高三数学第一次月考试题及答案理科

合集下载

高三第一次月考(数学)试卷含答案

高三第一次月考(数学)试卷含答案

高三第一次月考(数学)(考试总分:150 分)一、 单选题 (本题共计12小题,总分60分)1.(5分)1.若{}{}2|22,|log (1)M x x N x y x =-≤≤==-,则M N =( )A.{}|20x x -≤<B. ﹛x| -1<x<0﹜C.{}2,0-D.{}21|≤<x x 2.(5分)2.复数imi212+-=A+B i (m 、A 、B ∈R),且A+B=0,则m 的值是 ( ) A. 32- B. 32 C.2 D.23.(5分)3.下列命题中,真命题是 ( )A .,00≤∈∃x e R x B .22,x R x x >∈∀C .0=+b a 的充要条件是1-=baD .1,1>>b a 是1>ab 的充分条件 4.(5分)4.函数212log 4f xx 的单调递增区间是( )A.(0,+∞)B. (-∞,0)C. (2,+∞)D. (-∞,-2)5.(5分)5.函数f(x)=-1x+log 2x 的一个零点落在下列哪个区间( ) A.(0,1)B.(1,2)C.(2,3)D.(3,4)6.(5分)6.如果函数f(x)=x 2+bx+c 对任意实数t 都有f(2+t)=f(2-t),那么( )A.f(2)<f(1)<f(4)B.f(1)<f(2)<f(4)C.f(2)<f(4)<f(1)D.f(4)<f(2)<f(1) 7.(5分)7.函数()3cos 2xxf x x⋅=的部分图象大致是( )A .B .C .D .8.(5分)8.曲线y =e x +1在x =1处的切线与坐标轴所围成的三角形的面积为( )A.12e B .e 2 C .2e 2D .94e 2 9.(5分)9.已知函数f(x)是定义在R 上的偶函数,且对任意的x ∈R ,都有f(x +2)=f(x).当0≤x≤1时,2()f x x =.若直线y =x +a 与函数y =f(x)的图像在[0,2]内恰有两个不同的公共点,则实数a 的值是 ( ) A .0 B .0或-14 C .-14或-12 D.0或-1210.(5分)10.若函数x x f xx2sin 3)(1212++=+-在区间[-k,k](k>0)上的值域为[m,n],则m+n 等于( )A.0B.2C.4D.611.(5分)11.已知函数f(x)在R 上满足f(x)=2f(2-x)-x 2+8x-8,则曲线y=f(x)在点(1,f(1))处的切线方程是 ( )A.y=-2x+3B.y=xC. y=2x-1D.y=3x-212.(5分)12.设定义域为R 的函数2lg (>0)()-2(0)x x f x x x x ⎧=⎨-≤⎩ 则关于x 的函数1)(3-)(2y 2+=x f x f 的零点的个数为( )A .3B .7C .5D .6二、 填空题 (本题共计4小题,总分20分)13.(5分)13.函数24ln(1)x y x -=+的定义域为_______________14.(5分)14.函数y =log a (2x -3)+8的图象恒过定点A ,且点A 在幂函数f(x)的图象上,则f (3)=________.15.(5分)15.若函数1,0()1(),03x x xf x x ⎧<⎪⎪=⎨⎪≥⎪⎩ 则不等式1|()|3f x ≥的解集为________16.(5分)16.已知定义域为R 的函数f (x )满足f (4)=-3,且对任意x ∈R 总有)('x f <3,则不等式 f (x)<3x -15的解集为________.三、 解答题 (本题共计7小题,总分80分) 17.(12分)17.(本大题满分12分)设p :函数y =log a (x +1)(a >0且a≠1)在(0,+∞)上单调递减;q :曲线y =x 2+(2a -3)x +1与x 轴交于不同的两点.如果p∧q 为假,p∨q 为真,求实数a 的取值范围.18.(12分)18.(本大题满分12分)已知函数f (x )=x 2-2x +2.(1)求f (x )在区间[12,3]上的最大值和最小值;(2)若g (x )=f (x )-mx 在[2,4]上是单调函数,求m 的取值范围.19.(12分)19.(本大题满分12分)为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽取14件和5件,测量产品中微量元素x ,y 的含量(单位:毫克).下表是乙厂的5件产品的测量数据: 编号 1 2 3 4 5 x 169 178 166 175 180 y7580777081(1)已知甲厂生产的产品共98件,求乙厂生产的产品数量;(2)当产品中的微量元素x ,y 满足x≥175且y≥75时,该产品为优等品,用上述样本数据估计乙厂生产的优等品的数量;(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数ξ的分布列.20.(12分)20. (本大题满分12分)设函数3()f x ax bx c =++(0)a ≠为奇函数,其图象在点(1,(1))f 处的切线与直线670x y --=垂直,导函数'()f x 的最小值为12-.(1)求a ,b ,c 的值;(2)求函数()f x 的单调递增区间,并求函数()f x 在[1,3]-上的最大值和最小值.21.(12分)21. (本大题满分12分)已知函数f(x)=ax -ln x ,a ∈R.(1)求函数f(x)的单调区间; (2)当x ∈(0,e]时,求g (x )=e 2x -ln x 的最小值; (3)当x ∈(0,e]时,证明:e 2x -ln x -x x ln >52.22.(10分)22.(本大题满分10分)选修4-4:坐标系与参数方程已知直线l :⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 213235 (t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=2cos θ. (1)将曲线C 的极坐标方程化为直角坐标方程;(2)设点M 的直角坐标为(5,3),直线l 与曲线C 的交点为A ,B ,求|MA|·|MB|的值.23.(10分)23. (本大题满分10分) 选修4-5:不等式选讲已知关于x 的不等式|ax -1|+|ax -a |≥1(a >0). (1)当a =1时,求此不等式的解集;(2)若此不等式的解集为R ,求实数a 的取值范围答案一、单选题(本题共计12小题,总分60分)1.(5分)D2.(5分)A3.(5分)D4.(5分)D5.(5分)B6.(5分)A7.(5分)D8.(5分)A9.(5分)B10.(5分)D11.(5分)C12.(5分)B二、填空题(本题共计4小题,总分20分)13.(5分)13.(-1,0)∪(0,2]14.(5分) 14. 2715.(5分) 15.[-3,1]16.(5分) 16.(4,+∞)三、解答题(本题共计7小题,总分80分)17.(12分)17.1/2≤a<1或a>5/218.(12分)18.(1)f(x)最大值为5,最小值为1;(2)m的取值范围为(-∞,2]∪[6,+∞)19.(12分)19.(1)35件;(2)35×2/5=14件;(3)由题意,ξ的取值有0,1,2,P(ξ=0)=3/10,P(ξ=1)=3/5,P(ξ=2)=1/10,分布列为(2)f(x)的最大值为18,最小值为-8221.(12分)21.(1)综上,a≤0时,f(x)的单调递减区间是(0,+∞),无单调增区间;a>0时,f(x)的单调递减区间是(0,1/a),单调增区间是(1/a,+∞);(2)g(x)最小值为3;(3)略22.(10分)22.(1)x2+y2=2x;(2)|MA|·|MB|=1823.(10分)23.(1)(-∞,1/2]∪[5/2.+∞); (2)[4,+∞)。

高三数学第一次月考试题(附答案)

高三数学第一次月考试题(附答案)

高三数学第一次月考试题(注意:答案一律写在答题纸上)一、填空题 (本大题共12小题,每小题4分,共48分)1. 已知集合A ={x |x 2-p x +15=0}B ={x |x 2-5x +q =0},如果A ∩B ={3},那么p +q =2. 已知集合}2,1,1{-=M ,集合},|{2M x x y y N ∈==,则N M = 3. 设A 、B 、C 是三个集合,则“A ∩B=A ∩C ”是“B=C ”的 条件。

4. 已知f (x )=x 5+ax 3+bx -8,且f (-2)=10,那么f (2)= 。

5. 设函数 f (x )在 (-∞,+∞)内有定义,下列函数(1) y =-|f (x )|; (2) y = x f (x 2); (3) y =-f (-x ); (4) y =f (x )-f (-x ) 中必为奇函数的有▁▁▁▁▁▁(要求填写正确答案的序号)。

6.⎪⎩⎪⎨⎧<-=>=0,10,00,1)(x x x x f ,则方程()1(12)f x x x +=-的各个解之和为7.已知函数y =f (x )是奇函数,周期T =5,若f (-2)=2a -1则f (7)= 8.函数 )0(12≤-=x x y 反函数是9.某班有50名学生,其中 15人选修A 课程,另外35人选修B 课程.从班级中任选两名学生,他们是选修不同课程的学生的概率是 (结果用分数表示). 10.若不等式|2|6ax +<的解集为(-1,2),则实数a = 。

11.当不等式61022≤++≤px x 恰有一个解时,实数p 的值是____。

12. 已知集合M ={x |1≤x ≤10,x ∈N },对它的非空子集A ,将A 中每个元素k ,都乘以(-1)k再求和(如A={1,3,6},可求得和为(-1)·1+(-1)3·3+(-1)6·6=2,则对M 的所有非空子集,这些和的总和是 . 二、选择题(本大题共4小题,共16分)13.若函数y =f (x ) (f (x )不恒为零)的图象与函数y =-f (x )的图象关于原点对称,则函数y =f (x ) ( )(A )是奇函数而不是偶函数 (B )是偶函数而不是奇函数(C )既是奇函数又是偶函数 (D )既不是奇函数又不是偶函数设函数14.三人互相传球,由甲开始发球,并作为第一次传球,经过5次传球后,球仍然回到甲手中,则不同的传球方式有 ( ) (A ) 6种 (B ) 8种 (C ) 10种 (D )16种 15、已知关于x 的方程:2x =x 2解的个数为 ( ) (A )1 (B )2 (C )3 (D ) 4 16. 设函数()f x 的定义域为R ,有下列三个命题:(1)若存在常数M ,使得对任意R ∈x ,有()f x M ≤,则M 是函数()f x 的最大值; (2)若存在R ∈0x ,使得对任意R ∈x ,且0x x ≠,有)()(0x f x f <,则)(0x f 是函数()f x 的最大值;(3)若存在R ∈0x ,使得对任意R ∈x ,有)()(0x f x f ≤,则)(0x f 是函数()f x 的最大值.。

西安中学202届高三数学上学期第一次月考试题理含解析

西安中学202届高三数学上学期第一次月考试题理含解析
10。 设 ,且不等式 恒成立,则实数 的最小值等于( )
A。 0B。 4
C. -4D。 -2
【答案】C
【解析】
分析】
分离参数,求齐次式 的最大值。
【详解】由 得 ,而 ( 时取等号),
所以 ,因此要使 恒成立,应有 ,即实数 的最小值等于 .
故选: C。
【点睛】多参数不等式,先确定主元,次元唯一转化为函数问题,次元不唯一可以用基本不等式,也可以降元(分式的分子分母为齐次式是降元的主要特征)。
A。 98项B。 97项C。 96项D。 95项
【答案】B
【解析】
【分析】
由于能被3除余1且被7除余1的数就只能是被21除余1的数,故 ,然后由 可求出 的取值范围,从而可得结果
【详解】能被3除余1且被7除余1的数就只能是被21除余1的数,故 ,
由 得 ,又 ,故此数列共有97项.
故选:B
【点睛】此题考查数列模型在实际问题中的应用,考查等差数列的通项公式的运用,考查计算能力,属于基础题
(1)求 、 的通项公式;
(2)数列 中, ,且 ,求 的通项公式.
【答案】(1) , ;(2) 。
【解析】
【分析】
(1)由已知条件结合等差数列和等比数列的通项公式列出方程组
求出公差和公比,从而可求出 、 的通项公式;
(2)先求出 ,而 ,所以 ,然后利用累加法可求出 的通项公式
【详解】(1)设 的公差为 , 的公比为 ,则依题意有
【点睛】本题考查极坐标方程与直角坐标方程的互化,考查直线参数方程及其应用,旨在考查运算求解能力.
二、填空题:(本大题共4小题,每小题5分)
13. 已知圆锥侧面展开图的圆心角为90°,则该圆锥的底面半径与母线长的比为________。

高三数学理科月考1

高三数学理科月考1
A. B. C. 或 D. 或
12.若函数 的定义域为 ,则实数 的值等于()
A. 1 B.-1 C.-2 D.
二、填空题(每题5分,共20分)
13.设向量 ,向量 ,且 ,则 =
14.观察式子 , , ,则可以归纳出 ___.
15.若 ,则 的值为.
16.5个人排成一排,其中甲与乙不相邻,而丙与丁必须相邻,则不同的排法种数为
(1)求 的分布列和数学期望;
(2)求“ ”的概率。
19.(本题12分)已知二项式 的展开式中前三项的系数成等差数列.
(1)求 的值;
(2)设 .求 的值;
20.(本题12分)一个口袋内有4个不同的红球,6个不同的白球,
(1)从中任取4个球,红球的个数不比白球少的取法有多少种?
(2)若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种?
2.已知全集 集合 , ,则 为
(A){2,3,4,6} (B){2,4,5,6} (C){2,3,4,6} (D){1,2,3,4}
3.已知等差数列 的通项公式为 ,则 的展开式中含 项的系数是该数列的()
A.第20项B.第19项C.第17项D.第16项
4.箱中有5个黑球,4个白球,每次随机取出一个球,若取出黑球,则放回箱中,重新取球;若取出白球,则停止取球,那么在第四次取球之后停止的概率为()
2013—2014学年度第一学期
高三理科数学第一次阶段考试题
一.选择题(每题5分,共60分)
1.用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,反设正确的是()
A.假设三内角都大于60度;B.假设三内角都不大于60度;
C于60度。
三.解答题(共70分):

