高三数学高考创新题型集锦新人教A版

合集下载

2020版创新设计高考总复习高三理科数学人教A版第六章第4节

2020版创新设计高考总复习高三理科数学人教A版第六章第4节

第4节 数列求和最新考纲 1.熟练掌握等差、等比数列的前n 项和公式;2.掌握非等差数列、非等比数列求和的几种常见方法.知 识 梳 理1.特殊数列的求和公式 (1)等差数列的前n 项和公式: S n =n (a 1+a n )2=na 1+n (n -1)2d .(2)等比数列的前n 项和公式:S n =⎩⎨⎧na 1,q =1,a 1-a n q 1-q=a 1(1-q n )1-q ,q ≠1W.2.数列求和的几种常用方法 (1)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (2)裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. (3)错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n 项和可用错位相减法求解. (4)倒序相加法如果一个数列{a n }的前n 项中与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解. [微点提醒]1.1+2+3+4+…+n =n (n +1)2. 2.12+22+…+n 2=n (n +1)(2n +1)6.3.裂项求和常用的三种变形 (1)1n (n +1)=1n -1n +1.(2)1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1. (3)1n +n +1=n +1-n .基 础 自 测1.判断下列结论正误(在括号内打“√”或“×”)(1)若数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q .( )(2)当n ≥2时,1n 2-1=12(1n -1-1n +1).( ) (3)求S n =a +2a 2+3a 3+…+na n 时只要把上式等号两边同时乘以a 即可根据错位相减法求得.( )(4)若数列a 1,a 2-a 1,…,a n -a n -1是首项为1,公比为3的等比数列,则数列{a n }的通项公式是a n =3n -12.( )解析 (3)要分a =0或a =1或a ≠0且a ≠1讨论求解. 【参考答案】(1)√ (2)√ (3)× (4)√2.(必修5P47B4改编)数列{a n }中,a n =1n (n +1),若{a n }的前n 项和为2 0192 020,则项数n 为( ) A.2 018B.2 019C.2 020D.2 021解析 a n =1n (n +1)=1n -1n +1,S n =1-12+12-13+…+1n -1n +1=1-1n +1=n n +1=2 0192 020,所以n =2019.【参考答案】B3.(必修5P56例1改编)等比数列{a n }中,若a 1=27,a 9=1243,q >0,S n 是其前n 项和,则S 6=________.解析 由a 1=27,a 9=1243知,1243=27·q 8, 又由q >0,解得q =13, 所以S 6=27⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫1361-13=3649.【参考答案】36494.(2018·东北三省四校二模)已知数列{a n }满足a n +1-a n =2,a 1=-5,则|a 1|+|a 2|+…+|a 6|=( ) A.9B.15C.18D.30解析 由题意知{a n }是以2为公差的等差数列,又a 1=-5,所以|a 1|+|a 2|+…+|a 6|=|-5|+|-3|+|-1|+1+3+5=5+3+1+1+3+5=18. 【参考答案】C5.(2019·昆明诊断)已知数列{a n },{b n }的前n 项和分别为S n ,T n ,b n -a n =2n +1,且S n +T n =2n +1+n 2-2,则2T n =________________.解析 由题意知T n -S n =b 1-a 1+b 2-a 2+…+b n -a n =n +2n +1-2, 又S n +T n =2n +1+n 2-2,所以2T n =T n -S n +S n +T n =2n +2+n (n +1)-4. 【参考答案】2n +2+n (n +1)-46.(2019·河北“五个一”名校质检)若f (x )+f (1-x )=4,a n =f (0)+f ⎝ ⎛⎭⎪⎫1n +…+f ⎝⎛⎭⎪⎫n -1n +f (1)(n ∈N *),则数列{a n }的通项公式为________.解析 由f (x )+f (1-x )=4,可得f (0)+f (1)=4,…,f ⎝ ⎛⎭⎪⎫1n +f ⎝⎛⎭⎪⎫n -1n =4,所以2a n =[f (0)+f (1)]+⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫1n +f ⎝⎛⎭⎪⎫n -1n +…+[f (1)+f (0)]=4(n +1),即a n =2(n +1). 【参考答案】a n =2(n +1)考点一 分组转化法求和【例1】 (2019·郴州质检)已知在等比数列{a n }中,a 1=1,且a 1,a 2,a 3-1成等差数列.(1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =2n -1+a n (n ∈N *),数列{b n }的前n 项和为S n ,试比较S n 与n 2+2n 的大小.解 (1)设等比数列{a n }的公比为q , ∵a 1,a 2,a 3-1成等差数列,∴2a 2=a 1+(a 3-1)=a 3,∴q =a 3a 2=2,∴a n =a 1q n -1=2n -1(n ∈N *).(2)由(1)知b n =2n -1+a n =2n -1+2n -1,∴S n =(1+1)+(3+2)+(5+22)+…+(2n -1+2n -1) =[1+3+5+…+(2n -1)]+(1+2+22+…+2n -1) =1+(2n -1)2·n +1-2n 1-2=n 2+2n -1.∵S n -(n 2+2n )=-1<0,∴S n <n 2+2n .规律方法 1.若数列{c n }的通项公式为c n =a n ±b n ,且{a n },{b n }为等差或等比数列,可采用分组求和法求数列{c n }的前n 项和.2.若数列{c n }的通项公式为c n =⎩⎨⎧a n ,n 为奇数,b n ,n 为偶数,其中数列{a n },{b n }是等比数列或等差数列,可采用分组求和法求{a n }的前n 项和.【训练1】 (2019·南昌一模)已知等差数列{a n }的前n 项和为S n ,且a 1=1,S 3+S 4=S 5.(1)求数列{a n }的通项公式;(2)令b n =(-1)n -1a n ,求数列{b n }的前2n 项和T 2n . 解 (1)设等差数列{a n }的公差为d ,由S 3+S 4=S 5可得a 1+a 2+a 3=a 5,即3a 2=a 5, ∴3(1+d )=1+4d ,解得d =2. ∴a n =1+(n -1)×2=2n -1. (2)由(1)可得b n =(-1)n -1·(2n -1).∴T 2n =1-3+5-7+…+(2n -3)-(2n -1)=(-2)×n =-2n . 考点二 裂项相消法求和【例2】 (2019·郑州模拟)已知数列{a n }的前n 项和为S n ,且a 2=8,S n =a n +12-n -1. (1)求数列{a n }的通项公式;(2)求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫2×3n a n a n +1的前n 项和T n .解 (1)∵a 2=8,S n =a n +12-n -1, ∴a 1=S 1=a 22-2=2,当n ≥2时,a n =S n -S n -1=a n +12-n -1-⎝ ⎛⎭⎪⎫a n 2-n ,即a n +1=3a n +2,又a 2=8=3a 1+2, ∴a n +1=3a n +2,n ∈N *, ∴a n +1+1=3(a n +1),∴数列{a n +1}是等比数列,且首项为a 1+1=3,公比为3, ∴a n +1=3×3n -1=3n ,∴a n =3n -1.(2)∵2×3n a n a n +1=2×3n (3n -1)(3n +1-1)=13n -1-13n +1-1. ∴数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫2×3n a n a n +1的前n 项和T n =⎝ ⎛⎭⎪⎫13-1-132-1+⎝ ⎛⎭⎪⎫132-1-133-1+…+⎝ ⎛⎭⎪⎫13n -1-13n +1-1=12-13n +1-1.规律方法 1.利用裂项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项.2.将通项公式裂项后,有时候需要调整前面的系数,使裂开的两项之差和系数之积与原通项公式相等.【训练2】 设S n 为等差数列{a n }的前n 项和,已知S 3=a 7,a 8-2a 3=3. (1)求a n ;(2)设b n =1S n ,求数列{b n }的前n 项和T n .解 (1)设数列{a n }的公差为d ,由题意得⎩⎨⎧3a 1+3d =a 1+6d ,(a 1+7d )-2(a 1+2d )=3,解得a 1=3,d =2,∴a n =a 1+(n -1)d =2n +1. (2)由(1)得S n =na 1+n (n -1)2d =n (n +2), ∴b n =1n (n +2)=12⎝ ⎛⎭⎪⎫1n -1n +2.∴T n =b 1+b 2+…+b n -1+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+…+⎝ ⎛⎭⎪⎫1n -1-1n +1+⎝ ⎛⎭⎪⎫1n -1n +2=12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2 =34-12⎝ ⎛⎭⎪⎫1n +1+1n +2.考点三 错位相减法求和【例3】 已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3. (1)求数列{a n }的通项公式;(2){b n }为各项非零的等差数列,其前n 项和为S n ,已知S 2n +1=b n b n +1,求数列⎩⎨⎧⎭⎬⎫b n a n 的前n 项和T n .解 (1)设{a n }的公比为q , 由题意知⎩⎨⎧a 1(1+q )=6,a 21q =a 1q 2, 又a n >0,解得⎩⎨⎧a 1=2,q =2,所以a n =2n .(2)由题意知:S 2n +1=(2n +1)(b 1+b 2n +1)2=(2n +1)b n +1,又S 2n +1=b n b n +1,b n +1≠0,所以b n =2n +1. 令c n =b na n,则c n =2n +12n ,因此T n =c 1+c 2+…+c n =32+522+723+…+2n -12n -1+2n +12n ,又12T n =322+523+724+…+2n -12n +2n +12n +1,两式相减得12T n =32+⎝ ⎛⎭⎪⎫12+122+…+12n -1-2n +12n +1, 所以T n =5-2n +52n .规律方法 1.一般地,如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,可采用错位相减法. 2.用错位相减法求和时,应注意:(1)要善于识别题目类型,特别是等比数列公比为负数的情形.(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,以便于下一步准确地写出“S n -qS n ”的表达式.【训练3】 已知等差数列{a n }满足:a n +1>a n (n ∈N *),a 1=1,该数列的前三项分别加上1,1,3后成等比数列,a n +2log 2b n =-1. (1)分别求数列{a n },{b n }的通项公式; (2)求数列{a n ·b n }的前n 项和T n .解 (1)设等差数列{a n }的公差为d ,则d >0,由a 1=1,a 2=1+d ,a 3=1+2d 分别加上1,1,3后成等比数列, 得(2+d )2=2(4+2d ),解得d =2(舍负),所以a n =1+(n -1)×2=2n -1. 又因为a n +2log 2b n =-1,所以log 2b n =-n ,则b n =12n . (2)由(1)知a n ·b n =(2n -1)·12n , 则T n =121+322+523+…+2n -12n ,① 12T n =122+323+524+…+2n -12n +1,② 由①-②,得12T n =12+2×⎝ ⎛⎭⎪⎫122+123+124+…+12n -2n -12n +1.∴12T n =12+2×14⎝ ⎛⎭⎪⎫1-12n -11-12-2n -12n +1, ∴T n =1+2-22n -1-2n -12n =3-4+2n -12n =3-3+2n2n.[思维升华]非等差、等比数列的一般数列求和,主要有两种思想1.转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相消来完成;2.不能转化为等差或等比的特殊数列,往往通过裂项相消法、错位相减法、倒序相加法等来求和. [易错防范]1.直接应用公式求和时,要注意公式的应用范围,如当等比数列公比为参数(字母)时,应对其公比是否为1进行讨论.2.在应用错位相减法时,要注意观察未合并项的正负号.3.在应用裂项相消法时,要注意消项的规律具有对称性,即前剩多少项则后剩多少项.基础巩固题组 (建议用时:40分钟)一、选择题1.(2017·全国Ⅲ卷)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( ) A.-24B.-3C.3D.8解析 设{a n }的公差为d ,根据题意得a 23=a 2·a 6,即(a 1+2d )2=(a 1+d )(a 1+5d ),解得d =-2,所以数列{a n }的前6项和为S 6=6a 1+6×52d =1×6+6×52×(-2)=-24. 【参考答案】A2.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于( ) A.200B.-200C.400D.-400解析 S 100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200. 【参考答案】B3.数列{a n }的通项公式是a n =1n +n +1,前n 项和为9,则n 等于( )A.9B.99C.10D.100解析 因为a n =1n +n +1=n +1-n ,所以S n =a 1+a 2+…+a n =(n +1-n )+(n -n -1)+…+(3-2)+(2-1)=n +1-1, 令n +1-1=9,得n =99. 【参考答案】B 4.(2019·合肥调研)已知T n 为数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫2n +12n 的前n 项和,若m >T 10+1 013恒成立,则整数m 的最小值为( ) A.1 026B.1 025C.1 024D.1 023解析 ∵2n +12n =1+⎝ ⎛⎭⎪⎫12n,∴T n =n +1-12n ,∴T 10+1 013=11-1210+1 013=1 024-1210, 又m >T 10+1 013恒成立, ∴整数m 的最小值为1 024. 【参考答案】C5.(2019·厦门质检)已知数列{a n }满足a n +1+(-1)n +1a n =2,则其前100项和为( ) A.250B.200C.150D.100解析 当n =2k (k ∈N *)时,a 2k +1-a 2k =2,当n =2k -1(k ∈N *)时,a 2k +a 2k -1=2,当n =2k +1(k ∈N *)时,a 2k +2+a 2k +1=2,∴a 2k +1+a 2k -1=4,a 2k +2+a 2k =0,∴{a n }的前100项和=(a 1+a 3)+…+(a 97+a 99)+(a 2+a 4)+…+(a 98+a 100)=25×4+25×0=100.【参考答案】D 二、填空题6.已知正项数列{a n }满足a 2n +1-6a 2n =a n +1a n .若a 1=2,则数列{a n }的前n 项和S n =________.解析 由a 2n +1-6a 2n =a n +1a n ,得(a n +1-3a n )(a n +1+2a n )=0, 又a n >0,所以a n +1=3a n ,又a 1=2,所以{a n }是首项为2,公比为3的等比数列, 故S n =2(1-3n )1-3=3n -1.【参考答案】3n -17.(2019·武汉质检)设数列{(n 2+n )a n }是等比数列,且a 1=16,a 2=154,则数列{3n a n }的前15项和为________.解析 等比数列{(n 2+n )a n }的首项为2a 1=13,第二项为6a 2=19,故公比为13,所以(n 2+n )a n =13·⎝ ⎛⎭⎪⎫13n -1=13n ,所以a n =13n (n 2+n ),则3n a n =1n 2+n =1n -1n +1,其前n 项和为1-1n +1,n =15时,为1-116=1516. 【参考答案】15168.(2019·福州调研)已知数列{na n }的前n 项和为S n ,且a n =2n ,且使得S n -na n +1+50<0的最小正整数n 的值为________. 解析 S n =1×21+2×22+…+n ×2n ,则2S n =1×22+2×23+…+n ×2n +1,两式相减得 -S n =2+22+ (2)-n ·2n +1=2(1-2n )1-2-n ·2n +1,故S n =2+(n -1)·2n +1. 又a n =2n ,∴S n -na n +1+50=2+(n -1)·2n +1-n ·2n +1+50 =52-2n +1,依题意52-2n +1<0,故最小正整数n 的值为5.【参考答案】5三、解答题9.已知数列{a n }的前n 项和S n =n 2+n 2,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =2a n +(-1)n a n ,求数列{b n }的前2n 项和. 解 (1)当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=n 2+n 2-(n -1)2+(n -1)2=n . a 1也满足a n =n ,故数列{a n }的通项公式为a n =n .(2)由(1)知a n =n ,故b n =2n +(-1)n n .记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+…+22n )+(-1+2-3+4-…+2n ). 记A =21+22+…+22n ,B =-1+2-3+4-…+2n ,则A =2(1-22n )1-2=22n +1-2, B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n . 故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2.10.设数列{a n }的前n 项和为S n ,a 1=2,a n +1=2+S n (n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =1+log 2(a n )2,求证:数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1b n b n +1的前n 项和T n <16.(1)解 因为a n +1=2+S n (n ∈N *),所以a n =2+S n -1(n ≥2),所以a n +1-a n =S n -S n -1=a n ,所以a n +1=2a n (n ≥2).又因为a 2=2+a 1=4,a 1=2,所以a 2=2a 1,所以数列{a n }是以2为首项,2为公比的等比数列, 则a n =2·2n -1=2n (n ∈N *).(2)证明 因b n =1+log 2(a n )2,则b n =2n +1.则1b n b n +1=12⎝ ⎛⎭⎪⎫12n +1-12n +3, 所以T n =12⎝ ⎛⎭⎪⎫13-15+15-17+…+12n +1-12n +3 =12⎝ ⎛⎭⎪⎫13-12n +3=16-12(2n +3)<16. 能力提升题组(建议用时:20分钟)11.(2019·广州模拟)已知数列{a n }满足a 1=1,a n +1-a n ≥2(n ∈N *),且S n 为{a n }的前n 项和,则( )A.a n ≥2n +1B.S n ≥n 2C.a n ≥2n -1D.S n ≥2n -1 解析 由题意得a 2-a 1≥2,a 3-a 2≥2,a 4-a 3≥2,…,a n -a n -1≥2, ∴a 2-a 1+a 3-a 2+a 4-a 3+…+a n -a n -1≥2(n -1), ∴a n -a 1≥2(n -1),∴a n ≥2n -1,∴a 1≥1,a 2≥3,a 3≥5,…,a n ≥2n -1,∴a 1+a 2+a 3+…+a n ≥1+3+5+…+2n -1,∴S n ≥n (1+2n -1)2=n 2. 【参考答案】B12.已知数列{a n }中,a n =-4n +5,等比数列{b n }的公比q 满足q =a n -a n -1(n ≥2)且b 1=a 2,则|b 1|+|b 2|+|b 3|+…+|b n |=________. 解析 由已知得b 1=a 2=-3,q =-4,∴b n =(-3)×(-4)n -1,∴|b n |=3×4n -1,即{|b n |}是以3为首项,4为公比的等比数列,∴|b 1|+|b 2|+…+|b n |=3(1-4n )1-4=4n -1. 【参考答案】4n -113.(2017·全国Ⅱ卷)等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,则∑nk =11S k=________. 解析 设等差数列{a n }的公差为d ,则由⎩⎪⎨⎪⎧a 3=a 1+2d =3,S 4=4a 1+4×32d =10,得⎩⎨⎧a 1=1,d =1. ∴S n =n ×1+n (n -1)2×1=n (n +1)2, 1S n =2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1. ∴∑nk =11S k =1S 1+1S 2+1S 3+…+1S n=2⎝ ⎛⎭⎪⎫1-12+12-13+13-14+…+1n -1n +1 =2⎝ ⎛⎭⎪⎫1-1n +1=2n n +1. 【参考答案】2n n +114.(2019·河南、河北两省联考)已知数列{a n }的前n 项和为S n ,a 1=5,nS n +1-(n +1)S n =n 2+n .(1)求证:数列⎩⎨⎧⎭⎬⎫S n n 为等差数列; (2)令b n =2n a n ,求数列{b n }的前n 项和T n .(1)证明 由nS n +1-(n +1)S n =n 2+n 得S n +1n +1-S n n=1, 又S 11=5,所以数列⎩⎨⎧⎭⎬⎫S n n 是首项为5,公差为1的等差数列. (2)解 由(1)可知S n n =5+(n -1)=n +4,所以S n =n 2+4n .当n ≥2时,a n =S n -S n -1=n 2+4n -(n -1)2-4(n -1)=2n +3. 又a 1=5也符合上式,所以a n =2n +3(n ∈N *), 所以b n =(2n +3)2n ,所以T n =5×2+7×22+9×23+…+(2n +3)2n ,① 2T n =5×22+7×23+9×24+…+(2n +1)2n +(2n +3)2n +1,② 所以②-①得T n =(2n +3)2n +1-10-(23+24+…+2n +1)=(2n +3)2n +1-10-23(1-2n -1)1-2=(2n+3)2n+1-10-(2n+2-8) =(2n+1)2n+1-2.。

高考数学 热点题型和提分秘籍 专题28 基本不等式及其应用 理(含解析)新人教A版-新人教A版高三全

高考数学 热点题型和提分秘籍 专题28 基本不等式及其应用 理(含解析)新人教A版-新人教A版高三全

2016年高考数学 热点题型和提分秘籍 专题28 基本不等式及其应用理(含解析)新人教A 版【高频考点解读】1.了解基本不等式的证明过程;2.会用基本不等式解决简单的最大(小)值问题. 【热点题型】题型一 利用基本不等式证明简单不等式 【例1】 已知x >0,y >0,z >0.求证:⎝ ⎛⎭⎪⎫y x +z x ⎝ ⎛⎭⎪⎫x y +z y ⎝ ⎛⎭⎪⎫x z +y z ≥8. 证明 ∵x >0,y >0,z >0,∴y x +z x≥2yz x>0,x y +z y≥2xz y>0, x z +y z ≥2xy z>0, ∴⎝ ⎛⎭⎪⎫y x +z x ⎝ ⎛⎭⎪⎫x y +z y ⎝ ⎛⎭⎪⎫x z +y z ≥8yz ·xz ·xy xyz =8,当且仅当x =y =z 时等号成立. 【提分秘籍】利用基本不等式证明新的不等式的基本思路是:利用基本不等式对所证明的不等式中的某些部分放大或者缩小,在含有三个字母的不等式证明中要注意利用对称性.【举一反三】已知a >0,b >0,c >0,且a +b +c =1. 求证:1a +1b +1c≥9.题型二利用基本不等式求最值 【例2】 解答下列问题:(1)已知a >0,b >0,且4a +b =1,求ab 的最大值; (2)若正数x ,y 满足x +3y =5xy ,求3x +4y 的最小值; (3)已知x <54,求f (x )=4x -2+14x -5的最大值;(4)已知函数f (x )=4x +ax(x >0,a >0)在x =3时取得最小值,求a 的值.(3)因为x <54,所以5-4x >0,则f (x )=4x -2+14x -5=-(5-4x +15-4x )+3≤-2+3=1.当且仅当5-4x =15-4x ,即x =1时,等号成立.故f (x )=4x -2+14x -5的最大值为1.(4)∵f (x )=4x +a x≥24x ·a x=4a ,当且仅当4x =a x,即4x 2=a 时f (x )取得最小值. 又∵x =3,∴a =4×32=36. 【提分秘籍】(1)利用基本不等式解决条件最值的关键是构造和为定值或乘积为定值,主要有两种思路:①对条件使用基本不等式,建立所求目标函数的不等式求解.②条件变形,进行“1”的代换求目标函数最值.(2)有些题目虽然不具备直接用基本不等式求最值的条件,但可以通过添项、分离常数、平方等手段使之能运用基本不等式.常用的方法还有:拆项法、变系数法、凑因子法、分离常数法、换元法、整体代换法等.【举一反三】(1)设a >0,若关于x 的不等式x +a x≥4在x ∈(0,+∞)上恒成立,则a 的最小值为( ) A .4 B .2 C .16 D .1(2)设0<x <52,则函数y =4x (5-2x )的最大值为______.(3)设x >-1,则函数y =(x +5)(x +2)x +1的最小值为________.【答案】 (1)A (2)252 (3)9【解析】题型三基本不等式的实际应用【例3】运货卡车以每小时x 千米的速度匀速行驶130千米,按交通法规限制50≤x ≤100(单位:千米/时).假设汽油的价格是每升2元,而汽车每小时耗油⎝ ⎛⎭⎪⎫2+x 2360升,司机的工资是每小时14元.(1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值.【提分秘籍】有关函数最值的实际问题的解题技巧(1)根据实际问题抽象出函数的解析式,再利用基本不等式求得函数的最值;(2)设变量时一般要把求最大值或最小值的变量定义为函数;(3)解应用题时,一定要注意变量的实际意义及其取值X 围;(4)在应用基本不等式求函数最值时,若等号取不到,可利用函数的单调性求解.【举一反三】首届世界低碳经济大会在某某召开,本届大会以“节能减排,绿色生态”为主题.某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为y =12x 2-200x +80 000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使该单位不亏损?【解析】 (1)由题意可知,二氧化碳每吨的平均处理成本为y x =12x +80 000x-200≥212x ·80 000x-200=200, 当且仅当12x =80 000x,即x =400时等号成立,故该单位月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为200元.(2)不获利.设该单位每月获利为S 元,则S =100x -y =100x -⎝ ⎛⎭⎪⎫12x 2-200x +80 000=-12x 2+300x -80 000=-12(x -300)2-35 000,因为x ∈[400,600],所以S ∈[-80 000,-40 000].故该单位每月不获利,需要国家每月至少补贴40 000元才能不亏损. 【高考风向标】1.【2015高考某某,理9】如果函数()()()()21281002f x m x n x m n =-+-+≥≥,在区间122⎡⎤⎢⎥⎣⎦,上单调递减,则mn 的最大值为( )(A )16 (B )18 (C )25 (D )812【答案】B 【解析】2.【2015高考某某,理9】设()ln ,0f x x a b =<<,若()p f ab =,()2a bq f +=,1(()())2r f a f b =+,则下列关系式中正确的是( )A .q r p =<B .q r p =>C .p r q =<D .p r q =>【答案】C【解析】()ln p f ab ab ==,()ln22a b a bq f ++==,11(()())ln ln 22r f a f b ab ab =+==,函数()ln f x x =在()0,+∞上单调递增,因为2a b ab +>,所以()()2a bf f ab +>,所以q p r >=,故选C . 3.(2014·某某卷)对于c >0,当非零实数a ,b 满足4a 2-2ab +4b 2-c =0且使|2a +b |最大时,3a -4b +5c的最小值为________.【答案】-2 【解析】4.(2014·某某卷)若⎝⎛⎭⎪⎫ax 2+b x 6的展开式中x 3项的系数为20,则a 2+b 2的最小值为________.【答案】2【解析】T r +1=C r6(ax 2)6-r·⎝ ⎛⎭⎪⎫b x r=C r 6a 6-r ·b r x 12-3r ,令12-3r =3,得r =3,所以C 36a 6-3b3=20,即a 3b 3=1,所以ab =1,所以a 2+b 2≥2ab =2,当且仅当a =b ,且ab =1时,等号成立.故a 2+b 2的最小值是2.5.(2014·某某卷)要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是 ( )A .80元B .120元C .160元D .240元【答案】C【解析】设底面矩形的长和宽分别为a m ,b m ,则ab =4(m 2).容器的总造价为20ab +2(a +b )×10=80+20(a +b )≥80+40ab =160(元)(当且仅当a =b 时等号成立).故选C.6.(2014·某某卷)若log 4(3a +4b )=log 2ab ,则a +b 的最小值是________. 【答案】7+4 3【解析】由log 4(3a +4b )=log 2ab 得3a +4b =ab , 且a >0,b >0,∴4a +3b=1,∴a +b =(a +b )·⎝ ⎛⎭⎪⎫4a +3b =7+⎝ ⎛⎭⎪⎫3a b+4b a ≥7+23a b ·4b a =7+43,当且仅当3a b=4ba时取等号.5.(2014·某某卷)已知F 为抛物线y 2=x 的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,OA →·OB →=2(其中O 为坐标原点),则△ABO 与△AFO 面积之和的最小值是( )A .2B .3 C.1728 D.10【答案】B 【解析】【高考押题】1.设非零实数a ,b ,则“a 2+b 2≥2ab ”是“a b +b a≥2”成立的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】 因为a ,b ∈R 时,都有a 2+b 2-2ab =(a -b )2≥0,即a 2+b 2≥2ab ,而a b +b a≥2⇔ab >0,所以“a 2+b 2≥2ab ”是“a b +b a≥2”的必要不充分条件,故选B.2.已知a >0,b >0,a +b =2,则y =1a +4b的最小值是( )A.72 B .4C.92D .5【答案】C【解析】 依题意,得1a +4b =12⎝ ⎛⎭⎪⎫1a +4b ·(a +b )=12[5+(b a +4a b )]≥12(5+2b a ·4a b )=92,当且仅当⎩⎪⎨⎪⎧a +b =2,b a =4a b ,a >0,b >0,即a =23, b =43时取等号,即1a +4b 的最小值是92.3.若正数x ,y 满足4x 2+9y 2+3xy =30,则xy 的最大值是( ) A.43B.53C .2D.54【答案】C【解析】 由x >0,y >0,得4x 2+9y 2+3xy ≥2·(2x )·(3y )+3xy (当且仅当2x =3y 时等号成立),∴12xy +3xy ≤30,即xy ≤2,∴xy 的最大值为2.4.已知a >0,b >0,a ,b 的等比中项是1,且m =b +1a ,n =a +1b,则m +n 的最小值是( )A .3B .4C .5D .6【答案】B【解析】 由题意知:ab =1,∴m =b +1a =2b ,n =a +1b=2a ,∴m +n =2(a +b )≥4ab =4.5.要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是 ( )A .80元B .120元C . 160元D .240元【答案】C 【解析】6.已知向量m =(2,1),n =(1-b ,a )(a >0,b >0).若m ∥n ,则ab 的最大值为________.【答案】18【解析】 依题意得2a =1-b ,即2a +b =1(a >0,b >0),因此1=2a +b ≥22ab ,即ab ≤18,当且仅当2a =b =12时取等号,因此ab 的最大值是18.7.已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________. 【答案】 6【解析】 由已知,得xy =9-(x +3y ),即3xy =27-3(x +3y )≤⎝ ⎛⎭⎪⎫x +3y 22,令x +3y =t ,则t 2+12t -108≥0,解得t ≥6,即x +3y ≥6.8.若log 4(3a +4b )=log 2ab ,则a +b 的最小值是________. 【答案】 7+4 3 【解析】9.已知x >0,y >0,且2x +5y =20. (1)求u =lg x +lg y 的最大值; (2)求1x +1y的最小值.解 (1)∵x >0,y >0,∴由基本不等式,得2x +5y ≥210xy .∵2x +5y =20,∴210xy ≤20,xy ≤10,当且仅当2x =5y 时,等号成立.因此有⎩⎪⎨⎪⎧2x +5y =20,2x =5y ,解得⎩⎪⎨⎪⎧x =5,y =2, 此时xy 有最大值10.∴u =lg x +lg y =lg(xy )≤lg 10=1.∴当x =5,y =2时,u =lg x +lg y 有最大值1.(2)∵x >0,y >0,∴1x +1y =⎝ ⎛⎭⎪⎫1x +1y ·2x +5y 20=120⎝⎛⎭⎪⎫7+5y x +2x y ≥120⎝ ⎛⎭⎪⎫7+25y x ·2x y =7+21020, 当且仅当5y x =2x y时,等号成立. 由⎩⎪⎨⎪⎧2x +5y =20,5y x =2x y ,解得⎩⎪⎨⎪⎧x =1010-203,y =20-4103. ∴1x +1y 的最小值为7+21020. 10.小王于年初用50万元购买一辆大货车,第一年因缴纳各种费用需支出6万元,从第二年起,每年都比上一年增加支出2万元,假定该车每年的运输收入均为25万元.小王在该车运输累计收入超过总支出后,考虑将大货车作为二手车出售,若该车在第x 年年底出售,其销售价格为(25-x )万元(国家规定大货车的报废年限为10年).(1)大货车运输到第几年年底,该车运输累计收入超过总支出?(2)在第几年年底将大货车出售,能使小王获得的年平均利润最大?(利润=累计收入+销售收入-总支出)。

