2005硕士弹性力学试卷

合集下载

弹性力学历届考试试题

弹性力学历届考试试题

卷一、简答题1. 何谓平面应变问题?举例说明。

2. 在什么情况下,平面应力问题和平面应变问题的应力分布与材料的弹性常数无关?又在什么情况下,两类平面问题具有相同的应力解? 3. 何谓逆解法?4. 简述小挠度薄板弯曲问题的基本假定。

二、试分别写出图示平面问题的边界条件:1.直角坐标时的边界条件;2.极坐标时的边界条件。

题二图 题三图三、图示矩形截面简支梁,体力不计,受均布荷载q ,由两端的反力ql 维持平衡,试构造应力函数,并求出各应力分量。

四、等截面直杆受扭矩M 作用,椭圆形横截面如图所示,椭圆边界的半轴分别为a 和b 。

试用应力函数2222(1)x y m a bΦ=+-求解各应力分量(m 是待定系数)。

五、图示矩形薄板OABC 的OA 和OC 边简支,AB 和BC 边自由,边长为a 和b ,在B 点受到垂直于薄板中面的横向集中力F 作用。

试证w mxy =能满足一切条件(m 是待定系数),并求挠度。

OA CxOA Cx卷六、简答题5. 何谓平面应力问题?举例说明。

6. 何谓轴对称问题?举例说明。

7. 何谓半逆解法?8. 何谓圣维南原理?圣维南解的价值何在?七、设Airy 应力函数为3cx =Φ,其中c 为常数。

试在图中绘出边界上的面力。

题二图 题三图八、设有矩形截面的长梁,其长度为l ,深度为h ,宽度为b ,三者之间的关系为b h l >>>>。

在两端的集中力偶M 作用下(不计体力),梁发生纯弯曲变形。

试用Airy 应力函数求解应力分量。

九、等截面直杆的椭圆形横截面如图所示,椭圆边界的半轴分别为a 和b 。

试用应力函数2222(1)x y m a bΦ=+-求解各应力分量(m 是待定系数)。

十、图示矩形薄板OABC 的OA 和OC 边简支,AB 和BC 边自由,边长为a 和b ,在B 点受到垂直于薄板中面的横向集中力F 作用。

试证w m xy =能满足一切xx 条件(m 是待定系数),并求挠度。

《弹性力学》试题参考答案

《弹性力学》试题参考答案

《弹性力学》试题参考答案(答题时间:100分钟)一、填空题(每小题4分)1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。

2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。

3.等截面直杆扭转问题中, M dxdy D=⎰⎰2ϕ的物理意义是 杆端截面上剪应力对转轴的矩等于杆截面内的扭矩M 。

4.平面问题的应力函数解法中,Airy 应力函数ϕ在边界上值的物理意义为 边界上某一点(基准点)到任一点外力的矩 。

5.弹性力学平衡微分方程、几何方程的张量表示为:0,=+i j ij X σ ,)(21,,i j j i ij u u +=ε。

二、简述题(每小题6分)1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。

圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。

作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。

(2)将次要的位移边界条件转化为应力边界条件处理。

2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数ϕ的分离变量形式。

题二(2)图(a )⎩⎨⎧=++= )(),(),(222θθϕϕf r r cy bxy ax y x (b )⎩⎨⎧=+++=)(),(),(33223θθϕϕf r r dy cxy y bx ax y x 3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比 μ 已知。

试求薄板面积的改变量S ∆。

题二(3)图设当各边界受均布压力q 时,两力作用点的相对位移为l ∆。

由q E)1(1με-=得,)1(2222με-+=+=∆Eb a q b a l设板在力P 作用下的面积改变为S ∆,由功的互等定理有:l P S q ∆⋅=∆⋅将l ∆代入得:221b a P ES +-=∆μ显然,S ∆与板的形状无关,仅与E 、μ、l 有关。

弹性力学复习重点+试题及答案【整理版】

弹性力学复习重点+试题及答案【整理版】

)))))))弹性力学2005 期末考试复习资料一、简答题1.试写出弹性力学平面问题的基本方程,它们揭示的是那些物理量之间的相互关系?在应用这些方程时,应注意些什么问题?答:平面问题中的平衡微分方程:揭示的是应力分量与体力分量间的相互关系。