2020届江西省信丰中学高三上学期第一次月考数学(理)试题(解析版)

2020届江西省信丰中学高三上学期第一次月考数学(理)试题(解析版)

2020届江西省信丰中学高三上学期第一次月考数学(理)试题一、单选题1.全集U =R ,集合{}1,2,3,4,5A =,[)3,B =+∞,则图中阴影部分所表示的集合为( )A .{}0,1,2B .{}0,1C .{}1,2D .{}1【答案】C【解析】根据图中阴影部分所表示的集合为RAB ,然后根据全集U =R ,[)3,B =+∞,求得B R ,再利用交集运算求解.【详解】由图知:图中阴影部分所表示的集合为RA B ,因为全集U =R ,[)3,B =+∞, 所以(),3RB =-∞,又集合{}1,2,3,4,5A =, 所以{}1,2RA B ⋂=,所以图中阴影部分所表示的集合为{}1,2, 故选:C 【点睛】本题主要考查ven 图以及集合的基本运算,还考查了数形结合的思想,属于基础题. 2.直线:1l y kx =+与圆22:1O x y +=相交于,A B 两点,则"1"k =是“OAB ∆的面积为12”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分又不【答案】A【解析】试题分析:由1k =时,圆心到直线:1l y x =+的距离2d =..所以11222OAB S ∆=⨯=.所以充分性成立,由图形的对成性当1k =-时, OAB ∆的面积为12.所以不要性不成立.故选A. 【考点】1.直线与圆的位置关系.2.充要条件.3.已知集合{}|A x x a =<,{}|12B x x =≤<,且()RA B R =,则实数a 的取值范围是( ) A .1a ≤ B .1a < C .2a ≥ D .2a >【答案】C【解析】先由题意,求出B R,根据()RAB R =,即可得出结果.【详解】因为{}|12B x x =≤<,所以{1RB x x =<或}2x ≥,又{}|A x x a =<,()RA B R =,所以,只需2a ≥. 故选:C. 【点睛】本题主要考查由并集和补集的结果求参数,属于基础题型. 4.已知i 是虚数单位,若32i 2ii i 12iz ++=+-所对应的点位于复平面内 A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】D【解析】由题意计算可得13z i =-,据此确定其所在的象限即可. 【详解】 因为232i 2i (32i)i (2i)(12i)i i 23i i i 13i i 12i i (12i)(12i)z +++++=+=+=-+⋅=---+, 所以该复数位于第四象限,故选D .复数的代数形式的运算主要有加、减、乘、除及求低次方根.除法实际上是分母实数化的过程.5.已知命题p :若x >y ,则-x <-y ;命题q :若x >y ,则x 2>y 2.在命题①p ∧q ;②p ∨q ;③p ∧(⌝q );④(⌝p )∨q 中,真命题是( ) A .①③ B .①④ C .②③ D .②④【答案】C【解析】试题分析:根据不等式的基本性质知命题p 正确,对于命题q ,当,x y 为负数时22x y >不成立,即命题q 不正确,所以根据真值表可得,(p q p ∨∧q )为真命题,故选C.【考点】1、不等式的基本性质;2、真值表的应用.6.已知集合{}2|4120A x x x =--<,(){}2|log 10B x x =-<,则AB =( )A .{}|6x x <B .{}|12x x <<C .{}|62x x -<<D .{}|2x x <【答案】B【解析】先解不等式,化简两集合,再求交集,即可得出结果. 【详解】因为{}{}2|4120|26A x x x x x =--<=-<<,(){}{}{}2|log 10|011|12B x x x x x x =-<=<-<=<<,所以{}|12A B x x ⋂=<<. 故选:B. 【点睛】本题主要考查求集合的交集,涉及一元二次不等式的解法,以及对数不等式的解法,属于基础题型.7.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( ) A .0.8 B .0.75C .0.6D .0.45【答案】A【解析】【详解】试题分析:记A =“一天的空气质量为优良”,B =“第二天空气质量也为优良”,由题意可知()()0.75,0.6P A P AB==,所以()()()4|5P ABP B AP A==,故选A.【考点】条件概率.8.如图,正方形ABCD内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是A.14B.8πC.12D.4π【答案】B【解析】设正方形边长为a,则圆的半径为2a,正方形的面积为2a,圆的面积为2π4a.由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式得,此点取自黑色部分的概率是221ππ248aa⋅=,选B.点睛:对于几何概型的计算,首先确定事件类型为几何概型并确定其几何区域(长度、面积、体积或时间),其次计算基本事件区域的几何度量和事件A区域的几何度量,最后计算()P A.9.设m,n是不同的直线,α,β,γ是三个不同的平面,有以下四个命题:()①若mα⊥,nβ⊥,则//m n;②若mαγ=,nβγ=,//m n,则//αβ;③若//αβ,//βγ,mα⊥,则mγ⊥;A .①③B .②③C .③④D .①④【答案】A【解析】根据空间线面位置关系的性质和判定定理判断或举出反例说明. 【详解】对①,由于垂直于同一个平面的两条直线平行,故①正确;对②,设三棱柱的三个侧面分别为,,αβγ,其中两条侧棱为,m n ,显然//m n ,但α与β不平行,故②错误.对③,∵////αβγ,当m α⊥时,m γ⊥,故③正确.对④,当三个平面,,αβγ两两垂直时,显然结论不成立,故④错误. 故选:A. 【点睛】本题考查空间线面位置关系的判断,属于中档题.10.设映射f :22x x x →-+是实数集M 到实数集P 的映射,若对于实数t P ∈,t 在M 中不存在原象,则t 的取值范围是( )A .()1,+∞B .[)1,+∞C .(),1-∞D .(],1-∞【答案】A【解析】根据二次函数的性质,求出22y x x =-+的值域,再由题意,即可求出结果. 【详解】因为映射f :22x x x →-+是实数集M 到实数集P 的映射, 由22y x x =-+,x ∈R 可得()2111y x =--+≤,即集合P 要包含(],1-∞,又对于实数t P ∈,t 在M 中不存在原象, 所以(],1t ∉-∞,因此1t >. 故选:A. 【点睛】本题主要考查映射的相关计算,考查二次函数的值域,属于基础题型.11.已知0a >且1a ≠,函数()(log a f x x =在区间(),-∞+∞上既是奇函A .B .C .D .【答案】A【解析】根据奇函数求出1b =,根据增函数可知1a >,进而判断函数()g x 的图象. 【详解】 解:函数()(2log a f x x x b =++在区间(),-∞+∞上是奇函数,∴()00f =,则1b =,又函数()(2log a f x x x b =+在区间(),-∞+∞上是增函数,∴1a >.所以()log 1a g x x =-,当1x >时,()()log 1a g x x =-为增函数,排除B ,D 选项;当01x <<时,()()log 1a g x x =-为减函数,排除C . 故选:A. 【点睛】本题考查奇函数的特性,复合函数的增减性,对数函数的性质,考查数形结合的思想,分析问题能力,属于基础题.12.设()221x f x x =+,()()520g x ax a a =+->,若对于任意[]10,1x ∈,总存在[]00,1x ∈,使得()()01g x f x = 成立,则a 的取值范围是( )555【答案】C【解析】先对函数()f x 分0x =和0x ≠,运用二次函数的值域求法,可得()f x 的值域,运用一次函数的单调性求出函数()g x 的值域,由题意可得()f x 的值域包含在()g x 的值域内,可得a 的不等式组,解不等式可得a 的取值范围.【详解】∵()221x f x x =+,当0x =时,()0f x =,当0x ≠时,()22111112422x xx f x ==⎛⎫++- ⎪⎝⎭,由01x <≤,即11x ≥,所以2111224x ⎛⎫+-≥ ⎪⎝⎭, ∴()01f x <≤,故()01f x ≤≤, 又因为()()520g x ax a a =+->,且()052g a =-,()15g a =-. 由()g x 递增,可得()525a g x a -≤≤-,对于任意[]10,1x ∈,总存在[]00,1x ∈,使得()()01g x f x =成立, 可得[][]0,152,5a a ⊆--,可得52051a a -≤⎧⎨-≥⎩∴5,42a ⎡⎤∈⎢⎥⎣⎦. 故选:C . 【点睛】本题主要考查函数恒成立问题以及函数值域的求法,注意运用转化思想,是对知识点的综合考查,属于中档题.二、填空题13.已知集合{}1,2aA =,{},B a b =.若12A B ⎧⎫=⎨⎬⎩⎭,则A B =______.【答案】11,,12⎧⎫-⎨⎬⎩⎭【解析】根据交集的定义得,a b 的值,即可得答案; 【详解】12A B ⎧⎫=⎨⎬⎩⎭,∴112122a A a ∈⇒=⇒=-,∴12b =,∴{}111,21,,1,22aA B ⎧⎫⎧⎫===-⎨⎬⎨⎬⎩⎭⎩⎭, ∴11,,12AB ⎧⎫=-⎨⎬⎩⎭,故答案为:11,,12⎧⎫-⎨⎬⎩⎭. 【点睛】本题考查集合的并运算,考查运算求解能力,属于基础题.14.从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为________. 【答案】16【解析】十个数中任取七个不同的数共有C 种情况,七个数的中位数为6,那么6只有处在中间位置,有C 种情况,于是所求概率P ==.15.二项式6(2x x展开式中含2x 项的系数是________. 【答案】192-【解析】试题分析:通项为()6116322166212rrr r r r r r T C x x C x ----+⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,所以1r =,系数为()151612192C -=-.【考点】二项式展开式.16.若函数()()y f x x R =∈满足()()2f x f x +=且[]1,1x ∈-时,()21f x x =-,函数()()()7log 010x x g x x x ⎧>⎪=⎨-<⎪⎩,则函数()()()h x f x g x =-在区间[]7,7-内零点的个数有_______个. 【答案】12【解析】先由题意,将函数零点个数问题,转化为函数()y f x =与函数()()()7log 010x x g x x x ⎧>⎪=⎨-<⎪⎩图像在区间[]7,7-内交点的个数问题;画出图像,由图像,即可得出结果. 【详解】由()()()0h x f x g x =-=得()()f x g x =,因此函数()()()h x f x g x =-在区间[]7,7-内零点的个数,即为函数()y f x =与函数()()()7log 010x x g x x x ⎧>⎪=⎨-<⎪⎩图像在区间[]7,7-内交点的个数;因为函数()()y f x x R =∈满足()()2f x f x +=,所以()f x 以2为周期; 又[]1,1x ∈-时,()21f x x =-,在同一直角坐标系内,画出()y f x =与()()()7log 010x x g x x x ⎧>⎪=⎨-<⎪⎩的图像如下,由图像可得,函数()y f x =与函数()()()7log 010x x g x x x ⎧>⎪=⎨-<⎪⎩图像共有12个交点,则函数()()()h x f x g x =-在区间[]7,7-内零点的个数有12个.【点睛】本题主要考查判定函数零点的个数,根据数形结合的方法求解即可,属于常考题型.三、解答题17.设命题p :实数x 满足()()30x a x a --<,其中0a >,命题q :实数x 满足302x x -≤-. (1)若1a =,且p q ∧为真,求实数x 的取值范围; (2)若p ⌝是q ⌝的充分不必要条件,求实数a 的取值范围. 【答案】(1)()2,3;(2)12a <≤.【解析】(1)若1a =,分别求出p ,q 成立的等价条件,利用且p q ∧为真,求实数x 的取值范围;(2)利用p ⌝是q ⌝的充分不必要条件,即q 是p 的充分不必要条件,求实数a 的取值范围. 【详解】解:由()()30x a x a --<,其中0a >,得3a x a <<,0a >,则p :3a x a <<,0a >.由302x x -≤-解得23x <≤.即q :23x <≤. (1)若1a =,则p :13x <<,若p q ∧为真,则p ,q 同时为真,即2313x x <≤⎧⎨<<⎩,解得23x <<,∴实数x 的取值范围()2,3.(2)若p ⌝是q ⌝的充分不必要条件,即q 是p 的充分不必要条件, ∴332a a >⎧⎨≤⎩,即12a a >⎧⎨⎩,解得12a <≤.【点睛】本题主要考查复合命题与简单命题之间的关系,利用逆否命题的等价性将p ⌝是q ⌝的充分不必要条件,转化为q 是p 的充分不必要条件是解决本题的关键,属于基础题. 18.选修4-4:坐标系与参数方程 在直角坐标系xOy 中,曲线1cos ,:{sin ,x t C y t αα== (t 为参数,且0t ≠ ),其中0απ≤<,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线23:2sin ,:23cos .C C ρθρθ== (Ⅰ)求2C 与3C 交点的直角坐标;(Ⅱ)若1C 与2C 相交于点A,1C 与3C 相交于点B,求AB 最大值.【答案】(Ⅰ)()330,0,,2⎛⎫ ⎪ ⎪⎝⎭;(Ⅱ)4. 【解析】(Ⅰ)曲线2C 的直角坐标方程为2220x y y +-=,曲线3C 的直角坐标方程为22230x y x +-=.联立222220,{230,x y y x y x +-=+-=解得0,{0,x y ==或3,2{3,2x y ==所以2C 与1C 交点的直角坐标为(0,0)和33(,)2. (Ⅱ)曲线1C 的极坐标方程为(,0)R θαρρ=∈≠,其中0απ≤<.因此A 得到极坐标为(2sin ,)αα,B 的极坐标为.所以2sin 23AB αα=-4()3sin πα=-,当56πα=时,AB 取得最大值,最大值为4.【考点】1、极坐标方程和直角坐标方程的转化;2、三角函数的最大值.19.已知函数()3f x x a x =--+,a R ∈.(1)当1a =-时,解不等式()1f x ≤;(2)若对于[]0,3x ∈时,()4f x ≤恒成立,求a 的取值范围.【答案】(1)5|2x x ⎧⎫≥-⎨⎬⎩⎭;(2)77a -≤≤.【解析】(1)当1a =-时,不等式为131x x +-+≤,分三段3x <-,31x -≤≤-,1x >-分别讨论求解不等式; (2)当[]0,3x ∈时,原问题转化为772a x -≤≤+对于[]0,3x ∈恒成立,由不等式的恒成立思想可得答案.【详解】解:(1)当1a =-时,不等式为131x x +-+≤,当3x <-时,()()131x x -+--+≤⎡⎤⎣⎦,即21≤,所以x ∈∅;当31x -≤≤-时,()()131x x -+-+≤,即241x --≤,解得52x ≥-,∴512x -≤≤-; 当1x >-时,()()131x x +-+≤,即21-≤,所以1x >-; ∴不等式的解集为5|2x x ⎧⎫≥-⎨⎬⎩⎭.(2)当[]0,3x ∈时,()4f x ≤即437a x x x -≤++=+,即()77x a x x -+≤-≤+对于[]0,3x ∈恒成立,即772a x -≤≤+对于[]0,3x ∈恒成立,而当[]0,3x ∈时,77213x ≤+≤,∴77a -≤≤.【点睛】本题考查绝对值不等式的解法,由不等式恒成立求参数的范围,属于中档题.20.已知函数()4log f x x =,1,416x ⎡⎤∈⎢⎥⎣⎦的值域为集合A ,关于x 的不等式()3122x a xa R +⎛⎫>∈ ⎪⎝⎭的解集为B ,集合501x C x x ⎧⎫-=≥⎨⎬+⎩⎭,集合{}()|1210D x m x m m =+≤<->.(1)若A B B ⋃=,求实数a 的取值范围;(2)若D C ⊆,求实数m 的取值范围.【答案】(1)(),4-∞-;(2)(]0,3.【解析】(1)根据指数函数性质,先求出[]2,1A =-,解指数不等式,求出,4a B ⎛⎫=-∞- ⎪⎝⎭,根据A B B ⋃=得A B ⊆,由此列出不等式求解,即可得出结果; (2)先解分式不等式,求出(]1,5C =-,根据D C ⊆,分别讨论121m m +≥-,121m m +<-两种情况,即可得出结果.【详解】(1)由对数函数的单调性可得,()4log f x x =在1,416⎡⎤⎢⎥⎣⎦上单调递增, 所以其值域()[]1,42,116A f f ⎡⎤⎛⎫==- ⎪⎢⎥⎝⎭⎣⎦, 又由()3122x a x a R +⎛⎫>∈ ⎪⎝⎭可得:()322x a x -+>,即:3x a x -->,所以4a x <-, 所以,4a B ⎛⎫=-∞-⎪⎝⎭, 又A B B ⋃=所以可得:A B ⊆, 所以14a ->,所以4a ,即实数a 的取值范围为(),4-∞-. (2)因为501x x -≥+,所以有501x x -≤+,所以15x -<≤,所以(]1,5C =-, 对于集合{}|121D x m x m C =+≤<-⊆有:①当121m m +≥-时,即02m <≤时D =∅,满足D C ⊆;②当121m m +<-时,即2m >时D ≠∅,所以有:1123215m m m +>-⎧⇒-<≤⎨-≤⎩, 又因为2m >,所以23m <≤,综上:由①②可得:实数m 的取值范围为(]0,3.【点睛】本题主要考查由并集的结果求参数,考查由集合的包含关系求参数,涉及指数函数与对数函数的性质,以及分式不等式解法,属于常考题型.21.生产某种产品的年固定成本为250万元,每生产x 千件,需要另投入成本为()C x ,当年产量不足80千件时,()3120360C x x x =+(万元),当年产量不小于80千件时,()10000511450C x x x=+-(万元),通过市场分析,每件商品售价为0.05万元时,该商品能全部售完.(1)写出年利润()L x (万元)关于年产量x (千件)的函数解析式(利润=销售额-成本);(2)年产量为多少千件时,生产该商品获得的利润最大.【答案】(1)3130250080360()10000120080x x x L x x x x ⎧-+-≤<⎪⎪=⎨⎛⎫⎪-+≥ ⎪⎪⎝⎭⎩;(2)100 千件. 【解析】(1)根据题意,得到x 千件..商品销售额为0.051000x ⨯万元,分别求出080x ≤<和80x ≥两种情况,即可求出函数解析式;(2)根据(1)的结果,用导数的方法和基本不等式,分别求出两段的最值,即可得出结果.【详解】(1)因为每件..商品售价为0.05万元,则x 千件..商品销售额为0.051000x ⨯万元,依题意得,当080x ≤<时,()()310.05100020250360L x x x x =⨯---3130250360x x =-+-; 当80x ≥时,1000010000()(0.051000)5114502501200L x x x x x x ⎛⎫=⨯--+-=-+ ⎪⎝⎭. 即3130250080360()10000120080x x x L x x x x ⎧-+-≤<⎪⎪=⎨⎛⎫⎪-+≥ ⎪⎪⎝⎭⎩. (2)当080x ≤<时,()3130250360L x x x =-+-. ()21'300120L x x =-+=,60x =±. 此时,当60x =时,()L x 取得最大值()60950L =(万元).当80x ≥时,10000()120012001000L x x x ⎛⎫=-+≤-= ⎪⎝⎭, 当且仅当10000x x=,即100x =时,()L x 取得最大值1000(万元). 因为9501000<,所以当年产量为100千件时,生产该商品获利润最大.答:当年产量为100 千件时,生产该商品获利润最大.【点睛】本题主要考查函数模型的应用,考查导数的应用,涉及基本不等式求最值,属于常考题型.22.从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下图频率分布直方图:(I )求这500件产品质量指标值的样本平均值x 和样本方差2s (同一组的数据用该组区间的中点值作代表);(II )由直方图可以认为,这种产品的质量指标Z 服从正态分布()2,N μσ,其中μ近似为样本平均数x ,2σ近似为样本方差2s .(i )利用该正态分布,求()187.8212.2P Z <<;(ii )某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值位于区间()187.8,212.2的产品件数.利用(i )的结果,求EX .15012.2≈若()2~,Z N μσ则()0.6826P Z μσμσ-<<+=,()220.9544P Z μσμσ-<<+=.【答案】(I )200,150;(II )(i )0.6826;(ii )68.26. 【解析】试题分析:(I )由频率分布直方图可估计样本特征数众数、中位数、均值、方差.若同一组的数据用该组区间的中点值作代表,则众数为最高矩形中点横坐标.中位数为面积等分为12的点.均值为每个矩形中点横坐标与该矩形面积积的累加值.方差是矩形横坐标与均值差的平方的加权平均值.(II )(i )由已知得,Z ~(200,150)N ,故()187.8212.2P Z <<(20012.2200P Z =-<<12.2)0.6826+=;(ii )某用户从该企业购买了100件这种产品,相当于100次独立重复试验,则这100件产品中质量指标值位于区间()187.8,212.2的产品件数(100,0.6826)X B ~,故期望1000.682668.26EX =⨯=.试题分析:(I )抽取产品的质量指标值的样本平均值x 和样本方差2s 分别为1700.021800.091900.22x =⨯+⨯+⨯+2000.332100.242200.08⨯+⨯+⨯+2300.02⨯200=,2222222(30)0.02(20)0.09(10)0.2200.33100.24200.08300.02s =-⨯+-⨯+-⨯+⨯+⨯+⨯+⨯150=.(II )(i )由(I )知,Z 服从正态分布(200,150)N ,从而()187.8212.2P Z <<(20012.2200P Z =-<<12.2)0.6826+=.(ii )由(i )可知,一件产品的质量指标值位于区间()187.8,212.2的概率为0.6826,依题意知(100,0.6826)X B ~,所以1000.682668.26EX =⨯=.【考点定位】1、频率分布直方图;2、正态分布的3σ原则;3、二项分布的期望.。