版高考数学一轮总复习第2章函数的概念与基本初等函数第六节函数的图象模拟创新题文新人教A版【含答案】

版高考数学一轮总复习第2章函数的概念与基本初等函数第六节函数的图象模拟创新题文新人教A版【含答案】

【大高考】2017版高考数学一轮总复习 第2章 函数的概念与基本初等函数 第六节 函数的图象模拟创新题 文 新人教A 版选择题1.(2015·江西省质检三)函数y =-(x -2)|x |的递增区间是( ) A.[0,1] B.(-∞,1) C.(1,+∞)D.[0,1)和(2,+∞)解析 y =-(x -2)|x |=⎩⎪⎨⎪⎧-x 2+2x ,x >0,x 2-2x ,x ≤0,作出该函数的图象,观察图象知,其递增区间为[0,1]. 答案 A2.(2016·郑州质检)已知定义在R 上的函数f (x )=log 2(a x-b +1)(a >0,a ≠1)的图象如图所示,则a ,b 满足的关系是( ) A.0<1a <1b <1B.0<1b <a <1C.0<b <1a<1 D.0<1a<b <1解析 由题中图可知,a >1,f (0)=log 2(1-b +1),故0<log 2(1-b +1)<1, 即0<b <1.又f (-1)=log 2(a -1-b +1), 所以log 2(a -1-b +1)<0.故1a<b ,所以0<1a<b <1.故选D.答案 D3.(2015·青岛八中模拟)函数f (x )=ln ⎝⎛⎭⎪⎫x -1x 的图象是( )解析 自变量x 满足x -1x =x 2-1x>0,当x >0时可得x >1,当x <0时可得-1<x <0,即函数f (x )的定义域是(-1,0)∪(1,+∞),据此排除选项A , D. 又函数y =x -1x单调递增,则f (x )分别在(-1,0)和(1,+∞)上单调递增,故选B. 答案 B4.(2014·广东佛山调研)函数f (x )=2x -tan x 在⎝ ⎛⎭⎪⎫-π2,π2上的图象大致为( )解析 由题意知f (x )为奇函数,故排除A ,B ;当x →π2时,f (x )→-∞.故选C.答案 C创新导向题由图象确定函数解析式问题5.如图所示,该图象的函数解析式可能是( )A.y =2x -x 2-1 B.y =2xsin x 4x +1C.y =(x 2-2x )e xD.y =xln x解析 对于A ,当x =-1时,y =-32<0,不合题意;对于B ,当x =-π时,sin x =0,故y =0,不合题意;对于D ,当x <0时,函数无意义,故选C. 答案 C 知式选图问题6.已知f (x )=14x 2+sin ⎝ ⎛⎭⎪⎫π2+x ,f ′(x )为f (x )的导函数,则y =f ′(x )的图象大致是( )解析 因为f (x )=14x 2+cos x ,所以f ′(x )=12x -sin x ,f ′(x )为奇函数,排除B 、D ,令g (x )=12x -sin x ,则g ′(x )=12-cos x ,当0<x <π3时,g ′(x )<0,f ′(x )单调递减,当π3<x <5π3时,g ′(x )>0,f ′(x )单调递增,当5π3<x <2π时,g ′(x )<0,f ′(x )单调递减,故选A.答案 A专项提升测试 模拟精选题一、选择题7.使log 2(-x )<x +1成立的x 的取值范围是( ) A.(-1,0) B.[-1,0) C.(-2,0)D.[-2,0)解析 在同一坐标系内作出y =log 2(-x ),y =x +1的图象, 知满足条件的x ∈(-1,0),故选A.答案 A8.(2016·山东淄博诊断)设函数f (x )=a -x-ka x(a >0且a ≠1)在(-∞,+∞)上既是奇函数又是减函数,则g (x )=log a (x +k )的图象是( )解析 因为f (x )=a -x -ka x为R 上的奇函数,所以f (0)=1-k =0,k =1,又f (x )=⎝ ⎛⎭⎪⎫1ax-a x为减函数,所以a >1,g (x )=log a (x +1),由x >-1以及g (x )单调递增知C 项正确,故选C.答案 C9.(2016·齐鲁名校联合测试)已知定义在R 上的函数f (x )满足f (x +2)=2f (x ),当x ∈[0,2]时,f (x )=⎩⎪⎨⎪⎧x ,x ∈[0,1),-x 2+2x ,x ∈[1,2].则函数y =f (x )在[2,4]上的大致图象是( )解析 当2≤x <3时,0≤x -2<1,又f (x +2)=2f (x ),所以f (x )=2f (x -2)=2x -4,当3≤x ≤4时,1≤x -2≤2,又f (x +2)=2f (x ),所以f (x )=2f (x -2)=-2(x -2)2+4(x-2)=-2x 2+12x -16,所以f (x )=⎩⎪⎨⎪⎧2x -4,2≤x <3,-2x 2+12x -16,3≤x ≤4,所以A 正确. 答案 A 二、填空题10.(2014·广东广州模拟)设奇函数f (x )的定义域为[-5,5],若当x ∈[0,5]时,f (x )的图象如图,则不等式f (x )<0的解集是________.解析 由奇函数图象的特征可得f (x )在[-5,5]上的图象.由图象可知函数值小于零的范围是(-2,0)和(2,5],所以f (x )<0的解集是{x |-2<x <0,或2<x ≤5}. 答案 {x |-2<x <0,或2<x ≤5}创新导向题实际问题的图象确定11.如图所示,一种医用输液瓶可以视为两个圆柱的组合体,开始输液时,滴管内匀速滴下液体(滴管内液体忽略不计),设输液开始后x 分钟,瓶内液面与进气管的距离为h 厘米,已知当x =0时,h=13,如果瓶内的药液恰好156分钟滴完,则函数h=f(x)的图象为( )解析当x∈[0,144]时,h=f(x)直线下降,设其斜率为k1,当x∈[144,156]时,b =f(x)也直线下降,设其斜率为k2,显然常数k1<常数k2,故选A.答案 A。

创新设计高考数学人教A版理一轮复习配套

创新设计高考数学人教A版理一轮复习配套

第4讲平面向量应用举例[最新考纲]1.会用向量方法解决某些简单的平面几何问题.2.会用向量方法解决简单的力学问题与其他一些实际问题.知识梳理1.向量在平面几何中的应用向量在平面几何中的应用主要是用向量的线性运算及数量积解决平面几何中的平行、垂直、平移、全等、相似、长度、夹角等问题.(1)证明线段平行或点共线问题,包括相似问题,常用共线向量定理:a∥b(b≠0)?a=λb?x1y2-x2y1=0.(2)证明垂直问题,常用数量积的运算性质a⊥b?a·b=0?x1x2+y1y2=0(a,b均为非零向量).(3)求夹角问题,利用夹角公式cos θ=a·b|a||b|=x1x2+y1y2x21+y21x22+y22(θ为a与b的夹角).2.向量在三角函数中的应用与三角函数相结合考查向量的数量积的坐标运算及其应用是高考热点题型.解答此类问题,除了要熟练掌握向量数量积的坐标运算公式、向量模、向量夹角的坐标运算公式外,还应掌握三角恒等变换的相关知识.3.向量在解析几何中的应用向量在解析几何中的应用,是以解析几何中的坐标为背景的一种向量描述.它主要强调向量的坐标问题,进而利用直线和圆锥曲线的位置关系的相关知识来解答,坐标的运算是考查的主体.4.向量在物理中的应用物理学中的力、速度、位移都是矢量,它们的分解、合成与向量的加减法相似,因此可以用向量的知识来解决某些物理问题.学生用书第76页1.向量与其他数学知识的交汇(1)已知△ABC 中,BC 边最长,AB →=a ,AC →=b ,且a ·b >0,则△ABC 的形状为钝角三角形.(×)(2)在四边形ABCD 中,AB →=DC →,且AC →·BD →=0,则四边形ABCD 是矩形.(×) (3)(2014·贵州调研改编)在平面直角坐标系xOy 中,若定点A (1,2)与动点P (x ,y )满足OP →·OA →=4,则点P 的轨迹方程是x +2y -4=0.(√) 2.平面向量在物理中的应用(4)作用于同一点的两个力F 1和F 2的夹角为2π3,且|F 1|=3,|F 2|=5,则F 1+F 2大小为19.(√)(5)已知一物体在共点力F 1=(lg 2,lg 2),F 2=(lg 5,lg 2)的作用下产生位移s =(2lg 5,1),则共点力对物体做的功W 为2.(√) [感悟·提升]1.一个手段实现平面向量与三角函数、平面向量与解析几何之间的转化的主要手段是向量的坐标运算. 2.两条主线(1)向量兼具代数的抽象与严谨和几何的直观与形象,向量本身是一个数形结合的产物,在利用向量解决问题时,要注意数与形的结合、代数与几何的结合、形象思维与逻辑思维的结合.(2)要注意变换思维方式,能从不同角度看问题,要善于应用向量的有关性质解题.考点一 向量在平面几何中的应用【例1】 (1)(2013·新课标全国Ⅱ卷)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE →·BD →=________.(2)(2013·天津卷)在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC →·BE →=1,则AB 的长为________.审题路线 (1)法一:把向量AE →与BD →分别用基底AD →,AB →表示. 法二:建立平面直角坐标系?求向量AE →,BD →的坐标.(2)把向量AC →与BE →分别用基底AB →,AD →表示?利用AC →·BE →=1整理?建立关于|AB →|的一元二次方程?解得|AB →|.解析 (1)法一 AE →·BD →=⎝ ⎛⎭⎪⎫AD →+12AB →·(AD →-AB →)=AD →2-12AB →2=22-12×22=2.法二 以A 为原点建立平面直角坐标系(如图).则A (0,0),B (2,0),C (2,2),D (0,2),E (1,2).∴AE →=(1,2),BD →=(-2,2).从而AE →·BD →=(1,2)·(-2,2)=1×(-2)+2×2=2.(2)由题意可知,AC →=AB →+AD →,BE →=-12AB →+AD →.因为AC →·BE →=1,所以(AB →+AD →)·⎝ ⎛⎭⎪⎫-12AB →+AD →=1,即AD →2+12AB →·AD →-12AB →2=1.①因为|AD →|=1,∠BAD =60°,所以AB →·AD →=12|AB →|,因此①式可化为1+14|AB →|-12|AB →|2=1,解得|AB →|=0(舍去)或12,所以AB 的长为12. 答案 (1)2 (2)12规律方法 用平面向量解决平面几何问题时,有两种方法:基向量法和坐标系法,建立平面直角坐标系时一般利用已知的垂直关系,或使较多的点落在坐标轴上,这样便于迅速解题.【训练1】 (1)(2014·杭州质检)在边长为1的菱形ABCD 中,∠BAD =60°,E 是BC 的中点,则AC →·AE →=( ).(2)在△ABC 所在平面上有一点P ,满足PA →+PB →+PC →=AB →,则△PAB 与△ABC 的面积之比值是( ).解析 (1)建立如图平面直角坐标系,则A ⎝ ⎛⎭⎪⎫-32,0,C ⎝ ⎛⎭⎪⎫32,0,B ⎝⎛⎭⎪⎫0,-12.∴E 点坐标为⎝ ⎛⎭⎪⎫34,-14,∴AC →=(3,0),AE →=⎝ ⎛⎭⎪⎫334,-14,∴AC →·AE →=3×334=94.(2)由已知可得PC →=2AP →,∴P 是线段AC 的三等分点(靠近点A ), 易知S △PAB =13S △ABC ,即S △PAB ∶S △ABC =1∶3.答案 (1)D (2)A考点二 向量在三角函数中的应用【例2】 设向量a =(4cos α,sin α),b =(sin β,4cos β),c =(cos β,-4sin β).(1)若a 与b -2c 垂直,求tan(α+β)的值; (2)求|b +c |的最大值;(3)若tan αtan β=16,求证:a ∥b .(1)解 因为a 与b -2c 垂直,所以a ·(b -2c )=4cos αsin β-8cos αcos β+4sin αcos β+8sin αsin β=4sin(α+β)-8cos(α+β)=0, 因此tan(α+β)=2.(2)解 由b +c =(sin β+cos β,4cos β-4sin β),得 |b +c |=?sin β+cos β?2+?4cos β-4sin β?2 =17-15sin 2β≤4 2. 又当β=k π-π4(k ∈Z )时,等号成立, 所以|b +c |的最大值为4 2.(3)证明 由tan αtan β=16,得4cos αsin β=sin α4cos β,所以a ∥b .规律方法 (1)题目条件给出向量的坐标中含有三角函数的形式,运用向量共线或垂直或等式成立等,得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等.【训练2】 (2013·江苏卷)已知向量a =(cos α,sin α),b =(cos β,sin β),0<β<α<π.(1)若|a -b |=2,求证:a ⊥b ;(2)设c =(0,1),若a +b =c ,求α,β的值. 解 (1)由题意得|a -b |2=2, 即(a -b )2=a 2-2a ·b +b 2=2.又因为a 2=b 2=|a |2=|b |2=1,所以2-2a ·b =2, 即a ·b =0,故a ⊥b .(2)因为a +b =(cos α+cos β,sin α+sin β)=(0,1), 所以⎩⎨⎧cos α+cos β=0,sin α+sin β=1,由此得,cos α=cos(π-β),由0<β<π,得0<π-β<π, 又0<α<π,故α=π-β.代入sin α+sin β=1得,sin α=sin β=12,而α>β,所以α=5π6,β=π6. 学生用书第77页【例3】 (2013·湖南卷)已知平面上一定点C (2,0)和直线l :x =8,P 为该平面上一动点,作PQ ⊥l ,垂足为Q ,且⎝ ⎛⎭⎪⎫PC →+12PQ →·⎝ ⎛⎭⎪⎫PC →-12PQ →=0.(1)求动点P 的轨迹方程;(2)若EF 为圆N :x 2+(y -1)2=1的任一条直径,求PE →·PF →的最值. 解 (1)设P (x ,y ),则Q (8,y ). 由(PC →+12PQ →)·(PC →-12PQ →)=0,得|PC →|2-14|PQ →|2=0,即(x -2)2+y 2-14(x -8)2=0,化简得x 216+y 212=1.所以点P 在椭圆上,其方程为x 216+y 212=1.(2)因PE →·PF →=(NE →-NP →)·(NF →-NP →)=(-NF →-NP →)·(NF →-NP →)=(-NP →)2-NF →2=NP →2-1,P 是椭圆x 216+y 212=1上的任一点,设P (x 0,y 0),则有x 2016+y 2012=1,即x 2=16-4y 203,又N (0,1),所以NP →2=x 20+(y 0-1)2=-13y 20-2y 0+17=-13(y 0+3)2+20.因y 0∈[-23,23],所以当y 0=-3时,NP →2取得最大值20,故PE →·PF →的最大值为19;当y 0=23时,NP →2取得最小值为13-43(此时x 0=0),故PE →·PF →的最小值为12-4 3.规律方法 向量在解析几何中的作用(1)载体作用:向量在解析几何问题中出现,多用于“包装”,解决此类问题时关键是利用向量的意义、运算脱去“向量外衣”,导出曲线上点的坐标之间的关系,从而解决有关距离、斜率、夹角、轨迹、最值等问题.(2)工具作用:利用a ⊥b ?a ·b =0;a ∥b ?a =λb (b ≠0),可解决垂直、平行问题,特别地,向量垂直、平行的坐标表示对于解决解析几何中的垂直、平行问题是一种比较可行的方法.【训练3】 已知点P (0,-3),点A 在x 轴上,点Q 在y 轴的正半轴上,点M 满足PA →·AM →=0,AM →=-32MQ →,当点A 在x 轴上移动时,求动点M 的轨迹方程.解 设M (x ,y )为所求轨迹上任一点,设A (a,0),Q (0,b )(b >0),则PA →=(a,3),AM →=(x -a ,y ),MQ →=(-x ,b -y ), 由PA →·AM →=0,得a (x -a )+3y =0.① 由AM →=-32MQ →,得(x -a ,y )=-32(-x ,b -y )=⎝ ⎛⎭⎪⎫32x ,32?y -b ?,∴⎩⎪⎨⎪⎧x -a =32x ,y =32y -32b ,∴⎩⎪⎨⎪⎧a =-x2,b =y 3.把a =-x2代入①,得-x 2⎝ ⎛⎭⎪⎫x +x 2+3y =0,整理得y =14x 2(x ≠0).所以动点M 的轨迹方程为y =14x 2(x ≠0).1.向量的坐标运算将向量与代数有机结合起来,这就为向量和函数的结合提供了前提,运用向量的有关知识可以解决某些函数问题.2.以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解不等式或求函数值域,是解决这类问题的一般方法.3.解析几何问题和向量的联系:可将向量用点的坐标表示,利用向量运算及性质解决解析几何问题.创新突破5——破解平面向量与圆的交汇问题【典例】 (2013·湖南卷改编)已知a ,b 是单位向量,a ·b =0?.若向量c 满足|c -a -b |=1?,则|c |的最大值为________. 突破1:根据条件?转化到平面直角坐标系中.突破2:把条件?坐标化.突破3:把坐标化后的式子配方整理可得到圆的方程. 突破4:利用圆的知识求|c |max .解析 建立如图所示的直角坐标系,由题意知a ⊥b ,且a 与b 是单位向量, ∴可设OA →=a =(1,0),OB →=b =(0,1),OC →=c =(x ,y ). ∴c -a -b =(x -1,y -1), ∵|c -a -b |=1,∴(x -1)2+(y -1)2=1,即点C (x ,y )的轨迹是以M (1,1)为圆心,1为半径的圆. 而|c |=x 2+y 2,∴|c |的最大值为|OM |+1, 即|c |max =2+1. 答案2+1 [反思感悟] 平面向量中有关最值问题的求解通常有两种思路:一是“形化”,即利用平面向量的几何意义将问题转化为平面几何中的最值或范围问题,然后根据平面图形的特征直接进行判断;二是“数化”,即利用平面向量的坐标运算,把问题转化为代数中的函数最值与值域、不等式的解集、方程有解等问题,然后利用函数、不等式、方程的有关知识来解决.本题采用了“形化”与“数化”的结合,利用坐标运算将问题转化为圆的知识解决. 【自主体验】1.△ABC 外接圆的半径为1,圆心为O ,且2 OA →+AB →+AC →=0,|OA →|=|AB →|,则CA →·CB →=( ). C .3 D .23解析 由2 OA →+AB →+AC →=0,得2 OA →+OB →-OA →+OC →-OA →=0,即OB →=-OC →,即O ,B ,C 三点共线,BC 为△ABC 外接圆的直径,故∠BAC =90°.又|OA →|=|AB →|,得B =60°,所以C =30°,且|CA →|=3(如图所示). 所以CA →·CB →=|CA →||CB →|cos 30°=3×2×32=3.答案 C2.给定两个长度为1的平面向量OA →和OB →,它们的夹角为2π3.如图所示,点C 在以O 为圆心的圆弧AB →上运动.若OC →=x OA →+y OB →,其中x ,y ∈R ,则x +y 的最大值是________.解析法一 以O 为坐标原点,OA →所在的直线为x 轴建立平面直角坐标系,如图所示,则A (1,0),B ⎝⎛⎭⎪⎫-12,32, 设∠AOC =α⎝ ⎛⎭⎪⎫α∈⎣⎢⎡⎦⎥⎤0,2π3,则C (cos α,sin α), 由OC →=x OA →+y OB →, 得⎩⎪⎨⎪⎧cos α=x -12y ,sin α=32y ,所以x =cos α+33sin α,y =233sin α, 所以x +y =cos α+3sin α=2sin ⎝ ⎛⎭⎪⎫α+π6,又α∈⎣⎢⎡⎦⎥⎤0,2π3,所以当α=π3时,x +y 取得最大值2.法二 依题意,|OC →|=1,则|OC →|2=1, 又OC →=xOA →+yOB →,|OA →|=|OB →|=1, <OA →,OB →>=120°,∴x 2·OA →2+y 2·OB →2+2xyOA →·OB →=1,因此x 2+y 2+2xy cos 120°=1,xy =x 2+y 2-1. ∴3xy =(x +y )2-1≤3⎝⎛⎭⎪⎫x +y 22,即(x +y )2≤4. ∴x +y 的最大值是2. 答案 2基础巩固题组(建议用时:40分钟)一、选择题1.(2014·邵阳模拟)已知a =(1,sin 2x ),b =(2,sin 2x ),其中x ∈(0,π).若|a ·b |=|a ||b |,则tan x 的值等于( ). A .1 B .-1 C. 3 解析 由|a ·b |=|a ||b |知,a ∥b .所以sin 2x =2sin 2x ,即2sin x cos x =2sin 2x , 而x ∈(0,π),所以sin x =cos x ,即x =π4,故tan x =1. 答案 A2.(2014·南昌模拟)若|a |=2sin 15°,|b |=4cos 15°,a 与b 的夹角为30°,则a ·b 的值是( ). C .2 3解析 a ·b =|a ||b |cos 30°=8sin 15°cos 15°×32=4×sin 30°×32=3. 答案 B 3.(2013·哈尔滨模拟)函数y =tan π4x -π2的部分图象如图所示,则(OA →+OB →)·AB→=( ).A .4B .6C .1D .2 解析 由条件可得B (3,1),A (2,0),∴(OA →+OB →)·AB →=(OA →+OB →)·(OB →-OA →)=OB →2-OA →2=10-4=6. 答案 B4.已知|a |=2|b |,|b |≠0且关于x 的方程x 2+|a |x -a ·b =0有两相等实根,则向量a 与b 的夹角是( ). A .-π6 B .-π3解析 由已知可得Δ=|a |2+4a ·b =0, 即4|b |2+4×2|b |2cos θ=0,∴cos θ=-12,又∵0≤θ≤π,∴θ=2π3. 答案 D5.(2014·安庆二模)在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对应的三角形的边长,若4aBC →+2bC A →+3cAB →=0,则cos B =( ).A .-1124 D .-2936解析 由4aBC →+2bC A →+3cAB →=0,得4aBC →+3cAB →=-2bC A →=-2b (BA →-BC →)=2bAB →+ 2bBC →,所以4a =3c =2b .由余弦定理得cos B =a 2+c 2-b 22ac =b 24+49b 2-b 22·b 2·23b =-1124.答案 A 二、填空题6.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若AB →·AC →=BA →·BC →=1,那么c =________.解析 由题意知AB →·AC →+BA →·BC →=2, 即AB →·AC →-AB →·BC →=AB →·(AC →+CB →) =AB →2=2?c =|AB →|= 2.答案 27.(2014·南通一调)在△ABC 中,若AB =1,AC =3,|AB →+AC →|=|BC →|,则BA →·BC →|BC →|=________.解析 易知满足|AB →+AC →|=|BC →|的A ,B ,C 构成直角三角形的三个顶点,且∠A为直角,于是BA →·BC →|BC →|=|BA →|·cos∠ABC =1×cos 60°=12.答案 128.(2013·东北三校一模)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若(3b -c )cos A =a cos C ,S △ABC =2,则BA →·AC →=________. 解析 依题意得(3sin B -sin C )cos A =sin A cos C ,即3sin B cos A =sin A cos C +sin C cos A =sin(A +C )=sin B >0, 于是有cos A =13,sin A =1-cos 2A =223,又S △ABC =12·bc sin A =12bc ×223=2,所以bc =3,BA →·AC →=bc cos(π-A )=-bc cos A =-3×13=-1.答案 -1 三、解答题9.已知圆C :(x -3)2+(y -3)2=4及点A (1,1),M 是圆C 上的任意一点,点N 在线段MA 的延长线上,且MA →=2AN →,求点N 的轨迹方程. 解 设M (x 0,y 0),N (x ,y ).由MA →=2AN →,得 (1-x 0,1-y 0)=2(x -1,y -1),∴⎩⎨⎧x 0=3-2x ,y 0=3-2y .∵点M (x 0,y 0)在圆C 上,∴(x 0-3)2+(y 0-3)2=4,即(3-2x -3)2+(3-2y -3)2=4.∴x 2+y 2=1. ∴所求点N 的轨迹方程是x 2+y 2=1.10.(2014·北京海淀模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若AB →·AC →=BA →·BC →=k (k ∈R ). (1)判断△ABC 的形状; (2)若c =2,求k 的值.解 (1)∵AB →·AC →=cb cos A ,BA →·BC →=ca cos B , 又AB →·AC →=BA →·BC →,∴bc cos A =ac cos B , ∴sin B cos A =sin A cos B ,即sin A cos B -sin B cos A =0,∴sin(A -B )=0, ∵-π<A -B <π,∴A =B ,即△ABC 为等腰三角形.(2)由(1)知,AB →·AC →=bc cos A =bc ·b 2+c 2-a 22bc =c 22=k ,∵c =2,∴k =1.能力提升题组 (建议用时:25分钟)一、选择题1.已知向量OB →=(2,0),向量OC →=(2,2),向量CA →=(2cos α,2sin α),则向量OA →与向量OB →的夹角的取值范围是( ).解析 由题意,得OA →=OC →+CA →=(2+2cos α,2+2sin α),所以点A 的轨迹是圆(x -2)2+(y -2)2=2,如图,当A 位于使直线OA 与圆相切时,向量OA →与向量OB →的夹角分别达到最大、最小值,故选D. 答案 D2.(2014·北京东城区期末)已知△ABD 是等边三角形,且AB →+12AD →=AC →,|CD →|=3,那么四边形ABCD 的面积为( ). 3 C .3 3 3 解析如图所示,CD →=AD →-AC →=12AD →-AB →,∴CD →2=⎝ ⎛⎭⎪⎫12AD →-AB →2,即3=14AD →2+AB →2-AD →·AB →,∵|AD →|=|AB →|,∴54|AD →|2-|AD →||AB →|cos 60°=3,∴|AD →|=2. 又BC →=AC →-AB →=12AD →,∴|BC →|=12|AD →|=1,∴|BC →|2+|CD →|2=|BD →|2,∴BC ⊥CD .∴S 四边形ABCD =S △ABD +S △BCD =12×22×sin 60°+12×1×3=32 3,故选B.答案 B二、填空题3.(2014·苏锡常镇二调)已知向量a ,b 满足|a |=2,|b |=1,且对一切实数x ,|a +x b |≥|a +b |恒成立,则a 与b 的夹角大小为________.解析 |a |=2,|b |=1,|a +x b |≥|a +b |对一切实数x 恒成立,两边平方整理得x 2+2a ·b x -2a ·b -1≥0对一切实数x 恒成立,所以(2a ·b )2+4(2a ·b+1)≤0,即(a ·b +1)2≤0,所以a ·b =-1,故cos<a ,b >=a ·b |a ||b |=-22,又<a ,b >∈[0,π],所以<a ,b >=3π4,即a ,b 的夹角是3π4.答案3π4三、解答题4.(2014·南通模拟)已知向量m =⎝ ⎛⎭⎪⎫3sin x 4,1,n =⎝⎛⎭⎪⎫cos x 4,cos 2x 4. (1)若m ·n =1,求cos ⎝ ⎛⎭⎪⎫2π3-x 的值; (2)记f (x )=m ·n ,在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且满足(2a -c )cos B =b cos C ,求函数f (A )的取值范围. 解 (1)m ·n =3sin x 4·cos x 4+cos 2x4 =32sin x2+1+cosx 22=sin ⎝ ⎛⎭⎪⎫x 2+π6+12,∵m ·n =1,∴sin ⎝ ⎛⎭⎪⎫x 2+π6=12.cos ⎝ ⎛⎭⎪⎫x +π3=1-2sin 2⎝ ⎛⎭⎪⎫x 2+π6=12,cos ⎝⎛⎭⎪⎫2π3-x =-cos ⎝ ⎛⎭⎪⎫x +π3=-12. (2)∵(2a -c )cos B =b cos C ,由正弦定理得(2sin A -sin C )cos B =sin B cos C ,∴2sin A cos B -sin C cos B =sin B cos C . ∴2sin A cos B =sin(B +C ).∵A +B +C =π,∴sin(B +C )=sin A ≠0. ∴cos B =12,∵0<B <π,∴B =π3,∴0<A <2π3.∴π6<A 2+π6<π2,sin ⎝ ⎛⎭⎪⎫A 2+π6∈⎝ ⎛⎭⎪⎫12,1. 又∵f (x )=sin ⎝ ⎛⎭⎪⎫x 2+π6+12,∴f (A )=sin ⎝ ⎛⎭⎪⎫A 2+π6+12.故函数f (A )的取值范围是⎝⎛⎭⎪⎫1,32.方法强化练——平面向量 (对应学生用书P283)(建议用时:90分钟)一、选择题1.(2014·福建质检)已知向量a =(m 2,4),b =(1,1),则“m =-2”是“a ∥b ”的( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析 依题意,当m =-2时,a =(4,4),b =(1,1),所以a =4b ,即a ∥b ,即由m =-2可以推出a ∥b ;当a ∥b 时,m 2=4,得,m =±2,所以不能推得m =-2,即“m =-2”是“a ∥b ”的充分不必要条件. 答案 A2.(2013·德州一模)已知向量a =(2,3),b =(k,1),若a +2b 与a -b 平行,则k 的值是( ).A .-6B .-23D .14解析 由题意得a +2b =(2+2k,5),且a -b =(2-k,2),又因为a +2b 和a -b 平行,则2(2+2k )-5(2-k )=0,解得k =23.答案 C3.(2013·浙江五校联考)已知|a |=|b |=|a -2b |=1,则|a +2b |=( ). A .9 B .3 C .1 D .2解析 由|a |=|b |=|a -2b |=1,得a 2-4a ·b +4b 2=1, ∴4a ·b =4,∴|a +2b |2=a 2+4a ·b +4b 2=5+4=9, ∴|a +2b |=3. 答案 B4.(2014·郑州一模)已知平面向量a =(-2,m ),b =(1,3),且(a -b )⊥b ,则实数m 的值为( ).A .-2 3B .2 3C .4 3D .63解析 因为(a -b )⊥b ,所以(a -b )·b =a ·b -b 2=0,即-2+3m -4=0,解得m =2 3. 答案 B5.(2014·长春一模)已知|a |=1,|b |=6,a ·(b -a )=2,则向量a 与b 的夹角为( ).解析 a ·(b -a )=a ·b -a 2=2,所以a ·b =3,所以cos<a ,b >=a ·b |a ||b |=31×6=12.所以<a ,b >=π3.答案 B6.(2013·潮州二模)已知向量a =(1,-cos θ),b =(1,2cos θ)且a ⊥b ,则cos 2θ等于( ). A .-1 B .0 C.12解析 a ⊥b ?a ·b =0,即1-2cos 2θ=0,∴cos 2θ=0. 答案 B7.(2014·成都期末测试)已知O 是△ABC 所在平面内一点,D 为BC 边中点,且2OA →+OB →+OC →=0,则有( ). =2OD → =OD →=3OD →D .2AO →=OD →解析 由2OA →+OB →+OC →=0,得OB →+OC →=-2OA →=2AO →,即OB →+OC →=2OD →=2AO →,所以OD →=AO →,即O 为AD 的中点. 答案 B8.(2013·潍坊一模)平面上有四个互异点A ,B ,C ,D ,已知(DB →+DC →-2DA →)·(AB →-AC →)=0,则△ABC 的形状是( ). A .直角三角形 B .等腰三角形 C .等腰直角三角形 D .无法确定 解析 由(DB →+DC →-2DA →)·(AB →-AC →)=0, 得[(DB →-DA →)+(DC →-DA →)]·(AB →-AC →)=0, 所以(AB →+AC →)·(AB →-AC →)=0. 所以|AB →|2-|AC →|2=0,∴|AB →|=|AC →|, 故△ABC 是等腰三角形. 答案 B9.(2013·兰州一模)在△ABC 中,G 是△ABC 的重心,AB ,AC 的边长分别为2,1,∠BAC =60°.则AG →·BG →=( ). A .-89 B .-109 D .-5-39解析 由AB =2,AC =1,∠BAC =60°,所以BC =3,∠ACB =90°,将直角三角形放入直角坐标系中,如图所示,则A (0,1),B (-3,0),所以重心G ⎝ ⎛⎭⎪⎫-33,13,所以AG →=⎝ ⎛⎭⎪⎫-33,-23,BG →=⎝ ⎛⎭⎪⎫233,13,所以AG →·BG →=⎝ ⎛⎭⎪⎫-33,-23·⎝ ⎛⎭⎪⎫233,13=-89. 答案 A10.(2014·皖南八校第三次联考)已知正方形ABCD (字母顺序是A →B →C →D )的边长为1,点E 是AB 边上的动点(可以与A 或B 重合),则DE →·CD →的最大值是( ).A .1 C .0 D .-1解析 建立直角坐标系如图所示,设E (x,0),x ∈[0,1],则D (0,1),C (1,1),B (1,0),所以DE →·CD →=(x ,-1)·(-1,0)=-x ,当x =0时取得最大值0. 答案 C 二、填空题11.(2013·济南模拟)若a =(1,-2),b =(x,1),且a ⊥b ,则x =________. 解析 由a ⊥b ,得a ·b =x -2=0,∴x =2. 答案 212.(2013·昆明期末考试)已知向量a =(1,1),b =(2,0),则向量a ,b 的夹角为________.解析 a =(1,1),b =(2,0),∴|a |=2,|b |=2,∴cos<a ,b >=a ·b |a ||b |=222=22,∴<a ,b >=π4.答案π413.(2014·杭州质检)在Rt △ABC 中,∠C =90°,∠A =30°,BC =1,D 为斜边AB 的中点,则AB →·CD →=________.解析 AB →·CD →=AB →·(AD →-AC →)=AB →·AD →-AB →·AC →=2×1-2×3cos 30°=-1. 答案 -114.(2014·湖南长郡中学、衡阳八中联考)已知G 1,G 2分别为△A 1B 1C 1与△A 2B 2C 2的重心,且A 1A 2→=e 1,B 1B 2→=e 2,C 1C 2→=e 3,则G 1G 2→=________(用e 1,e 2,e 3表示). 解析 由A 1A 2→=A 1G 1→+G 1G 2→+G 2A 2→=e 1 ①,B 1B 2→=B 1G 1→+G 1G 2→+G 2B 2→=e 2 ②,C 1C 2→=C 1G 1→+G 1G 2→+G 2C 2→=e 3 ③,且G 1,G 2分别为△A 1B 1C 1与△A 2B 2C 2的重心,所以A 1G 1→+B 1G 1→+C 1G 1=0,G 2A 2→+G 2B 2→+G 2C 2→=0,将①②③相加得G 1G 2→=13(e 1+e 2+e 3). 答案13(e 1+e 2+e 3) 三、解答题15.(2013·漯河调研)在平面直角坐标系中,O 为坐标原点,已知向量a =(2,1),A (1,0),B (cos θ,t ).(1)若a ∥AB →,且|AB →|=5|OA →|,求向量OB →的坐标; (2)若a ∥AB →,求y =cos 2θ-cos θ+t 2的最小值. 解 (1)∵AB →=(cos θ-1,t ),又a ∥AB →,∴2t -cos θ+1=0.∴cos θ-1=2t .① 又∵|AB →|=5|OA →|,∴(cos θ-1)2+t 2=5.② 由①②得,5t 2=5,∴t 2=1.∴t =±1.当t =1时,cos θ=3(舍去),当t =-1时,cos θ=-1, ∴B (-1,-1),∴OB →=(-1,-1). (2)由(1)可知t =cos θ-12, ∴y =cos 2θ-cos θ+?cos θ-1?24=54cos 2θ-32cos θ+14=54⎝ ⎛⎭⎪⎫cos 2θ-65cos θ+14=54⎝⎛⎭⎪⎫cos θ-352-15,∴当cos θ=35时,y min =-15.16.设向量a =(3sin x ,sin x ),b =(cos x ,sin x ),x ∈⎣⎢⎡⎦⎥⎤0,π2.(1)若|a |=|b |,求x 的值;(2)设函数f (x )=a ·b ,求f (x )的最大值. 解 (1)由|a |2=(3sin x )2+(sin x )2=4sin 2 x , |b |2=(cos x )2+(sin x )2=1,及|a |=|b |,得4sin 2 x =1. 又x ∈⎣⎢⎡⎦⎥⎤0,π2,从而sin x =12,所以x =π6.(2)f (x )=a ·b =3sin x ·cos x +sin 2 x =32sin 2x -12cos 2x +12=sin ⎝ ⎛⎭⎪⎫2x -π6+12,当x =π3∈⎣⎢⎡⎦⎥⎤0,π2时,sin ⎝⎛⎭⎪⎫2x -π6取最大值1.所以f (x )的最大值为32.17.(2013·银川调研)已知点G 是△ABO 的重心,M 是AB 边的中点. (1)求GA →+GB →+GO →;(2)若PQ 过△ABO 的重心G ,且OA →=a ,OB →=b ,OP →=m a ,OQ →=n b ,求证:1m +1n=3.(1)解 ∵GA →+GB →=2GM →,又2GM →=-GO →, ∴GA →+GB →+GO →=-GO →+GO →=0. (2)证明 显然OM →=12(a +b ).因为G 是△ABO 的重心,所以OG →=23OM →=13(a +b ).由P ,G ,Q 三点共线,得PG →∥GQ →,所以,有且只有一个实数λ,使PG →=λGQ →. 而PG →=OG →-OP →=13(a +b )-m a =⎝ ⎛⎭⎪⎫13-m a +13b ,GQ →=OQ →-OG →=n b -13(a +b )=-13a +⎝ ⎛⎭⎪⎫n -13b ,所以⎝ ⎛⎭⎪⎫13-m a +13b =λ⎣⎢⎡⎦⎥⎤-13a +⎝ ⎛⎭⎪⎫n -13b .又因为a ,b 不共线,所以⎩⎪⎨⎪⎧13-m =-13λ,13=λ⎝ ⎛⎭⎪⎫n -13,消去λ,整理得3mn =m +n ,故1m +1n=3.18.(2014·太原模拟)已知f (x )=a ·b ,其中a =(2cos x ,-3sin 2x ),b =(cos x,1)(x ∈R ).(1)求f (x )的周期和单调递减区间;(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,f (A )=-1,a =7,AB →·AC →=3,求边长b 和c 的值(b >c ).解 (1)由题意知,f (x )=2cos 2x -3sin 2x =1+cos 2x -3sin 2x =1+2cos⎝ ⎛⎭⎪⎫2x +π3, ∴f (x )的最小正周期T =π,∵y =cos x 在[2k π,2k π+π](k ∈Z )上单调递减, ∴令2k π≤2x +π3≤2k π+π(k ∈Z ), 得k π-π6≤x ≤k π+π3(k ∈Z ). ∴f (x )的单调递减区间⎣⎢⎡⎦⎥⎤k π-π6,k π+π3,k ∈Z .(2)∵f (A )=1+2cos ⎝⎛⎭⎪⎫2A +π3=-1,∴cos ⎝⎛⎭⎪⎫2A +π3=-1.又π3<2A +π3<7π3,∴2A +π3=π.∴A =π3. ∵AB →·AC →=3,即bc =6,由余弦定理得a 2=b 2+c 2- 2bc cos A =(b +c )2-3bc,7=(b +c )2-18,b +c =5, 又b >c ,∴b =3,c =2.。

