高考数学总复习综合试题(三)理新人教版

合集下载

2019-2020年高三数学二轮复习高考大题标准练三理新人教版

2019-2020年高三数学二轮复习高考大题标准练三理新人教版

2019-2020年高三数学二轮复习高考大题标准练三理新人教版1.数列的前n项和S n满足S n=2a n-a1,且a1,a2+1,a3成等差数列.(1)求数列的通项公式.(2)设b n=,求数列的前n项和T n.【解析】(1)由S n=2a n-a1,当n≥2时,S n-1=2a n-1-a1,所以a n=2a n-2a n-1,化为a n=2a n-1.由a1,a2+1,a3成等差数列.所以2(a2+1)=a1+a3,所以2(2a1+1)=a1+4a1,解得a1=2.所以数列是以2为首项,公比为2的等比数列.所以a n=2×2n-1=2n.(2)a n+1=2n+1,S n==2n+1-2,S n+1=2n+2-2.b n===.所以数列的前n项和T n=[++…+]=.2.在四棱锥P-ABCD中,侧面PCD⊥底面ABCD,PD⊥CD,E为PC中点,底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2.(1)求证:BC⊥平面PBD.(2)在线段PC上是否存在一点Q,使得二面角Q-BD-P为45°?若存在,求的值;若不存在,请说明理由.【解析】(1)平面PCD⊥底面ABCD,PD⊥CD,平面PCD∩平面ABCD=CD,所以PD⊥平面ABCD,所以PD⊥AD.如图,以D为原点建立空间直角坐标系.则A(1,0,0),B(1,1,0),C(0,2,0),P(0,0,1).=(1,1,0),=(-1,1,0),所以·=0,BC⊥DB,又由PD⊥平面ABCD,可得PD⊥BC,因为PD∩BD=D,所以BC⊥平面PBD.(2)平面PBD的法向量为=(-1,1,0),=(0,2,-1),设=λ,λ∈(0,1),所以Q(0,2λ,1-λ),设平面QBD的法向量为n=(a,b,c),=(1,1,0),=(0,2λ,1-λ),由n·=0,n·=0,得令b=1,所以n=(-1,1,),所以cos45°===,注意到λ∈(0,1),得λ=-1.所以在线段PC上存在一点Q,使得二面角Q-BD-P为45°,此时=-1.3.根据国家《环境空气质量标准》规定:居民区中的PM2.5(PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称可入肺颗粒物)年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米.某城市环保部门随机抽取了一居民区去年40天的PM2.5的24小时平均浓度的监测数据,数据统计如下:(1)写出该样本的众数和中位数(不必写出计算过程).(2)求该样本的平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境是否需要改进?说明理由.(3)将频率视为概率,对于去年的某2天,记这2天中该居民区PM2.5的24小时平均浓度符合环境空气质量标准的天数为X,求X的分布列及数学期望E(X)和方差D(X).【解析】(1)众数为22.5微克/立方米,中位数为37.5微克/立方米.(2)去年该居民区PM2.5年平均浓度为7.5×0.1+22.5×0.3+37.5×0.2+52.5×0.2+67.5×0.1+82.5×0.1=40.5(微克/立方米). 因为40.5>35,所以去年该居民区PM2.5年平均浓度不符合环境空气质量标准,故该居民区的环境需要改进.(3)记事件A表示“一天PM2.5的24小时平均浓度符合环境空气质量标准”,则P(A)=.随机变量X的可能取值为0,1,2.且X~B.所以P(X=k)=(k=0,1,2),所以变量X的分布列为E(X)=0×+1×+2×=1.8(天),或E(X)=np=2×=1.8(天),D(X)=0.18.4.抛物线C的方程为y=ax2(a<0),过抛物线C上一点P(x0,y0)(x0≠0)作斜率为k1,k2的两条直线分别交抛物线C于A(x1,y1),B(x2,y2)两点(P,A,B三点互不相同),且满足k2+λk1=0(λ≠0且λ≠-1).(1)求抛物线C的焦点坐标和准线方程.(2)设直线AB上一点M,满足=λ,证明线段PM的中点在y轴上.【解析】(1)由抛物线C的方程y=ax2(a<0)得,x2=y,焦点坐标为,准线方程为y=-.(2)设直线PA的方程为y-y0=k1(x-x0),直线PB的方程为y-y0=k2(x-x0).点P(x0,y0)和点A(x1,y1)的坐标是方程组的解.将②式代入①式得ax2-k1x+k1x0-y0=0,于是x1+x0=,故x1=-x0③.又点P(x0,y0)和点B(x2,y2)的坐标是方程组的解.将⑤式代入④式得ax2-k2x+k2x0-y0=0.于是x2+x0=,故x2=-x0.由已知得,k2=-λk1,则x2=-k1-x0.⑥设点M的坐标为(x M,y M),由=λ,则x M=.将③式和⑥式代入上式得x M==-x0,即x M+x0=0.所以线段PM的中点在y轴上.5.设函数f(x)=e x-ax-2.(1)求f(x)的单调区间.(2)若a=1,k为整数,且当x>0时,f′(x)<1恒成立,求k的最大值.(其中f′(x)为f(x)的导函数)【解析】(1)函数f(x)=e x-ax-2的定义域是R,f′(x)=e x-a,若a≤0,则f′(x)=e x-a≥0,所以函数f(x)=e x-ax-2在(-∞,+∞)上单调递增;若a>0,则当x∈(-∞,lna)时,f′(x)=e x-a<0;当x∈(lna,+∞)时,f′(x)=e x-a>0;所以,f(x)在(-∞,lna)上单调递减,在(lna,+∞)上单调递增.(2)由于a=1,f′(x)<1,x>0,所以(k-x)(e x-1)<x+1.因为x>0,所以e x-1>0,所以k<+x.令g(x)=+x,所以k<g(x)min,g′(x)=+1=.令h(x)=e x-x-2,h′(x)=e x-1>0,所以h(x)在(0,+∞)上单调递增,且h(1)<0,h(2)>0,所以h(x)在(0,+∞)上存在唯一零点,设此零点为x0,则x0∈(1,2),当x∈(0,x0)时,g′(x)<0,当x∈(x0,+∞)时,g′(x)>0,所以g(x)min=g(x0)=+x0,由g′(x0)=0⇒=x0+2,所以g(x0)=x0+1∈(2,3),因为k<g(x0),且k为整数,所以k的最大值为2.。

湖南省长沙市(新版)2024高考数学人教版考试(综合卷)完整试卷

湖南省长沙市(新版)2024高考数学人教版考试(综合卷)完整试卷

湖南省长沙市(新版)2024高考数学人教版考试(综合卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知是虚数单位,若复数满足,则的实部是( )A .B .C .D .第(2)题双曲线的离心率是( )A.B .C .D .第(3)题向量,,则( )A .B .C .D .第(4)题已知,都是定义在上的函数,对任意x ,y 满足,且,则下列说法正确的是( )A .B .函数的图象关于点对称C .D .若,则第(5)题如图,在长方体中,,点E 是棱上任意一点(端点除外),则( )A .不存在点E ,使得B .空间中与三条直线,,都相交的直线有且只有1条C .过点E 与平面和平面所成角都等于的直线有且只有1条D .过点E 与三条棱,,所成的角都相等的直线有且只有4条第(6)题已知是抛物线上一点,为坐标原点,若线段的垂直平分线经过抛物线的焦点,则( )A .B .C .D .第(7)题如图,AB 是平面的斜线段,A 为斜足,若点P 在平面内运动,使得△ABP 的面积为定值,则动点P 的轨迹是A .圆B .椭圆C .一条直线D .两条平行直线第(8)题“”是“”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知椭圆:的焦点分别为,,P为上一点,则()A.的焦距为B.的离心率为C.的周长为D.面积的最大值为第(2)题已知平面向量,,则下列说法正确的是()A.B.在方向上的投影向量为C.与垂直的单位向量的坐标为D.若向量与向量共线,则第(3)题已知为抛物线的焦点,点在抛物线上,过点的直线与抛物线交于,两点(在第一象限),为坐标原点,抛物线的准线与轴的交点为,则下列说法正确的是()A.当取最大值时,直线的方程为B.若点,则的最小值为3C.无论过点的直线在什么位置,两条直线,的斜率之和为定值D.若点在抛物线准线上的射影为,则直线、的斜率之积为定值三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题拿破仑定理是法国著名军事家拿破仑·波拿巴最早提出的一个几何定理:“以任意三角形的三条边为边,向外构造三个等边三角形,则这三个等边三角形的外接圆圆心恰为另一个等边三角形(此等边三角形称为拿破仑三角形)的顶点.”已知内接于单位圆,以,,为边向外作三个等边三角形,其外接圆圆心依次记为,,.若,则的面积最大值为_______.第(2)题已知函数,(e是自然对数的底数),若对,使得成立,则正整数k的最小值为__________.第(3)题已知实数满足,则的最大值为__________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知,,.(1)当时,求的解集;(2)若关于的不等式的解集为,的解集为,若,求实数的取值范围.第(2)题如图,在四棱锥中,平面,,,,,点为的中点.(1)证明:平面平面;(2)若,求点到平面的距离.第(3)题如图,在四棱锥中,,且,设是线段上的一点,且.(1)证明:平面平面;(2)求二面角的余弦值.第(4)题为了调查观众对某电视剧的喜爱程度,某电视台在甲乙两地随机抽取了8名观众做问卷调查,得分结果如图所示:(1)计算甲地被抽取的观众问卷得分的中位数和乙地被抽取的观众问卷得分的平均数;(2)若从乙地被抽取的8名观众中邀请2人参加调研,求参加调研的观众中恰有1人的问卷调查成绩在90分以上(含90分)的概率.第(5)题已知正整数数列满足:,,().(1)已知,,试求、的值;(2)若,求证:;(3)求的取值范围.。