应注意两个微分方程中包含着三个未知函数σx、σy、τxy=τyx ,因此,决定应力分量的问题是超静定的,还必须考虑形变和位移,才能解决问题。

平面问题的几何方程: 揭示的是形变分量与位移分量间的相互关系。

应注意当物体的位移分量完全确定时,形变量即完全确定。

反之,当形变分量完全确定时,位移分量却不能完全确定。

平面问题中的物理方程:揭示的是形变分量与应力分量间的相互关系。

应注意平面应力问题和平面应变问题物理方程的转换关系。

2.按照边界条件的不同,弹性力学问题分为那几类边界问题?试作简要说明。

答:按照边界条件的不同,弹性力学问题分为位移边界问题、应力边界问题和混合边界问题。

位移边界问题是指物体在全部边界上的位移分量是已知的,也就是位移的边界值是边界上坐标的已知函数。

应力边界问题中,物体在全部边界上所受的面力是已知的,即面力分量在边界上所有各点都是坐标的已知函数。

混合边界问题中,物体的一部分边界具有已知位移,因而具有位移边界条件;另一部分边界则具有应力边界条件。

3.弹性体任意一点的应力状态由几个应力分量决定?试将它们写出。

如何确定它们的正负号?答:弹性体任意一点的应力状态由6个应力分量决定,它们是:σx、σy、σz、τxy、τyz、、τzx。

正面上的应力以沿坐标轴正方向为正,沿坐标轴负方向为负。

负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负。

4.在推导弹性力学基本方程时,采用了那些基本假定?什么是“理想弹性体”?试举例说明。

答:答:在推导弹性力学基本方程时,采用了以下基本假定:(1)假定物体是连续的。

(2)假定物体是完全弹性的。

(3)假定物体是均匀的。

(4)假定物体是各向同性的。

2005年硕士研究生入学考试及答案

2005年硕士研究生入学考试及答案

目录1.05年北师大物理类各方向2.05年长光所3.05年东南大学4.05年中科大5.05年南京大学6.05年华中科大7.05年吉林大学(原子所)8.05年四川大学(原子与分子)9.05年北京理工10.05年河北理工11.05年长春理工北京师范大学2005年招收硕士研究生入学考试试题专业:物理类各专业科目代号:459研究方向:各方向考试科目:量子力学[注意]答案写在答题纸上,写在试题上无效。

1.(20分)一个电子被限制在一维谐振子势场中,活动范围求激发电子到第一激发态所需要的能量(用ev表示)(,,)提示:谐振子能量本征函数可以写成2.(30分)一个电子被限制在二维各向同性谐振子势场中(特征频率为)。

(1)写出其哈密顿量,利用一维谐振子能级公式找到此电子的能级公式和简并度。

(2)请推导电子的径向运动方程。

并讨论其在时的渐近解。

提示:极坐标下3.(50分)两个质量为的粒子,被禁闭在特征频率为的一维谐振子势场中,彼此无相互作用(此题中波函数无须写出具体形式):(1)如果两个粒子无自旋可分辨,写出系统的基态(两个都在自己的基态)和第一激发能级(即一个在基态,另一个在第一激发态)的波函数和能量(注意简并情形)。

(10分)(2)如果两个粒子是不可分辨的无自旋波色子,写出系统的基态和第一激发态的能量和波函数。

如果粒子间互作用势为,计算基态能级到一级微扰项。

(15分)(3分)如果两个粒子是不可分辨的自旋1/2粒子,写出基态能级和波函数(考虑自旋)。

如果粒子间互作用能为,计算基态能量。

(15分)(4)同(3),解除势阱,两个粒子以左一右飞出。

有两个探测器分别(同时)测量它们的y方向自旋角动量。

请问测量结果为两电子自旋反向的几率是多少?(10分)4.(30分)中心力场中电子自旋与轨道角动量存在耦合能。

总角动量,是的共同本征态。

现有一电子处于态,且。

(1)在一基近似下,可用代替,请问电子的能量与态差多少?(2)请计算该电子产生的平均磁矩,并由此计算在z方向均匀磁场B中电子的能量改变多少?(),当,,当,5.(20分)一个定域(空间位置不动)的电子(自旋1/2)处于z方向强磁场中。

(完整版)《弹性力学》试题参考答案

(完整版)《弹性力学》试题参考答案

《弹性力学》试题参考答案(答题时间:100分钟)一、填空题(每小题4分)1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。

