgGerdinandPhilipCantor,1845-1918),德国数学家。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1.1 集合的含义与表示
1、教材分析
集合论是现代数学的一个重要的基础.在高中数学中,集合的初步知识与其他内容有着密切的联系,是学习、掌握和使用数学语言的基础.课本从学生熟悉的集合(自然数的集合、有理数的集合等)出发,结合实例给出元素、集合的含义,课本注重体现逻辑思考的方法,如抽象、概括等.
值得注意的问题:由于本小节的新概念、新符号较多,建议教学时先引导学生阅读课本,然后进行交流,让学生在阅读与交流中理解概念并熟悉新符号的使用.在信息技术条件较好的学校,可以利用网络平台让学生交流学习概念后的认识;也可以由教师给出问题,让学生读后回答问题,再由教师给出评价.这样做的目的是培养学生主动学习的习惯,提高阅读与理解、合作与交流的能力.在处理集合问题时,根据需要,及时提示学生运用集合语言进行表述.
2、教学目标
1.通过实例了解集合的含义,体会元素与集合的“属于”关系,能选择集合不同的语言形式描述具体的问题,提高语言转换和抽象概括能力,树立用集合语言表示数学内容的意识.
2.了解集合元素的确定性、互异性、无序性,掌握常用数集及其专用符号,并能够用其解决有关问题,提高学生分析问题和解决问题的能力,培养学生的应用意识.
3、教学重点难点
教学重点:集合的基本概念与表示方法.
教学难点:选择恰当的方法表示一些简单的集合.
4、课时安排
1课时
5、教学过程
一、引入课题
军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?
在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。
阅读课本P2-P3内容
二、新课教学
(一)集合的有关概念
1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到
这些东西,并且能判断一个给定的东西是否属于这个总体。
2.一般地,研究对象统称为元素(element),把一些确定的元素组成的总体叫集合
(set),也简称集。
3.思考1:课本P3的思考题,并再列举一些集合例子和不能构成集合的例子,对学
生的例子予以讨论、点评,进而讲解下面的问题。
4.关于集合的元素的特征
(1)确定性:给定的集合,它的元素必须是明确的,即任何一个元素要么在这个集合中,要么不在这个集合中,这就是集合的确定性.
(2)互异性:.一个给定集合的元素是互不相同的,即集合中的元素是不重复出现的。
(3)无序性:集合内的所有元素都是平等的,没有先后顺序的。
(4)集合相等:构成两个集合的元素完全一样。
5. 元素与集合的关系;
(1)如果a是集合A的元素,就说a属于(belong to)A,记作a∈A
(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作a A
6. 常用数集及其记法
非负整数集(或自然数集),记作N
正整数集,记作N*或N+;
整数集,记作Z
有理数集,记作Q
实数集,记作R
(二)集合的表示方法
1、自然语言:我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除
此之外还常用列举法和描述法来表示集合。
例:从1到100的所有整数组成的集
合:{1,2,3,…,100},自然数集N:{0,1,2,3,4,…,n,…}
2、集合语言:(1)列举法:把集合中的元素一一列举出来,写在大括号内。
注意点:(1)元素之间用,隔开(2)不考虑元素的先后顺序,不能重复(3)在元素
不多的情况可优先考虑使用列举法。
如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;
例1.(课本例1)
思考2,引入描述法
说明:集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。
(2)描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。
具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范
围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。
注意点:(1)无限集一般使用描述法(2)描述法中新出现的字母都应说明范围。
如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},…;
例2.(课本例2)
说明:(课本P5最后一段)
思考3:(课本P6思考)
强调:描述法表示集合应注意集合的代表元素
{(x,y)|y= x2+3x+2}与{y|y= x2+3x+2}不同,只要不引起误解,集合的代表元素也可省略,例如:{整数},即代表整数集Z。
辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数}。
下列写法{实数集},{R}也是错误的。
说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注
意,一般集合中元素较多或有无限个元素时,不宜采用列举法。
3、图形语言:Venn图(适当举例)
(三)课堂练习(课本P6练习)
一、归纳小结
本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了集合的常用表示方法,包括列举法、描述法。
在师生互动中,让学生了解或体会下列问题:
(1)本节课我们学习过哪些知识内容?
(2)你认为学习集合有什么意义?
(3)选择集合的表示法时应注意些什么?
二、作业布置
书面作业:习题1.1,第1- 4题
三. 板书设计(略)
四. 教学反思
集合语言是现代数学的基本语言,在高中数学课程中,它也是学习、掌握和使用数学语言的基础.由于集合的概念较难理解,因此设计时采用渐进式学习,而集合的列举法和描述法的形式比较容易接受,在设计时注重让学生自己学习,重点引导学生学习这两种方法的应用.同时通过解决一系列具体问题,使学生自己体会到集合各种表示法的优缺点;针对不同问题,能选用合适集合表示法.在练习过程中熟练掌握集合语言与自然语言的转换.教师在教学过程中时时监控,对学生不可能解决的问题,如集合常见表示法的写法,常见数集及其记法应直接给出,以避免出现不必要的混乱.对学生解题过程中遇到的困难给予适当点拨.引导学生养成良好学习习惯,最大限度地挖掘学生的学习潜力是我们教师的奋斗目标.
备用例题:
1.下列所给对象不能构成集合的是( C )
A.一个平面内的所有点
B.所有大于零的正数
C.某校高一(4)班的高个子学生
D.某一天到商场买过货物的顾客
2.用另一种形式表示下列集合:
(1){绝对值不大于3的整数};(2){所有被3整除的数};(3){x|x=|x|,x ∈Z 且x<5};
(4){x|(3x-5)(x+2)(x 2+3)=0,x ∈Z };(5){(x,y)|x+y=6,x>0,y>0,x ∈Z ,y ∈Z }.
答案:(1){绝对值不大于3的整数}还可以表示为{x||x|≤3,x ∈Z },也可表示为{-3,-2,-1,0,1,2,3}.
(2){x|x=3n,n ∈Z } .(3) {0,1,2,3,4} .(4){-2}. (5){(1,5),(2,4),(3,3),(4,2),(5,1)}.
变式训练:用适当的形式表示下列集合:
(1)绝对值不大于3的整数组成的集合; (2)所有被3整除的数组成的集合;
(3)方程(3x-5)(x+2)(x 2+3)=0实数解组成的集合;(4)一次函数y=x+6图象上所有点组成的集合
(5)方程组⎩
⎨⎧=+=82y 3x 14,3y -2x 的解集;. 答案:(1){x||x|≤3,x ∈Z }或{-3,-2,-1,0,1,2,3}; (2){x|x=3n,n ∈Z }; (3){3
5,-2}; (4){(x,y)|y=x+6}. (5) {(4,-2)} 3.已知集合A={x|ax 2-3x+2=0,a ∈R},若A 中至少有一个元素,求a 的取值范围.
思路分析:对于方程ax 2-3x+2=0,a ∈R 的解,要看这个方程左边的x 2的系数,a=0和a≠0方程的根的情况是不一样的,则集合A 的元素也不相同,所以首先要分类讨论.
解:当a=0时,原方程为-3x+2=0⇒x=3
2,符合题意; 当a≠0时,方程ax 2-3x+2=0为一元二次方程,则⎩⎨
⎧≥-≠.089,0a a 解得a≠0且a≤89. 综上所得a 的取值范围是{a|a≤
8
9}.。