带电粒子电场偏转
物理带电粒子在电场中的偏转运动
![物理带电粒子在电场中的偏转运动](https://img.taocdn.com/s3/m/7c8b6aec29ea81c758f5f61fb7360b4c2e3f2a18.png)
物理带电粒子在电场中的偏转运动1.偏转问题:(1)条件分析:带电粒子垂直于电场线方向进入匀强电场。
(2)运动形式:类平抛运动。
(3)处理方法:应用运动的合成与分解。
(4)运动规律:2.带电粒子在电场中偏转的两类问题:最终侧移的距离和偏转后的动能或速度。
典例如图所示,水平放置的平行板电容器与某一电源相连,它的极板长L=0.4 m,两板间距离d=4×10-3 m,有一束由相同带电微粒组成的粒子流,以相同的速度v0从两板中央平行极板射入,开关S闭合前,两板不带电,由于重力作用微粒能落到下极板的正中央,已知微粒质量为m=4×10-5 kg,电荷量q=+1×10-8 C,g=10 m/s2。
求:(1)微粒入射速度v0为多少?(2)为使微粒能从平行板电容器的右边射出电场,电容器的上极板应与电源的正极还是负极相连?所加的电压U应取什么范围?【巩固练习】1.(多选)如图所示,带电荷量之比为qA∶qB=1∶3的带电粒子A、B以相等的速度v0从同一点出发,沿着跟电场强度垂直的方向射入平行板电容器中,分别打在C、D点,若OC=CD,忽略粒子重力的影响,则( )A.A和B在电场中运动的时间之比为1∶2B.A和B运动的加速度大小之比为4∶1C.A和B的质量之比为1∶12D.A和B的位移大小之比为1∶12.如图所示,两个平行带电金属板M、N相距为d,M板上距左端为d处有一个小孔A,有甲、乙两个相同的带电粒子,甲粒子从两板左端连线中点O处以初速度v1平行于两板射入,乙粒子从A孔以初速度v2垂直于M板射入,二者在电场中的运动时间相同,并且都打到N板的中点B处,则初速度v1与v2的关系正确的是( )3.(多选)如图所示的直角坐标系中,第一象限内分布着均匀辐向的电场,坐标原点与四分之一圆弧的荧光屏间电压为U;第三象限内分布着竖直向下的匀强电场,场强大小为E。
大量电荷量为-q(q>0)、质量为m的粒子,某时刻起从第三象限不同位置连续以相同的初速度v0沿x轴正方向射入匀强电场。
高二物理带电粒子在电场中的偏转
![高二物理带电粒子在电场中的偏转](https://img.taocdn.com/s3/m/23618fd018e8b8f67c1cfad6195f312b3069eb73.png)
l
d
+
+
+
+
+
+
-
-
-
-
-
-
-q
φ
v
v0
v⊥
φ
y
l/2
F
运动状态分析 匀变速曲线运动(类平抛运动)
分析方法 沿初速度方向——匀速直线运动 沿电场线方向——初速度为零的匀加速直线运动
1.加速度:
2.飞行时间
3.侧移距离
4.偏角
对粒子偏角的讨论
在第2秒末,小球在x方向的分速度仍为vx,在y方向的的分速度为 vy=at=0.20m/s, 故此时物体的合速度方向与x轴成450,要使小球的速度变为零,第3秒内所加匀强电场的方向必须与此方向相反,即指向第三象限,与x轴成2250角.
在第3秒内,设在电场作用下小球加速度的x分量的y分量分别为ax,ay,则 ax=vx/t=0.20m/s2 ay=vy/t=0.20m/s2 在第3秒末小球到达的位置坐标为 X3=x2+vxt-1/2at2=0.40m Y3=y2+vyt-1/2at2=0.20m
方法1:根据速度合成求解
巩固提高
[例1].让一价氢离子、一价氦离子和二价氦离子的混合物由静止开始经过同一加速电场加速,然后在同一偏转电场里偏转,它们是否会分为三股?请说明理由。
答案:不会分为三股。
比较离子在偏转电场的侧移距离y
如果 y不相同
如果 y 相同
会分为三股
不会分为三股
比较离子是否以相同偏角φ 射出
如果φ不相同
会分为三股
如果φ 相同
带电粒子在电场中的偏转(含答案解析)
![带电粒子在电场中的偏转(含答案解析)](https://img.taocdn.com/s3/m/da7b42d1767f5acfa0c7cd08.png)
带电粒子在电场中的偏转一、基础知识1、带电粒子在电场中的偏转(1)条件分析:带电粒子垂直于电场线方向进入匀强电场. (2)运动性质:匀变速曲线运动.(3)处理方法:分解成相互垂直的两个方向上的直线运动,类似于平抛运动. (4)运动规律:①沿初速度方向做匀速直线运动,运动时间⎩⎪⎨⎪⎧a.能飞出电容器:t =lv 0.b.不能飞出电容器:y =12at 2=qU 2md t 2,t =2mdyqU②沿电场力方向,做匀加速直线运动⎩⎪⎨⎪⎧加速度:a =F m =qE m =Uqmd 离开电场时的偏移量:y =12at 2=Uql 22mdv 2离开电场时的偏转角:tan θ=v yv 0=Uqlmdv 20特别提醒 带电粒子在电场中的重力问题(1)基本粒子:如电子、质子、α粒子、离子等除有说明或有明确的暗示以外,一般都不考虑重力(但并不忽略质量).(2)带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或有明确的暗示以外,一般都不能忽略重力.2、带电粒子在匀强电场中偏转时的两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的. 证明:由qU 0=12mv 20y =12at 2=12·qU 1md ·(l v 0)2 tan θ=qU 1lmdv 20得:y =U 1l 24U 0d ,tan θ=U 1l2U 0d(2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为l2.3、带电粒子在匀强电场中偏转的功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12mv 2-12mv 20,其中U y =Udy ,指初、末位置间的电势差.二、练习题1、如图,一质量为m ,带电量为+q 的带电粒子,以速度v 0垂直于电场方向进入电场,关于该带电粒子的运动,下列说法正确的是( )A .粒子在初速度方向做匀加速运动,平行于电场方向做匀加速运动,因而合运动是匀加速直线运动B .粒子在初速度方向做匀速运动,平行于电场方向做匀加速运动,其合运动的轨迹是一条抛物线C .分析该运动,可以用运动分解的方法,分别分析两个方向的运动规律,然后再确定合运动情况D .分析该运动,有时也可用动能定理确定其某时刻速度的大小 答案 BCD2、如图所示,两平行金属板A 、B 长为L =8 cm ,两板间距离d =8 cm ,A 板比B 板电势高300 V ,一带正电的粒子电荷量为q =1.0×10-10 C ,质量为m =1.0×10-20 kg ,沿电场中心线RO 垂直电场线飞入电场,初速度v 0=2.0×106 m/s ,粒子飞出电场后经过界面MN 、PS 间的无电场区域,然后进入固定在O 点的点电荷Q 形成的电场区域(设界面PS 右侧点电荷的电场分布不受界面的影响).已知两界面MN 、PS 相距为12 cm ,D 是中心线RO 与界面PS 的交点,O 点在中心线上,距离界面PS 为9 cm ,粒子穿过界面PS 做匀速圆周运动,最后垂直打在放置于中心线上的荧光屏bc 上.(静电力常量k =9.0×109 N ·m 2/C 2,粒子的重力不计)(1)求粒子穿过界面MN 时偏离中心线RO 的距离多远?到达PS 界面时离D 点多远? (2)在图上粗略画出粒子的运动轨迹.(3)确定点电荷Q 的电性并求其电荷量的大小.