带电粒子在电场中的偏转习题
高中物理每日一点十题之带电粒子在电场中的偏转
高中物理每日一点十题之带电粒子在电场中的偏转一知识点如图,两个相同极板Y与Y′的长度为l,相距d,极板间的电压为U.一个质量为m、电荷量为e的电子沿平行于板面的方向射入电场中,射入时的速度为v0.把两极板间的电场看作匀强电场.(1)电子在电场中做什么运动?如何处理?答案电子在电场中做类平抛运动,应用运动的分解进行处理,沿v0方向:做匀速直线运动;沿静电力方向:做初速度为零的匀加速直线运动(2)设电子不与平行板相撞,完成下列内容(均用题所给字母表示).①电子通过电场的时间t=l v0.②静电力方向:加速度a=eUmd,离开电场时垂直于极板方向的分速度vy=eUlmd v0.③速度与初速度方向夹角的正切值tan θ=eUlmd v02.④离开电场时沿静电力方向的偏移量y=eUl2 2md v02.十道练习题(含答案)一、单选题(共9小题)1. 如果带电粒子进入电场时的速度与匀强电场的电场力垂直,则粒子在电场中做类平抛运动.若不计粒子的重力,影响粒子通过匀强电场时间的因素是( )A. 粒子的带电荷量B. 粒子的初速度C. 粒子的质量D. 粒子的加速度2. 带电粒子垂直进入匀强电场中偏转时(除电场力外不计其他力的作用)( )A. 电势能增加,动能增加B. 电势能减少,动能增加C. 电势能和动能都不变D. 上述结论都不正确3. 如图所示,有一带电粒子贴着A板沿水平方向射入匀强电场,当偏转电压为U1时,带电粒子沿①轨迹从两板正中间飞出;当偏转电压为U2时,带电粒子沿②轨迹落到B板中间;设粒子两次射入电场的水平速度相同,则两次偏转电压之比为( )A. U1∶U2=1∶8B. U1∶U2=1∶4C. U1∶U2=1∶2D. U1∶U2=1∶14. 如图所示,质量相同的两个带电粒子P、Q以相同的速度沿垂直于电场方向射入两平行板间的匀强电场中,P从两极板正中央射入,Q从下极板边缘处射入,它们最后打在同一点(重力不计),则从开始射入到打到上极板的过程中( )A. 它们运动的时间t Q>t PB. 它们运动的加速度a Q<a PC. 它们所带的电荷量之比q P∶q Q=1∶2D. 它们的动能增加量之比ΔE kP∶ΔE kQ=1∶25. 如图所示,两极板与电源相连接,电子从负极板边缘垂直电场方向射入匀强电场,且恰好从正极板边缘飞出,现在使电子入射速度变为原来的两倍,而电子仍从原位置射入,且仍从正极板边缘飞出,则两极板的间距应变为原来的( )A. 2倍B. 4倍C.D.6. 氢的三种同位素氕、氘、氚的原子核分别为H、H、H.它们以相同的初动能垂直进入同一匀强电场,离开电场时,末动能最大的是( )A. 氕核B. 氘核C. 氚核D. 一样大7. 质子和氦核从静止开始经相同电压加速后,又垂直于电场方向进入一匀强电场,离开偏转电场时,它们侧向偏移量之比和在偏转电场中运动的时间之比分别为( )A. 2∶1,∶1B. 1∶1,1∶C. 1∶2,2∶1D. 1∶4,1∶28. 如图所示,带电荷量之比为q A∶q B=1∶3的带电粒子A、B,先后以相同的速度从同一点水平射入平行板电容器中,不计重力,带电粒子偏转后打在同一极板上,水平飞行距离之比为x A∶x B=2∶1,则带电粒子的质量之比m A∶m B以及在电场中飞行的时间之比t A∶t B分别为( )A. 1∶1,2∶3B. 2∶1,3∶2C. 1∶1,3∶4D. 4∶3,2∶19. 如图所示,一重力不计的带电粒子以初速度v0射入水平放置、距离为d的两平行金属板间,射入方向沿两极板的中心线.当极板间所加电压为U1时,粒子落在A板上的P点.如果将带电粒子的初速度变为2v0,同时将A板向上移动后,使粒子由原入射点射入后仍落在P点,则极板间所加电压U2为( )A. U2=3U1B. U2=6U1C. U2=8U1D. U2=12U1二、多选题(共1小题)10. 如图所示,三个α粒子在同一地点沿同一方向垂直飞入偏转电场,出现了如图所示的运动轨迹,由此可判断( )A. 在B飞离电场的同时,A刚好打在负极板上B. B和C同时飞离电场C. 进入电场时,C的速度最大,A的速度最小D. 动能的增加值C最小,A和B一样大1. 【答案】B【解析】水平方向:L=v0t,则粒子在电场中的运动时间t=.2. 【答案】B【解析】整个过程电场力做正功,只有电势能与动能之间相互转化,根据能量守恒,减少的电势能全部转化为动能,故A、C、D错误,B正确3. 【答案】A【解析】由y=at2=··得:U=,所以U∝,可知A项正确4. 【答案】C【解析】设两板距离为h,P、Q两粒子的初速度为v0,加速度分别为a P和a Q,粒子P到上极板的距离是,它们做类平抛运动的水平距离均为l.则对P,由l=v0t P,=a P t,得到a P=;同理对Q,l=v0t Q,h=a Q t,得到a Q=.由此可见t P=t Q,a Q=2a P,而a P=,a Q=,所以q P∶q Q=1∶2.由动能定理得,它们的动能增加量之比ΔE kP∶ΔE kQ=ma P∶ma Q h=1∶4.综上所述,C项正确5. 【答案】C【解析】电子在两极板间做类平抛运动.水平方向:l=v0t,所以t=.竖直方向:d=at2=t2=,故d2=,即d∝,故C正确6. 【答案】D【解析】因为qU1=mv=E k0偏移量:y=,可知三种粒子的偏移量相同.由动能定理可知:qE·y=E k-E k0,E k相同,D正确7. 【答案】B【解析】偏移量:y=,可知y1∶y2=1∶1,时间t=l,t1∶t2=1∶,B正确8. 【答案】D【解析】粒子在水平方向上做匀速直线运动x=v0t,由于初速度相同,x A∶x B=2∶1,所以t A∶t B=2∶1,竖直方向上粒子做匀加速直线运动y=at2,且y A=y B,故a A∶a B=t∶t=1∶4.而ma=qE,m=,=·=×=.综上所述,D项正确9. 【答案】D【解析】板间距离为d,射入速度为v0,板间电压为U1时,在电场中有=at2,a=,t=,解得U1=;A板上移,射入速度为2v0,板间电压为U2时,在电场中有d=a′t′2,a′=,t′=,解得U2=,即U2=12U1,故选D10. 【答案】ACD【解析】由题意知,三个α粒子在电场中的加速度相同,A和B有相同的偏转位移y,由公式y=at2得,A和B在电场中运动时间相同,由公式v0=得v B>v A,同理,v C>v B,故三个粒子进入电场时的初速度大小关系为v C>v B>v A,故A、C正确,B错误;由题图知,三个粒子的偏转位移大小关系为y A =y B>y C,由动能定理可知,三个粒子的动能增加值C最小,A和B一样大,D正确.。
带电粒子在电场中的偏转(含答案解析)
带电粒子在电场中的偏转一、基础知识1、带电粒子在电场中的偏转(1)条件分析:带电粒子垂直于电场线方向进入匀强电场. (2)运动性质:匀变速曲线运动.(3)处理方法:分解成相互垂直的两个方向上的直线运动,类似于平抛运动. (4)运动规律:①沿初速度方向做匀速直线运动,运动时间⎩⎪⎨⎪⎧a.能飞出电容器:t =lv 0.b.不能飞出电容器:y =12at 2=qU 2md t 2,t =2mdyqU②沿电场力方向,做匀加速直线运动⎩⎪⎨⎪⎧加速度:a =F m =qE m =Uqmd 离开电场时的偏移量:y =12at 2=Uql 22mdv 2离开电场时的偏转角:tan θ=v yv 0=Uqlmdv 20特别提醒 带电粒子在电场中的重力问题(1)基本粒子:如电子、质子、α粒子、离子等除有说明或有明确的暗示以外,一般都不考虑重力(但并不忽略质量).(2)带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或有明确的暗示以外,一般都不能忽略重力.2、带电粒子在匀强电场中偏转时的两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的. 证明:由qU 0=12mv 20y =12at 2=12·qU 1md ·(l v 0)2 tan θ=qU 1lmdv 20得:y =U 1l 24U 0d ,tan θ=U 1l2U 0d(2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为l2.3、带电粒子在匀强电场中偏转的功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12mv 2-12mv 20,其中U y =Udy ,指初、末位置间的电势差.二、练习题1、如图,一质量为m ,带电量为+q 的带电粒子,以速度v 0垂直于电场方向进入电场,关于该带电粒子的运动,下列说法正确的是( )A .粒子在初速度方向做匀加速运动,平行于电场方向做匀加速运动,因而合运动是匀加速直线运动B .粒子在初速度方向做匀速运动,平行于电场方向做匀加速运动,其合运动的轨迹是一条抛物线C .分析该运动,可以用运动分解的方法,分别分析两个方向的运动规律,然后再确定合运动情况D .分析该运动,有时也可用动能定理确定其某时刻速度的大小 答案 BCD2、如图所示,两平行金属板A 、B 长为L =8 cm ,两板间距离d =8 cm ,A 板比B 板电势高300 V ,一带正电的粒子电荷量为q =1.0×10-10 C ,质量为m =1.0×10-20 kg ,沿电场中心线RO 垂直电场线飞入电场,初速度v 0=2.0×106 m/s ,粒子飞出电场后经过界面MN 、PS 间的无电场区域,然后进入固定在O 点的点电荷Q 形成的电场区域(设界面PS 右侧点电荷的电场分布不受界面的影响).已知两界面MN 、PS 相距为12 cm ,D 是中心线RO 与界面PS 的交点,O 点在中心线上,距离界面PS 为9 cm ,粒子穿过界面PS 做匀速圆周运动,最后垂直打在放置于中心线上的荧光屏bc 上.(静电力常量k =9.0×109 N ·m 2/C 2,粒子的重力不计)(1)求粒子穿过界面MN 时偏离中心线RO 的距离多远?到达PS 界面时离D 点多远? (2)在图上粗略画出粒子的运动轨迹.(3)确定点电荷Q 的电性并求其电荷量的大小.解析 (1)粒子穿过界面MN 时偏离中心线RO 的距离(侧向位移): y =12at 2a =F m =qU dmL =v 0t则y =12at 2=qU 2md (L v 0)2=0.03 m =3 cm 粒子在离开电场后将做匀速直线运动,其轨迹与PS 交于H ,设H 到中心线的距离为Y ,则有12L12L +12 cm=yY,解得Y =4y =12 cm(2)第一段是抛物线、第二段是直线、第三段是圆弧(图略) (3)粒子到达H 点时,其水平速度v x =v 0=2.0×106 m/s 竖直速度v y =at =1.5×106 m/s 则v 合=2.5×106 m/s该粒子在穿过界面PS 后绕点电荷Q 做匀速圆周运动,所以Q 带负电 根据几何关系可知半径r =15 cmk qQr 2=m v 2合r解得Q ≈1.04×10-8 C答案 (1)12 cm (2)见解析 (3)负电 1.04×10-8 C3、如图所示,在两条平行的虚线内存在着宽度为L 、电场强度为E 的匀强电场,在与右侧虚线相距也为L 处有一与电场平行的屏.现有一电荷量为+q 、质量为m 的带电粒子(重力不计),以垂直于电场线方向的初速度v 0射入电场中,v 0方向的延长线与屏的交点为O .试求:(1)粒子从射入电场到打到屏上所用的时间;(2)粒子刚射出电场时的速度方向与初速度方向间夹角的正切值tan α; (3)粒子打在屏上的点P 到O 点的距离x . 答案 (1)2L v 0 (2)qEL mv 20 (3)3qEL 22mv 20解析 (1)根据题意,粒子在垂直于电场线的方向上做匀速直线运动,所以粒子从射入电场到打到屏上所用的时间t =2L v 0.