高三数学第一次月考试卷及解答试题

高三数学第一次月考试卷及解答试题

卜人入州八九几市潮王学校2021届一中高三第一次月考数学试卷〔理科〕本套试卷总分值是150分,考试时间是是120分钟.一.选择题:本大题一一共8小题,每一小题5分,一共40分.在每一小题给出的四个选项里面, 只有一项为哪一项哪一项符合题目要求的.请把答案填在答卷页的表格内.}6,5,4,3,2,1,0{=U ,集合}4,3,1,0{=A ,集合}6,5,3,1{=B ,那么)(B C A U =〔〕A.}3,1{ B.}4,0{ C.}4,1,0{ D.}4,3,2,1,0{1:+x p ≤4,条件65:2+-x x q ≤0,那么p ⌝是q ⌝的〔〕 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.假设011<<b a ,那么以下结论中,不正确的选项是〔〕A .2b ab<B .22b a<C .2>+b a a bD .||||||b a b a -=-“,R x ∈∀x 2cos ≤x 2cos 〞的否认为()A.,R x ∈∀x 2cos x 2cos >B.,R x ∈∃x 2cos x 2cos >C.,R x ∈∀x 2cos <x 2cos D.,R x ∈∃x 2cos ≤x 2cos0>a ,假设关于x 的不等式2+ax ≥bx +2的解集为R ,那么b 的取值范围是〔〕A.<b2B.b ≤2 C.0<b ≤2D.0<<b 26.在极坐标系中,直线1cos =θρ与圆θρcos =的位置关系为〔〕A .相切B .相离C .直线过圆心D .直线与圆相交但不过圆心7.现从甲、乙、丙等6名学生中安排4人参加4×100m 接力赛跑。

第一棒只能从甲、乙两人中安排1人,第四棒只能从甲、丙两人中安排1人,那么不同的安排方案一共有〔〕A .24种B .36种C .48种D .72种α+=+n 2009)310(,其中n 是正整数,α是小数,且10<<α,那么n 的值是〔〕A.αα-1B.21αα- C.αα21- D.αα-1二.填空题:〔只要求写出最后结果,并把结果写在答卷页的相应位置上,每一小题5分,一共35分〕x x x f 2666)(-+-=的最大值为nxx )1(+的展开式中,只有第6项的系数最大,那么,nx x )2(+展开式中2x 项的 系数为22cos lg(9)cos lg(9)x x x x +-<+-的解集为12.有10名同学先站成了前排3人后排7人来照毕业纪念像,但如今摄影师要从后排7人中抽2人 调整到前排,并使另外8个人的相对顺序不变,那么不同调整方法的总数是〔用数字答题〕13.假设参数方程⎩⎨⎧-=+=--θθsin )(cos )(t t t t e e y e e x (其中t 为参数,θ为常数,且θ为锐角)所表示的是离心率为2的双曲线,那么锐角θ的值是11)(--+=x x x f ,那么使)2()12(+=+x f x f 成立的x 取值范围是Rt △ABC 中,CA ⊥CB ,斜边AB 上的高为h1,那么有:2221111CB CA h +=;类比此性质,在四面体P —ABC 中,假设PA ,PB ,PC 两两垂直,底面ABC 上的高为h , 那么得到的正确结论为:一.选择题答案卡:〔每一小题5分,一共40分.〕二、填空题答案卡:〔每一小题5分,一共35分.〕10.18011.)22,2()2,22(ππ --;12013π4.),0[]3,(+∞--∞ ;15.22221111PC PB PA h++= 三、解答题:〔本大题一一共6小题,总分值是75分.解容许写出文字说明、证明过程或者演算步骤.〕 16.〔此题总分值是12分〕p :[]21,2,0x x a ∀∈-≥.q :x ∃∈R ,使得2(1)10x a x +-+<.假设p 或者q 为真,p 且q 为假,求a 的取值范围.解:假设p 真,那么2x 的最小值≥a ,即1≥a ;(2分)假设q 真,那么04)1(2>--=∆a ,即,3>a 或者1-<a ;(2分) 假设p 或者q 为真,p 且q 为假,那么p 与q 为一真一假。