创新设计高考总复习数学人教A版理科

创新设计高考总复习数学人教A版理科
必修1p7练习2改编若集合axnx018a22则下列结论正确的daa解析因为a22不是自然数而集合a是不大于29创新设计考点突破基础诊断考点一集合的基本概念a1b3c5d92若集合axraxc0d030创新设计考点突破基础诊断考点一集合的基本概念a1b3c5d92若集合axraxc0d031创新设计考点突破基础诊断考点二集合间的基本关系aacabdba22018郑州调研已知集合axx5x140集合bxm1x2m1若ba则实数m的取值范围为
[常用结论与微点提醒] 1.若有限集A中有n个元素,则A的子集有2n个,真子集有2n-1个. 2.子集的传递性:A⊆B,B⊆C⇒A⊆C. 3.A⊆B⇔A∩B=A⇔A∪B=B⇔∁UA⊇∁UB. 4.∁U(A∩B)=(∁UA)∪(∁UB),∁U(A∪B)=(∁UA)∩(∁UB).
诊断自测
1.思考辨析(在括号内打“√”或“×”) (1){x|y=x2+1}={y|y=x2+1}={(x,y)|y=x2+1}.( ) (2)若{x2,1}={0,1},则x=0,1.( ) (3)对于任意两个集合A,B,关系(A∩B)⊆(A∪B)恒成立.( ) (4)含有n个元素的集合有2n个真子集.( )
A.{1,3}
B.{5,6}
C.{4,5,6} D.{4,5,6,7}
解析 A={1,3,7},B={x|x=log2(a+1),a∈A}={1,2,3},又U={1,2,3, 4,5,6,7},∴∁UA={2,4,5,6},∁UB={4,5,6,7},∴(∁UA)∩(∁UB)={4, 5,6}.
答案 C
5.(2017·全国Ⅲ卷改编)已知集合A={(x,y)|x,y∈R,且x2+y2=1},B={(x,y)|x, y∈R,且y=x},则A∩B的元素个数为________. 解析 集合A表示圆心在原点的单位圆,集合B表示直线y=x,易知直线y=x和圆 x2+y2=1相交,且有2个交点,故A∩B中有2个元素. 答案 2

高考数学 热点题型和提分秘籍 专题04 函数及其表示 理(含解析)新人教A版-新人教A版高三全册数

高考数学 热点题型和提分秘籍 专题04  函数及其表示 理(含解析)新人教A版-新人教A版高三全册数

2016年高考数学 热点题型和提分秘籍 专题04 函数及其表示 理(含解析)新人教A 版【高频考点解读】1.了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用. 【热点题型】题型一 考查函数的定义域 例 1.(1)(函数f (x )= 1-2x+1x +3的定义域为( )A .(-3,0]B .(-3,1]C .(-∞,-3)∪(-3,0]D .(-∞,-3)∪(-3,1](2)函数y =ln ⎝⎛⎭⎪⎫1+1x + 1-x 2的定义域为________.【答案】(1)A (2)(0,1] 【解析】【提分秘籍】1.函数的定义域是使函数有意义的自变量取值的集合,它是函数不可缺少的组成部分,归纳起来常见的命题角度有:(1)求给定函数解析式的定义域.(2)已知f (x )的定义域,求f (g (x ))的定义域. (3)已知定义域确定参数问题. 2.简单函数定义域的类型及求法(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解. (2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解.(3)若已知函数f (x )的定义域为[a ,b ],则函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出.【举一反三】已知f (x )的定义域为⎣⎢⎡⎦⎥⎤-12,12,求函数y =f ⎝⎛⎭⎪⎫x 2-x -12的定义域.题型二 考查函数的解析式例2、(1)已知f (1-cos x )=sin 2x ,求f (x )的解析式;(2)已知f (x )是二次函数且f (0)=2,f (x +1)-f (x )=x -1,求f (x )的解析式;(3)已知f (x )+2f ⎝ ⎛⎭⎪⎫1x=x (x ≠0),求f (x )的解析式.【解析】 (1)f (1-cos x )=sin 2x =1-cos 2x , 令t =1-cos x ,则cos x =1-t ,t ∈[0,2], ∴f (t )=1-(1-t )2=2t -t 2,t ∈[0,2], 即f (x )=2x -x 2,x ∈[0,2].(2)设f (x )=ax 2+bx +c (a ≠0),由f (0)=2,得c =2,f (x +1)-f (x )=a (x +1)2+b (x +1)-ax 2-bx =x -1,即2ax +a +b =x -1,∴⎩⎪⎨⎪⎧2a =1,a +b =-1,即⎩⎪⎨⎪⎧a =12,b =-32.∴f (x )=12x 2-32x +2.(3)∵f (x )+2f ⎝ ⎛⎭⎪⎫1x =x ,∴f ⎝ ⎛⎭⎪⎫1x +2f (x )=1x.解方程组⎩⎪⎨⎪⎧f x +2f ⎝ ⎛⎭⎪⎫1x =x ,f ⎝ ⎛⎭⎪⎫1x +2f x =1x ,得f (x )=23x -x3(x ≠0).【提分秘籍】求函数解析式的常用方法(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的表达式.(2)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法.(3)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值X 围.(4)解方程组法:已知关于f (x )与f ⎝ ⎛⎭⎪⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程求出f (x ).【举一反三】已知函数f (x )满足f (x )+2f (3-x )=x 2,则f (x )的解析式为( ) A .f (x )=x 2-12x +18 B .f (x )=13x 2-4x +6C .f (x )=6x +9D .f (x )=2x +3 【答案】B题型三 考查分段函数例3、如图,点P 从点O 出发,分别按逆时针方向沿周长均为12的正三角形、正方形运动一周,O ,P 两点连线的距离y 与点P 走过的路程x 的函数关系分别记为y =f (x ),y =g (x ),定义函数h (x )=⎩⎪⎨⎪⎧fx ,f x ≤g x ,g x ,f x >g x .对于函数y =h (x ),下列结论正确的个数是( )①h (4)=10;②函数h (x )的图象关于直线x =6对称;③函数h (x )的值域为[0,13 ];④函数h (x )的递增区间为(0,5).A .1B .2C .3D .4 【答案】 C 【解析】【提分秘籍】(1)求分段函数的函数值时,应根据所给自变量的大小选择相应段的解析式求解,有时每段交替使用求值.(2)若给出函数值或函数值的X 围求的变量值或自变量的取值X 围,应根据每一段的解析式分别求解.但要注意检验,是否符合相应段的自变量的取值X 围.【举一反三】已知f (x )=⎩⎪⎨⎪⎧2x ,x >0,f x +1,x ≤0,则f ⎝ ⎛⎭⎪⎫43+f ⎝ ⎛⎭⎪⎫-43等于________.【答案】4【解析】f ⎝ ⎛⎭⎪⎫43=2×43=83, f ⎝ ⎛⎭⎪⎫-43=f ⎝ ⎛⎭⎪⎫-13=f ⎝ ⎛⎭⎪⎫23=2×23=43,f ⎝ ⎛⎭⎪⎫43+f ⎝ ⎛⎭⎪⎫-43=83+43=4. 【高考风向标】【2015高考某某,理7】存在函数()f x 满足,对任意x R ∈都有( ) A. (sin 2)sin f x x = B. 2(sin 2)f x x x =+ C. 2(1)1f x x +=+ D. 2(2)1f x x x +=+ 【答案】D. 【解析】(2014·某某卷)设函数f (x )(x ∈R)满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则f ⎝⎛⎭⎪⎫23π6=( )A.12B.32 C .0 D .-12【答案】A【解析】由已知可得,f ⎝⎛⎭⎪⎫23π6=f ⎝ ⎛⎭⎪⎫17π6+sin 17π6=f ⎝ ⎛⎭⎪⎫11π6+sin 11π6+sin 17π6 =f ⎝⎛⎭⎪⎫5π6+sin 5π6+sin 11π6+sin 17π6=2sin 5π6+sin ⎝ ⎛⎭⎪⎫-π6=sin 5π6=12.(2014·卷)下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =x +1 B .y =(x -1)2C .y =2-xD .y =log 0.5(x +1) 【答案】A【解析】由基本初等函数的性质得,选项B 中的函数在(0,1)上递减,选项C ,D 中的函数在(0,+∞)上为减函数,所以排除B ,C ,D ,选A.(2014·某某卷)已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x >0,cos x , x ≤0,则下列结论正确的是( )A .f (x )是偶函数B .f (x )是增函数C .f (x )是周期函数D .f (x )的值域为[-1,+∞) 【答案】D(2014·某某卷)函数f (x )=ln(x 2-x )的定义域为( )A .(0,1]B .[0,1]C .(-∞,0)∪(1,+∞) D.(-∞,0]∪[1,+∞) 【答案】C【解析】由x 2-x >0,得x >1或x <0. (2014·某某卷)函数f (x )=1(log 2x )2-1的定义域为( ) A.⎝ ⎛⎭⎪⎫0,12 B .(2,+∞) C. ⎝ ⎛⎭⎪⎫0,12∪(2,+∞) D. ⎝ ⎛⎦⎥⎤0,12∪[2,+∞) 【答案】C【解析】根据题意得,⎩⎪⎨⎪⎧x >0,(log 2)2-1>0,解得⎩⎪⎨⎪⎧x >0,x >2或x <12.故选C. (2013·某某卷)已知函数f(x)=a ⎝ ⎛⎭⎪⎫1-2⎪⎪⎪⎪⎪⎪x -12,a 为常数且a>0. (1)证明:函数f(x)的图像关于直线x =12对称;(2)若x 0满足f(f(x 0))=x 0,但f(x 0)≠x 0,则称x 0为函数f(x)的二阶周期点.如果f(x)有两个二阶周期点x 1,x 2,试确定a 的取值X 围;(3)对于(2)中的x 1,x 2和a ,设x 3为函数 f(f(x))的最大值点,A(x 1,f(f(x 1))),B(x 2,f(f(x 2))),C(x 3,0).记△A BC 的面积为S(a),讨论S(a)的单调性.【解析】当a>12时,有f(f(x))=⎩⎪⎪⎨⎪⎪⎧4a 2x ,x ≤14a,2a -4a 2x ,14a <x ≤12,2a (1-2a )+4a 2x ,12<x ≤4a -14a ,4a 2-4a 2x ,x>4a -14a.所以f(f(x))=x 有四个解0,2a 1+4a 2,2a 1+2a ,4a 21+4a 2,又f(0)=0,f ⎝ ⎛⎭⎪⎫2a 1+2a =2a 1+2a,f ⎝ ⎛⎭⎪⎫2a 1+4a 2≠2a 1+4a 2,f ⎝ ⎛⎭⎪⎫4a 21+4a 2≠4a 21+4a 2,故只有2a 1+4a 2,4a 21+4a 2是f(x)的二阶周期点. 综上所述,所求a 的取值X 围为a>12.(2013·某某卷)设函数f(x)在(0,+∞)内可导,且f(e x)=x +e x,则f′(1)=________. 【答案】2【解析】f(e x )=x +e x,利用换元法可得f(x)=ln x +x ,f′(x)=1x +1,所以f′(1)=2.(2013·某某卷)如图1-3所示,半径为1的半圆O 与等边三角形ABC 夹在两平行线l 1,l 2之间,l∥l 1,l 与半圆相交于F ,G 两点,与三角形ABC 两边相交于E ,D 两点.设弧FG 的长为x(0<x<π),y =EB +BC +CD ,若l 从l 1平行移动到l 2,则函数y =f(x)的图像大致是( )图1-3图1-4 【答案】D 【解析】(2013·某某卷)函数y =xln(1-x)的定义域为( )A .(0,1)B .[0,1)C .(0,1]D .[0,1] 【答案】B【解析】x≥0且1-x>0,得x∈[0,1),故选B.(2013·某某卷)已知函数f(x)=x 2-2(a +2)x +a 2,g(x)=-x 2+2(a -2)x -a 2+8.设H 1(x)=max {}f (x ),g (x ),H 2(x)=min {}f (x ),g (x )(max {}p ,q 表示p ,q 中的较大值,min {}p ,q 表示p ,q 中的较小值).记H 1(x)的最小值为A , H 2(x)的最大值为B ,则A -B =( )A .16B .-16C .a 2-2a -16 D .a 2+2a -16【答案】B【解析】由题意知当f(x)=g(x)时,即x 2-2(a +2)x +a 2=-x 2+2(a -2)x -a 2+8, 整理得x 2-2ax +a 2-4=0,所以x =a +2或x =a -2,所以H 1(x)=max{f(x),g(x)}=⎩⎪⎨⎪⎧x 2-2(a +2)x +a 2(x≤a-2),-x 2+2(a -2)x -a 2+8(a -2<x<a +2),x 2-2(a +2)x +a 2(x≥a+2),H 2(x)=min{f(x),g(x)}=⎩⎪⎨⎪⎧-x 2+2(a -2)x -a 2+8(x≤a-2),x 2-2(a +2)x +a 2(a -2<x<a +2),-x 2+2(a -2)x -a 2+8(x≥a+2).由图形(图形略)可知,A =H 1(x)min =-4a -4,B =H 2(x)max =12-4a ,则A -B =-16. 故选B.(2013·全国卷)已知函数f(x)的定义域为(-1,0),则函数f(2x +1)的定义域为( ) A .(-1,1) B.⎝⎛⎭⎪⎫-1,-12C .(-1,0) D.⎝ ⎛⎭⎪⎫12,1【答案】B【解析】对于f(2x +1),-1<2x +1<0,解得-1<x<-12,即函数f(2x +1)的定义域为⎝⎛⎭⎪⎫-1,-12. (2013·某某卷)设函数f(x)=⎩⎨⎧⎝ ⎛⎭⎪⎫x -1x 6,x<0,-x ,x≥0,则当x>0时,f[f(x)]表达式的展开式中常数项为( )A .-20B .20C .-15D .15 【答案】A(2013·某某卷)函数y =x33x -1的图像大致是( )图1-5【答案】C【解析】函数的定义域是{x∈R|x≠0},排除选项A;当x<0时,x3<0,3x-1<0,故y>0,排除选项B;当x→+∞时,y>0且y→0,故为选项C中的图像.(2013·新课标全国卷Ⅱ] 经销商经销某种农产品,在一个销售季度内,每售出1 t该产品获利润500元,未售出的产品,每1 t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图1-4所示,经销商为下一个销售季度购进了130 t该农产品,以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T表示为X的函数;(2)根据直方图估计利润T不少于57 000元的概率;(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量X∈[100,110),则取X=105,且X=105的概率等于需求量落入[100,110)的频率),求T的数学期望.【解析】(3)依题意可得T 的分布列为T 45 000 53 000 61 000 65 000 P0.10.20.30.4所以E(T)=45 000×0.1+53 000×0.2+61 000×0.3+65 000×0.4=59 400. 【高考押题】1. 若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )【答案】B【解析】注意定义域和值域的限制,只有B 正确.2.已知函数f (x )=⎩⎪⎨⎪⎧2x+1,x <1x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a 等于 ( )A. 12 B. 45C. 2D. 9【答案】C3. 函数f (x )=2x -1log 3x 的定义域为 ( )A. (0,+∞)B. (1,+∞)C. (0,1)D. (0,1)∪(1,+∞)【答案】D【解析】由log 3x ≠0得x >0且x ≠1,因此,函数f (x )=2x -1log 3x 的定义域是(0,1)∪(1,+∞),选D.4.已知映射f :A →B ,其中A =B =R ,对应法则f :x →y =|x |12,若对实数k ∈B ,在集合A 中不存在元素x 使得f :x →k ,则k 的取值X 围是( )A. k ≤0B. k >0C. k ≥0D. k <0【答案】D【解析】由题易知y =|x |12的值域为[0,+∞),要使集合A 中不存在元素x 使得f :x →k ,只需k 不在此值域中,即k <0.5.如右图,是X 大爷晨练时所走的离家距离(y )与行走时间(x )之间的函数关系的图象.若用黑点表示X 大爷家的位置,则X 大爷散步行走的路线可能是( )【答案】D【解析】6.若f (x )对于任意实数x 恒有2f (x )-f (-x )=3x +1,则f (x )=( )A. x -1B. x +1C. 2x +1D. 3x +3【答案】B【解析】在2f (x )-f (-x )=3x +1① 将①中x 换为-x ,则有 2f (-x )-f (x )=-3x +1② ①×2+②得3f (x )=3x +3, ∴f (x )=x +1. 7. 已知函数f (x )=1x +1,则函数f [f (x )]的定义域是________. 【答案】{x |x ≠-1,且x ≠-2} 【解析】由x +1≠0且1x +1+1≠0,得x ≠-1,且x ≠-2. ∴定义域为{x |x ≠-1,且x ≠-2}. 8.若函数f (x )=⎩⎪⎨⎪⎧2x x <3,3x -m x ≥3,且f (f (2))>7,则实数m 的取值X 围为________.【答案】m <5【解析】因为f (2)=4,所以f (f (2))=f (4)=12-m >7,解得m <5. 9.设函数f (x )=⎩⎨⎧x ,x ≥0,-x ,x <0,若f (a )+f (-1)=2,则a =________.【答案】±1【解析】若a ≥0,则a +1=2,得a =1;若a <0,则-a +1=2,得a =-1.故a =±1. 10. 根据下列条件分别求出函数f (x )的解析式: (1)f (x +1)=x +2x ;(2)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x ).解:(1)令t =x +1,∴t ≥1,x =(t -1)2. 则f (t )=(t -1)2+2(t -1)=t 2-1, 即f (x )=x 2-1,x ∈[1,+∞). (2)设f (x )=ax +b (a ≠0),则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +b +5a =2x +17, ∴a =2,b =7,故f (x )=2x +7.11. 已知f (x )=x 2-1,g (x )=⎩⎪⎨⎪⎧x -1,x >0,2-x ,x <0,(1)求f [g (2)]与g [f (2)]. (2)求f [g (x )]与g [f (x )]的表达式.12.甲同学家到乙同学家的途中有一公园,甲从家到公园的距离与乙从家到公园的距离都是2 km ,甲10时出发前往乙家.如图所示,表示甲从家出发到达乙家为止经过的路程y (km)与时间x (分)的关系.试写出y =f (x )的函数解析式.。

高三数学高考创新题型集锦新人教A

高三数学高考创新题型集锦新人教A

2010年高考数学创新题型集锦一.设计非常规的数学问题,考查学生的探索能力,培养学生的探索精神。

在数学问题中,有一些问题没有现成的方法或解题模式套用;有一些问题的条件、结论、解题策略是不唯一的或需要探索的(见开放性试题),因此解决这些问题的过程中能有效地展示考生的思维水平。

三.设计非常规的应用题,强化数学应用意识,培养数学应用意识。

例11.如图,电路中共有7个电阻与一个电灯A,若灯A不亮,其原因仅因电阻断路的可能性共有___________种情况(用数字作答)答案63例12.近日在国内某大报纸有如下的报道:加薪的学问学数学,其实是要使人聪明,使人的思维更加缜密,在美国广为流传的一道数学题目是:老板给你两个加工资的方案。

一是每年年末加一千元;二是每半年结束时加300元。

请选择一种。

一般不擅长数学的人很容易选择前者,因为一年加一千元总比两个半年共加600元要多。

其实,由于工资累计的,时间稍长,往往第二种方案更有利。

例如在第二年的年末,依第一种方案可以加得1000+2000=3000元,而第二种方案在第一年加得300+600=900元,第二年加得900+1200=2100元,总数也是900+2100=3000元。

但到了第三年,第一种方案可以得到1000+2000+3000=6000元,第二种方案可以得到300+600+900+1200+1500+1800=6300元,比第一方案多了300元。

第四年,第五年会更多。

因此,你若会在公司干三年以上,则应选择第二种方案。

根据以上材料,解答以下问题:(1)如果在该公司干10年,问选择第二方案比选择第一多加薪多少元?(2)如果第二方案中得每半年加300元改成每半年加元,问取何值时,总是选择第二方案比选择第一方案多加薪?四.创设新颖的环境,培养学生的创新能力,在新的情境中,实现知识迁移,创造性地解决问题(新背景、新定义)五.开放题型开放性问题是相对于有明确的条件和明确的结论的封闭型问题而言的,把从问题给定的题设中探究相应的结论,加以证明,或从给定的题断中探究其相应的必须具备的条件的一类问题称为开放性问题。