(2)设粒子刚射出电场时沿平行电场线方向的速度为v y ,根据牛顿第二定律,粒子在电场中的加速度为:a =Eq m所以v y =a L v 0=qELmv 0所以粒子刚射出电场时的速度方向与初速度方向间夹角的正切值为tan α=v y v 0=qELmv 20.(3)解法一 设粒子在电场中的偏转距离为y ,则 y =12a (L v 0)2=12·qEL 2mv 20 又x =y +L tan α, 解得:x =3qEL 22mv 20解法二 x =v y ·Lv 0+y =3qEL 22mv 20.解法三 由xy =L +L2L 2得:x =3y =3qEL 22mv 20.4、如图所示,虚线PQ 、MN 间存在如图所示的水平匀强电场,一带电粒子质量为m =2.0×10-11 kg 、电荷量为q =+1.0×10-5 C ,从a 点由静止开始经电压为U =100 V 的电场加速后,垂直于匀强电场进入匀强电场中,从虚线MN 的某点b (图中未画出)离开匀强电场时速度与电场方向成30°角.已知PQ 、MN 间距为20 cm ,带电粒子的重力忽略不计.求:(1)带电粒子刚进入匀强电场时的速率v 1; (2)水平匀强电场的场强大小; (3)ab 两点间的电势差.答案 (1)1.0×104 m/s (2)1.732×103 N/C (3)400 V 解析 (1)由动能定理得:qU =12mv 21代入数据得v 1=1.0×104 m/s(2)粒子沿初速度方向做匀速运动:d =v 1t 粒子沿电场方向做匀加速运动:v y =at 由题意得:tan 30°=v 1v y由牛顿第二定律得:qE =ma 联立以上各式并代入数据得:E =3×103 N/C ≈1.732×103 N/C(3)由动能定理得:qU ab =12m (v 21+v 2y )-0联立以上各式并代入数据得:U ab =400 V .5、如图所示,一价氢离子(11H)和二价氦离子(42He)的混合体,经同一加速电场加速后,垂直射入同一偏转电场中,偏转后,打在同一荧光屏上,则它们( )A .同时到达屏上同一点B .先后到达屏上同一点C .同时到达屏上不同点D .先后到达屏上不同点 答案 B解析 一价氢离子(11H)和二价氦离子(42He)的比荷不同,经过加速电场的末速度不同,因此在加速电场及偏转电场的时间均不同,但在偏转电场中偏转距离相同,所以会先后打在屏上同一点,选B.6、如图所示,六面体真空盒置于水平面上,它的ABCD 面与EFGH 面为金属板,其他面为绝缘材料.ABCD 面带正电,EFGH 面带负电.从小孔P 沿水平方向以相同速率射入三个质量相同的带正电液滴a 、b 、c ,最后分别落在1、2、3三点.则下列说法正确的是( )A .三个液滴在真空盒中都做平抛运动B .三个液滴的运动时间不一定相同C .三个液滴落到底板时的速率相同D .液滴c 所带电荷量最多 答案 D解析 三个液滴具有水平速度,但除了受重力以外,还受水平方向的电场力作用,不是平抛运动,选项A 错误;在竖直方向上三个液滴都做自由落体运动,下落高度又相同,故运动时间必相同,选项B 错误;在相同的运动时间内,液滴c 水平位移最大,说明它在水平方向的加速度最大,它受到的电场力最大,电荷量也最大,选项D 正确;因为重力做功相同,而电场力对液滴c 做功最多,所以它落到底板时的速率最大,选项C 错误.7、绝缘光滑水平面内有一圆形有界匀强电场,其俯视图如图所示,图中xOy 所在平面与光滑水平面重合,电场方向与x 轴正向平行,电场的半径为R =2 m ,圆心O 与坐标系的原点重合,场强E =2 N/C.一带电荷量为q =-1×10-5 C 、质量m =1×10-5 kg 的粒子,由坐标原点O 处以速度v 0=1 m/s 沿y 轴正方向射入电场(重力不计),求:(1)粒子在电场中运动的时间; (2)粒子出射点的位置坐标; (3)粒子射出时具有的动能.答案 (1)1 s (2)(-1 m,1 m) (3)2.5×10-5 J解析 (1)粒子沿x 轴负方向做匀加速运动,加速度为a ,则有: Eq =ma ,x =12at 2沿y 轴正方向做匀速运动,有y =v 0t x 2+y 2=R 2解得t =1 s.(2)设粒子射出电场边界的位置坐标为(-x 1,y 1),则有x 1=12at 2=1 m ,y 1=v 0t =1 m ,即出射点的位置坐标为(-1 m,1 m).(3)射出时由动能定理得Eqx 1=E k -12mv 20代入数据解得E k=2.5×10-5 J.8、如图所示,在正方形ABCD区域内有平行于AB边的匀强电场,E、F、G、H是各边中点,其连线构成正方形,其中P点是EH的中点.一个带正电的粒子(不计重力)从F点沿FH方向射入电场后恰好从D点射出.以下说法正确的是( )A.粒子的运动轨迹一定经过P点B.粒子的运动轨迹一定经过PE之间某点C.若将粒子的初速度变为原来的一半,粒子会由ED之间某点射出正方形ABCD区域D.若将粒子的初速度变为原来的一半,粒子恰好由E点射出正方形ABCD区域答案BD解析粒子从F点沿FH方向射入电场后恰好从D点射出,其轨迹是抛物线,则过D 点做速度的反向延长线一定与水平位移交于FH的中点,而延长线又经过P点,所以粒子轨迹一定经过PE之间某点,选项A错误,B正确;由平抛运动知识可知,当竖直位移一定时,水平速度变为原来的一半,则水平位移也变为原来的一半,所以选项C错误,D正确.9、用等效法处理带电体在电场、重力场中的运动如图所示,绝缘光滑轨道AB部分为倾角为30°的斜面,AC部分为竖直平面上半径为R的圆轨道,斜面与圆轨道相切.整个装置处于场强为E、方向水平向右的匀强电场中.现有一个质量为m的小球,带正电荷量为q=3mg3E,要使小球能安全通过圆轨道,在O点的初速度应满足什么条件?图9审题与关联解析 小球先在斜面上运动,受重力、电场力、支持力,然后在圆轨道上运动,受重力、电场力、轨道作用力,如图所示,类比重力场,将电场力与重力的合力视为等效重力mg ′,大小为mg ′=qE 2+mg 2=23mg 3,tan θ=qE mg =33,得θ=30°,等效重力的方向与斜面垂直指向右下方,小球在斜面上匀速运动.因要使小球能安全通过圆轨道,在圆轨道的等效“最高点”(D 点)满足等效重力刚好提供向心力,即有:mg ′=mv 2D R,因θ=30°与斜面的倾角相等,由几何关系可知AD =2R ,令小球以最小初速度v 0运动,由动能定理知: -2mg ′R =12mv 2D -12mv 20 解得v 0= 103gR 3,因此要使小球安全通过圆轨道,初速度应满足v ≥103gR 3.。
带电粒子在电场中的偏转大题
1、一带电粒子以一定的初速度垂直进入匀强电场,在电场中做类平抛运动。
下列说法正确的是:A. 粒子的电势能一直减小B. 粒子的动能一直增大C. 粒子的速度方向与电场力方向的夹角一直减小D. 粒子的加速度方向与电场力方向相反(答案:A)2、一个带正电的粒子,在电场中仅受电场力作用,从A点运动到B点。
在此过程中,粒子的速度大小随时间变化的图象可能是:A. 速度大小不变B. 速度大小均匀增大C. 速度大小先减小后增大D. 速度大小先增大后减小(答案:C,若粒子先做减速运动,电场力方向与初速度方向相反,后做加速运动,则可能出现此情况)3、带电粒子以相同的速度分别垂直进入水平方向的匀强电场和匀强磁场中,粒子将:A. 在电场和磁场中都做匀速圆周运动B. 在电场中做类平抛运动,在磁场中做匀速圆周运动C. 在电场和磁场中都做匀变速曲线运动D. 在电场中做匀变速直线运动,在磁场中做匀速直线运动(答案:B)4、一带电粒子在电场中运动,只受电场力作用,下列说法正确的是:A. 粒子的运动轨迹一定与电场线重合B. 粒子的速度方向一定与电场力方向相同C. 粒子的速度大小一定变化D. 粒子的动能可能不变(答案:D,如粒子在匀强电场中做匀速圆周运动,动能不变)5、一初速度为零的带电粒子,经过电压为U的加速电场后,垂直进入电势差为U的匀强偏转电场。
已知加速电场和偏转电场的宽度相同,下列说法正确的是:A. 偏转距离随着加速电压U的增大而增大B. 偏转距离与加速电压U无关C. 粒子从偏转电场射出时的速度随着加速电压U的增大而增大D. 粒子从偏转电场射出时的速度方向与加速电压U无关(答案:B)6、带电粒子在电场中偏转时,下列说法正确的是:A. 电场力对粒子一定做正功B. 电场力对粒子可能不做功C. 粒子的电势能可能增加D. 粒子的动能一定增加(答案:B,若粒子初速度与电场力方向垂直且向电场力反方向偏转,则电场力先做负功,电势能增加,动能减小)7、一带电粒子在匀强电场中运动,电场力与运动方向成某一角度,粒子只受电场力作用。
带电粒子在电场中的偏转(含问题详解)
带电粒子在电场中的偏转一、基础知识1、带电粒子在电场中的偏转(1)条件分析:带电粒子垂直于电场线方向进入匀强电场. (2)运动性质:匀变速曲线运动.(3)处理方法:分解成相互垂直的两个方向上的直线运动,类似于平抛运动. (4)运动规律:①沿初速度方向做匀速直线运动,运动时间⎩⎨⎧a.能飞出电容器:t =l v 0.b.不能飞出电容器:y =12at 2=qU 2mdt 2,t = 2mdy qU②沿电场力方向,做匀加速直线运动⎩⎪⎨⎪⎧加速度:a =F m =qE m =Uqmd离开电场时的偏移量:y =12at 2=Uql 22md v 20离开电场时的偏转角:tan θ=v y v 0=Uql md v20特别提醒 带电粒子在电场中的重力问题(1)基本粒子:如电子、质子、α粒子、离子等除有说明或有明确的暗示以外,一般都不考虑重力(但并不忽略质量).(2)带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或有明确的暗示以外,一般都不能忽略重力.2、带电粒子在匀强电场中偏转时的两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的. 证明:由qU 0=12m v 20y =12at 2=12·qU 1md ·(l v 0)2tan θ=qU 1lmd v 20得:y =U 1l 24U 0d ,tan θ=U 1l 2U 0d(2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为l2.3、带电粒子在匀强电场中偏转的功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12m v 2-12m v 20,其中U y =Ud y ,指初、末位置间的电势差.二、练习题1、如图,一质量为m ,带电量为+q 的带电粒子,以速度v 0垂直于电场方向进入电场,关于该带电粒子的运动,下列说确的是( )A .粒子在初速度方向做匀加速运动,平行于电场方向做匀加速运动,因而合运动是匀加速直线运动B .粒子在初速度方向做匀速运动,平行于电场方向做匀加速运动,其合运动的轨迹是一条抛物线C .分析该运动,可以用运动分解的方法,分别分析两个方向的运动规律,然后再确定合运动情况D .分析该运动,有时也可用动能定理确定其某时刻速度的大小 答案 BCD2、如图所示,两平行金属板A 、B 长为L =8 cm ,两板间距离d =8 cm ,A 板比B 板电势高300 V ,一带正电的粒子电荷量为q =1.0×10-10C ,质量为m =1.0×10-20kg ,沿电场中心线RO 垂直电场线飞入电场,初速度v 0=2.0×106 m/s ,粒子飞出电场后经过界面MN 、PS 间的无电场区域,然后进入固定在O 点的点电荷Q 形成的电场区域(设界面PS 右侧点电荷的电场分布不受界面的影响).已知两界面MN 、PS 相距为12 cm ,D 是中心线RO 与界面PS 的交点,O 点在中心线上,距离界面PS 为9 cm ,粒子穿过界面PS 做匀速圆周运动,最后垂直打在放置于中心线上的荧光屏bc 上.