2021届湖南省长沙市第一中学高三第一次月考数学(理)试题Word版含解析

2021届湖南省长沙市第一中学高三第一次月考数学(理)试题Word版含解析

2021届湖南省长沙市第一中学高三第一次月考数学(理)试题一、单选题1.已知集合A ={}{}3(,),(,)x y y xB x y y x ===,则A ∩B 的元素个数是( ) A .4B .3C .2D .1【答案】B 【解析】首先求解方程组3y x y x⎧=⎨=⎩,得到两曲线的交点坐标,进而可得答案.【详解】联立3y x y x⎧=⎨=⎩,解得1,0,1x =-即3y x =和y x =的图象有3个交点()11--,,()0,0,(11),, ∴集合A B 有3个元素,故选B.【点睛】 本题考查了交集及其运算,考查了方程组的解法,是基础题.2.已知i 为虚数单位,a ∈R ,若复数z =a +(1-a ) i 的共轭复数在复平面内对应的点位于第一象限,且5z z ⋅=,则z =( )A .2-iB .-1+2iC .-1-2iD .-2+3i【答案】A【解析】通过复数的运算得到方程()2215a a +-=,根据其在复平面的位置得到结果.【详解】 由5z z ⋅=可得()2215a a +-=,解得1a =-或2a =,∴12z i =-+或2z i =-,∵在复平面内对应的点位于第一象限,∴2z i =-,故选A.【点睛】本题主要考查了复数的运算以及其几何意义,属于基础题.3.设x ∈R ,则“x 2<1”是“lg x <0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】B【解析】解出不等式,结合充分条件、必要条件的概念即可得到结果.【详解】∵21x <11x ⇔-<<,lg 0x <⇔01x <<, 01x <<⇒11x -<<,11x -<<不能推出01x <<,∴“21x <”是“lg 0x <”的必要不充分条件,故选B.【点睛】本题主要考查了不等式的解法,充分条件、必要条件的概念,属于基础题.4.已知向量a =(1,0),b =(-3,4)的夹角为θ,则sin2θ等于 ( )A .725-B .725C .2424-D .2425【答案】C【解析】首先根据向量夹角公式求出cos θ的值,然后求出sin θ,最后根据二倍角正弦公式即可得出结果.【详解】 33cos 155a ba b θ⋅==-=-⨯⋅, ∵0θπ≤≤,∴4sin 5θ==,24sin 22sin cos 25θθθ==-,故选C. 【点睛】本题主要考查了向量夹角的计算以及二倍角正弦公式的应用,属于中档题.5.设a =183log ,b =244log ,c =342,则a 、b 、c 的大小关系是 ( ) A .a <b <cB .a <c <bC .b <c <aD .c <b <a 【答案】D【解析】利用指数函数和对数函数的单调性可得2c <,2a >,2b >,将,a b 分别表示为631log a =+,641log b =+,进而可得结果.【详解】314222c =<=,18933log log 2a =>=,241644log log 2b =>>, 所以c 最小,因为18633log 1log a ==+,24644log 1log b ==+,∵6643log log <,∴a b >,故选D【点睛】本题主要考查了指数函数,对数函数的单调性的应用,寻找中间量是解题的关键,属于中档题.6.函数f (x )=(33)ln x xx -+的图象大致为( ) A . B .C .D .【答案】D【解析】由函数为偶函数可排除B ,由()0,1x ∈,()0f x <,可排除,A C ,进而可得结果.【详解】∵()(33)ln x x f x x -=+,函数定义域为{}0x x ≠, ()()(33)ln (33)ln x x x x f x x x f x ---=+-=+=,∴函数()f x 为偶函数,其图象关于y 轴对称,可排除B.当()01x ∈,时,330x x -+>,ln 0x <,()0f x <,其图象应在x 轴下方,可排除,A C ,故选D.【点睛】本题主要考查了由函数的解析式判断函数的图象,主要根据函数的性质利用排除法得到结果,属于中档题.7.运行如图所示的程序框图,若输出的S 的值为101,则判断框中可以填( )A .200?i >B .201?i ≥C .202?i >D .203?i > 【答案】C 【解析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】程序的功能是计算3571sin 3sin 5sin 7sin 2222S ππππ=⨯+⨯+⨯+⨯+=1357-+-+,而101150213579199201=+⨯=-+-++-+,2012203i =+=,故条件为202?i >,故选C.【点睛】 本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.8.中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)的一种,现有十二生肖的吉物各一个,甲、乙、丙三位同学依次选一个作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、兔、狗和羊,丙同学哪个吉祥物都喜欢,如果让三位同学选取的礼物都满意,那么不同的选法有( )A .50种B .60种C .70种D .90种【答案】C【解析】根据题意,按同学甲的选择分2种情况讨论,求出每种情况的选法数目,由加法原理计算可得答案.【详解】根据题意,分2种情况讨论:如果同学甲选牛,那么同学乙只能选兔、狗和羊中的一种,丙同学可以从剩下的10种中任意选,∴选法有1131030C C ⋅=种;如果同学甲选马,那么同学乙能选牛、兔、狗和羊中的一种,丙同学可以从剩下的10种中任意选,∴选法有种1141040C C ⋅=,不同的选法共有304070+=种,故选C.【点睛】本题主要考查排列、组合的应用,涉及分类计数原理的运用,属于基础题.9.将函数()2sin(2)16f x x π=--的图象向左平移6π个单位长度得到函数()g x 的图象,则下列说法正确的是 ( )A .函数()g x 的最小正周期是2πB .函数()g x 的图象关于直线12x π=-对称C .函数()g x 在,62ππ⎛⎫ ⎪⎝⎭上单调递减 D .函数()g x 在0,6π⎛⎫ ⎪⎝⎭上的最大值是1 【答案】C 【解析】求出函数的周期判断A 的正误;函数的对称轴判断B 的正误;函数的单调性判断C 的正误;函数的最值判断D 的正误;【详解】 由题意知:()2sin(2)16g x x π=+-,最小正周期T 22ππ==,选项A 错误; 当12x π=-时,112g π⎛⎫-=- ⎪⎝⎭, 即函数()g x 的图象关于点(,1)12π--对称,选项B 错误; 当(,)62x ππ∈时,72(,)626x πππ+∈, ∴函数()g x 在,62ππ⎛⎫ ⎪⎝⎭上单调递减,选项C 正确;∵函数()g x 在0,6π⎛⎫ ⎪⎝⎭上单调递增,()()16g x g π<=, 即函数()g x 在0,6π⎛⎫ ⎪⎝⎭上没有最大值, ∴选项D 错误,故选C.【点睛】本题考查三角函数的简单性质,最值、单调性、周期以及单调性,考查命题的真假的判断,属于中档题.10.若()ln f x x =与()23g x x x a ++=两个函数的图象有一条与直线y x =平行的公共切线,则a = ( )A .-1B .0C .1D .3 【答案】B【解析】求出切线方程,利用公切线结合判别式0=推出结果即可.【详解】在函数()ln f x x =上的切点设为(,)x y , 根据导数的几何意义得到11x=⇒1x =, 故切点为(10),,可求出切线的方程为1y x =-, 因为直线l 和()23g x x x a ++=也相切,从而231x x a x ++=-, 化简得到2210x x a +++=,只需要满足()4410a ∆-+==,所以0a =故选B.【点睛】本题考查函数的导数的应用,切线方程的求法,考查转化思想以及计算能力,属于中档题.11.设函数()1,0,x f x x ⎧=⎨⎩为有理数为无理数,则关于函数()f x 有以下五个命题: ①x ∈R ,()()1f f x =; ②()(),,()x y R f x y f x f y ∃∈+=+; ③函数()f x 是偶函数; ④函数()f x 是周期函数;⑤函数()f x 的图象是两条平行直线其中真命题的个数是( )A .5B .4C .3D .2【答案】B 【解析】由()0f x =或1,计算可判断①;由0x =0y =断③;由周期函数的定义可判断④;由x 的范围可判断⑤.【详解】由()10x f x x ⎧=⎨⎩,为有理数,为无理数, 可得()0f x =或1,则x R ∀∈,()f x 为有理数,则()()1f f x =,故①正确;当0x =0y =()()()0000f x y f x f y +=+,故②正确;∵x 为有理数,则x -为有理数,x 为无理数,则x -为无理数,∴函数()f x 是偶函数,故③正确;任何一个非零的有理数T ,都有f x Tf x ,则T 是函数的周期, ∴函数()f x 是周期函数,故④正确;由于x 为有理数,()1f x =;x 为无理数时,()0f x =,()f x 的图象不为连续的直线,故⑤错误.∴真命题的个数是4个,故选B .【点睛】本题考查命题的真假判断,主要是分段函数的周期性和函数值的特点,以及图象特点,考查判断能力和推理能力,属于基础题.12.已知三棱锥D —ABC 的四个顶点在球O 的球面上,若AB =AC =BC =DB =DC =1,当三棱锥D —ABC 的体积取到最大值时,球O 的表面积为( )A .53πB .2πC .5πD .203π 【答案】A【解析】三棱锥D-ABC 的体积取到最大值时,平面ABC ⊥平面DBC ,取BC 的中点G ,连接AG ,DG ,分别取△ABC 与△DBC 的外心E ,F ,分别过E ,F 作平面ABC 与平面DBC 的垂线,相交于O ,则O 为四面体ABCD 的球心,求出外接球的半径,然后求解球的表面积.【详解】如图,当三棱锥D ABC -的体积取到最大值时,则平面ABC 与平面DBC 垂直,取BC 的中点G ,连接AG ,DG ,则AG BC ⊥,DG BC ⊥分别取ABC △与DBC △的外心E ,F ,分别过E ,F 作平面ABC 与平面DBC 的垂线,相交于O ,则O 为四面体ABCD 的球心,由1AB AC BC DB DC =====,得正方形OEGF 的边长为36,则OG =66∴四面体A BCD -的外接球的半径R 2222615()()6212OG BG =+=+=∴球O 的表面积为=2554(123ππ⨯=,故选A. 【点睛】 本题考查直线与平面垂直的判断,几何体的外接球的表面积的求法,几何体的体积的求法,考查空间想象能力以及计算能力.二、填空题13.已知定义在R 上的奇函数()f x 满足()()3f x f x +=,且当3[0,)2x ∈时,()2f x x =-,则112f ⎛⎫= ⎪⎝⎭____ 【答案】14【解析】求出函数的周期,结合函数的奇偶性,转化求解函数值即可.【详解】由()()3f x f x +=知函数()f x 的周期为3,又函数()f x 为奇函数,所以2111111()()()()22224f f f =-=-==, 故答案为14. 【点睛】本题考查函数的奇偶性的性质与应用,函数值的求法,考查转化思想以及计算能力,属于基础题.14.已知ABC △是等腰直角三角形,1,2()AC BC CP CA CB ===+,则AP BP ⋅=____【答案】4【解析】利用已知条件将,AP BP 分别用,CA CB 表示,然后求解向量的数量积即可.【详解】∵2,2AP AC CP CA CB BP BC CP CA CB =+=+=+=+.∴22(2)(2)224AP BP CA CB CA CB CA CB ⋅=+⋅+=+=,故答案为4.【点睛】本题主要考查了向量的线性运算,考查向量的数量积的运算,是基本知识的考查.15.秦九韶是我国南宋著名数学家,在他的著作数书九章》中有已知三边求三角形面积的方法:“以小斜幂并大斜幂减中斜幂余半之,自乘于上以小斜幂乘大斜幂减上,余四约之为实一为从隅,开平方得积”如果把以上这段文字写成公式就是S =,共中a 、b 、c 是△ABC 的内角A ,B ,C 的对边。

高三第一次月考数学试卷

高三第一次月考数学试卷

高三第一次月考数学试卷一、选择题(每题5分,共60分)1.已知集合A={x∣x2−3x−4≤0},则A的解集为:A. (−1,4]B. [−1,4]C. (−∞,−1]∪[4,+∞)D. [−4,3]2.复数z=1+i2i的共轭复数为:A. 1−iB. 1+iC. −1+iD. −1−i3.函数f(x)=log2(x2−2x−3)的定义域为:A. (−∞,−1)∪(3,+∞)B. (−1,3)C. [−1,3]D. (−∞,−1]∪[3,+∞)4.已知向量a=(1,2),b=(3,−1),则a⋅b=:A. 1B. -1C. 5D. -55.下列函数中,在区间(0,+∞)上单调递增的是:A. y=x1B. y=x2−2xC. y=log21xD. y=2x6.已知等差数列{an}的前n项和为Sn,若a1=1,S3=−3,则a2+a4=:A. -4B. -2C. 0D. 27.下列命题中,正确的是:A. 若a>b,则ac2>bc2B. 若a>b,c>d,则a−d>b−cC. 若a>b,c>d,则ac>bdD. 若a>b,则a1<b18.已知函数f(x)=sin(2x+6π),则f(6π)的值为:A. 21B. −21C. 23D. −239.已知抛物线y2=2px(p>0)的焦点为F,准线为l,过F的直线与抛物线交于A,B两点,交准线l于D,若BF=3FA,则∣AB∣∣DF∣=:A. 21B. 31C. 32D. 4310.已知函数f(x)=ln(x+1)−x+1ax在其定义域内单调递增,则实数a的取值范围是:A. (−∞,1]B. [−1,+∞)C. (−∞,−1]D. [1,+∞)11.已知椭圆C:a2x2+b2y2=1(a>b>0)的左、右焦点分别为F1,F2,过F1的直线与椭圆C交于A,B两点,若∣BF2∣=2∣AF2∣,4cos∠AF1F2=10,则C的离心率为:A. 22B. 23C. 35D. 3612.已知函数f(x)={(3a−1)x+4a,log ax,x<1x≥1是(−∞,+∞)上的减函数,则实数a的取值范围是:A. (0,71]B. [71,31)C. (0,31]D. [31,1)二、填空题(每题5分,共20分)1.若x,y∈R,且xy=2,则x2+y2的最小值为 _______。