2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。

3.等截面直杆扭转问题中, 的物理意义是 杆端截面上剪应力对转轴的矩等于M dxdy D=⎰⎰2ϕ杆截面内的扭矩M 。

4.平面问题的应力函数解法中,Airy 应力函数在边界上值的物理意义为 边界上某一点(基准ϕ点)到任一点外力的矩 。

5.弹性力学平衡微分方程、几何方程的张量表示为: ,。

0,=+i j ij X σ)(21,,i j j i ij u u +=ε二、简述题(每小题6分)1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。

圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。

作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。

(2)将次要的位移边界条件转化为应力边界条件处理。

2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数的分离变量形式。

ϕ题二(2)图(a ) (b )⎩⎨⎧=++= )(),(),(222θθϕϕf r r cy bxy ax y x ⎩⎨⎧=+++= )(),(),(33223θθϕϕf r r dy cxy y bx ax y x 3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比 μ 已知。

试求薄板面积的改变量。

S∆题二(3)图设当各边界受均布压力q 时,两力作用点的相对位移为。

由得,l ∆q E)1(1με-=)1(2222με-+=+=∆Eb a q b a l 设板在力P 作用下的面积改变为,由功的互等定理有:S ∆lP S q ∆⋅=∆⋅将代入得:l ∆221b a P ES +-=∆μ显然,与板的形状无关,仅与E 、、l 有关。

2005年研究生弹塑性考试试题A(部分)

2005年研究生弹塑性考试试题A(部分)

(2)
得到
f ij
ij
sij 2 J2
(3)
代入正交流动法则中,塑性应变分量的增量为
d
p ij
d
f ij
d(ij
sij 2 J2
)
(4)
所以
d
p v

3 d
7.一点的应力为 ij ,其偏应力为 sij ,试证明 sijdsij sijdij 。(10 分)
解:检验是否满足相容方程,即
2 x 2 y 2 xy
(1)
y2 x2 xy
将 x Axy2 , y Bx2 y , xy 0 代入(1)式中得:
2
2Ax 2By 0
(2)
显然 A B 0 ,与题意矛盾,所以该组应变分量不存在。
5.试证明在材料不可压缩( 0.5 )的情况下,等效应变
xy2
2 s
J2

1 6
( x
y )2
( y
z )2
( z
x )2
xy2

(
x
y 2
)2
xy2
s2
故两屈服条件重合。
4

1 2
( x

y)

平 面 应 变 状 态 的 主 应 力 为 : x y 2
(
x
2
y
)2

2 xy
,于是
1,3

x
y 2

(
x
y 2
)2
xy2

Tresca 屈服条件为:
Mises 屈服条件为:

《弹性力学》试题(重学考试试卷 参考答案)

《弹性力学》试题(重学考试试卷  参考答案)

(1)将φ代入相容方程
4Φ x 4
2
4Φ x 2 y
2
4Φ y 4
0 ,显然满足。因此,该函数可以作为应力函数。
O
(2)应力分量的表达式:
x
2 y 2
6qx2 h3
y
4qy3 h3
3qy 3h
,
y
y
2 x 2
q 2
4y3 h3
3y h
1
xy
2 xy
6qx h3
h2 4
y2
考察边界条件:在主要边界 y=±h/2 上,应精确满足应力边界条件
响可以不计。
A.几何上等效
B.静力上等效
C.平衡 D.任意
3、弹性力学平面问题的求解中,平面应力问题与平面应变问题的三类基本方程不完全相同,其比较关系为( B )。
A.平衡方程、几何方程、物理方程完全相同
B.平衡方程、几何方程相同,物理方程不同
C.平衡方程、物理方程相同,几何方程不同
D.平衡方程相同,物理方程、几何方程不同
(在各个方向上相同)。
2、位移法求解的条件是什么?怎样判断一组位移分量是否为某一问题的真实位移?(5 分)
答: 按位移法求解时,u,v 必须满足求解域内的平衡微分方程,位移边界条件和应力边界条件。 平衡微分方程、位移边界条件和(用位移表示的)应力边界条件既是求解的条件,也是校核 u,v 是否正确的条件。
1
3i
m
2
j
4
5
6
7
89
j
m
i
(a)
(b)
题八图
解:
因结构关于沿编码 2、5、8 的轴线对称,故可取左半部分进行分析,见下图所示。

《弹性力学》试题答案

《弹性力学》试题答案

ϕ题二(2)图+ 2cy(b )⎨⎧=++= )(),(),(323θθϕϕf r r cxy y bx ax y x 题二(3)图题二(4)图;题三(1)图,可近似视为半平面体边界受一集中力偶题三(2)图,截面惯性矩为123h I =,由材料力学计算公式有My2-==σ题二(3)图。