解析 (1)粒子穿过界面MN 时偏离中心线RO 的距离(侧向位移): y =12at 2a =F m =qU dmL =v 0t则y =12at 2=qU 2md (L v 0)2=0.03 m =3 cm 粒子在离开电场后将做匀速直线运动,其轨迹与PS 交于H ,设H 到中心线的距离为Y ,则有12L12L +12 cm=yY,解得Y =4y =12 cm(2)第一段是抛物线、第二段是直线、第三段是圆弧(图略) (3)粒子到达H 点时,其水平速度v x =v 0=2.0×106 m/s 竖直速度v y =at =1.5×106 m/s 则v 合=2.5×106 m/s该粒子在穿过界面PS 后绕点电荷Q 做匀速圆周运动,所以Q 带负电 根据几何关系可知半径r =15 cmk qQr 2=m v 2合r解得Q ≈1.04×10-8 C答案 (1)12 cm (2)见解析 (3)负电 1.04×10-8 C3、如图所示,在两条平行的虚线内存在着宽度为L 、电场强度为E 的匀强电场,在与右侧虚线相距也为L 处有一与电场平行的屏.现有一电荷量为+q 、质量为m 的带电粒子(重力不计),以垂直于电场线方向的初速度v 0射入电场中,v 0方向的延长线与屏的交点为O .试求:(1)粒子从射入电场到打到屏上所用的时间;(2)粒子刚射出电场时的速度方向与初速度方向间夹角的正切值tan α; (3)粒子打在屏上的点P 到O 点的距离x . 答案 (1)2L v 0 (2)qEL mv 20 (3)3qEL 22mv 20解析 (1)根据题意,粒子在垂直于电场线的方向上做匀速直线运动,所以粒子从射入电场到打到屏上所用的时间t =2L v 0.(2)设粒子刚射出电场时沿平行电场线方向的速度为v y ,根据牛顿第二定律,粒子在电场中的加速度为:a =Eq m所以v y =a L v 0=qELmv 0所以粒子刚射出电场时的速度方向与初速度方向间夹角的正切值为tan α=v y v 0=qELmv 20.(3)解法一 设粒子在电场中的偏转距离为y ,则 y =12a (L v 0)2=12·qEL 2mv 20 又x =y +L tan α, 解得:x =3qEL 22mv 20解法二 x =v y ·Lv 0+y =3qEL 22mv 20.解法三 由xy =L +L2L 2得:x =3y =3qEL 22mv 20.4、如图所示,虚线PQ 、MN 间存在如图所示的水平匀强电场,一带电粒子质量为m =2.0×10-11 kg 、电荷量为q =+1.0×10-5 C ,从a 点由静止开始经电压为U =100 V 的电场加速后,垂直于匀强电场进入匀强电场中,从虚线MN 的某点b (图中未画出)离开匀强电场时速度与电场方向成30°角.已知PQ 、MN 间距为20 cm ,带电粒子的重力忽略不计.求:(1)带电粒子刚进入匀强电场时的速率v 1; (2)水平匀强电场的场强大小; (3)ab 两点间的电势差.答案 (1)1.0×104 m/s (2)1.732×103 N/C (3)400 V 解析 (1)由动能定理得:qU =12mv 21代入数据得v 1=1.0×104 m/s(2)粒子沿初速度方向做匀速运动:d =v 1t 粒子沿电场方向做匀加速运动:v y =at 由题意得:tan 30°=v 1v y由牛顿第二定律得:qE =ma 联立以上各式并代入数据得:E =3×103 N/C ≈1.732×103 N/C(3)由动能定理得:qU ab =12m (v 21+v 2y )-0联立以上各式并代入数据得:U ab =400 V .5、如图所示,一价氢离子(11H)和二价氦离子(42He)的混合体,经同一加速电场加速后,垂直射入同一偏转电场中,偏转后,打在同一荧光屏上,则它们( )A .同时到达屏上同一点B .先后到达屏上同一点C .同时到达屏上不同点D .先后到达屏上不同点 答案 B解析 一价氢离子(11H)和二价氦离子(42He)的比荷不同,经过加速电场的末速度不同,因此在加速电场及偏转电场的时间均不同,但在偏转电场中偏转距离相同,所以会先后打在屏上同一点,选B.6、如图所示,六面体真空盒置于水平面上,它的ABCD 面与EFGH 面为金属板,其他面为绝缘材料.ABCD 面带正电,EFGH 面带负电.从小孔P 沿水平方向以相同速率射入三个质量相同的带正电液滴a 、b 、c ,最后分别落在1、2、3三点.则下列说法正确的是( )A .三个液滴在真空盒中都做平抛运动B .三个液滴的运动时间不一定相同C .三个液滴落到底板时的速率相同D .液滴c 所带电荷量最多 答案 D解析 三个液滴具有水平速度,但除了受重力以外,还受水平方向的电场力作用,不是平抛运动,选项A 错误;在竖直方向上三个液滴都做自由落体运动,下落高度又相同,故运动时间必相同,选项B 错误;在相同的运动时间内,液滴c 水平位移最大,说明它在水平方向的加速度最大,它受到的电场力最大,电荷量也最大,选项D 正确;因为重力做功相同,而电场力对液滴c 做功最多,所以它落到底板时的速率最大,选项C 错误.7、绝缘光滑水平面内有一圆形有界匀强电场,其俯视图如图所示,图中xOy 所在平面与光滑水平面重合,电场方向与x 轴正向平行,电场的半径为R =2 m ,圆心O 与坐标系的原点重合,场强E =2 N/C.一带电荷量为q =-1×10-5 C 、质量m =1×10-5 kg 的粒子,由坐标原点O 处以速度v 0=1 m/s 沿y 轴正方向射入电场(重力不计),求:(1)粒子在电场中运动的时间; (2)粒子出射点的位置坐标; (3)粒子射出时具有的动能.答案 (1)1 s (2)(-1 m,1 m) (3)2.5×10-5 J解析 (1)粒子沿x 轴负方向做匀加速运动,加速度为a ,则有: Eq =ma ,x =12at 2沿y 轴正方向做匀速运动,有y =v 0t x 2+y 2=R 2解得t =1 s.(2)设粒子射出电场边界的位置坐标为(-x 1,y 1),则有x 1=12at 2=1 m ,y 1=v 0t =1 m ,即出射点的位置坐标为(-1 m,1 m).(3)射出时由动能定理得Eqx 1=E k -12mv 20代入数据解得E k=2.5×10-5 J.8、如图所示,在正方形ABCD区域内有平行于AB边的匀强电场,E、F、G、H是各边中点,其连线构成正方形,其中P点是EH的中点.一个带正电的粒子(不计重力)从F点沿FH方向射入电场后恰好从D点射出.以下说法正确的是( )A.粒子的运动轨迹一定经过P点B.粒子的运动轨迹一定经过PE之间某点C.若将粒子的初速度变为原来的一半,粒子会由ED之间某点射出正方形ABCD区域D.若将粒子的初速度变为原来的一半,粒子恰好由E点射出正方形ABCD区域答案BD解析粒子从F点沿FH方向射入电场后恰好从D点射出,其轨迹是抛物线,则过D 点做速度的反向延长线一定与水平位移交于FH的中点,而延长线又经过P点,所以粒子轨迹一定经过PE之间某点,选项A错误,B正确;由平抛运动知识可知,当竖直位移一定时,水平速度变为原来的一半,则水平位移也变为原来的一半,所以选项C错误,D正确.9、用等效法处理带电体在电场、重力场中的运动如图所示,绝缘光滑轨道AB部分为倾角为30°的斜面,AC部分为竖直平面上半径为R的圆轨道,斜面与圆轨道相切.整个装置处于场强为E、方向水平向右的匀强电场中.现有一个质量为m的小球,带正电荷量为q=3mg3E,要使小球能安全通过圆轨道,在O点的初速度应满足什么条件?图9审题与关联解析 小球先在斜面上运动,受重力、电场力、支持力,然后在圆轨道上运动,受重力、电场力、轨道作用力,如图所示,类比重力场,将电场力与重力的合力视为等效重力mg ′,大小为mg ′=qE 2+mg 2=23mg 3,tan θ=qE mg =33,得θ=30°,等效重力的方向与斜面垂直指向右下方,小球在斜面上匀速运动.因要使小球能安全通过圆轨道,在圆轨道的等效“最高点”(D 点)满足等效重力刚好提供向心力,即有:mg ′=mv 2D R,因θ=30°与斜面的倾角相等,由几何关系可知AD =2R ,令小球以最小初速度v 0运动,由动能定理知: -2mg ′R =12mv 2D -12mv 20 解得v 0= 103gR 3,因此要使小球安全通过圆轨道,初速度应满足v ≥103gR 3.。