高考数学 热点题型和提分秘籍 专题05 函数的单调性与最值 理(含解析)新人教A版-新人教A版高三全

高考数学 热点题型和提分秘籍 专题05 函数的单调性与最值 理(含解析)新人教A版-新人教A版高三全

2016年高考数学 热点题型和提分秘籍 专题05 函数的单调性与最值理(含解析)新人教A 版【高频考点解读】1.理解函数的单调性、最大值、最小值及其几何意义.2.会运用函数的图象理解和研究函数的性质. 【热点题型】题型一 函数单调性的判断例1、(1)下列函数f (x )中,满足“∀x 1,x 2∈(0,+∞)且x 1≠x 2,(x 1-x 2)[f (x 1)-f (x 2)]<0”的是( )A .f (x )=2xB .f (x )=|x -1|C .f (x )=1x-x D .f (x )=ln(x +1)(2)函数y =x +2x +1在(-1,+∞)上是________(填“增函数”或“减函数”). 【答案】 (1)C(2)减函数 【解析】【提分秘籍】(1)图象法作图象→看升降→归纳单调性区间(2)转化法(3)导数法求导→判断f′x正、负→单调性区间(4)定义法取值→作差→变形→定号→单调性区间求函数的单调区间,一定要注意定义域优先原则.【举一反三】下列函数中,在区间(0,+∞)上为增函数的是( ) A.y=x+1B.y=(x-1)2C.y=2-x D.y=log0.5(x+1)【答案】A【解析】题型二求函数的单调区间例2、求下列函数的单调区间:(1)y=-x2+2|x|+1;(2)y=log1(x2-3x+2).2解析(1)由于y=⎩⎪⎨⎪⎧-x 2+2x +1x ≥0,-x 2-2x +1x <0,即y =⎩⎪⎨⎪⎧-x -12+2x ≥0,-x +12+2x <0.画出函数图象如图所示,单调递增区间为(-∞,-1]和[0,1],单调递减区间为[-1,0]和[1,+∞).【提分秘籍】(1)求函数的单调区间与确定单调性的方法一致.常用的方法有:①利用已知函数的单调性,即转化为已知函数的和、差或复合函数,求单调区间. ②定义法:先求定义域,再利用单调性定义确定单调区间.③图象法:如果f (x )是以图象形式给出的,或者f (x )的图象易作出,则可由图象的直观性写出它的单调区间.④导数法:利用导数取值的正负确定函数的单调区间.(2)若函数f (x )的定义域上(或某一区间上)是增函数,则f (x 1)<f (x 2)⇔x 1<x 2.利用上式,可以去掉抽象函数的符号,将函数不等式(或方程)的求解化为一般不等式(或方程)的求解,但无论如何都必须在定义域内或给定的X 围内进行.【举一反三】求下列函数的单调区间,并指出其增减性. (1)y =(a >0且a ≠1);(2)y =log 12(4x -x 2).题型三函数单调性的应用例3、已知函数f (x )满足f (x )=f (π-x ),且当x ∈⎝ ⎛⎭⎪⎫-π2,π2时,f (x )=e x+sin x ,则( )A .f (1)<f (2)<f (3)B .f (2)<f (3)<f (1)C .f (3)<f (2)<f (1)D .f (3)<f (1)<f (2) 【答案】D【解析】由f (x )=f (π-x ),得函数f (x )的图象关于直线x =π2对称,又当x ∈⎝ ⎛⎭⎪⎫-π2,π2时,f ′(x )=e x +cos x >0恒成立,所以f (x )在⎝ ⎛⎭⎪⎫-π2,π2上为增函数,f (2)=f (π-2),f (3)=f (π-3),且0<π-3<1<π-2<π2,所以f (π-3)<f (1)<f (π-2),即f (3)<f (1)<f (2).【提分秘籍】1.高考对函数单调性的考查多以选择题、填空题的形式出现,有时也应用于解答题中的某一问中.2.高考对函数单调性的考查主要有以下几个命题角度: (1)利用函数的单调性比较大小.(2)利用函数的单调性解决与抽象函数有关的不等式问题. (3)利用函数的单调性求参数.(4)利用函数的单调性求解最值(或恒成立)问题.【方法规律】(1)含“f ”号不等式的解法首先根据函数的性质把不等式转化为f (g (x ))>f (h (x ))的形式,然后根据函数的单调性去掉“f ”号,转化为具体的不等式(组),此时要注意g (x )与h (x )的取值应在外层函数的定义域内.(2)分段函数单调性解法为了保证函数在整个定义域内是单调的,除了要分别保证各段表达式在对应区间上的单调性一致外,还要注意两段连接点的衔接.【举一反三】已知函数f (x )的定义域是(0,+∞),且满足f (xy )=f (x )+f (y ),f ⎝ ⎛⎭⎪⎫12=1,如果对于0<x <y ,都有f (x )>f (y ).(1)求f (1)的值;(2)解不等式f (-x )+f (3-x )≥-2.则⎩⎪⎨⎪⎧x <0,-x 2·3-x 2≤1,解得-1≤x <0.∴不等式的解集为{x |-1≤x <0}. 【变式探究】已知f (x )=⎩⎪⎨⎪⎧3-a x -a x <1log a x x ≥1是(-∞,+∞)上的增函数,则a 的取值X 围是( ) A .(1,+∞) B .(1,3) C.⎣⎢⎡⎭⎪⎫32,3D.⎝ ⎛⎭⎪⎫1,32【答案】⎣⎢⎡⎭⎪⎫32,3 【解析】【高考风向标】【2015高考某某,理6】已知符号函数1,0,sgn 0,0,1,0.x x x x >⎧⎪==⎨⎪-<⎩()f x 是R 上的增函数,()()()(1)g x f x f ax a =->,则( )A .sgn[()]sgn g x x =B .sgn[()]sgn g x x =-C .sgn[()]sgn[()]g x f x =D .sgn[()]sgn[()]g x f x =- 【答案】B【解析】因为()f x 是R 上的增函数,令x x f =)(,所以x a x g )1()(-=,因为1>a ,所以)(x g 是R 上的减函数,由符号函数1,0sgn 0,01,0x x x x >⎧⎪==⎨⎪-<⎩知,1,0sgn[()]0,0sgn 1,0x g x x x x ->⎧⎪===-⎨⎪<⎩.【2015高考某某,理15】设30x ax b ++=,其中,a b 均为实数,下列条件中,使得该三次方程仅有一个实根的是.(写出所有正确条件的编号)①3,3a b =-=-;②3,2a b =-=;③3,2a b =->;④0,2a b ==;⑤1,2a b ==. 【答案】①③④⑤ 【解析】(2014·卷)下列函数中,在区间(0,+∞)上为增函数的是( )A .y =x +1B .y =(x -1)2C .y =2-xD .y =log 0.5(x +1) 【答案】A【解析】由基本初等函数的性质得,选项B 中的函数在(0,1)上递减,选项C ,D 中的函数在(0,+∞)上为减函数,所以排除B ,C ,D ,选A.(2014·某某卷)已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x >0,cos x , x ≤0,则下列结论正确的是( )A .f (x )是偶函数B .f (x )是增函数C .f (x )是周期函数D .f (x )的值域为[-1,+∞) 【答案】D【解析】由函数f (x )的解析式知,f (1)=2,f (-1)=cos(-1)=cos 1,f (1)≠f (-1),则f (x )不是偶函数;当x >0时,令f (x )=x 2+1,则f (x )在区间(0,+∞)上是增函数,且函数值f (x )>1; 当x ≤0时,f (x )=cos x ,则f (x )在区间(-∞,0]上不是单调函数,且函数值f (x )∈[-1,1];∴函数f (x )不是单调函数,也不是周期函数,其值域为[-1,+∞).(2014·某某卷)设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎪⎨⎪⎧-4x 2+2,-1≤x <0,x , 0≤x <1,则f ⎝ ⎛⎭⎪⎫32=________.【答案】1【解析】由题意可知,f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫2-12=f ⎝ ⎛⎭⎪⎫-12=-4⎝ ⎛⎭⎪⎫-122+2=1. (2014·某某卷)以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数φ(x )组成的集合:对于函数φ(x ),存在一个正数M ,使得函数φ(x )的值域包含于区间[-M ,M ].例如,当φ1(x )=x 3,φ2(x )=sin x 时,φ1(x )∈A ,φ2(x )∈B .现有如下命题:①设函数f (x )的定义域为D ,则“f (x )∈A ”的充要条件是“∀b ∈R,∃a ∈D ,f (a )=b ”;②函数f(x)∈B的充要条件是f(x)有最大值和最小值;③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)+g(x)∉B;④若函数f(x)=a ln(x+2)+xx2+1(x>-2,a∈R)有最大值,则f(x)∈B.其中的真命题有________.(写出所有真命题的序号)【答案】①③④【解析】(2014·某某卷)已知函数f(x)=e x-ax2-bx-1,其中a,b∈R,e=2.718 28…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值X围.【解析】(2)设x 0为f (x )在区间(0,1)内的一个零点,则由f (0)=f (x 0)=0可知,f (x )在区间(0,x 0)上不可能单调递增,也不可能单调递减. 则g (x )不可能恒为正,也不可能恒为负. 故g (x )在区间(0,x 0)内存在零点x 1. 同理g (x )在区间(x 0,1)内存在零点x 2. 故g (x )在区间(0,1)内至少有两个零点.由(1)知,当a ≤12时,g (x )在[0,1]上单调递增,故g (x )在(0,1)内至多有一个零点;当a ≥e2时,g (x )在[0,1]上单调递减,故g (x )在(0,1)内至多有一个零点,都不合题意.所以12<a <e 2.此时g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增. 因此x 1∈(0,ln(2a )],x 2∈(ln(2a ),1),必有g (0)=1-b >0,g (1)=e -2a -b >0.由f (1)=0得a +b =e -1<2, 则g (0)=a -e +2>0,g (1)=1-a >0, 解得e -2<a <1.当e -2<a <1时,g (x )在区间[0,1]内有最小值g (ln(2a )). 若g (ln(2a ))≥0,则g (x )≥0(x ∈[0,1]),从而f (x )在区间[0,1]内单调递增,这与f (0)=f (1)=0矛盾,所以g (ln(2a ))<0. 又g (0)=a -e +2>0,g (1)=1-a >0.故此时g (x )在(0,ln(2a ))和(ln(2a ),1)内各只有一个零点x 1和x 2.由此可知f (x )在[0,x 1]上单调递增,在(x 1,x 2)上单调递减,在[x 2,1]上单调递增. 所以f (x 1)>f (0)=0,f (x 2)<f (1)=0, 故f (x )在(x 1,x 2)内有零点.综上可知,a 的取值X 围是(e -2,1).(2013·某某卷)已知函数f(x)=⎩⎪⎨⎪⎧x 2+2x +a ,x<0,lnx ,x>0,其中a 是实数.设A(x 1,f(x 1)),B(x 2,f(x 2))为该函数图像上的两点,且x 1<x 2. (1)指出函数f(x)的单调区间;(2)若函数f(x)的图像在点A ,B 处的切线互相垂直,且x 2<0,求x 2-x 1的最小值; (3)若函数f(x)的图像在点A ,B 处的切线重合,求a 的取值X 围. 【解析】所以,函数f(x)的图像在点A,B处的切线互相垂直时,x2-x1的最小值为1.(2013·某某卷)设函数f(x)=e x+x-a(a∈R,e为自然对数的底数).若曲线y=sinx上存在(x0,y0)使得f(f(y0))=y0,则a的取值X围是( )A.[1,e] B.[e-1-1,1]C.[1,e+1] D.[e-1-1,e+1]【答案】A【解析】因为y0=sin x0∈[-1,1],且f(x)在[-1,1]上(有意义时)是增函数,对于y 0∈[-1,1],如果f(y 0)=c >y 0,则f(f(y 0))=f(c)>f(y 0)=c >y 0,不可能有f(f(y 0))=y 0.同理,当f(y 0)=d <y 0时,则f(f(y 0))=f(d)<f(y 0)=d <y 0,也不可能有f(f(y 0))=y 0,因此必有f(y 0)=y 0,即方程f(x)=x 在[-1,1]上有解,即e x+x -a =x 在[-1,1]上有解.显然,当x <0时,方程无解,即需要e x+x -a =x 在[0,1]上有解.当x≥0时,两边平方得e x+x -a =x 2,故a =e x-x 2+x.记g(x)=e x-x 2+x ,则g′(x)=e x-2x +1.当x∈⎣⎢⎡⎦⎥⎤0,12时,e x>0,-2x +1≥0,故g′(x)>0,当x∈⎝ ⎛⎦⎥⎤12,1时,e x>e >1,0>-2x +1≥-1,故g′(x)>0.综上,g′(x)在x∈[0,1]上恒大于0,所以g(x)在[0,1]上为增函数,值域为[1,e],从而a 的取值X 围是[1,e].(2013·某某卷)函数y =x33x -1的图像大致是( )【答案】C【解析】函数的定义域是{x∈R|x≠0},排除选项A ;当x<0时,x 3<0,3x-1<0,故y>0,排除选项B ;当x→+∞时,y>0且y→0,故为选项C 中的图像.(2013·新课标全国卷Ⅱ] 已知函数f(x)=x 3+ax 2+bx +c ,下列结论中错误的是( ) A .x 0∈R,f(x 0)=0B .函数y =f(x)的图像是中心对称图形C .若x 0是f(x)的极小值点,则f(x)在区间(-∞,x 0)单调递减D .若x 0是f(x)的极值点,则f′(x 0)=0 【答案】C【解析】【高考押题】1.函数y =(2k +1)x +b 在(-∞,+∞)上是减函数,则( ) A. k >12 B. k <12C. k >-12D. k <-12【答案】D【解析】使y =(2k +1)x +b 在(-∞,+∞)上是减函数,则2k +1<0,即k <-12.2.下列函数中,既是偶函数又在(0,+∞)单调递增的函数是( ) A. y =x 3B. y =|x |+1C. y =-x 2+1 D. y =2-|x |【答案】B 【解析】3.已知奇函数f (x )对任意的正实数x 1,x 2(x 1≠x 2),恒有(x 1-x 2)(f (x 1)-f (x 2))>0,则一定正确的是( )A. f (4)>f (-6)B. f (-4)<f (-6)C. f (-4)>f (-6)D. f (4)<f (-6) 【答案】C【解析】由(x 1-x 2)(f (x 1)-f (x 2))>0知f (x )在(0,+∞)上递增,∴f (4)<f (6)⇔f (-4)>f (-6).4. 函数y =(12)2x 2-3x +1的递减区间为( )A. (1,+∞)B. (-∞,34)C. (12,+∞)D. [34,+∞)【答案】D【解析】设t =2x 2-3x +1,其递增区间为[34,+∞),∴复合函数递减区间为[34,+∞),选D 项.5. 函数y =2x -1的定义域是(-∞,1)∪[2,5),则其值域是( ) A. (-∞,0)∪(12,2] B. (-∞,2]C. (-∞,12)∪[2,+∞) D. (0,+∞)【答案】A【解析】∵x ∈(-∞,1)∪[2,5),y =2x -1在(-∞,1)上为减函数,在[2,5)上也为减函数,则x -1∈(-∞,0)∪[1,4). ∴2x -1∈(-∞,0)∪(12,2]. 6. 设函数g (x )=x 2-2(x ∈R),f (x )=⎩⎪⎨⎪⎧gx +x +4,x <g x ,g x -x ,x ≥g x .则f (x )的值域是( )A. [-94,0]∪(1,+∞)B. [0,+∞)C. [-94,+∞)D. [-94,0]∪(2,+∞)【答案】D 【解析】7. 函数f (x )=x 2-2x -3的单调增区间为________. 【答案】[3,+∞)【解析】定义域x 2-2x -3≥0,∴x ≤-1或x ≥3,函数的递增区间为[3,+∞). 8. 函数y =xx +a在(-2,+∞)上为增函数,则a 的取值X 围是________.【答案】a ≥2 【解析】y =xx +a=1-ax +a,依题意,得函数的单调增区间为(-∞,-a )、(-a ,+∞),要使函数在(-2,+∞)上为增函数,只要-2≥-a ,即a ≥2.9.设函数f (x )的图象关于y 轴对称,又已知f (x )在(0,+∞)上为减函数,且f (1)=0,则不等式f -x +f xx<0的解集为________.【答案】(-1,0)∪(1,+∞) 【解析】10.已知函数f (x )是定义在(0,+∞)上的减函数,且满足f (xy )=f (x )+f (y ),f (13)=1.(1)求f (1);(2)若f (x )+f (2-x )<2,求x 的取值X 围.解:(1)令x =y =1,则f (1)=f (1)+f (1),∴f (1)=0. (2)∵2=1+1=f (13)+f (13)=f (19),∴原不等式等价于f [x (2-x )]<f (19),由f (x )为(0,+∞)上的减函数,得⎩⎪⎨⎪⎧x >0,2-x >0,x 2-x >19,⇒⎩⎪⎨⎪⎧x >0,2-x >0,1-223<x <1+223,⇒1-223<x <1+223,即x 的取值X 围为(1-223,1+223).11. 已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)内单调递增; (2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值X 围.12.已知函数g (x )=x +1,h (x )=1x +3,x ∈(-3,a ],其中a 为常数且a >0,令函数f (x )=g (x )·h (x ).(1)求函数f (x )的表达式,并求其定义域; (2)当a =14时,求函数f (x )的值域.解:(1)f (x )=x +1x +3,x ∈[0,a ],(a >0). (2)函数f (x )的定义域为[0,14],令x +1=t ,则x =(t -1)2,t ∈[1,32],f (x )=F (t )=tt 2-2t +4=1t +4t-2, ∵t =4t 时,t =±2∉[1,32],又t ∈[1,32]时,t +4t 单调递减,F (t )单调递增,F (t )∈[13,613]. 即函数f (x )的值域为[13,613].。

2020版创新设计高考总复习高三文科数学人教A版第六章第2节

2020版创新设计高考总复习高三文科数学人教A版第六章第2节

第2节 等差数列及其前n 项和最新考纲 1.理解等差数列的概念;2.掌握等差数列的通项公式与前n 项和公式;3.能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题;4.了解等差数列与一次函数的关系.知 识 梳 理1.等差数列的概念(1)如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列.数学语言表达式:a n +1-a n =d (n ∈N *,d 为常数).(2)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且A =a +b 2.2.等差数列的通项公式与前n 项和公式(1)若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n =a 1+(n -1)d .(2)前n 项和公式:S n =na 1+n (n -1)d 2=n (a 1+a n )2. 3.等差数列的性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n .(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.(4)若S n 为等差数列{a n }的前n 项和,则数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列.(5)若S n 为等差数列{a n }的前n项和,则数列⎩⎨⎧⎭⎬⎫S n n 也为等差数列. [微点提醒]1.已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数列,且公差为p .2.在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值.3.等差数列{a n }的单调性:当d >0时,{a n }是递增数列;当d <0时,{a n }是递减数列;当d =0时,{a n }是常数列.4.数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数).基 础 自 测1.判断下列结论正误(在括号内打“√”或“×”)(1)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( )(2)等差数列{a n }的单调性是由公差d 决定的.( )(3)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( )(4)等差数列的前n 项和公式是常数项为0的二次函数.( )解析 (3)若公差d =0,则通项公式不是n 的一次函数.(4)若公差d =0,则前n 项和不是二次函数.【参考答案】(1)√ (2)√ (3)× (4)×2.(必修5P46A2改编)设数列{a n }是等差数列,其前n 项和为S n ,若a 6=2且S 5=30,则S 8等于( )A.31B.32C.33D.34解析 由已知可得⎩⎨⎧a 1+5d =2,5a 1+10d =30,解得⎩⎪⎨⎪⎧a 1=263,d =-43,∴S 8=8a 1+8×72d =32. 【参考答案】B3.(必修5P68A8改编)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=450,则a 2+a 8=________.解析 由等差数列的性质,得a 3+a 4+a 5+a 6+a 7=5a 5=450,∴a 5=90,∴a 2+a 8=2a 5=180.【参考答案】1804.(2018·全国Ⅰ卷)记S n 为等差数列{a n }的前n 项和.若3S 3=S 2+S 4,a 1=2,则a 5=( )A.-12B.-10C.10D.12解析 设等差数列{a n }的公差为d ,则3(3a 1+3d )=2a 1+d +4a 1+6d ,即d =-32a 1.又a 1=2,∴d =-3,∴a 5=a 1+4d =2+4×(-3)=-10.【参考答案】B5.(2019·皖南八校模拟)已知等差数列{a n }中,a 2=1,前5项和S 5=-15,则数列{a n }的公差为( )A.-3B.-52C.-2D.-4解析 设等差数列{a n }的首项为a 1,公差为d ,因为⎩⎨⎧a 2=1,S 5=-15,所以⎩⎪⎨⎪⎧a 1+d =1,5a 1+5×42d =-15, 解得d =-4.【参考答案】D6.(2019·江西赣中南五校联考)在等差数列{a n }中,已知a 3+a 8>0,且S 9<0,则S 1,S 2,…,S 9中最小的是______.解析 在等差数列{a n }中,∵a 3+a 8>0,S 9<0,∴a 5+a 6=a 3+a 8>0,S 9=9(a 1+a 9)2=9a 5<0, ∴a 5<0,a 6>0,∴S 1,S 2,…,S 9中最小的是S 5.【参考答案】S 5考点一 等差数列基本量的运算【例1】 (1)(一题多解)(2017·全国Ⅰ卷)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A.1B.2C.4D.8(2)(2019·云南省二次统一检测)设等差数列{a n }的前n 项和为S n ,S 11=22,a 4= -12,若a m =30,则m =( )A.9B.10C.11D.15解析 (1)法一 设等差数列{a n }的公差为d ,依题意得⎩⎪⎨⎪⎧(a 1+3d )+(a 1+4d )=24,6a 1+6×52d =48,所以d =4. 法二 等差数列{a n }中,S 6=(a 1+a 6)×62=48,则a 1+a 6=16=a 2+a 5, 又a 4+a 5=24,所以a 4-a 2=2d =24-16=8,则d =4.(2)设等差数列{a n }的公差为d ,依题意得⎩⎪⎨⎪⎧S 11=11a 1+11×(11-1)2d =22,a 4=a 1+3d =-12,解得⎩⎨⎧a 1=-33,d =7, ∴a m =a 1+(m -1)d =7m -40=30,∴m =10.【参考答案】(1)C (2)B规律方法 1.等差数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想来解决问题.2.数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.【训练1】 (1)等差数列log 3(2x ),log 3(3x ),log 3(4x +2),…的第四项等于( )A.3B.4C.log 318D.log 324(2)(一题多解)设等差数列{a n }的前n 项和为S n ,S 3=6,S 4=12,则S 6=________. 解析 (1)∵log 3(2x ),log 3(3x ),log 3(4x +2)成等差数列,∴log 3(2x )+log 3(4x +2)=2log 3(3x ),∴log 3[2x (4x +2)]=log 3(3x )2,则2x (4x +2)=9x 2,解之得x =4,x =0(舍去).∴等差数列的前三项为log 38,log 312,log 318,∴公差d =log 312-log 38=log 332,∴数列的第四项为log 318+log 332=log 327=3.(2)法一 设数列{a n }的首项为a 1,公差为d ,由S 3=6,S 4=12,可得⎩⎨⎧S 3=3a 1+3d =6,S 4=4a 1+6d =12,解得⎩⎨⎧a 1=0,d =2,所以S 6=6a 1+15d =30.法二 由{a n }为等差数列,故可设前n 项和S n =An 2+Bn ,由S 3=6,S 4=12可得⎩⎨⎧S 3=9A +3B =6,S 4=16A +4B =12,解得⎩⎨⎧A =1,B =-1,即S n =n 2-n ,则S 6=36-6=30. 【参考答案】(1)A (2)30考点二 等差数列的判定与证明 典例迁移【例2】 (经典母题)若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 成等差数列; (2)求数列{a n }的通项公式.(1)证明 当n ≥2时,由a n +2S n S n -1=0,得S n -S n -1=-2S n S n -1,所以1S n -1S n -1=2, 又1S 1=1a 1=2, 故⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列. (2)解 由(1)可得1S n=2n ,∴S n =12n . 当n ≥2时,a n =S n -S n -1=12n -12(n -1)=n -1-n 2n (n -1)=-12n (n -1). 当n =1时,a 1=12不适合上式.故a n =⎩⎪⎨⎪⎧12,n =1,-12n (n -1),n ≥2.【迁移探究1】 本例条件不变,判断数列{a n }是否为等差数列,并说明理由. 解 因为a n =S n -S n -1(n ≥2),a n +2S n S n -1=0,所以S n -S n -1+2S n S n -1=0(n ≥2).所以1S n -1S n -1=2(n ≥2). 又1S 1=1a 1=2, 所以⎩⎨⎧⎭⎬⎫1S n 是以2为首项,2为公差的等差数列. 所以1S n=2+(n -1)×2=2n ,故S n =12n . 所以当n ≥2时,a n =S n -S n -1=12n -12(n -1)=-12n (n -1), 所以a n +1=-12n (n +1),又a n +1-a n =-12n (n +1)--12n (n -1)=-12n ⎝ ⎛⎭⎪⎫1n +1-1n -1=1n (n -1)(n +1). 所以当n ≥2时,a n +1-a n 的值不是一个与n 无关的常数,故数列{a n }不是一个等差数列.【迁移探究2】 本例中,若将条件变为a 1=35,na n +1=(n +1)a n +n (n +1),试求数列{a n }的通项公式.解 由已知可得a n +1n +1=a n n +1,即a n +1n +1-a n n=1, 又a 1=35,∴⎩⎨⎧⎭⎬⎫a n n 是以a 11=35为首项,1为公差的等差数列,∴a n n =35+(n -1)·1=n -25,∴a n =n 2-25n .规律方法 1.证明数列是等差数列的主要方法:(1)定义法:对于n ≥2的任意自然数,验证a n -a n -1为同一常数.(2)等差中项法:验证2a n -1=a n +a n -2(n ≥3,n ∈N *)都成立.2.判定一个数列是等差数列还常用到结论:(1)通项公式:a n =pn +q (p ,q 为常数)⇔{a n }是等差数列.(2)前n 项和公式:S n =An 2+Bn (A ,B 为常数)⇔{a n }是等差数列.问题的最终判定还是利用定义.【训练2】 (2017·全国Ⅰ卷)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6.(1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.解 (1)设{a n }的公比为q ,由题设可得⎩⎨⎧a 1(1+q )=2,a 1(1+q +q 2)=-6,解得⎩⎨⎧q =-2,a 1=-2.故{a n }的通项公式为a n =(-2)n .(2)由(1)可得S n =a 1(1-q n )1-q=-23+(-1)n 2n +13. 由于S n +2+S n +1=-43+(-1)n 2n +3-2n +23=2⎣⎢⎡⎦⎥⎤-23+(-1)n ·2n +13=2S n , 故S n +1,S n ,S n +2成等差数列.考点三 等差数列的性质及应用多维探究角度1 等差数列项的性质【例3-1】 (2019·衡阳一模)在等差数列{a n }中,a 1+3a 8+a 15=120,则a 2+a 14的值为( )A.6B.12C.24D.48 解析 ∵在等差数列{a n }中,a 1+3a 8+a 15=120,由等差数列的性质,a 1+3a 8+a 15=5a 8=120,∴a 8=24,∴a 2+a 14=2a 8=48.【参考答案】D角度2 等差数列和的性质【例3-2】 设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( )A.63B.45C.36D.27解析 由{a n }是等差数列,得S 3,S 6-S 3,S 9-S 6为等差数列,即2(S 6-S 3)=S 3+(S 9-S 6),得到S 9-S 6=2S 6-3S 3=45,所以a 7+a 8+a 9=45.【参考答案】B规律方法 1.项的性质:在等差数列{a n }中,若m +n =p +q (m ,n ,p ,q ∈N *),则a m +a n =a p +a q .2.和的性质:在等差数列{a n }中,S n 为其前n 项和,则(1)S 2n =n (a 1+a 2n )=…=n (a n +a n +1);(2)S 2n -1=(2n -1)a n .【训练3】 (1)已知S n 是等差数列{a n }的前n 项和,若a 1=-2 015,S 2 0152 015-S 2 0092 009=6,则S 2 019=________.(2)(2019·荆州一模)在等差数列{a n }中,若a 3+a 4+a 5=3,a 8=8,则a 12的值是( )A.15B.30C.31D.64(3)等差数列{a n }与{b n }的前n 项和分别为S n 和T n ,若S n T n=3n -22n +1,则a 7b 7等于( ) A.3727 B.1914C.3929D.43 解析 (1)由等差数列的性质可得⎩⎨⎧⎭⎬⎫S n n 也为等差数列.设其公差为d ,则S 2 0152 015-S 2 0092 009=6d =6,∴d =1. 故S 2 0192 019=S 11+2 018d =-2 015+2 018=3,∴S 2 019=3×2 019=6 057.(2)由a 3+a 4+a 5=3及等差数列的性质,∴3a 4=3,则a 4=1.又a 4+a 12=2a 8,得1+a 12=2×8.∴a 12=16-1=15.(3)a 7b 7=2a 72b 7=a 1+a 13b 1+b 13=a 1+a 132×13b 1+b 132×13=S 13T 13=3×13-22×13+1=3727. 【参考答案】(1)6 057 (2)A (3)A考点四 等差数列的前n 项和及其最值【例4】 (2019·衡水中学质检)已知数列{a n }的前n 项和为S n ,a 1≠0,常数λ>0,且λa 1a n =S 1+S n 对一切正整数n 都成立.(1)求数列{a n }的通项公式;(2)设a 1>0,λ=100,当n 为何值时,数列⎩⎨⎧⎭⎬⎫lg 1a n 的前n 项和最大? 解 (1)令n =1,得λa 21=2S 1=2a 1,a 1(λa 1-2)=0,因为a 1≠0,所以a 1=2λ,当n ≥2时,2a n =2λ+S n ,2a n -1=2λ+S n -1,两式相减得2a n -2a n -1=a n (n ≥2).所以a n =2a n -1(n ≥2),从而数列{a n }为等比数列,a n =a 1·2n -1=2n λ.(2)当a 1>0,λ=100时,由(1)知,a n =2n 100,则b n =lg 1a n=lg 1002n =lg 100-lg 2n =2-n lg 2, 所以数列{b n }是单调递减的等差数列,公差为-lg 2,所以b 1>b 2>…>b 6=lg 10026=lg 10064>lg 1=0,当n ≥7时,b n ≤b 7=lg 10027<lg 1=0,所以数列⎩⎨⎧⎭⎬⎫lg 1a n 的前6项和最大. 规律方法 求等差数列前n 项和S n 的最值的常用方法:(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn (a ≠0),通过配方或借助图象求二次函数的最值.(2)利用等差数列的单调性,求出其正负转折项,进而求S n 的最值.①当a 1>0,d <0时,满足⎩⎨⎧a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m (当a m +1=0时,S m +1也为最大值);②当a 1<0,d >0时,满足⎩⎨⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m (当a m +1=0时,S m +1也为最小值).【训练4】 (1)等差数列{a n }的公差d ≠0,且a 3,a 5,a 15成等比数列,若a 5=5,S n 为数列{a n }的前n 项和,则数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和取最小值时的n 为( )A.3B.3或4C.4或5D.5(2)已知等差数列{a n }的首项a 1=20,公差d =-2,则前n 项和S n 的最大值为________.解析 (1)由题意知⎩⎨⎧(a 1+2d )(a 1+14d )=25,a 1+4d =5,由d ≠0,解得a 1=-3,d =2,∴S n n =na 1+n (n -1)2d n =-3+n -1=n -4,则n -4≥0,得n ≥4,∴数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和取最小值时的n 为3或4.(2)因为等差数列{a n }的首项a 1=20,公差d =-2,S n =na 1+n (n -1)2d =20n -n (n -1)2×2 =-n 2+21n =-⎝ ⎛⎭⎪⎫n -2122+⎝ ⎛⎭⎪⎫2122, 又因为n ∈N *,所以n =10或n =11时,S n 取得最大值,最大值为110.【参考答案】(1)B (2)110[思维升华]1.证明等差数列可利用定义或等差中项的性质,另外还常用前n 项和S n =An 2+Bn 及通项a n =pn +q 来判断一个数列是否为等差数列.2.等差数列基本量思想(1)在解有关等差数列的基本量问题时,可通过列关于a 1,d 的方程组进行求解.(2)若奇数个数成等差数列,可设中间三项为a -d ,a ,a +d .若偶数个数成等差数列,可设中间两项为a -d ,a +d ,其余各项再依据等差数列的定义进行对称设元.(3)灵活使用等差数列的性质,可以大大减少运算量.[易错防范]1.用定义法证明等差数列应注意“从第2项起”,如证明了a n +1-a n =d (n ≥2)时,应注意验证a 2-a 1是否等于d ,若a 2-a 1≠d ,则数列{a n }不为等差数列.2.利用二次函数性质求等差数列前n 项和最值时,一定要注意自变量n 是正整数.基础巩固题组(建议用时:40分钟)一、选择题1.(2016·全国Ⅰ卷)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( )A.100B.99C.98D.97解析 设等差数列{a n }的公差为d ,由已知,得⎩⎨⎧9a 1+36d =27,a 1+9d =8,所以⎩⎨⎧a 1=-1,d =1,所以a 100=a 1+99d =-1+99=98.【参考答案】C2.(2019·惠州调研)设S n 是等差数列{a n }的前n 项和,若a 6a 5=911,则S 11S 9=( ) A.1 B.-1 C.2 D.12解析 由于S 11S 9=11a 69a 5=119×911=1. 【参考答案】A3.(2019·中原名校联考)若数列{a n }满足1a n +1-1a n=d (n ∈N *,d 为常数),则称数列{a n }为调和数列,已知数列⎩⎨⎧⎭⎬⎫1x n 为调和数列,且x 1+x 2+…+x 20=200,则x 5+x 16=( ) A.10 B.20 C.30 D.40解析 依题意,11x n +1-11x n=x n +1-x n =d ,∴{x n }是等差数列.又x 1+x 2+…+x 20=20(x 1+x 20)2=200. ∴x 1+x 20=20,从而x 5+x 16=x 1+x 20=20.【参考答案】B4.(2019·合肥质检)中国古诗词中,有一道“八子分绵”的数学名题:“九百九十六斤绵,赠分八子作盘缠,次第每人多十七,要将第八数来言”.题意是:把996斤绵分给8个儿子作盘缠,按照年龄从大到小的顺序依次分绵,年龄小的比年龄大的多17斤绵,那么第8个儿子分到的绵是( )A.174斤B.184斤C.191斤D.201斤解析 用a 1,a 2,…,a 8表示8个儿子按照年龄从大到小得到的绵数,由题意得数列a 1,a 2,…,a 8是公差为17的等差数列,且这8项的和为996,∴8a 1+8×72×17=996,解之得a 1=65.∴a 8=65+7×17=184,即第8个儿子分到的绵是184斤.【参考答案】B5.已知等差数列{a n }的前n 项和为S n ,a 1=9,S 99-S 55=-4,则S n 取最大值时的n 为( )A.4B.5C.6D.4或5解析 由{a n }为等差数列,得S 99-S 55=a 5-a 3=2d =-4,即d =-2,由于a 1=9,所以a n =-2n +11,令a n =-2n +11<0,得n >112, 所以S n 取最大值时的n 为5.【参考答案】B二、填空题6.已知等差数列{a n }的公差为2,项数是偶数,所有奇数项之和为15,所有偶数项之和为25,则这个数列的项数为________.解析 设项数为2n ,则由S 偶-S 奇=nd 得,25-15=2n 解得n =5,故这个数列的项数为10.【参考答案】107.已知数列{a n }满足a 1=1,a n -a n +1=2a n a n +1,则a 6=________.解析 将a n -a n +1=2a n a n +1两边同时除以a n a n +1,1a n +1-1a n=2. 所以⎩⎨⎧⎭⎬⎫1a n 是以1a 1=1为首项,2为公差的等差数列, 所以1a 6=1+5×2=11,即a 6=111.【参考答案】1118.设S n 是等差数列{a n }的前n 项和,S 10=16,S 100-S 90=24,则S 100=________. 解析 依题意,S 10,S 20-S 10,S 30-S 20,…,S 100-S 90依次成等差数列,设该等差数列的公差为d .又S 10=16,S 100-S 90=24,因此S 100-S 90=24=16+(10-1)d =16+9d ,解得d =89,因此S 100=10S 10+10×92d =10×16+10×92×89=200.【参考答案】200三、解答题9.(2016·全国Ⅱ卷)等差数列{a n }中,a 3+a 4=4,a 5+a 7=6.(1)求{a n }的通项公式;(2)设b n =[a n ],求数列{b n }的前10项和,其中[x ]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2.解 (1)设数列{a n }首项为a 1,公差为d ,由题意得⎩⎨⎧2a 1+5d =4,a 1+5d =3.解得⎩⎪⎨⎪⎧a 1=1,d =25. 所以{a n }的通项公式为a n =2n +35.(2)由(1)知,b n =⎣⎢⎡⎦⎥⎤2n +35. 当n =1,2,3时,1≤2n +35<2,b n =1;当n =4,5时,2≤2n +35<3,b n =2;当n =6,7,8时,3≤2n +35<4,b n =3;当n =9,10时,4≤2n +35<5,b n =4.所以数列{b n }的前10项和为1×3+2×2+3×3+4×2=24.10.已知等差数列的前三项依次为a ,4,3a ,前n 项和为S n ,且S k =110.(1)求a 及k 的值;(2)设数列{b n }的通项公式b n =S n n ,证明:数列{b n }是等差数列,并求其前n 项和T n .(1)解 设该等差数列为{a n },则a 1=a ,a 2=4,a 3=3a ,由已知有a +3a =8,得a 1=a =2,公差d =4-2=2,所以S k =ka 1+k (k -1)2·d =2k +k (k -1)2×2=k 2+k , 由S k =110,得k 2+k -110=0,解得k =10或k =-11(舍去),故a =2,k =10.(2)证明 由(1)得S n =n (2+2n )2=n (n +1), 则b n =S n n =n +1,故b n +1-b n =(n +2)-(n +1)=1,即数列{b n }是首项为2,公差为1的等差数列,所以T n =n (2+n +1)2=n (n +3)2. 能力提升题组(建议用时:20分钟)11.(2019·济宁模拟)设数列{a n }满足a 1=1,a 2=2,且2na n =(n -1)a n -1+(n +1)a n +1(n ≥2且n ∈N *),则a 18=( )A.259B.269C.3D.289 解析 令b n =na n ,则2b n =b n -1+b n +1(n ≥2),所以{b n }为等差数列,因为b 1=1,b 2=4,所以公差d =3,则b n =3n -2,所以b 18=52,则18a 18=52,所以a 18=269.【参考答案】B12.(2019·成都诊断)已知等差数列{a n },{b n }的前n 项和分别为S n ,T n (n ∈N *),若S n T n=2n -1n +1,则a 12b 6=( ) A.154 B.158 C.237 D.3 解析 由题意不妨设S n =n (2n -1),T n =n (n +1),所以a 12=S 12-S 11=12×23-11×21=45,b 6=T 6-T 5=6×(6+1)-5×(5+1)=42-30=12,所以a 12b 6=4512=154. 【参考答案】A13.设数列{a n }的通项公式为a n =2n -10(n ∈N *),则|a 1|+|a 2|+…+|a 15|=________. 解析 由a n =2n -10(n ∈N *)知{a n }是以-8为首项,2为公差的等差数列,又由a n =2n -10≥0得n ≥5,∴n ≤5时,a n ≤0,当n >5时,a n >0,∴|a 1|+|a 2|+…+|a 15|=-(a 1+a 2+a 3+a 4)+(a 5+a 6+…+a 15)=20+110=130.【参考答案】13014.(2019·长沙雅礼中学模拟)设S n 为等差数列{a n }的前n 项和,已知a 1+a 13=26,S 9=81.(1)求{a n }的通项公式;(2)令b n =1a n +1a n +2,T n =b 1+b 2+…+b n ,若30T n -m ≤0对一切n ∈N *成立,求实数m 的最小值.解 (1)∵等差数列{a n }中,a 1+a 13=26,S 9=81,∴⎩⎨⎧2a 7=26,9a 5=81,解得⎩⎨⎧a 7=13,a 5=9, ∴d =a 7-a 57-5=13-92=2, ∴a n =a 5+(n -5)d =9+2(n -5)=2n -1.(2)∵b n =1a n +1a n +2=1(2n +1)(2n +3)=12⎝ ⎛⎭⎪⎫12n +1-12n +3, ∴T n =12⎝ ⎛⎭⎪⎫13-15+15-17+…+12n +1-12n +3 =12⎝ ⎛⎭⎪⎫13-12n +3, ∵12⎝ ⎛⎭⎪⎫13-12n +3随着n 的增大而增大,知{T n }单调递增. 又12n +3>0,∴T n <16,∴m ≥5, ∴实数m 的最小值为5.。