抗弯刚度为EI,在自由端受集中力题二(3)图4.图示弹性薄板,作用一对拉力P 。

试由功的互等定理证明:薄板的面积改变量S ∆与板的形状无关,仅与材料的弹性模量E 、泊松比 、两力P 作用点间的距离l 有关。

题二(4)图5.下面给出平面问题(单连通域)的一组应变分量,试判断它们是否可能。

),(22y x C x +=ε,2Cy y =εCxy xy 2=γ。

6.等截面直杆扭转问题的应力函数解法中,应力函数),(y x ϕ应满足:GK22-=∇ϕ 式中:G 为剪切弹性模量;K 为杆件单位长度扭转角。

试说明该方程的物理意义。

三、计算题1.图示无限大薄板,在夹角为90°的凹口边界上作用有均匀分布剪应力q 。

已知其应力函数为:)2cos (2B A r +=θϕ 不计体力,试求其应力分量。

(13分)题三(1)图2.图示矩形截面杆,长为l ,截面高为h ,宽为单位1,受偏心拉力N ,偏心距为 e ,不计杆的体力。

试用应力函数23By Ay +=ϕ求杆的应力分量,并与材料力学结果比较。

θθαττ(12分)题三(2)图3.图示简支梁,其跨度为l ,抗弯刚度EI 为常数,受有线性分布载荷q 作用。

试求:(1)用三角函数形式和多项式写出梁挠度(w )近似函数的表达式;(2)在上述梁挠度(w )近似函数中任选一种,用最小势能原理或Ritz 法求梁挠度(w )的近似解(取2项待定系数)。

(13分)题三(3)图4.图示微小四面体OABC ,OA = OB = OC ,D 为AB 的中点。

设O 点的应变张量为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=03.001.0001.002.0005.00005.001.0ij ε试求D 点处单位矢量v 、t 方向的线应变。

2005试题C

2005试题C

硕士学位研究生入学考试试题(C )考试科目:工程流体力学适用专业:油气井工程、油气储运工程、油气田开发工程、机械设计及理论、化工过程机械一、简答题(20分,每题4分) ① 欧拉平衡关系式及其适用条件 ② 串、并联管路的主要特点 ③ 系统和控制体的异同点 ④ 什么是压力体? ⑤ 水击现象及产生的原因二、一矩形闸门两面受到水的压力,右边水深1H =5米,左边水深2H =3米,闸门与水平面成α=45°倾斜角,闸门宽度1米,求作用在闸门上的总压力及作用点。

(15分)三、已知某一流场中的速度分量,2t ax u +=,2t ay v --=0=w ,a 为常数,求流线和迹线。

(15分)四、如图所示,单位宽度的平板闸门开启时,上游水位21=h m ,下游水位8.02=h ,求水流作用在闸门上的力R 。

(15分)五、如图所示,运动平板与固定平板间的缝隙为h =0.1mm ,中间液体的动力粘度=μ0.1Pa ·s ,上板长L =20cm ,宽b =20cm 。

上板运动速度为u =2.0m/s ,相对压强=1p 0 Pa ,=2p 106 Pa ,求维持平板运动所需的拉力(15分)六、已知平面流动的流速为y x x u 422-+=,y xy v 22--=。

(1)流动是否连续;(2)是否无旋;(3)求驻点位置;(4)求流函数。

(15 分)七、图示一管路系统,CD 管中的水由A 、B 两水池联合供应。

已知8001=L 米、6002=L 米,8000=L 米,2.01=d 米,25.00=d 米,026.01=λ,026.02=λ,025.00=λ,0010=Q 升/秒。