高三数学月考试卷理含解析试题

高三数学月考试卷理含解析试题

第八中学东校区2021届高三10月单元检测本卷贰O贰贰年贰月捌日编写;出题人:令狐学复;欧阳化语;令狐理总。

〔月考〕数学〔理〕试题一、选择题。

1.复数z满足,那么复数z在复平面内的对应点位于〔〕A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】【分析】把等式变形,利用复数代数形式的乘除运算化简得答案.【详解】解:由,得.∴复数z在复平面内的对应点的坐标为,位于第一象限.应选:A.【点睛】此题考察复数代数形式的乘除运算,考察复数的代数表示法及其几何意义,是根底题.2.设向量,满足,那么〔〕A. 2B.C. 4D.【答案】B【解析】【分析】由条件利用两个向量的数量积的定义求得,从而求得的值.【详解】解:∵,∴∵向量,满足∴∴那么应选:B.【点睛】此题主要考察两个向量的数量积的定义,求向量的模的方法,属于根底题.3.给出以下四个命题:①假设,那么或者;②,都有;③“〞是函数“的最小正周期为〞的充要条件;④的否认是“〞;其中真命题的个数是〔〕A. 1B. 2C. 3D. 4【答案】A【解析】【分析】利用交集的定义判断①的正误;利用反例判断②的正误;利用三角函数的周期判断③的正误;利用命题的否认判断④的正误;【详解】解:对于①假设,那么或者;显然不正确,不满足交集的定义;所以①不正确;对于②,都有;当时,不等式不成立,所以②不正确;对于③“〞是函数“,函数的最小正周期为〞的充要条件;不正确,当时,函数的周期也是,所以③不正确;对于④“〞的否认是“〞;满足命题的否认形式,正确;应选:A.【点睛】此题考察命题的真假的判断与应用,考察函数恒成立、三角函数的周期、交集的定义、命题的否认,是根底题.4.函数是定义在R上的偶函数,且,且对任意,有成立,那么的值是〔〕A. 1B. -1C. 0D. 2【答案】A【解析】【分析】求出函数的周期,利用周期和条件得出答案.【详解】解:∵是偶函数,∴,∴,∴,∴的周期为4,∴.应选:A.【点睛】此题考察了函数的奇偶性与周期,考察函数值的计算,属于中档题.5.函数的零点的个数是〔〕A. 2个B. 3个C. 4个D. 5个【答案】B【解析】当时,由函数图像可知有两个交点;当时,有一个零点,所以一共有3个零点,选B.6.在平行四边形ABCD中, AD =" 1,", E为CD的中点. 假设, 那么AB的长为 . 【答案】【解析】设AB的长为,因为,,所以==+1+=1,解得,所以AB的长为.【考点定位】本小题主要考察平面向量的数量积等根底知识,纯熟平面向量的根底知识是解答好本类题目的关键.7.数列的前n项和为,且,那么使不等式成立的n的最大值为〔〕A. 3B. 4C. 5D. 6【答案】B【解析】【分析】根据题意,由数列满足分析可得数列的通项公式,进而可得,分析可得数列是以1为首项,4为公比的等比数列,由等比数列前n项和公式分析可得,变形可得,结合n的范围即可得n的最大值,即可得答案.【详解】解:根据题意,数列满足,当时,,得,当时,,即,所以又∵满足上式,即是以2为公比,1为首项的等比数列那么,那么,那么数列是以1为首项,4为公比的等比数列,那么,假设,那么有,变形可得:,又由,那么,即n的最大值为4;应选:B.【点睛】此题考察数列的递推公式,涉及等比数列的性质以及前n项和的计算,关键是推导数列的通项公式.8.函数,那么的图象大致为〔〕A. B.C. D.【答案】A【解析】【分析】利用特殊值,对函数图像进展排除,由此得出正确选项.【详解】由于,,排除D选项.应选A.【点睛】本小题主要考察详细函数的解析式,判断函数的图像,属于根底题.9.定义在R上的可导函数的导函数为,满足,且为偶函数,,那么不等式的解集为〔〕A. B. C. D.【答案】B【解析】【分析】令,利用导数和即可得出其单调性.再利用函数的奇偶性和可得,即可得出.【详解】解:设那么∵,∴.所以函数是R上的减函数,∵函数是偶函数,∴函数,∴函数关于对称,∴,原不等式等价为,∴不等式等价,.∵在R上单调递减,∴.应选:B.【点睛】此题考察了利用导数研究函数的单调性、利用函数的单调性解不等式、函数的奇偶性及对称性的应用.10.在锐角中,角的对边分别为,假设,,那么的取值范围是〔〕A. B. C. D.【答案】B【解析】由题意可得:,,,,故答案选点睛:在解三角形中求范围问题往往需要转化为角的问题,利用辅助角公式,结合角的范围求得最后结果。