《带电粒子在匀强电场中的偏转》 知识清单
![《带电粒子在匀强电场中的偏转》 知识清单](https://img.taocdn.com/s3/m/36262d743069a45177232f60ddccda38376be189.png)
《带电粒子在匀强电场中的偏转》知识清单一、基本概念带电粒子在匀强电场中的偏转,指的是带电粒子以一定的初速度垂直进入匀强电场后,受到电场力的作用而发生偏转的现象。
匀强电场是指电场强度的大小和方向都相同的电场。
在这种电场中,带电粒子所受的电场力是恒定的。
二、运动规律1、水平方向带电粒子在水平方向不受力,做匀速直线运动。
其水平速度 vx 保持不变,水平位移 x = vxt,其中 vx 为初速度在水平方向的分量,t 为粒子在电场中的运动时间。
2、竖直方向带电粒子在竖直方向受到恒定的电场力,做匀加速直线运动。
其加速度 a = Eq/m,其中 E 为电场强度,q 为粒子的电荷量,m 为粒子的质量。
竖直速度 vy = at,竖直位移 y = 1/2at²三、偏转角度带电粒子离开电场时的偏转角度可以通过正切值来表示,tanθ =vy/vx四、偏移量粒子在电场中的偏移量 y 与粒子的初速度 v0、电场强度 E、粒子的电荷量 q、质量 m 以及极板长度 L 和极板间距 d 等因素有关。
偏移量的表达式为:y = qEL²/2mv₀²d五、应用实例1、示波器示波器是利用带电粒子在匀强电场中的偏转来显示电信号的变化。
电子枪发射的电子经过加速后,垂直进入偏转电场,通过控制电场的强度和方向,使电子束在荧光屏上产生不同的偏转,从而显示出信号的波形。
2、喷墨打印机在喷墨打印机中,带电的墨滴在匀强电场的作用下发生偏转,准确地喷射到纸张的指定位置,形成文字或图像。
六、解题思路与方法1、分析受力首先要明确带电粒子在匀强电场中所受的电场力,根据电场力的方向和大小,判断粒子在竖直方向的运动情况。
2、运动分解将带电粒子的运动分解为水平方向的匀速直线运动和竖直方向的匀加速直线运动,分别列出相应的运动方程。
3、联立方程求解根据已知条件,联立水平和竖直方向的运动方程,求解出粒子的偏转角度、偏移量等物理量。
七、常见错误与注意事项1、忽略粒子的重力在一些情况下,粒子的重力相比电场力可以忽略不计,但在某些特殊问题中,重力可能不能忽略,需要具体情况具体分析。
带电粒子在电场中偏转
![带电粒子在电场中偏转](https://img.taocdn.com/s3/m/41647c1f6c175f0e7cd137fd.png)
离子发生器发射出一束质量为m,电荷量为q的负离子,从静止
经加速电压U
1
加速后,获得速度
,并沿垂直于电场线方向
射入两平行板中央,受偏转电压U2作用后,以速度V离开电 场,已知平行板长为L,两板间距离为d,
求: 1)离子在偏转电场中运动
+ + + + + +
的时间、加速度、速度
V的大小; 2)离子在离开偏转电场时 的横向偏移量和偏转角 的正切值。
带电粒子在电场中的运动
制作人:
1、不计重力,初速度垂直于电场方向飞入匀强电场
处理方法: 类似平抛运动的分析方法
vy
+ + + + + + F
v
α
1)粒子在与电场垂直的方向上做
vx= v0
匀速直线运动
s
X=v0t
U d
=
y
v0
在电场中飞行时间: t=
-q
v0
2)粒子在与电场平行的方向上做 初速度为零的匀加速运动
课堂小结: 1、利用电场使带电粒子偏转
粒子在与电场垂直的方向上做 类似平抛运动的分析方法 匀速直线运动
粒子在与电场平行的方向上做 初速度为零的匀加速运动 2、考虑重力带电粒子在电场中偏转
3、带电粒子在交变电场中偏转
(1)在x轴上任取两点x1、x2,速度分别为v1、v2. 由牛顿第二定律得: F=qE=ma
2
H (2) v0 t 2
(2)
(1)
H v0 (l x0 )2m 2 qE
v0 第一无电场区 E 第一电场区 第二无电场区 E
第二电场区
答案:通过加速电场时获得的动能Ek=qU,加 速电压相同,二价氦离子电荷量最大,所以 二价氦离子获得动能最大。粒子的偏转量和 偏转角由加速电场和偏转电场决定,所以三 种粒子不可能分开为三股。
带电粒子在电场中的偏转(含问题详解)
![带电粒子在电场中的偏转(含问题详解)](https://img.taocdn.com/s3/m/c3548bf6ddccda38366baf0b.png)
带电粒子在电场中的偏转一、基础知识1、带电粒子在电场中的偏转(1)条件分析:带电粒子垂直于电场线方向进入匀强电场. (2)运动性质:匀变速曲线运动.(3)处理方法:分解成相互垂直的两个方向上的直线运动,类似于平抛运动. (4)运动规律:①沿初速度方向做匀速直线运动,运动时间⎩⎨⎧a.能飞出电容器:t =l v 0.b.不能飞出电容器:y =12at 2=qU 2mdt 2,t = 2mdy qU②沿电场力方向,做匀加速直线运动⎩⎪⎨⎪⎧加速度:a =F m =qE m =Uqmd离开电场时的偏移量:y =12at 2=Uql 22md v 20离开电场时的偏转角:tan θ=v y v 0=Uql md v20特别提醒 带电粒子在电场中的重力问题(1)基本粒子:如电子、质子、α粒子、离子等除有说明或有明确的暗示以外,一般都不考虑重力(但并不忽略质量).(2)带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或有明确的暗示以外,一般都不能忽略重力.2、带电粒子在匀强电场中偏转时的两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的. 证明:由qU 0=12m v 20y =12at 2=12·qU 1md ·(l v 0)2tan θ=qU 1lmd v 20得:y =U 1l 24U 0d ,tan θ=U 1l 2U 0d(2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为l2.3、带电粒子在匀强电场中偏转的功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12m v 2-12m v 20,其中U y =Ud y ,指初、末位置间的电势差.二、练习题1、如图,一质量为m ,带电量为+q 的带电粒子,以速度v 0垂直于电场方向进入电场,关于该带电粒子的运动,下列说确的是( )A .粒子在初速度方向做匀加速运动,平行于电场方向做匀加速运动,因而合运动是匀加速直线运动B .粒子在初速度方向做匀速运动,平行于电场方向做匀加速运动,其合运动的轨迹是一条抛物线C .分析该运动,可以用运动分解的方法,分别分析两个方向的运动规律,然后再确定合运动情况D .