(静电力常量k =9.0×109 N·m 2/C 2,粒子的重力不计)(1)求粒子穿过界面MN 时偏离中心线RO 的距离多远?到达PS 界面时离D 点多远? (2)在图上粗略画出粒子的运动轨迹.(3)确定点电荷Q 的电性并求其电荷量的大小.解析 (1)粒子穿过界面MN 时偏离中心线RO 的距离(侧向位移): y =12at 2 a =F m =qU dm L =v 0t则y =12at 2=qU 2md (L v 0)2=0.03 m =3 cm粒子在离开电场后将做匀速直线运动,其轨迹与PS 交于H ,设H 到中心线的距离为Y ,则有12L 12L +12 cm =yY ,解得Y =4y =12 cm(2)第一段是抛物线、第二段是直线、第三段是圆弧(图略) (3)粒子到达H 点时,其水平速度v x =v 0=2.0×106 m/s 竖直速度v y =at =1.5×106 m/s 则v 合=2.5×106 m/s该粒子在穿过界面PS 后绕点电荷Q 做匀速圆周运动,所以Q 带负电 根据几何关系可知半径r =15 cm k qQr 2=m v 2合r解得Q ≈1.04×10-8 C答案 (1)12 cm (2)见解析 (3)负电 1.04×10-8 C3、如图所示,在两条平行的虚线存在着宽度为L 、电场强度为E 的匀强电场,在与右侧虚线相距也为L 处有一与电场平行的屏.现有一电荷量为+q 、质量为m 的带电粒子(重力不计),以垂直于电场线方向的初速度v 0射入电场中,v 0方向的延长线与屏的交点为O .试求:(1)粒子从射入电场到打到屏上所用的时间;(2)粒子刚射出电场时的速度方向与初速度方向间夹角的正切值tan α; (3)粒子打在屏上的点P 到O 点的距离x . 答案 (1)2L v 0 (2)qEL m v 20 (3)3qEL 22m v 20解析 (1)根据题意,粒子在垂直于电场线的方向上做匀速直线运动,所以粒子从射入电场到打到屏上所用的时间t =2Lv 0.(2)设粒子刚射出电场时沿平行电场线方向的速度为v y ,根据牛顿第二定律,粒子在电场中的加速度为:a =Eqm所以v y =a L v 0=qELm v 0所以粒子刚射出电场时的速度方向与初速度方向间夹角的正切值为tan α=v y v 0=qELm v 20.(3)解法一 设粒子在电场中的偏转距离为y ,则 y =12a (L v 0)2=12·qEL 2m v 20 又x =y +L tan α, 解得:x =3qEL 22m v 20解法二 x =v y ·L v 0+y =3qEL 22m v 20.解法三 由x y =L +L 2L 2得:x =3y =3qEL 22m v 20.4、如图所示,虚线PQ 、MN 间存在如图所示的水平匀强电场,一带电粒子质量为m =2.0×10-11kg 、电荷量为q =+1.0×10-5 C ,从a 点由静止开始经电压为U =100 V 的电场加速后,垂直于匀强电场进入匀强电场中,从虚线MN 的某点b (图中未画出)离开匀强电场时速度与电场方向成30°角.已知PQ 、MN 间距为20 cm ,带电粒子的重力忽略不计.求:(1)带电粒子刚进入匀强电场时的速率v 1; (2)水平匀强电场的场强大小; (3)ab 两点间的电势差.答案 (1)1.0×104 m/s (2)1.732×103 N/C (3)400 V 解析 (1)由动能定理得:qU =12m v 21代入数据得v 1=1.0×104 m/s(2)粒子沿初速度方向做匀速运动:d =v 1t 粒子沿电场方向做匀加速运动:v y =at 由题意得:tan 30°=v 1v y由牛顿第二定律得:qE =ma 联立以上各式并代入数据得: E =3×103 N/C ≈1.732×103 N/C (3)由动能定理得:qU ab =12m (v 21+v 2y )-0 联立以上各式并代入数据得:U ab =400 V .5、如图所示,一价氢离子(11H)和二价氦离子(42He)的混合体,经同一加速电场加速后,垂直射入同一偏转电场中,偏转后,打在同一荧光屏上,则它们( )A.同时到达屏上同一点B.先后到达屏上同一点C.同时到达屏上不同点D.先后到达屏上不同点答案 B解析一价氢离子(11H)和二价氦离子(42He)的比荷不同,经过加速电场的末速度不同,因此在加速电场及偏转电场的时间均不同,但在偏转电场中偏转距离相同,所以会先后打在屏上同一点,选B.6、如图所示,六面体真空盒置于水平面上,它的ABCD面与EFGH面为金属板,其他面为绝缘材料.ABCD面带正电,EFGH面带负电.从小孔P沿水平方向以相同速率射入三个质量相同的带正电液滴a、b、c,最后分别落在1、2、3三点.则下列说确的是()A.三个液滴在真空盒中都做平抛运动B.三个液滴的运动时间不一定相同C.三个液滴落到底板时的速率相同D.液滴c所带电荷量最多答案 D解析 三个液滴具有水平速度,但除了受重力以外,还受水平方向的电场力作用,不是平抛运动,选项A 错误;在竖直方向上三个液滴都做自由落体运动,下落高度又相同,故运动时间必相同,选项B 错误;在相同的运动时间,液滴c 水平位移最大,说明它在水平方向的加速度最大,它受到的电场力最大,电荷量也最大,选项D 正确;因为重力做功相同,而电场力对液滴c 做功最多,所以它落到底板时的速率最大,选项C 错误.7、绝缘光滑水平面有一圆形有界匀强电场,其俯视图如图所示,图中xOy 所在平面与光滑水平面重合,电场方向与x 轴正向平行,电场的半径为R = 2 m ,圆心O 与坐标系的原点重合,场强E =2 N/C.一带电荷量为q =-1×10-5 C 、质量m =1×10-5 kg 的粒子,由坐标原点O 处以速度v 0=1 m/s 沿y 轴正方向射入电场(重力不计),求:(1)粒子在电场中运动的时间; (2)粒子出射点的位置坐标; (3)粒子射出时具有的动能.答案 (1)1 s (2)(-1 m,1 m) (3)2.5×10-5 J解析 (1)粒子沿x 轴负方向做匀加速运动,加速度为a ,则有: Eq =ma ,x =12at 2沿y 轴正方向做匀速运动,有 y =v 0tx 2+y 2=R 2 解得t =1 s.(2)设粒子射出电场边界的位置坐标为(-x 1,y 1),则有x 1=12at 2=1 m ,y 1=v 0t =1 m ,即出射点的位置坐标为(-1 m,1 m).(3)射出时由动能定理得Eqx 1=E k -12m v 20代入数据解得E k =2.5×10-5 J.8、如图所示,在正方形ABCD 区域有平行于AB 边的匀强电场,E 、F 、G 、H 是各边中点,其连线构成正方形,其中P 点是EH 的中点.一个带正电的粒子(不计重力)从F 点沿FH 方向射入电场后恰好从D 点射出.以下说确的是( )A .粒子的运动轨迹一定经过P 点B .粒子的运动轨迹一定经过PE 之间某点C .若将粒子的初速度变为原来的一半,粒子会由ED 之间某点射出正方形ABCD 区域 D .若将粒子的初速度变为原来的一半,粒子恰好由E 点射出正方形ABCD 区域 答案 BD解析 粒子从F 点沿FH 方向射入电场后恰好从D 点射出,其轨迹是抛物线,则过D 点做速度的反向延长线一定与水平位移交于FH 的中点,而延长线又经过P 点,所以粒子轨迹一定经过PE 之间某点,选项A 错误,B 正确;由平抛运动知识可知,当竖直位移一定时,水平速度变为原来的一半,则水平位移也变为原来的一半,所以选项C 错误,D 正确.9、用等效法处理带电体在电场、重力场中的运动如图所示,绝缘光滑轨道AB部分为倾角为30°的斜面,AC部分为竖直平面上半径为R的圆轨道,斜面与圆轨道相切.整个装置处于场强为E、方向水平向右的匀强电场中.现有一个质量为m的小球,带正电荷量为q=3mg3E,要使小球能安全通过圆轨道,在O点的初速度应满足什么条件?图9审题与关联解析小球先在斜面上运动,受重力、电场力、支持力,然后在圆轨道上运动,受重力、电场力、轨道作用力,如图所示,类比重力场,将电场力与重力的合力视为等效重力mg′,大小为mg ′=(qE )2+(mg )2=2 3mg 3,tan θ=qE mg =33,得θ=30°,等 效重力的方向与斜面垂直指向右下方,小球在斜面上匀速运动.因要使小球能安全通过圆轨道,在圆轨道的等效“最高点”(D 点)满足等效重力刚好提供向心力,即有:mg ′=m v 2D R,因θ=30°与斜面的倾角相等,由几何关系可知AD =2R ,令小球以最小初速度v 0运动,由动能定理知:-2mg ′R =12m v 2D -12m v 20 解得v 0=103gR 3,因此要使小球安全通过圆轨道,初速度应满足v ≥ 103gR 3. 答案 v ≥ 103gR 3 10、在空间中水平面MN 的下方存在竖直向下的匀强电场,质量为m 的带电小球由MN 上方的A 点以一定的初速度水平抛出,从B 点进入电场,到达C 点时速度方向恰好水平,A 、B 、C 三点在同一直线上,且AB =2BC ,如图所示.由此可见( )A .电场力为3mgB .小球带正电C .小球从A 到B 与从B 到C 的运动时间相等D .小球从A 到B 与从B 到C 的速度变化量的大小相等答案 AD解析 设AC 与竖直方向的夹角为θ,带电小球从A 到C ,电场力做负功,小球带负电,由动能定理,mg ·AC ·cos θ-qE ·BC ·cos θ=0,解得电场力为qE =3mg ,选项A 正确,B错误.小球水平方向做匀速直线运动,从A到B的运动时间是从B到C的运动时间的2倍,选项C错误;小球在竖直方向先加速后减速,小球从A到B与从B到C竖直方向的速度变化量的大小相等,水平方向速度不变,小球从A到B与从B到C的速度变化量的大小相等,选项D正确.。
高考物理《带电粒子在电场中的加速和偏转》真题练习含答案
高考物理《带电粒子在电场中的加速和偏转》真题练习含答案1.下列粒子(不计重力)从静止状态开始经过电压为U 的电场加速后,速度最小的是( )A .氚核(31 H )B .氘核(21 H )C .α粒子(42 He )D .质子(11 H ) 答案:A解析:设粒子的质量为m ,电荷量为q ,从静止状态经过电压为U 的电场加速后获得的速度大小为v ,根据动能定理有qU =12mv 2,解得v =2qUm,由上式可知粒子的比荷越小,v 越小,四个选项中氚核的比荷最小,所以氚核的速度小,B 、C 、D 错误,A 正确.2.[2024·江西省临川一中期中考试](多选)如图为某直线加速器简化示意图,设n 个金属圆筒沿轴线排成一串,各筒相间地连到正负极周期性变化的电源上,带电粒子以一定的初速度沿轴线射入后可实现加速,则( )A .带电粒子在每个圆筒内都做匀速运动B .带电粒子只在圆筒间的缝隙处做加速运动C .直线加速器电源可以用恒定电流D .从左向右各筒长度之比为1∶3∶5∶7… 答案:AB解析:由于同一个金属筒所在处的电势相同,内部无场强,故粒子在筒内必做匀速直线运动;而前后两筒间有电势差,故粒子每次穿越缝隙时将被电场加速,A 、B 正确;粒子要持续加速,电场力要对其做正功,所以电源正负极要改变,C 错误;设粒子进入第n 个圆筒中的速度为v n .则第n 个圆筒的长度为L =v n T 2 ,根据动能定理得(n -1)qU =12 mv 2n -12 mv 20 ,联立解得L =T 2v 20 +2(n -1)qUm,可知从左向右各筒长度之比不等于1∶3∶5∶7…,D 错误.3.[2024·湖南岳阳市三模]示波管原理图如图甲所示.它由电子枪、偏转电极和荧光屏组成,管内抽成真空.如果在偏转电极XX′和YY′之间都没有加电压,电子束从电子枪射出后沿直线运动,打在荧光屏中心,产生一个亮斑如图乙所示.若板间电势差U XX′和U YY′随时间变化关系图像如丙、丁所示,则荧光屏上的图像可能为()答案:A解析:U XX′和U YY′均为正值,电场强度方向由X指向X′,Y指向Y′,电子带负电,电场力方向与电场强度方向相反,所以分别向X、Y方向偏转,可知A正确.4.