求1Q 、2Q 及2d 。

(10分)。

弹性力学考研试题及答案

弹性力学考研试题及答案

弹性力学考研试题及答案试题:弹性力学考研模拟试题一、选择题(每题3分,共30分)1. 在弹性力学中,下列哪一项不是胡克定律的假设条件?A. 材料是连续的B. 材料是各向同性的C. 材料是完全弹性的D. 材料是各向异性的答案:D2. 弹性模量E和泊松比ν之间的关系可以表示为:A. E = 2G(1 + ν)B. E = 3K(1 - 2ν)C. E = 3K(1 + ν)D. E = 2G(1 - ν)答案:A3. 在平面应力问题中,最大剪切应力的方向与σx和σy的方向夹角为:A. 45°B. 22.5°C. 0°D. 90°答案:A4. 根据圣维南原理,对于一个弹性体,远离力作用区域的内部应力分布主要取决于:A. 体力B. 面力C. 边界条件D. 材料的弹性常数答案:C5. 在弹性力学中,拉梅常数λ和μ分别代表:A. 第一拉梅常数和第二拉梅常数B. 体积模量和剪切模量C. 泊松比和弹性模量D. 应力和应变的关系常数答案:A6. 对于一个理想的弹性体,其应力-应变关系是:A. 线性的B. 非线性的C. 时间依赖的D. 温度依赖的答案:A7. 在弹性力学中,平面应变问题通常指的是:A. 只有x方向的应变B. 只有y方向的应变C. 垂直于平面方向的位移为零D. 水平面方向的位移为零答案:C8. 根据弹性力学,下列哪一项不是弹性体的边界条件?A. 位移边界条件B. 应力边界条件C. 混合边界条件D. 速度边界条件答案:D9. 在弹性力学中,下列哪一项不是应力函数?A. Airy应力函数B. 位移函数C. 温度场D. 势能函数答案:B10. 在三维弹性力学问题中,位移矢量可以表示为:A. u = ∇ψ + ∇×γB. u = ∇ψ - ∇×γC. u = ∇×ψ + ∇γD. u = ∇×ψ - ∇γ答案:A二、简答题(每题10分,共20分)11. 简述弹性力学中的平面应力和平面应变问题的区别。

弹性力学试题及答案

弹性力学试题及答案

弹性力学试题及答案一、选择题(每题5分,共20分)1. 弹性力学中,描述材料弹性特性的基本物理量是()。

A. 应力B. 应变C. 弹性模量D. 泊松比答案:C2. 在弹性力学中,下列哪项不是胡克定律的内容?()A. 应力与应变成正比B. 材料是均匀的C. 材料是各向同性的D. 材料是线性的答案:B3. 弹性模量E和泊松比ν之间的关系是()。

A. E = 2(1 + ν)B. E = 3(1 - 2ν)C. E = 3(1 + ν)D. E = 2(1 - ν)答案:D4. 根据弹性力学理论,下列哪种情况下材料会发生塑性变形?()A. 应力小于材料的弹性极限B. 应力达到材料的弹性极限C. 应力超过材料的屈服强度D. 应力小于材料的屈服强度答案:C二、填空题(每题5分,共20分)1. 弹性力学中,应力的定义是单位面积上的______力。

答案:内2. 弹性力学的基本假设之一是______连续性假设。

答案:材料3. 弹性力学中,应变的量纲是______。

答案:无4. 弹性力学中,当外力撤去后,材料能恢复原状的性质称为______。

答案:弹性三、简答题(每题10分,共30分)1. 简述弹性力学中应力和应变的区别。

答案:应力是描述材料内部单位面积上受到的内力,而应变是描述材料在受力后形状和尺寸的变化程度。

2. 解释弹性力学中的杨氏模量和剪切模量。

答案:杨氏模量(E)是描述材料在拉伸或压缩过程中应力与应变比值的物理量,反映了材料的刚度;剪切模量(G)是描述材料在剪切应力作用下剪切应变与剪切应力比值的物理量,反映了材料抵抗剪切变形的能力。

3. 弹性力学中,如何理解材料的各向异性和各向同性?答案:各向异性是指材料的物理性质(如弹性模量、热膨胀系数等)在不同方向上具有不同的值;而各向同性则是指材料的物理性质在各个方向上都是相同的。