宁夏银川一中2022届高三上学期第一次月考数学试题(理科) Word版含解析

宁夏银川一中2022届高三上学期第一次月考数学试题(理科) Word版含解析

2021-2022学年宁夏银川一中高三(上)第一次月考数学试卷(理科)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x>1},B={0,1,2,4},则(C R A)∩B=()A.{0,1} B.{0} C.{2,4} D.∅2.下列命题中是假命题的是()A.∀x∈R,2x﹣1>0 B.∀x∈N﹡,(x﹣1)2>0 C.∃x∈R,lgx<1 D.∃x∈R,tanx=23.,则m等于()A.﹣1 B.0 C.1 D.24.下列函数中,既是偶函数,又在区间(1,2)内是增函数的为()A.y=cos2x B.y=log2|x| C . D.y=x3+15.若tanθ+=4,则sin2θ=()A .B .C .D .6.若x∈(0,1),则下列结论正确的是()A .B .C .D .7.已知P、Q是圆心在坐标原点O的单位圆上的两点,分别位于第一象限和第四象限,且P 点的纵坐标为,Q 点的横坐标为.则cos∠POQ=()A .B .C .﹣D .﹣8.现有四个函数:①y=x•sinx;②y=x•cosx;③y=x•|cosx|;④y=x•2x的图象(部分)如下:则依据从左到右图象对应的函数序号支配正确的一组是()A.①④③②B.③④②①C.④①②③D.①④②③9.设函数,其中,则导数f′(﹣1)的取值范围()A.[3,6]B .C .D .10.函数的图象与x 轴的交点的横坐标构成一个公差为的等差数列,要得到函数g(x)=Acosωx的图象,只需将f(x)的图象()A .向左平移个单位B .向右平移个单位C .向左平移个单位D .向右平移个单位11.若函数f(x )满足,当x∈[0,1]时,f(x)=x,若在区间(﹣1,1]上,g(x)=f (x)﹣mx﹣m有两个零点,则实数m的取值范围是()A .B .C.(0,1)D .12.设函数,且αsinα﹣βsinβ>0,则下列不等式必定成立的是()A.α>β B.α<β C.α+β>0 D.α2>β2二、填空题:本大题共4小题,每小题5分,共20分.13.如图,某港口一天6时到18时的水渠变化曲线近似满足函数y=3sin (x+φ)+k.据此函数可知,这段时间水深(单位:m )的最大值为.14.已知,,则=.15.已知点P在曲线y=上,a为曲线在点P处的切线的倾斜角,则a的取值范围是.16.给出下列四个命题:①半径为2,圆心角的弧度数为的扇形面积为②若α,β为锐角,,则③是函数y=sin(2x+φ)为偶函数的一个充分不必要条件④函数的一条对称轴是其中正确的命题是.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)(2021秋•乌拉特前旗校级月考)某同学用五点法画函数f(x)=Asin(ωx+ϕ),(ω>0,|ϕ|<)在某一个周期内的图象时,列表并填入了部分数据,如下表:ωx+ϕ0 π2πxAsin(ωx+ϕ)0 5 ﹣5 0(1)请将上表数据补充完整,并直接写出函数f(x)的解析式;(2)若函数f(x)的图象向左平移个单位后对应的函数为g(x),求g(x)的图象离原点最近的对称中心.18.(12分)(2022•江西)已知函数f(x )=(a+2cos2x)cos(2x+θ)为奇函数,且f ()=0,其中a∈R,θ∈(0,π).(1)求a,θ的值;(2)若f ()=﹣,α∈(,π),求sin(α+)的值.19.(12分)(2022•佛山二模)某种产品每件成本为6元,每件售价为x元(x>6),年销量为u万件,若已知与成正比,且售价为10元时,年销量为28万件.(1)求年销售利润y关于x的函数关系式.(2)求售价为多少时,年利润最大,并求出最大年利润.20.(12分)(2022•天津模拟)已知函数f(x)=x3﹣3ax2+b(x∈R),其中a≠0,b∈R.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)设a∈[,],函数f(x)在区间[1,2]上的最大值为M,最小值为m,求M﹣m的取值范围.21.(12分)(2021•大观区校级四模)已知函数f(x)=ax+xlnx(a∈R)(1)若函数f(x)在区间[e,+∞)上为增函数,求a的取值范围;(2)当a=1且k∈z时,不等式k(x﹣1)<f(x)在x∈(1,+∞)上恒成立,求k的最大值.请考生在第22、23、24三题中任选一题作答,假如多做,则按所做的第一题记分.答时用2B铅笔在答题卡上把所选题目的题号涂黑.选修4-1:几何证明选讲22.(10分)(2021•金昌校级模拟)如图,AB是⊙O的一条切线,切点为B,ADE、CFD都是⊙O的割线,AC=AB,CE交⊙O于点G.(Ⅰ)证明:AC2=AD•AE;(Ⅱ)证明:FG∥AC.选修4-4:坐标系与参数方程23.(2021•鹰潭一模)选修4﹣4:坐标系与参数方程.极坐标系与直角坐标系xoy有相同的长度单位,以原点为极点,以x轴正半轴为极轴,已知曲线C1的极坐标方程为ρ=4cosθ,曲线C2的参数方程为(t为参数,0≤α<π),射线θ=φ,θ=φ+,θ=φ﹣与曲线C1交于(不包括极点O)三点A、B、C.(I)求证:|OB|+|OC|=|OA|;(Ⅱ)当φ=时,B,C两点在曲线C2上,求m与α的值.选修4-5:不等式选讲24.(2021•鹰潭一模)已知函数f(x)=|x+2|﹣2|x﹣1|(1)解不等式f(x)≥﹣2;(2)对任意x∈[a,+∞),都有f(x)≤x﹣a成立,求实数a的取值范围.2021-2022学年宁夏银川一中高三(上)第一次月考数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x>1},B={0,1,2,4},则(C R A)∩B=()A.{0,1} B.{0} C.{2,4} D.∅考点:交、并、补集的混合运算.专题:计算题.分析:由集合A={x|x>1},B={0,1,2,4},知C R A={x≤1},由此能求出(C R A)∩B.解答:解:∵集合A={x|x>1},B={0,1,2,4},∴C R A={x≤1},∴(C R A)∩B={0,1}.故选A.点评:本题考查集合的交、并、补集的混合运算,是基础题.解题时要认真审题,认真解答.2.下列命题中是假命题的是()A.∀x∈R,2x﹣1>0 B.∀x∈N﹡,(x﹣1)2>0 C.∃x∈R,lgx<1 D.∃x∈R,tanx=2考点:四种命题的真假关系.专题:简易规律.分析:本题考查全称命题和特称命题真假的推断,逐一推断即可.解答:解:B中,x=1时不成立,故选B.答案:B.点评:本题考查规律语言与指数函数、二次函数、对数函数、正切函数的值域,属简洁题.3.,则m等于()A.﹣1 B.0 C.1 D.2考点:定积分.专题:导数的概念及应用.分析:利用定积分的几何意义计算定积分.解答:解:y=,即(x+1)2+y2=1,表示以(﹣1,0)为圆心,以1为半径的圆,圆的面积为π,∵,∴表示为圆的面积的二分之一,∴m=0,故选:B点评:本题主要考查定积分、定积分的几何意义、圆的面积等基础学问,考查考查数形结合思想.属于基础题.4.下列函数中,既是偶函数,又在区间(1,2)内是增函数的为()A.y=cos2x B.y=log2|x| C . D.y=x3+1考点:奇偶性与单调性的综合.专题:函数的性质及应用.分析:利用函数奇偶性的定义及基本函数的单调性可作出推断.解答:解:函数y=log2|x|的定义域为(﹣∞,0)∪(0,+∞),关于原点对称,且log2|﹣x|=log2|x|,∴函数y=log2|x|为偶函数,当x>0时,函数y=log2|x|=log2x为R上的增函数,所以在(1,2)上也为增函数,故选B.点评:本题考查函数的奇偶性、单调性,属基础题,定义是解决该类题目的基本方法.5.若tanθ+=4,则sin2θ=()A .B .C .D .考点:二倍角的正弦;同角三角函数间的基本关系.专题:三角函数的求值.分析:先利用正弦的二倍角公式变形,然后除以1,将1用同角三角函数关系代换,利用齐次式的方法化简,可求出所求.解答:解:sin2θ=2sinθcosθ=====故选D.点评:本题主要考查了二倍角公式,以及齐次式的应用,同时考查了计算力量,属于基础题.6.若x∈(0,1),则下列结论正确的是()A .B .C .D .考点:不等式比较大小.专题:不等式.分析:依据指数函数幂函数对数函数的图象与性质,得到不等式与0,1的关系,即可比较大小.解答:解:x∈(0,1),∴lgx<0,2x>1,0<<1,∴2x >>lgx,故选:C.点评:本题考查了不等式的大小比较,以及指数函数幂函数对数函数的图象与性质,属于基础题.7.已知P、Q是圆心在坐标原点O的单位圆上的两点,分别位于第一象限和第四象限,且P 点的纵坐标为,Q 点的横坐标为.则cos∠POQ=()A .B .C .﹣D .﹣考点:两角和与差的余弦函数;任意角的三角函数的定义.专题:三角函数的求值.分析:由条件利用直角三角形中的边角关系求得sin∠xOP和cos∠xOQ的值,利用同角三角函数的基本关系求得cos∠xOP 和sin∠xOQ,再利用两角和的余弦公式求得cos∠POQ=cos(∠xOP+∠xOQ )的值.解答:解:由题意可得,sin∠xOP=,∴cos∠xOP=;再依据cos∠xOQ=,可得sin∠xOQ=.∴cos∠POQ=cos(∠xOP+∠xOQ )=cos∠xOP•cos∠xOQ﹣sin∠xOP•sin∠xOQ=﹣=﹣,故选:D.点评:本题主要考查直角三角形中的边角关系,同角三角函数的基本关系,两角和的余弦公式的应用,属于基础题.8.现有四个函数:①y=x•sinx;②y=x•cosx;③y=x•|cosx|;④y=x•2x的图象(部分)如下:则依据从左到右图象对应的函数序号支配正确的一组是()A.①④③②B.③④②①C.④①②③D.①④②③考点:函数的图象.专题:函数的性质及应用.分析:从左到右依次分析四个图象可知,第一个图象关于Y轴对称,是一个偶函数,其次个图象不关于原点对称,也不关于Y轴对称,是一个非奇非偶函数;第三、四个图象关于原点对称,是奇函数,但第四个图象在Y轴左侧,图象都在x轴的下方,再结合函数的解析式,进而得到答案.解答:解:分析函数的解析式,可得:①y=x•sinx为偶函数;②y=x•cosx为奇函数;③y=x•|cosx|为奇函数,④y=x•2x为非奇非偶函数且当x<0时,③y=x•|cosx|≤0恒成立;则从左到右图象对应的函数序号应为:①④②③故选:D.点评:本题考点是考查了函数图象及函数图象变化的特点,解决此类问题有借助两个方面的学问进行争辩,一是函数的性质,二是函数图象要过的特殊点.9.设函数,其中,则导数f′(﹣1)的取值范围()A.[3,6]B .C .D .考点:三角函数中的恒等变换应用;函数的值域.分析:先对原函数进行求导可得到f′(x)的解析式,将x=﹣1代入可求取值范围.解答:解:∵∴∴=2sin ()+4∵∴∴sin∴f′(﹣1)∈[3,6]故选A.点评:本题主要考查函数求导和三角函数求值域的问题.这两个方面都是高考中必考内容,难度不大.10.函数的图象与x 轴的交点的横坐标构成一个公差为的等差数列,要得到函数g(x)=Acosωx的图象,只需将f(x)的图象()A .向左平移个单位B .向右平移个单位C .向左平移个单位D .向右平移个单位考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:由题意可得,函数的周期为π,由此求得ω=2,由g(x)=Acosωx=sin[2(x+)+],依据y=Asin (ωx+∅)的图象变换规律得出结论.解答:解:由题意可得,函数的周期为π,故=π,∴ω=2.要得到函数g(x)=Acosωx=sin[2(x+)+]的图象,只需将f(x)=的图象向左平移个单位即可,故选A.点评:本题主要考查y=Asin(ωx+∅)的图象变换规律,y=Asin(ωx+∅)的周期性,属于中档题.11.若函数f(x )满足,当x∈[0,1]时,f(x)=x,若在区间(﹣1,1]上,g(x)=f (x)﹣mx﹣m有两个零点,则实数m的取值范围是()A .B .C.(0,1)D .考点:函数零点的判定定理.专题:函数的性质及应用.分析:依据函数f(x )满足,当x∈[0,1]时,f(x)=x,求出x∈(﹣1,0)时,f(x)的解析式,由在区间(﹣1,1]上,g(x)=f(x)﹣mx﹣m有两个零点,转化为两函数图象的交点,利用图象直接的结论.解答:解:函数f(x )满足,当x∈[0,1]时,f(x)=x,∴x∈(﹣1,0)时,f(x)+1==,f(x)=.由于g(x)=f(x)﹣mx﹣m有两个零点,所以y=f(x)与y=mx+m的图象有两个交点,函数图象如图所示,由图象可得,当0<m ≤时,两函数有两个交点,故选D.点评:此题是个中档题.本题考查了利用函数零点的存在性求变量的取值范围和代入法求函数解析式,体现了转化的思想,以及利用函数图象解决问题的力量,体现了数形结合的思想.也考查了同学制造性分析解决问题的力量,属于中档题.12.设函数,且αsinα﹣βsinβ>0,则下列不等式必定成立的是()A.α>β B.α<β C.α+β>0 D.α2>β2考点:正弦函数的单调性.专题:综合题.分析:构造函数f(x)=xsinx,x ∈,利用奇偶函数的定义可推断其奇偶性,利用f′(x)=sinx+xcosx 可推断f(x)=xsinx,x∈[0,]与x∈[﹣,0]上的单调性,从而可选出正确答案.解答:解:令f(x)=xsinx,x ∈,∵f(﹣x)=﹣x•sin(﹣x)=x•sinx=f(x),∴f(x)=xsinx,x ∈为偶函数.又f′(x)=sinx+xcosx,∴当x∈[0,],f′(x)>0,即f(x)=xsinx在x∈[0,]单调递增;同理可证偶函数f(x)=xsinx在x∈[﹣,0]单调递减;∴当0≤|β|<|α|≤时,f(α)>f(β),即αsinα﹣βsinβ>0,反之也成立;故选D.点评:本题考查正弦函数的单调性,难点在于构造函数f(x)=xsinx,x ∈,通过争辩函数f (x)=xsinx,的奇偶性与单调性解决问题,属于难题.二、填空题:本大题共4小题,每小题5分,共20分.13.如图,某港口一天6时到18时的水渠变化曲线近似满足函数y=3sin (x+φ)+k.据此函数可知,这段时间水深(单位:m )的最大值为8.考点:由y=Asin(ωx+φ)的部分图象确定其解析式.专题:三角函数的图像与性质.分析:由图象观看可得:y min=﹣3+k=2,从而可求k的值,从而可求y max=3+k=3+5=8.解答:解:∵由题意可得:y min =﹣3+k=2,∴可解得:k=5,∴y max=3+k=3+5=8,故答案为:8.点评:本题主要考查了正弦函数的图象和性质,属于基本学问的考查.14.已知,,则=.考点:两角和与差的正切函数.专题:计算题;三角函数的求值.分析:利用帮助角公式sinα+cosα=sin(α+),可求得sin(α+),结合α的范围,可α+∈(,),利用同角的三角函数关系可求cos(α+),tan(α+)的值.解答:解:∵sinα+cosα=sin(α+)=﹣,∴sin(α+)=﹣,∵α∈(,π),∴α+∈(,),∴cos(α+)=﹣=﹣.∴tan(α+)==.故答案为:.点评:本题考查同角三角函数间的基本关系,考查了计算力量,属于基础题.15.已知点P在曲线y=上,a为曲线在点P处的切线的倾斜角,则a 的取值范围是.考点:导数的几何意义.专题:计算题;数形结合.分析:由导函数的几何意义可知函数图象在切点处的切线的斜率值即为其点的导函数值,结合函数的值域的求法利用基本不等式求出k的范围,再依据k=tanα,结合正切函数的图象求出角α的范围.解答:解:依据题意得f′(x)=﹣,∵,且k<0则曲线y=f(x)上切点处的切线的斜率k≥﹣1,又∵k=tanα,结合正切函数的图象由图可得α∈,故答案为:.点评:本题考查了导数的几何意义,以及利用正切函数的图象求倾斜角等基础学问,考查运算求解力量,考查数形结合思想、化归与转化思想.16.给出下列四个命题:①半径为2,圆心角的弧度数为的扇形面积为②若α,β为锐角,,则③是函数y=sin(2x+φ)为偶函数的一个充分不必要条件④函数的一条对称轴是其中正确的命题是②③④.考点:命题的真假推断与应用;两角和与差的正切函数.专题:三角函数的图像与性质.分析:①利用弧度制的定义可得公式:s扇形=Lr,L=αr,求解即可;②tan(α+2β)=tan(α+β+β)==1,再推断α+2β<180°,得出答案;③考查了周期函数,+2kπ都能使函数y=sin(2x+φ)为偶函数,④考查三角函数对称轴的特征:过余弦函数的最值点都是对称轴,把代入得:y=cosπ=﹣1,是对称轴,解答:解:①s扇形=Lr,L=αr∴s=1,故错误;②tan(α+2β)=tan(α+β+β)==1∵α,β为锐角,,∴α+2β<180°∴,故②正确;③+2kπ都能使函数y=sin(2x+φ)为偶函数,故③正确;④把代入得:y=cosπ=﹣1,是对称轴,故正确;故答案为:②③④.点评:考查了弧度制的定义和三角函数的周期性,对称轴和和角公式,属于基础题型,应娴熟把握.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)(2021秋•乌拉特前旗校级月考)某同学用五点法画函数f(x)=Asin(ωx+ϕ),(ω>0,|ϕ|<)在某一个周期内的图象时,列表并填入了部分数据,如下表:ωx+ϕ0 π2πxAsin(ωx+ϕ)0 5 ﹣5 0(1)请将上表数据补充完整,并直接写出函数f(x)的解析式;(2)若函数f(x)的图象向左平移个单位后对应的函数为g(x),求g(x)的图象离原点最近的对称中心.考点:由y=Asin(ωx+φ)的部分图象确定其解析式;函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:(1)由表中已知数据易得,可得表格和解析式;(2)由函数图象变换可得g(x)的解析式,可得对称中心.解答:解:(1)依据表中已知数据,解得数据补全如下表:ωx+ϕ0 π2πxAsin(ωx+ϕ)0 5 0 ﹣5 0∴函数的解析式为;(2)函数f(x )图象向左平移个单位后对应的函数是g(x)=5sin[2(x+)﹣]=5sin(2x+),其对称中心的横坐标满足2x+=kπ,即x=﹣,k∈Z,∴离原点最近的对称中心是点评:本题考查三角函数解析式的确定和函数图象变换,涉及三角函数的对称性,属基础题.18.(12分)(2022•江西)已知函数f(x)=(a+2cos2x)cos(2x+θ)为奇函数,且f ()=0,其中a∈R,θ∈(0,π).(1)求a,θ的值;(2)若f ()=﹣,α∈(,π),求sin(α+)的值.考点:三角函数中的恒等变换应用;函数奇偶性的性质.专题:三角函数的求值.分析:(1)把x=代入函数解析式可求得a的值,进而依据函数为奇函数推断出f(0)=0,进而求得cosθ,则θ的值可得.(2)利用f ()=﹣和函数的解析式可求得sin,进而求得cos,进而利用二倍角公式分别求得sinα,cosα,最终利用两角和与差的正弦公式求得答案.解答:解:(1)f ()=﹣(a+1)sinθ=0,∵θ∈(0,π).∴sinθ≠0,∴a+1=0,即a=﹣1∵f(x)为奇函数,∴f(0)=(a+2)cosθ=0,∴cosθ=0,θ=.(2)由(1)知f(x)=(﹣1+2cos2x)cos(2x+)=cos2x•(﹣sin2x)=﹣,∴f ()=﹣sinα=﹣,∴sinα=,∵α∈(,π),∴cosα==﹣,∴sin(α+)=sinαcos+cosαsin =.点评:本题主要考查了同角三角函数关系,三角函数恒等变换的应用,函数奇偶性问题.综合运用了所学学问解决问题的力量.19.(12分)(2022•佛山二模)某种产品每件成本为6元,每件售价为x元(x>6),年销量为u万件,若已知与成正比,且售价为10元时,年销量为28万件.(1)求年销售利润y关于x的函数关系式.(2)求售价为多少时,年利润最大,并求出最大年利润.考点:函数模型的选择与应用.专题:应用题.分析:(1)依据题中条件:“若已知与成正比”可设,再依据售价为10元时,年销量为28万件求得k值,从而得出年销售利润y关于x的函数关系式.(2)利用导数争辩函数的最值,先求出y的导数,依据y′>0求得的区间是单调增区间,y′<0求得的区间是单调减区间,从而求出极值进而得出最值即可.解答:解:(1)设,∵售价为10元时,年销量为28万件;∴,解得k=2.∴=﹣2x2+21x+18.∴y=(﹣2x2+21x+18)(x﹣6)=﹣2x3+33x2﹣108x﹣108.(2)y'=﹣6x2+66x﹣108=﹣6(x2﹣11x+18)=﹣6(x﹣2)(x﹣9)令y'=0得x=2(∵x>6,舍去)或x=9明显,当x∈(6,9)时,y'>0当x∈(9,+∞)时,y'<0∴函数y=﹣2x3+33x2﹣108x﹣108在(6,9)上是关于x的增函数;在(9,+∞)上是关于x的减函数.∴当x=9时,y取最大值,且y max=135.∴售价为9元时,年利润最大,最大年利润为135万元.点评:本小题主要考查依据实际问题建立数学模型,以及运用函数、导数的学问解决实际问题的力量.属于基础题.20.(12分)(2022•天津模拟)已知函数f(x)=x3﹣3ax2+b(x∈R),其中a≠0,b∈R.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)设a∈[,],函数f(x)在区间[1,2]上的最大值为M,最小值为m,求M﹣m的取值范围.考点:利用导数争辩函数的单调性;利用导数求闭区间上函数的最值.专题:导数的综合应用.分析:(Ⅰ)对于含参数的函数f(x)的单调区间的求法,需要进行分类争辩,然后利用导数求出函数的单调性;(Ⅱ)求出f(x)在[1,2a]内是减函数,在[2a,2]内是增函数,设g(a)=4a3﹣12a+8,求出g(a)在[]内是减函数,问题得以解决.解答:解:(Ⅰ)f'(x)=3x2﹣6ax=3x(x﹣2a),令f'(x)=0,则x1=0,x2=2a,(1)当a>0时,0<2a,当x变化时,f'(x),f(x)的变化状况如下表:x (﹣∞,0)0 (0,2a)2a (2a,+∞)f'(x)+ 0 ﹣0 +f(x)↗极大值↘微小值↗∴函数f(x)在区间(﹣∞,0)和(2a,+∞)内是增函数,在区间(0,2a)内是减函数.(2)当a<0时,2a<0,当x变化时,f'(x),f(x)的变化状况如下表:x (﹣∞,2a)2a (2a,0)0 (0,+∞)f'(x)+ 0 ﹣0 +f(x)↗极大值↘微小值↗∴函数f(x)在区间(﹣∞,2a)和(0,+∞)内是增函数,在区间(2a,0)内是减函数.(Ⅱ)由及(Ⅰ),f(x)在[1,2a]内是减函数,在[2a,2]内是增函数,又f(2)﹣f(1)=(8﹣12a+b)﹣(1﹣3a+b)=7﹣9a>0,∴M=f(2),m=f(2a)=8a3﹣12a3+b=b﹣4a3,∴M﹣m=(8﹣12a+b)﹣(b﹣4a3)=4a3﹣12a+8,设g(a)=4a3﹣12a+8,∴g'(a)=12a2﹣12=12(a+1)(a﹣1)<0(a∈[]),∴g(a)在[]内是减函数,故g(a)max=g ()=2+=,g(a)min=g ()=﹣1+4×=.∴≤M﹣m ≤.点评:本题考查利用导数争辩函数的极值和单调性,涉及构造函数的方法,属中档题.21.(12分)(2021•大观区校级四模)已知函数f(x)=ax+xlnx(a∈R)(1)若函数f(x)在区间[e,+∞)上为增函数,求a的取值范围;(2)当a=1且k∈z时,不等式k(x﹣1)<f(x)在x∈(1,+∞)上恒成立,求k的最大值.考点:利用导数争辩函数的单调性;利用导数求闭区间上函数的最值.专题:综合题;导数的概念及应用.分析:(1)易求f′(x)=a+1+lnx,依题意知,当x≥e时,a+1+lnx≥0恒成立,即x≥e时,a≥(﹣1﹣lnx)max,从而可得a的取值范围;(2)依题意,对任意x>1恒成立,令则,再令h(x)=x﹣lnx﹣2(x>1),易知h(x)在(1,+∞)上单增,从而可求得g(x)min=x0∈(3,4),而k∈z,从而可得k的最大值.解答:解:(1)∵f(x)=ax+xlnx,∴f′(x)=a+1+lnx,又函数f(x)在区间[e,+∞)上为增函数,∴当x≥e时,a+1+lnx≥0恒成立,∴a≥(﹣1﹣lnx)max=﹣1﹣lne=﹣2,即a的取值范围为[﹣2,+∞);(2)当x>1时,x﹣1>0,故不等式k(x﹣1)<f(x)⇔k <,即对任意x>1恒成立.令则,令h(x)=x﹣lnx﹣2(x>1),则在(1,+∞)上单增.∵h(3)=1﹣ln3<0,h(4)=2﹣ln4>0,∴存在x0∈(3,4)使h(x0)=0,即当1<x<x0时,h(x)<0,即g′(x)<0,当x>x0时,h(x)>0,即g′(x)>0,∴g(x)在(1,x0)上单减,在(x0,+∞)上单增.令h(x0)=x0﹣lnx0﹣2=0,即lnx0=x0﹣2,=x0∈(3,4),∴k<g(x)min=x0且k∈Z,即k max=3.点评:本题考查利用导数争辩函数的单调性及利用导数求闭区间上函数的最值,着重考查等价转化思想与函数恒成立问题,属于难题.请考生在第22、23、24三题中任选一题作答,假如多做,则按所做的第一题记分.答时用2B铅笔在答题卡上把所选题目的题号涂黑.选修4-1:几何证明选讲22.(10分)(2021•金昌校级模拟)如图,AB是⊙O的一条切线,切点为B,ADE、CFD都是⊙O的割线,AC=AB,CE交⊙O于点G.(Ⅰ)证明:AC2=AD•AE;(Ⅱ)证明:FG∥AC.考点:与圆有关的比例线段;圆內接多边形的性质与判定.专题:选作题;立体几何.分析:(Ⅰ)利用切线长与割线长的关系及AB=AC进行证明.(Ⅱ)利用成比例的线段证明角相等、三角形相像,得到同位角角相等,从而两直线平行.解答:证明:(Ⅱ)∵AB是⊙O的一条切线,切点为B,ADE,CFD,CGE都是⊙O的割线,∴AB2=AD•AE,∵AB=AC,∴AD•AE=AC2.(Ⅱ)由(Ⅱ)有,∵∠EAC=∠DAC,∴△ADC∽△ACE,∴∠ADC=∠ACE,∵圆的内接四边形对角互补,∴∠ADC=∠EGF,∴∠EGF=∠ACE,∴FG∥AC.点评:本题考查圆的切线、割线长的关系,平面的基本性质.解决这类问题的常用方法是利用成比例的线段证明角相等、三角形相像等学问.选修4-4:坐标系与参数方程23.(2021•鹰潭一模)选修4﹣4:坐标系与参数方程.极坐标系与直角坐标系xoy有相同的长度单位,以原点为极点,以x轴正半轴为极轴,已知曲线C1的极坐标方程为ρ=4cosθ,曲线C2的参数方程为(t为参数,0≤α<π),射线θ=φ,θ=φ+,θ=φ﹣与曲线C1交于(不包括极点O)三点A、B、C.(I)求证:|OB|+|OC|=|OA|;(Ⅱ)当φ=时,B,C两点在曲线C2上,求m与α的值.考点:简洁曲线的极坐标方程;圆的参数方程.专题:直线与圆.分析:(Ⅰ)依题意,|OA|=4cosφ,|OB|=4cos(φ+),|OC|=4cos(φ﹣),利用三角恒等变换化简|OB|+|OC|为4cosφ,=|OA|,命题得证.(Ⅱ)当φ=时,B,C两点的极坐标分别为(2,),(2,﹣).再把它们化为直角坐标,依据C2是经过点(m,0),倾斜角为α的直线,又经过点B,C的直线方程为y=﹣(x﹣2),由此可得m及直线的斜率,从而求得α的值.解答:解:(Ⅰ)依题意,|OA|=4cosφ,|OB|=4cos(φ+),|OC|=4cos(φ﹣),…(2分)则|OB|+|OC|=4cos(φ+)+4cos(φ﹣)=2(cosφ﹣sinφ)+2(cosφ+sinφ)=4cosφ,=|OA|.…(5分)(Ⅱ)当φ=时,B,C两点的极坐标分别为(2,),(2,﹣).化为直角坐标为B(1,),C(3,﹣).…(7分)C2是经过点(m,0),倾斜角为α的直线,又经过点B,C的直线方程为y=﹣(x﹣2),故直线的斜率为﹣,…(9分)所以m=2,α=.…(10分)点评:本题主要考查把参数方程化为直角坐标方程,把点的极坐标化为直角坐标,直线的倾斜角和斜率,属于基础题.选修4-5:不等式选讲24.(2021•鹰潭一模)已知函数f(x)=|x+2|﹣2|x﹣1|(1)解不等式f(x)≥﹣2;(2)对任意x∈[a,+∞),都有f(x)≤x﹣a成立,求实数a的取值范围.考点:函数恒成立问题;确定值不等式的解法.专题:函数的性质及应用;不等式的解法及应用;直线与圆.分析:(1)通过对x≤﹣2,﹣2<x<1与x≥1三类争辩,去掉确定值符号,解相应的一次不等式,最终取其并集即可;(2)在坐标系中,作出的图象,对任意x∈[a,+∞),都有f(x)≤x﹣a成立,分﹣a≥2与﹣a<2争辩,即可求得实数a的取值范围.解答:解:(1)f(x)=|x+2|﹣2|x﹣1|≥﹣2,当x≤﹣2时,x﹣4≥﹣2,即x≥2,∴x∈∅;当﹣2<x<1时,3x≥﹣2,即x≥﹣,∴﹣≤x≤1;当x≥1时,﹣x+4≥﹣2,即x≤6,∴1≤x≤6;综上,不等式f(x)≥﹣2的解集为:{x|﹣≤x≤6} …(5分)(2),函数f(x)的图象如图所示:令y=x﹣a,﹣a表示直线的纵截距,当直线过(1,3)点时,﹣a=2;∴当﹣a≥2,即a≤﹣2时成立;…(8分)当﹣a<2,即a>﹣2时,令﹣x+4=x﹣a,得x=2+,∴a≥2+,即a≥4时成立,综上a≤﹣2或a≥4.…(10分)点评:本题考查确定值不等式的解法,考查分段函数的性质及应用,考查等价转化思想与作图分析力量,突出恒成立问题的考查,属于难题.。