[2024·广东省广州市一中期中考试](多选)如图,质量相同的带电粒子P、Q以相同的速度沿垂直于电场方向射入匀强电场中,P从平行板间正中央射入,Q从下极板边缘处射入,它们都打到上极板同一点,不计粒子重力.则()A.它们运动的时间不同B.Q所带的电荷量比P大C.电场力对它们做的功一样大D.Q的动能增量大答案:BD解析:两粒子在电场中均做类平抛运动,运动的时间为t =xv 0,由于x 、v 0相等,可知它们运动的时间相同,A 错误;根据y =12 at 2可得a =2yt 2 ,知Q 的加速度是P 的两倍;再根据牛顿第二定律有qE =ma ,可知Q 的电荷量是P 的两倍,B 正确;由W =qEd 知,静电力对两粒子均做正功,由前分析知Q 的电荷量是P 的两倍,Q 沿电场方向上的位移y 是P 的两倍,则静电力对Q 做的功是P 的4倍.根据动能定理,静电力做的功等于动能变化量,可知Q 的动能增量大,C 错误,D 正确.5.如图所示,含有大量11 H 、21 H 、42 He 的粒子流无初速度进入某一加速电场,然后沿平行金属板中心线上的O 点进入同一偏转电场,最后打在荧光屏上.不计粒子重力和阻力,下列说法正确的是( )A .荧光屏上出现两个亮点B .三种粒子同时到达荧光屏C .三种粒子打到荧光屏上动能相同D .三种粒子打到荧光屏上速度方向相同 答案:D解析:加速过程使粒子获得速度v 0,由动能定理得qU 1=12mv 20 ,解得v 0= 2qU 1m.偏转过程经历的时间t =l v 0 ,偏转过程加速度a =qU 2md ,所以偏转的距离y =12 at 2=U 2l 24U 1d ,可见经同一电场加速的带电粒子在同一偏转电场中的偏移量,与粒子q 、m 无关,只取决于加速电场和偏转电场.偏转角度θ满足tan θ=U 2l2U 1d ,三种粒子出射速度方向相同,也与g 、m 无关,D 正确;三种粒子都带正电,所以出现一个亮点,A 错误;根据y =12 at 2,时间跟q 、m 有关,B 错误;根据动能定理和W =qU ,可知动能跟q 有关,C 错误.6.如图所示,在竖直向上的匀强电场中,A 球位于B 球的正上方,质量相等的两个小球以相同初速度水平抛出,它们最后落在水平面上同一点,其中只有一个小球带电,不计空气阻力,下列判断不正确的是( )A .如果A 球带电,则A 球一定带负电B .如果A 球带电,则A 球的电势能一定增加C .如果B 球带电,则B 球一定带正电D .如果B 球带电,则B 球的电势能一定增加 答案:B解析:两个小球以相同初速度水平抛出,它们最后落在水平面上同一点,水平方向做匀速直线运动,则有x =v 0t ,可知两球下落时间相同;两小球下落高度不同,根据公式h =12at 2,A 球的加速度大于B 球加速度,故若A 球带电,必定带负电,受到向下的电场力作用,电场力做正功,电势能减小;若B 球带电,必定带正电,受到向上的电场力作用,电场力做负功,电势能增加.本题选择错误的,故选B .7.(多选)如图所示,两实线所围成的环形区域内有一径向电场,场强方向沿半径向外,电场强度大小可表示为E =ar ,r 为电场中某点到环心O 的距离,a 为常量.电荷量相同、质量不同的两粒子在半径r 不同的圆轨道运动.不考虑粒子间的相互作用及重力,则( )A .两个粒子均带负电B .质量大的粒子动量较小C .若将两个粒子交换轨道,两个粒子仍能做匀速圆周运动D .若去掉电场加上垂直纸面的匀强磁场,两个粒子一定同时做离心运动或向心运动 答案:AC解析:两个粒子做圆周运动,则所受电场力指向圆心,可知两粒子均带负电,A 正确;根据Eq =a r q =m v 2r ,可得mv 2=aq ,与轨道半径无关,则若将两个粒子交换轨道,两个粒子仍能做匀速圆周运动,C 正确;粒子的动量p =mv =2mE k =maq ,质量大的粒子动量较大,B 错误;若撤去电场加上垂直纸面的匀强磁场,若能做匀速圆周运动,则满足qvB =m v 2r ,qB =mv r =p r ,两粒子电荷量相等,则qB 相等;若qB >pr粒子做向心运动;当qB <p r 时粒子做离心运动,但是与pr 的关系不能确定,即两个粒子不一定能同时做离心运动或向心运动,D 错误.8.如图所示,xOy 为竖直平面内的一个直角坐标系,在y 1=0.5 m 的直线的上方有沿y轴正方向范围足够大的匀强电场,电场强度大小E =9.3×10-7 V /m ,在y 轴上y 2=1.0 m 处有一放射源S ,x 轴上有一个足够大的荧光屏,放射源S 在如图180°范围内,向x 轴发射初速度v 0=200 m /s 的电子,电子质量为9.3×10-31 kg ,电量为1.6×10-19 C ,整个装置放在真空中,不计重力作用.求:(1)从放射源S 发射的每个电子打到荧光屏上的动能;(2)水平向右射出的电子在离开电场时沿x 轴方向前进的距离; (3)从放射源S 发射的电子打到荧光屏上的范围.答案:(1)9.3×10-26 J (2)0.5 m (3)-0.75 m ≤x ≤0.75 m解析:(1)所有电子达到荧光屏上的动能相同,由动能定理得 eEL =E k -12mv 20 其中L =y 2-y 1得每个电子打到荧光屏上的动能:E k =9.3×10-26 J(2)平行x 轴方向的粒子在电场中运动的时间最长,沿x 轴方向运动距离最大,设电子在电场中加速运动时间为t ,沿场强方向加速,eE =may 2-y 1=12at 2在离开电场时沿x 轴方向前进的距离x 1=v 0t解得水平向右射出的电子在离开电场时沿x 轴方向前进的距离:x 1=0.5 m (3)平行x 轴方向发射的粒子射出电场时沿y 轴的速度大小为v y =at 射出电场后匀速运动,沿x 方向前进的距离为x 2,x 2y 1 =v 0v y解得Δx =x 1+x 2=0.75 m由对称性可知,水平向左射出的电子到达荧光屏时的坐标值:x′=-0.75 m故荧光屏接收到电子的范围:-0.75 m ≤x ≤0.75 m .9.[2024·福建省福州一中期中考试]如图建立竖直平面内坐标系,α射线管由平行金属板A 、B 和平行于金属板(场强的方向竖直向下)的细管C 组成.放置在第Ⅱ象限,细管C 离两板等距,细管C 开口在y 轴上.放射源P 在A 极板左端,可以沿特定方向发射某一速度的α粒子(带正电).若极板长为L ,间距为d ,当A 、B 板加上某一电压时,α粒子刚好能以速度v 0(已知)从细管C 水平射出,进入位于第Ⅰ象限的静电分析器并恰好做匀速圆周运动.静电分析器中电场的电场线为沿半径方向指向圆心O ,场强大小为E 0.已知α粒子电荷量为q ,质量为m ,重力不计.求:(1)α粒子在静电分析器中的运动半径r ; (2)A 、B 极板间所加的电压U.答案:(1)r =mv 20 E 0q (2)U =mv 20 d2qL 2解析:(1)α粒子在静电分析器中运动时满足 E 0q =m v 20r解得r =mv 20E 0q(2)粒子在两板间的逆过程为类平抛运动,则12 d =12 Uq 2dmt 2,L =v 0t解得A 、B 极板间所加的电压U =mv 20 d2qL 210.如图所示,水平虚线MN 和水平地面之间有水平向右的匀强电场,MN 到地面的距离为h =3 m ,光滑绝缘长木板PQ 直立在地面上,电场与木板表面垂直,一个质量为m =0.1kg ,带电量为q =+1×10-3 C 的物块贴在长木板右侧的A 点由静止释放,物块做初速度为零的加速直线运动,刚好落在地面上的C 点,已知A 点离地面的高度h 1=1.8 m ,C 点离木板的距离为L =2.4 m ,重力加速度g 取10 m /s 2,不计物块的大小,木板足够长,求:(1)匀强电场的电场强度E 的大小;(2)改变物块贴在木板右侧由静止释放的位置,使物块由静止释放后仍能落在C 点,则改变后的位置离地面的高度为多少.答案:(1)1.33×103 N /C (2)3.2 m解析:(1)物块在A 点由静止释放,做初速度为零的匀加速直线运动,设运动的时间为t 1则在水平方向L =12 at 21根据牛顿第二定律qE =ma 在竖直方向h 1=12 gt 21解得E =1.33×103 N /C(2)要使物块改变位置后由静止释放也能到达C 点,这个位置必须在电场外,设物块进电场后在电场中运动的时间为t 2,则L =12 at 22设物块刚进电场时的速度为v ,则h =vt 2+12 gt 22解得v =2 m /s设释放的位置离地面的高度为H ,则H =h +v 22g =3.2 m .。
带电粒子在静电场中的偏转角问题
带电粒子在静电场中的偏转角问题1.已知电荷情况及初速度如图所示,设带电粒子质量为m.带电荷量为q ,以速度v 0垂直于电场线方向射入匀强偏转电场,偏转电压为U 1.若粒子飞出电场时偏转角为θ,则tan θ=v y v x ,式中v y =at =qU 1dm ·l v 0,v x =v 0,代入得tan θ=qU 1l mv 20d①. 结论:动能一定时tan θ与q 成正比,电荷量相同时tan θ与动能成反比.2.已知加速电压U 0若不同的带电粒子是从静止经过同一加速电压U 0加速后进入偏转电场的,则由动能定理有:qU 0=12mv 20②.由①②式得:tan θ=U 1l 2U 0d③. 结论:粒子的偏转角与粒子的q 、m 无关,仅取决于加速电场和偏转电场.即不同的带电粒子从静止经过同一电场加速后进入同一偏转电场,它们在电场中的偏转角度总是相同的.考点2 粒子的偏转量问题1.y =12at 2=12·qU 1dm ·⎝⎛⎭⎫l v 02④做粒子速度的反向延长线,设交于O 点,O 点与电场边缘的距离为x ,则x =y tan θ=qU 1l 22dmv 20qU 1l mv 20d=l 2⑤. 结论:粒子从偏转电场中射出时,就像是从极板间的l/2处沿直线射出.2.若不同的带电粒子是从静止经同一加速电压U 0加速后进入偏转电场的,则由②④式得:y =U 1l 24U 0d⑥. 结论:粒子的偏转角和偏转距离与粒子的q 、m 无关,仅取决于加速电场和偏转电场.即不同的带电粒子从静止经过同一电场加速后进入同一偏转电场,它们在电场中的偏转角度和偏转距离总是相同的.典型例题1· 如图所示,真空中水平放置的两个相同极板Y 和Y ′长为l ,相距d ,足够大的竖直屏与两板右侧相距b.在两板间加上可调偏转电压U YY ′,一束质量为m 、带电荷量为+q 的粒子(不计重力)从两板左侧中点A 以初速度v 0沿水平方向射入电场且能穿出.(1)证明粒子飞出电场后的速度方向的反向延长线交于两板间的中心;(2)求两板间所加偏转电压U YY ′的范围;(3)求粒子可能到达屏上区域的长度.1.(15年浙江一模)两平行导体板间距为d ,两导体板加电压U ,不计重力的电子以平行于极板的速度v 射入两极板之间,沿极板方向运动距离为L 时侧移为y.如果要使电子的侧移y′=y 4,仅改变一个量,下列哪些措施可行( ) A .改变两平行导体板间距为原来的一半B .改变两导体板所加电压为原来的一半C .改变电子沿极板方向运动距离为原来的一半D .改变电子射入两极板时的速度为原来的2倍2.如图所示,两平行金属板间有一匀强电场,板长为L ,板间距离为d ,在板右端L 处有一竖直放置的光屏M ,一带电荷量为q ,质量为m 的质点从两板中央射入板间,最后垂直打在M 屏上,则下列结论正确的是( )第2题图A .板间电场强度大小为mg/qB .板间电场强度大小为2mg/qC .质点在板间的运动时间和它从板的右端运动到光屏的时间相等D .质点在板间的运动时间大于它从板的右端运动到光屏的时间3.(14年南昌模拟)如图所示,地面上某区域存在着竖直向下的匀强电场,一个质量为m 的带负电的小球以水平方向的初速度v 0由O 点射入该区域,刚好通过竖直平面中的P 点,已知连线OP 与初速度方向的夹角为45°,则此带电小球通过P 点时的动能为( )A .mv 20B .12mv 20 C .2mv 20 D .52mv 20第3题图4.(13年榆林模拟)如图所示,矩形区域ABCD 内存在竖直向下的匀强电场,两个带正电的粒子a 和b 以相同的水平速度射入电场,粒子a 由顶点A 射入,从BC 的中点P 射出,粒子b 由AB 的中点O 射入,从顶点C 射出.若不计重力,则a 和b 的比荷(即粒子的电荷量与质量之比)是( )A .1∶2B .2∶1C .1∶8D .8∶1第4题图举一反三 如图甲所示,两平行正对的金属板A 、B 间加有如图乙所示的交变电压,一重力可忽略不计的带正电粒子被固定在两极的正中间P 处.若在t 0时刻释放该粒子,粒子会时而向A 板运动,时而向B 板运动,并最终打在A 板上.则t 0可能属于的时间段是( )A .0<t 0<T 4B .T 2<t 0<3T 4C .3T 4<t 0<TD .T <t 0<9T 8。