四、计算题(每题15分,共30分)1. 已知一圆柱形试件,其直径为50mm,长度为100mm,材料的弹性模量E=210GPa,泊松比ν=0.3。

2005年试题

2005年试题

浙江大学2005年攻读硕士学位研究生入学考试试题注意:答案必须写在答题纸上,写在试卷或草稿上均无效。

一.选择题(2×10=20分)1.欲观察到定域条纹,则首选()A.单色扩展光源B.白光扩展光源C.单色电光源D.白光电光源2.牛顿环装置中,若用平行光垂直照明,则当凸透镜与平板间距拉大时,条纹将()A.外扩 B.向中心收缩 C.无影响3.平行平板干涉中,当平板表面反射率很高时(不考虑吸收),若相邻光束光程差为波长整数倍时,则()A.反射光强等于入射光强B.投射光强等于入射光强C.反射光强随表面反射率增大而增大4.设线数为N1=600的光栅,其零级主极大光强为I1,在其他条件相同情况下,N2=1800的光栅其零级主极大光强为I2,则I2/I1为()A.1/9B.1/3C.3D.95.一束自然光通过¼波片时,一般为()A.线偏振光B.圆偏振光C.椭圆偏振光D.自然光6.以直径d的圆孔作衍射受限系统出瞳,在相干照明时,其截止频率为ρ1,而用非相干光照明时,其截止频率为ρ2,则ρ2/ρ1,为()A.1/4B.1/2C.2D.4E.17.单轴双折射晶体中,一般情况下()A. H,D,S相互垂直B. H,E,k相互垂直C. H,E,S相互垂直D. E,k,S相互垂直8,将一块光栅置于一相干成像系统中,若再其端面上只允许-1和+2级频谱通过,则其光栅的空间频率是()A.与原来相同B.是原来的两倍C.是原来的三倍9.为了观察原子光谱的超精细结构,应首选下列哪个分光系统()A.棱镜B.典型的F-B干涉仪C.典型光栅10.根据菲涅尔衍射波带片理论,当衍射屏只允许中心第一个波带通过时,轴上考察点亮度为I1,而当衍射屏通光孔为无穷大时,轴上考察点亮度为I2,则I2/ I1为( )A.4B.2C.1/2D.1/4二.简答题(4×5=20分)1.写出会聚球面波和发散球面波的波动公式。

2.用振幅为A的平面波垂直照射投射系数为t(x)=a sin(2えx/d)+t0的透明片,试写出紧靠透明片后的复振幅分布。

弹性力学试题及标准答案

弹性力学试题及标准答案

弹性力学与有限元分析复习题及其答案一、填空题1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。

2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。

3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。

4、物体受外力以后,其内部将发生内力,它的集度称为应力。

与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。

应力及其分量的量纲是L -1MT -2。

5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。

6、平面问题分为平面应力问题和平面应变问题。

7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力=1σ150MPa ,=2σ0MPa ,=1α6135' 。

8、已知一点处的应力分量,200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa ,=2σ-312 MPa ,=1α-37°57′。

9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。

10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。

11、表示应力分量与体力分量之间关系的方程为平衡微分方程。

12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。

分为位移边界条件、应力边界条件和混合边界条件。

13、按应力求解平面问题时常采用逆解法和半逆解法。

14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。

其具体步骤分为单元分析和整体分析两部分。

15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。

2005年硕士研究生入学考试及答案

2005年硕士研究生入学考试及答案

目录1.05年北师大物理类各方向2.05年长光所3.05年东南大学4.05年中科大5.05年南京大学6.05年华中科大7.05年吉林大学(原子所)8.05年四川大学(原子与分子)9.05年北京理工10.05年河北理工11.05年长春理工北京师范大学2005年招收硕士研究生入学考试试题专业:物理类各专业科目代号:459研究方向:各方向考试科目:量子力学[注意]答案写在答题纸上,写在试题上无效。

1.(20分)一个电子被限制在一维谐振子势场中,活动范围求激发电子到第一激发态所需要的能量(用ev表示)(,,)提示:谐振子能量本征函数可以写成2.(30分)一个电子被限制在二维各向同性谐振子势场中(特征频率为)。

(1)写出其哈密顿量,利用一维谐振子能级公式找到此电子的能级公式和简并度。

(2)请推导电子的径向运动方程。

并讨论其在时的渐近解。

提示:极坐标下3.(50分)两个质量为的粒子,被禁闭在特征频率为的一维谐振子势场中,彼此无相互作用(此题中波函数无须写出具体形式):(1)如果两个粒子无自旋可分辨,写出系统的基态(两个都在自己的基态)和第一激发能级(即一个在基态,另一个在第一激发态)的波函数和能量(注意简并情形)。

(10分)(2)如果两个粒子是不可分辨的无自旋波色子,写出系统的基态和第一激发态的能量和波函数。

如果粒子间互作用势为,计算基态能级到一级微扰项。

(15分)(3分)如果两个粒子是不可分辨的自旋1/2粒子,写出基态能级和波函数(考虑自旋)。

如果粒子间互作用能为,计算基态能量。

(15分)(4)同(3),解除势阱,两个粒子以左一右飞出。

有两个探测器分别(同时)测量它们的y方向自旋角动量。

请问测量结果为两电子自旋反向的几率是多少?(10分)4.(30分)中心力场中电子自旋与轨道角动量存在耦合能。

总角动量,是的共同本征态。

现有一电子处于态,且。

(1)在一基近似下,可用代替,请问电子的能量与态差多少?(2)请计算该电子产生的平均磁矩,并由此计算在z方向均匀磁场B中电子的能量改变多少?(),当,,当,5.(20分)一个定域(空间位置不动)的电子(自旋1/2)处于z方向强磁场中。