湖南省高考数学模拟试卷(三)理(含解析)-人教版高三全册数学试题

湖南省高考数学模拟试卷(三)理(含解析)-人教版高三全册数学试题

2016年某某省高考数学模拟试卷(理科)(三)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若a为实数且(2+ai)(a﹣2i)=8,则a=()A.﹣1 B.0 C.1 D.22.已知集合A={x|﹣3<x<3},B={x|x(x﹣4)<0},则A∪B=()A.(0,4) B.(﹣3,4)C.(0,3) D.(3,4)3.“﹣1<x<2”是“|x﹣2|<1”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.若某市8所中学参加中学生合唱比赛的得分用茎叶图表示(如图1),其中茎为十位数,叶为个位数,则这组数据的中位数和平均数分别是()A.91,91.5 B.91,92 C.91.5,91.5 D.91.5,925.设等差数列{a n}的前n项和为S n,已知a1=﹣9,a2+a8=﹣2,当S n取得最小值时,n=()A.5 B.6 C.7 D.86.执行如图所示的程序框图,输出S的值为时,k是()A.5 B.3 C.4 D.27.函数y=sin(2x+φ),的部分图象如图,则φ的值为()A.或 B.C.D.8.如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.9.某几何体的三视图如图所示,图中的四边形都是边长为1的正方形,其中正视图、侧视图中的两条虚线互相垂直,则该几何体的体积是()A.B.C.D.10.设G是△ABC的重心,a,b,c分别是角A,B,C的对边,若a+b+c=,则角A=()A.90° B.60° C.45° D.30°11.已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC 体积的最大值为36,则球O的表面积为()A.36π B.64π C.144πD.256π12.已知A、B为双曲线E的左右顶点,点M在E上,AB=BM,三角形ABM有一个角为120°,则E的离心率为()A.B.C.D.2二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上.. 13.(x3+)5的展开式中x8的二项式系数是(用数字作答)14.已知函数f(x)=,且f(a)=﹣3,则f(6﹣a)=.15.若变量x,y满足约束条件,则z=2x+3y的最大值为.16.已知函数f(x)是定义在R上的可导函数,其导函数记为f′(x),若对于任意的实数x,有f(x)>f′(x),且y=f(x)﹣1是奇函数,则不等式f(x)<e x的解集为.三、解答题:本大题共5小题,满分60分,解答应写出文字说明、证明过程或演算步骤17.在△ABC中,内角A,B,C所对的边分别是a,b,c,已知△ABC的面积.(Ⅰ)求sinA与cosA的值;(Ⅱ)设,若tanC=2,求λ的值.18.为了解甲、乙两个班级某次考试的数学成绩(单位:分),从甲、乙两个班级中分别随机抽取5名学生的成绩作标本,如图是样本的茎叶图,规定:成绩不低于120分时为优秀成绩.(1)从甲班的样本中有放回的随机抽取 2 个数据,求其中只有一个优秀成绩的概率;(2)从甲、乙两个班级的样本中分别抽取2名同学的成绩,记获优秀成绩的人数为X,求X 的分布列和数学期望E(X)19.已知在四棱锥P﹣ABCD中,底面ABCD是直角梯形,平面PAB⊥平面ABCD,R、S分别是棱AB、PC的中点,AD∥BC,AD⊥AB,PD⊥CD,PD⊥PB,AB=BC=2AD=2.(Ⅰ)求证:①平面PAD⊥平面PBC;②RS∥平面PAD;(Ⅱ)若点Q在线段AB上,且CD⊥平面PDQ,求二面角C﹣PQ﹣D的余弦值.20.已知函数f(x)=2lnx﹣ax+a(a∈R).(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)≤0恒成立,证明:当0<x1<x2时,.21.已知椭圆C1: +x2=1(a>1)与抛物线C:x2=4y有相同焦点F1.(Ⅰ)求椭圆C1的标准方程;(Ⅱ)已知直线l1过椭圆C1的另一焦点F2,且与抛物线C2相切于第一象限的点A,设平行l1的直线l交椭圆C1于B,C两点,当△OBC面积最大时,求直线l的方程.选修4-1几何证明选讲22.如图,AB为圆O的直径,CB是圆O的切线,弦AD∥OC.(Ⅰ)证明:CD是圆O的切线;(Ⅱ)AD与BC的延长线相交于点E,若DE=3OA,求∠AEB 的大小.选修4-4坐标系与参数方程23.在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系.已知曲线C1:(t为参数),C2:(θ为参数).(Ⅰ)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;(Ⅱ)若C1上的点P对应的参数为t=,Q为C2上的动点,求PQ中点M到直线C3:ρ(cosθ﹣2sinθ)=7距离的最小值.选修4-5不等式选讲24.已知函数f(x)=|x﹣2|,g(x)=﹣|x+3|+m.(1)解关于x的不等式f(x)+a﹣1>0(a∈R);(2)若函数f(x)的图象恒在函数g(x)图象的上方,求m的取值X围.2016年某某省高考数学模拟试卷(理科)(三)参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若a为实数且(2+ai)(a﹣2i)=8,则a=()A.﹣1 B.0 C.1 D.2【考点】复数代数形式的乘除运算.【专题】计算题;方程思想;数学模型法;数系的扩充和复数.【分析】利用复数代数形式的乘除运算化简,由复数相等的条件列式求得a值.【解答】解:由(2+ai)(a﹣2i)=8,得4a+(a2﹣4)i=8,∴,解得a=2.故选:D.【点评】本题考查复数代数形式的乘除运算,考查了复数相等的条件,是基础题.2.已知集合A={x|﹣3<x<3},B={x|x(x﹣4)<0},则A∪B=()A.(0,4) B.(﹣3,4)C.(0,3) D.(3,4)【考点】并集及其运算.【专题】集合.【分析】利用并集的性质求解.【解答】解:∵集合A={x|﹣3<x<3},B={x|x(x﹣4)<0}={x|0<x<4},∴A∪B={x|﹣3<x<4}=(﹣3,4).故选:B.【点评】本题考查并集的求法,是基础题,解题时要认真审题.3.“﹣1<x<2”是“|x﹣2|<1”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【专题】计算题;综合法;不等式的解法及应用;简易逻辑.【分析】由|x﹣2|<1,解得1<x<3,即可判断出结论.【解答】解:由|x﹣2|<1,解得1<x<3,∴“﹣1<x<2”是“|x﹣2|<1”的既不充分也不必要条件.故选:D.【点评】本题考查了不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.4.若某市8所中学参加中学生合唱比赛的得分用茎叶图表示(如图1),其中茎为十位数,叶为个位数,则这组数据的中位数和平均数分别是()A.91,91.5 B.91,92 C.91.5,91.5 D.91.5,92【考点】茎叶图.【专题】计算题;概率与统计.【分析】根据茎叶图中的数据,计算这组数据的中位数与平均数即可.【解答】解:把茎叶图中的数据按大小顺序排列,如下;87、88、90、91、92、93、94、97;∴这组数据的中位数为=91.5,平均数是(87+88+90+91+92+93+94+97)=91.5.故选:C.【点评】本题考查了利用茎叶图中的数据求中位数与平均数的应用问题,是基础题目.5.设等差数列{a n}的前n项和为S n,已知a1=﹣9,a2+a8=﹣2,当S n取得最小值时,n=()A.5 B.6 C.7 D.8【考点】等差数列的性质.【专题】等差数列与等比数列.【分析】利用等差数列的通项公式,可求得公差d=2,从而可得其前n项和为S n的表达式,配方即可求得答案.【解答】解:等差数列{a n}中,a1=﹣9,a2+a8=2a1+8d=﹣18+8d=﹣2,解得d=2,所以,S n=﹣9n+=n2﹣10n=(n﹣5)2﹣25,故当n=5时,S n取得最小值,故选:A.【点评】本题考查等差数列的性质,考查其通项公式与求和公式的应用,考查运算求解能力,属于基础题.6.执行如图所示的程序框图,输出S的值为时,k是()A.5 B.3 C.4 D.2【考点】循环结构.【专题】计算题;图表型;试验法;算法和程序框图.【分析】模拟执行程序,依次写出每次循环k的值,当k=5时,大于4,计算输出S的值为,从而得解.【解答】解:模拟执行程序,可得每次循环的结果依次为:k=2,k=3,k=4,k=5,大于4,可得S=sin=,输出S的值为.故选:A.【点评】本题主要考查了循环结果的程序框图,模拟执行程序正确得到k的值是解题的关键,属于基础题.7.函数y=sin(2x+φ),的部分图象如图,则φ的值为()A.或 B.C.D.【考点】y=Asin(ωx+φ)中参数的物理意义;由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】计算题;三角函数的图像与性质.【分析】由已知中函数的图象,通过坐标(,0)代入解析式,结合φ求出φ值,得到答案.【解答】解:由已知中函数y=sin(2x+φ)(φ)的图象过(,0)点代入解析式,结合五点法作图,sin(+φ)=0,+φ=π+2kπ,k∈Z,∵φ,∴k=0,∴φ=,故选:B.【点评】本题考查的知识点是由y=Asin(ωx+φ)的部分图象确定其解析式,特殊点是解答本题的关键.8.如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.【考点】函数的图象.【分析】本题的求解可以利用排除法,根据某具体时刻点P的位置到到x轴距离来确定答案.【解答】解:通过分析可知当t=0时,点P到x轴距离d为,于是可以排除答案A,D,再根据当时,可知点P在x轴上此时点P到x轴距离d为0,排除答案B,故应选C.【点评】本题主要考查了函数的图象,以及排除法的应用和数形结合的思想,属于基础题.9.某几何体的三视图如图所示,图中的四边形都是边长为1的正方形,其中正视图、侧视图中的两条虚线互相垂直,则该几何体的体积是()A.B.C.D.【考点】由三视图求面积、体积.【专题】空间位置关系与距离.【分析】由三视图可知:该几何体是一个正方体,挖去一个四棱锥所得的组合体,分别计算正方体和四棱锥的体积,相减可得答案.【解答】解:由三视图可知:该几何体是一个正方体,挖去一个四棱锥所得的组合体,正方体的体积为1,四棱锥的体积为:×1×1×=,故组合体的体积V=1﹣=,故选:A【点评】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.10.设G是△ABC的重心,a,b,c分别是角A,B,C的对边,若a+b+c=,则角A=()A.90° B.60° C.45° D.30°【考点】余弦定理;平面向量的基本定理及其意义.【专题】计算题;平面向量及应用.【分析】根据三角形重心的性质得到,可得.由已知向量等式移项化简,可得=,根据平面向量基本定理得到,从而可得a=b=c,最后根据余弦定理加以计算,可得角A的大小.【解答】解:∵G是△ABC的重心,∴,可得.又∵,∴移项化简,得.由平面向量基本定理,得,可得a=b=c,设c=,可得a=b=1,由余弦定理得cosA===,∵A为三角形的内角,得0°<A<180°,∴A=30°.故选:D【点评】本题给出三角形中的向量等式,求角A的大小,着重考查了三角形重心的性质、平面向量基本定理和利用余弦定理解三角形等知识,属于中档题.11.已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC 体积的最大值为36,则球O的表面积为()A.36π B.64π C.144πD.256π【考点】球的体积和表面积.【专题】计算题;空间位置关系与距离.【分析】当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,利用三棱锥O﹣ABC体积的最大值为36,求出半径,即可求出球O的表面积.【解答】解:如图所示,当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,设球O的半径为R,此时V O﹣ABC=V C﹣AOB===36,故R=6,则球O的表面积为4πR2=144π,故选C.【点评】本题考查球的半径与表面积,考查体积的计算,确定点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大是关键.12.已知A、B为双曲线E的左右顶点,点M在E上,AB=BM,三角形ABM有一个角为120°,则E的离心率为()A.B.C.D.2【考点】双曲线的简单性质.【专题】计算题;方程思想;数形结合法;圆锥曲线的定义、性质与方程.【分析】由题意画出图形,过点M作MN⊥x轴,得到Rt△BNM,通过求解直角三角形得到M 坐标,代入双曲线方程可得a与b的关系,结合隐含条件求得双曲线的离心率.【解答】解:设双曲线方程为(a>0,b>0),如图所示,|AB|=|BM|,∠AMB=120°,过点M作MN⊥x轴,垂足为N,则∠MBN=60°,在Rt△BMN中,∵BM=AB=2a,∠MBN=60°,∴|BN|=a,,故点M的坐标为M(2a,),代入双曲线方程得a2=b2,即c2=2a2,∴.故选:B.【点评】本题考查双曲线的简单性质,考查数形结合的解题思想方法,是中档题.二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上.. 13.(x3+)5的展开式中x8的二项式系数是10 (用数字作答)【考点】二项式定理.【专题】计算题;转化思想;二项式定理.【分析】由展开式的通项公式T r+1==2﹣r,令=8,解得r即可得出.【解答】解:展开式的通项公式T r+1==2﹣r,令=8,解得r=2,∴(x3+)5的展开式中x8的二项式系数是=10.故答案为:10.【点评】本题考查了二项式定理的应用,考查了推理能力与计算能力,属于中档题.14.已知函数f(x)=,且f(a)=﹣3,则f(6﹣a)= ﹣.【考点】分段函数的应用.【专题】计算题;分类讨论;方程思想;分类法.【分析】由函数f(x)=且f(a)=﹣3,求出a值,可得答案.【解答】解:∵函数f(x)=,∴当a≤1时,2a﹣2﹣2=﹣3,无解;当a>1时,﹣log2(a+1)=﹣3,解得a=7,∴f(6﹣a)=f(﹣1)=2﹣1﹣2﹣2=﹣,故答案为:﹣【点评】本题考查的知识点是分段函数的应用,函数求值,分类讨论思想,方程思想,难度中档.15.若变量x,y满足约束条件,则z=2x+3y的最大值为 1 .【考点】简单线性规划.【专题】数形结合;数形结合法;不等式的解法及应用.【分析】作出可行域,变形目标函数,平移直线y=﹣x数形结合可得结论.【解答】解:作出约束条件所对应的可行域(如图阴影),变形目标函数可得y=﹣x+z,平移直线y=﹣x可知,当直线经过点A(4,﹣1)时,目标函数取最大值,代值计算可得z的最大值为:2×4﹣3=1,故答案为:1.【点评】本题考查简单线性规划,准确作图是解决问题的关键,属中档题.16.已知函数f(x)是定义在R上的可导函数,其导函数记为f′(x),若对于任意的实数x,有f(x)>f′(x),且y=f(x)﹣1是奇函数,则不等式f(x)<e x的解集为(0,+∞).【考点】函数奇偶性的性质.【专题】函数的性质及应用.【分析】根据条件构造函数令g(x)=,由求导公式和法则求出g′(x),根据条件判断出g′(x)的符号,得到函数g(x)的单调性,再由奇函数的结论:f(0)=0求出g(0)的值,将不等式进行转化后,利用g(x)的单调性可求出不等式的解集.【解答】解:由题意令g(x)=,则=,∵f(x)>f′(x),∴g′(x)<0,即g(x)在R上是单调递减函数,∵y=f(x)﹣1为奇函数,∴f(0)﹣1=0,即f(0)=1,g(0)=1,则不等式f(x)<e x等价为<1=g(0),即g(x)<g(0),解得x>0,∴不等式的解集为(0,+∞),故答案为:(0,+∞).【点评】本题主要考查导数与函数的单调性关系,奇函数的结论的灵活应用,以及利用条件构造函数,利用函数的单调性解不等式是解决本题的关键,考查学生的解题构造能力和转化思想.三、解答题:本大题共5小题,满分60分,解答应写出文字说明、证明过程或演算步骤17.在△ABC中,内角A,B,C所对的边分别是a,b,c,已知△ABC的面积.(Ⅰ)求sinA与cosA的值;(Ⅱ)设,若tanC=2,求λ的值.【考点】余弦定理;两角和与差的余弦函数.【专题】计算题;转化思想;分析法;解三角形.【分析】(Ⅰ)由三角形面积公式及余弦定理化简已知等式可得,解得:sinA+2cosA=2,又sin2A+cos2A=1,从而解方程组即可得解.(Ⅱ)由tanC=2,可得sinC,cosC的值,可得,从而由正弦定理即可解得.【解答】(本题满分为14分)解:(Ⅰ)由题意可得:,…所以解得:sinA+2cosA=2,又因为sin2A+cos2A=1,解方程组可得.…(Ⅱ)∵tanC=2,C为三角形的内角,∴易得,…∴…∴.…【点评】本题主要考查了正弦定理,余弦定理,三角形面积公式,三角形内角和定理,同角三角函数关系式的应用,考查了三角函数恒等变换的应用,属于中档题.18.为了解甲、乙两个班级某次考试的数学成绩(单位:分),从甲、乙两个班级中分别随机抽取5名学生的成绩作标本,如图是样本的茎叶图,规定:成绩不低于120分时为优秀成绩.(1)从甲班的样本中有放回的随机抽取 2 个数据,求其中只有一个优秀成绩的概率;(2)从甲、乙两个班级的样本中分别抽取2名同学的成绩,记获优秀成绩的人数为X,求X 的分布列和数学期望E(X)【考点】离散型随机变量的期望与方差;茎叶图.【专题】概率与统计.【分析】(1)甲班抽取的5名学生的成绩为102,112,117,124,136,从中有放回地抽取两个数据,基本事件总数n=52=25,其中只有一个优秀成绩,包含的基本事件个数m=2×3+3×2=12,由此利用等可能事件概率计算公式能求出其中只有一个优秀成绩的概率.(2)由茎叶图知甲班抽取的5名学生中有2名学生成绩优秀,乙班抽取的5名学生中有1名学生成绩优秀,由此得X的可能取值为0,1,2,3,分别求出相应的概率,由此能求出X 的分布列和数学期望E(X).【解答】解:(1)甲班抽取的5名学生的成绩为102,112,117,124,136,从中有放回地抽取两个数据,基本事件总数n=52=25,其中只有一个优秀成绩,包含的基本事件个数m=2×3+3×2=12,∴其中只有一个优秀成绩的概率p==.(2)由茎叶图知甲班抽取的5名学生中有2名学生成绩优秀,乙班抽取的5名学生中有1名学生成绩优秀,由此得X的可能取值为0,1,2,3,P(X=0)==,P(X=1)=+=,P(X=2)=+=,P(X=3)==,∴X的分布列为:X 0 1 2 3PEX==.【点评】本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,解题时要认真审题,注意排列组合知识的合理运用.19.已知在四棱锥P﹣ABCD中,底面ABCD是直角梯形,平面PAB⊥平面ABCD,R、S分别是棱AB、PC的中点,AD∥BC,AD⊥AB,PD⊥CD,PD⊥PB,AB=BC=2AD=2.(Ⅰ)求证:①平面PAD⊥平面PBC;②RS∥平面PAD;(Ⅱ)若点Q在线段AB上,且CD⊥平面PDQ,求二面角C﹣PQ﹣D的余弦值.【考点】二面角的平面角及求法;直线与平面平行的判定;平面与平面垂直的判定.【专题】空间位置关系与距离;空间角.【分析】(Ⅰ)①由已知得AD⊥平面APB,从而PB⊥AD,由此能证明平面PAD⊥平面PBC.②取PB中点M,连结RM,SM,由已知推导出平面PAD∥平面SMR,由此能证明RS∥平面PAD.(Ⅱ)由已知得AP=1,BP=,PQ=,AQ=,BQ=,以Q为原点,QP为x轴,QB为y 轴,建立如图所示的空间直角坐标系,利用向量法能求出二面角C﹣PQ﹣D的余弦值.【解答】(Ⅰ)①证明:∵在四棱锥P﹣ABCD中,底面ABCD是直角梯形,平面PAB⊥平面ABCD,AD⊥AB,∴AD⊥平面APB,又PB⊂平面APB,∴PB⊥AD,∵PD⊥PB,AD∩PD=D,∴PB⊥平面PAD,∵PB⊂平面PBC,∴平面PAD⊥平面PBC.②证明:取PB中点M,连结RM,SM,∵R、S分别是棱AB、PC的中点,AD∥BC,∴SM∥CB∥AD,RM∥AP,又AD∩AP=A,∴平面PAD∥平面SMR,∵RS⊂平面SMR,∴RS∥平面PAD.(Ⅱ)解:由已知得,解得AP=1,BP=,PQ=,AQ=,BQ=,以Q为原点,QP为x轴,QB为y轴,建立如图所示的空间直角坐标系,则Q(0,0,0),P(),D(0,﹣,1),C(0,,2),∴,, =(0,,2),设平面PDQ的法向量,则,取y=2,得,设平面PCQ的法向量,则,取b=4,得=(0,4,﹣3),设二面角C﹣PQ﹣D的平面角为θ,∴cosθ=|cos<>|=||=,∴二面角C﹣PQ﹣D的余弦值为.【点评】本题考查平面与平面垂直的证明,考查直线与平面平行的证明,考查二面角的余弦值的求法,解题时要注意空间思维能力的培养.20.已知函数f(x)=2lnx﹣ax+a(a∈R).(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)≤0恒成立,证明:当0<x1<x2时,.【考点】利用导数研究函数的单调性;函数单调性的性质.【专题】导数的综合应用.【分析】(I)利用导数的运算法则可得f′(x),对a分类讨论即可得出其单调性;(II)通过对a分类讨论,得到当a=2,满足条件且lnx≤x﹣1(当且仅当x=1时取“=”).利用此结论即可证明.【解答】解:(Ⅰ)求导得f′(x)=,x>0.若a≤0,f′(x)>0,f(x)在(0,+∞)上递增;若a>0,当x∈(0,)时,f′(x)>0,f(x)单调递增;当x∈(,+∞)时,f′(x)<0,f(x)单调递减.(Ⅱ)由(Ⅰ)知,若a≤0,f(x)在(0,+∞)上递增,又f(1)=0,故f(x)≤0不恒成立.若a>2,当x∈(,1)时,f(x)递减,f(x)>f(1)=0,不合题意.若0<a<2,当x∈(1,)时,f(x)递增,f(x)>f(1)=0,不合题意.若a=2,f(x)在(0,1)上递增,在(1,+∞)上递减,f(x)≤f(1)=0,合题意.故a=2,且lnx≤x﹣1(当且仅当x=1时取“=”).当0<x1<x2时,f(x2)﹣f(x1)=2ln﹣2(x2﹣x1)<2(﹣1)﹣2(x2﹣x1)=2(﹣1)(x2﹣x1),∴<2(﹣1).【点评】熟练掌握利用导数研究函数的单调性、极值、等价转化、分类讨论的思想方法等是解题的关键.21.已知椭圆C1: +x2=1(a>1)与抛物线C:x2=4y有相同焦点F1.(Ⅰ)求椭圆C1的标准方程;(Ⅱ)已知直线l1过椭圆C1的另一焦点F2,且与抛物线C2相切于第一象限的点A,设平行l1的直线l交椭圆C1于B,C两点,当△OBC面积最大时,求直线l的方程.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程;直线与圆锥曲线的关系.【专题】圆锥曲线的定义、性质与方程.【分析】(Ⅰ)求出抛物线的F1(0,1),利用椭圆的离心率,求出a、b即可求解椭圆方程.(Ⅱ)F2(0,﹣1),由已知可知直线l1的斜率必存在,联立方程组,利用相切求出k,然后利用直线的平行,设直线l的方程为y=x+m联立方程组,通过弦长公式点到直线的距离求解三角形的面积,然后得到所求直线l的方程.【解答】解:(Ⅰ)∵抛物线x2=4y的焦点为F1(0,1),∴c=1,又b2=1,∴∴椭圆方程为: +x2=1.…(Ⅱ)F2(0,﹣1),由已知可知直线l1的斜率必存在,设直线l1:y=kx﹣1由消去y并化简得x2﹣4kx+4=0∵直线l1与抛物线C2相切于点A.∴△=(﹣4k)2﹣4×4=0,得k=±1.…∵切点A在第一象限.∴k=1…∵l∥l1∴设直线l的方程为y=x+m由,消去y整理得3x2+2mx+m2﹣2=0,…△=(2m)2﹣12(m2﹣2)>0,解得.设B(x1,y1),C(x2,y2),则,.…又直线l交y轴于D(0,m)∴…=当,即时,.…所以,所求直线l的方程为.…【点评】本题主要考查椭圆、抛物线的有关计算、性质,考查直线与圆锥曲线的位置关系,考查运算求解能力及数形结合和化归与转化思想.选修4-1几何证明选讲22.如图,AB为圆O的直径,CB是圆O的切线,弦AD∥OC.(Ⅰ)证明:CD是圆O的切线;(Ⅱ)AD与BC的延长线相交于点E,若DE=3OA,求∠AEB 的大小.【考点】与圆有关的比例线段;圆的切线的判定定理的证明.【专题】选作题;推理和证明.【分析】(Ⅰ)连接OD,由弦AD∥OC,易证得∠COB=∠COD,继而证得△COB≌△COD(SAS),即可得∠ODC=∠OBC,然后由BC与⊙O相切于点B,可得∠ODC=90°,即可证得CD是⊙O的切线.(Ⅱ)利用射影定理,求出AD,即可求∠AEB 的大小.【解答】(Ⅰ)证明:连接OD∵AD∥OC,∴∠A=∠COB,∠ADO=∠COD,∵OA=OD,∴∠A=∠ADO,∴∠COB=∠COD,在△COB和△COD中,OB=OD,∠COB=∠COD,OC=OC,∴△COB≌△COD(SAS),∴∠ODC=∠OBC,∵BC与⊙O相切于点B,∴OB⊥BC,∴∠OBC=90°,∴∠ODC=90°,即OD⊥CD,∴CD是⊙O的切线;(Ⅱ)解:设OA=1,AD=x,则AB=2,AE=x+3,由AB2=AD•AE得x(x+3)=4,∴x=1,∴∠OAD=60°,∠AEB=30°.【点评】此题考查了切线的判定与性质、全等三角形的判定与性质以及射影定理.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.选修4-4坐标系与参数方程23.在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系.已知曲线C1:(t为参数),C2:(θ为参数).(Ⅰ)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;(Ⅱ)若C1上的点P对应的参数为t=,Q为C2上的动点,求PQ中点M到直线C3:ρ(cosθ﹣2sinθ)=7距离的最小值.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【专题】坐标系和参数方程.【分析】(Ⅰ)曲线C1:(t为参数),利用sin2t+cos2t=1即可化为普通方程;C2:(θ为参数),利用cos2θ+sin2θ=1化为普通方程.(Ⅱ)当t=时,P(﹣4,4),Q(8cosθ,3sinθ),故M,直线C3:ρ(cosθ﹣2sinθ)=7化为x﹣2y=7,利用点到直线的距离公式与三角函数的单调性即可得出.【解答】解:(Ⅰ)曲线C1:(t为参数),化为(x+4)2+(y﹣3)2=1,∴C1为圆心是(﹣4,3),半径是1的圆.C2:(θ为参数),化为.C2为中心是坐标原点,焦点在x轴上,长半轴长是8,短半轴长是3的椭圆.(Ⅱ)当t=时,P(﹣4,4),Q(8cosθ,3sinθ),故M,直线C3:ρ(cosθ﹣2sinθ)=7化为x﹣2y=7,M到C3的距离d==|5sin(θ+φ)+13|,从而当cossinθ=,sinθ=﹣时,d取得最小值.【点评】本题考查了参数方程化为普通方程、点到直线的距离公式公式、三角函数的单调性、椭圆与圆的参数与标准方程,考查了推理能力与计算能力,属于中档题.选修4-5不等式选讲24.已知函数f(x)=|x﹣2|,g(x)=﹣|x+3|+m.(1)解关于x的不等式f(x)+a﹣1>0(a∈R);(2)若函数f(x)的图象恒在函数g(x)图象的上方,求m的取值X围.【考点】绝对值不等式的解法;函数恒成立问题.【专题】计算题;压轴题.【分析】(1)不等式转化为|x﹣2|+|a﹣1>0,对参数a进行分类讨论,分类解不等式;(2)函数f(x)的图象恒在函数g(x)图象的上方,可转化为不等式|x﹣2|+|x+3|>m恒成立,利用不等式的性质求出|x﹣2|+|x+3|的最小值,就可以求出m的X围.【解答】解:(Ⅰ)不等式f(x)+a﹣1>0即为|x﹣2|+a﹣1>0,当a=1时,解集为x≠2,即(﹣∞,2)∪(2,+∞);当a>1时,解集为全体实数R;当a<1时,解集为(﹣∞,a+1)∪(3﹣a,+∞).(Ⅱ)f(x)的图象恒在函数g(x)图象的上方,即为|x﹣2|>﹣|x+3|+m对任意实数x恒成立,即|x﹣2|+|x+3|>m恒成立,又由不等式的性质,对任意实数x恒有|x﹣2|+|x+3|≥|(x﹣2)﹣(x+3)|=5,于是得m <5,故m的取值X围是(﹣∞,5).【点评】本题考查绝对值不等式的解法,分类讨论的方法,以及不等式的性质,涉及面较广,知识性较强.。