分析该运动,有时也可用动能定理确定其某时刻速度的大小 答案 BCD2、如图所示,两平行金属板A 、B 长为L =8 cm ,两板间距离d =8 cm ,A 板比B 板电势高300 V ,一带正电的粒子电荷量为q =1.0×10-10C ,质量为m =1.0×10-20kg ,沿电场中心线RO 垂直电场线飞入电场,初速度v 0=2.0×106 m/s ,粒子飞出电场后经过界面MN 、PS 间的无电场区域,然后进入固定在O 点的点电荷Q 形成的电场区域(设界面PS 右侧点电荷的电场分布不受界面的影响).已知两界面MN 、PS 相距为12 cm ,D 是中心线RO 与界面PS 的交点,O 点在中心线上,距离界面PS 为9 cm ,粒子穿过界面PS 做匀速圆周运动,最后垂直打在放置于中心线上的荧光屏bc 上.(静电力常量k =9.0×109 N·m 2/C 2,粒子的重力不计)(1)求粒子穿过界面MN 时偏离中心线RO 的距离多远?到达PS 界面时离D 点多远? (2)在图上粗略画出粒子的运动轨迹.(3)确定点电荷Q 的电性并求其电荷量的大小.解析 (1)粒子穿过界面MN 时偏离中心线RO 的距离(侧向位移): y =12at 2 a =F m =qU dm L =v 0t则y =12at 2=qU 2md (L v 0)2=0.03 m =3 cm粒子在离开电场后将做匀速直线运动,其轨迹与PS 交于H ,设H 到中心线的距离为Y ,则有12L 12L +12 cm =yY ,解得Y =4y =12 cm(2)第一段是抛物线、第二段是直线、第三段是圆弧(图略) (3)粒子到达H 点时,其水平速度v x =v 0=2.0×106 m/s 竖直速度v y =at =1.5×106 m/s 则v 合=2.5×106 m/s该粒子在穿过界面PS 后绕点电荷Q 做匀速圆周运动,所以Q 带负电 根据几何关系可知半径r =15 cm k qQr 2=m v 2合r解得Q ≈1.04×10-8 C答案 (1)12 cm (2)见解析 (3)负电 1.04×10-8 C3、如图所示,在两条平行的虚线存在着宽度为L 、电场强度为E 的匀强电场,在与右侧虚线相距也为L 处有一与电场平行的屏.现有一电荷量为+q 、质量为m 的带电粒子(重力不计),以垂直于电场线方向的初速度v 0射入电场中,v 0方向的延长线与屏的交点为O .试求:(1)粒子从射入电场到打到屏上所用的时间;(2)粒子刚射出电场时的速度方向与初速度方向间夹角的正切值tan α; (3)粒子打在屏上的点P 到O 点的距离x . 答案 (1)2L v 0 (2)qEL m v 20 (3)3qEL 22m v 20解析 (1)根据题意,粒子在垂直于电场线的方向上做匀速直线运动,所以粒子从射入电场到打到屏上所用的时间t =2Lv 0.(2)设粒子刚射出电场时沿平行电场线方向的速度为v y ,根据牛顿第二定律,粒子在电场中的加速度为:a =Eqm所以v y =a L v 0=qELm v 0所以粒子刚射出电场时的速度方向与初速度方向间夹角的正切值为tan α=v y v 0=qELm v 20.(3)解法一 设粒子在电场中的偏转距离为y ,则 y =12a (L v 0)2=12·qEL 2m v 20 又x =y +L tan α, 解得:x =3qEL 22m v 20解法二 x =v y ·L v 0+y =3qEL 22m v 20.解法三 由x y =L +L 2L 2得:x =3y =3qEL 22m v 20.4、如图所示,虚线PQ 、MN 间存在如图所示的水平匀强电场,一带电粒子质量为m =2.0×10-11kg 、电荷量为q =+1.0×10-5 C ,从a 点由静止开始经电压为U =100 V 的电场加速后,垂直于匀强电场进入匀强电场中,从虚线MN 的某点b (图中未画出)离开匀强电场时速度与电场方向成30°角.已知PQ 、MN 间距为20 cm ,带电粒子的重力忽略不计.求:(1)带电粒子刚进入匀强电场时的速率v 1; (2)水平匀强电场的场强大小; (3)ab 两点间的电势差.答案 (1)1.0×104 m/s (2)1.732×103 N/C (3)400 V 解析 (1)由动能定理得:qU =12m v 21代入数据得v 1=1.0×104 m/s(2)粒子沿初速度方向做匀速运动:d =v 1t 粒子沿电场方向做匀加速运动:v y =at 由题意得:tan 30°=v 1v y由牛顿第二定律得:qE =ma 联立以上各式并代入数据得: E =3×103 N/C ≈1.732×103 N/C (3)由动能定理得:qU ab =12m (v 21+v 2y )-0 联立以上各式并代入数据得:U ab =400 V .5、如图所示,一价氢离子(11H)和二价氦离子(42He)的混合体,经同一加速电场加速后,垂直射入同一偏转电场中,偏转后,打在同一荧光屏上,则它们( )A.同时到达屏上同一点B.先后到达屏上同一点C.同时到达屏上不同点D.先后到达屏上不同点答案 B解析一价氢离子(11H)和二价氦离子(42He)的比荷不同,经过加速电场的末速度不同,因此在加速电场及偏转电场的时间均不同,但在偏转电场中偏转距离相同,所以会先后打在屏上同一点,选B.6、如图所示,六面体真空盒置于水平面上,它的ABCD面与EFGH面为金属板,其他面为绝缘材料.ABCD面带正电,EFGH面带负电.从小孔P沿水平方向以相同速率射入三个质量相同的带正电液滴a、b、c,最后分别落在1、2、3三点.则下列说确的是()A.三个液滴在真空盒中都做平抛运动B.三个液滴的运动时间不一定相同C.三个液滴落到底板时的速率相同D.液滴c所带电荷量最多答案 D解析 三个液滴具有水平速度,但除了受重力以外,还受水平方向的电场力作用,不是平抛运动,选项A 错误;在竖直方向上三个液滴都做自由落体运动,下落高度又相同,故运动时间必相同,选项B 错误;在相同的运动时间,液滴c 水平位移最大,说明它在水平方向的加速度最大,它受到的电场力最大,电荷量也最大,选项D 正确;因为重力做功相同,而电场力对液滴c 做功最多,所以它落到底板时的速率最大,选项C 错误.7、绝缘光滑水平面有一圆形有界匀强电场,其俯视图如图所示,图中xOy 所在平面与光滑水平面重合,电场方向与x 轴正向平行,电场的半径为R = 2 m ,圆心O 与坐标系的原点重合,场强E =2 N/C.一带电荷量为q =-1×10-5 C 、质量m =1×10-5 kg 的粒子,由坐标原点O 处以速度v 0=1 m/s 沿y 轴正方向射入电场(重力不计),求:(1)粒子在电场中运动的时间; (2)粒子出射点的位置坐标; (3)粒子射出时具有的动能.答案 (1)1 s (2)(-1 m,1 m) (3)2.5×10-5 J解析 (1)粒子沿x 轴负方向做匀加速运动,加速度为a ,则有: Eq =ma ,x =12at 2沿y 轴正方向做匀速运动,有 y =v 0tx 2+y 2=R 2 解得t =1 s.(2)设粒子射出电场边界的位置坐标为(-x 1,y 1),则有x 1=12at 2=1 m ,y 1=v 0t =1 m ,即出射点的位置坐标为(-1 m,1 m).(3)射出时由动能定理得Eqx 1=E k -12m v 20代入数据解得E k =2.5×10-5 J.8、如图所示,在正方形ABCD 区域有平行于AB 边的匀强电场,E 、F 、G 、H 是各边中点,其连线构成正方形,其中P 点是EH 的中点.一个带正电的粒子(不计重力)从F 点沿FH 方向射入电场后恰好从D 点射出.以下说确的是( )A .粒子的运动轨迹一定经过P 点B .粒子的运动轨迹一定经过PE 之间某点C .