弹性力学复习重点+试题及答 案【整理版】

弹性力学复习重点+试题及答    案【整理版】
答:按照边界条件的不同,弹性力学问题可分为两类边界问题: (1)平面应力问题 : 很薄的等厚度板,只在板边上受有平行于板面并 且不沿厚度变化的面力。这一类问题可以简化为平面应力问题。例如深 梁在横向力作用下的受力分析问题。在该种问题中只存在三个应力分 量。 (2)平面应变问题 : 很长的柱形体,在柱面上受有平行于横截面并且 不沿长度变化的面力,而且体力也平行于横截面且不沿长度变化。这一 类问题可以简化为平面应变问题。例如挡土墙和重力坝的受力分析。该 种问题
平面应变问题:所对应的弹性体主要为长截面柱体,其特征为:面 力、体力的作用面平行于xy平面,外力沿z轴无变化,只有平面应变分 量,,存在,且仅为x,y的函数。
3. (8分)常体力情况下,按应力求解平面问题可进一步简化为 按应力函数求解,应力函数必须满足哪些条件?
答:(1)相容方程:
(2)应力边界条件(假定全部为应力边界条件,):
平面问题的几何方程: 揭示的是形变分量与位移分量间的相互关 系。应注意当物体的位移分量完全确定时,形变量即完全确定。反之, 当形变分量完全确定时,位移分量却不能完全确定。
平面问题中的物理方程:揭示的是形变分量与应力分量间的相互关 系。应注意平面应力问题和平面应变问题物理方程的转换关系。
2.按照边界条件的不同,弹性力学问题分为那几类边界问题?试作 简要说明。
5. 利用有限单元法求解弹性力学问题时,简单来说包含 结构离散化 、 单元分析 、 整体分析 三个主要步骤。
2. 绘图题(共10分,每小题5分)
分别绘出图3-1六面体上下左右四个面的正的应力分量和图3-2极坐标 下扇面正的应力分量。
图3-1
图3-2
3. 简答题(24分) 1. (8分)弹性力学中引用了哪五个基本假定?五个基本假定在

弹性力学试题及答案

弹性力学试题及答案

《弹性力学》试题参考答案(答题时间:100分钟)一、填空题(每小题4分)1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。

2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。

3.等截面直杆扭转问题中, M dxdy D=⎰⎰2ϕ的物理意义是 杆端截面上剪应力对转轴的矩等于杆截面内的扭矩M 。

4.平面问题的应力函数解法中,Airy 应力函数ϕ在边界上值的物理意义为 边界上某一点(基准点)到任一点外力的矩 。

5.弹性力学平衡微分方程、几何方程的张量表示为:0,=+i j ij X σ ,)(21,,i j j i ij u u +=ε。

二、简述题(每小题6分)1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。

圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显着的改变,但远处的应力所受影响可以忽略不计。

作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。

(2)将次要的位移边界条件转化为应力边界条件处理。

2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数ϕ的分离变量形式。

题二(2)图(a )⎩⎨⎧=++= )(),(),(222θθϕϕf r r cy bxy ax y x (b )⎩⎨⎧=+++= )(),(),(33223θθϕϕf r r dy cxy y bx ax y x 3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比 ? 已知。

试求薄板面积的改变量S ∆。

题二(3)图设当各边界受均布压力q 时,两力作用点的相对位移为l ∆。

由q E)1(1με-=得,设板在力P 作用下的面积改变为S ∆,由功的互等定理有: 将l ∆代入得:显然,S ∆与板的形状无关,仅与E 、μ、l 有关。

4.图示曲杆,在b r =边界上作用有均布拉应力q ,在自由端作用有水平集中力P 。

工程力学05级弹性力学试卷分析报告

工程力学05级弹性力学试卷分析报告

工程力学05级弹性力学试卷分析报告该试卷共分六大题,总分100分。

各大题分析如下:第一题:本题重点考察学生对弹性力学平面问题基本概念、基本方法的理解和基本方程的掌握,并要求学生能灵活应用这些基本方程。

该题平均得分为72.3(已换算为百分制,下同),应该说,本届学生在平面问题基本方程的掌握和应用方面表现较好。

图1给出了本题得分与总分关系图。

从图1可以看出,本题得分与总分的关系相关性不是很好,部分本题得分较高的同学总分依然较低,但是,总分超过80的同学本题得分均不低于80,这说明:仅仅掌握了基本概念、基本方法并不能保证合格,而要取得较好的成绩,对基本概念、基本方法的掌握与理解是必不可少的。