创新设计高考总复习数学人教A理科时PPT课件

创新设计高考总复习数学人教A理科时PPT课件
第12页/共29页
【训练 2】 (1)(2018·贵州七校联考)以椭圆上一点和两个焦点为顶点的三角形的面
积的最大值为 1,则椭圆长轴长的最小值为( )
A.1
B. 2
C.2
D.2 2
(2)(2017·全国Ⅰ卷)设 A,B 是椭圆 C:x32+ym2=1 长轴的两个端点.若 C 上存在点
M 满足∠AMB=120°,则 m 的取值范围是( )
第20页/共29页
消去 y 并整理得(1+4k2)x2-16kx+12=0.(*) 因直线 l 与 E 有两个交点,即方程(*)有不等的两实根, 故 Δ=(-16k)2-48(1+4k2)>0,解得 k2>34. 设 M(x1,y1),N(x2,y2),
x1+x2=1+164kk2, 由根与系数的关系得
C.2
D.2 2
第9页/共29页
解析 (1)依题意,可设椭圆的标准方程为ax22+by22=1(a>b>0),由已知可得抛物线 的焦点为(-1,0),所以 c=1,又离心率 e=ac=12,解得 a=2,b2=a2-c2=3,所 以椭圆方程为x42+y32=1,故选 A.
第10页/共29页
(2)椭圆的标准方程为x22+y2=1,因为原点 O 是线段 F1F2 的中点,所以P→F1+P→F2= 2P→O,即|P→F1+P→F2|=|2P→O|=2|PO|,椭圆上点到中心的最短距离为短半轴长,即|PO| 的最小值为 b=1,所以|P→F1+P→F2|的最小值为 2. 答案 (1)A (2)C
A.(0,1]∪[9,+∞)
B.(0, 3]∪[9,+∞)
C.(0,1]∪[4,+∞)
D.(0, 3]∪[4,+∞)
第13页/共29页
解析 (1)设 a,b,c 分别为椭圆的长半轴长,短半轴长,半焦距, 依题意知,当三角形的高为 b 时面积最大, 所以12 2bc=2 2 (当且仅当 b=c=1 时取等号),故选 D.

2020版创新设计高考总复习高三理科数学人教A版第一章第1节

2020版创新设计高考总复习高三理科数学人教A版第一章第1节

第1节集合最新考纲 1.了解集合的含义,体会元素与集合的属于关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题;2.理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中了解全集与空集的含义;3.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;理解在给定集合中一个子集的补集的含义,会求给定子集的补集;能使用韦恩(Venn)图表达集合间的基本关系及集合的基本运算.知识梳理1.元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于,表示符号分别为∈和∉.(3)集合的三种表示方法:列举法、描述法、图示法.2.集合间的基本关系(1)子集:若对任意x∈A,都有x∈B,则A⊆B或B⊇A.(2)真子集:若A⊆B,且集合B中至少有一个元素不属于集合A,则A B或B A.(3)相等:若A⊆B,且B⊆A,则A=B.(4)空集的性质:∅是任何集合的子集,是任何非空集合的真子集.3.集合的基本运算4.(1)A∩A=A,A∩∅=∅,A∩B=B∩A.(2)A∪A=A,A∪∅=A,A∪B=B∪A.(3)A∩(∁U A)=∅,A∪(∁U A)=U,∁U(∁U A)=A.[微点提醒]1.若有限集A中有n个元素,则A的子集有2n个,真子集有2n-1个.2.子集的传递性:A⊆B,B⊆C⇒A⊆C.3.A⊆B⇔A∩B=A⇔A∪B=B⇔∁U A⊇∁U B.4.∁U(A∩B)=(∁U A)∪(∁U B),∁U(A∪B)=(∁U A)∩(∁U B).基础自测1.判断下列结论正误(在括号内打“√”或“×”)(1){x|y=x2+1}={y|y=x2+1}={(x,y)|y=x2+1}.()(2)若{x2,1}={0,1},则x=0,1.()(3)对于任意两个集合A,B,关系(A∩B)⊆(A∪B)恒成立.()(4)含有n个元素的集合有2n个真子集.()解析(1)错误.{x|y=x2+1}=R,{y|y=x2+1}=[1,+∞),{(x,y)|y=x2+1}是抛物线y =x2+1上的点集.(2)错误.当x=1时,不满足集合中元素的互异性.(4)错误.含有n个元素的集合有2n-1个真子集.【参考答案】(1)×(2)×(3)√(4)×2.(必修1P12A5改编)若集合P={x∈N|x≤ 2 019},a=22,则()A.a∈PB.{a}∈PC.{a}⊆PD.a∉P解析因为a=22不是自然数,而集合P是不大于 2 019的自然数构成的集合,所以a∉P,只有D正确.【参考答案】D3.(必修1P12B1改编)已知集合M={0,1,2,3,4},N={1,3,5},则集合M∪N的子集的个数为________.解析由已知得M∪N={0,1,2,3,4,5},所以M∪N的子集有26=64(个).【参考答案】644.(2018·全国Ⅰ卷)已知集合A={x|x2-x-2>0},则∁R A=()A.{x|-1<x<2}B.{x|-1≤x≤2}C.{x|x<-1}∪{x|x>2}D.{x|x≤-1}∪{x|x≥2}解析法一A={x|x2-x-2>0}={x|(x-2)(x+1)>0}={x|x<-1或x>2},所以∁R A ={x|-1≤x≤2}.法二因为A={x|x2-x-2>0},所以∁R A={x|x2-x-2≤0}={x|-1≤x≤2}.【参考答案】B5.(2019·南昌模拟)已知集合P={x|x2≤1},M={a}.若P∪M=P,则实数a的取值范围为()A.[-1,1]B.[1,+∞)C.(-∞,-1]D.(-∞,-1]∪[1,+∞)解析∵P={x|-1≤x≤1},且P∪M=P,∴M⊆P,∴a∈P,因此-1≤a≤1.【参考答案】A6.(2017·全国Ⅲ卷改编)已知集合A={(x,y)|x2+y2=1},B={(x,y)|x,y∈R,且y=x},则A∩B中元素的个数为________.解析集合A表示圆心在原点的单位圆上所有点的集合,集合B表示直线y=x上所有点的集合,易知直线y=x和圆x2+y2=1相交,且有2个交点,故A∩B中有2个元素.【参考答案】2考点一 集合的基本概念【例1】 (1)(2019·湖北四地七校联考)若集合M ={x ||x |≤1},N ={y |y =x 2,|x |≤1},则( ) A.M =N B.M ⊆N C.M ∩N =∅D.N ⊆M(2)若x ∈A ,则1x ∈A ,就称A 是伙伴关系集合,集合M =⎩⎨⎧⎭⎬⎫-1,0,12,2,3的所有非空子集中具有伙伴关系的集合的个数是()A.1B.3C.7D.31解析 (1)易知M ={x |-1≤x ≤1},N ={y |y =x 2,|x |≤1}={y |0≤y ≤1},∴N ⊆M . (2)具有伙伴关系的元素组是-1,12,2,所以具有伙伴关系的集合有3个:{-1},⎩⎨⎧⎭⎬⎫12,2,⎩⎨⎧⎭⎬⎫-1,12,2. 【参考答案】(1)D (2)B规律方法 1.研究集合问题时,首先要明确构成集合的元素是什么,即弄清该集合是数集、点集,还是其他集合;然后再看集合的构成元素满足的限制条件是什么,从而准确把握集合的含义.2.利用集合元素的限制条件求参数的值或确定集合中元素的个数时,要注意检验集合中的元素是否满足互异性.【训练1】 (1)(2018·全国Ⅱ卷)已知集合A ={(x ,y )|x 2+y 2≤3,x ∈Z ,y ∈Z },则A 中元素的个数为( ) A.9B.8C.5D.4(2)设集合A ={x |(x -a )2<1},且2∈A ,3∉A ,则实数a 的取值范围为________. 解析 (1)由题意知A ={(-1,0),(0,0),(1,0),(0,-1),(0,1),(-1,-1),(-1,1),(1,-1),(1,1)},故集合A 中共有9个元素.(2)由题意得⎩⎨⎧(2-a )2<1,(3-a )2≥1,解得⎩⎨⎧1<a <3,a ≤2或a ≥4.所以1<a ≤2.【参考答案】(1)A (2)(1,2]考点二 集合间的基本关系【例2】 (1)已知集合A ={x |y =1-x 2,x ∈R },B ={x |x =m 2,m ∈A },则( ) A.ABB.BAC.A ⊆BD.B =A(2)(2019·郑州调研)已知集合A ={x |x 2-5x -14≤0},集合B ={x |m +1<x <2m -1},若B ⊆A ,则实数m 的取值范围为________. 解析 (1)易知A ={x |-1≤x ≤1}, 所以B ={x |x =m 2,m ∈A }={x |0≤x ≤1}. 因此BA .(2)A ={x |x 2-5x -14≤0}={x |-2≤x ≤7}. 当B =∅时,有m +1≥2m -1,则m ≤2. 当B ≠∅时,若B ⊆A ,如图.则⎩⎨⎧m +1≥-2,2m -1≤7,m +1<2m -1,解得2<m ≤4.综上,m 的取值范围为(-∞,4]. 【参考答案】(1)B (2)(-∞,4]规律方法 1.若B ⊆A ,应分B =∅和B ≠∅两种情况讨论.2.已知两个集合间的关系求参数时,关键是将两个集合间的关系转化为元素或区间端点间的关系,进而转化为参数满足的关系.解决这类问题常常要合理利用数轴、Venn 图,化抽象为直观进行求解.【训练2】 (1)(2018·唐山模拟)设集合M ={x |x 2-x >0},N =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1x <1,则( )A.M NB.N MC.M =ND.M ∪N =R(2)若将本例(2)的集合A 改为A ={x |x 2-5x -14>0}.其它条件不变,则m 的取值范围是________.解析 (1)集合M ={x |x 2-x >0}={x |x >1或x <0},N =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1x <1={x |x >1或x <0},所以M =N .(2)A ={x |x 2-5x -14>0}={x |x <-2或x >7}. 当B =∅时,有m +1≥2m -1,则m ≤2. 当B ≠∅时,若B ⊆A ,则⎩⎨⎧m +1<2m -1,m +1≥7或⎩⎨⎧m +1<2m -1,2m -1≤-2. 解之得m ≥6.综上可知,实数m 的取值范围是(-∞,2]∪[6,+∞). 【参考答案】(1)C (2)(-∞,2]∪[6,+∞) 考点三 集合的运算 多维探究角度1 集合的基本运算【例3-1】 (1)(2017·全国Ⅰ卷)已知集合A ={x |x <2},B ={x |3-2x >0},则( )A.A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <32B.A ∩B =∅C.A ∪B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <32D.A ∪B =R(2)(2018·天津卷)设全集为R ,集合A ={x |0<x <2},B ={x |x ≥1},则A ∩(∁R B )=( ) A.{x |0<x ≤1} B.{x |0<x <1} C.{x |1≤x <2}D.{x |0<x <2}解析 (1)因为B ={x |3-2x >0}=⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <32,A ={x |x <2},所以A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <32,A ∪B ={x |x <2}.(2)因为B ={x |x ≥1},所以∁R B ={x |x <1},因为A ={x |0<x <2},所以A ∩(∁R B )={x |0<x <1}.【参考答案】(1)A (2)B 角度2 抽象集合的运算【例3-2】 设U 为全集,A ,B 是其两个子集,则“存在集合C ,使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件解析由图可知,若“存在集合C,使得A⊆C,B⊆∁U C”,则一定有“A∩B=∅”;反过来,若“A∩B=∅”,则一定能找到集合C,使A⊆C且B⊆∁U C.【参考答案】C规律方法 1.进行集合运算时,首先看集合能否化简,能化简的先化简,再研究其关系并进行运算.2.注意数形结合思想的应用.(1)离散型数集或抽象集合间的运算,常借助Venn图求解;(2)连续型数集的运算,常借助数轴求解,运用数轴时要特别注意端点是实心还是空心.【训练3】(1)(2019·延安模拟)若全集U={-2,-1,0,1,2},A={-2,2},B={x|x2-1=0},则图中阴影部分所表示的集合为()A.{-1,0,1}B.{-1,0}C.{-1,1}D.{0}(2)(2019·新乡模拟)已知集合A={x|x2-x≤0},B={x|a-1≤x<a},若A∩B只有一个元素,则a=()A.0B.1C.2D.1或2解析(1)B={x|x2-1=0}={-1,1},阴影部分所表示的集合为∁U(A∪B).A∪B={-2,-1,1,2},全集U={-2,-1,0,1,2},所以∁U(A∪B)={0}. (2)易知A=[0,1],因为A∩B只有一个元素,所以a-1=1,解得a=2.【参考答案】(1)D(2)C[思维升华]1.在解题时经常用到集合元素的互异性,一方面利用集合元素的互异性能顺利找到解题的切入点;另一方面,在解答完毕之时,注意检验集合的元素是否满足互异性以确保答案正确.2.对连续数集间的运算,借助数轴的直观性,进行合理转化;对已知连续数集间的关系,求其中参数的取值范围时,要注意单独考察等号能否取到.3.对离散的数集间的运算,或抽象集合间的运算,可借助Venn图.这是数形结合思想的又一体现.[易错防范]1.集合问题解题中要认清集合中元素的属性(是数集、点集还是其他类型集合),要对集合进行化简.2.空集是任何集合的子集,是任何非空集合的真子集,时刻关注对空集的讨论,防止漏解.3.解题时注意区分两大关系:一是元素与集合的从属关系;二是集合与集合的包含关系.4.Venn图图示法和数轴图示法是进行集合交、并、补运算的常用方法,其中运用数轴图示法时要特别注意端点是实心还是空心.基础巩固题组(建议用时:30分钟)一、选择题1.(2018·全国Ⅲ卷)已知集合A={x|x-1≥0},B={0,1,2},则A∩B=()A.{0}B.{1}C.{1,2}D.{0,1,2}解析由题意知,A={x|x≥1},则A∩B={1,2}.【参考答案】C2.设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M中元素的个数为()A.3B.4C.5D.6解析因为A={1,2,3},B={4,5},又M={x|x=a+b,a∈A,b∈B},∴M={5,6,7,8},即M中有4个元素.【参考答案】B3.(2019·佛山质检)已知全集U={0,1,2,3,4},若A={0,2,3},B={2,3,4},则(∁U A)∩(∁B)=()UA.∅B.{1}C.{0,2}D.{1,4}解析因为全集U={0,1,2,3,4},A={0,2,3},B={2,3,4},所以∁U A={1,4},∁U B={0,1},因此(∁U A)∩(∁U B)={1}.【参考答案】B4.(2018·石家庄质检)设集合A={x|-1<x≤2},B={x|x<0},则下列结论正确的是()A.(∁R A)∩B={x|x<-1}B.A∩B={x|-1<x<0}C.A∪(∁R B)={x|x≥0}D.A∪B={x|x<0}解析易求∁R A={x|x≤-1或x>2},∁R B={x|x≥0},∴(∁R A)∩B={x|x≤-1},A项不正确.A∩B={x|-1<x<0},B项正确,检验C、D错误.【参考答案】B5.已知集合A={x∈N|x2-2x-8≤0},B={x|2x≥8},则集合A∩B的子集的个数为()A.1B.2C.3D.4解析因为A={x∈N|x2-2x-8≤0}={0,1,2,3,4},B={x|x≥3},所以A∩B={3,4},所以集合A∩B的子集个数为4.【参考答案】D6.(2019·豫北名校联考)已知集合M={x|y=x-1},N={x|y=log2(2-x)},则∁R(M∩N)=()A.[1,2)B.(-∞,1)∪[2,+∞)C.[0,1]D.(-∞,0)∪[2,+∞)解析由题意可得M={x|x≥1},N={x|x<2},∴M∩N={x|1≤x<2},∴∁R(M∩N)={x|x<1或x≥2}.【参考答案】B7.设集合A={(x,y)|x+y=1},B={(x,y)|x-y=3},则满足M⊆(A∩B)的集合M的个数是()A.0B.1C.2D.3解析 由⎩⎨⎧x +y =1,x -y =3,得⎩⎨⎧x =2,y =-1,∴A ∩B ={(2,-1)}.由M ⊆(A ∩B ),知M =∅或M ={(2,-1)}. 【参考答案】C8.(一题多解)(2018·中原名校联考)已知集合A ={x |y =lg(x -x 2)},B ={x |x 2-cx <0,c >0},若A ⊆B ,则实数c 的取值范围为( ) A.(0,1] B.[1,+∞) C.(0,1)D.(1,+∞)解析 法一 由题意知,A ={x |y =lg(x -x 2)}={x |x -x 2>0}={x |0<x <1},B ={x |x 2-cx <0,c >0}={x |0<x <c }.由A ⊆B ,画出数轴,如图所示,得c ≥1.法二 A ={x |y =lg(x -x 2)={x |x -x 2>0}={x |0<x <1},结合选项,取c =1,得B ={x |0<x <1},则A ⊆B 成立,可排除C 、D ;取c =2,得B ={x |0<x <2},则A ⊆B 成立,排除A.【参考答案】B 二、填空题9.(2016·全国Ⅲ卷改编)设集合S ={x |(x -2)(x -3)≥0},T ={x |x >0},则(∁R S )∩T =________.解析 易知S ={x |x ≤2或x ≥3}, ∴∁R S ={x |2<x <3}, 因此(∁R S )∩T ={x |2<x <3}. 【参考答案】{x |2<x <3}10.已知集合A ={1,2},B ={a ,a 2+3},若A ∩B ={1},则实数a 的值为________. 解析 由A ∩B ={1}知,1∈B ,又a 2+3≥3,则a =1. 【参考答案】111.(2019·福州质检)已知集合A ={1,3,4,7},B ={x |x =2k +1,k ∈A },则集合A ∪B 中元素的个数为________.解析 ∵A ={1,3,4,7},B ={x |x =2k +1,k ∈A },∴B ={3,7,9,15},∴A ∪B ={1,3,4,7,9,15},∴集合A ∪B 中元素的个数为6.【参考答案】612.集合A ={x |x <0},B ={x |y =lg[x (x +1)]},若A -B ={x |x ∈A ,且x ∉B },则A -B =________.解析 由题意知,B ={x |y =lg[x (x +1)]}={x |x (x +1)>0}={x |x <-1或x >0},则A -B ={x |-1≤x <0}.【参考答案】{x |-1≤x <0}能力提升题组(建议用时:10分钟)13.(2018·河南百校联盟联考)若集合A ={x |y =lg(3x -x 2)},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪y =1+4x +1,x ∈A ,则A ∩(∁R B )等于( )A.(0,2]B.(2,3)C.(3,5)D.(-2,-1) 解析 由3x -x 2>0,得0<x <3,则A =(0,3),∴B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪y =1+4x +1,x ∈A =(2,5), 则∁R B =(-∞,2]∪[5,+∞),故A ∩(∁R B )=(0,2].【参考答案】A14.已知集合A ={x |y =4-x 2},B ={x |a ≤x ≤a +1},若A ∪B =A ,则实数a 的取值范围为( )A.(-∞,-3]∪[2,+∞)B.[-1,2]C.[-2,1]D.[2,+∞)解析 集合A ={x |y =4-x 2}={x |-2≤x ≤2},因A ∪B =A ,则B ⊆A ,又B ≠∅,所以有⎩⎨⎧a ≥-2,a +1≤2,所以-2≤a ≤1. 【参考答案】C15.(2019·皖南八校联考改编)已知集合A ={(x ,y )|x 2=4y },B ={(x ,y )|y =x },则A ∩B 的真子集个数是________.解析 由⎩⎨⎧x 2=4y ,y =x 得⎩⎨⎧x =0,y =0或⎩⎨⎧x =4,y =4,即A ∩B ={(0,0),(4,4)},∴A ∩B 的真子集个数为22-1=3.【参考答案】316.集合U =R ,A ={x |x 2-x -2<0},B ={x |y =ln(1-x )},则图中阴影部分所表示的集合是________.解析 易知A =(-1,2),B =(-∞,1),∴∁U B =[1,+∞),A ∩(∁U B )=[1,2).因此阴影部分表示的集合为A ∩(∁U B )={x |1≤x <2}.【参考答案】[1,2)。