若将粒子的初速度变为原来的一半,粒子会由ED 之间某点射出正方形ABCD 区域 D .若将粒子的初速度变为原来的一半,粒子恰好由E 点射出正方形ABCD 区域 答案 BD解析 粒子从F 点沿FH 方向射入电场后恰好从D 点射出,其轨迹是抛物线,则过D 点做速度的反向延长线一定与水平位移交于FH 的中点,而延长线又经过P 点,所以粒子轨迹一定经过PE 之间某点,选项A 错误,B 正确;由平抛运动知识可知,当竖直位移一定时,水平速度变为原来的一半,则水平位移也变为原来的一半,所以选项C 错误,D 正确.9、用等效法处理带电体在电场、重力场中的运动如图所示,绝缘光滑轨道AB部分为倾角为30°的斜面,AC部分为竖直平面上半径为R的圆轨道,斜面与圆轨道相切.整个装置处于场强为E、方向水平向右的匀强电场中.现有一个质量为m的小球,带正电荷量为q=3mg3E,要使小球能安全通过圆轨道,在O点的初速度应满足什么条件?图9审题与关联解析小球先在斜面上运动,受重力、电场力、支持力,然后在圆轨道上运动,受重力、电场力、轨道作用力,如图所示,类比重力场,将电场力与重力的合力视为等效重力mg′,大小为mg ′=(qE )2+(mg )2=2 3mg 3,tan θ=qE mg =33,得θ=30°,等 效重力的方向与斜面垂直指向右下方,小球在斜面上匀速运动.因要使小球能安全通过圆轨道,在圆轨道的等效“最高点”(D 点)满足等效重力刚好提供向心力,即有:mg ′=m v 2D R,因θ=30°与斜面的倾角相等,由几何关系可知AD =2R ,令小球以最小初速度v 0运动,由动能定理知:-2mg ′R =12m v 2D -12m v 20 解得v 0=103gR 3,因此要使小球安全通过圆轨道,初速度应满足v ≥ 103gR 3. 答案 v ≥ 103gR 3 10、在空间中水平面MN 的下方存在竖直向下的匀强电场,质量为m 的带电小球由MN 上方的A 点以一定的初速度水平抛出,从B 点进入电场,到达C 点时速度方向恰好水平,A 、B 、C 三点在同一直线上,且AB =2BC ,如图所示.由此可见( )A .电场力为3mgB .小球带正电C .小球从A 到B 与从B 到C 的运动时间相等D .小球从A 到B 与从B 到C 的速度变化量的大小相等答案 AD解析 设AC 与竖直方向的夹角为θ,带电小球从A 到C ,电场力做负功,小球带负电,由动能定理,mg ·AC ·cos θ-qE ·BC ·cos θ=0,解得电场力为qE =3mg ,选项A 正确,B错误.小球水平方向做匀速直线运动,从A到B的运动时间是从B到C的运动时间的2倍,选项C错误;小球在竖直方向先加速后减速,小球从A到B与从B到C竖直方向的速度变化量的大小相等,水平方向速度不变,小球从A到B与从B到C的速度变化量的大小相等,选项D正确.。
带电粒子的偏转公式
![带电粒子的偏转公式](https://img.taocdn.com/s3/m/e892499959f5f61fb7360b4c2e3f5727a5e92486.png)
带电粒子的偏转公式在物理学中,带电粒子的偏转公式可是一个相当重要的知识点呢!咱们先来说说带电粒子在电场中的偏转。
想象一下,一个小小的带电粒子,就像一个调皮的小精灵,在电场的作用下左冲右突。
这时候,就轮到我们的偏转公式大显身手啦!带电粒子在电场中的偏转公式为:y = (qUL²) / (2mdv₀²) 。
这里的y 表示带电粒子在电场中的偏转位移,q 是粒子的电荷量,U 是电场的电压,L 是电场的长度,m 是粒子的质量,v₀是粒子进入电场时的初速度。
咱们来举个例子感受一下这个公式的威力。
假设在一个实验室里,有一个带电的小粒子,电荷量为 1.6×10⁻¹⁹库仑,质量是 9.1×10⁻³¹千克,它以 1×10⁶米每秒的初速度水平进入一个长度为 0.1 米,电压为 100 伏的电场。
这时候,我们把这些数值代入公式,就能算出这个小粒子在电场中的偏转位移啦。
还记得我当年在学校学习这个知识点的时候,老师为了让我们更深刻地理解,专门在课堂上做了一个实验。
老师拿出一个类似示波器的装置,在上面调整各种参数,然后让我们观察带电粒子的运动轨迹。
那时候,我们一群同学都瞪大了眼睛,紧紧盯着那个小小的屏幕,心里充满了好奇和期待。
当看到带电粒子按照我们计算的轨迹偏转时,那种兴奋和成就感简直难以言表。
再来说说带电粒子在磁场中的偏转。
带电粒子在磁场中的偏转公式是:r = mv / (qB) 。
这里的 r 表示带电粒子在磁场中的偏转半径,m 还是粒子的质量,v 是粒子的速度,q 是电荷量,B 是磁场的磁感应强度。
比如说,有一个带电粒子,质量为 1×10⁻²⁷千克,电荷量为1.6×10⁻¹⁹库仑,速度是 1×10⁷米每秒,处在一个磁感应强度为 1 特斯拉的磁场中。
我们把这些数值代入公式,就能算出偏转半径啦。
学习带电粒子的偏转公式,就像是掌握了一把解开物理世界神秘大门的钥匙。
电场偏转公式
![电场偏转公式](https://img.taocdn.com/s3/m/3545a1913086bceb19e8b8f67c1cfad6195fe996.png)
电场偏转公式## 电场偏转公式及其应用### 1. 电场偏转公式的概述电场偏转公式是描述带电粒子在电场中受到力作用下所发生偏转运动的数学表达式。
它是电荷在电场中受力情况的定量描述,通常应用于理解粒子在不同电场中的运动轨迹及相关实验设计中。
### 2. 简单电场偏转公式的推导假设带电粒子处于电场中,受到电场强度为$\mathbf{E}$的电场力$\mathbf{F}$作用。
若带电粒子的电荷为$q$,则电场力$\mathbf{F}$可表示为:\[\mathbf{F} = q \cdot \mathbf{E}\]根据牛顿第二定律,力等于质量乘以加速度,即$\mathbf{F} = m \cdot \mathbf{a}$。
因此,带电粒子在电场中的加速度$\mathbf{a}$为:\[\mathbf{a} = \frac{\mathbf{F}}{m} = \frac{q \cdot\mathbf{E}}{m}\]假设带电粒子的初始速度为$\mathbf{v}_0$,它在电场中受到的加速度为$\mathbf{a}$。
则带电粒子在电场中的速度变化可以用以下公式描述:\[\mathbf{v} = \mathbf{v}_0 + \mathbf{a} \cdot t\]其中,$\mathbf{v}$代表带电粒子在电场中的最终速度,$t$为时间。
### 3. 电场偏转公式的应用#### 3.1 粒子在匀强电场中的运动轨迹当粒子在匀强电场中运动时,可以利用电场偏转公式推导出其运动轨迹。
考虑一个垂直于匀强电场的速度为$\mathbf{v}_0$的粒子,它将在电场中发生竖直方向和水平方向的偏转。
根据垂直于匀强电场的运动,粒子竖直方向上的位移$s$可由以下公式描述:\[s = v_{0y} \cdot t + \frac{1}{2} a_y \cdot t^2\]其中,$v_{0y}$是竖直方向上的初始速度分量,$a_y$是竖直方向上的加速度。
2025高考物理总复习带电粒子在电场中的偏转
![2025高考物理总复习带电粒子在电场中的偏转](https://img.taocdn.com/s3/m/73e9f2b36394dd88d0d233d4b14e852458fb39c3.png)
考点一 带电粒子在匀强电场中的偏转
思考 不同的带电粒子(带同种电性)在加速电场的同一位置由静止开始 加速后再进入同一偏转电场,带电粒子的轨迹是重合的吗?