与20XX年弹性力学考试对比(当时采用判断题的形式考察“三基”,效果不太理想),本次考察方式应该更合适。

图1:第一大题得分与总分关系图第二题:本题要求学生写出应力边界条件,这是弹性力学必考的一种题型。

本题主要考查学生对边界条件这一基本内容的掌握情况,而边界条件的提法,可以说是弹性力学最基础、最重要的一个内容。

本题共分2个小题,分别为直角坐标和极坐标情况。

从边界条件的组合看,基本上覆盖了几大类重要的外力情况,并重点考察了圣维南原理的应用。

该题考试平均得分为67.1,主要失分集中在两个方面:一是圣维南原理的应用上,部分同学对圣维南原理理解、掌握不好,导致大量失分;二是第二小题,部分同学只看到给出的是直角坐标系,不知道可以并应该用极坐标表示更为方便,生硬地采用直角坐标表示,导致十分。

从本题考试结果分析,本届同学对边界条件的写法掌握一般,较上一级学生为差(平均得分低了将近10分),应该检讨教学中是否有疏漏。

图2给出了本题得分与总分关系图。

从图2可以看出,本题得分与总分的关系相关性非常好,本题得分高的同学,总分也相对较高,本题能得满分的同学,总分均在80分以上,而本题得分不及格的同学,总分很难及格。

这表明:边界条件是弹性力学中的一个重点和关键,也是弹性力学教学中的一个难点,今后应在这部分内容的教学上进行深入研究,找到更有效的教学方法和教学手段,提高学生对这一部分内容的掌握程度。

哈工大2005年秋季学期弹性力学试题

哈工大2005年秋季学期弹性力学试题

哈工大 2005 年 秋 季学期
弹性力学 试题
一、推导出按位移求解弹性力学问题时所用的基本微分方程(Lame 方程)。

(15分)
二、给出如图所示平面应力问题的定解条件 1、简支梁受均布荷载q (10分)
qL
q
2、楔型体双边受对称均布剪力q (10分)
三、
1、闭合薄壁杆的横截面如图所示,均匀厚度为δ,受扭矩M ,试求最大剪应力及扭转角,并画出剪力图。

(10分)
2、解决弹性力学问题的五个基本假设是什么? (5分)
y
四、设图中的三角形悬臂梁只受重力作用,而梁的密度为ρ,试用3223Dy Cxy y Bx Ax +++=ϕ的应力函数求解。

(15分)
五、如图所示,铅直平面内的正方形薄板,边长为2a ,四边固定,只受重力ρɡ的作用。

设μ=0,试用位移分量表达式为
12222)1)(1(A a
y a x a y a x u --=
122
22)1)(1(B a
y a x v --=求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2005年硕士生弹性力学试卷
1. 已知体内某点应变张量为:
⎥⎥⎥

⎤⎢⎢⎢⎣⎡=εα
α
αεαααεεj
i 试求:(1)过该点方向为n 1 =⎪⎪⎭⎫
⎝⎛02
123
和n 2 =⎪⎪⎭


⎛-02
321的两个微线段之间的夹角的改变(弧度);(2)n 1方向线段的伸长率。

(10分) 2. 试简述:按位移求解的未知量是什么?他们要满足什么方程或条件?按应力求解的未知
量是什么?他们要满足什么方程或条件?总字数不得超过90个字。

(10分)
3. 体内某点领域任何方向线段的伸长率都相同,试证明该点相互垂直方向间的
切应变为零。

(10分)
4. 设有矩形截面的狭长竖柱,容重为pg ,
在两侧面上受均布切力q 和集中力p 作用, 图(1),试求应力分量。

(30分)
图(1)
5.一直在直角坐标系的拉梅(Lame )方程为:
)
(0)(0)(222
=∇+∂∂+=∇+∂∂+=∇+∂∂+w G z
G v G y G u G x G θλθλθλ 试利用张量方法推导出圆柱坐标系的Lame 方程(只需写出r 方向的方程)。

(20分)
6.两端固定梁受均布力作用,如图(2)所示。

已知梁的抗弯刚度为EI ,试按最小势能原
理求梁的挠度曲线,并给出最大挠度。

(20分)
x
图(2)。

相关文档
最新文档