2020版创新设计高考总复习高三理科数学人教A版第八章第1节

2020版创新设计高考总复习高三理科数学人教A版第八章第1节

第1节空间几何体的结构、三视图和直观图最新考纲 1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构;2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图;3.会用平行投影方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.知识梳理1.空间几何体的结构特征(1)多面体的结构特征(2)空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°(或135°),z′轴与x′轴、y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴.平行于x轴和z 轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半.3.三视图(1)几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.(2)三视图的画法①基本要求:长对正,高平齐,宽相等.②在画三视图时,重叠的线只画一条,挡住的线要画成虚线.[微点提醒]1.常见旋转体的三视图(1)球的三视图都是半径相等的圆.(2)水平放置的圆锥的正视图和侧视图均为全等的等腰三角形.(3)水平放置的圆台的正视图和侧视图均为全等的等腰梯形.(4)水平放置的圆柱的正视图和侧视图均为全等的矩形.2.在绘制三视图时,分界线和可见轮廓线都用实线画出,被遮挡的部分的轮廓线用虚线表示出来,即“眼见为实、不见为虚”.在三视图的判断与识别中要特别注意其中的虚线.基础自测1.判断下列结论正误(在括号内打“√”或“×”)(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.()(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.()(3)用斜二测画法画水平放置的∠A时,若∠A的两边分别平行于x轴和y轴,且∠A =90°,则在直观图中,∠A=45°.()(4)正方体、球、圆锥各自的三视图中,三视图均相同.()解析(1)反例:由两个平行六面体上下组合在一起的图形满足条件,但不是棱柱.(2)反例:如图所示的图形满足条件但不是棱锥.(3)用斜二测画法画水平放置的∠A时,把x,y轴画成相交成45°或135°,平行于x轴的线段还平行于x轴,平行于y轴的线段还平行于y轴,所以∠A也可能为135°. (4)球的三视图均相同,而圆锥的正视图和侧视图相同,且为等腰三角形, 其俯视图为圆心和圆,正方体的三视图不一定相同.【参考答案】(1)×(2)×(3)×(4)×2.(必修2P10B1改编)如图,长方体ABCD-A′B′C′D′被截去一部分,其中EH∥A′D′.剩下的几何体是()A.棱台B.四棱柱C.五棱柱D.六棱柱解析由几何体的结构特征,剩下的几何体为五棱柱.【参考答案】C3.(必修2P21A4改编)用斜二测画法画水平放置的矩形的直观图,则直观图的面积与原矩形的面积之比为()A.12 B.22 C.23 D.24解析设原矩形的长为a,宽为b,则其直观图是长为a,高为b2sin 45°=24b的平行四边形,所以S直观S矩形=24abab=24.故选D.【参考答案】D4.(2019·济宁一中月考)如图为某个几何体的三视图,根据三视图可以判断这个几何体为()A.圆锥B.三棱椎C.三棱柱D.三棱台【参考答案】C5.(2018·全国Ⅲ卷)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()解析由题意知,在咬合时带卯眼的木构件中,从俯视方向看,榫头看不见,所以是虚线,结合榫头的位置知选A.【参考答案】A6.(2018·衡水月考)如图所示,图①②③是图④表示的几何体的三视图,其中图①是________,图②是________,图③是________(写出视图名称).解析观察几何体的结构特征,不难发现其下层长为两个小长方体的长,宽为两个小长方体的宽,高为两个小长方体的高.所以正视图应为①,侧视图为②,俯视图为③.【参考答案】正视图侧视图俯视图考点一空间几何体的结构特征【例1】(1)给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;③棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是()A.0B.1C.2D.3(2)给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;③存在每个面都是直角三角形的四面体;④棱台的侧棱延长后交于一点.其中正确命题的序号是________.解析(1)①不一定,只有当这两点的连线平行于轴时才是母线;②不一定,当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图所示,它是由两个同底圆锥组成的几何体;③错误,棱台的上、下底面相似且是对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.(2)①不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;②正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;③正确,如图,正方体ABCD-A1B1C1D1中的三棱锥C1-ABC,四个面都是直角三角形;④正确,由棱台的概念可知.【参考答案】(1)A(2)②③④规律方法 1.关于空间几何体的结构特征辨析关键是紧扣各种空间几何体的概念,要善于通过举反例对概念进行辨析,即要说明一个命题是错误的,只需举一个反例.2.圆柱、圆锥、圆台的有关元素都集中在轴截面上,解题时要注意用好轴截面中各元素的关系.3.既然棱(圆)台是由棱(圆)锥定义的,所以在解决棱(圆)台问题时,要注意“还台为锥”的解题策略.【训练1】下列命题正确的是()A.两个面平行,其余各面都是梯形的多面体是棱台B.两个面平行且相似,其余各面都是梯形的多面体是棱台C.以直角梯形的一条直角腰所在的直线为旋转轴,其余三边旋转形成的面所围成的旋转体是圆台D.用平面截圆柱得到的截面只能是圆和矩形解析如图所示,可排除A,B选项.只有截面与圆柱的母线平行或垂直,则截得的截面为矩形或圆,否则为椭圆或椭圆的一部分.【参考答案】C考点二空间几何体的三视图多维探究角度1由空间几何体的直观图判断三视图【例2-1】(2018·黄山一模)将正方体(如图(1)所示)截去两个三棱锥,得到如图(2)所示的几何体,则该几何体的侧视图为()解析截去两个三棱锥后的几何体的侧视图可以看见的实线段为AD1,AD,DD1,D1B1,AB1,而线段B1C被遮住,在侧视图中为虚线,所以侧视图为选项B 中的图形.【参考答案】B角度2由三视图判断几何体【例2-2】(1)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱(2)(2018·全国Ⅰ卷)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在侧视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.217B.2 5C.3D.2解析(1)由题知,该几何体的三视图为一个三角形、两个四边形,经分析可知该几何体为三棱柱.(2)由三视图可知,该几何体为如图①所示的圆柱,该圆柱的高为2,底面周长为16.画出该圆柱的侧面展开图,如图②所示,连接MN,则MS=2,SN=4,则从M到N的路径中,最短路径的长度为MS2+SN2=22+42=2 5.故选B.【参考答案】(1)B(2)B规律方法 1.由直观图确定三视图,一要根据三视图的含义及画法和摆放规则确认.二要熟悉常见几何体的三视图.2.由三视图还原到直观图的思路(1)根据俯视图确定几何体的底面.(2)根据正视图或侧视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置.(3)确定几何体的直观图形状.【训练2】(1)(2018·北京卷)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()A.1B.2C.3D.4(2)(2019·惠州模拟)如图,在底面边长为1,高为2的正四棱柱ABCD-A1B1C1D1中,点P是平面A1B1C1D1内一点,则三棱锥P-BCD的正视图与侧视图的面积之和为()A.1B.2C.3D.4解析(1)在正方体中作出该几何体的直观图,记为四棱锥P-ABCD,如图,由图可知在此四棱锥的侧面中,直角三角形的个数为3,故选C.(2)设点P 在平面A 1ADD 1的射影为P ′,在平面C 1CDD 1的射影为P ″,如图所示.∴三棱锥P -BCD 的正视图与侧视图分别为△P ′AD 与△P ″CD , 因此所求面积S =S △P ′AD +S △P ″CD =12×1×2+12×1×2=2. 【参考答案】(1)C (2)B 考点三 空间几何体的直观图【例3】 已知正三角形ABC 的边长为a ,那么△ABC 的平面直观图△A ′B ′C ′的面积为( ) A.34a 2B.38a 2C.68a 2D.616a 2解析 如图①②所示的实际图形和直观图.由斜二测画法可知,A ′B ′=AB =a ,O ′C ′=12OC =34a ,在图②中作C ′D ′⊥A ′B ′于D ′,则C ′D ′=22O ′C ′=68a .所以S △A ′B ′C ′=12A ′B ′·C ′D ′=12×a ×68a =616a 2.故选D. 【参考答案】D规律方法 1.画几何体的直观图一般采用斜二测画法,其规则可以用“斜”(两坐标轴成45°或135°)和“二测”(平行于y 轴的线段长度减半,平行于x 轴和z 轴的线段长度不变)来掌握.2.按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积的关系:S直观图=24S原图形.【训练3】如果一个水平放置的图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是()A.2+ 2B.1+22 C.2+22 D.1+ 2解析恢复后的原图形为一直角梯形,所以S=12(1+2+1)×2=2+ 2.故选A.【参考答案】A[思维升华]1.画三视图的三个原则:(1)画法规则:“长对正,宽相等,高平齐”.(2)摆放规则:侧视图在正视图的右侧,俯视图在正视图的正下方.(3)实虚线的画法规则:可见轮廓线和棱用实线画出,不可见线和棱用虚线画出. 2.棱台和圆台是分别用平行于棱锥和圆锥的底面的平面截棱锥和圆锥后得到的,所以在解决棱台和圆台的相关问题时,常“还台为锥”,体现了转化的数学思想. [易错防范]1.台体可以看成是由锥体截得的,易忽视截面与底面平行且侧棱延长后必交于一点.2.空间几何体不同放置时其三视图不一定相同.3.对于简单组合体,若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,易忽视实虚线的画法.基础巩固题组(建议用时:35分钟)一、选择题1.下列说法中,正确的是()A.棱柱的侧面可以是三角形B.若棱柱有两个侧面是矩形,则该棱柱的其他侧面也是矩形C.正方体的所有棱长都相等D.棱柱的所有棱长都相等解析棱柱的侧面都是平行四边形,选项A错误;其他侧面可能是平行四边形,选项B错误;棱柱的侧棱与底面边长并不一定相等,选项D错误;易知选项C正确.故选C.【参考答案】C2.某空间几何体的正视图是三角形,则该几何体不可能是()A.圆柱B.圆锥C.四面体D.三棱柱解析由三视图知识知圆锥、四面体、三棱柱(放倒看)都能使其正视图为三角形,而圆柱的正视图不可能为三角形.【参考答案】A3.(2019·临沂模拟)某几何体的三视图如图所示,那么这个几何体是()A.三棱锥B.四棱锥C.四棱台D.三棱台解析因为正视图和侧视图都为三角形,可知几何体为锥体,又因为俯视图为三角形,故该几何体为三棱锥.故选A.【参考答案】A4.“牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图,图中四边形是为体现其直观性所作的辅助线.当其正视图和侧视图完全相同时,它的俯视图可能是()解析由直观图知,俯视图应为正方形,又上半部分相邻两曲面的交线为可见线,在俯视图中应为实线,因此,选项B可以是几何体的俯视图.【参考答案】B5.下列结论正确的是()A.各个面都是三角形的几何体是三棱锥B.夹在圆柱的两个平行截面间的几何体还是一个旋转体C.棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥D.圆锥的顶点与底面圆周上任意一点的连线都是母线解析如图1知,A不正确.如图2,两个平行平面与底面不平行时,截得的几何体不是旋转体,则B不正确.若六棱锥的所有棱长都相等,则底面多边形是正六边形.由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长,C错误.由母线的概念知,选项D正确.【参考答案】D6.(2018·肇庆二模)如图,网格纸上小正方形的边长为1,粗实线画出的是某四棱锥的三视图,则该四棱锥的所有棱中,最长的棱的长度为()A.41B.34C.5D.3 2解析由三视图可知该几何体为如图所示的四棱锥P-ABCD.其中P A⊥底面ABCD,四棱锥P-ABCD的底面是边长为3的正方形,高P A=4.连接AC,易知最长的棱为PC,且PC=P A2+AC2=42+32+32=34.故选B.【参考答案】B7.某几何体的正视图和侧视图均为如图所示的图形,则在下图的四个图中可以作为该几何体的俯视图的是()A.①③B.①④C.②④D.①②③④解析由正视图和侧视图知,该几何体为球与正四棱柱或球与圆柱体的组合体,故①③正确.【参考答案】A8.(2019·长沙月考)一个几何体的三视图如图所示,在该几何体的各个面中,面积最小的面的面积为()A.8B.4C.4 3D.4 2解析由三视图可知该几何体的直观图如图所示,由三视图特征可知,P A⊥平面ABC ,DB ⊥平面 ABC ,AB ⊥AC ,P A =AB =AC =4,DB =2,则易得S △P AC =S △ABC =8,S △CPD =12,S 梯形ABDP =12,S △BCD =12×42×2=42,故选D.【参考答案】D二、填空题9.(2018·龙岩联考)一水平放置的平面四边形OABC ,用斜二测画法画出它的直观图O ′A ′B ′C ′如图所示,此直观图恰好是一个边长为1的正方形,则原平面四边形OABC 面积为________.解析 因为直观图的面积是原图形面积的24倍,且直观图的面积为1,所以原图形的面积为2 2. 【参考答案】2 210.已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为2的矩形,则该正方体的正视图的面积等于________.解析 由题知此正方体的正视图与侧视图是一样的,正视图的面积与侧视图的面积相等为 2.【参考答案】 211.(2018·兰州模拟)正四棱锥的底面边长为2,侧棱长均为3,其正视图和侧视图是全等的等腰三角形,则正视图的周长为________.解析 由题意知,正视图就是如图所示的截面PEF ,其中E ,F 分别是AD ,BC 的中点,连接AO ,易得AO =2,又P A =3,于是解得PO =1,所以PE =2,故其正视图的周长为2+2 2.【参考答案】2+2 212.(2018·南昌NCS 项目联考)已知圆台和正三棱锥的组合体的正视图和俯视图如图所示,图中小方格是单位正方形,那么组合体的侧视图的面积为________.解析 由题意可得侧视图如图所示,上面是一个三角形,其底为1+12=32,高为2,三角形的面积S 1=12×32×2=32;下面是一个梯形,上底为2,下底为4,高为2,梯形的面积S 2=12×(2+4)×2=6,所以组合体的侧视图的面积S =S 1+S 2=32+6=152.【参考答案】152能力提升题组(建议用时:15分钟)13.用若干块相同的小正方体搭成一个几何体,该几何体的三视图如图所示,则搭成该几何体需要的小正方体的块数是( )A.8B.7C.6D.5解析 画出直观图,共六块.【参考答案】C14.(2019·泉州二模)某几何体的三视图如图所示,则该几何体的侧视图中的虚线部分是()A.圆弧B.抛物线的一部分C.椭圆的一部分D.双曲线的一部分解析根据几何体的三视图,可得侧视图中的虚线部分是由平行于旋转轴的平面截圆锥所得,故侧视图中的虚线部分是双曲线的一部分,故选D.【参考答案】D15.如图,点O为正方体ABCD-A′B′C′D′的中心,点E为面B′BCC′的中心,点F为B′C′的中点,则空间四边形D′OEF在该正方体的各个面上的正投影可能是______(填出所有可能的序号).解析空间四边形D′OEF在正方体的面DCC′D′及其对面ABB′A′上的正投影是①;在面BCC′B′及其对面ADD′A′上的正投影是②;在面ABCD及其对面A′B′C′D′上的正投影③.【参考答案】①②③16.某四棱柱的三视图如图所示,则该四棱柱的体积为______.解析 由题中三视图可画出长为2、宽为1、高为1的长方体,将该几何体还原到长方体中,如图所示,该几何体为四棱柱ABCD -A ′B ′C ′D ′.故该四棱柱的体积V =Sh =12×(1+2)×1×1=32.【参考答案】32。

创新设计高考总复习数学人教A版理科PPT课件

创新设计高考总复习数学人教A版理科PPT课件

=2|PF2|,则 cos∠F1PF2=( )
1
3
3
4
A.4
B.5
C.4
D.5
(2)设 P 是双曲线1x62 -2y02 =1 上一点,F1,F2 分别是双曲线左、右两个焦点,若|PF1|
=9,则|PF2|等于________.
第16页/共33页
解析 (1)由 x2-y2=2,知 a=b= 2,c=2.
)
(4)双曲线mx22-ny22=λ(m>0,n>0,λ≠0)的渐近线方程是mx22-ny22=0,即mx ±ny=0.(
)
第6页/共33页
解析 (1)因为||MF1|-|MF2||=8=|F1F2|,表示的轨迹为两条射线. (2)由双曲线的定义知,应为双曲线的一支,而非双曲线的全部. (3)当m>0,n>0时表示焦点在x轴上的双曲线,而m<0,n<0时则表示焦点在y轴 上的双曲线. 答案 (1)× (2)× (3)× (4)√
(2)(2018·西安调研)已知圆 C1:(x+3)2+y2=1 和圆 C2:(x-3)2+y2=9,动圆 M
同时与圆 C1 及圆 C2 相外切,则动圆圆心 M 的轨迹方程为____________.
第12页/共33页
解析 (1)由已知得双曲线方程为y42-x32=1,设双曲线的另一个焦点为 F′,则|PF|= |PF′|+4,△PAF 的周长为|PF|+|PA|+|AF|=|PF′|+4+|PA|+3,当 F′,P,A 三点 共线时,|PF′|+|PA|有最小值,为|AF′|=3,故△PAF 的周长的最小值为 10. (2)如图所示,设动圆M与圆C1及圆C2分别外切于A和B. 根据两圆外切的条件, 得|MC1|-|AC1|=|MA|, |MC2|-|BC2|=|MB|, 因为|MA|=|MB|,