高三数学下学期统练试卷(3)理(含解析)-人教版高三全册数学试题

高三数学下学期统练试卷(3)理(含解析)-人教版高三全册数学试题

2015年某某市南开中学高考数学统练试卷(理科)(3)一、选择题(共12个小题.每小题5分,共60分)1.若a=0.33,b=33,c=log30.3,则它们的大小关系为()A. a>b>c B. c>b>a C. b>c>a D. b>a>c2.命题p:|x|<1,命题q:x2+x﹣6<0,则¬p是¬q成立的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.设x>0,若x+>1恒成立,则a的取值X围是()A.(,+∞) B.(,+∞) C.(1,+∞) D.(2,+∞)4.已知b>a>0,且a+b=1,那么()A. 2ab<<<b B. 2ab<<<bC.<2ab<<b D. 2ab<<b<5.设a>0,b>0,则以下不等式中不恒成立的是()A.≥4 B. a3+b3≥2ab2C. a2+b2+2≥2a+2b D.≥6.已知2a+1<0,关于x的不等式x2﹣4ax﹣5a2>0的解集是()A. {x|x>5a或x<﹣a} B. {x|﹣a<x<5a} C. {x|x<5a或x>﹣a} D. {x|5a<x <﹣a}7.设函数,则使得f(x)≥1的自变量x的取值X围是()A.(﹣∞,﹣2]∪[1,2] B.(﹣∞,﹣2)∪(0,2) C.(﹣∞,﹣2]∪[0,2] D. [﹣2,0]∪[2,+∞)8.当x<0时,函数的最小值是()A. B. 0 C. 2 D. 49.不等式≥3的解集是()A. {x|﹣2≤x≤2} B. {x|﹣2≤x<﹣1或﹣1<x<1或1<x≤2}C.{x|x≤2且x≠±1} D. {x|﹣2≤x<﹣1或1<x≤2}10.已知集合M={x|9x<27x},N={x|log(x﹣1)>0},则M∩N=()A.(0,) B.(,2) C.(1,) D.(0,1)11.对于恒成立,则a的取值X围()A.(0,1) B. C. D.12.设0<b<1+a,若关于x的不等式(x﹣b)2>(ax)2的解集中的整数解恰有3个,则()A.﹣1<a<0 B. 0<a<1 C. 1<a<3 D. 3<a<6二、填空题(共6个小题.每小题5分,共30分)13.不等式||>a的解集为M,且2∉M,则a的取值X围为.14.已知偶函数f(x)在(﹣∞,0)上为减函数,则满足f(log x2)<f(1)的实数x的取值X是.15.若关于x的不等式|x|+|x﹣1|>|x﹣a|对∀x∈R恒成立,则a的取值X围是.16.已知函数f(x)=,若函数y=f(x)﹣a|x|恰有4个零点,则实数a的取值X围为.17.若正数x,y满足+=2,则xy的最小值是.18.设x,y,z为正实数,满足x﹣2y+3z=0,则的最小值是.三、解答题(共有4个题,每题15分)19.(15分)(2015•某某校级模拟)已知不等式(a+b)x+(2a﹣3b)<0的解为x>﹣,解不等式(a﹣2b)x2+2(a﹣b﹣1)x+(a﹣2)>0.20.(15分)(2015•某某校级模拟)设不等式x2﹣2ax+a+2≤0的解集为M,若M⊆[1,4],某某数a的X围.21.(15分)(2005•某某)已知函数(a,b为常数)且方程f(x)﹣x+12=0有两个实根为x1=3,x2=4.(1)求函数f(x)的解析式;(2)设k>1,解关于x的不等式;.22.(15分)(2014•某某)已知函数f(x)=x2﹣ax3(a>0),x∈R.(Ⅰ)求f(x)的单调区间和极值;(Ⅱ)若对于任意的x1∈(2,+∞),都存在x2∈(1,+∞),使得f(x1)•f(x2)=1,求a 的取值X围.2015年某某市南开中学高考数学统练试卷(理科)(3)参考答案与试题解析一、选择题(共12个小题.每小题5分,共60分)1.若a=0.33,b=33,c=log30.3,则它们的大小关系为()A. a>b>c B. c>b>a C. b>c>a D. b>a>c考点:不等式比较大小.专题:计算题.分析:利用幂函数与对数函数的性质即可判断.解答:解:∵y=x3是R上的增函数,∴0<a<b,又y=log3x为[0,+∞)上的增函数,∴c=log30.3<log31=0,∴c<a<b.故选D.点评:本题考查不等式比较大小,重点考查学生掌握与应用幂函数与对数函数的单调性质,属于容易题.2.命题p:|x|<1,命题q:x2+x﹣6<0,则¬p是¬q成立的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:求出命题的等价条件,利用充分条件和必要条件的定义即可得到结论.解答:解:由|x|<1得﹣1<x<1,由x2+x﹣6<0得﹣3<x<2,即p:﹣1<x<1,q:﹣3<x<2,则p是q的充分不必要条件,故答案为:¬p是¬q的必要不充分条件,故选:B点评:本题主要考查充分条件和必要条件的判断,根据逆否命题的等价性判断p是q的充分不必要条件是解决本题的关键.3.设x>0,若x+>1恒成立,则a的取值X围是()A.(,+∞) B.(,+∞) C.(1,+∞) D.(2,+∞)考点:基本不等式.专题:不等式.分析:问题转化为+a﹣>0在x>0时恒成立,结合二次函数的性质,从而求出a的X围.解答:解:设x>0,若x+>1恒成立,则:x2﹣x+a>0,即+a﹣>0,∴a﹣>0,解得:a>,故选:A.点评:本题考查了二次函数的性质,考查函数恒成立问题,是一道基础题.4.已知b>a>0,且a+b=1,那么()A. 2ab<<<b B. 2ab<<<bC.<2ab<<b D. 2ab<<b<考点:基本不等式.专题:不等式的解法及应用.分析: b>a>0,且a+b=1,可得:1>>a,利用a2+b2,可得.由>,可得=.由于﹣b=(a+b)(a2+b2)﹣b=a2+b2﹣b=(1﹣b)2+b2﹣b=2b2﹣3b+1,再利用二次函数的性质即可得出.解答:解:∵b>a>0,且a+b=1,∴2a<1=a+b<2b,∴1>>a,=(a+b)(a2+b2)=a2+b2=,又>,∴,即=.﹣b=(a+b)(a2+b2)﹣b=a2+b2﹣b=(1﹣b)2+b2﹣b=2b2﹣3b+1=2﹣﹣=0,∴<b.综上可得:2ab<<b.故选:B.点评:本题考查了不等式的基本性质、函数的性质、“作差法”,考查了推理能力与计算能力,属于中档题.5.设a>0,b>0,则以下不等式中不恒成立的是()A.≥4 B. a3+b3≥2ab2C. a2+b2+2≥2a+2b D.≥考点:基本不等式.分析:根据基本不等式的性质可知.≥排除A,取,判断出B不成立.a2+b2+2﹣(2a+2b)=(a﹣1)2+(b﹣1)2≥排除C;看a<b和a≥b,时D项均成立排除D.解答:解:∵a>0,b>0,∴A.≥≥4故A恒成立,B.a3+b3≥2ab2,取,则B不成立C.a2+b2+2﹣(2a+2b)=(a﹣1)2+(b﹣1)2≥0故C恒成立D.若a<b则≥恒成立若a≥b,则=2≥0,∴≥故D恒成立点评:本题主要考查了基本不等式问题.考查了学生对基础知识的掌握.6.已知2a+1<0,关于x的不等式x2﹣4ax﹣5a2>0的解集是()A. {x|x>5a或x<﹣a} B. {x|﹣a<x<5a} C. {x|x<5a或x>﹣a} D. {x|5a<x <﹣a}考点:一元二次不等式的解法.专题:不等式的解法及应用.分析:求出不等式对应的方程的两根,并判定两根的大小,从而得出不等式的解集.解答:解:不等式x2﹣4ax﹣5a2>0可化为(x﹣5a)(x+a)>0;∵方程(x﹣5a)(x+a)=0的两根为x1=5a,x2=﹣a,且2a+1<0,∴a<﹣,∴5a<﹣a;∴原不等式的解集为{x|x<5a,或x>﹣a}.故选:C.点评:本题考查了含有字母系数的不等式的解法问题,解题时应根据条件,比较对应的方程两根的大小,求出不等式的解集来,是基础题.7.设函数,则使得f(x)≥1的自变量x的取值X围是()A.(﹣∞,﹣2]∪[1,2] B.(﹣∞,﹣2)∪(0,2) C.(﹣∞,﹣2]∪[0,2] D. [﹣2,0]∪[2,+∞)考点:其他不等式的解法.专题:计算题.分析:首先分析题目求函数使得f(x)≥1的自变量x的取值X围,因为函数是分段函数,故需要在两段分别做分析讨论,然后求它们的并集即可得到答案.解答:解:对于求分段函数,f(x)≥1自变量的取值X围.可以分段求解:当x<1时候,f(x)=|x+1|≥1,解得x≥0或x≤﹣2.根据前提条件故0≤x≤1,x≤﹣2满足条件.当x≥1时候,f(x)=﹣x+3≥1,解得x≤2,根据前提条件故1≤x≤2满足条件.综上所述x的取值X围是x≤﹣2或0≤x≤2.故选C.点评:此题考查了其他不等式的解法,考查了转化的思想以及分类讨论的数学思想.要求学生理解分段函数的意义,即为自变量取值不同,函数解析式不同.8.当x<0时,函数的最小值是()A. B. 0 C. 2 D. 4考点:函数的最值及其几何意义.专题:计算题.分析:两次利用均值不等式求出最小值,注意等号成立的条件,当多次运用不等式时,看其能否同时取得等号.解答:解:∵x<0则﹣x>0∴﹣x﹣≥2,当x=﹣1时取等号≥2+2=4当且仅当x=﹣1时取等号故选D.点评:本题主要考查了函数的最值及其几何意义,解题需要注意等号成立,属于基础题.9.不等式≥3的解集是()A. {x|﹣2≤x≤2} B. {x|﹣2≤x<﹣1或﹣1<x<1或1<x≤2}C.{x|x≤2且x≠±1} D. {x|﹣2≤x<﹣1或1<x≤2}考点:其他不等式的解法.专题:不等式的解法及应用.分析:由原不等式可得,即1<|x|≤2,由此求得x的X 围.解答:解:不等式≥3,即≤0,∴,∴1<|x|≤2,解得1<x≤2,或﹣2≤x<﹣1,故选:D.点评:本题主要考查分式不等式、绝对值不等式的解法,体现了等价转化的数学思想,属于基础题.10.已知集合M={x|9x<27x},N={x|log(x﹣1)>0},则M∩N=()A.(0,) B.(,2) C.(1,) D.(0,1)考点:交集及其运算.专题:集合.分析:求出集合的等价条件,根据集合的基本运算进行求解即可.解答:解:M={x|9x<27x}={x|3<33x}={x|2x2<3x}={x|0<x<},N={x|log(x﹣1)>0}={x|0<x﹣1<1}={x|1<x<2},则M∩N={x|1<x<},故选:C点评:本题主要考查集合的基本运算,求出集合的等价条件,是解决本题的关键.11.对于恒成立,则a的取值X围()A.(0,1) B. C. D.考点:函数恒成立问题;指数函数的单调性与特殊点.专题:计算题.分析:先将指数函数化成同底,再根据指数函数的单调性建立不等关系,解决恒成立问题转化成图象恒在x轴上方即判别式小于零即可.解答:解:=根据y=在R上是单调减函数则x2﹣2ax>﹣3x﹣a2在R上恒成立,即x2+(3﹣2a)x+a2>0在R上恒成立,△=(3﹣2a)2﹣4a2≤0解得,故选B.点评:本题主要考查了函数恒成立问题,以及根据指数函数的单调性求解不等式,属于基础题.12.设0<b<1+a,若关于x的不等式(x﹣b)2>(ax)2的解集中的整数解恰有3个,则()A.﹣1<a<0 B. 0<a<1 C. 1<a<3 D. 3<a<6考点:一元二次不等式的解法.专题:不等式的解法及应用.分析:将不等式变形为[(a+1)x﹣b]•[(a﹣1)x+b]<0的解集中的整数恰有3个,再由0<b<1+a 可得,a>1,不等式的解集为<x<<1,考查解集端点的X围,解出a的取值X围.解答:解:关于x 的不等式(x﹣b)2>(ax)2 即(a2﹣1)x2+2bx﹣b2<0,∵0<b<1+a,[(a+1)x﹣b]•[(a﹣1)x+b]<0 的解集中的整数恰有3个,∴a>1,∴不等式的解集为<x<<1,所以解集里的整数是﹣2,﹣1,0 三个.∴﹣3≤﹣<﹣2,∴2<≤3,2a﹣2<b≤3a﹣3,∵b<1+a,∴2a﹣2<1+a,∴a<3,综上,1<a<3,故选:C.点评:本题考查一元二次不等式的应用,注意二次项系数的符号,解区间的端点就是对应一元二次方程的根.二、填空题(共6个小题.每小题5分,共30分)13.不等式||>a的解集为M,且2∉M,则a的取值X围为[,+∞).考点:其他不等式的解法.专题:不等式.分析:根据不等式||>a的解集为M,且2∉M,可得||≤a,由此即可求a的取值X围.解答:解:∵不等式||>a的解集为M,且2∉M,∴||≤a,∴|a﹣|≤a∴a2﹣a+≤a2,解得:a≥,∴a的取值X围是[,+∞),故答案为:[,+∞).点评:本题考查不等式的解法,考查学生的计算能力,属于基础题.14.已知偶函数f(x)在(﹣∞,0)上为减函数,则满足f(log x2)<f(1)的实数x的取值X是(0,)∪(2,+∞).考点:函数奇偶性的性质.专题:函数的性质及应用.分析:利用f(x)的奇偶性及在(﹣∞,0)上的单调性可判断其在(0,+∞)上的单调性,由f(x)的性质可把f(log x2)<f(1)转化为具体不等式,解出即可.解答:解:因为f(x)为偶函数且在(﹣∞,0)上是减函数,所以f(x)在(0,+∞)上是增函数,若f(log x2)<f(1),则﹣1<log x2<0,或0<log x2<1,解得:x∈(0,)∪(2,+∞)所以实数x的取值X围为(0,)∪(2,+∞),故答案为:(0,)∪(2,+∞)点评:本题考查函数奇偶性、单调性的综合运用,解决本题的关键是利用函数的基本性质化抽象不等式为具体不等式,体现转化思想.15.若关于x的不等式|x|+|x﹣1|>|x﹣a|对∀x∈R恒成立,则a的取值X围是(0,1).考点:绝对值三角不等式.专题:不等式的解法及应用.分析:令f(x)=|x|+|x﹣1|=,g(x)=|x﹣a|,由题意可得,函数f(x)的图象(如图实线部分)在函数g(x)(图中虚线部分)的上方,数形结合求得a的X围.解答:解:令f(x)=|x|+|x﹣1|=,g(x)=|x﹣a|,由题意可得,函数f(x)的图象(如图实线部分)在函数g(x)(图中虚线部分)的上方,故有0<a<1,故答案为:(0,1).点评:本题主要考查带有绝对值的函数,函数的恒成立问题,体现了转化、数形结合的数学思想,属于中档题.16.已知函数f(x)=,若函数y=f(x)﹣a|x|恰有4个零点,则实数a的取值X围为(1,2).考点:根的存在性及根的个数判断.专题:函数的性质及应用.分析:由y=f(x)﹣a|x|=0得f(x)=a|x|,利用数形结合即可得到结论.解答:解:由y=f(x)﹣a|x|=0得f(x)=a|x|,作出函数y=f(x),y=a|x|的图象,当a≤0,不满足条件,∴a>0,当a≥2时,此时y=a|x|与f(x)有三个交点,当a=1时,当x<0时,f(x)=﹣x2﹣5x﹣4,由f(x)=﹣x2﹣5x﹣4=﹣x得x2+4x+4=0,则判别式△=16﹣4×4=0,即此时直线y=﹣x与f(x)相切,此时y=a|x|与f(x)有五个交点,∴要使函数y=f(x)﹣a|x|恰有4个零点,则1<a<2,故答案为:(1,2)点评:本题主要考查函数零点个数的应用,利用数形结合是解决本题的关键,综合性较强,难度较大.17.若正数x,y满足+=2,则xy的最小值是 6 .考点:基本不等式.专题:不等式的解法及应用.分析:利用基本不等式的性质即可得出.解答:解:∵正数x,y满足+=2,∴,化为xy≥6,当且仅当=1时取等号.则xy的最小值是6.故答案为:6.点评:本题考查了基本不等式的性质,属于基础题.18.设x,y,z为正实数,满足x﹣2y+3z=0,则的最小值是 3 .考点:基本不等式.分析:由x﹣2y+3z=0可推出,代入中,消去y,再利用均值不等式求解即可.解答:解:∵x﹣2y+3z=0,∴,∴=,当且仅当x=3z时取“=”.故答案为3.点评:本小题考查了二元基本不等式,运用了消元的思想,是高考考查的重点内容.三、解答题(共有4个题,每题15分)19.(15分)(2015•某某校级模拟)已知不等式(a+b)x+(2a﹣3b)<0的解为x>﹣,解不等式(a﹣2b)x2+2(a﹣b﹣1)x+(a﹣2)>0.考点:一元二次不等式的解法.专题:不等式的解法及应用.分析:根据一元一次不等式的解求出a=3b<0,利用消参法转化为含有参数b的一元二次不等式,进行求解即可.解答:解:∵(a+b)x+(2a﹣3b)<0,∴(a+b)x<3b﹣2a,∵不等式的解为x>﹣,∴a+b<0,且=﹣,解得a=3b<0,则不等式(a﹣2b)x2+2(a﹣b﹣1)x+(a﹣2)>0.等价为bx2+(4b﹣2)x+(3b﹣2)>0.即x2+(4﹣)x+(3﹣)<0.即(x+1)(x+3﹣)<0.∵﹣3+≤﹣1.∴不等式的解为﹣3+<x<﹣1.即不等式的解集为(﹣3+,﹣1).点评:本题主要考查含有参数的一元一次不等式和一元二次函数不等式的求解,考查学生的运算和推理能力.20.(15分)(2015•某某校级模拟)设不等式x2﹣2ax+a+2≤0的解集为M,若M⊆[1,4],某某数a的X围.考点:集合关系中的参数取值问题.专题:计算题.分析: M⊆[1,4]有两种情况:其一是M=∅,此时△<0;其二是M≠∅,此时△=0或△>0,分三种情况计算a的取值X围,再取并集,即得所求.解答:解:M⊆[1,4]有两种情况:其一是M=∅,此时△<0;其二是M≠∅,此时△=0或△>0,分三种情况计算a的取值X围.设f (x)=x2﹣2ax+a+2,有△=(﹣2a)2﹣4(a+2)=4(a2﹣a﹣2).…(2分)(1)当△<0时,﹣1<a<2,M=∅⊆[1,4].…(3分)(2)当△=0时,a=﹣1或2.当a=﹣1时,M={﹣1}⊄[1,4],故舍去.当a=2时,M={2}⊆[1,4].…(6分)(3)当△>0时,有a<﹣1或a>2.设方程f (x)=0的两根为x1,x2,且x1<x2,那么M=[x1,x2],由M⊆[1,4]可得1≤x1<x2≤4,故应有f(1)≥0,f(4)≥0,且f (x)=0的对称轴x=a∈[1,4],即,…(8分)∴,解得2<a≤.…(10分)综上可得,M⊆[1,4]时,a的取值X围是(﹣1,].…(12分)点评:本题主要考查集合关系中参数的取值X围问题,体现了分类讨论的数学思想,属于中档题.21.(15分)(2005•某某)已知函数(a,b为常数)且方程f(x)﹣x+12=0有两个实根为x1=3,x2=4.(1)求函数f(x)的解析式;(2)设k>1,解关于x的不等式;.考点:函数解析式的求解及常用方法.专题:计算题;综合题.分析:(1)将x1=3,x2=4分别代入方程得出关于a,b的方程组,解之即得a,b,从而得出函数f(x)的解析式.(2)不等式即为:即(x﹣2)(x﹣1)(x﹣k)>0.下面对k进行分类讨论:①当1<k<2,②当k=2时,③当k>2时,分别求出此不等式的解集即可.解答:解:(1)将x1=3,x2=4分别代入方程,得,解得,所以f(x)=.(2)不等式即为,可化为即(x﹣2)(x﹣1)(x﹣k)>0.①当1<k<2,解集为x∈(1,k)∪(2,+∞).②当k=2时,不等式为(x﹣2)2(x﹣1)>0解集为x∈(1,2)∪(2,+∞);③当k>2时,解集为x∈(1,2)∪(k,+∞).点评:本题主要是应用分类讨论思想解决不等式问题,关键是正确地进行分类,而分类一般有以下几个原则:1.要有明确的分类标准;2.对讨论对象分类时要不重复、不遗漏,即分成若干类,其并集为全集,两两的交集为空集;3.当讨论的对象不止一种时,应分层次进行,以避免混乱.根据绝对值的意义判断出f(x)的奇偶性,再利用偶函数的图象关于y轴对称,求出函数在(0,+∞)上的单调区间,并且只要求出当x>0时,函数f(x)=x2﹣2ax(a>0)最小值进而利用f(x)min≤﹣1解答此题.22.(15分)(2014•某某)已知函数f(x)=x2﹣ax3(a>0),x∈R.(Ⅰ)求f(x)的单调区间和极值;(Ⅱ)若对于任意的x1∈(2,+∞),都存在x2∈(1,+∞),使得f(x1)•f(x2)=1,求a 的取值X围.考点:导数在最大值、最小值问题中的应用;函数在某点取得极值的条件;利用导数研究函数的极值.专题:导数的综合应用.分析:(Ⅰ)求导数,利用导数的正负,可得f(x)的单调区间,从而求出函数的极值;(Ⅱ)由f(0)=f()=0及(Ⅰ)知,当x∈(0,)时,f(x)>0;当x∈(,+∞)时,f(x)<0.设集合A={f(x)|x∈(2,+∞)},集合B={|x∈(1,+∞),f(x)≠0},则对于任意的x1∈(2,+∞),都存在x2∈(1,+∞),使得f(x1)•f(x2)=1,等价于A⊆B,分类讨论,即可求a的取值X围.解答:解:(Ⅰ)f′(x)=2x﹣2ax2=2x(1﹣ax),令f′(x)=0,解得x=0或x=.当x变化时,f′(x),f(x)的变化情况如下表:x (﹣∞,0) 0 (0,)(,+∞)f′(x)﹣ 0 + 0 ﹣f(x)递减 0 递增递减所以,f(x)的单调递减区间为:(﹣∞,0)和,单调递增区间为,当x=0时,有极小值f(0)=0,当x=时,有极大值f()=;(Ⅱ)由f(0)=f()=0及(Ⅰ)知,当x∈(0,)时,f(x)>0;当x∈(,+∞)时,f(x)<0.设集合A={f(x)|x∈(2,+∞)},集合B={|x∈(1,+∞),f(x)≠0},则对于任意的x1∈(2,+∞),都存在x2∈(1,+∞),使得f(x1)•f(x2)=1,等价于A⊆B,显然A≠∅下面分三种情况讨论:①当>2,即0<a<时,由f()=0可知,0∈A,而0∉B,∴A不是B的子集;②当1≤≤2,即时,f(2)≤0,且f(x)在(2,+∞)上单调递减,故A=(﹣∞,f(2)),∴A⊆(﹣∞,0);由f(1)≥0,有f(x)在(1,+∞)上的取值X围包含(﹣∞,0),即(﹣∞,0)⊆B,∴A⊆B;③当<1,即a>时,有f(1)<0,且f(x)在(1,+∞)上单调递减,故B=(,0),A=(﹣∞,f(2)),∴A不是B的子集.综上,a的取值X围是[].点评:利用导数可以求出函数的单调区间和极值;解决取值X围问题,很多时候要进行等价转化,分类讨论.。