考点一 带电粒子在匀强电场中的偏转
答案 由 qU0=12mv02 y=12at2=12·qmUd1·vl02 tan θ=vv0y=mqdUv10l2 得 y=4UU10l2d,tan θ=2UU10ld, y、θ均与m、q无关。即偏移量和偏转角总是相同的,所以它们的轨迹是 重合的。
思路二
考点二 示波管的工作原理
例3 (2023·江苏省金陵中学阶段检测)示波器可用来观察电信号随时间变化的情 况,其核心部件是示波管。示波管由电子枪、偏转电极和荧光屏组成,管内抽成 真空,结构如图甲所示。图乙是从右向左看到的荧光屏的平面图。在偏转电极 XX′、YY′上都不加电压时,从电子枪发出的电子束沿直线运动,打在荧光屏 中心,在O点产生一个亮斑。若同时在两个偏转电极上分别加ux=Usin ωt和uy= Ucos ωt两个交流电信号,
考点一 带电粒子在匀强电场中的偏转
电子做类平抛运动,在OC方向做初速度为零的匀 加速直线运动,且加速度大小相等。沿电场方向 的位移为x,垂直于电场方向的位移为y,由几何 关系可得 xAC=32R,yAC= 23R,xAB=R,yAB= 3R,由 x=12at2 得 tAC∶tAB = xAC∶ xAB= 3∶ 2,又由 v0=yt得vvCB=yyAACB×ttAACB=2 23<1,所以电 子经过 C 点的初速度小于经过 B 点的初速度,故 C 正确,D 错误。
2meU,
返回
< 考点二 >
示波管的工作原理
考点二 示波管的工作原理
在示波管模型中,带电粒子经加速电场U1加速,再经偏转电场U2偏转后, 需要经历一段匀速直线运动才会打到荧光屏上并显示亮点P,如图所示。
带电粒子在电场中偏转
![带电粒子在电场中偏转](https://img.taocdn.com/s3/m/1163d0850b1c59eef9c7b431.png)
·O
U2
D.使U2变为原来的1/2倍
U1
解:电子先经加速电场加速后进入偏转电场做类平抛运动.
qU 1
1 2
mv
2 0
①
y 1 at2 2
联立①②两式可得电子的偏移量
y
q U2 x 2 2mUd2 xv022
② ③
电学搭 台,力 学唱戏。
要使电子的轨迹不变,则应使电子进入偏4U转1d电场后,任一水
平位移x所对应的侧移距离y不变. U2 U1 由此选项A正确.
运动的位移和初速度为零的匀加速运动的分运动的位移大小相等均为两板间的距离d.
过加速后以速度v0垂直进入偏转电场,离开偏转电场时 偏移量为h,两平行板间距为d,电压为U,板长为L,每
单位电压引起的偏移量(h/U)叫做示波管的灵敏度,
为了提高灵敏度,可采用的办法是( C )
A.增加两极板间的电势差U
B.尽可能缩短板长L C.尽可能减小板间距d
v0
D.使电子的入射速度v0大些
h
h 1 (eU )( L )2 2 m d v0
2U0 d ④ U
⑵对电子运动的整个过程根据动能定理可求出电子穿出电场
时的动能
EK
eU
0
e
U 2
e(U 0
U 2
)
⑤
提升物理思想:整个过程运用动能定理解题
例5.空间某区域有场强大小为E的匀强电场,电场的边
界MN和PQ是间距为d的两个平行平面,如果匀强电场的
方向第一次是垂直于MN指向PQ界面,第二次是和MN界面
④
联立②④两式可得
y1 4 y2
⑤
模型化归:带电粒子在匀强 电场中做“类平抛运动”
带电粒子在电场偏转全部公式
![带电粒子在电场偏转全部公式](https://img.taocdn.com/s3/m/3a6855876037ee06eff9aef8941ea76e58fa4af9.png)
带电粒子在电场偏转全部公式首先,库仑定律描述了带电粒子之间的相互作用力。
根据库仑定律,两个带电粒子之间的电场力(也称为库仑力)为:\[F = \frac{{k \cdot ,q_1 \cdot q_2,}}{{r^2}}\]其中,\(F\)是作用在粒子上的力,\(k\)是电介质常数,\(q_1\)和\(q_2\)分别是两个粒子的电荷量,\(r\)是两个粒子之间的距离。
在电场中,带电粒子会受到电场力的作用,该力由电场强度和电荷量决定。
电场强度的定义为单位正电荷所受到的力。
如果一个带电粒子在电场中,其受到的电场力为:\[F = q \cdot E\]其中,\(F\)是作用在粒子上的电场力,\(q\)是粒子的电荷量,\(E\)是电场强度。
当带电粒子在电场中偏转时,需要考虑到粒子的运动情况,因此要使用牛顿第二定律来描述带电粒子在电场中的偏转行为。
牛顿第二定律说明了质量和加速度之间的关系:\[F = m \cdot a\]其中,\(F\)是作用在粒子上的力,\(m\)是粒子的质量,\(a\)是粒子的加速度。
结合库仑定律、电场力以及牛顿第二定律,可以得到带电粒子在电场中的偏转公式。
根据牛顿第二定律,可以将电场力代入牛顿第二定律的公式:\[ma = q \cdot E\]假设粒子的质量为\(m\),电荷量为\(q\),那么加速度可以表示为:\[a = \frac{{q \cdot E}}{m}\]为了描述粒子在电场中的运动轨迹,我们可以根据牛顿第二定律以及运动学方程来进行分析。
假设初始时刻带电粒子的速度为零,那么根据加速度的定义,可以得到粒子在电场中的速度和时间之间的关系:\[v = a \cdot t\]再结合运动学中的位移公式,可以得到粒子在电场中偏转的位移和时间之间的关系:\[x = \frac{1}{2} a \cdot t^2\]最后,结合以上公式,可以得到带电粒子在电场中的偏转公式:\[x = \frac{1}{2} \cdot \frac{{q \cdot E}}{{m}} \cdot t^2\]综上所述,带电粒子在电场中的偏转行为可以通过以上公式进行描述。
带电粒子在电场中的偏转
![带电粒子在电场中的偏转](https://img.taocdn.com/s3/m/b1c412c82cc58bd63186bdbf.png)
二、带电粒子在电场中偏转的几个重要推论1.结论:不同的带电粒子从静止经过同一电场加速后进入同一偏转电场,它们在电场中的偏转角度和偏转距离总是相同的2.作粒子速度的反向延长线,与初速度方向交于O 点,O 点与电场边缘的距离为x ,如图所示,则三、带电粒子在复合场中的运动1.带电粒子在电场中的运动是否考虑重力(1)基本粒子:如电子、质子、α粒子、离子等除有说明或明确的暗示以外,一般都不考虑重力(但并不忽略质量).(2)带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或有明确的暗示以外,一般都不能忽略重力.2.(2010年济南模拟)如图9-3-12所示,质子(11H )和α粒子(24He),以相同的初动能垂直射入偏转电场(粒子不计重力),则这两个粒子射出电场时的侧位移y 之比为( ) A .1∶1 B .1∶2C .2∶1D .1∶4 解析:选B.由y =12Eq m L 2v 02和E k0=12m v 02,得:y =EL 2q 4E k0可知,y 与q 成正比,B 正确.4.(2010年广东珠海质检)分别将带正电、负电和不带电的三个等质量小球,分别以相同的水平速度由P 点射入水平放置的平行金属板间,已知上板带负电,下板接地.三小球分别落在图9-3-14中A 、B 、C 三点,则错误的是( ) A .A 带正电、B 不带电、C 带负电B .三小球在电场中加速度大小关系是:a A <a B <a C图9-3-12图9-3-14C.