2020版创新设计高考总复习高三文科数学人教A版第七章第1节

2020版创新设计高考总复习高三文科数学人教A版第七章第1节

第1节 不等式的性质与一元二次不等式最新考纲 1.了解现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景;2.会从实际问题的情境中抽象出一元二次不等式模型;3.通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系;4.会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.知 识 梳 理1.实数的大小顺序与运算性质的关系 (1)a >b ⇔a -b >0; (2)a =b ⇔a -b =0; (3)a <b ⇔a -b <0.2.不等式的性质(1)对称性:a >b ⇔b <a ; (2)传递性:a >b ,b >c ⇒a >c ;(3)可加性:a >b ⇔a +c >b +c ;a >b ,c >d ⇒a +c >b +d ;(4)可乘性:a >b ,c >0⇒ac >bc ;a >b ,c <0⇒ac <bc ;a >b >0,c >d >0⇒ac >bd ; (5)可乘方:a >b >0⇒a n >b n (n ∈N ,n ≥1); (6)可开方:a >b >0⇒n ∈N ,n ≥2). 3.三个“二次”间的关系[微点提醒]1.有关分数的性质(1)若a>b>0,m>0,则ba<b+ma+m;ba>b-ma-m(b-m>0).(2)若ab>0,且a>b⇔1a< 1 b.2.对于不等式ax2+bx+c>0,求解时不要忘记a=0时的情形.3.当Δ<0时,不等式ax2+bx+c>0(a≠0)的解集为R还是∅,要注意区别.基础自测1.判断下列结论正误(在括号内打“√”或“×”)(1)a>b⇔ac2>bc2.()(2)若不等式ax2+bx+c<0的解集为(x1,x2),则必有a>0.()(3)若方程ax2+bx+c=0(a<0)没有实数根,则不等式ax2+bx+c>0(a<0)的解集为R.()(4)不等式ax2+bx+c≤0在R上恒成立的条件是a<0且Δ=b2-4ac≤0.() 解析(1)由不等式的性质,ac2>bc2⇒a>b;反之,c=0时,a>b ac2>bc2.(3)若方程ax2+bx+c=0(a<0)没有实根,则不等式ax2+bx+c>0(a<0)的解集为∅.(4)当a=b=0,c≤0时,不等式ax2+bx+c≤0也在R上恒成立.【参考答案】(1)×(2)√(3)×(4)×2.(必修5P74例1改编)若a>b>0,c<d<0,则一定有()A.ad>bc B.ad<bcC.ac>bd D.ac<bd解析因为c<d<0,所以0>1c>1d,两边同乘-1,得-1d>-1c>0,又a>b>0,故由不等式的性质可知-a d >-b c >0.两边同乘-1,得a d <bc . 【参考答案】B3.(必修5P103A2改编)已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪12x -1≤0,B ={x |x 2-x -6<0},则A ∩B =( ) A.(-2,3) B.(-2,2) C.(-2,2]D.[-2,2]解析 因为A ={x |x ≤2},B ={x |-2<x <3},所以A ∩B ={x |-2<x ≤2}=(-2,2]. 【参考答案】C4.(2018·衡阳联考)若a ,b ,c 为实数,且a <b <0,则下列命题正确的是( ) A.ac 2<bc 2 B.1a <1b C.b a >abD.a 2>ab >b 2解析 c =0时,A 项不成立;1a -1b =b -aab >0,选项B 错;b a -a b =b 2-a 2ab =(b +a )(b -a )ab <0,选项C 错.由a <b <0,∴a 2>ab >b 2.D 正确. 【参考答案】D5.(2019·河北重点八所中学模拟)不等式2x 2-x -3>0的解集为________. 解析 由2x 2-x -3>0,得(x +1)(2x -3)>0, 解得x >32或x <-1.∴不等式2x 2-x -3>0的解集为⎩⎨⎧⎭⎬⎫x |x >32或x <-1.【参考答案】⎩⎨⎧⎭⎬⎫x |x >32或x <-1 6.(2018·汉中调研)已知函数f (x )=ax 2+ax -1,若对任意实数x ,恒有f (x )≤0,则实数a 的取值范围是______.解析 若a =0,则f (x )=-1≤0恒成立, 若a ≠0,则由题意,得⎩⎨⎧a <0,Δ=a 2+4a ≤0,解得-4≤a <0, 综上,得a ∈[-4,0]. 【参考答案】[-4,0]考点一 不等式的性质多维探究角度1 比较大小及不等式性质的简单应用【例1-1】 (1)已知实数a ,b ,c 满足b +c =6-4a +3a 2,c -b =4-4a +a 2,则a ,b ,c 的大小关系是( ) A.c ≥b >a B.a >c ≥b C.c >b >aD.a >c >b(2)(一题多解)若1a <1b <0,给出下列不等式:①1a +b<1ab ;②|a |+b >0;③a -1a >b-1b ;④ln a 2>ln b 2.其中正确的不等式是( ) A.①④B.②③C.①③D.②④解析 (1)∵c -b =4-4a +a 2=(a -2)2≥0,∴c ≥b . 又b +c =6-4a +3a 2,∴2b =2+2a 2,∴b =a 2+1, ∴b -a =a 2-a +1=⎝ ⎛⎭⎪⎫a -122+34>0,∴b >a ,∴c ≥b >a .(2)法一 因为1a <1b <0,故可取a =-1,b =-2.显然|a |+b =1-2=-1<0,所以②错误;因为ln a 2=ln(-1)2=0,ln b 2=ln(-2)2=ln 4>0,所以④错误.综上所述,可排除A,B,D.法二 由1a <1b <0,可知b <a <0.①中,因为a +b <0,ab >0,所以1a +b<0,1ab >0.故有1a +b<1ab ,即①正确; ②中,因为b <a <0,所以-b >-a >0.故-b >|a |,即|a |+b <0,故②错误; ③中,因为b <a <0,又1a <1b <0,则-1a >-1b >0, 所以a -1a >b -1b ,故③正确;④中,因为b <a <0,根据y =x 2在(-∞,0)上为减函数,可得b 2>a 2>0,而y =ln x 在定义域(0,+∞)上为增函数,所以ln b 2>ln a 2,故④错误.由以上分析,知①③正确. 【参考答案】(1)A (2)C 角度2 利用不等式变形求范围【例1-2】 (一题多解)设f (x )=ax 2+bx ,若1≤f (-1)≤2,2≤f (1)≤4,则f (-2)的取值范围是________.解析 法一 设f (-2)=mf (-1)+nf (1)(m ,n 为待定系数),则4a -2b =m (a -b )+n (a +b ),即4a -2b =(m +n )a +(n -m )b . 于是得⎩⎨⎧m +n =4,n -m =-2,解得⎩⎨⎧m =3,n =1.∴f (-2)=3f (-1)+f (1). 又∵1≤f (-1)≤2,2≤f (1)≤4. ∴5≤3f (-1)+f (1)≤10, 故5≤f (-2)≤10.法二 由⎩⎨⎧f (-1)=a -b ,f (1)=a +b ,得⎩⎪⎨⎪⎧a =12[f (-1)+f (1)],b =12[f (1)-f (-1)],∴f (-2)=4a -2b =3f (-1)+f (1). 又∵1≤f (-1)≤2,2≤f (1)≤4,∴5≤3f (-1)+f (1)≤10,故5≤f (-2)≤10.法三 由⎩⎨⎧1≤a -b ≤2,2≤a +b ≤4确定的平面区域如图阴影部分所示,当f (-2)=4a -2b 过点A ⎝ ⎛⎭⎪⎫32,12时,取得最小值4×32-2×12=5, 当f (-2)=4a -2b 过点B (3,1)时, 取得最大值4×3-2×1=10, ∴5≤f (-2)≤10. 【参考答案】[5,10]规律方法 1.比较两个数(式)大小的两种方法2.与充要条件相结合问题,用不等式的性质分别判断p ⇒q 和q ⇒p 是否正确,要注意特殊值法的应用.3.与命题真假判断相结合问题.解决此类问题除根据不等式的性质求解外,还经常采用特殊值验证的方法.4.在求式子的范围时,如果多次使用不等式的可加性,式子中的等号不能同时取到,会导致范围扩大.【训练1】 (1)(2019·东北三省四市模拟)设a ,b 均为实数,则“a >|b |”是“a 3>b 3”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(2)(2018·天一测试)已知实数a ∈(1,3),b ∈⎝ ⎛⎭⎪⎫18,14,则a b 的取值范围是________.解析 (1)a >|b |能推出a >b ,进而得a 3>b 3;当a 3>b 3时,有a >b ,但若b <a <0,则a >|b |不成立,所以“a >|b |”是“a 3>b 3”的充分不必要条件. (2)依题意可得4<1b <8,又1<a <3,所以4<ab <24. 【参考答案】(1)A (2)(4,24) 考点二 一元二次不等式的解法【例2-1】 (1)(2019·河南中原名校联考)已知f (x )是定义在R 上的奇函数.当x >0时,f (x )=x 2-2x ,则不等式f (x )>x 的解集用区间表示为________.(2)已知不等式ax 2-bx -1>0的解集是{x |-12<x <-13},则不等式x 2-bx -a ≥0的解集是________.解析 (1)设x <0,则-x >0,因为f (x )是奇函数,所以f (x )=-f (-x )=-(x 2+2x ). 又f (0)=0.于是不等式f (x )>x 等价于⎩⎨⎧x >0,x 2-2x >x 或⎩⎨⎧x <0,-x 2-2x >x ,解得x >3或-3<x <0.故不等式的解集为(-3,0)∪(3,+∞).(2)由题意,知-12,-13是方程ax 2-bx -1=0的两个根,且a <0, 所以⎩⎪⎨⎪⎧-12+⎝ ⎛⎭⎪⎫-13=b a ,-12×⎝ ⎛⎭⎪⎫-13=-1a ,解得⎩⎨⎧a =-6,b =5.故不等式x 2-bx -a ≥0为x 2-5x +6≥0, 解得x ≥3或x ≤2.【参考答案】(1)(-3,0)∪(3,+∞) (2){x |x ≥3或x ≤2} 【例2-2】 解关于x 的不等式ax 2-2≥2x -ax (a ∈R ). 解 原不等式可化为ax 2+(a -2)x -2≥0. ①当a =0时,原不等式化为x +1≤0,解得x ≤-1. ②当a >0时,原不等式化为⎝ ⎛⎭⎪⎫x -2a (x +1)≥0,解得x ≥2a 或x ≤-1.③当a <0时,原不等式化为⎝ ⎛⎭⎪⎫x -2a (x +1)≤0.当2a >-1,即a <-2时,解得-1≤x ≤2a ; 当2a =-1,即a =-2时,解得x =-1满足题意; 当2a <-1,即-2<a <0时,解得2a ≤x ≤-1.综上所述,当a =0时,不等式的解集为{x |x ≤-1};当a >0时,不等式的解集为⎩⎨⎧⎭⎬⎫x |x ≥2a 或x ≤-1;当-2<a <0时,不等式的解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫2a ≤x ≤-1;当a =-2时,不等式的解集为{-1}; 当a <-2时,不等式的解集为⎩⎨⎧⎭⎬⎫x |-1≤x ≤2a . 规律方法 1.解一元二次不等式的一般方法和步骤 (1)化:把不等式变形为二次项系数大于零的标准形式.(2)判:计算对应方程的判别式,根据判别式判断方程有没有实根(无实根时,不等式解集为R 或∅).(3)求:求出对应的一元二次方程的根.(4)写:利用“大于取两边,小于取中间”写出不等式的解集.2.含有参数的不等式的求解,首先需要对二次项系数讨论,再比较(相应方程)根的大小,注意分类讨论思想的应用.【训练2】 (1)不等式x +5(x -1)2≥2的解集是( )A.⎣⎢⎡⎦⎥⎤-3,12 B.⎣⎢⎡⎦⎥⎤-12,3 C.⎣⎢⎡⎭⎪⎫12,1∪(1,3]D.⎣⎢⎡⎭⎪⎫-12,1∪(1,3] (2)(2019·清远一模)关于x 的不等式ax -b <0的解集是(1,+∞),则关于x 的不等式(ax +b )(x -3)>0的解集是( ) A.(-∞,-1)∪(3,+∞) B.(1,3)C.(-1,3)D.(-∞,1)∪(3,+∞)解析 (1)不等式可化为2x 2-5x -3(x -1)2≤0,即(2x +1)(x -3)(x -1)2≤0,解得-12≤x <1或1<x ≤3.(2)关于x 的不等式ax -b <0即ax <b 的解集是(1,+∞),∴a =b <0, ∴不等式(ax +b )(x -3)>0可化为(x +1)(x -3)<0,解得-1<x <3, ∴所求不等式的解集是(-1,3). 【参考答案】(1)D (2)C考点三 一元二次不等式恒成立问题多维探究角度1 在实数R 上恒成立【例3-1】 (2018·大庆实验中学期中)对于任意实数x ,不等式(a -2)x 2-2(a -2)x -4<0恒成立,则实数a 的取值范围是( ) A.(-∞,2) B.(-∞,2] C.(-2,2)D.(-2,2]解析 当a -2=0,即a =2时,-4<0恒成立; 当a -2≠0,即a ≠2时,则有⎩⎨⎧a -2<0,Δ=[-2(a -2)]2-4×(a -2)×(-4)<0, 解得-2<a <2.综上,实数a 的取值范围是(-2,2]. 【参考答案】D角度2 在给定区间上恒成立【例3-2】 (一题多解)设函数f (x )=mx 2-mx -1(m ≠0),若对于x ∈[1,3],f (x )<-m +5恒成立,则m 的取值范围是________. 解析 要使f (x )<-m +5在[1,3]上恒成立, 故mx 2-mx +m -6<0,则m ⎝ ⎛⎭⎪⎫x -122+34m -6<0在x ∈[1,3]上恒成立.法一 令g (x )=m ⎝ ⎛⎭⎪⎫x -122+34m -6,x ∈[1,3].当m >0时,g (x )在[1,3]上是增函数, 所以g (x )max =g (3)=7m -6<0. 所以m <67,则0<m <67.当m <0时,g (x )在[1,3]上是减函数, 所以g (x )max =g (1)=m -6<0. 所以m <6,所以m <0. 综上所述,m的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪⎪0<m <67或m <0.法二 因为x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34>0,又因为m (x 2-x +1)-6<0,所以m <6x 2-x +1.因为函数y =6x 2-x +1=6⎝ ⎛⎭⎪⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可. 因为m ≠0,所以m的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪⎪0<m <67或m <0 . 【参考答案】⎩⎨⎧⎭⎬⎫m ⎪⎪⎪0<m <67或m <0 角度3 给定参数范围的恒成立问题【例3-3】 已知a ∈[-1,1]时不等式x 2+(a -4)x +4-2a >0恒成立,则x 的取值范围为( )A.(-∞,2)∪(3,+∞)B.(-∞,1)∪(2,+∞)C.(-∞,1)∪(3,+∞)D.(1,3)解析 把不等式的左端看成关于a 的一次函数,记f (a )=(x -2)a +x 2-4x +4, 则由f (a )>0对于任意的a ∈[-1,1]恒成立, 得f (-1)=x 2-5x +6>0, 且f (1)=x 2-3x +2>0即可,解不等式组⎩⎨⎧x 2-5x +6>0,x 2-3x +2>0,得x <1或x >3.【参考答案】C规律方法 1.对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方.另外常转化为求二次函数的最值或用分离参数法求最值. 2.解决恒成立问题一定要搞清谁是主元,谁是参数,一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.【训练3】 (1)(2019·河南豫西南五校联考)已知关于x 的不等式kx 2-6kx +k +8≥0对任意x ∈R 恒成立,则k 的取值范围是( ) A.[0,1]B.(0,1]C.(-∞,0)∪(1,+∞)D.(-∞,0]∪[1,+∞)(2)(2019·安庆模拟)若不等式x 2+ax +1≥0对一切x ∈⎝ ⎛⎦⎥⎤0,12恒成立,则a 的最小值是( )A.0B.-2C.-52D.-3解析 (1)当k =0时,不等式kx 2-6kx +k +8≥0可化为8≥0,其恒成立,当k ≠0时,要满足关于x 的不等式kx 2-6kx +k +8≥0对任意x ∈R 恒成立,只需⎩⎨⎧k >0,Δ=36k 2-4k (k +8)≤0,解得0<k ≤1. 综上,k 的取值范围是[0,1].(2)由于x ∈⎝ ⎛⎦⎥⎤0,12,若不等式x 2+ax +1≥0恒成立, 则a ≥-⎝ ⎛⎭⎪⎫x +1x ,x ∈⎝ ⎛⎦⎥⎤0,12时恒成立, 令g (x )=x +1x ,x ∈⎝ ⎛⎦⎥⎤0,12, 易知g (x )在⎝ ⎛⎦⎥⎤0,12上是减函数,则y =-g (x )在⎝ ⎛⎦⎥⎤0,12上是增函数. ∴y =-g (x )的最大值是-⎝ ⎛⎭⎪⎫12+2=-52. 因此a ≥-52,则a 的最小值为-52.【参考答案】(1)A (2)C[思维升华]1.比较法是不等式性质证明的理论依据,是不等式证明的主要方法之一,比较法之一作差法的主要步骤为作差——变形——判断正负.2.判断不等式是否成立,主要有利用不等式的性质和特殊值验证两种方法,特别是对于有一定条件限制的选择题,用特殊值验证的方法更简单.[易错防范]1.“三个二次”的关系是解一元二次不等式的理论基础;一般可把a <0的情况转化为a >0时的情形.2.含参数的不等式要注意选好分类标准,避免盲目讨论.基础巩固题组(建议用时:40分钟)一、选择题1.若f (x )=3x 2-x +1,g (x )=2x 2+x -1,则f (x ),g (x )的大小关系是( )A.f (x )=g (x )B.f (x )>g (x )C.f (x )<g (x )D.随x 的值变化而变化解析 f (x )-g (x )=x 2-2x +2=(x -1)2+1>0⇒f (x )>g (x ).【参考答案】B2.(2019·北京东城区综合练习)已知x ,y ∈R ,那么“x >y ”的充要条件是( )A.2x >2yB.lg x >lg yC.1x >1yD.x 2>y 2解析 因为2x >2y ⇔x >y ,所以“2x >2y ”是“x >y ”的充要条件,A 正确;lg x >lg y ⇔x >y >0,则“lg x >lg y ”是“x >y ”的充分不必要条件,B 错误;“1x >1y ”和“x 2>y 2”都是“x >y ”的既不充分也不必要条件.【参考答案】A3.不等式|x |(1-2x )>0的解集为( )A.(-∞,0)∪⎝ ⎛⎭⎪⎫0,12 B.⎝ ⎛⎭⎪⎫-∞,12 C.⎝ ⎛⎭⎪⎫12,+∞ D.⎝ ⎛⎭⎪⎫0,12 解析 当x ≥0时,原不等式即为x (1-2x )>0,所以0<x <12;当x <0时,原不等式即为-x (1-2x )>0,所以x <0,综上,原不等式的解集为(-∞,0)∪⎝ ⎛⎭⎪⎫0,12. 【参考答案】A4.(2018·延安质检)若实数m ,n 满足m >n >0,则( )A.-1m <-1nB.m -n <m -nC.⎝ ⎛⎭⎪⎫12m >⎝ ⎛⎭⎪⎫12nD.m 2<mn解析 取m =2,n =1,代入各选择项验证A,C,D 不成立.只有B 项成立(事实上2-1<2-1).【参考答案】B5.已知函数f (x )=⎩⎨⎧x ,x ≤0,ln (x +1),x >0,若f (2-x 2)>f (x ),则实数x 的取值范围是( ) A.(-∞,-1)∪(2,+∞)B.(-∞,-2)∪(1,+∞)C.(-1,2)D.(-2,1)解析 易知f (x )在R 上是增函数,∵f (2-x 2)>f (x ),∴2-x 2>x ,解得-2<x <1,则实数x 的取值范围是(-2,1).【参考答案】D二、填空题6.若0<a <1,则不等式(a -x )⎝ ⎛⎭⎪⎫x -1a >0的解集是________. 解析 原不等式可化为(x -a )⎝ ⎛⎭⎪⎫x -1a <0,由0<a <1得a <1a ,∴a <x <1a . 【参考答案】⎝ ⎛⎭⎪⎫a ,1a 7.规定记号“⊙”表示一种运算,定义a ⊙b =ab +a +b (a ,b 为正实数),若1⊙k 2<3,则k 的取值范围是________.解析 由题意知k 2+1+k 2<3,化为(|k |+2)(|k |-1)<0,所以|k |<1,所以-1<k <1.【参考答案】(-1,1)8.(2019·阳春质检)设a <0,若不等式-cos 2x +(a -1)cos x +a 2≥0对于任意的x ∈R 恒成立,则a 的取值范围是________.解析 令t =cos x ,t ∈[-1,1],则不等式f (t )=t 2-(a -1)t -a 2≤0对t ∈[-1,1]恒成立,因此⎩⎨⎧f (-1)≤0,f (1)≤0⇒⎩⎨⎧a -a 2≤0,2-a -a 2≤0,∵a <0,∴a ≤-2. 【参考答案】(-∞,-2]三、解答题9.已知f (x )=-3x 2+a (6-a )x +6.(1)解关于a 的不等式f (1)>0;(2)若不等式f (x )>b 的解集为(-1,3),求实数a ,b 的值.解 (1)由题意知f (1)=-3+a (6-a )+6=-a 2+6a +3>0,即a 2-6a -3<0,解得3-23<a <3+2 3.所以不等式的解集为{a |3-23<a <3+23}.(2)∵f (x )>b 的解集为(-1,3),∴方程-3x 2+a (6-a )x +6-b =0的两根为-1,3,∴⎩⎪⎨⎪⎧(-1)+3=a (6-a )3,(-1)×3=-6-b 3,解得⎩⎨⎧a =3±3,b =-3. 故a 的值为3±3,b 的值为-3.10.某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价.(1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域;(2)若再要求该商品一天营业额至少为10 260元,求x 的取值范围.解 (1)由题意得,y =100⎝ ⎛⎭⎪⎫1-x 10·100⎝ ⎛⎭⎪⎫1+850x . 因为售价不能低于成本价,所以100⎝ ⎛⎭⎪⎫1-x 10-80≥0,解得0≤x ≤2. 所以y =f (x )=40(10-x )(25+4x ),定义域为{x |0≤x ≤2}.(2)由题意得40(10-x )(25+4x )≥10 260,化简得8x 2-30x +13≤0,解得12≤x ≤134.所以x 的取值范围是⎣⎢⎡⎦⎥⎤12,2. 能力提升题组(建议用时:20分钟)11.已知0<a <b ,且a +b =1,则下列不等式中正确的是( )A.log 2a >0B.2a -b <12C.log 2a +log 2b <-2D.2a b +b a <12解析 由题意知0<a <1,此时log 2a <0,A 错误;由已知得0<a <1,0<b <1,所以-1<-b <0,又a <b ,所以-1<a -b <0,所以12<2a -b <1,B 错误;因为0<a <b ,所以a b +b a >2a b ·b a=2,所以2a b +b a >22=4,D 错误;由a +b =1>2ab ,得ab <14,因此log 2a +log 2b =log 2(ab )<log 214=-2,C 正确.【参考答案】C12.(2019·保定调研)已知定义在R 上的奇函数f (x )满足:当x ≥0时,f (x )=x 3,若不等式f (-4t )>f (2m +mt 2)对任意实数t 恒成立,则实数m 的取值范围是( )A.(-∞,-2)B.(-2,0)C.(-∞,0)∪(2,+∞)D.(-∞,-2)∪(2,+∞) 解析 因为f (x )在R 上为奇函数,且在[0,+∞)上为增函数,所以f (x )在R 上是增函数,结合题意得-4t >2m +mt 2对任意实数t 恒成立⇒mt 2+4t +2m <0对任意实数t恒成立⇒⎩⎨⎧m <0,Δ=16-8m 2<0⇒m ∈(-∞,-2). 【参考答案】A13.已知-1<x +y <4,2<x -y <3,则3x +2y 的取值范围是________.解析 设3x +2y =m (x +y )+n (x -y ),则⎩⎨⎧m +n =3,m -n =2,∴⎩⎪⎨⎪⎧m =52,n =12.即3x +2y =52(x +y )+12(x -y ),又∵-1<x +y <4,2<x -y <3,∴-52<52(x +y )<10,1<12(x -y )<32, ∴-32<52(x +y )+12(x -y )<232,即-32<3x +2y <232,∴3x +2y 的取值范围为⎝ ⎛⎭⎪⎫-32,232. 【参考答案】⎝ ⎛⎭⎪⎫-32,23214.(2019·济南质检)已知f (x )是定义在R 上的偶函数,且当x ≥0时,f (x )=e x .若对任意x ∈[a ,a +1],恒有f (x +a )≥f (2x )成立,求实数a 的取值范围.解 因为函数f (x )是偶函数,故函数图象关于y 轴对称,且在(-∞,0]上单调递减,在[0,+∞)上单调递增. 所以由f (x +a )≥f (2x )可得|x +a |≥2|x |在[a ,a +1]上恒成立,从而(x +a )2≥4x 2在[a ,a +1]上恒成立,化简得3x 2-2ax -a 2≤0在[a ,a +1]上恒成立,设h (x )=3x 2-2ax -a 2,则有⎩⎨⎧h (a )=0≤0,h (a +1)=4a +3≤0,解得a ≤-34. 故实数a 的取值范围是⎝ ⎛⎦⎥⎤-∞,-34.。

2020版创新设计高考总复习高三理科数学人教A版第十章第3节

2020版创新设计高考总复习高三理科数学人教A版第十章第3节

第3节 变量间的相关关系与统计案例最新考纲 1.会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系;2.了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程(线性回归方程系数公式不要求记忆);3.了解独立性检验(只要求2×2列联表)的基本思想、方法及其简单应用;4.了解回归分析的基本思想、方法及其简单应用.知 识 梳 理1.相关关系与回归分析回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法;判断相关性的常用统计图是:散点图;统计量有相关系数与相关指数.(1)在散点图中,点散布在从左下角到右上角的区域,对于两个变量的这种相关关系,我们将它称为正相关.(2)在散点图中,点散布在从左上角到右下角的区域,两个变量的这种相关关系称为负相关.(3)如果散点图中点的分布从整体上看大致在一条直线附近,称两个变量具有线性相关关系. 2.线性回归方程(1)最小二乘法:使得样本数据的点到回归直线的距离的平方和最小的方法叫做最小二乘法.(2)回归方程:两个具有线性相关关系的变量的一组数据:(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其回归方程为y ^=b ^x +a ^__,则b ^=∑ni =1(x i -x -)(y i -y -)∑ni =1(x i -x -)2=∑ni =1x i y i -nx - y -∑ni =1x 2i -nx -2,a ^=y --b ^x -.其中,b ^是回归方程的斜率,a ^是在y 轴上的截距.回归直线一定过样本点的中心(x -,y -). 3.回归分析(1)定义:对具有相关关系的两个变量进行统计分析的一种常用方法.(2)样本点的中心:对于一组具有线性相关关系的数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其中(x -,y -)称为样本点的中心. (3)相关系数当r >0时,表明两个变量正相关; 当r <0时,表明两个变量负相关.r 的绝对值越接近于1,表明两个变量的线性相关性越强.r 的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系.通常|r |大于0.75时,认为两个变量有很强的线性相关性.(4)相关指数:R 2=1-∑ni =1 (y i -y ^i )2∑n i =1 (y i -y )2.其中∑n i =1(y i -y ^i )2是残差平方和,其值越小,则R 2越大(接近1),模型的拟合效果越好. 4.独立性检验(1)利用随机变量K 2来判断“两个分类变量有关系”的方法称为独立性检验. (2)列联表:列出的两个分类变量的频数表,称为列联表.假设有两个分类变量X 和Y ,它们的可能取值分别为{x 1,x 2}和{y 1,y 2},其样本频数列联表(2×2列联表)为则随机变量K 2=n (ad -bc )2(a +b )(a +c )(b +d )(+d ),其中n =a +b +c +d 为样本容量.[微点提醒]1.求解回归方程的关键是确定回归系数a ^,b ^,应充分利用回归直线过样本中心点(x -,y -).2.根据K 2的值可以判断两个分类变量有关的可信程度,若K 2越大,则两分类变量有关的把握越大.3.根据回归方程计算的y ^值,仅是一个预报值,不是真实发生的值.基 础 自 测1.判断下列结论正误(在括号内打“√”或“×”)(1)“名师出高徒”可以解释为教师的教学水平与学生的水平成正相关关系.( )(2)通过回归直线方程y ^=b ^x +a ^可以估计预报变量的取值和变化趋势.( ) (3)因为由任何一组观测值都可以求得一个线性回归方程,所以没有必要进行相关性检验.( )(4)事件X ,Y 关系越密切,则由观测数据计算得到的K 2的观测值越大.( ) 【参考答案】(1)√ (2)√ (3)× (4)√2.(选修2-3P91探究改编)为调查中学生近视情况,测得某校男生150名中有80名近视,在140名女生中有70名近视.在检验这些学生眼睛近视是否与性别有关时,用下列哪种方法最有说服力( ) A.回归分析 B.均值与方差 C.独立性检验D.概率解析 “近视”与“性别”是两类变量,其是否有关,应用独立性检验判断. 【参考答案】C3.(选修2-3P85讲解改编)两个变量y 与x 的回归模型中,分别选择了4个不同模型,它们的相关指数R 2如下,其中拟合效果最好的模型是( ) A.模型1的相关指数R 2为0.98 B.模型2的相关指数R 2为0.80 C.模型3的相关指数R 2为0.50 D.模型4的相关指数R 2为0.25解析 在两个变量y 与x 的回归模型中,它们的相关指数R 2越近于1,模拟效果越好,在四个选项中A 的相关指数最大,所以拟合效果最好的是模型1. 【参考答案】A4.(2019·焦作模拟)已知变量x 和y 的统计数据如下表:x 3 4 5 6 7 y2.5344.56根据上表可得回归直线方程为y ^=b ^x -0.25,据此可以预测当x =8时,y ^=( ) A.6.4B.6.25C.6.55D.6.45解析 由题意知x -=3+4+5+6+75=5,y -=2.5+3+4+4.5+65=4,将点(5,4)代入y ^=b ^x -0.25,解得b ^=0.85, 则y ^=0.85x -0.25,所以当x =8时,y ^=0.85×8-0.25=6.55,故选C. 【参考答案】C5.(2015·全国Ⅱ卷)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论不正确的是( )A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关解析 对于A 选项,由图知从2007年到2008年二氧化硫排放量下降得最多,故A 正确.对于B 选项,由图知,由2006年到2007年矩形高度明显下降,因此B 正确.对于C 选项,由图知从2006年以后除2011年稍有上升外,其余年份都是逐年下降的,所以C 正确.由图知2006年以来我国二氧化硫年排放量与年份负相关,D 不正确. 【参考答案】D6.(2019·丹东教学质量监测)某校为了研究学生的性别和对待某一活动的态度(支持与不支持)的关系,运用2×2列联表进行独立性检验,经计算K 2=6.705,则所得到的统计学结论是:有________的把握认为“学生性别与支持该活动没有关系”()P(K2≥k0)0.1000.0500.0250.0100.001k0 2.706 3.841 5.024 6.63510.828A.99.9%B.99%C.1%D.0.1%解析因为 6.635<6.705<10.828,因此有1%的把握认为“学生性别与支持该活动没有关系”,故选C.【参考答案】C考点一相关关系的判断【例1】(1)观察下列各图形,其中两个变量x,y具有相关关系的图是()A.①②B.①④C.③④D.②③(2)甲、乙、丙、丁四位同学各自对A,B两变量的线性相关性做试验,并用回归分析方法分别求得相关系数r与残差平方和m如下表:甲乙丙丁r 0.820.780.690.85m 106115124103则哪位同学的试验结果体现A,B两变量有更强的线性相关性()A.甲B.乙C.丙D.丁解析(1)由散点图知③中的点都分布在一条直线附近.④中的点都分布在一条曲线附近,所以③④中的两个变量具有相关关系.(2)在验证两个变量之间的线性相关关系时,相关系数的绝对值越接近于1,相关性越强,在四个选项中只有丁的相关系数最大;残差平方和越小,相关性越强,只有丁的残差平方和最小,综上可知丁的试验结果体现了A,B两变量有更强的线性相关性.【参考答案】(1)C (2)D规律方法 1.散点图中如果所有的样本点都落在某一函数的曲线附近,变量之间就有相关关系.如果所有的样本点都落在某一直线附近,变量之间就有线性相关关系.若点散布在从左下角到右上角的区域,则正相关.2.利用相关系数判定,当|r |越趋近于1相关性越强.当残差平方和越小,相关指数R 2越大,相关性越强.若r >0,则正相关;r <0时,则负相关.3.线性回归直线方程中:b ^>0时,正相关;b ^<0时,负相关.【训练1】 (1)已知变量x 和y 满足关系y =-0.1x +1,变量y 与z 正相关.下列结论中正确的是( ) A.x 与y 正相关,x 与z 负相关 B.x 与y 正相关,x 与z 正相关 C.x 与y 负相关,x 与z 负相关 D.x 与y 负相关,x 与z 正相关(2)x 和y 的散点图如图所示,则下列说法中所有正确命题的序号为________.①x ,y 是负相关关系;②在该相关关系中,若用y =c 1e c 2x 拟合时的相关指数为R 21,用y ^=b ^x +a ^拟合时的相关指数为R 22,则R 21>R 22;③x ,y 之间不能建立线性回归方程.解析 (1)由y =-0.1x +1,知x 与y 负相关,即y 随x 的增大而减小,又y 与z 正相关,所以z 随y 的增大而增大,减小而减小,所以z 随x 的增大而减小,x 与z 负相关. (2)在散点图中,点散布在从左上角到右下角的区域,因此x ,y 是负相关关系,故①正确;由散点图知用y =c 1e c 2x 拟合比用y ^=b ^x +a ^拟合效果要好,则R 21>R 22,故②正确;x ,y 之间可以建立线性回归方程,但拟合效果不好,故③错误. 【参考答案】(1)C (2)①② 考点二 线性回归方程及应用【例2】 (2018·日照调研)某地随着经济的发展,居民收入逐年增长,下表是该地一建设银行连续五年的储蓄存款(年底余额),如下表1:表1为了研究计算的方便,工作人员将上表的数据进行了处理,t =x -2 012,z =y -5得到下表2:表2(1)求z 关于t 的线性回归方程;(2)通过(1)中的方程,求出y 关于x 的回归方程;(3)用所求回归方程预测到2022年年底,该地储蓄存款额可达多少? (附:对于线性回归方程y ^=b ^x +a ^,其中b ^=∑ni =1x i y i -nx -·y -∑ni =1x 2i -nx -2,a ^=y --b ^x -)解 (1)t -=3,z -=2.2,∑5i =1t i z i =45,∑5i =1t 2i =55,b ^=45-5×3×2.255-5×9=1.2,a ^=z --b ^t -=2.2-3×1.2=-1.4, 所以z ^=1.2t -1.4.(2)将t =x -2 012,z =y -5,代入z ^=1.2t -1.4, 得y -5=1.2(x -2 012)-1.4,即y ^=1.2x -2 410.8. (3)因为y ^=1.2×2 022-2 410.8=15.6,所以预测到2022年年底,该地储蓄存款额可达15.6千亿元.规律方法 1.(1)正确理解计算b ^,a ^的公式和准确的计算是求线性回归方程的关键.(2)回归直线方程y ^=b ^x +a ^必过样本点中心(x -,y -).2.(1)在分析两个变量的相关关系时,可根据样本数据作出散点图来确定两个变量之间是否具有相关关系,若具有线性相关关系,则可通过线性回归方程来估计和预测.(2)对于非线性回归分析问题,应先进行变量代换, 求出代换后的回归直线方程,再求非线性回归方程.【训练2】 (2018·全国Ⅱ卷)如图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年的数据(时间变量t 的值依次为1,2,…,17)建立模型①:y ^=-30.4+13.5t ;根据2010年至2016年的数据(时间变量t 的值依次为1,2,…,7)建立模型②:y ^=99+17.5t .(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.解 (1)利用模型①,该地区2018年的环境基础设施投资额的预测值为y ^=-30.4+13.5×19=226.1(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为 y ^=99+17.5×9=256.5(亿元). (2)利用模型②得到的预测值更可靠. 理由如下:(ⅰ)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y =-30.4+13.5t 上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型y ^=99+17.5t 可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ⅱ)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠.以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分. 考点三 独立性检验【例3】 (2019·湖南长沙雅礼中学、河南省实验中学联考)环境问题是当今世界共同关注的问题,我国环保总局根据空气污染指数PM2.5浓度,制定了空气质量标准: 空气污染指数 (0,50](50,100](100,150](150,200](200,300](300,+∞)空气质量等级优 良 轻度污染 中度污染 重度污染 严重污染某市政府为了打造美丽城市,节能减排,从2010年开始考察了连续六年11月份的空气污染指数,绘制了频率分布直方图,经过分析研究,决定从2016年11月1日起在空气质量重度污染和严重污染的日子对机动车辆限号出行,即车牌尾号为单号的车辆单号出行,车牌尾号为双号的车辆双号出行(尾号是字母的,前13个视为单号,后13个视为双号).王先生有一辆车,若11月份被限行的概率为0.05.(1)求频率分布直方图中m 的值;(2)若按分层抽样的方法,从空气质量良好与中度污染的天气中抽取6天,再从这6天中随机抽取2天,求至少有一天空气质量是中度污染的概率;(3)该市环保局为了调查汽车尾气排放对空气质量的影响,对限行两年来的11月份共60天的空气质量进行统计,其结果如下表:根据限行前6年180天与限行后60天的数据,计算并填写2×2列联表,并回答是否有90%的把握认为空气质量的优良与汽车尾气的排放有关.参考数据:参考公式:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.解(1)因为限行分单双号,王先生的车被限行的概率为0.05,所以空气重度污染和严重污染的概率应为0.05×2=0.1,由频率分布直方图可知(0.004+0.006+0.005+m)×50+0.1=1,解得m=0.003. (2)因为空气质量良好与中度污染的天气的概率之比为0.3∶0.15=2∶1,按分层抽样的方法从中抽取6天,则空气质量良好的天气被抽取的有4天,记作A1,A2,A3,A4,空气中度污染的天气被抽取的有2天,记作B1,B2,从这6天中随机抽取2天,所包含的基本事件有(A1,A2),(A1,A3),(A1,A4),(A1,B1),(A1,B2),(A2,A3),(A2,A4),(A2,B1),(A2,B2),(A3,A4),(A3,B1),(A3 ,B2),(A4,B1),(A4,B2),(B1,B2),共15个,记事件A为“至少有一天空气质量是中度污染”,则事件A所包含的事件有(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(A4,B1),(A4,B2),(B1,B2),共9个,故P(A)=915=35,即至少有一天空气质量是中度污染的概率为35.(3)2×2列联表如下:由表中数据可得,K2=240×(90×22-90×38)2180×60×128×112≈3.214>2.706,所以有90%的把握认为空气质量的优良与汽车尾气的排放有关.规律方法 1.在2×2列联表中,如果两个变量没有关系,则应满足ad-bc≈0.|ad-bc|越小,说明两个变量之间关系越弱;|ad-bc|越大,说明两个变量之间关系越强.2.解决独立性检验的应用问题,一定要按照独立性检验的步骤得出结论.独立性检验的一般步骤:(1)根据样本数据制成2×2列联表:(2)根据公式K2=n(ad-bc)2(a+b)(a+c)(b+d)(c+d)计算K2的观测值k;(3)比较观测值k与临界值的大小关系,作统计推断.【训练3】为了判断高中三年级学生是否选修文科与性别的关系,现随机抽取50名学生,得到如下2×2列联表:已知P(K2≥3.841)≈0.05,P(K2≥5.024)≈0.025.根据表中数据,得到K2的观测值k=50×(13×20-10×7)223×27×20×30≈4.844.则认为选修文科与性别有关系出错的可能性为________.解析K2的观测值k≈4.844,这表明小概率事件发生.根据假设检验的基本原理,应该断定“是否选修文科与性别之间有关系”成立,并且这种判断出错的可能性约为5%.【参考答案】5%[思维升华]1.回归分析是处理变量相关关系的一种数学方法.主要解决:(1)确定特定量之间是否有相关关系,如果有就找出它们之间贴近的数学表达式;(2)根据一组观察值,预测变量的取值及判断变量取值的变化趋势;(3)求出线性回归方程.2.独立性检验是根据K2的值判断两个分类变量有关的可信程度.[易错防范]1.求回归方程,关键在于正确求出系数a^,b^ ,由于a^ ,b^ 的计算量大,计算时应仔细谨慎,分步进行,避免因计算而产生错误.2.回归分析是对具有相关关系的两个变量进行统计分析的方法,只有在散点图大致呈线性时,求出的线性回归方程才有实际意义,否则,求出的线性回归方程毫无意义.根据回归方程进行预报,仅是一个预报值,而不是真实发生的值.3.独立性检验中统计量K2的观测值k0的计算公式很复杂,在解题中易混淆一些数据的意义,代入公式时出错,而导致整个计算结果出错.基础巩固题组(建议用时:40分钟)一、选择题1.对四组数据进行统计,获得如图所示的散点图,关于其相关系数的比较,正确的是()A.r2<r4<0<r3<r1B.r4<r2<0<r1<r3C.r4<r2<0<r3<r1D.r2<r4<0<r1<r3解析 由散点图知图(1)与图(3)是正相关,故r 1>0,r 3>0,图(2)与图(4)是负相关,故r 2<0,r 4<0,且图(1)与图(2)的样本点集中在一条直线附近,因此r 2<r 4<0<r 3<r 1,故选A. 【参考答案】A2.有下列说法:①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适.②用相关指数R 2来刻画回归的效果,R 2值越接近于1,说明模型的拟合效果越好.③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好.正确的是( ) A.①② B.②③C.①③D.①②③【参考答案】D3.在一次对性别与说谎是否相关的调查中,得到如下数据:根据表中数据,得到如下结论正确的一项是( ) A.在此次调查中有95%的把握认为是否说谎与性别有关 B.在此次调查中有99%的把握认为是否说谎与性别有关 C.在此次调查中有99.5%的把握认为是否说谎与性别有关 D.在此调查中没有充分的证据显示说谎与性别有关解析 由已知得k =30×(6×9-7×8)213×17×14×16≈0.002<0.455,所以在犯错误的概率不超过50%的情况下,认为说谎与性别无关,也就是说,在此调查中没有充分的证据显示说谎与性别有关. 【参考答案】D4.(2019·衡水中学调研)已知变量x ,y 之间的线性回归方程为y ^=-0.7x +10.3,且变量x ,y 之间的一组相关数据如下表所示,则下列说法错误..的是( )A.变量x ,y 之间呈负相关关系B.可以预测,当x =20时,y ^=-3.7 C.m =4D.该回归直线必过点(9,4)解析 由-0.7<0,得变量x ,y 之间呈负相关关系,故A 正确;当x =20时,y ^=-0.7×20+10.3=-3.7,故B 正确;由表格数据可知x -=14×(6+8+10+12)=9,y -=14(6+m +3+2)=11+m 4,则11+m4=-0.7×9+10.3,解得m =5,故C 错;由m =5,得y -=6+5+3+24=4,所以该回归直线必过点(9,4),故D 正确.故选C.【参考答案】C5.通过随机询问110名性别不同的学生是否爱好某项运动,得到如下的列联表:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )算得,K 2=110×(40×30-20×20)260×50×60×50≈7.8.得到的正确结论是( )A.有99%以上的把握认为“爱好该项运动与性别有关”B.有99%以上的把握认为“爱好该项运动与性别无关”C.有95%以上的把握认为“爱好该项运动与性别有关”D.有95%以上的把握认为“爱好该项运动与性别无关”解析 根据独立性检验的定义,由K 2≈7.8>6.635,可知我们有99%的把握认为“爱好该项运动与性别有关”. 【参考答案】A 二、填空题6.某单位为了了解用电量y (度)与气温x (℃)之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:由表中数据得回归直线方程y ^=b ^x +a ^中的b ^=-2,预测当气温为-4 ℃时,用电量约为________度.解析 根据题意知x -=18+13+10+(-1)4=10,y -=24+34+38+644=40.所以a ^=40-(-2)×10=60,y ^=-2x +60.所以当x =-4时,y =(-2)×(-4)+60=68,所以用电量约为68度. 【参考答案】687.(2018·赣中南五校联考)心理学家分析发现视觉和空间想象能力与性别有关,某数学兴趣小组为了验证这个结论,从所在学校中按分层抽样的方法抽取50名同学(男30,女20),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如下表:(单位:人)根据上述数据,推断视觉和空间想象能力与性别有关系,则这种推断犯错误的概率不超过________. 附表:解析 由列联表计算K 2的观测值k =50(22×12-8×8)230×20×20×30≈5.556>5.024.∴推断犯错误的概率不超过0.025. 【参考答案】0.0258.(2019·广东深中、华附、省实、广雅四校联考)如图是一组数据(x ,y )的散点图,经最小二乘估计公式计算,y 与x 之间的线性回归方程为y ^=b ^x +1,则b ^=________.解析 由题图知x -=0+1+3+44=2,y -=0.9+1.9+3.2+4.44=2.6,将(2,2.6)代入y ^=b ^x +1中,解得b ^=0.8. 【参考答案】0.8 三、解答题9.(2018·重庆调研)某厂商为了解用户对其产品是否满意,在使用该产品的用户中随机调查了80人,结果如下表:满意 不满意 男用户 30 10 女用户2020(1)根据上表,现用分层抽样的方法抽取对产品满意的用户5人,在这5人中任选2人,求被选中的恰好是男、女用户各1人的概率;(2)有多大把握认为用户对该产品是否满意与用户性别有关?请说明理由.P (K 2≥k 0)0.100 0.050 0.025 0.010 k 02.7063.8415.0246.635注:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),n =a +b +c +d .解 (1)用分层抽样的方法在满意产品的用户中抽取5人,则抽取比例为550=110.所以在满意产品的用户中应抽取女用户20×110=2(人),男用户30×110=3(人). 抽取的5人中,三名男用户记为a ,b ,c ,两名女用户记为r ,s ,则从这5人中任选2人,共有10种情况:ab ,ac ,ar ,as ,bc ,br ,bs ,cr ,cs ,rs .其中恰好是男、女用户各1人的有6种情况:ar ,as ,br ,bs ,cr ,cs . 故所求的概率为P =610=0.6.(2)由题意,得K 2的观测值为k =80×(30×20-20×10)2(30+20)×(10+20)×(30+10)×(20+20) =163≈5.333>5.024. 又P (K 2≥5.024)=0.025.故有97.5%的把握认为“产品用户是否满意与性别有关”. 10.调查某公司的五名推销员,其工作年限与年推销金额如下表:推销员 A B C D E 工作年限x (年) 2 3 5 7 8 年推销金额y (万元)33.546.58(1)在图中画出年推销金额关于工作年限的散点图,并从散点图中发现工作年限与年推销金额之间关系的一般规律;(2)利用最小二乘法求年推销金额关于工作年限的回归直线方程; (3)利用(2)中的回归方程,预测工作年限为10年的推销员的年推销金额.附:b ^=∑ni =1(x i -x -)(y i -y -)∑ni =1(x i -x -)2,a ^=y --b ^x -.解 (1)年推销金额关于工作年限的散点图如图:从散点图可以看出,各点散布在从左下角到右上角的区域里,因此, 工作年限与年推销金额正相关,即工作年限越长,年推销金额越大.(2)由表中数据可得:x -=15×(2+3+5+7+8)=5, y -=15×(3+3.5+4+6.5+8)=5,b ^=∑ni =1(x i -x -)(y i -y -)∑ni =1(x i -x -)2=(-3)×(-2)+(-2)×(-1.5)+0+2×1.5+3×39+4+0+4+9=2126,a ^=y --b ^x -=5-2126×5=2526,∴年推销金额关于工作年限的回归直线方程为 y ^=2126x +2526.(3)当x =10时,y ^=2126×10+2526=23526,∴预测工作年限为10年的推销员的年推销金额为23526万元.能力提升题组 (建议用时:20分钟)11.(2019·黄山一模)在吸烟与患肺癌这两个分类变量的独立性检验的计算中,下列说法正确的是( )A.若K 2的观测值为k =6.635,在犯错误的概率不超过0.01的前提下认为吸烟与患肺癌有关系,那么在100个吸烟的人中必有99人患有肺癌B.由独立性检验可知,在犯错误的概率不超过0.01的前提下认为吸烟与患肺癌有关系时,我们说某人吸烟,那么他有99%的可能患有肺癌C.若从统计量中求出在犯错误的概率不超过0.01的前提下认为吸烟与患肺癌有关系,是指有1%的可能性使得判断出现错误D.以上三种说法都不正确解析 独立性检验得出的结论是带有概率性质的,只能说结论成立的概率有多大,而不能完全肯定一个结论,因此才出现了临界值表,在分析问题时一定要注意这点,不可对某个问题下确定性结论,否则就可能对统计计算的结果作出错误的解释.若从统计量中求出在犯错误的概率不超过0.01的前提下认为吸烟与患肺癌有关系,是指有1%的可能性使得判断出现错误.故选C.【参考答案】C12.(2019·承德期末)某城市收集并整理了该市2018年1月份至10月份各月最低气温与最高气温(单位:℃)的数据,绘制了下面的折线图.已知该城市各月的最低气温与最高气温具有较好的线性关系,则根据折线图,下列结论错误的是()A.最低气温与最高气温为正相关B.10月的最高气温不低于5月的最高气温C.月温差(最高气温减最低气温)的最大值出现在1月D.最低气温低于0 ℃的月份有4个解析在A中,最低气温与最高气温为正相关,故A正确;在B中,10月的最高气温不低于5月的最高气温,故B正确;在C中,月温差(最高气温减最低气温)的最大值出现在1月,故C正确;在D中,最低气温低于0 ℃的月份有3个,故D错误.故选D.【参考答案】D13.在2018年3月15日那天,某市物价部门对本市的5家商场的某商品的一天销售量及其价格进行调查,5家商场的售价x元和销售量y件之间的一组数据如下表所示:价格x 99.5m 10.511销售量y 11n 86 5^由散点图可知,销售量y与价格x之间有较强的线性相关关系,其线性回归方程是y=-3.2x +40,且m +n =20,则其中的n =________. 解析 x -=9+9.5+m +10.5+115=8+m5,y -=11+n +8+6+55=6+n 5.回归直线一定经过样本中心(x -,y -),即6+n 5=-3.2⎝ ⎛⎭⎪⎫8+m 5+40,即3.2m +n =42.又因为m +n =20,即⎩⎨⎧3.2m +n =42,m +n =20,解得⎩⎨⎧m =10,n =10,故n =10.【参考答案】1014.(2018·山东、湖北部分重点中学模拟)某地级市共有200 000名中小学生,其中有7%的学生在2017年享受了“国家精准扶贫”政策,在享受“国家精准扶贫”政策的学生中困难程度分为三个等次:一般困难、很困难、特别困难,且人数之比为5∶3∶2,为进一步帮助这些学生,当地市政府设立“专项教育基金”,对这三个等次的困难学生每年每人分别补助1 000元、1 500元、2 000元.经济学家调查发现,当地人均可支配收入较上一年每增加有n %,一般困难的学生中有3n %会脱贫,脱贫后将不再享受“国家精准扶贫”政策,很困难的学生中有2n %转为一般困难,特别困难的学生中有n %转为很困难.现统计了该地级市2013年到2017年共5年的人均可支配收入,对数据初步处理后得到了如图所示的散点图和表中统计量的值,其中年份x 取13时代表2013年,x 与y (万元)近似满足关系式y =C 1·2C 2x ,其中C 1,C 2为常数(2013年至2019年该市中学生人数大致保持不变).y -k -∑5i =1(k i -k -)2∑5i =1(y i -y -)2∑5i =1(x i -x -)(y i -y -)∑5i =1(x i -x -)(k i -k -)2.31.23.14.621其中k i =log 2 y i ,k -=15∑5i =1k i . (1)估计该市2018年人均可支配收入;(2)求该市2018年的“专项教育基金”的财政预算大约为多少.附:①对于一组具有线性相关关系的数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线方程v^=β^u +α^的斜率和截距的最小二乘估计分别为β^=∑ni =1(u i -u -)(v i -v -)∑ni =1 (u i -u -)2,α^=v --β^u -. ②解 (1)因为x -=15×(13+14+15+16+17)=15,所以∑5i =1(x i -x -)2=(-2)2+(-1)2+02+12+22=10.由k =log 2 y 得k =log 2 C 1+C 2x , 所以C 2=∑5i =1(x i -x -)(k i -k -)∑5i =1(x i -x -)2=110, log 2 C 1=k --C 2x -=1.2-110×15=-0.3,所以C 1=2-0.3=0.8,所以y =0.8×2x10. 当x =18时,y =0.8×21.8=0.8×3.5=2.8(万元). 即该市2018年人均可支配收入为2.8万元.(2)由题意知2017年时该市享受“国家精准扶贫”政策的学生有200 000×7%=14 000人,一般困难、很困难、特别困难的中学生依次有7 000人、4 200人、2 800人,2018年人均可支配收入比2017年增长0.8×21.8-0.8×21.70.8×21.7=20.1-1=0.1=10%,所以2018年该市特别困难的中学生有2 800×(1-10%)=2 520人. 很困难的的学生有4 200×(1-20%)+2 800×10%=3 640人,。