2020版高考数学总复习 综合试题(三)理(含解析)新人教A版

2020版高考数学总复习 综合试题(三)理(含解析)新人教A版

综合试题(三)理科数学 【p 327】 时间:60分钟 总分:100分一、选择题(本大题共6小题,每小题5分,共30分.每小题所给的四个选项中,只有一项是符合题目要求的.)1.某市对大、中、小学生的视力进行抽样分析,其中大、中、小学生的人数比为2∶3∶5,若采用分层抽样的方法抽取一个样本,且中学生中被抽到的人数为150,则抽取的样本容量n 等于( )A .1 500B .1 000C .500D .150【解析】设抽到的大、中、小学生的人数分别为2x ,3x ,5x ,由3x =150,得x =50,所以n =100+150+250=500.【答案】C2.在等差数列{a n }中,S 10=4S 5,则a 1d=( )A .12B .2C .14D .4【解析】由等差数列的前n 项和公式可知 S 10=10a 1+10×92d ,S 5=5a 1+5×42d ,因为S 10=4S 5,所以10a 1+10×92d =4⎝ ⎛⎭⎪⎫5a 1+5×42d , 化简得a 1d =12.【答案】A3.已知⎝⎛⎭⎪⎫x 2+1x n的二项展开式的各项系数和为32,则二项展开式中x 的系数为( )A .5B .10C .20D .40【解析】因为二项展开式的各项系数和C 0n +C 1n +C 2n +…+C n n =2n=32,所以n =5,又二项展开式的通项为T r +1=C r n(x 2)r ⎝ ⎛⎭⎪⎫1x n -r=C r n x 3r -n,令3r -5=1得r =2,所以二项展开式中x 的系数为C 25=10. 【答案】B4.函数f(x)=⎩⎨⎧4-x 2-2(-2≤x<0),|x 2-x|(0≤x≤2)的图象与x 轴所围成的封闭图形的面积为( )A .5-πB .1+πC .π-3D .1-π【解析】函数f(x)=⎩⎨⎧4-x 2-2(-2≤x<0),|x 2-x|(0≤x≤2)的图象与x 轴所围成的封闭图形的面积为-⎠⎛-20(4-x 2-2)d x +⎠⎛01(x -x 2)d x +⎠⎛12(x 2-x)d x =4-14π×4+⎝ ⎛⎭⎪⎫12x 2-13x 3|10+⎝ ⎛⎭⎪⎫13x 3-12x 2|21=4-π+16+83-2+16=5-π. 【答案】A5.体积为43π的球O 放置在棱长为4的正方体ABCD -A 1B 1C 1D 1上,且与上表面A 1B 1C 1D 1相切,切点为该表面的中心,则四棱锥O -ABCD 的外接球的半径为( )A .103B .3310C .2D .236【解析】∵球O 的体积为43π,球O 的半径为1,四棱锥O -ABCD 的外接球的半径为R ,则R 2=(4+1-R)2+(22)2,解得R =3310.【答案】B6.已知F 1,F 2为双曲线C :x 2a 2-y2b 2=1()a>0,b>0的左、右焦点,点P 为双曲线C 右支上一点,直线PF 1与圆x 2+y 2=a 2相切,且||PF 2=||F 1F 2,则双曲线C 的离心率为( )A .103B .43C .53D .2 【解析】设PF 1与圆相切于点M ,则因为||PF 2=||F 1F 2, 所以△PF 1F 2为等腰三角形,所以||F 1M =14||PF 1,又因为在直角△F 1MO 中,||F 1M 2=||F 1O 2-a 2=c 2-a 2, 所以||F 1M =b =14||PF 1,①又||PF 1=||PF 2+2a =2c +2a ,② c 2=a 2+b 2,③故由①②③得,e =c a =53.【答案】C二、填空题(本大题共4小题,每小题5分,共20分,将各小题的结果填在题中横线上.) 7.若复数z =(1+m i )(2-i )(i 是虚数单位)是纯虚数,则实数m 的值为__________. 【解析】z =(1+m i )(2-i )=2-i +2m i -m i 2=2+m +(2m -1)i ,因为z 是纯虚数,所以2+m =0,m =-2.【答案】-28.已知向量b 为单位向量,向量a =(1,1),且|a -2b |=6,则向量a ,b 的夹角为________.【解析】因为b 为单位向量,向量a =(1,1),所以|a |=2,|b |=1,因为|a -2b |=6⇒a 2-22a ·b +2b 2=6,即2-22a ·b +2=6⇒a ·b =-22,所以向量a ,b 的夹角为cos 〈a ,b 〉=a ·b |a |·|b |=-12,所以向量a ,b 的夹角为2π3.【答案】2π39.已知函数f (x )=2sin x cos ⎝ ⎛⎭⎪⎫x -π3,x ∈⎣⎢⎡⎦⎥⎤0,3π4,则f (x )的最小值为________.【解析】f (x )=2sin x ⎝ ⎛⎭⎪⎫12cos x +32sin x =12sin 2x +3sin 2x =12sin 2x +3×1-cos 2x 2=sin ⎝ ⎛⎭⎪⎫2x -π3+32.∵x ∈⎣⎢⎡⎦⎥⎤0,34π,∴2x -π3∈⎣⎢⎡⎦⎥⎤-π3,76π,∴sin ⎝ ⎛⎭⎪⎫2x -π3的最小值为-32,f (x )的最小值为-32+32=0. 【答案】010.在四边形ABCD 中,AB =7,AC =6,cos ∠BAC =1114,CD =6sin ∠DAC ,则BD 的最大值为________.【解析】由CD =6sin ∠DAC ,可得CD ⊥AD ,所以点D 在以AC 为直径的圆上(去掉A ,B ,C ),所以当BD 经过AC 的中点O 时取最大值,OB 2=32+72-2×3×7cos ∠BAC =25,解得OB=5,所以BD 的最大值=5+12AC =8.【答案】8三、解答题(本大题共3小题,共50分.解答应写出文字说明、证明过程或演算步骤.)11.(16分)已知函数f(x)=cos 2⎝ ⎛⎭⎪⎫x +π12,g(x)=1+12sin 2x.(1)设x =x 0是函数y =f(x)图象的一条对称轴,求g(x 0)的值; (2)求函数h(x)=f(x)+g(x)的单调递增区间.【解析】(1)由题设知f(x)=12⎣⎢⎡⎦⎥⎤1+cos ⎝⎛⎭⎪⎫2x +π6.因为x =x 0是函数y =f(x)图象的一条对称轴, 所以2x 0+π6=k π,即2x 0=k π-π6(k∈Z ).所以g (x 0)=1+12sin 2x 0=1+12sin ⎝⎛⎭⎪⎫k π-π6.当k 为偶数时,g (x 0)=1+12sin ⎝ ⎛⎭⎪⎫-π6=1-14=34,当k 为奇数时,g (x 0)=1+12sin π6=1+14=54.(2)h (x )=f (x )+g (x )=12⎣⎢⎡⎦⎥⎤1+cos ⎝ ⎛⎭⎪⎫2x +π6+1+12sin 2x=12⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫2x +π6+sin 2x +32=12⎝ ⎛⎭⎪⎫32cos 2x +12sin 2x +32 =12sin ⎝⎛⎭⎪⎫2x +π3+32.当2k π-π2≤2x +π3≤2k π+π2,即k π-5π12≤x ≤k π+π12(k ∈Z )时,函数h (x )=12sin ⎝⎛⎭⎪⎫2x +π3+32是增函数, 故函数h (x )的单调递增区间是⎣⎢⎡⎦⎥⎤k π-5π12,k π+π12(k ∈Z ).12.(16分)2018国庆黄金周,国内出游人数达7.26亿,再创历史新高,全国各地景区人满为患,高速公路成为停车场.为解决人们假期出游问题,专家呼吁企业施行带薪休假,错峰出行.为了解企业对带薪休假方案的意见,某调查机构随机抽取了80家企业进行问卷调查,得到如下数据:(1)若用表中数据所得的频率代替概率,估计带薪休假为12天与10天,企业支持该方案的概率?(2)假设从5种不同安排方案中,随机抽取2种不同安排分别作为备选方案,然后由单位根据单位情况自主选择.①求两种安排方案带薪休假天数和不低于18天的概率;②如果用ξ表示两种方案带薪休假天数和.求随机变量ξ的分布列及期望. 【解析】(1)由表中信息可知,当带薪休假天数为12时,企业支持该方案的概率为340; 当带薪休假天数为10时,企业支持该方案的概率为18.(2)①设“两种安排方案带薪休假天数和不低于18”为事件A ,由已知从5种不同安排方案中,随机地抽取2种方案选法共有10(种),其和不低于18天的选法有8种,由古典概型概率公式计算得P (A )=45.②由题知随机变量ξ的可能取值为26,24,22,20,18,16,14. 因而ξ的分布列为所以E (ξ)=20.13.(18分)已知函数f (x )=ln(x +1)+2x . (1)求证:对任意的x ≥0,有f (x )≤3x ;(2)若对任意实数x >1,不等式f (x -1)+4>2x +k ⎝⎛⎭⎪⎫1-4x ,求k 的最大整数值.【解析】(1)由于f (x )≤3x ⇔ln(x +1)≤x , 令g (x )=x -ln(x +1)(x ≥0). 由于g (0)=0,g ′(x )=1-1x +1≥0,故g (x )在[0,+∞)上单调递增,则g (x )≥g (0)=0,即f (x )≤3x .(2)当x >1时,f (x -1)+4>2x +k ⎝⎛⎭⎪⎫1-4x ⇔x ln x +(2-k )x +4k >0.令h (x )=x ln x +(2-k )x +4k (x >1),h ′(x )=ln x +3-k ,若k ≤3,则对任意x >1,有h ′(x )>0,即h (x )在(1,+∞)上单调递增,由题设知,只需h (1)=2+3k ≥0,即-23≤k ≤3;若k >3,由h ′(x )=ln x +3-k =0解得x =e k -3,当x ∈(1,e k -3)时,h ′(x )<0,h (x )在(1,ek -3)上单调递减; 当x ∈(ek -3,+∞)时,h ′(x )>0,h (x )在(ek -3,+∞)上单调递增.由题设知,只需h (x )min =h (e k -3)=4k -ek -3>0.令H (k )=4k -ek -3,由于H ′(k )=4-e k -3为关于k 的单调减函数,则当k ∈(-∞,3+ln 4)时,H ′(k )>0,即H (k )在(-∞,3+ln 4)上单调递增, 当k ∈(3+ln 4,+∞)时,H ′(k )<0,即H (k )在(3+ln 4,+∞)上单调递减. 而H (3+ln 4)=8+4ln 4>0,H (5)=20-e 2>0,H (6)=24-e 3>0,H (7)=28-e 4<0,故3<k ≤6.综上所述,k 的最大整数取值为6.。