三小球在电场中运动时间相等D.三小球到达下板时的动能关系是E k C>E k B>E k A解析:选C.由于A的水平射程x最远,A的运动时间t=xv0最长,C错误.A的加速度a A=2ht2最小,而C的加速度a C最大,a A<a B<a C,B正确.可见,A带正电,受力方向与重力方向相反,B不带电,C 带负电,受力方向与重力方向相同,A正确.由动能定理知E k C>E k B>E k A,D正确.3.如图所示,在光滑绝缘的水平桌面上固定放置一光滑、绝缘的挡板ABCD,AB段为直线形挡板,BCD段是半径为R的圆弧形挡板,挡板处于场强为E的匀强电场,电场方向与圆直径MN平行.现有一带电量为q、质量为m的小球静止从挡板上的A点释放,并且小球能沿挡板内侧运动到D点抛出,则()A.小球运动到N点时,挡板对小球的弹力可能为零B.小球运动到N点时,挡板对小球的弹力可能为EqC.小球运动到M点时,挡板对小球的弹力可能为零D.小球运动到C点时,挡板对小球的弹力一定大于mg解析:选C.小球沿光滑轨道内侧运动到D点抛出,说明小球在N、C、M点的速度均不为零,对N点,F N-Eq=m R vN2,F N必大于Eq,A、B均错误;在C点:F C=m R vC2,无法比较F C与mg的大小,D错误;在M点,F M+Eq=m R vM2,当v M=时,F M=0,C正确.5.如图9-3-15所示,abcd是一个正方形盒子.cd边的中点有一个小孔e.盒子中有沿ad方向的匀强电场.一个质量为m带电量为q 的粒子从a 处的小孔沿ab 方向以初速度v 0射入盒内,并恰好从e 处的小孔射出.(忽略粒子重力)求:(1)该带电粒子从e 孔射出的速度大小.(2)该过程中电场力对该带电粒子做的功.(3)若正方形的边长为l ,试求该电场的场强.解析:(1)设粒子在e 孔的竖直速度为v y .则水平方向:l /2=v 0t竖直方向:l =v y 2·t得:v y =4v 0,v e =v 02+v y 2=17v 0.(2)由动能定理得:W 电=12m v e 2-12m v 02=8m v 02.(3)由W 电=Eq ·l 和W 电=8m v 02得:E =8m v 02ql .答案:(1)17v 0 (2)8m v 02 (3)8m v 02ql1.如图9-3-22所示,有一带电粒子(不计重力)紧贴A 板沿水平方向射入匀强电场,当偏转电压为U 1时,带电粒子沿轨迹①从两板中间飞出;当偏转电压为U 2时,带电粒子沿轨迹②落到B 板正中间;设带电粒子两次射入电场的水平速度相同,则电压U 1、U 2之比为( )A .1∶1B .1∶2C .1∶4D .1∶8解析:选D.设板长为L ,板间距离为d ,水平初速度为v 0;带电粒子的质量为m ,电荷量为q ;两次运动的时间分别为t 1和t 2.第一次射入时:L =v 0t 1,d 2=12·qU 1md t 12,联立两式解得:U 1=md 2v 02qL 2.第二次射入时:L 2=v 0t 2,d =12·qU 2md t 22,联立两式解得:U 2=8md 2v 02qL 2.所以U1∶U 2=1∶8,故D 正确.2.如图9-3-23所示,两平行金属板间有一匀强电场,板长为L ,板间距离为d ,在板右端L 处有一竖直放置的光屏M ,一带电荷量为q ,质量为m 的质点从两板中央射入板间,最后垂直打在M 屏上,则下列结论正确的是( )A .板间电场强度大小为mg /qB .板间电场强度大小为2mg /qC .质点在板间的运动时间和它从板的右端运动到光屏的时间相等D .质点在板间的运动时间大于它从板的右端运动到光屏的时间解析:选BC10.如图9-3-25所示,真空室中速度v 0=1.6×107 m/s 的电子束,连续地沿两水平金属板中心线OO ′射入,已知极板长l =4 cm ,板间距离d =1 cm ,板右端距离荧光屏PQ 为L =18 cm.电子电荷量q =1.6×10-19 C ,质量m =0.91×10-30 kg.若在电极ab 上加u =2202sin100πt V 的交变电压,在荧光屏的竖直坐标轴y 上能观测到多长的线段?(设极板间的电场是均匀的、两板外无电场、荧光屏足够大)解析:因为经过偏转电场的时间为t =l v 0=2.5×10-9 s, 而T =2πω=0.02 s ≫t . 故可以认为进入偏转电场的电子均在当时所加电压形成的匀强电场中运动纵向位移d 2=12at 2,a =Eq m =U m q dm ,所以电子能够打在荧光屏上最大竖直偏转电压:U m =md 2qt 2=md 2v 02q l 2=91 V .当U =91 V 时,E =U m d ,y =12at 2因为v y =at =qU m dm t =4×106 m/s ,tan θ=v y v 0=0.25 偏转量y =d 2+L tan θ=5 cm.y 轴上的观测量为2y =10 cm.答案:10 cm11.(2010年徐州模拟)质量为m ,带+q 电荷量的小球以水平初速度v 0进入竖直向上的匀强电场中,如图9-3-26甲所图9-3-25示.今测得小球进入电场后在竖直方向上的高度y与水平方向的位移s之间的关系如图乙所示.根据题给已知量及图乙给出的信息,求:(1)匀强电场的场强大小;(2)小球从进入匀强电场到上升到h高度的过程中,电场力做了多少功?(3)小球在h高度处的动能多大?解析:(1)对小球研究知受两个力:重力(竖直向下)及电场力(竖直向上).设经过t秒小球水平位移为l,则由题中乙图知:l=v0·t①h=12at2②由①②得a=2h v02l2,对小球而言:F合=ma,F合=qE-mg,E=mg+maq=mgl2+2mh v02ql2.(2)电场力做功为W=qEh=mgh+2h2m v02l2.(3)根据动能定理,E k=qEh-mgh+m v022=m v02(12+2h2l2).。
带电粒子在电场中的偏转-高考物理复习
![带电粒子在电场中的偏转-高考物理复习](https://img.taocdn.com/s3/m/a630e65cbfd5b9f3f90f76c66137ee06eff94ed7.png)
由动能定理得 eU20=12mv2-12mv02 解得 v= v02+emU0.
(2)若电子从t=0时刻射入,恰能平行于极板飞出,则极板至少为多长? 答案 见解析
t=0时刻射入的电子,在垂直于极板方向上做匀加速运动,向A极板 方向偏转,半个周期后电场方向反向,电子在该方向上做匀减速运 动,再经过半个周期,电子在电场方向上的速度减小到零,此时的 速度等于初速度v0,方向平行于极板,以后继续重复这样的运动;要 使电子恰能平行于极板飞出,则电子在OO′方向上至少运动一个周 期,故极板长至少为L=v0T.
5v0,tan θ=vv0y=12,则速度方向与竖直方向夹角 θ≠30°,故 B、D 错误;
x=v0t=2mqEv02,与 P 点的距离 s=cosx45°=2 2qmEv02, 故 C 正确.
考向2 带电粒子在组合场中的运动
例3 (2023·广东湛江市模拟)示波管原理图如图甲所示.它由电子枪、偏 转电极和荧光屏组成,管内抽成真空.如果在偏转电极XX′和YY′之间 都没有加电压,电子束从电子枪射出后沿直线运动,打在荧光屏中心, 产生一个亮斑如图乙所示.若板间电势差UXX′和UYY′随时间变化关系图 像如丙、丁所示,
小球通过 P 点时的速度大小 vP=gt= 3v0,则动能 EkP =12mvP2=32mv02,选项 D 错误.