高一物理电荷在电场中的偏转试题答案及解析
高一物理电荷在电场中的偏转试题答案及解析1.(12分)两平行金属板A、B水平放置,两板间距cm,板长cm,一个质量为kg的带电微粒,以m/s的水平初速度从两板间正中央射入,如图所示,取m/s2。
(1)当两板间电压V时,微粒恰好不发生偏转,求微粒的电量和电性。
(2)要使微粒不打到金属板上,求两板间的电压的取值范围?【答案】(1) C ,微粒带负电(2)-600V<UAB<2600V【解析】(1)微粒恰好不偏转时有:(2分)解得 C (1分)微粒带负电(1分)(2)粒子能穿过电场需用时间(1分)设粒子偏转的最大加速度,则最大侧移量解得m/s2(2分)当粒子恰好打在下极板边缘时,两板间的电压为U1则,解得V(2分)当粒子恰好打在上极板边缘,两极板间的电压为解得V(1分)则微粒不能打到金属板上的电压范围为-600V<UAB<2600V(2分)【考点】考查了带电粒子在电场中的偏转2.如图,板间距为d、板长为4d的水平金属板A和B上下正对放置,并接在电源上.现有一质量为m、带电量+q的质点沿两板中心线以某一速度水平射入,当两板间电压U=U,且A接负时,该质点就沿两板中心线射出;A接正时,该质点就射到B板距左端为d的C处.取重力加速度为g,不计空气阻力.求(1)质点射入两板时的速度;(2)当A接负时,为使带电质点能够从两板间射出,两板所加恒定电压U的范围.【答案】(1)(2)【解析】:(1)当两板加上电压且A板为负时,有:…①A板为正时,设带电质点射入两极板时的速度为v,向下运动的加速度为a,经时间t射到C点,有:…②又水平方向有…③竖直方向有…④由①②③④得:…⑤(2)要使带电质点恰好能从两板射出,设它在竖直方向运动的加速度为a1、时间为t1,应有:…⑥…⑦由⑥⑦⑧得:…⑧若的方向向上,设两板所加恒定电压为,有:…⑨若的方向向下,设两板所加恒定电压为,有:…⑩⑧⑨⑩解得:,所以,所加恒定电压范围为:【考点】考查了带电粒子在电场中的偏转3.如图所示,静止的电子在加速电压为U1的电场作用下从O经P板的小孔(位于P板的中点)射出,又垂直进入平行金属板间的电场,在偏转电压为U2的电场作用下偏转一段距离.现使U1加倍,要想使电子的运动轨迹不发生变化,应该 ()A.使U2加倍B.使U2变为原来的4倍C.使U2变为原来的倍D.使U2变为原来的【答案】A【解析】电子先经过加速电场加速,后经偏转电场偏转,根据结论,分析要使U1加倍,想使电子的运动轨迹不发生变化时,两种电压如何变化。
高三物理电荷在电场中的偏转试题
高三物理电荷在电场中的偏转试题1.高速粒子轰击荧光屏可致其发光。
如图所示,在竖直放置的铅屏A的右表面上贴着β射线放射.足够大的荧光屏M与铅屏A平行放置,相源P,放射出β粒子(实质是电子)的速度大小为v距d,其间有水平向右的匀强电场,电场强度大小E.已知电子电荷量为-e,质量为m.不考虑相对论效应,则A.垂直射到荧光屏M上的电子速度大小为B.到达荧光屏离P最远的电子运动时间为C.荧光屏上发光半径为D.到达荧光屏的电子电势能减少了eEd【答案】B【解析】据题意,垂直射到荧光屏上的电子做匀减速直线运动,到达荧光屏的速度据运动学关系得:,即速度为:,故选项A错误;电子速度与水平方向夹角为450时,到达荧光屏的距离距离P点最远,电子做斜抛运动,水平方向做匀减速直线运动,运动时间为:,即,故选项B正确;电子在垂直电场方向做匀速运动,则发光半径为:,故选项C错误;电子到达荧光屏的过程中,电场力做负功,电势能增加,增加量等于电场力做的功,为:eEd,故选项D错误。
【考点】本题考查运动的分解。
2.如图:abcd是一正方形区域,处于匀强电场中,并与电场方向平行。
大量电子从正方形的中心O,以相同速率v向各个方向发射,电子从正方形边界上的不同点射出,其中到达c点的电子速度恰好为零,不计电子的重力,下面判断正确的是()A.场强方向一定沿ac且从a指向cB.射向b点与射向d点的电子离开正方形区域时,有相同的速度C.到达b、d两点的电子在正方形区域运动时,速率一定是先减小后增大D.垂直射向bc的电子可能从ab离开正方形区域【答案】AC【解析】由于到达c点的电子速度为零,电子受力方向与运动方向一定相反,而电子受力方向与电场强度方向也相反,因此电场强度的方向从a指向c,A正确;射向b点与射向d点的电子在电场中都做类平抛运动,离开正方形区域时速度大小相等,但方向不同,而速度为矢量,因此B 错误;到达b点的电子一定射向bc边,在电场中做斜上抛运动,速度先减小后增加,同样射向d 点的电子也是做斜上抛运动,速度先减小后增加,C正确;到达C点速度为零,根据动能定理,而当垂直于bc射出时,在电场方向做匀减速运动,再回到od时间,而,这时再运动到ob直线上时的位移,整理得,因此再回到ob时已离开电场功区了,D不对。
高三物理电荷在电场中的偏转试题
高三物理电荷在电场中的偏转试题1.如图所示,在正方形ABCD区域内有平行于AB边的匀强电场,E、F、G、H是各边中点,其连线构成正方形,其中P点是EH的中点。
一个带正电的粒子(不计重力)从F点沿FH方向射入电场后恰好从D点射出。
以下说法正确的是( )A.粒子的运动轨迹一定经过P点。
B.粒子的运动轨迹一定经过PH之间某点。
C.若将粒子的初速度变为原来的一半,粒子会由ED之间某点射出正方形ABCD区域。
D.若将粒子的初速度变为原来的一半,粒子恰好由E点射出正方形ABCD区域。
【答案】D【解析】因匀强电场平行于AB边,带正电的粒子(不计重力)从F点沿FH方向射入电场后恰好从D点射出,所以粒子所受电场力沿BA方向,又带正电的粒子所受电场力方向与场强方向相同,因此匀强电场方向由B指向A,粒子做类似平抛运动,在FH方向做匀速直线运动,在BA方向做初速为零的匀加速直线运动,其轨迹是一条抛物线,则根据平抛运动规律可知,过D点做速度的反向延长线一定交于FH的中点,而由几何关系知延长线又经过P点,所以粒子轨迹一定经过PE之间某点,故A、B均错误;由和知,当一定时,若将粒子的初速度变为原来的一半,则匀速直线运动方向上的位移变为原来的一半,所以粒子恰好由E点射出正方形ABCD区域,故C错误,D正确。
所以选D。
【考点】本题考查带电粒子在电场中的偏转,意在考查考生知识和方法的迁移能力。
2.如图,放射性元素镭衰变过程中释放出α、β、γ三种射线,分别进入匀强电场和匀强磁场中,下列说法正确的是。
(填选项前的字母)A.①表示γ射线,③表示α射线B.②表示β射线,③表示α射线C.④表示α射线,⑤表示γ射线D.⑤表示β射线,⑥表示α射线【答案】C【解析】由于在放射现象中放出组成射线的粒子带正电,射线的粒子带负电,射线不带电,根据电场力的方向与左手定则,可判断三种射线在电磁场中受力的方向,即③④表示α射线,①⑥表示β射线,②⑤表示γ射线,所以C正确,A、B、D错误。
带电粒子在电场中运动题目及标准答案(分类归纳经典)
带电粒子在电场中的运动一、带电粒子在电场中做偏转运动1.如图所示的真空管中,质量为m ,电量为e 的电子从灯丝F发出,经过电压U1加速后沿中心线射入相距为d 的两平行金属板B、C间的匀强电场中,通过电场后打到荧光屏上,设B、C间电压为U2,B、C板长为l 1,平行金属板右端到荧光屏的距离为l 2,求:⑴电子离开匀强电场时的速度与进入时速度间的夹角. ⑵电子打到荧光屏上的位置偏离屏中心距离. 解析:电子在真空管中的运动过分为三段,从F发出在电压U1作用下的加速运动;进入平行金属板B、C间的匀强电场中做类平抛运动;飞离匀强电场到荧光屏间的匀速直线运动.⑴设电子经电压U1加速后的速度为v 1,根据动能定理有: 21121mv eU =电子进入B、C间的匀强电场中,在水平方向以v 1的速度做匀速直线运动,竖直方向受电场力的作用做初速度为零的加速运动,其加速度为: dmeU meE a 2==电子通过匀强电场的时间11v l t =电子离开匀强电场时竖直方向的速度v y 为: 112mdv l eU at v y ==电子离开电场时速度v 2与进入电场时的速度v 1夹角为α(如图5)则d U l U mdv l eU v v tg y 112211212===α ∴dU l U arctg1122=α ⑵电子通过匀强电场时偏离中心线的位移dU l U v l dm eU at y 1212212122142121=•== 电子离开电场后,做匀速直线运动射到荧光屏上,竖直方向的位移 dU l l U tg l y 1212222==α ∴电子打到荧光屏上时,偏离中心线的距离为 )2(22111221l l d U l U y y y +=+= 图 52. 如图所示,在空间中取直角坐标系Oxy ,在第一象限内平行于y 轴的虚线MN 与y 轴距离为d ,从y 轴到MN 之间的区域充满一个沿y 轴正方向的匀强电场,场强大小为E 。
高三物理电荷在电场中的偏转试题答案及解析
高三物理电荷在电场中的偏转试题答案及解析1.如图所示,在第一、二象限存在场强均为E的匀强电场,其中第一象限的匀强电场的方向沿x轴正方向,第二象限的电场方向沿x轴负方向。
在第三、四象限矩形区域ABCD内存在垂直于纸面向外的匀强磁场,矩形区域的AB边与x轴重合。
M是第一象限中无限靠近y轴的一点,在M沿y轴负方向开始运动,恰好从N点进入磁场,点有一质量为m、电荷量为e的质子,以初速度v若,不计质子的重力,试求:(1)N点横坐标d;(2)若质子经过磁场最后能无限靠近M点,则矩形区域的最小面积是多少;(3)在(2)的前提下,该质子由M点出发返回到无限靠近M点所需的时间。
【答案】(1)(2)(3)【解析】(1)粒子从M点到N点做类平抛运动,沿x轴正方向做匀加速运动,沿y轴负方向做,则由平抛运动规律得:匀速直线运动,设运动时间为t1在x轴方向上有在y轴方向上有:根据牛顿第二定律得:以上各式联立解得:,(2)根据运动的对称性作出质子的运动轨迹如图所示,则,即设粒子到达N点时沿x轴正方向分速度为vx质子进入磁场时的速度大小为由几何关系知:质子进入磁场时速度方向与x轴正方向夹角为45o质子在磁场中做圆周运动的半径为AB边的最小长度为BC边的最小长度为所以矩形区域的最小面积为(3)由几何关系知:质子在磁场中运动的圆心角为,运动时间根据线速度的定义知:根据对称性,质子在第二象限运动时间与在第一象限运动时间相等,质子在第一象限运动时间所以该质子由M点出发返回到无限靠近M点所需的时间为:【考点】本题考查带电粒子在组合电磁场中的运动问题,意在考查考生综合分析、利用牛顿运动定律和圆周运动知识分析处理带电粒子在电场力和洛仑兹力作用下做不同形式的运动问题的能力。
2.如图所示,金属板放在垂直于它的匀强磁场中,当金属板中有电流通过时,在金属板的上表面A和下表面A′之间会出现电势差,这种现象称为霍尔效应。
若匀强磁场的磁感应强度为B,金属板宽度为h、厚度为d,通有电流I,稳定状态时,上、下表面之间的电势差大小为U。
带电粒子在电场中的偏转(含答案).