四川省成都市(新版)2024高考数学人教版真题(综合卷)完整试卷

四川省成都市(新版)2024高考数学人教版真题(综合卷)完整试卷

四川省成都市(新版)2024高考数学人教版真题(综合卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题若,则“”是“”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件第(2)题已知函数是定义在上的奇函数,且当时,,则不等式的解集为()A.B.C.D.第(3)题若,满足,则的最大值为A.0B.3C.4D.5第(4)题某三棱锥的三视图如图所示,则该三棱锥的体积为A.B.C.D.第(5)题在边长为4的菱形中,.将菱形沿对角线折叠成大小为的二面角.若点为的中点,为三棱锥表面上的动点,且总满足,则点轨迹的长度为()A.B.C.D.第(6)题已知集合,,则()A.B.C.D.第(7)题若抛物线上的点到焦点的距离为8,则点到轴的距离是()A.4B.6C.8D.10第(8)题函数的最大值为A.4B.5C.6D.7二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知函数,则()A.B.若有两个不相等的实根、,则C.D.若,x,y均为正数,则第(2)题已知函数,则()A.对任意正奇数n,为奇函数B.对任意正整数n,的图像都关于直线对称C.当时,在上的最小值D.当时,的单调递增区间是第(3)题在四棱锥中,底面是正方形,平面,点是棱的中点,,则()A.B.直线与平面所成角的正弦值是C.异面直线与所成的角是D.四棱锥的体积与其外接球的体积的比值是三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题为了解学生课外阅读的情况,随机统计了名学生的课外阅读时间,所得数据都在中,其频率分布直方图如图所示,已知在中的频数为,则的值为_____.第(2)题的展开式中的常数项为______(用数字作答).第(3)题已知x、y满足约束条件,则的最大值为________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知把相同的椅子围成一个圆环;两个人分别从中随机选择一把椅子坐下.(1)当时,设两个人座位之间空了把椅子(以相隔位子少的情况计数),求的分布列及数学期望;(2)若另有把相同的椅子也围成一个圆环,两个人从上述两个圆环中等可能选择一个,并从中选择一把椅子坐下,若两人选择相邻座位的概率为,求整数的所有可能取值.第(2)题在直角坐标系中,曲线的参数方程为(为参数),以原点为极点,以轴正半轴为极轴建极坐标系.(1)求的极坐标方程;(2)直线,的极坐标方程分别为,,直线与曲线的交点为,直线与曲线的交点为,求线段的长度.第(3)题已知双曲线的渐近线为,左顶点为.(1)求双曲线的方程;(2)直线交轴于点,过点的直线交双曲线于,,直线,分别交于,,若,,,均在圆上,①求的值,并求点的横坐标;②求圆面积的取值范围.第(4)题已知函数,.(1)若直线是曲线在处的切线,求的表达式;(2)若任意且,有恒成立,求符合要求的数对组成的集合;(3)当时,方程在区间上恰有1个解,求k 的取值范围.第(5)题已知椭圆的中心在原点,焦点在轴上,离心率为,焦距为2.(1)求椭圆的标准方程;(2)过椭圆的左焦点,且斜率为1的直线交椭圆于A ,B 两点,求的面积.。

台湾省(新版)2024高考数学人教版考试(综合卷)完整试卷

台湾省(新版)2024高考数学人教版考试(综合卷)完整试卷

台湾省(新版)2024高考数学人教版考试(综合卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题在平面四边形中,,,,,则的最大值为()A.B.2C.3D.第(2)题设命题甲为“”,命题乙为“”,那么甲是乙的()A.充分而不必要条件B.充分必要条件C.必要而不充分条件D.既不充分也不必要条件第(3)题已知抛物线的焦点为,则的值为()A.B.C.1D.2第(4)题已知等差数列满足,,数列满足.记数列的前项和为,则使的的最小值为()A.B.C.D.第(5)题已知集合,则()A.B.C.D.第(6)题已知正方体的棱长为2,棱的中点为S,则三棱锥的外接球的表面积为()A.B.C.D.第(7)题在三棱锥中,平面ABC,,与的外接圆圆心分别为,,若三棱锥的外接球的表面积为,设,,则的最大值是()A.B.C.D.第(8)题已知函数图象与函数图象相邻的三个交点依次为A,B,C,且是钝角三角形,则的取值范围是()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题定义在上的偶函数满足,当时,.设函数,则下列结论正确的是()A.的图象关于直线对称B.的图象在处的切线方程为C.D.的图象与的图象所有交点的横坐标之和为10第(2)题若,,,则()A.B.C.D.第(3)题设等差数列的前项和是,若,则()A .B .C .D .三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题知数列,,,,,则该数列的第3项是______,是它的第______项.第(2)题在边长为1的正三角形ABC 中,E ,F 分别为边AB ,AC 上的动点,满足,,且,则的最小值为___________,设点M ,N 满足,,若,则___________.第(3)题若命题“,”为真命题,则实数的取值范围为______.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题近年来,我国科技成果斐然,北斗三号全球卫星导航系统已开通多年,北斗三号全球卫星导航系统由24颗中圆地球轨道卫星、3颗地球静止轨道卫星和3颗倾斜地球同步轨道卫星,共30颗卫星组成.北斗三号全球卫星导航系统全球范围定位优于,实测的导航定位精度都是2~3m ,全球服务可用性,亚太地区性能更优.现从地球静止轨道卫星和倾斜地球同步轨道卫星中任选两颗进行信号分析.(1)求恰好选择了地球静止轨道卫星和倾斜地球同步轨道卫星各一颗的概率;(2)求至少选择了一颗倾斜地球同步轨道卫星的概率.第(2)题已知.(1)若,解不等式;(2)若不等式无解,求实数a 的取值范围.第(3)题已知等比数列的公比,前项和为().数列是等差数列,且满足,,,.(1)求数列和的通项公式;(2)记,证明:当时,.第(4)题对于定义域为的函数,若存在实数使得对任意恒成立,则称函数具有性质.(1)判断函数与是否具有性质,若具有性质,请写出一个的值,若不具有性质,请说明理由;(2)若函数具有性质,且当时,,解不等式;(3)已知函数,对任意,恒成立,若由“具有性质”能推出“恒等于”,求正整数的取值的集合.第(5)题一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球.从中随机取出1球,求:(1)取出1球是红球或黑球的概率;(2)取出1球是红球或黑球或白球的概率.。

高三数学复习模拟试卷三理新人教A版

高三数学复习模拟试卷三理新人教A版

高考模拟试卷(三)第I卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知复数Z满足(l + i)z = 2i,则2=()A. 1-,B. 1 + 'C. -ID. 一1+,A = {\ 10 —}2.已知集合’‘10 , B = = 则小3 ={丄}A/101 B.㈣ C.⑴ D. 0(p__3.若函数/U) = sin(x + ^)是偶函数,贝ij tan 2A. 0B. 1C. -1D. 1或一14.给出下列四个命题:①垂直于同一直线的两条直线互相平行.②垂直于同一平而的两个平而互相平行.③若直线f 与同一平而所成的角相等,则心厶互相平行.④若直线A'A是异面直线,则与厶仏都相交的两条宜线是异而直线.其中假命题的个数是()A、1 B、2 C、3 D、4f A-v>0< x+yWl5.设变量凡y满足约束条件b + 2y'l,则目标函数z = 的最大值为()A. 2 B・3 C・4 D・52 2 乂一二=3>0上>0)6.已知双曲线/ 戾的右焦点为F,若过点F且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是()(A)厲2] (B)(h2)(C) [2,+°°)(D)(2,+=°)7.已知命题":函数y = 2-“5恒过(1,2)点:命题q :若函数/(尤一1)为偶函数,则/◎)的图像关于直线x = l对称,则下列命题为真命题的是A. B.r小 f c. mi& 的三内角A . B . C 的对边的长分别为p = (a+c.b\q = (b-a.c-a\ 若 pllq y 则角 C 的大小为()9.在正方体ABCD ^A A C i D i 中,E 、F 分别为棱人4- CG 的中点,则在空间中与三条直线人°、EF 、CQ 都相交的直线()A 、不存在 B.有且只有两条 C 、有且只有三条 D 、有无数条10.如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点 P 变轨进入以月球球心F 为一个焦点的椭圆轨道I 绕月飞行,之后卫星在P 点 第二次变轨进入仍以F 为一个焦点的椭圆轨道II 绕月飞行,最终卫星在P 点 第三次变轨进入以F 为圆形轨道III 绕月飞行,若用2c >和2。