第一学期第一次月考高三数学试卷(理)数学试卷

第一学期第一次月考高三数学试卷(理)数学试卷

第一学期第一次月考高三数学试卷(理)一、 选择题:(每题4分)1、设全集{1,2,3,4,5}U =,集合{2,3,4}A =,{2,5}B =,则()U B A =ð( ) A {5} B {1,2,5} C {1,2,3,4,5} D ∅2、函数22log (4)()|2|2x f x x -=--为 ( )A 奇函数B 偶函数C 非奇非偶函数D 无法判断 3、已知命题2:,0p x R x ∀∈≥和命题2:,3q x Q x ∃∈=,则下列命题为真的( )A p q ∧B ()p q ⌝∨C ()p q ∨⌝D ()()p q ⌝∧⌝ 4、设x R ∈,则“12x >”是“2210x x +->”的( ) A 充分而不必要条件 B 必要而不充分条件C 充分必要条件D 既不充分也不必要条件5、已知:44p x a -<-<,:(2)(3)0q x x --<,且q 是p 的充分条件,则实数a 的范围是( )A 16a -<<B 16a -≤≤C 1a <-或6a >D 1a ≤-或6a ≥ 6、函数)y x =-的定义域为( )A (0,1)B [0,1)C (0,1]D [0,1] 7、函数(32)f x -的定义域为[1,2]-,则()f x 的定义域为( )A 1[,2]2B [1,5]-C 1[,5]2D 1[1,]2-8、设函数22 (0)() (0)x f x x bx c x >⎧=⎨++≤⎩若(2)(0)f f -=,(1)3f -=-则关于x 的方程()f x x =的解的个数为( ) A 2 B 1 C 3 D 49、如果函数2()34f x ax x =-+在区间(,6)-∞上单调递减,则实数a 的取值范围是( )A 1(0,]4B 1(0,)4C 1[0,)4D 1[0,]410、函数||31x y =-的定义域为[1,2]-,则函数的值域为( ) A (0,8] B [0,8] C [2,8] D [0,2]11、已知()f x 是定义在R 上的奇函数,当0x ≥时2()2f x x x =+若2(2)()f a f a ->则实数a 的取值范围是( )A (,1)(2,)-∞-+∞B (1,2)-C (2,1)-D (,2)(1,-∞-+∞12、定义在R 上的偶函数()f x 满足(8)()(4)f x f x f +=+且[0,4]x ∈时,()4f x x =-,则(2013)f =( )A 1B 7C 1-D 2009- 二、 填空题:(每题4分)13、若集合2{|10}A x R ax ax =∈++=中只有一个元素,则a =14、已知200:,40p x R x ∃∈-=,则p ⌝为15、已知函数(21)lg f x x -=则()f x =16、已知 (1)()(4) 2 (1)2x a x f x ax x ⎧>⎪=⎨-+≤⎪⎩是R 上的单调递增函数,则实数a 的范围是 17、4位同学每人从甲、乙、丙3门课程中选1门,恰有2人选甲的不同选法共有种18、251(2)x x -的二项展开式中,x 的系数是19、若2 210x R ax ax ∀∈--<是真命题则a 的取值范围是 20、函数20.2log (2)y x x =-的单调减区间为第一学期第一次月考高三数学答题卡(理)二、填空题:(每题4分,共32分)13、 14、15、 16、17、 18、19、 20、三、解答题:(每题10分,共40分) 21、已知()f x 是在R 上的奇函数,当0x ≤时,2()2f x x x =-,求当0x >时()f x 的解析式22、设二次函数2()21f x ax ax =++在[3,2]-上有最大值4求a 的值23、设在12个同类型的零件中有2个次品,抽取3次进行检验,每次抽取1个,并且取出不再放回,若以X 表示取出次品的个数,求X 的分布列、期望值及方差1)写出,,,x y m n 的值2)能否在犯错误的概率不超过0.005的前提下认为“喜欢体育还是喜欢文娱与性别有关系”?22()()()()()n ad bc K a b c d a c b d -=++++。

吉林省长春市重点高中2021年高三上学期第一次月考理科数学试题及参考答案

吉林省长春市重点高中2021年高三上学期第一次月考理科数学试题及参考答案
【分析】
根据题意,分析得当 , 与 相交,在 有两个交点,再根据周期性,作出函数图像,数形结合求解即可.
【试题解析】
解:当 时, 即
当 时,直线 过点 ,此时直线与半圆 相交,
当 时,圆心 到直线 的距离为 ,此时直线与与半圆 相切,
所以当 , 与 相交,在 有两个交点,
因为 的周期为 , 的周期为 ,且 是奇函数,
A. B. C. D.
3.已知向量 , 满足 ,且 与 夹角为 ,则 ()
A. B. C. D.
4.下列函数中,既是 上的增函数,又是以 为周期的偶函数的是()
A. B.
C. D.
5.已知命题 :函数 在 内恰有一个零点;命题 :函数 在 上是减函数.若 为真命题,则实数 的取值范围是()
A. B.
C. D.
6.若 , , ,则 、 、 的大小关系为()
A. B. C. D.
7.已知函数f(x)=lg(x2-2x-3)在(-∞,a)单调递减,则a的取值范围是()
A.(-∞,-1]B.(-∞,2]C.[5,+∞)D.[3,+∞)
8.已知函数 则不等式 的解集为()
A. B.
C. D.
9.2020年12月17日凌晨,嫦娥五号返回器携带月球样品在内蒙古四子王旗预定区域安全着陆.嫦娥五号返回舱之所以能达到如此高的再入精度,主要是因为它采用弹跳式返回弹道,实现了减速和再入阶段弹道调整,这与“打水漂”原理类似(如图所示).现将石片扔向水面,假设石片第一次接触水面的速率为100 m/s,这是第一次“打水漂”,然后石片在水面上多次“打水漂”,每次“打水漂”的速率为上一次的90%,若要使石片的速率低于60 m/s,则至少需要“打水漂”的次数为(参考数据:取ln 0.6≈-0.511,ln 0.9≈-0.105)()

高三数学第一次月考试卷(最终版)

高三数学第一次月考试卷(最终版)