带电粒子在电场中的偏转一、基础知识1、带电粒子在电场中的偏转(1)条件分析:带电粒子垂直于电场线方向进入匀强电场. (2)运动性质:匀变速曲线运动.(3)处理方法:分解成相互垂直的两个方向上的直线运动,类似于平抛运动. (4)运动规律:①沿初速度方向做匀速直线运动,运动时间⎩⎨⎧a.能飞出电容器:t =l v 0.b.不能飞出电容器:y =12at 2=qU 2mdt 2,t = 2mdy qU②沿电场力方向,做匀加速直线运动⎩⎪⎨⎪⎧加速度:a =F m =qE m =Uqmd离开电场时的偏移量:y =12at 2=Uql 22md v 20离开电场时的偏转角:tan θ=v y v 0=Uql md v20特别提醒 带电粒子在电场中的重力问题(1)基本粒子:如电子、质子、α粒子、离子等除有说明或有明确的暗示以外,一般都不考虑重力(但并不忽略质量).(2)带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或有明确的暗示以外,一般都不能忽略重力.2、带电粒子在匀强电场中偏转时的两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的. 证明:由qU 0=12m v 20y =12at 2=12·qU 1md ·(l v 0)2tan θ=qU 1lmd v 20得:y =U 1l 24U 0d ,tan θ=U 1l 2U 0d(2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为l2.3、带电粒子在匀强电场中偏转的功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12m v 2-12m v 20,其中U y =Ud y ,指初、末位置间的电势差.二、练习题1、如图,一质量为m ,带电量为+q 的带电粒子,以速度v 0垂直于电场方向进入电场,关于该带电粒子的运动,下列说法正确的是( )A .粒子在初速度方向做匀加速运动,平行于电场方向做匀加速运动,因而合运动是匀加速直线运动B .粒子在初速度方向做匀速运动,平行于电场方向做匀加速运动,其合运动的轨迹是一条抛物线C .分析该运动,可以用运动分解的方法,分别分析两个方向的运动规律,然后再确定合运动情况D .分析该运动,有时也可用动能定理确定其某时刻速度的大小 答案 BCD2、如图所示,两平行金属板A 、B 长为L =8 cm ,两板间距离d =8 cm ,A 板比B 板电势高300 V ,一带正电的粒子电荷量为q =1.0×10-10C ,质量为m =1.0×10-20kg ,沿电场中心线RO 垂直电场线飞入电场,初速度v 0=2.0×106 m/s ,粒子飞出电场后经过界面MN 、PS 间的无电场区域,然后进入固定在O 点的点电荷Q 形成的电场区域(设界面PS 右侧点电荷的电场分布不受界面的影响).已知两界面MN 、PS 相距为12 cm ,D 是中心线RO 与界面PS 的交点,O 点在中心线上,距离界面PS 为9 cm ,粒子穿过界面PS 做匀速圆周运动,最后垂直打在放置于中心线上的荧光屏bc 上.(静电力常量k =9.0×109 N·m 2/C 2,粒子的重力不计)(1)求粒子穿过界面MN 时偏离中心线RO 的距离多远?到达PS 界面时离D 点多远? (2)在图上粗略画出粒子的运动轨迹.(3)确定点电荷Q 的电性并求其电荷量的大小.解析 (1)粒子穿过界面MN 时偏离中心线RO 的距离(侧向位移): y =12at 2 a =F m =qU dm L =v 0t则y =12at 2=qU 2md (L v 0)2=0.03 m =3 cm粒子在离开电场后将做匀速直线运动,其轨迹与PS 交于H ,设H 到中心线的距离为Y ,则有12L 12L +12 cm =yY ,解得Y =4y =12 cm(2)第一段是抛物线、第二段是直线、第三段是圆弧(图略) (3)粒子到达H 点时,其水平速度v x =v 0=2.0×106 m/s 竖直速度v y =at =1.5×106 m/s 则v 合=2.5×106 m/s该粒子在穿过界面PS 后绕点电荷Q 做匀速圆周运动,所以Q 带负电 根据几何关系可知半径r =15 cm k qQr 2=m v 2合r解得Q ≈1.04×10-8 C答案 (1)12 cm (2)见解析 (3)负电 1.04×10-8 C3、如图所示,在两条平行的虚线内存在着宽度为L 、电场强度为E 的匀强电场,在与右侧虚线相距也为L 处有一与电场平行的屏.现有一电荷量为+q 、质量为m 的带电粒子(重力不计),以垂直于电场线方向的初速度v 0射入电场中,v 0方向的延长线与屏的交点为O .试求:(1)粒子从射入电场到打到屏上所用的时间;(2)粒子刚射出电场时的速度方向与初速度方向间夹角的正切值tan α; (3)粒子打在屏上的点P 到O 点的距离x . 答案 (1)2L v 0 (2)qEL m v 20 (3)3qEL 22m v 20解析 (1)根据题意,粒子在垂直于电场线的方向上做匀速直线运动,所以粒子从射入电场到打到屏上所用的时间t =2Lv 0.(2)设粒子刚射出电场时沿平行电场线方向的速度为v y ,根据牛顿第二定律,粒子在电场中的加速度为:a =Eqm所以v y =a L v 0=qELm v 0所以粒子刚射出电场时的速度方向与初速度方向间夹角的正切值为tan α=v y v 0=qELm v 20.(3)解法一 设粒子在电场中的偏转距离为y ,则 y =12a (L v 0)2=12·qEL 2m v 20 又x =y +L tan α, 解得:x =3qEL 22m v 20解法二 x =v y ·L v 0+y =3qEL 22m v 20.解法三 由x y =L +L 2L 2得:x =3y =3qEL 22m v 20.4、如图所示,虚线PQ 、MN 间存在如图所示的水平匀强电场,一带电粒子质量为m =2.0×10-11kg 、电荷量为q =+1.0×10-5 C ,从a 点由静止开始经电压为U =100 V 的电场加速后,垂直于匀强电场进入匀强电场中,从虚线MN 的某点b (图中未画出)离开匀强电场时速度与电场方向成30°角.已知PQ 、MN 间距为20 cm ,带电粒子的重力忽略不计.求:(1)带电粒子刚进入匀强电场时的速率v 1; (2)水平匀强电场的场强大小; (3)ab 两点间的电势差.答案 (1)1.0×104 m/s (2)1.732×103 N/C (3)400 V 解析 (1)由动能定理得:qU =12m v 21代入数据得v 1=1.0×104 m/s(2)粒子沿初速度方向做匀速运动:d =v 1t 粒子沿电场方向做匀加速运动:v y =at 由题意得:tan 30°=v 1v y由牛顿第二定律得:qE =ma 联立以上各式并代入数据得: E =3×103 N/C ≈1.732×103 N/C (3)由动能定理得:qU ab =12m (v 21+v 2y )-0 联立以上各式并代入数据得:U ab =400 V .5、如图所示,一价氢离子(11H)和二价氦离子(42He)的混合体,经同一加速电场加速后,垂直射入同一偏转电场中,偏转后,打在同一荧光屏上,则它们( )A .同时到达屏上同一点B .先后到达屏上同一点C .同时到达屏上不同点D .先后到达屏上不同点 答案 B解析一价氢离子(11H)和二价氦离子(42He)的比荷不同,经过加速电场的末速度不同,因此在加速电场及偏转电场的时间均不同,但在偏转电场中偏转距离相同,所以会先后打在屏上同一点,选B.6、如图所示,六面体真空盒置于水平面上,它的ABCD面与EFGH面为金属板,其他面为绝缘材料.ABCD面带正电,EFGH面带负电.从小孔P沿水平方向以相同速率射入三个质量相同的带正电液滴a、b、c,最后分别落在1、2、3三点.则下列说法正确的是()A.三个液滴在真空盒中都做平抛运动B.三个液滴的运动时间不一定相同C.三个液滴落到底板时的速率相同D.液滴c所带电荷量最多答案 D解析三个液滴具有水平速度,但除了受重力以外,还受水平方向的电场力作用,不是平抛运动,选项A错误;在竖直方向上三个液滴都做自由落体运动,下落高度又相同,故运动时间必相同,选项B错误;在相同的运动时间内,液滴c水平位移最大,说明它在水平方向的加速度最大,它受到的电场力最大,电荷量也最大,选项D正确;因为重力做功相同,而电场力对液滴c做功最多,所以它落到底板时的速率最大,选项C 错误.7、绝缘光滑水平面内有一圆形有界匀强电场,其俯视图如图所示,图中xOy所在平面与光滑水平面重合,电场方向与x轴正向平行,电场的半径为R= 2 m,圆心O与坐标系的原点重合,场强E=2 N/C.一带电荷量为q=-1×10-5 C、质量m=1×10-5 kg的粒子,由坐标原点O处以速度v0=1 m/s沿y轴正方向射入电场(重力不计),求:(1)粒子在电场中运动的时间;(2)粒子出射点的位置坐标;(3)粒子射出时具有的动能.答案(1)1 s(2)(-1 m,1 m)(3)2.5×10-5 J解析 (1)粒子沿x 轴负方向做匀加速运动,加速度为a ,则有: Eq =ma ,x =12at 2沿y 轴正方向做匀速运动,有 y =v 0t x 2+y 2=R 2 解得t =1 s.(2)设粒子射出电场边界的位置坐标为(-x 1,y 1),则有x 1=12at 2=1 m ,y 1=v 0t =1 m ,即出射点的位置坐标为(-1 m,1 m).(3)射出时由动能定理得Eqx 1=E k -12m v 20代入数据解得E k =2.5×10-5 J.8、如图所示,在正方形ABCD 区域内有平行于AB 边的匀强电场,E 、F 、G 、H 是各边中点,其连线构成正方形,其中P 点是EH 的中点.一个带正电的粒子(不计重力)从F 点沿FH 方向射入电场后恰好从D 点射出.以下说法正确的是( )A .粒子的运动轨迹一定经过P 点B .粒子的运动轨迹一定经过PE 之间某点C .若将粒子的初速度变为原来的一半,粒子会由ED 之间某点射出正方形ABCD 区域 D .若将粒子的初速度变为原来的一半,粒子恰好由E 点射出正方形ABCD 区域 答案 BD解析 粒子从F 点沿FH 方向射入电场后恰好从D 点射出,其轨迹是抛物线,则过D 点做速度的反向延长线一定与水平位移交于FH 的中点,而延长线又经过P 点,所以粒子轨迹一定经过PE 之间某点,选项A 错误,B 正确;由平抛运动知识可知,当竖直位移一定时,水平速度变为原来的一半,则水平位移也变为原来的一半,所以选项C 错误,D 正确.9、用等效法处理带电体在电场、重力场中的运动如图所示,绝缘光滑轨道AB 部分为倾角为30°的斜面,AC 部分为竖直平面上半径为R 的圆轨道,斜面与圆轨道相切.整个装置处于场强为E 、方向水平向右的匀强电场中.现有一个质量为m 的小球,带正电荷量为q =3mg3E,要使小球能安全通过圆轨道,在O 点的初速度应满足什么条件?图9审题与关联解析 小球先在斜面上运动,受重力、电场力、支持力,然后在圆轨道上运动,受重力、电场力、轨道作用力,如图所示,类比重力场,将电场力与重力的合力视为等效重力mg ′,大小为 mg ′=(qE )2+(mg )2=2 3mg 3,tan θ=qE mg =33,得θ=30°,等效重力的方向与斜面垂直指向右下方,小球在斜面上匀速运动.因要使小球能安全通过圆轨道,在圆轨道的等效“最高点”(D 点)满足等效重力刚好提供向心力,即有:mg ′=m v 2DR ,因θ=30°与斜面的倾角相等,由几何关系可知AD =2R ,令小球以最小初速度v 0运动,由动能定理知: -2mg ′R =12m v 2D -12m v 2解得v 0= 103gR3,因此要使小球安全通过圆轨道,初速度应满足v ≥ 103gR3. 答案 v ≥103gR310、在空间中水平面MN的下方存在竖直向下的匀强电场,质量为m的带电小球由MN上方的A点以一定的初速度水平抛出,从B点进入电场,到达C点时速度方向恰好水平,A、B、C三点在同一直线上,且AB=2BC,如图所示.由此可见()A.电场力为3mgB.小球带正电C.小球从A到B与从B到C的运动时间相等D.小球从A到B与从B到C的速度变化量的大小相等答案AD解析设AC与竖直方向的夹角为θ,带电小球从A到C,电场力做负功,小球带负电,由动能定理,mg·AC·cos θ-qE·BC·cos θ=0,解得电场力为qE=3mg,选项A正确,B 错误.小球水平方向做匀速直线运动,从A到B的运动时间是从B到C的运动时间的2倍,选项C错误;小球在竖直方向先加速后减速,小球从A到B与从B到C竖直方向的速度变化量的大小相等,水平方向速度不变,小球从A到B与从B到C的速度变化量的大小相等,选项D正确.。