(通用版)高考数学复习 专题三 三角函数 3.2 解三角形基础题练习 理-人教版高三全册数学试题

(通用版)高考数学复习 专题三 三角函数 3.2 解三角形基础题练习 理-人教版高三全册数学试题

3.2 解三角形基础题命题角度1利用正弦、余弦定理解三角形高考真题体验·对方向1.(2019全国Ⅰ·11)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c.已知a sin A-b sin B=4c sin C ,cosA=-14,则bb =()A.6B.5C.4D.3,得a 2-b 2=4c 2,由余弦定理的推论,得-14=cos A=b 2+b 2-b 22bb, ∴b 2-4b 22bb =-14,∴-3b 2b =-14,∴b b =32×4=6,故选A .2.(2018全国Ⅱ·6)在△ABC 中,cos b2=√55,BC=1,AC=5,则AB=()A.4√2B.√30C.√29D.2√5cos C=2cos 2b 2-1=-35,∴AB 2=BC 2+AC 2-2BC ·AC cos C=1+25+2×1×5×35=32.∴AB=4√2.3.(2018全国Ⅲ·9)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c.若△ABC 的面积为b 2+b 2-b 24,则C=()A.π2B.π3C.π4D.π6S=b2+b2-b24=12ab sin C,得c2=a2+b2-2ab sin C.又由余弦定理c2=a2+b2-2ab cos C,∴sin C=cos C,即C=π4.4.(2017某某·9)在△ABC中,角A,B,C的对边分别为a,b,c,若△ABC为锐角三角形,且满足sin B(1+2cos C)=2sin A cos C+cos A sin C,则下列等式成立的是()A.a=2bB.b=2aC.A=2BD.B=2Asin B(1+2cos C)=2sin A cos C+cos A sin C,∴sin B+2sin B cos C=(sin A cos C+cos A sin C)+sin A cos C,∴sin B+2sin B cos C=sin B+sin A cos C, ∴2sin B cos C=sin A cos C,又△ABC为锐角三角形,∴2sin B=sin A,由正弦定理,得a=2b.故选A.5.(2019全国Ⅱ·15)△ABC的内角A,B,C的对边分别为a,b,c.若b=6,a=2c,B=π3,则△ABC的面积为.√3b2=a2+c2-2ac cos B,∴(2c)2+c2-2×2c×c×12=62,即3c 2=36,解得c=2√3或c=-2√3(舍去).∴a=2c=4√3.∴S △ABC =12ac sin B=12×4√3×2√3×√32=6√3.典题演练提能·刷高分1.在△ABC 中,若原点到直线x sin A+y sin B+sin C=0的距离为1,则此三角形为()A.直角三角形B.锐角三角形C.钝角三角形D.不能确定解析由已知可得√22=1,∴sin 2C=sin 2A+sin 2B ,∴c 2=a 2+b 2,故三角形为直角三角形.选A .2.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若2b cos C+c=2a ,且b=√13,c=3,则a=() A.1 B.√6C.2√2D.42b cos C+c=2a ,由正弦定理可得2sin B cos C+sin C=2sin A=2sin(B+C )=2sin B cos C+2cos B sin C ,∴sin C=2cos B sin C ,∵sin C ≠0,∴cos B=12.由余弦定理可得b 2=a 2+c 2-2ac cos B ,又知b=√13,c=3,解得a=4.故选D .3.(2019某某某某高三质检)已知△ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,若a sin B=2b sinC ,b=3,cos B=14,则△ABC 的面积为()A.9√15B.9√1516C.3√1516D.916a sin B=2b sin C ,结合正弦定理可得ab=2bc ,则a=2c.由余弦定理b 2=a 2+c 2-2ac cos B ,可得9=(2c )2+c 2-2×2c ×c ×14,解得c=32,则a=3.又sin B=√1-cos 2b =√154,所以S △ABC =12ac sin B=12×3×32×√154=9√1516.故选B .4.在△ABC 中,A ,B ,C 的对边分别为a ,b ,c ,若2cos 2b +b2-cos 2C=1,4sin B=3sin A ,a-b=1,则c 的值为()A.√13B.√7C.√37D.6解析∵2cos2b +b2=2cos 2π-b 2=2cos 2π2−b 2=2sin 2b2=1-cos C ,∴1-cos C-cos2C=1.∴cos2C=-cos C.∴2cos 2C+cos C-1=0,解得cos C=12.因为{b -b =1,4b =3b ,故得到{b =3,b =4.根据余弦定理得到12=b 2+b 2-b 22bb,解得c 的值为√13.5.△ABC 内角A ,B ,C 的对边分别为a ,b ,c ,若a=5,B=π3,cos A=1114,则△ABC 的面积S=()A.10√33B.10C.10√3D.20√3cos A=1114,所以sin A=5√314,由正弦定理得到bsin b=bsin b,解得b=7,由正弦定理得到sin C=sin(A+B )=4√37,△ABC 的面积S=12×5×7×4√37=10√3.6.(2019某某某某高三二调)在△ABC 中,角A ,B ,C 成等差数列,且对边分别为a ,b ,c ,若bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =20,b=7,则△ABC 的内切圆的半径为()A.√3B.7√33C.2D.3角A ,B ,C 成等差数列,∴2B=A+C=π-B ,即B=π3,∴bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =ca cos π3=20,即ca=40,由余弦定理b 2=c 2+a 2-2ca cos B ,可得49=a 2+c 2-ac=(a+c )2-3ac=(a+c )2-120,解得a+c=13.故a=5,c=8.设△ABC 的内切圆的半径为r ,则12(a+b+c )r=12ac sin B ,可得12(5+8+7)r=12×5×8×√32,可得△ABC 的内切圆的半径r=√3.故选A .7.如图,平面四边形ABCD 中,AC 与BD 交于点P ,若3bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =3bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AB=AD=√3BC ,∠CAD+∠ACB=56π,则bbbb=() A.√213B.√214C.2√63D.√62BC=1,则AB=AD=√3,延长BC 到E ,使BE=3BC ,所以CE=2,依题意3bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =2bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +(bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ −bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=2bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,所以AC ∥DE ,所以bb bb=bb bb=12,由正弦定理得{bb sin b =bbsin b ,bb sin b=bb sin b,两式相除得2sin b=√3sin b, 所以2sin5π6-α=√3sin α,所以α=π2,β=π3.在△ABC 中,由余弦定理得3=1+AC 2-2AC cos π3,AC=2,在Rt △ACD 中CD=√3+4=√7,故bbbb =√7√3=√213,选A .8.在△ABC 中,AB=2,AC=√7,∠ABC=2π3,则BC=.,根据余弦定理得AC 2=AB 2+BC 2-2AB ·BC ·cos B ,即BC 2+2BC-3=0,解得BC=1,或BC=-3(舍去负值).9.在△ABC 中,a=1,b=√7,且△ABC 的面积为√32,则c=.或2√3△ABC =12ab sin C=12×1×√7×sin C=√32,则sin C=√217,cos C=±2√77, 当cos C=2√77时,c 2=1+7-2×1×√7×2√77=4,c=2;当cos C=-2√77时,c 2=1+7+2×1×√7×2√77=12,c=2√3.10.我国南宋著名数学家秦九韶在他的著作《数书九章》卷五“田域类”里有一个题目:“问有沙田一段,有三斜,其小斜一十三里,中斜一十四里,大斜一十五里.里法三百步.欲知为田几何.”这道题讲的是有一个三角形沙田,三边长分别为13里,14里,15里,假设1里按500米计算,则该三角形沙田外接圆的半径为米..5由题意画出图象,如图所示,且AB=13里=6500米,BC=14里=7000米,AC=15里=7500米.在△ABC 中,由余弦定理有cos B=bb 2+bb 2-bb 22bb ·bb=132+142-1522×13×14=513,B 为锐角,sin B=√1-cos 2b =1213.设△ABC 外接圆半径为R ,则由正弦定理有bsin b =2R ,R=b2sin b =75002×1213=4062.5(米).命题角度2与三角形有关的最值和X 围问题高考真题体验·对方向1.(2015全国Ⅰ·16)在平面四边形ABCD 中,∠A=∠B=∠C=75°,BC=2,则AB 的取值X 围是.√6−√2,√6+√2).作CE ∥AD 交AB 于E ,则∠CEB=75°,∠ECB=30°.在△CBE中,由正弦定理得,EB=√6−√2.延长CD交BA的延长线于F,则∠F=30°.在△BCF中,由正弦定理得,BF=√6+√2,所以AB的取值X围为(√6−√2,√6+√2).2.(2014全国Ⅰ·16)已知a,b,c分别为△ABC三个内角A,B,C的对边,a=2,且(2+b)(sin A-sinB)=(c-b)sin C,则△ABC面积的最大值为.√3,可得(2+b)(a-b)=(c-b)·c.∵a=2,∴a2-b2=c2-bc,即b2+c2-a2=bc.由余弦定理,得cos A=b2+b2-b22bb =12.∴sin A=√32.由b2+c2-bc=4,得b2+c2=4+bc.∵b2+c2≥2bc,即4+bc≥2bc,∴bc≤4.∴S△ABC=12bc·sin A≤√3,即(S△ABC)max=√3.典题演练提能·刷高分1.(2019某某某某高三一模)在△ABC中,AB=2,C=π6,则AC+√3BC的最大值为() A.4√7 B.3√7C.2√7D.√7ABC 中,AB=2,C=π6,则2R=bbsin b =4,则AC+√3BC=4sin B+4√3sin A=4sin 5π6-A +4√3sin A=2cos A+6√3sin A=4√7sin(A+θ),其中sin θ=√714,cos θ=3√2114,由于0<A<5π6,0<θ<π2,所以0<A+θ<4π3,所以最大值为4√7.故选A .2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若A=π3,a=2√2,则△ABC 面积的最大值为()A.√2B.2√3C.√6D.√3ABC 中,由余弦定理知a 2=b 2+c 2-2bc cos A ,即8=b 2+c 2-2bc cos π3=b 2+c 2-bc ≥2bc-bc=bc ,即bc ≤8,当且仅当b=c 时,等号成立,所以△ABC 面积的最大值为S=12bc sin A=12×8sin π3=2√3,故选B .3.已知锐角△ABC 中的内角A ,B ,C 的对边分别为a ,b ,c ,若b 2=a (a+c ),则sin 2bsin(b -b )的取值X 围是()A.(0,√22)B.(12,√32) C.(12,√22) D.(0,√32)b 2=a (a+c ),由余弦定理,得a 2+c 2-2ac cos B=a (a+c ), 化简得c-a=2a cos B.由正弦定理,得sin C-sin A=2sin A cos B ,∵C=π-(A+B ),∴sin(A+B )-sin A=2sin A cos B ,化简得sin(B-A )=sin A.∵△ABC 是锐角三角形,∴B-A=A ,即B=2A ,∵{0<b <π2,π2<b +b <π,即{0<2b <π2,π2<3b <π,∴π6<A<π4,∴sin 2bsin(b -b )=sin A ∈(12,√22).4.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为√3,且cos(b +b )cos b=b2b +b ,则c 的最小值是()A.2B.2√2C.2√3D.4∵cos(b +b )cos b=b 2b +b ,∴-cos b cos b =b2b +b ,∴根据正弦定理可得-cos bcos b =sin b2sin b +sin b ,即-2sin A cos C=sin A.∵sin A ≠0,∴cos C=-12.∵C ∈(0,π),∴C=2π3.∵△ABC 的面积为√3,∴S △ABC =12ab sin C=√3,即ab=4.∵cos C=b 2+b 2-b 22bb=-12, ∴c 2=a 2+b 2+ab ≥2ab+ab=3ab=12,当且仅当a=b 时取等号. ∴c min =2√3,故选C .5.在△ABC 中,已知a 2+b 2-c 2=4S (S 为△ABC 的面积),若c=√2,则a-√22b 的取值X 围是()A.0,√2B.-1,0C.-1,√2D.-√2,√2a 2+b 2-c 2=4S ,∴a 2+b 2-c 2=4×12ab sin C=2ab sin C.∴b 2+b 2-b 22bb =sin C ,∴cos C=sin C.∴C=π4. ∵bsin b =bsin b =bsin b =√2√22=2,∴a=2sin A ,b=2sin B ,又a-√22b=2sin A-√22×2sin B=2sin A-√2sin B=2sin A-√2sin3π4-A=sin A-cos A=√2sin A-π4,∵0<A<3π4,∴-π4<A-π4<π2, ∴-1<√2sin A-π4<√2,∴-1<a-√22b<√2,故选C .6.已知平面四边形ABCD 中,AB=AD=2,BC=CD ,∠BCD=90°,则四边形ABCD 面积的最大值为()A.6B.2+2√3C.2+2√2D.4,设∠DAB=θ,BC=CD=x ,则BD=√2x.在△ABD 中,由余弦定理得BD 2=AB 2+AD 2-2AB ·AD ·cos θ,即(√2x )2=4+4-8cos θ=8-8cos θ,∴x 2=4-4cos θ.∴四边形ABCD 的面积为S=12×22×sin θ+12x 2=2sin θ+(2-2cos θ)=2√2sin θ-π4+2.∵0<θ<π,∴-π4<θ-π4<3π4,∴当θ-π4=π2,即θ=3π4时,S 有最大值,且S max =2√2+2.选C .7.已知点O 是△ABC 的内心,∠BAC=60°,BC=1,则△BOC 面积的最大值为.BOC=180°-180°-60°2=120°,在△OBC 中,BC 2=OB 2+OC 2-2OB ·OC ·cos120°,即1=OB 2+OC 2+OB ·OC ≥3OB ·OC ,即OB ·OC ≤13,所以S △OBC =12OB ·OC sin120°≤√312,当OB=OC 时取得最大值.8.在△ABC 中,AB=AC ,D 为AC 的中点,BD=1,则△ABC 面积的最大值为.ABD 中,设AB=AC=b ,由余弦定理得cos A=b 2+b 24-12b ·b 2=54−1b 2,则sin A=√1-(54-1b 2) 2,所以△ABC 的面积为S=12b 2sin A=12b 2·√1-(54-1b2)2=18√-9(b 2-209)2+2569≤23,所以△ABC 的面积的最大值为23.9.在△ABC 中,角A ,B ,C 所对边的边长分别为a ,b ,c ,若|bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ −bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=3,bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =6,则△ABC 面积的最大值为.|bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ −bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=3,∴|AB|=3.∵bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =6,∴ab cos C=6.∴cos C=6bb .由余弦定理得9=a 2+b 2-2ab cos C=a 2+b 2-12≥2ab-12,∴ab ≤212.∴S=12ab sin C=12ab √1-cos 2b=12ab √1-36b 2b 2=12√b 2b 2(1-36b 2b 2 =12√b 2b 2-36≤12√(212) 2-36=3√334.。

四川省广元市2024高三冲刺(高考数学)人教版考试(综合卷)完整试卷

四川省广元市2024高三冲刺(高考数学)人教版考试(综合卷)完整试卷

四川省广元市2024高三冲刺(高考数学)人教版考试(综合卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知复数,,下列说法正确的有()A.若,则B.若是关于x的方程(p,)的一个根,则C.若,则D.若,则或第(2)题在等比数列中,,,则()A.-8B.16C.32D.-32第(3)题设,则a,b,c的大小关系为()A.B.C.D.第(4)题已知圆与直线有公共点,则整数的值为()A.B.C.1D.2第(5)题关于复数与其共轭复数,下列结论正确的是()A.在复平面内,表示复数和的点关于虚轴对称B.C.必为实数,必为纯虚数D.若复数为实系数一元二次方程的一根,则也必是该方程的根第(6)题若,,且,则()A.B.6C.3D.第(7)题周一到周五某公司需要安排甲、乙、丙、丁、戊各值班一天,则甲值完班以后正好轮到乙值班的方法数为()A.12B.24C.36D.48第(8)题在中,角A,B,C所对的边分别是a,b,c,若,,,则()A.B.C.或D.或二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题关于复数、,下列说法正确的是()A.B.若,C.若,则D.第(2)题已知,则()A.的最大值为B.的最小值为C.的最大值为2D.的最小值为第(3)题下列说法正确的是()A.在一个2×2列联表中,计算得到的值,则的值越接近1,可以判断两个变量相关的把握性越大B.随机变量,若函数为偶函数,则C.若回归直线方程为,则样本点的中心不可能为D.若甲、乙两组数据的相关系数分别为和0.89,则甲组数据的线性相关性更强三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知向量,,则当时,___________.第(2)题已知实数满足,则目标函数的最大值为_____.第(3)题已知,则______.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题近日,为进一步做好新冠肺炎疫情防控工作,某社区以网上调查问卷形式对辖区内部分居民做了新冠疫苗免费接种的宣传和调查,调查数据如下:共份有效问卷,名男性中有名不愿意接种疫苗,名女性中有名不愿意接种疫苗.(1)根据所给数据,完成下面的列联表,并根据列联表,判断是否有的把握认为是否愿意接种疫苗与性别有关?愿意接种不愿意接种合计男女合计(2)从不愿意接种疫苗的份调查问卷中得知,其中有份是由于身体原因不能接种:且份是男性问卷,份是女性问卷,若从这问卷中任选份继续深入调研,求这份问卷分别是份男性问卷和份女性问卷的概率.附:第(2)题已知数列满足,,.(1)求数列的通项公式;(2)证明:对,.第(3)题已知函数.(1)求这个函数的导数;(2)求这个函数的图象在点处的切线方程.第(4)题已知定义在上的函数.(1)求的图象在处的切线方程;(2)若函数,求的极小值.第(5)题如图,点C在直径为的半圆O上,垂直于半圆O所在的平面,平面.且.(1)证明:平面平面(2)若,,异面直线与所成的角是,求三棱锥的外接球的表面积。

河南省洛阳市2024高三冲刺(高考数学)人教版考试(综合卷)完整试卷

河南省洛阳市2024高三冲刺(高考数学)人教版考试(综合卷)完整试卷

河南省洛阳市2024高三冲刺(高考数学)人教版考试(综合卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知,满足,点为线段上一动点,若最小值为,则的面积A.9B.C.18D.第(2)题已知,是抛物线上两个不同的点,为抛物线的焦点,为的重心.若,则的最小值为()A.B.C.D.第(3)题已知是定义在上的奇函数,若为偶函数且,则()A.B.0C.2D.4第(4)题从幂函数,,,,中任意选取个函数,其中一个函数是奇函数、另一个函数是增函数的概率等于()A.B.C.D.第(5)题函数的反函数是()A.B.C.D.第(6)题在三棱锥中,平面,,,,则三棱锥外接球的表面积为()A.B.C.D.第(7)题等比数列的历史由来已久,我国古代数学文献《孙子算经》、《九章算术》、《算法统宗》中都有相关问题的记载.现在我们不仅可以通过代数计算来研究等比数列,还可以构造出等比数列的图象,从图形的角度更为直观的认识它.以前n项和为,且,的等比数列为例,先画出直线OQ:,并确定x轴上一点,过点作y轴的平行线,交直线OQ于点,则.再过点作平行于x轴,长度等于的线段,……,不断重复上述步骤,可以得到点列,和.下列说法错误的是()A.B.C.点的坐标为D.第(8)题函数,则命题正确的()A.是周期为1的奇函数B.是周期为2的偶函数C.是周期为1的非奇非偶函数D.是周期为2的非奇非偶函数二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知函数的图象关于直线对称,则下列说法正确的是()A.B.为偶函数C.在上单调递增D.若,则的最小值为第(2)题已知函数,下列说法正确的是()A.为偶函数B.的最小正周期为C.所有的整数都是的零点D.在上单调递增第(3)题已知定义在R上的函数的图象是连续不断的,且满足以下条件:①,;②,,当时,.则下列选项成立的是()A.B.C.若,则D.若,则三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题直线过抛物线的焦点F,且与C交于A,B两点,则___________.第(2)题如图,在矩形中,,,点为线段的中点,沿直线将翻折,点运动到点的位置.当平面平面时,三棱锥的体积为__________.第(3)题曲线在点处的切线方程为_________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知x、y、z均为正实数,且.(1)求的最大值;(2)若,证明:.第(2)题甲、乙两人进行乒乓球比赛,比赛规则:每一局比赛中,胜者得1分,负者得0分,且比赛中没有平局.根据以往战绩,每局比赛甲获胜的概率为,每局比赛的结果互不影响.(1)经过3局比赛,记甲的得分为X,求X的分布列和期望;(2)若比赛采取3局制,试计算3局比赛后,甲的累计得分高于乙的累计得分的概率.第(3)题已知多面体中,,且,,(1)证明:;(2)若,求直线与平面所成角的正弦值.第(4)题已知椭圆的右焦点为,其四个顶点的连线围成的四边形面积为;菱形内接于椭圆.(1)求椭圆的标准方程;(2)(ⅰ)坐标原点在边上的投影为点,求点的轨迹方程;(ⅱ)求菱形面积的取值范围.第(5)题已知圆M :x 2+(y-)2=4与抛物线E :x 2=my (m >0)相交于点A ,B ,C ,D ,且在四边形ABCD 中,AB //CD .(1)若,求实数m 的值;(2)设AC 与BD 相交于点G ,△GAD 与△GBC 组成蝶形的面积为S ,求点G 的坐标及S 的最大值.。