人教A版 2020届高考数学一轮专题复习之创新型问题(含解析)

人教A版 2020届高考数学一轮专题复习之创新型问题(含解析)

创新型问题A 组一、选择题1. 在实数的原有运算法则中,我们补充定义新运算“⊕”如下:当a b ≥时,a b a ⊕=; 当a b <时,a b b ⊕=2。

则函数[]()f x x x x x ()()()=⊕-⊕∈-1222·,的最大值等于( )(“·”和“-”仍为通常的乘法和减法) A. -1B. 1C. 6D. 12解析: A 中1-2=-1不是自然数,即自然数集不满足条件;B 中1÷2=0.5不是整数,即整数集不满足条件;C 中有理数集满足条件;D2=不是无理数,即无理数集不满足条件,故选择答案C 。

2.对于函数f(x),若存在常数a≠0,使得x 取定义域内的每一个值,都有f(x)=f(2a -x),则称f(x)为准偶函数,下列函数中是准偶函数的是( )A .f(x)=xB .f(x)=x 2C .f(x)=tan xD .f(x)=cos(x +1) 解析:对于函数f (x ),若存在常数a≠0,使得x 取定义域内的每一个值,都有f (x )=f (2a-x ),则称f (x )为准偶函数,∴函数的对称轴是x=a ,a≠0, 选项A 函数没有对称轴;选项B 、函数的对称轴是x=0,选项C ,函数没有对称轴. 函数f (x )=cos (x+1),有对称轴,且x=0不是对称轴,选项D 正确. 故选: D3、给出函数的一条性质:“存在常数M ,使得对于定义域中的一切实数均成立。

”则下列函数中具有这条性质的函数是( )A .B .C .D .D 正确4、设)(x f ,)(x g 都是定义在实数集上的函数,定义函数))((x g f ο:R x ∈∀,)(x f |||)(|x M x f ≤x x y 1=2x y =1+=x y x x y sin =))(())((x g f x g f =ο.若⎩⎨⎧≤>=.0 ,,0 , )(2x x x x x f ,⎩⎨⎧>≤=.0 ,ln ,0 , )(x x x e x g x ,则A .)())((x f x f f =οB .)())((x f x g f =οC .)())((x g x f g =οD .)())((x g x g g =ο解析:对于A ,因为⎩⎨⎧≤>=.0 ,,0 , )(2x x x x x f ,所以当x >0时,f (f (x ))=f (x )=x ;当x≤0时,f (x )=x 2≥0,特别的,x=0时x=x 2,此时f (x 2)=x 2,所以()()f f x =o ⎩⎨⎧≤>=.0 ,,0 , )(2x x x x x f ,故A 正确; 对于B ,由已知得(f•g )(x )=f (g (x ))=2, 0,(ln ), 0<1ln ,x 1x e x x x x ⎧≤⎪≤⎨⎪>⎩,0<x 1≤显然不等于f(x ),故B 错误;对于C ,由已知得(g•f )(x )=g (f (x ))=2ln , 0,1, 0ln ,x 0x x x x ⎧>⎪=⎨⎪<⎩,显然不等于g (x ),故C 错误;对于D ,由已知得(g•g )(x )= , 1,ln(ln ), 1.x x x x ≤⎧⎨>⎩,显然不等于g (x ),故D 错误.故选A .5、x 为实数,[x]表示不超过x 的最大整数,则函数f(x)=x -[x]在R 上为( ) A .奇函数 B .偶函数 C .增函数D .周期函数解析:本题主要考查函数的图像和性质.当x ∈[0,1)时,画出函数图像(图略),再左右扩展知f(x)为周期函数.故选D.二、填空题6、现定义一种运算“⊕”: 对任意实数b a ,,⎩⎨⎧<-≥-=⊕1,1,b a a b a b b a 。

《创新设计》高考数学人教A版(理)一轮复习:第四篇第7讲解三角形应用举例

《创新设计》高考数学人教A版(理)一轮复习:第四篇第7讲解三角形应用举例

第 7 讲解三角形应用举例A 级基础操练(时间:30分钟满分:55分)一、选择题 (每题 5 分,共 20 分 )1.(2013 ·沧州模拟 )有一长为 1 的斜坡,它的倾斜角为20°,现高不变,将倾斜角改为10°,则斜坡长为().A .1C.2cos 10°B.2sin 10 D.cos 20°°分析如图,∠ ABC=20°, AB=1,∠ ADC = 10°,∴∠ABD=160°.在△ ABD 中,由正弦定理得AD =AB,sin 160 °sin 10 °sin 160∴AD=AB·sin 10°sin 20 °==2cos 10 .°°sin 10 °答案C2.某人向正东方向走x km 后,向右转 150°,而后朝新方向走出发点恰巧是 3 km,那么 x 的值为3 km ,结果他离().A.3分析B.23以下图,设这人从C. 3或2 3D.3A 出发,则 AB= x, BC= 3,AC=3,∠ABC=30°,由余弦定理得( 3)2=x2+32-2x·3·cos 30 ,°整理得 x2-3 3x+6=0,解得 x= 3或 2 3.答案C3.一艘海轮从 A 处出发,以每小时 40 海里的速度沿南偏东40°的方向直线航行,30 分钟后抵达 B 处,在 C 处有一座灯塔,海轮在 A 处察看灯塔,其方向是南偏东 70°,在 B 处察看灯塔,其方向是北偏东 65°,那么 B,C 两点间的距离是().A.10 2海里B.103海里C.20 3海里D.20 2海里分析以下图,易知,在△ ABC 中, AB=20 海里,∠ CAB= 30°,∠ ACB=45°,依据正弦定理得BC AB=,解得 BC=10 2(海里 ).答案A4.(2012吉·林部分要点中学质量检测 )如图,两座相距60 m 的建筑物 AB、CD 的高度分别为20 m、50 m,BD 为水平面,则从建筑物AB 的顶端 A 看建筑物CD 的张角为().A.30°B.45° C.60° D.75°分析依题意可得 AD=20 10(m),AC=305(m),又 CD=50(m),因此在△ACD中,由余弦定理得cos ∠ CAD =AC2+ AD2-CD2=2AC·AD305 2+ 20 10 2- 5026000=2,又 0°<∠ CAD<180°,因此∠ CAD==2× 30 5×20 106000 2245°,因此从顶端 A 看建筑物 CD 的张角为 45°.答案B二、填空题 (每题 5 分,共 10 分 )5.(2011 ·上海 )在相距 2 千米的 A, B 两点处丈量目标点C,若∠ CAB=75°,∠CBA=60°,则 A,C 两点之间的距离为 ________千米.分析由已知条件∠ CAB= 75°,∠ CBA= 60°,得∠ ACB= 45°.联合正弦定理得AB=AC,即2= AC,解得 AC= 6(千米 ).sin∠ACB sin∠ CBA sin 45°sin 60°答案66.(2013 潍·坊模拟 )如图,一艘船上午9:30 在 A 处测得灯塔S在它的北偏东30°处,以后它持续沿正北方向匀速航行,上午 10: 00 抵达 B 处,此时又测得灯塔 S 在它的北偏东 75°处,且与它相距 8 2 n mile.此船的航速是 ________ n mile/h.分析设航速为 v n mile/h ,1在△ ABS 中, AB = 2v ,BS =8 2 n mile ,∠BSA =45°,1由正弦定理得:8 2 = 2v ,∴ v =32 n mile/h.sin 30 °sin 45 °答案32三、解答题 (共 25 分 )7.(12 分 )某广场有一块不规则的绿地以下图,城建部门欲在该地上建筑一个底座为三角形的环保标记,小李、小王设计的底座形状分别为△ABC 、△ ABD ,经丈量 AD =BD =7 米,BC =5 米,AC =8 米,∠C =∠D.求 AB 的长度.解 在△ ABC 中,由余弦定理得2+ BC 2-AB 22+52-AB 2cos C =AC=82×8×5 ,2AC ·BC在△ ABD 中,由余弦定理得2+BD 2-AB22+72- AB 2cos D =AD 2AD ·BD = 7× × 7 .2 7由∠ C =∠ D ,得 cos ∠C =cos ∠D , 解得 AB =7,因此 AB 长度为 7 米.8.(13 分)以下图,位于 A 处的信息中心获悉:在其正东方向相距40 海里的 B处有一艘渔船遇险,在原地等候营救.信息中心立刻把信息见告在其南偏西30°、相距 20 海里的 C 处的乙船,现乙船朝北偏东 θ的方向沿直线 CB 前去 B处营救,求 cos θ的值.解如题图所示,在△ ABC 中, AB = 40海里, AC =20 海里,∠ BAC =120°,由余弦定理知, BC 2 =AB 2+ AC 2 - 2AB ·AC ·cos120°= 2 800,故 BC = 20 7(海里 ).AB BC由正弦定理得sin ∠ ACB =sin ∠BAC ,AB21 因此 sin ∠ACB = BC sin ∠BAC = 7 .27由∠ BAC =120°,知∠ ACB 为锐角,则 cos ∠ ACB = 7 .易知 θ=∠ ACB +30°,故 cos θ= cos(∠ACB + 30°)= c os ∠ACBcos 30 °-sin ∠ACBsin 30 °21= 14 .B 级能力打破 (时间: 30 分钟 满分: 45 分)一、选择题 (每题 5 分,共 10 分 )1.一个大型喷水池的中央有一个强力喷水柱,为了丈量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点A 测得水柱顶端的仰角为 45°,沿点 A 向北偏东 30°行进高度是100 m 抵达点B ,在B 点测得水柱顶端的仰角为30°,则水柱的().A .50 mB .100 mC .120 mD .150 m分析设水柱高度是 h m ,水柱底端为 C ,则在△ ABC 中, A =60°,AC =h ,AB =100,BC = 3h ,依据余弦定理得, ( 3h)2=h 2+ 1002-2·h ·100·cos 60 °,即 h 2+50h -5 000= 0,即 (h -50)(h +100)=0,即 h =50,故水柱的高度是 50m.答案A2.(2013 榆·林模拟 )如图,在湖面上高为10 m 处测得天空中一朵云的仰角为30°,测得湖中之影的俯角为45°,则云距湖面的高度为 A .2.7 m C .37.3 m(精准到 0.1 m)B .17.3 mD .373 m().分析在△ ACE 中,CE CM -10 .∴AE = CM -10tan 30 =° = AE (m).AE tan 30 ° DE CM +10在△ AED 中, tan 45 =°AE = AE ,∴AE = CM +10 CM -10 CM +10, tan 45 (m),∴ tan 30 =° ° tan 45 °∴CM =103+1 = 10(2+ 3)≈ 37.3(m).3- 1答案 C二、填空题 (每题 5 分,共 10 分 )3.在 2012 年 7 月 12 日伦敦奥运会上举行升旗仪式.如图,在坡度为 15°的观礼台上,某一列座 位所在直线 AB 与旗杆所在直线 MN 共面,在该 列的第一个座位 A 和最后一个座位 B 测得旗杆 顶端 N 的仰角分别为 60°和 30°,且座位 A , B 的距离为 10 6米,则旗杆的高度为 ________米.分析 由题可知∠ BAN =105°,∠ BNA =30°,由正弦定理得 AN =10 6 ,sin 45 °sin 30 ° 解得 AN =20 3(米 ),在 Rt △AMN 中,MN =20 3 sin 60 =°30(米).故旗杆的 高度为 30 米. 答案 304.(2013 合·肥一检 )如图,一船在海上自西向东航行,在 A 处测得某岛 M 的方向角为北偏东 α角,行进 m 海里后在 B 处测得该岛的方向角为北偏东 β角, 已知该岛四周 n 海里范围内 (包含界限 )有暗礁,现 该船持续东行, 当 α与 β知足条件 ________时,该 船没有触礁危险.BMm分析 由题可知,在△ ABM 中,依据正弦定理得 sin 90°-α=sin α-β,解得 BM =mcos α,要使该船没有触礁危险需知足 BMsin(90 -°β)=mcosαcosβsin α- β sin α-β>n ,因此当 α与 β的关系知足 mcos αcos β>nsin(α- β)时,该船没有触礁危 险.答案 mcos αcos β> nsin(α-β) 三、解答题 (共 25 分 )5.(12 分)(2012 肇·庆二模 )如图,某丈量人员为了丈量西江北岸不可以抵达的两点A ,B 之间的距离,她在西江南岸找到一个点C ,从 C 点能够察看到点 A ,B ;找到一个点 D ,从 D 点能够察看到点 A ,C ;找到一个点 E ,从 E 点能够察看到点B ,C ;并测量获得数据: ∠ACD =90°,∠ADC =60°,∠ACB= 15°,∠ BCE = 105°,∠ CEB = 45°,DC = CE =1 百米.(1) 求△ CDE 的面积; (2) 求 A ,B 之间的距离.解(1) 在△ CDE 中,∠ DCE = 360°- 90°- 15°- 105°= 150°, S △ CDE = 121 1 1 1DC ·CE ·sin 150 =° ×sin 30 =° ×= (平方百米 ).22 24(2)连结 AB ,依题意知,在Rt △ACD 中,AC =DC ·tan ∠ADC =1×tan 60 =° 3(百米 ),在△ BCE 中,∠ CBE =180°-∠ BCE -∠ CEB =180°-105°- 45°=30°,BC CE由正弦定理sin ∠CEB =sin ∠CBE ,得CE1 ×sin 45 =° 2(百米 ).BC =sin ∠CBE ·sin ∠ CEB =sin 30 °∵ c os 15 °= cos(60 °-45°)=cos 60 °cos 45 °+ sin 60 sin ° 45 °1 2 3 2 6+ 2=2× 2 + 2 × 2 = 4 ,在△ ABC 中,由余弦定理 AB 2=AC 2+ BC 2-2AC ·BC ·cos ∠ACB ,可得 AB 2=( 3)2+ ( 2)2- 2 3× 2×6+ 2=2- 3, 4∴AB = 2- 3百米.6.(13 分 )某港口 O 要将一件重要物件用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口 O 北偏西 30°且与该港口相距 20 海里的 A 处,并正以 30 海里 /时的航行速度沿正东方向匀速行驶.假定该小艇沿直线方向以v海里 /时的航行速度匀速行驶,经过 t 小时与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)假定小艇的最高航行速度只好达到30 海里 /时,试设计航行方案 (即确立航行方向和航行速度的大小 ),使得小艇能以最短时间与轮船相遇.解 (1)设相遇时小艇航行的距离为 S 海里,则S=900t2+400- 2·30t·20·cos 90°- 30°2+400=12+300.=900t -600t900 t-31故当 t=3时, S min=10 3(海里 ),10 3此时 v=1=30 3(海里/时).3即小艇以 30 3海里 /时的速度航行,相遇时小艇的航行距离最小.(2)设小艇与轮船在 B 处相遇,则v2t2=400+900t2-2·20·30t·cos(90 °-30°),2=900-600400≤,t t0 v30600400232∴900-t+t2≤900,即t2-t≤ 0,解得 t≥3.2又 t=3时, v= 30 海里 /时.故 v= 30 海里 /不时, t 获得最小值,且最小值等于2 3 .此时,在△ OAB 中,有 OA= OB= AB= 20 海里,故可设计航行方案以下:航行方向为北偏东30°,航行速度为 30 海里 /时,小艇能以最短时间与轮船相遇.特别提示:教师配赠习题、课件、视频、图片、文档等各样电子资源见《创新设计·高考总复习》光盘中内容.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010年高考数学创新题型集锦
一.设计非常规的数学问题,考查学生的探索能力,培养学生的探索精神。

在数学问题中,有一些问题没有现成的方法或解题模式套用;有一些问题的条件、结论、解题策略是不唯一的或需要探索的(见开放性试题),因此解决这些问题的过程中能有效地展示考生的思维水平。

三.设计非常规的应用题,强化数学应用意识,培养数学应用意识。

例11.如图,电路中共有7个电阻与一个电灯A,若灯A不亮,其原因仅因电阻断路的可能性共有___________种情况(用数字作答)
答案63
例12.近日在国内某大报纸有如下的报道:
加薪的学问
学数学,其实是要使人聪明,使人的思维更加缜密,在美国广为流传的一道数学题目是:老板给你两个加工资的方案。

一是每年年末加一千元;二是每半年结束时加300元。

请选择一种。

一般不擅长数学的人很容易选择前者,因为一年加一千元总比两个半年共加600元要多。

其实,由于工资累计的,时间稍长,往往第二种方案更有利。

例如在第二年的年末,依第一种方案可以加得1000+2000=3000元,而第二种方案在第一年加得300+600=900元,第二年加得900+1200=2100元,总数也是900+2100=3000元。

但到了第三年,第一种方案可以得到1000+2000+3000=6000元,第二种方案可以得到300+600+900+1200+1500+1800=6300元,比第一方案多了300元。

第四年,第五年会更多。

因此,你若会在公司干三年以上,则应选择第二种方案。

根据以上材料,解答以下问题:
(1)如果在该公司干10年,问选择第二方案比选择第一多加薪多少元?
(2)如果第二方案中得每半年加300元改成每半年加元,问取何值时,总是选择第二方案比选择第一方案多加薪?
四.创设新颖的环境,培养学生的创新能力,在新的情境中,实现知识迁移,创造性地解决问题(新背景、新定义)
五.开放题型
开放性问题是相对于有明确的条件和明确的结论的封闭型问题而言的,把从问题给定的题设中探究相应的结论,加以证明,或从给定的题断中探究其相应的必须具备的条件的一类问题称为开放性问题。

由于此类问题的知识覆盖面较广,综合性强,灵活选择方法的要求较高,有利于培养和考查学生的创造思维能力和探索能力,所以此类问题成为高考的热点之一。

高考中开放性试题的常见题型有:条件探索型,结论探索型,存在探索型,规律性探索型。

1、条件探索型
条件探索型问题是指问题中的结论明确,探求使结论成立的充分条件。

解决此类问题的策略有两种,一种是将结论作为已知条件,逐步探索,找出结论成立所需的条件,这也是我们通常所说的"分析法";第二种是假设题目中指定的探索条件,把它作为已知,并结合其他题设进行推导,如果能正确推导出结论,则此探索条件就可以作为题设条件
评述:本题从所给的条件出发,通过观察、分析、归纳、猜想出结论,然后对所猜想的结论加以证明。

这个探索结论的过程可以概括为:归纳------猜想------证明
3、规律性探索型
规律性探索型命题是指从命题给出的多个具体的关系式,通过观察、归纳、分析、比较,得出一般规律的命题。

解题策略是:通过研究题设的变化规律,猜想结论,然后证明。

4、存在性探索型
存在性探索型命题是指在一定的条件下,判断某种数学对象是否存在,进行演绎推理,若推出矛盾,则假设不成立,若推出结果,则假设成立,即指定的数学对象存在。

ABCD。

相关文档
最新文档