物理带电粒子在电场中的运动题20套(带答案)及解析
物理带电粒子在电场中的运动题20套(带答案)及解析一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,一质量为m 、电荷量为+q 的粒子从竖直虚线上的P 点以初速度v 0水平向左射出,在下列不同情形下,粒子经过一段时间后均恰好经过虚线右侧的A 点.巳知P 、A 两点连线长度为l ,连线与虚线的夹角为α=37°,不计粒子的重力,(sin 37°=0.6,cos 37°=0.8).(1)若在虚线左侧存在垂直纸面向外的匀强磁场,求磁感应强度的大小B 1;(2)若在虚线上某点固定一个负点电荷,粒子恰能绕该负点电荷做圆周运动,求该负点电荷的电荷量Q (已知静电力常量为是);(3)若虚线的左侧空间存在垂直纸面向外的匀强磁场,右侧空间存在竖直向上的匀强电场,粒子从P 点到A 点的过程中在磁场、电场中的运动时间恰好相等,求磁场的磁感应强度的大小B 2和匀强电场的电场强度大小E .【答案】(1)0152mv B ql = (2)2058mv l Q kq = (3)0253mv B ql π= 220(23)9mv E qlππ-=【解析】 【分析】 【详解】(1)粒子从P 到A 的轨迹如图所示:粒子在磁场中做匀速圆周运动,设半径为r 1 由几何关系得112cos 25r l l α== 由洛伦兹力提供向心力可得2011v qv B m r =解得:0 152mv Bql=(2)粒子从P到A的轨迹如图所示:粒子绕负点电荷Q做匀速圆周运动,设半径为r2由几何关系得252cos8lr lα==由库仑力提供向心力得2222vQqk mr r=解得:258mv lQkq=(3)粒子从P到A的轨迹如图所示:粒子在磁场中做匀速圆周运动,在电场中做类平抛运动粒子在电场中的运动时间00sin35l ltv vα==根据题意得,粒子在磁场中运动时间也为t,则2Tt=又22mTqBπ=解得0253mvBqlπ=设粒子在磁场中做圆周运动的半径为r,则0v t rπ=解得:35l r π=粒子在电场中沿虚线方向做匀变速直线运动,21cos 22qE l r t mα-=⋅ 解得:220(23)9mv E qlππ-=2.如图所示,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外.点3,0P L ⎛⎫ ⎪ ⎪⎝⎭处有一粒子源,可向各个方向发射速率不同、电荷量为q 、质量为m 的带负电粒子.不考虑粒子的重力.(1)若粒子1经过第一、二、三象限后,恰好沿x 轴正向通过点Q (0,-L ),求其速率v 1;(2)若撤去第一象限的磁场,在其中加沿y 轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v 1沿x 轴正向通过点Q ,求匀强电场的电场强度E 以及粒子2的发射速率v 2;(3)若在xOy 平面内加沿y 轴正向的匀强电场E o ,粒子3以速率v 3沿y 轴正向发射,求在运动过程中其最小速率v.某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动. 请尝试用该思路求解. 【答案】(1)23BLq m (2221BLq32230B E E v B +⎛⎫ ⎪⎝⎭【解析】 【详解】(1)粒子1在一、二、三做匀速圆周运动,则2111v qv B m r =由几何憨可知:()222113r L r L ⎛⎫=-+ ⎪ ⎪⎝⎭得到:123BLqv m=(2)粒子2在第一象限中类斜劈运动,有:13L v t =,212qE h t m =在第二、三象限中原圆周运动,由几何关系:12L h r +=,得到289qLB E m=又22212v v Eh =+,得到:22219BLqv m=(3)如图所示,将3v 分解成水平向右和v '和斜向的v '',则0qv B qE '=,即0E v B'= 而'223v v v ''=+ 所以,运动过程中粒子的最小速率为v v v =''-'即:22003E E v v B B ⎛⎫=+- ⎪⎝⎭3.如图,一带电荷量q =+0.05C 、质量M =lkg 的绝缘平板置于光滑的水平面上,板上靠右端放一可视为质点、质量m =lkg 的不带电小物块,平板与物块间的动摩擦因数μ=0.75.距平板左端L =0.8m 处有一固定弹性挡板,挡板与平板等高,平板撞上挡板后会原速率反弹。
带电粒子在电场中的偏转(题_详细)
l 2
强化练习
5、如图所示,有一电子(电量为e、质量为 m)经电压U0加速后,沿平行金属板A、B中 心线进入两板,A、B板间距为d、长度为L, A、B板间电压为U,屏CD足够大,距离A、 B板右边缘2L,AB板的中心线过屏CD的中 心且与屏CD垂直。试求电子束打在屏上的 位置到屏中心间的距离。
1、三个电子在同一地点沿同一直线垂直飞 入偏转电场,如图所示。则由此可判断 ( ) BCD A、 b和c同时飞离电场 B、在b飞离电场的瞬间,a刚好打在下极 板上 C、进入电场时,c速度最大,a速度最小 D、c的动能增量最小, a和b的动能增量一样大
√ √ √
强化练习 2、如图,电子在电势差为U1的加速电场中由静止 开始加速,然后射入电势差为U2的两块平行极板间 的电场中,入射方向跟极板平行。整个装置处在真 空中,重力可忽略。在满足电子能射出平行板区的 条件下,下述四种情况中,一定能使电子的偏转角 θ变大的是 ( B ) A、U1变大、U2变大 B、U1变小、U2变大 C、U1变大、U2变小 D、U1变小、U2变小
1.9 带电粒子在电场中的运动
辛集市第一中学
仪器名称:示波器 型 号:COS5100
北京正负电子对撞机加速器的 起点
系统运行时,数以10亿计的电子就 将从这条加速管中以接近光速冲进 储存环中发生碰撞
1.9 带电粒子在电场 中的运动
电场中的带电粒子一般可分为两类:
1、带电的基本粒子:如电子,质子,α粒子,正负 离子等。这些粒子所受重力和电场力相比小得多,除 非有说明或明确的暗示以外,一般都不考虑重力。 (但并不能忽略质量)。
二. 带电粒子在电场中的偏转
+ + + + + + + + +
带电粒子在电场中的偏转题目
以下是带电粒子在电场中的偏转题目示例:
一个质量为m,电荷量为q的带电粒子以平行于板面的初速度v0射入两平行金属板间,两板间距离为d,板长为L,在金属板间加有垂直纸面向里的匀强磁场,磁感应强度为B,带电粒子离开金属板时偏离原来的直线方向的角度为α,求射出时的侧向位移量y。
(不考虑重力作用)水平放置的两平行金属板间距为d,加上方向竖直向上的匀强电场,原来带负电的微粒恰好以水平速度v0匀速通过两极板间。
现在改变两极板间的电场方向(两极板的电场强度大小不变),若使微粒仍然以原来的速度通过两极板间,则微粒通过两极板间的运动时间变为原来的多少倍?。
《带电粒子在电场中的偏转》进阶练习(三)-1
《带电粒子在电场中的偏转》进阶练习一、单选题1.如图所示的阴极射线管的玻璃管内已经抽成真空,当左右两个电极连接到高压电源时,阴极会发射电子,电子在电场的加速下飞向阳极,挡板上有一个扁平的狭缝,电子飞过挡板后形成一个扁平的电子束,长条形的荧光板在阳极端稍稍倾向轴线,电子束掠射到荧光板上,显示出电子束的径迹,现在用该装置研究磁场对运动电荷的作用的实验,下列对该实验的说法正确的是()A.没有施加磁场时,电子束的径迹是一条抛物线B.若图中左侧是阴极射线管的阴极,加上图示的磁场,电子束会向上偏转C.施加磁场后,根据电子束在磁场中运动径迹和磁场方向,可由相关知识判断出阴极射线管两个电极的极性D.施加磁场后,结合阴极射线管的两个电极的极性和电子束在磁场中运动的径迹,可以判断出磁场的方向,但无法判断出磁场的强弱2.如图所示,一种射线管由平行金属板A、B和平行于金属板的细管C组成.放射源O在A极板左端,可以向各个方向发射不同速度、质量为m、电荷量为e的电子.若极板长为L,间距为d.当A、B板加上电压U时,只有某一速度的电子能从细管C水平射出,细管C离两板等距.则从放射源O发射出的电子的这一速度为()A. B. C. D.3.如图1所示是电视机显像管及其偏转线圈的示意图.电流方向如图2所示,试判断正对读者而来的电子束将向哪边偏转()A.向上B.向下C.向左 D.向右二、计算题4.在电脑显示器的真空示波管内,控制电子束扫描的偏转场是匀强磁场,磁场区域是宽度为3.0cm的矩形,右边界距荧光屏20.0cm,高度足够.某段时间内磁场方向垂直纸面向外,磁感应强度B=4.55×10-3T不变.电子初速度不计,经U=4550V电压加速后沿中心线射入磁场,偏转后打在屏上产生亮点(若无磁场,亮点在屏中心),已知电子的质量m=0.91×10-30kg,电荷量e=1.6×10-19C.(1)在图中大致图出电子运动的径迹;(2)求亮点偏离荧光屏中心的距离.5.如图,是电视显像管工作原理图,炽热的金属丝发出电子,在金属丝K和金属板M之间加一电压U,使电子在真空中加速后,从金属板的小孔C穿出,进入有界abcd矩形匀速磁场,经匀强磁场射出后,打在荧光屏上,荧光屏被电子束撞击而发光.已知电子的比荷=×1011C/kg,匀强磁场的磁感应强度B=1.0×10-4T,磁场的长度l=12cm,磁场的右边界距离荧光屏L=15cm.加速电压U=20V 时,电子恰好从有界匀强磁场的右下角c点飞出.不计电子间的相互作用及重力影响.求:(1)电子射入磁场时的速度大小;(2)电子在磁场中运动轨道半径;(3)电子打在荧光屏上的亮点与荧光屏中心O点的距离.参考答案【答案】1.C2.C3.C4.解:(1)电子运动的径迹如图所示:(2)电子经U加速得到速度v0由eU=mv得v0==m/s=4×107m/s.由evB=m得①r==m=0.05m=5cm ②sinα=,cosα=,tanα=③亮点偏离屏中心的距离:y=(r-rcosα)+20.0tanα=5×(1-)cm+20.0×cm=16cm;答:(1)在图中大致图出电子运动的径迹如图;(2)亮点偏离荧光屏中心的距离为16cm.5.