高三数学综合测试三试题理新人教A版

高三数学综合测试三试题理新人教A版

安徽省亳州一中南校 高三综合测试(三)(理科)数学一、选择题:本大题共10小题,每小题5分,每小题给出的四个选项中,选出符合题目要求的一项.1. 5名志愿者分到3所学校支教,每一个学校至少去一名志愿者,则不同的分派方式共有(A )150种(B)180种(C)200种(D)280种2. 过点(2,0)M 作圆221x y +=的两条切线MA ,MB (A ,B 为切点,则MA MB ⋅= 53B.52 33 D.323. 圆锥曲线θθρ2cos sin 8=的准线方程是(A)2cos -=θρ (B)2cos =θρ (C) 2sin -=θρ (D) 2sin =θρ 4. 已知数列,n na b 的前n 项和别离是,n n A B ,且1001004,503,A B 若,()n n n n n n n C a B b A a b nN ,则数列100100n C T 的前项和为B. 499C.2012D. 20135. 点P 为双曲线1C :()0,012222>>=-b a b y a x 和圆2C : 2222b a y x +=+的一个交点,且12212F PF F PF ∠=∠,其 中21,F F 为双曲线1C 的两个核心,则双曲线1C 的离心率为 A.3 B.21+C.13+D.26. 若某几何体的三视图是如图所示的三个直角三角形,则该几何体的外接球的表面积为A.10πB.50πC.25πD.100π 7. 对于下列命题:①在△ABC 中,若sin 2sin 2A B =,则△ABC 为等腰三角形;②已知a ,b ,c 是△ABC 的三边长,若2a =,5b =,6A π=,则△ABC 有两组解;③设2012sin3a π=,2012cos 3b π=,2012tan3c π=,则a b c >>;④将函数2sin 36y x π⎛⎫=+ ⎪⎝⎭图象向左平移6π个单位,取得函数2cos 36y x π⎛⎫=+ ⎪⎝⎭图象.其中正确命题的个数是 A.0B. C. 2D.38. 已知球的直径SC=4,A ,B 是该球球面上的两点,,30=∠=∠BSC ASC ,则棱锥S —ABC 的体积为 A.B.C.D. 19. 函数()cos f x xπ=与函数()2log 1g x x =-的图像所有交点的横坐标之和为A .2B. 4C. 6D. 810. 函数)(x f y =为概念在R 上的减函数,函数)1(-=x f y 的图像关于点(1,0)对称, ,x y 知足不等式0)2()2(22≤-+-y y f x x f ,(1,2),(,)M N x y ,O 为坐标原点,则当41≤≤x 时,OM ON ⋅的取值范围为 ( ) A .[)+∞,12B .[]3,0C .[]12,3D .[]12,0二、填空题:本大题共5小题,每小题5分,共25分.11.()ln xf x x 的单调减区间是 .12设()f x 是概念在R 上且周期为2的函数,在区间[11]-,上, 0111()201x x ax f x bx x <+-⎧⎪=+⎨⎪+⎩≤≤≤,,,,其中a b ∈R ,.若1322f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,则3a b +的值为13. 设α为锐角,若4cos 65απ⎛⎫+= ⎪⎝⎭,则)122sin(π+a 的值为 14.已知概念在R 上的函数)(x f 是奇函数且知足)()23(x f x f =-,3)2(-=-f ,数列{}n a 知足11-=a ,且21n n S an n =⨯+(其中n S 为{}n a 的前n 项和),则=+)()(65a f a f .1五、给出下列四个命题:①函数f (x )=lnx -2+x 在区间(1 , e )上存在零点; ②若0()0f x '=,则函数y =f (x )在x =x0处取得极值;③若m≥-1,则函数212log (2)y x x m =--的值域为R ;④“a=1”是“函数x xae e a x f +-=1)(在概念域上是奇函数”的充分没必要要条件。

重庆市(新版)2024高考数学人教版考试(综合卷)完整试卷

重庆市(新版)2024高考数学人教版考试(综合卷)完整试卷

重庆市(新版)2024高考数学人教版考试(综合卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题复数z满足,则复平面内z对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限第(2)题设复数z满足,则z=()A.-1-2i B.-1+2iC.1+2i D.1-2i第(3)题一个容量为10的样本,6,7,8,9,10,13,14,15,17,18,则该组数据的上四分位数为()A.8B.7.5C.14.5D.15第(4)题如果一个复数的实部和虚部相等,则称这个复数为“等部复数”,若复数(其中)为“等部复数”,则复数在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限第(5)题已知角的终边经过点,则()A.B.C.D.第(6)题已知,则()A.B.C.D.第(7)题已知函数对任意的有,且当时,,则函数的图象大致为()A.B.C.D.第(8)题曲线在点处的切线方程为,则实数()A.-16B.16C.-20D.20二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知,则()A.B.C.D.第(2)题如图,正三棱锥A-PBC和正三棱锥D-PBC的侧棱长均为,BC = 2.若将正三棱锥A-PBC绕BC旋转,使得点A,P分别旋转至点处,且,B,C,D四点共面,点,D分别位于BC两侧,则()A.B.平面BDCC.多面体的外接球的表面积为D.点A,P旋转运动的轨迹长相等第(3)题《数书九章》是中国南宋时期杰出数学家秦九韶的著作,全书十八卷共八十一个问题,分为九类,每类九个问题,《数书九章》中记录了秦九韶的许多创造性成就,其中在卷五“三斜求积”中提出了已知三角形三边a,b,c求面积的公式,这与古希腊的海伦公式完全等价,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实,一为从隅,开平方得积.”若把以上这段文字写成公式,即.现有满足,且的面积,请运用上述公式判断下列命题正确的是()A.周长为B.三个内角A,C,B满足关系C.外接圆半径为D.中线CD的长为三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题若曲线在点的切线与曲线也相切,则___________.第(2)题等差数列{a n}的前n项和为S n,a2=10,S10≤40,则满足S n>0的n的最大值为___________.第(3)题已知函数的图象的相邻两对称轴之间的距离为,且在上恰有3个零点,则___________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题第19届亚运会将于2023年9月23日在我国杭州举行,这是继北京亚运会后,我国第二次举办这一亚洲最大的体育盛会,为迎接这一体育盛会,浙江某大学举办了一次主题为“喜迎杭州亚运,讲好浙江故事”的知识竞赛,并从所有参赛大学生中随机抽取了40人,统计他们的竞赛成绩(满分100分,每名参赛大学生至少得60分),并将成绩分成4组:(单位:分),得到如下的频率分布直方图.(1)现从该样本中随机抽取2人的成绩,求这2人中至少有1人成绩不低于90分的概率;(2)由频率分布直方图可以认为,这次竞赛中所有参赛大学生的竞赛成绩近似服从正态分布,其中为样本平均数(同一组数据用该组数据的区间中点值作代表),,试用正态分布知识解决下列问题:①若这次竞赛共有万名大学生参加,试估计竞赛成绩超过分的人数(结果精确到个位);②现从所有参赛的大学生中随机抽取人进行座谈,设其中竞赛成绩超过分的人数为,求随机变量的期望.附:若随机变量服从正态分布,则,,.第(2)题已知函数.(1)若函数,讨论函数的单调性;(2)证明:当时,.第(3)题已知函数,.(1)当时,求在处的切线方程;(2)若有两个极值点,且.①求实数的取值范围;②求证:.第(4)题已知双曲线C:(,)的左、右焦点分别为,,P为双曲线右支上的一点,为的内心,且.(1)求C的离心率;(2)设点为双曲线C右支上异于其顶点的动点,直线与双曲线左支交于点S.双曲线的右顶点为,直线,分别与圆O:相交,交点分别为异于点D的点M,N,判断直线是否过定点,求出定点,如果不过定点,请说明理由.第(5)题已知函数,.(1)讨论的单调性;(2)若方程有两个不相等的实根,求实数的取值范围,并证明.。

四川省遂宁市2024高三冲刺(高考数学)人教版真题(综合卷)完整试卷

四川省遂宁市2024高三冲刺(高考数学)人教版真题(综合卷)完整试卷

四川省遂宁市2024高三冲刺(高考数学)人教版真题(综合卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知复数,(),若为纯虚数,则的值为()A.2B.1C.0D.第(2)题已知两条不同的直线l,m和一个平面α,下列说法正确的是( )A.若l⊥m,m∥α,则l⊥αB.若l⊥m,l⊥α,则m∥αC.若l⊥α,m∥α,则l⊥m D.若l∥α,m∥α,则l∥m第(3)题直线:与圆:的公共点的个数为()A.0B.1C.2D.1或2第(4)题已知复数满足,则()A.B.C.D.第(5)题遗忘曲线(如图)由德国心理学家研究发现,描述了人类大脑对新事物遗忘的规律.人体大脑对新事物遗忘的循序渐进的直观描述,人们可以从遗忘曲线中掌握遗忘规律并加以利用,从而提升自我记忆能力.该曲线对人类记忆认知产生了重大影响.设初次记忆后经过了小时,那么记忆率近似的满足.则记忆率为时,所经过的时间约为()(参考数据:)A.2小时B.小时C.小时D.小时第(6)题已知角,角的顶点均为坐标原点,始边均与轴的非负半轴重合,终边分别过,则()A.或B.2或C.D.第(7)题若集合,则()A.B.C.D.第(8)题已知正三棱锥中,底面是边长为的正三角形,侧棱长为,为的中点,为中点,是的动点,是平面上的动点,则的最小值是()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知正方体的棱长为分别是棱的中点,下列结论正确的是()A.B.C.棱的中点在平面内D.四面体的体积为1第(2)题已知函数(,,)的部分图象如图所示,下列说法正确的是()A.B .函数为偶函数C .函数的图象关于直线对称D .函数在上的最小值为第(3)题已知函数的定义域D关于原点对称,且,当时,;且对任意且,都有,则()A.是奇函数B.C.是周期函数D.在上单调递减三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题若,则__________.第(2)题在的二项展开式中,的系数为__________.第(3)题函数在x=1处的切线平行于直线x-y-1=0,则切线在y轴上的截距为______.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题数列是首项的等比数列,且,,成等差数列.(Ⅰ)求数列的通项公式;(Ⅱ)若,设为数列的前项和,若对一切恒成立,求实数的最小值.第(2)题一水果连锁店的店长为了解本店苹果的日销售情况,记录了过去30天苹果的日销售量(单位:kg),得到如下频率分布直方图.(1)求过去30天内苹果的日平均销售量(同组数据用该组区间中点值代表);(2)若该店苹果的日销售量X近似服从正态分布,其中近似为样本平均数,试估计360天中日销售量超过79.9kg的天数(结果保留整数);(3)该水果店在店庆期间举行“赢积分,送奖品”活动,规定:每位会员可以投掷n次骰子,若第一次掷骰子点数大于2,可以获得100个积分,否则获得50个积分,从第二次起若掷骰子点数大于2,可以获得上一次积分的两倍,否则获得50个积分,直到投掷骰子结束.记会员甲第n次获得的积分为,求数学期望.参考数据:若,则,.第(3)题在平面直角坐标系xOy中,已知F为抛物线C:的焦点,O为坐标原点,M为C的准线l上一点,直线MF的斜率为,的面积为4.(1)求C的方程;(2)过点F的直线交C于A,B两点,过点B作y轴的垂线交直线AO于点D,过点A作直线DF的垂线与C的另一交点为E,AE的中点为G,证明:G,B,D三点纵坐标相等.第(4)题在平面直角坐标系中,直线,曲线的参数方程为(为参数),以为极点,轴正半轴为极轴建立极坐标系.(1)求曲线和直线的交点的极坐标;(2)将曲线的横坐标伸长到原来的2倍,纵坐标伸长到原来的倍后得到曲线,直线与曲线交于,两点,设点,求的值.第(5)题选修4—1:几何证明选讲如图所示,PA为圆O的切线,A为切点,PBC是过点O的割线,PA=10,PB=5,∠BAC的平分线与BC和圆O分别交于点D和E.(1)求证:;(2)求AD·AE的值.。

江苏省镇江市2024高三冲刺(高考数学)人教版真题(综合卷)完整试卷

江苏省镇江市2024高三冲刺(高考数学)人教版真题(综合卷)完整试卷

江苏省镇江市2024高三冲刺(高考数学)人教版真题(综合卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知是虚数单位,若,,则在复平面内的对应点位于()A.第一象限B.第二象限C.第三象限D.第四象限第(2)题已知F 1,F2分别是双曲线C:的左、右焦点,点P在双曲线上,,圆O:,直线PF 1与圆O相交于A,B两点,直线PF2与圆O相交于M,N两点.若四边形AMBN的面积为,则C的离心率为()A.B.C.D.第(3)题已知实数、满足线性约束条件,则其表示的平面区域的面积为A.B.C.D.第(4)题《算法统宗》是一部中国古代数学名著,全称为《新编直指算法统宗》,由明代数学家程大位所著.该书在万历二十一年(即公元1593年)首次刊行,全书共有17卷.其主要内容涵盖了数学名词、大数与小数的解释、度量衡单位以及珠算盘式图和各种算法的口诀等基础知识.同时,书中还按照“九章”的次序列举了多种应用题及其解法,并附有图式说明.此外,《算法统宗》还包括了难题解法的汇编和不能归入前面各类别的杂法算法等内容.其中有一首诗,讲述了“竹筒容米”问题.诗云:‘家有九节竹一茎,为因盛米不均平,下头三节三升九,上稍四节贮三升,唯有中间两节竹,要将米数次第盛,若有先生能算法,也教算得到天明’(【注释】三升九:3.9升,次第盛:盛米容积依次相差同一数量)用你所学数学知识求该九节竹一共盛米多少升?()A.8.8升B.9升C.9.1升D.9.2升第(5)题已知是等比数列的前项和,若存在,满足,,则数列的公比为A.B.C.2D.3第(6)题设双曲线的左、右顶点分别为,,焦距为,两条渐近线的夹角为.设点的坐标为.若为等腰三角形,则()A.B.C.D.2第(7)题已知集合,,则A.B.C.D.第(8)题下列四个函数中某个函数在区间的大致图像如图,则该函数是()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题为了得到函数的图象,可将函数的图象()A.纵坐标不变,横坐标伸长为原来的倍B.纵坐标不变,横坐标缩短为原来的C.向上平移一个单位长度D.向下平移一个单位长度第(2)题某公司经营四种产业,为应对市场变化,在三年前进行产业结构调整,优化后的产业结构使公司总利润不断增长,今年总利润比三年前增加一倍,调整前后的各产业利润与总利润的占比如下图所示:则下列结论中正确的有()A.调整后房地产业的利润有所下降B.调整后医疗器械的利润增长量最大C.调整后生物制药的利润增长率最高D.调整后金融产业的利润占比最低第(3)题设函数,则()A.在上单调递增B.为图象的一条对称轴C.为图象的一个对称中心D.的图象可由图象向左平移个单位长度得到三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知定义在R上的函数满足如下条件:①函数的图象关于y轴对称;②对于任意;③当时,;若过点的直线l与函数的图象在上恰有4个交点,则直线l的斜率k的取值范围是______________.第(2)题用数学的眼光看世界就能发现很多数学之“美”.现代建筑讲究线条感,曲线之美让人称奇.衡量曲线弯曲程度的重要指标是曲率,曲线的曲率定义如下:若是的导函数,是的导函数,则曲线y=f(x)在点(x,f(x))处的曲率,则曲线在(1,1)处的曲率为______;正弦曲线(x∈R)曲率的平方的最大值为______.第(3)题记实数的最小数为,若,则函数的最大值为__________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程和的直角坐标方程;(2)已知点,曲线与相交于两点,求.第(2)题已知,为的两个顶点,为的重心,边,上的两条中线长度之和为6.(1)求点的轨迹的方程;(2)若直线与曲线相交于点、,若线段的中点是,求直线的方程;(3)已知点,,,直线与曲线的另一个公共点为,直线与交于点,求证:当点变化时,点恒在一条定直线上.第(3)题已知△ABC 是边长为6的等边三角形,点M ,N 分别是边AB ,AC 的三等分点,且,,沿MN 将△AMN折起到的位置,使.(1)求证:平面MBCN ;(2)在线段BC 上是否存在点D ,使平面与平面所成锐二面角的余弦值为?若存在,设,求的值;若不存在,说明理由.第(4)题已知函数.(1)当时,讨论的单调性;(2)若,求的取值范围.第(5)题如图,已知直三棱柱中,侧面为正方形,,D ,E ,F 分别为,,的中点,,G 为线段上一动点.(1)证明:;(2)求二面角的余弦值的最大值.。