例6 (2019·全国卷Ⅲ·24)空间存在一方向竖直向下的匀强电场,O、P是
电场中的两点.从O点沿水平方向以不同速度先后发射两个质量均为m的
小球A、B.A不带电,B的电荷量为q(q>0).A从O点发射时的速度大小为v0,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
qU a = —— md l t= — v0
2 qUl 1 y= — 2 mdv02
③ 偏转方向 θ
+ + + + + + +
v0
偏转方向
θ
- - - - - - - -
E
tanθ =
vy = at qU a = —— md
vy — v0
vy tanθ =
v0 θ v
qUl mdv02
- - -l - - -
X=l/2
课堂演练:
AC
如图所示,一电荷量为 q 的带电粒子以一定的初速度由 P 点射入匀强 电场,入射方向与电场线垂直.粒子从 Q 点射出电场时,其速度方向 不计重力作用,设 P 点的电势为零.则下列说法中正确的是 A.带电粒子在 Q 点的电势能为-qU B.带电粒子带负电 2 3U C.此匀强电场的电场强度大小为 E= 3d 3U D.此匀强电场的电场强度大小为 E= 3d
1: ( 2 1) : ( 3 2) : : ( n n 1)
例题:质量为m的处于光滑水平面物体,在恒力F的 作用下发生一段位移L,速度由vl增大到v2,如图 所示。试用牛顿运动定律和运动学公式导出恒力 对物体做的功. v1 v 2 根据牛顿第二定律 F
得
F = ma
2 2 2 1
得:v
1 = v0 2 at
2v0 at v0 (v0 at ) v0 v = = = 2 2 2
t = v0 a = v t 2 2
做匀变速直线运动的物体,在一段时间t内的平均 速度等于这段时间初、末速度矢量和的一半, 还等于 这段时间内中间时刻的瞬时速度。
推论2:连续相等的时间间隔T内位移
3
偏转粒子的运动性质 类平抛运动
初速度 v0 垂直 电场力(恒力)
轨迹: 抛物线
匀变速曲线运动
加速度: qU qE a = —— = —— m md
三个重要三角形: v0 ) s
d )
合位移: s =
x y
2
2
x
方
向: tanα=
y gt = x 2vo
2 2
合速度 方向 :
v = vx v y
m
x
v -v 由v - v = 2al 得l = 2a 2 2 v2 - v1 1 2 1 2 = mv2 - mv1 所以W = Fl = ma 2 2 2a
2 2
2 1
练习1牛二 与运动结合 2无L,3恒 力改合力4 不光滑
几种常见的功与能的关系
带电体在电场中的运动问题
1
带电体 质子、电子、正负 粒 ① 带电粒子: 离子、α粒子…… 一般不考虑带电粒子的重力 ②带电微粒: 微 小球、尘埃、液滴…… 通常要考虑带电微粒的重力 一般视为质点
与电场线成 30° 角. 已知匀强电场的宽度为 d, P、 Q 两点的电势差为 U,
5
加速 → 偏转
y=
1 2
qUl2 mdv02
2
U1
U2
加速
偏转
U 2l y= 4U1d
tanθ =
qUl mdv02
(1) 出射时偏距离 y
(2) 出射时偏转方向 θ
(3) 出射时速度大小
U 2l tan = 2U1d
A、 2: 1和
2 :1
B 、 1: 1和 1: 2 D 、 1: 4和 1: 2
C、 1: 1和 2: 1
U 2l y= 4U1d
2
例: 如图,电子在电势差为 U1 的加速电场 中由静止开始运动,然后射入电势差为 U2 的两块平行极板间的电场中,入射方向跟 极板平行。整个装置处在真空中,重力可 忽略。在满足电子能射出平行板区的条件 下,下述四种情况中,一定能使电子的偏 转角 θ 变大的是 ( ) B A. U1变大、U2变大 U l 2 B. U1变小、U2变大 tan = U2 2U1d C. U1变大、U2变小 D. U1变小、U2变小 U1
tanθ=
vy vx
y
)
vx
“安心” 之“所”
gt = vo
2. tanθ=2 tanα
两个推论
vy
v
y x d= = 3、 tan 2
描述平抛运动的物理量有 vx (v0)、 vy 、 v、x、y、s、 、t 、 。一般情况下已知这9个物理量中的两个,可以求出其它7个。
4
几个特征参量
例: 如图所示,一束带电粒子 (不计重力),垂直电场线 方向进入偏转电场,试讨论 在以下情况中,粒子应具备 y 什么条件,才能得到相同的 偏转距离 y 和偏转角θ,(U、 d、l 保持不变)
2 qUl 1 = — 2 mdv02
(1)进入偏转电场的速度相同; (2)进入偏转电场的动能相同; (3)进入偏转电场的 mv0 相同; (4)先由同一加速电场加速后进入偏转电场。
U 2l y= 4U1d
2
U 2l tan = 2U1d
练习2:
4 如图所示,一价氢离子(1 1 H)和二价氦离子 (2He)的混合体,经同一加速
电场加速后,垂直射入同一偏转电场中,偏转后,打在同一荧光屏上, 则它们(
B)
A.同时到达屏上同一点 B.先后到达屏上同一点 C.同时到达屏上不同点 D.先后到达屏上不同点
之差有什么特点?
0
都相等
5
xⅠ1 xⅡ 2 xⅢ
T T T
3
xⅣ
T
4
xⅤ
T
xⅥ
T6Biblioteka x = xⅡ xⅠ = xⅢ xⅡ = xⅣ xⅢ = xⅤ xⅣ = = aT
即x = aT
2
2
在任意两个连续相等的时间间隔T内,位移之 差是一个常量,即△x= xⅡ-xⅠ=aT2.
数形结合推导△x=aT2公式 做匀变速直线运动的物体, 在连续相等的时间 T 内的 位移之差为一恒定值
例: 试证明下图中,带电粒子垂直进 入偏转电场,离开电场时,粒子 好象是从入射线中点直接射出来 的。
+ + + + + + +
v0
E - - - - - - - l — 2
v
推论1:带电粒子从电场中飞出时速 度的反向延长线与x方向的交点位于 极板的中点。 vy v
+
+
+
+
+
+
θ
vx
d
-q
v
0
θ
y
解析
4 一价氢离子(1 1H)和二价氦离子 (2He)的比荷不同,经过加速电
场的末速度不同, 因此在加速电场及偏转电场的时间均不同, 但在偏转 电场中偏转距离相同,所以会先后打在屏上同一点,选 B.
练习3:质子和氦核从静止开始经相同的电压加 速后又垂直进入同一匀强电场,离开偏转电场时, 它们偏转量之比和在偏转电场中经过的时间之比 分别是( B )
2qU v02 + —— m
方法2:动能定理
做功分析:只受电场力,电场力做正功 电场力的功: W = qU
1 1 _ 2 动能定理: W = — m vt — m v02 2 2 1 1 _ 2 — m v02 ∴ qU = — m vt 2 2 2qU 末速度度 vt = v02 + —— m
ACD
t = l/v0
qUl tan = m、带电量为 例:θ 质量为 q 的粒子以初速度 v 从中 0 2 mdv 0 线垂直进入偏转电场,刚好离开电场,它在离
开电场后偏转角正切为0.5,则下列说法中正确 的是 ( ABD ) A. 如果偏转电场的电压为原来的一半,则粒子 离开电场后的偏转角正切为0.25 B. 如果带电粒子的比荷为原来的一半,则粒子 离开电场后的偏转角正切为0.25 C. 如果带电粒子的初速度为原来的2倍,则粒 子离开电场后的偏转角正切为0.25 D. 如果带电粒子的初动能为原来的2倍,则粒 子离开电场后的偏转角正切为0.25
电子枪
偏转电极 荧光屏
由电子枪、偏转电极和荧光屏组成
加速
偏转
显示
3
示波管的工作原理 待显示的信号 y 方向偏转
热电子
电子加速度
扫描电压
x 方向偏转
4
分析与研讨
① 如果在电极 XX’ 之间 不加电压,但在 YY’ 之间加如图所示的 交变电压,在荧光屏上会 看到什么图形?
0<t<t1电子沿Y 方向向上偏移
推论2:只要带电粒子是” 同种性质电 荷, 从静止出发,通过相同加速电场,又 经过相同偏转电场”,这些粒子的运动轨 迹是同一条(偏转距离,偏转角都相同), 与q,m无关。
U 2l y= 4U1d
U 2l tan = 2U1d
2
加速电场 偏转电场
练习1:质子、氘核和氦核从静止开始经相同的电压 加速后,从同一点垂直进入同一匀强电场并射出, 关于它们在匀强电场中的运动,下列说法中正确的 是:( A ) A、质子、氘核和氦核的轨迹相同; B、有两条轨迹,其中质子和氘核轨迹相同; C、有两条轨迹,其中氘核和氦核轨迹相同; D、三者的轨迹各不相同。
以初速度v0 垂直电场方向进入偏转电场 正电荷: 不计重力 负电荷:
同步练习 1.如图所示,两平行金属板间有匀强电场,场强方
向指向下板,一带电量为-q 的粒子,以初速度 v0 垂直电场线 射入电场中,则粒子在电场中所做的运动可能是( ) A.沿初速度方向做匀速运动 ABC B.向下板方向偏移,做匀变速曲线运动 C.向上板方向偏移,轨迹为抛物线 D.向上板偏移,轨迹为一段圆弧
带电粒子在电场中的偏转
1