解:(1)设电子到达金属板C时的速度为v,根据动能定理:eU=mv2;解得:v===2.7×106m/s;电子离开C后做匀速直线运动,所以电子射入磁场时的速度大小为2.7×106m/s;(2)设电子在磁场中运动的轨道半径为R,根据牛顿第二定律:evB=m;解得:R==0.15m;(3)如图所示,设电子打在荧光屏上的A点,距离中心O电位x,磁场一半的宽度为x1,电子在磁场中偏转角为θ,由图所示几何知识,可知:x1=R-x=x1+Ltanθ;tanθ=;解得:x=6+15×=26cm;答:1)电子射入磁场时的速度大小2.7×106m/s;(2)电子在磁场中运动轨道半径0.15m;(3)电子打在荧光屏上的亮点与荧光屏中心O点的距离26cm.【解析】1. 解:A、没有施加磁场时,电子束只受电场离,在电场力作用下做加速直线运动,故A错误;B、因为左边是阴极,右边是阳极,所以电子在阴极管中的运动方向是左到右,产生的电流方向是右到左(注意是电子带负电),根据左手定则,四指指向左,手掌对向N极(就是这个角度看过去指向纸面向里),此时大拇指指向下面,所以电子在洛伦兹力作用下轨迹向下偏转,故B错误;C、根据轨迹和左手定则即可判断阴极射线管两个电极的极性,故C正确;D、施加磁场后,结合阴极射线管的两个电极的极性和电子束在磁场中运动的径迹,可以判断出磁场的方向,根据曲率半径可判断出磁场强弱,故D错误;故选:C此题要求要了解电子射线管的构造和原理,阴极是发射电子的电极,电子在磁场中运动,受到洛伦兹力的作用而发生偏转.从而显示电子运动的径迹,偏转方向有左手定则判断;根据曲率半径可判断磁场强弱;本题要掌握左手定则判定:伸开左手,使大拇指跟其余四个手指垂直,并且跟手掌在同一平面内,把手放入磁场中,让磁感线穿过掌心,四指所指为正电荷运动方向,拇指所指方向为电荷所受洛伦兹力的方向.(注:对负电荷而言,四指所指方向为其运动的反方向)2. 解:将从细管C水平射出的电子逆过来看,是类平抛运动,则有:水平方向上:L=v0t,竖直方向上,a=,联立解得:,而,所以:v=.故C正确,A、B、D错误.故选:C.当A、B板加上电压U时,只有某一速度的电子能从细管C水平射出,逆过来看,该粒子做类平抛运动,通过类平抛运动求出粒子的末速度,即为放射源O发射出的电子的速度.本题采取逆向思维,关键掌握求解类平抛运动的方法,类平抛运动在水平方向上做匀速直线运动,在竖直方向上做初速度为零的匀加速直线运动.3. 解:磁环上的偏转线圈通以图示方向的电流时,根据安培定则,在磁环上形成的磁场方向竖直向下,磁场是闭合的,故在磁环中心处的磁场是竖直向下的,在根据左手定则,当电子束沿轴线向纸外射出时,电子束受到向左的洛伦兹力,故电子束的偏转方向向左.故C正确、ABD错误.故选:C.将整个线圈当成左右两部分研究,因为绕向变化,结合安培定则判断出磁场方向,由左手定则分析判断电子束所受的洛伦兹力方向,即可判断偏转方向.本题要注意电子带负电,左手定则判定直接判定的是电流的受力方向,同时知道铁芯中间处的磁场方向是竖直向下的.4.(1)电子在电场中做直线运动,在磁场中由左手定则判断洛伦兹力方向向上,则电子向上偏转;(2)先由动能定理求出粒子离开电场时获得的速度,然后由牛顿第二定律求出粒子在磁场中圆周运动的半径,亮点偏离荧光屏中心的距离为磁场中竖直方向偏离的距离与做匀速直线运动过程竖直方向的位移之和.该题涉及到带电粒子在电场和磁场的运动情况,对同学们的分析能力和数学功底要求较高,关键是要有耐心,正确画出轨迹后充分结合数学知识即可.5.(1)根据动能定理,求得电子射入磁场时的速度大小;(2)根据牛顿第二定律,由洛伦兹力提供向心力,即可求解;(3)根据几何知识,结合运动的合成与分解,即可求解.考查动能定理与牛顿第二定律的应用,掌握几何知识在本题中的运用.。
带电粒子在电场中的偏转
P带电粒子在电场中的偏转1.右下图为一真空示波管的示意图,电子从灯丝K 发出(初速度可忽略不计),经灯丝与A 板间的电压U 1加速,从A 板中心孔沿中心线KO 射出,然后进入两块平行金属板M 、N 形成的偏转电场中(偏转电场可视为匀强电场),电子进入M 、N 间电场时的速度与电场方向垂直,电子经过电场后打在荧光屏上的P 点。
已知M 、N 两板间的电压为U 2,两板间的距离为d ,板长为l 1,到荧光屏的距离为l 2,电子的质量为m ,电荷量为q ,不计电子受到的重力及它们之间的相互作用力。
(1)求电子穿过A 板时速度的大小;(2)求电子从偏转电场射出时的侧移量y ;(3)求电子打到荧光屏上的位置P 偏离荧光屏中心O 距离Y.2.如图所示,电子在电势差为U 1的加速电场中由静止开始运动,然后射入电势差为U 2的两块平行极板间的电场中,入射方向跟极板平行.整个装置处在真空中,重力可忽略.在满足电子能射出平行板区的条件下,下述四种情况中,一定能使电子的偏转角θ变大的是( )A .U 1变大、U 2变大 B.U 1变小、U 2变大 C .U 1变大、U 2变小 D .U 1变小、U 2变小3.如图所示,电子由静止开始从A 板向B 板运动,当到达B 板时速度为v ,保持两板间电压不变.则 ( )A .当增大两板间距离时,v 也增大B .当减小两板间距离时,v 增大C .当改变两板间距离时,v 不变D .当增大两板间距离时,电子在两板间运动的时间延长tU -U 4.如图7-3-12所示,一个质量为m ,带电量为q 的粒子,从两平行板左侧中点沿垂直场强方向射入,当入射速度为v 时,恰好穿过电场而不碰金属板.要使粒子的入射速度变为v/2,仍能恰好穿过电场,则必须再使( )A .粒子的电量变为原来的1/4B .两板间电压减为原来的1/2C .两板间距离增为原来的4倍D .两板间距离增为原来的2倍5.如图7-9两平行金属板竖直放置,左极板接地,中间有小孔.右极板电势随时间变化的规律如图所示.电子原来静止在左极板小孔处.(不计重力作用)下列说法中正确的是( ) A.从t=0时刻释放电子,电子将始终向右运动,直到打到右极板上B.从t=0时刻释放电子,电子可能在两板间振动C.从t=T /4时刻释放电子,电子可能在两板间振动,也可能打到右极板上D.从t=3T /8时刻释放电子,电子必将打到左极板上6.如图所示,带等量异号电荷的两平行金属板在真空中水平放置,M 、N 为板间同一电场线上的两点,一带电粒子(不计重力)以速度v M 经过M 点在电场线上向下运动,且未与下板接触,一段时间后,粒子以速度v N 折回N 点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二物理强化训练
带电粒子在电场中的运动
1. N M 、是真空中的两块平行金属板,质量为m ,电荷量为q 的带电粒子,以初速度0v 由小孔进入电场,当N M 、间电压为U 时,粒子恰好能达到N 板,如果要使这个带电粒
子到达N M 、板间距的1/2后返回,下列措施中能满足要求的是(不计带电粒子的重力)
A . 使初速度减为原来的1/2
B . 使N M 、间电压加倍
C . 使N M 、间电压提高到原来的4倍
D . 使初速度和N M 、间电压都减为原来的1/2
2. 平行金属板B A 、分别带等量异种电荷,A 板带正电,B 板带负电,b a 、两个带正电粒子,以相同的速率先后垂直于电场线从同一点进入两金属板间的匀强电场中,并分别
打在B 板上的b a ''、两点,如图所示,若不计重力,则()
A . a 粒子的带电荷量一定大于b 粒子的带电荷量
B . a 粒子的质量一定小于b 粒子的质量
C . a 粒子的带电荷量与质量之比一定大于b 粒子的带电荷量与质量之比
D . a 粒子的带电荷量与质量之比一定小于b 粒子的带电荷量与质量之比
3. 如图所示是一个说明示波管工作原理的示意图,电子经电压1U 加速后垂直进入偏转电场,离开电场时的偏转量是h ,两平行板间的距离为d ,电势差为2U ,板长为L 。
为了提高示波管的灵敏度(每单位电压引起的偏转量2
U h ),可采用的方法是() A.增大两板间的电势差2U B.尽可能使板长L 短些
C.尽可能使板间距离d 小一些
D.使加速电压1U 升高一些
4. 一带电粒子以速度0v 沿竖直方向垂直进入匀强电场E 中,如图所示,经过一段时间后,
其速度变为水平方向,大小仍为0v ,则有()
A . 电场力等于重力
B . 粒子运动的水平位移等于竖直位移的大小
C . 电场力做的功一定等于重力做的功的负值
D . 粒子电势能的减小量一定等于重力势能的增加量
5. 在显像管的电子枪中,从炽热的金属丝不断放出的电子进入电压为U 的加速电场,设其
初速度为零,经加速后形成横截面积为S 、电流为I 的电子束。
已知电子的电荷量为e 、质量为m ,则在刚射出加速电场时,一小段长为l ∆的电子束内的电子个数是()
A . eU m eS l
I 2∆ B.eU m e l I 2∆ C. eU m eS I 2 D.eU
m e l IS 2∆ 6. 如图所示,用细线拴着一带负电的小球在方向竖直向下的匀强电场中,在竖直平面内做
圆周运动,且电场力大于重力,则下列说法正确的是()
A . 当小球运动到最高点A 时,细线张力一定最大
B . 当小球运动到最低点B 时,细线张力一定最大
C . 当小球运动到最低点B 时,小球的线速度一定最大
D . 当小球运动到最低点B 时,小球的电势能一定最大
7. 如图所示,B A 、是一对平行的金属板,在两板间加上一周期为T 的交变电压U ,A 板
的电势0=A ϕ,B 板的电势B ϕ随时间的变化规律如图所示。
现有一电子从A 板上的小孔进入两板间的电场区内,设电子的初速度和重力的影响可忽略。
则()
A . 若电子是在0=t 时刻进入的,它将一直向
B 板运动
B . 若电子是在8T t =
时刻进入的,它可能时而向A 板运动,时而向B 板运动,最后打在B 板上
C . 若电子是在8
3T t =
时刻进入的,它可能时而向B 板运动,时而向A 板运动,最后打在B 板上 D . 若电子是在2
T t =
时刻进入的,它可能时而向B 板运动,时而向A 板运动 8. 如图所示,水平放置的两平行金属板,其中板长m L 0.1=,板间距离m d 06.0=,上板带正电,下板带负电,两板间有一质量g m 1.0=、点电荷量C q 7
104-⨯-=的微粒沿
水平方向,从两板中央处以s m v /100=的初速度射入匀强电场,要使带电微粒能射出极板,两极间电压值的范围是 。
(不计空气阻力,g 取2
/10s m )
9. 如图所示,平行板电容器两极板间有场强为E 的匀强电场,且带正电的极板接地,一质
量为m 、电荷量为q +的带电粒子(不计重力)从x 轴上坐标为0x 处由静止释放。
(1) 求该粒子在0x 处的电势能px E 。
(2) 试从牛顿第二定律出发,证明该带电粒子在极板间运动过程中,其动能与电势能之
和保持不变。
30的直角三角形,底边长为l2,底边处在水平位置,斜边为光滑绝10.如图所示,倾角为
缘导轨,现在底边中点O固定一正电荷Q,让一个质量为m的带正电的电荷q从斜面顶端A沿斜面滑下(不脱离斜面)。
已测的它滑倒斜边的垂足D处的速度为v,加速度为a,方向沿斜面向下,问该质点滑倒斜面底端C点时的速度和加速度各为多少?。