辽宁省沈阳市2024高三冲刺(高考数学)人教版真题(综合卷)完整试卷

辽宁省沈阳市2024高三冲刺(高考数学)人教版真题(综合卷)完整试卷

辽宁省沈阳市2024高三冲刺(高考数学)人教版真题(综合卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题下列函数最小值为4的是()A.B.C.D.第(2)题某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:则()A.讲座前问卷答题的正确率的中位数小于B.讲座后问卷答题的正确率的平均数大于C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差第(3)题对于,给出下列四个不等式:①;②;③;④;其中成立的是A.①③B.①④C.②③D.②④第(4)题已知集合,,则等于()A.B.C.D.第(5)题若某几何体的三视图(单位:如图所示,则此几何体的体积是 144 .A.cm3B.cm3C.cm3D.cm3第(6)题已知向量,,且,,则向量A.B .C.D .第(7)题某学校美术室收藏有6幅国画,分别为人物、山水、花鸟各2幅,现从中随机抽取2幅进行展览,则恰好抽到2幅不同种类的概率为( )A.B .C .D .第(8)题已知(为虚数单位),则( )A .B .C .D .二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知函数,记一次完整的图形变换为“T 变换”,“T 变换”的规则为:将函数图象向右平移2个单位,纵坐标缩短为原来的,再向上平移1个单位,的图象经历一次“T 变换”得到的图象,依此类推,经历次“T 变换”后,得到的图象,则( )A.B.若,则C .当时,函数的极大值之和小于D .第(2)题已知函数的定义域为,函数的图象关于点对称,且满足,则下列结论正确的是( )A .函数是奇函数B .函数的图象关于轴对称C .函数是最小正周期为2的周期函数D .若函数满足,则第(3)题已知,函数有两个极值点,则( )A .B .时,函数的图象在处的切线方程为C .为定值D.时,函数在上的值域是三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题如图,双曲线的两顶点为,,虚轴两端点为,,两焦点为,. 若以为直径的圆内切于菱形,切点分别为. 则(Ⅰ)双曲线的离心率_______;(Ⅱ)菱形的面积与矩形的面积的比值_______.第(2)题回文数是指从左到右读与从右到左读都一样的正整数.如22,121,3443,94249等.显然2位回文数有9个:11,22,33,…,99.3位回文数有90个:101,111,121,…,191,202,…,999.则(1)4位回文数有个;(2)位回文数有个.第(3)题一个单位共有职工200人,其中不超过45岁的有120人,超过45岁的有80人.为了调查职工的健康状况,用分层抽样的方法从全体职工中抽取一个容量为25的样本,应抽取超过45岁的职工________________人.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知椭圆E:的左、右焦点分别为,,点M在椭圆E外,线段与E相交于P,满足,点T在线段上,,且.(1)若点P的坐标为,证明:;(2)求点T的轨迹C的方程;(3)在曲线C上是否存在点N,使得的面积为,若存在,求的正切值,若不存在请说明理由.第(2)题如图,在直角梯形中,,且,直角梯形可以通过直角梯形以直线为轴旋转得到.(1)求证:平面平面;(2)若二面角的大小为,求直线与平面所成角的正弦值.第(3)题已知箱子中装有标号分别为1,2,3,4,5的五个小球.现从该箱子中取球,每次取一个球(无放回,且每球取到的机会均等).(Ⅰ)若连续取两次,求取出的两球上标号都是奇数或都是偶数的概率;(Ⅱ)若取出的球的标号为奇数则停止取球,否则继续取,求取出次数X的分布列和数学期望.第(4)题如表是检测某种浓度的农药随时间(秒渗入某种水果表皮深度(微米)的一组结果.时间(秒510152030深度(微米)610101316(1)在规定的坐标系中,画出,的散点图;(2)求与之间的回归方程,并预测40秒时的深度(回归方程精确到小数点后两位;预测结果精确到整数).回归方程:,其中,.第(5)题“拐点”又称“反曲点”,是曲线上弯曲方向发生改变的点.设为函数的导数,若为的极值点,则为曲线的拐点.已知曲线C:.(1)求C的拐点坐标;(2)证明:C关于其拐点对称;(3)设为C在其拐点处的切线,证明:所有平行于的直线都与C有且仅有一个公共点.。

黑龙江黑河市2024高三冲刺(高考数学)人教版考试(综合卷)完整试卷

黑龙江黑河市2024高三冲刺(高考数学)人教版考试(综合卷)完整试卷

黑龙江黑河市2024高三冲刺(高考数学)人教版考试(综合卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题如图所示,△ABC是边长为8的等边三角形,P为AC边上的一个动点,EF是以B为圆心,3为半径的圆的直径,则的取值范围是()A.B.C.D.第(2)题函数,关于的方程恰有四个不同实数根,则正数的取值范围为A.B.C.D.第(3)题若,则下列结论正确的是()A.B.C.D.第(4)题函数的部分图象大致为()A.B.C.D.第(5)题已知复数,则()A.B.C.1D.2第(6)题经调查,某公司职员的入职年份(年)和年收入(万元)之间具有线性相关关系,并得到关于的回归直线方程,则下列说法中错误的个数是()①可以预测,员工第3年的年收入约为6.85万元②若某员工的年收入约为7.9万元,可以预测该员工入职6年③员工入职年份每增加一年,收入平均增加0.35万元A.0B.1C.2D.3第(7)题已知向量,若,则()A.B.C.0D.3第(8)题设,则的值为()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题两个相关变量x,y的6组对应数据如下表所示:x9.911.18.68.3712.1y8.18.47.8 5.9 5.669.8根据上表中的数据,可得回归直线方程为,求得,据此估计,以下结论正确的是()A.B.C.D.当时,第(2)题设、为不相等的两个复数,则下列命题正确的是()A.若,则B.若,则或C.若,则D.若,则在复平面对应的点在一条直线上第(3)题某商场为了促进销售,对于进入商场的人员,可以进入商场掷骰子进行奖励,规定每位进入商场的人员可以随机投掷一颗质地均匀的正方体的骰子,每面上分别写着1,2,3,4,5,6,随机投掷该骰子三次,三次投掷向上点数分别为,,,若满足,,,分别为一等奖,二等奖,三等奖,只有这三等奖,则()A.中一等奖的概率为B.中二等奖的概率为C.中三等奖的概率为D.没有中奖的概率为三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题琴、棋、书、画、诗、酒、花、茶被称为中国传统八雅.为弘扬中国传统文化,某校决定从“八雅”中挑选“六雅”,于某周末开展知识讲座,每雅安排一节,连排六节.若“琴”“棋”“书”“画”必选,且要求“琴”“棋”相邻,“书”“画”相邻,则不同的排课方法共______种.(用数字作答)第(2)题若,则的最小值为______.第(3)题已知函数()在区间上有且仅有3个极值点,则的取值范围是______.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题国家深化教育改革,培养学生的关键能力就是其中改革之一.关键能力是指学生所学知识的运用能力,独立思考、分析问题和解决问题、交流与合作等学生适应未来不断变化发展的能力.为培养学生的关键能力,校大胆进行全新的教学改革,校在原来的教学模式上进行了完善.近期某教育部门对两所学校的高三学生的关键能力落实进行调研,两校共抽取名学生,通过试卷考查的形式进行,等级分为至分.得到样本数据如下:(1)估计两校学生的等级分数的均值和方差;(2)已知所抽取的学生中校有人,其中得分合格的(得分大于或等于分)占合格总人数的,问是否有的把握认为“关键能力的提升”与“学校教学模式的改革”有关?附第(2)题一个袋子里装有6个球,其中有红球4个,编号均为1,白球2个,编号分别为2,3.(假设取到任何一个球的可能性相同)(1)现依次不放回地任取出两个球,求在第一个球是红球的情况下,第二个球也是红球的概率;(2)现甲从袋中任取两个球,记其两球编号之和为,待甲将球放回袋中后,乙再从袋中任取两个球,记其两球编号之和为,求的概率.第(3)题已知椭圆的左、右焦点分别为,,其焦距为,点E为椭圆的上顶点,且.(1)求椭圆C的方程;(2)设圆的切线l交椭圆C于A,B两点(O为坐标原点),求证;(3)在(2)的条件下,求的最大值.第(4)题已知函数.(1)求曲线在点处的切线方程;(2)若在区间内存在,,使得,求实数的取值范围.第(5)题在平面直角坐标系中,曲线C的参数方程为为参数).(1)在以O为极点,x轴的正半轴为极轴的极坐标系中,求曲线C极坐标方程;(2)若点A,B为曲线C上的两个点,且OA⊥OB,求证:O到直线AB的距离为定值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

综合试题(三)理科数学 【p 327】 时间:60分钟 总分:100分一、选择题(本大题共6小题,每小题5分,共30分.每小题所给的四个选项中,只有一项是符合题目要求的.)1.某市对大、中、小学生的视力进行抽样分析,其中大、中、小学生的人数比为2∶3∶5,若采用分层抽样的方法抽取一个样本,且中学生中被抽到的人数为150,则抽取的样本容量n 等于( )A .1 500B .1 000C .500D .150【解析】设抽到的大、中、小学生的人数分别为2x ,3x ,5x ,由3x =150,得x =50,所以n =100+150+250=500.【答案】C2.在等差数列{a n }中,S 10=4S 5,则a 1d=( )A .12B .2C .14D .4【解析】由等差数列的前n 项和公式可知 S 10=10a 1+10×92d ,S 5=5a 1+5×42d ,因为S 10=4S 5,所以10a 1+10×92d =4⎝ ⎛⎭⎪⎫5a 1+5×42d , 化简得a 1d =12.【答案】A3.已知⎝⎛⎭⎪⎫x 2+1x n的二项展开式的各项系数和为32,则二项展开式中x 的系数为( )A .5B .10C .20D .40【解析】因为二项展开式的各项系数和C 0n +C 1n +C 2n +…+C n n =2n=32,所以n =5,又二项展开式的通项为T r +1=C r n(x 2)r ⎝ ⎛⎭⎪⎫1x n -r=C r n x 3r -n,令3r -5=1得r =2,所以二项展开式中x 的系数为C 25=10. 【答案】B4.函数f(x)=⎩⎨⎧4-x 2-2(-2≤x<0),|x 2-x|(0≤x≤2)的图象与x 轴所围成的封闭图形的面积为( )A .5-πB .1+πC .π-3D .1-π【解析】函数f(x)=⎩⎨⎧4-x 2-2(-2≤x<0),|x 2-x|(0≤x≤2)的图象与x 轴所围成的封闭图形的面积为-⎠⎛-20(4-x 2-2)d x +⎠⎛01(x -x 2)d x +⎠⎛12(x 2-x)d x =4-14π×4+⎝ ⎛⎭⎪⎫12x 2-13x 3|10+⎝ ⎛⎭⎪⎫13x 3-12x 2|21=4-π+16+83-2+16=5-π. 【答案】A5.体积为43π的球O 放置在棱长为4的正方体ABCD -A 1B 1C 1D 1上,且与上表面A 1B 1C 1D 1相切,切点为该表面的中心,则四棱锥O -ABCD 的外接球的半径为( )A .103B .3310C .2D .236【解析】∵球O 的体积为43π,球O 的半径为1,四棱锥O -ABCD 的外接球的半径为R ,则R 2=(4+1-R)2+(22)2,解得R =3310.【答案】B6.已知F 1,F 2为双曲线C :x 2a 2-y2b 2=1()a>0,b>0的左、右焦点,点P 为双曲线C 右支上一点,直线PF 1与圆x 2+y 2=a 2相切,且||PF 2=||F 1F 2,则双曲线C 的离心率为( )A .103B .43C .53D .2 【解析】设PF 1与圆相切于点M ,则因为||PF 2=||F 1F 2, 所以△PF 1F 2为等腰三角形,所以||F 1M =14||PF 1,又因为在直角△F 1MO 中,||F 1M 2=||F 1O 2-a 2=c 2-a 2, 所以||F 1M =b =14||PF 1,①又||PF 1=||PF 2+2a =2c +2a ,② c 2=a 2+b 2,③故由①②③得,e =c a =53.【答案】C二、填空题(本大题共4小题,每小题5分,共20分,将各小题的结果填在题中横线上.) 7.若复数z =(1+m i )(2-i )(i 是虚数单位)是纯虚数,则实数m 的值为__________. 【解析】z =(1+m i )(2-i )=2-i +2m i -m i 2=2+m +(2m -1)i ,因为z 是纯虚数,所以2+m =0,m =-2.【答案】-28.已知向量b 为单位向量,向量a =(1,1),且|a -2b |=6,则向量a ,b 的夹角为________.【解析】因为b 为单位向量,向量a =(1,1),所以|a |=2,|b |=1,因为|a -2b |=6⇒a 2-22a ·b +2b 2=6,即2-22a ·b +2=6⇒a ·b =-22,所以向量a ,b 的夹角为cos 〈a ,b 〉=a ·b |a |·|b |=-12,所以向量a ,b 的夹角为2π3.【答案】2π39.已知函数f (x )=2sin x cos ⎝ ⎛⎭⎪⎫x -π3,x ∈⎣⎢⎡⎦⎥⎤0,3π4,则f (x )的最小值为________.【解析】f (x )=2sin x ⎝ ⎛⎭⎪⎫12cos x +32sin x =12sin 2x +3sin 2x =12sin 2x +3×1-cos 2x 2=sin ⎝ ⎛⎭⎪⎫2x -π3+32.∵x ∈⎣⎢⎡⎦⎥⎤0,34π,∴2x -π3∈⎣⎢⎡⎦⎥⎤-π3,76π,∴sin ⎝ ⎛⎭⎪⎫2x -π3的最小值为-32,f (x )的最小值为-32+32=0. 【答案】010.在四边形ABCD 中,AB =7,AC =6,cos ∠BAC =1114,CD =6sin ∠DAC ,则BD 的最大值为________.【解析】由CD =6sin ∠DAC ,可得CD ⊥AD ,所以点D 在以AC 为直径的圆上(去掉A ,B ,C ),所以当BD 经过AC 的中点O 时取最大值,OB 2=32+72-2×3×7cos ∠BAC =25,解得OB=5,所以BD 的最大值=5+12AC =8.【答案】8三、解答题(本大题共3小题,共50分.解答应写出文字说明、证明过程或演算步骤.) 11.(16分)已知函数f(x)=cos 2⎝ ⎛⎭⎪⎫x +π12,g(x)=1+12sin 2x.(1)设x =x 0是函数y =f(x)图象的一条对称轴,求g(x 0)的值; (2)求函数h(x)=f(x)+g(x)的单调递增区间. 【解析】(1)由题设知f(x)=12⎣⎢⎡⎦⎥⎤1+cos ⎝ ⎛⎭⎪⎫2x +π6.因为x =x 0是函数y =f(x)图象的一条对称轴, 所以2x 0+π6=k π,即2x 0=k π-π6(k∈Z ).所以g (x 0)=1+12sin 2x 0=1+12sin ⎝⎛⎭⎪⎫k π-π6.当k 为偶数时,g (x 0)=1+12sin ⎝ ⎛⎭⎪⎫-π6=1-14=34,当k 为奇数时,g (x 0)=1+12sin π6=1+14=54.(2)h (x )=f (x )+g (x )=12⎣⎢⎡⎦⎥⎤1+cos ⎝ ⎛⎭⎪⎫2x +π6+1+12sin 2x=12⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫2x +π6+sin 2x +32=12⎝ ⎛⎭⎪⎫32cos 2x +12sin 2x +32 =12sin ⎝⎛⎭⎪⎫2x +π3+32.当2k π-π2≤2x +π3≤2k π+π2,即k π-5π12≤x ≤k π+π12(k ∈Z )时,函数h (x )=12sin ⎝⎛⎭⎪⎫2x +π3+32是增函数, 故函数h (x )的单调递增区间是⎣⎢⎡⎦⎥⎤k π-5π12,k π+π12(k ∈Z ).12.(16分)2018国庆黄金周,国内出游人数达7.26亿,再创历史新高,全国各地景区人满为患,高速公路成为停车场.为解决人们假期出游问题,专家呼吁企业施行带薪休假,错峰出行.为了解企业对带薪休假方案的意见,某调查机构随机抽取了80家企业进行问卷调查,得到如下数据:(1)若用表中数据所得的频率代替概率,估计带薪休假为12天与10天,企业支持该方案的概率?(2)假设从5种不同安排方案中,随机抽取2种不同安排分别作为备选方案,然后由单位根据单位情况自主选择.①求两种安排方案带薪休假天数和不低于18天的概率;②如果用ξ表示两种方案带薪休假天数和.求随机变量ξ的分布列及期望. 【解析】(1)由表中信息可知,当带薪休假天数为12时,企业支持该方案的概率为340; 当带薪休假天数为10时,企业支持该方案的概率为18.(2)①设“两种安排方案带薪休假天数和不低于18”为事件A ,由已知从5种不同安排方案中,随机地抽取2种方案选法共有10(种),其和不低于18天的选法有8种,由古典概型概率公式计算得P (A )=45.②由题知随机变量ξ的可能取值为26,24,22,20,18,16,14. 因而ξ的分布列为所以E (ξ)=20.13.(18分)已知函数f (x )=ln(x +1)+2x . (1)求证:对任意的x ≥0,有f (x )≤3x ;(2)若对任意实数x >1,不等式f (x -1)+4>2x +k ⎝⎛⎭⎪⎫1-4x ,求k 的最大整数值.【解析】(1)由于f (x )≤3x ⇔ln(x +1)≤x , 令g (x )=x -ln(x +1)(x ≥0). 由于g (0)=0,g ′(x )=1-1x +1≥0,故g (x )在[0,+∞)上单调递增,则g (x )≥g (0)=0,即f (x )≤3x .(2)当x >1时,f (x -1)+4>2x +k ⎝⎛⎭⎪⎫1-4x ⇔x ln x +(2-k )x +4k >0.令h (x )=x ln x +(2-k )x +4k (x >1),h ′(x )=ln x +3-k ,若k ≤3,则对任意x >1,有h ′(x )>0,即h (x )在(1,+∞)上单调递增,由题设知,只需h (1)=2+3k ≥0,即-23≤k ≤3;若k >3,由h ′(x )=ln x +3-k =0解得x =e k -3,当x ∈(1,e k -3)时,h ′(x )<0,h (x )在(1,ek -3)上单调递减; 当x ∈(ek -3,+∞)时,h ′(x )>0,h (x )在(ek -3,+∞)上单调递增.由题设知,只需h (x )min =h (e k -3)=4k -ek -3>0.令H (k )=4k -ek -3,由于H ′(k )=4-e k -3为关于k 的单调减函数,则当k ∈(-∞,3+ln 4)时,H ′(k )>0,即H (k )在(-∞,3+ln 4)上单调递增, 当k ∈(3+ln 4,+∞)时,H ′(k )<0,即H (k )在(3+ln 4,+∞)上单调递减. 而H (3+ln 4)=8+4ln 4>0,H (5)=20-e 2>0,H (6)=24-e 3>0,H (7)=28-e 4<0,故3<k ≤6.综上所述,k 的最大整数取值为6.。

相关文档
最新文档