高三数学第一次月考试卷(理)XX :班级:分数:试卷满分 150 分考试时间120 分钟一、选择题:本大题共8 小题,每小题 5 分,共 50 分 . 在每小题给出的四个选 项中,只有一项是符合题目要求的.1.已知全集U R ,集合A{ x | 0 x2} , B { x | x 1} ,那么集合AC U B 等于()( A ){ x | 0 x 1} ( B ){ x |0 x 1} ( C ){ x |1 x 2}( D ){ x |1x 2}2.已知命题p : x R ,| x1| 0 ,那么命题p 为()( A )x R ,| x1| 0( B )x R ,| x1|0 ( C )x R ,| x1|0( D )x R ,| x1|03.下列函数中,图象关于y 轴对称的是()( A )y2x ( B ) y2x ( C ) yx 2( D ) y log 2 x4.函数f ( x) x 2e x 的单调递减区间是()( A )( 2,0) (B )( , 2),(0, ) ( C )(0, 2)(D )(,0) , (2,)5.若函数f ( x)的图象在 a, b 上是不间断的, 且有f (a) f (b) 0,则函数 f (x)在 a,b 上()(A )一定没有零点( B )至少有一个零点 (C )只有一个零点( D )零点情况不确定6. 在极坐标系中,过点(2, 3) 且平行于极轴的直线的极坐标方程是()2A.sin = - 2B.cos = - 2C.sin = 2D.cos = 271 ”是“函数y x2bx 1 ( x [1, ))为增函数”的().“ b( A )充分但不必要条件( B )必要但不充分条件( C)充要条件( D)既不是充分条件也不是必要条件8.方程2x x 2 的解所在区间是()A.( 0,1)B.(1, 2)C.( 2,3)D.(3,4)9.函数y xa x(0 a 1)的图象的大致形状是()x10. 已知定义在 R 上的函数y=f(x) 满足 f(x+2)= f(x),当 -1<x ≤ 1时, f(x)=x3.若函数 g( x) f (x)log a x 恰有6个零点,则()A.a= 5 或 a= 1B.a(0,1)[5, ) C. a[1,1] [5,7] D. a [1,1) [5,7) 557575二、填空题:本大题共8 小题,每小题 5 分,共 45 分. 把答案填在题中横线上 . 11.不等式12x 18的解集是 _________.212.函数y log 23x 2 的定义域为_________________________513. 若alog 2 3, b log3 2 , c log4 6 ,则它们从小到大的顺序是____________14.抛物线yx 2 x 与x 轴所围成封闭图形的面积是 ___________.15. 如图,AC 为⊙O 的直径,OBAC ,弦 BN 交 AC 于 点 M .若OC3 ,OM1,则 MN _____.Clg x, x 0, 1 ,则 x 0的值是16.已知函数f ( x)2 ,x 若 f (x 0 )x 0.17.曲线y1 x2e 2在点 4,e处的切线与坐标轴所围成的三角形的面积为BMOAN._____________x 2t 2a, 18. .在平面直角坐标系下,已知曲线C 1 :t, ( t 为参数)和曲线yC 2 :x2cos , (为参数 ),若曲线C 1,C 2有公共点,则实数a 的y1 2sin取值X 围为____________.119.已知函数f (x)x 2 , 0 xc,其中 c 0 .那么 f ( x) 的零点是_____;若 f (x)x 2 x, 2 x 0,的值域是 [1, 2] ,则c 的取值X 围是_____.4三、解答题:本大题共4 小题,共 55 分 . 解答应写出文字说明,证明过程或演算步骤 .20.(本小题满分 12 分)设 p:实数 x 满足x 24ax 3a 20 ,其中 a 0 ,命题 q : 实数x 满足x 2 x 6 0, 1, 且pq 为真,XX 数x 的取值X 围;x 2 2x8.求( 1)若a0.( 2)若 p 是 q 的充分不必要条件,XX 数a 的取值X 围.21.(本小题满分13 分)已知函数f ( x)x 33ax 1 在x1 处取得极值.(Ⅰ)XX 数a 的值;(Ⅱ)当 x [ 2,1] 时,求函数f ( x) 的值域.22.(本小题分)定义在(,)上的函数满足)140 f ( x): (1 f (2) 1;( 2) f ( xy) f ( x) f ( y), 其中 x, y为任意正实数,(3)任意正实数满足时,f ( y))恒成立x, yx y( x y)( f ( x)0根据上述条件求下列问题:(1)求 f (1), f (4)的值()判断函数的单调性2 f (x)()若f ( x 3) 2,试求的取值X围。

宁夏银川一中2024届高三上学期第一次月考数学理科试题及参考答案

宁夏银川一中2024届高三上学期第一次月考数学理科试题及参考答案

银川一中2024届高三年级第一次月考理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,务必将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}1A x x =≤,{}20B x x a =-<,若A B ⊆,则实数a 的取值范围是A .()2,+∞B .[)2,+∞C .(),2-∞D .(],2-∞2.已知复数z 满足i zz =+-112,则复数z 的虚部是A.-1B.iC.1D.-i3.如图,可以表示函数()f x 的图象的是A .B .C .D .4.已知a ,b 为实数,则使得“0a b >>”成立的一个充分不必要条件为A .11a b>B .ln(1)ln(1)a b +>+C .33a b >D 11a b ->-5.函数()214log 2y x x =--的单调递增区间为A .1,2⎛⎫-∞ ⎪⎝⎭B .(),1-∞-C .1,2⎛⎫+∞ ⎪⎝⎭D .()2,+∞6.的大小关系为则,,设c b a c b a ,,,21(31log 2log 3.02131===A .b c a <<B .cb a <<C .ca b <<D .ac b <<7.已知函数ay x=,xy b=,log cy x=的图象如图所示,则A.e e ea c b<<B.e e eb a c<<C.e e ea b c<<D.e e eb c a<<8.若命题“[]()21,3,2130a ax a x a∃∈---+-<”为假命题,则实数x的取值范围为A.[]1,4-B.50,3⎡⎤⎢⎥⎣⎦C.[]51,0,43⎡⎤⎢⎥⎣-⎦D.[)51,0,43⎛⎤- ⎥⎝⎦9.已知函数则函数2,0,()()()1,0,x xf xg x f xxx⎧≥⎪==-⎨<⎪⎩,则函数()g x的图象大致是A.B.C.D.10.已知函数()()()314(1)1a x a xf x axx⎧-+<⎪=⎨≥⎪⎩,满足对任意的实数1x,2x且12x x≠,都有[]1212()()()0f x f x x x--<,则实数a的取值范围为A.1,17⎡⎫⎪⎢⎣⎭B.10,3⎡⎫⎪⎢⎣⎭C.11,63⎡⎫⎪⎢⎣⎭D.1,16⎡⎫⎪⎢⎣⎭11.已知定义在R上的函数()f x在(],2-∞上单调递减,且()2f x+为偶函数,则不等式()()12f x f x->的解集为A.()5,6,3⎛⎫-∞-+∞⎪⎝⎭B.()5,1,3⎛⎫-∞-+∞⎪⎝⎭C.5,13⎛⎫- ⎪⎝⎭D.51,3⎛⎫- ⎪⎝⎭12.已知函数()ln1af x xx=++.若对任意1x,(]20,2x∈,且12x x≠,都有()()21211f x f xx x->--,则实数a的取值范围是A.27,4⎛⎤-∞⎥⎝⎦B.(],2-∞C.27,2⎛⎫-∞⎪⎝⎭D.(],8∞-二、填空题(本大题共4小题,每小题5分.共20分)13.已知lg 2a b +=-,10b a =,则=a ______.14.已知()222,02,0x x x f x x x x ⎧-+≥=⎨+<⎩,满足()()f a f a <-,则a 的取值范围是.15.若函数()21x mf x x +=+在区间[]0,1上的最大值为3,则实数=m _______.16.已知函数()e e 21x x f x x -=--+,则不等式(23)()2f x f x -+>的解集为____________.三、解答题(共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答。

2022届西藏拉萨中学高三上学期第一次月考数学(理)试题解析.docx

2022届西藏拉萨中学高三上学期第一次月考数学(理)试题解析.docx

拉萨中学高三年级(2022届)第一次月考理科数学试题一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A = {x\x<l}, B= {x\x> 2} , C = A\JB,则( )A.V2eCB. CjBC.屁 CD. ^5-2eC【答案】D【解析】求出C = A[JB,逐项排除可得答案.解:•.•集合A = {x\x<l} f 5= {x\x> 2} , C = AIJB,:,C = {x\x<l^x>2},••• y/iwC ' C^B,屈 c,后—2eC,故A, B, C均错误,。

正确,故选:D.点评:本题考查了集合的基本运算,集合间的关系、元素与集合的关系,属于基础题.2.设命题p:3ae (0, +oo),函数/(%) = x5 -ax在上有零点,则。

的否定为( )A.Ba G(0,+OO),函数 /(%) ^x5 -ax在(1,心)上无零点B.X/«G(0,+oo),函数y(x) = x5-ax在(1,十》)上无零点C.X/a e (-00 , 0],函数 /(x) = x5 -ax在(1,十》)上无零点D.V«G(0,+<»),函数 /(x) ^x5 -ax在(-8, 1]上无零点【答案】B【解析】根据命题的否定的概念判断.解:解:命题J»:3«e(0,+oo),函数y(%) = %5-ax在(1,+8)上有零点,则。

的否定为:V«e(0,+oo),函数f(x) = x5-ax在(l,*o)上无零点.故选:B.点评:本题考查命题的否定,掌握命题的否定的定义是解题关键.命题的否定只要否定结论,条件不否定,但存在量词与全称量词要互换.3.若log t,b<0(。

>0且。

壬1), 2b2~b > 1 -则()A. a>1, Z?>1B. 0<a<l, b>lC. a>l, 0<b<lD. 0<。

2023—2024学年黑龙江省高三上学期第一次月考考试数学试题(含答案)

2023—2024学年黑龙江省高三上学期第一次月考考试数学试题(含答案)

2023-2024学年黑龙江省高三上册第一次月考考试数学试题.....函数()2ln(f x x =--的单调递减区间为().(,1)-∞-B (1,1)-D7.若正数x ,y 满足35x y xy +=,则34x y +的最小值是()A .2B .3C .4D .58.已知定义在R 上的函数()f x ,其导函数()f x '满足:对任意x ∈R 都有()()f x f x '<,则下列各式恒成立的是()A .()()()()20181e 0,2018e 0f f f f <⋅<⋅B .()()()()20181e 0,2018e 0f f f f >⋅>⋅C .()()()()20181e 0,2018e 0f f f f >⋅<⋅D .()()()()20181<e 0,2018e 0f f f f ⋅>⋅二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.如图是函数()y f x =的导函数()y f x '=的图象,则下列判断正确的是()A .()f x 在()4,3--上是减函数B .()f x 在()1,2-上是减函数C .3x =-时,()f x 有极小值D .2x =时,()f x 有极小值10.对于定义在R 上的函数()f x ,下述结论正确的是()A .若()()11f x f x =+-,则()f x 的图象关于直线1x =对称B .若()f x 是奇函数,则()1f x -的图象关于点()1,0A 对称C .函数()1y f x =+与函数()1y f x =-的图象关于直线1x =对称D .若函数()1f x -的图象关于直线1x =对称,则()f x 为偶函数16.已知定义在R 上的函数f ()()2log a f x x =+,则(2022f 四、解答题:本题共6小题,共由图象可知:函数12xy=与y∴函数()213 2xf x x=+-的零点个数为故答案为.214.2【分析】根据对数函数的性质求出函数过定点坐标,再代入直线方程,即可得到。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年高三数学第一次月考试题及答案理

2019年高三数学第一次月考试题及答案理科
一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1、已知全集U= ,则正确表示集合和关系的韦恩(Venn)图是( )
A. B. C. D.
2、已知i为虚数单位,则复数i i 等于( )
A . B. C. D.
3.命题存在的否定是( )
A.存在
B.不存在
C.对任意的
D.对任意的
4、是函数在区间上为增函数的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
5、设且,则锐角x为( )
A. B. C. D.
6、某社区现有个住户,其中中等收入家庭200户、低收入家庭160户,其他为高收入家庭。

在建设幸福广东的某次分层抽样调查中,高收入家庭被抽取了6户,则该社区本次被抽取的总户数为( )
A. B. C. D.
7、设是公差不为0的等差数列,且成等比数列,则的前项和=( )
A. B. C. D.
8、已知函数,若实数是方程的解,且,则的值( )
A.恒为负
B.等于零
C.恒为正
D.不小于零
二、填空题: 本大题共6小题,每小题5分,满分30分.
(一)必做题
9、已知全集,函数的定义域为集合,函数的定义域为集合,则集合=______________
10、已知函数的定义域为{0,1,2},那么该函数的值域为_____________
11、从100张卡片(1号到100号)中任取1张,取到卡号是7的倍数的概率是.
12、已知为上的减函数,则满足的实数的取值范围是______
13、不等式的解集为
(二)选做题
14、(极坐标与参数方程)在极坐标系中,点到直线的距离为.
15、(几何证明选讲) 两弦相交于圆内一点,一弦被分为12和18两段,另一弦被分为3:8,则另一弦的长是________.
三、解答题:本大题共6小题,满分80分.解答须写出文字说明,证明过程或演算步骤
16、(本小题满分12分)已知函数(其中A0,)的图象如图所示。

(Ⅰ)求A,w及j的值;
(Ⅱ)若cosa= ,求的值。

17、某食品企业一个月内被消费者投诉的次数用表示.据统计,随机变量的概率分布如下:
0123
0.1
0.3
(1)求的值和的数学期望;
(2)假设一月份与二月份被消费者投诉的次数互不影响,求该企业在这两个月内共被消费者投诉3次的概率.
18、如图,四棱锥的底面是矩形,底面,为边的中点,. (Ⅰ)求证:平面;
(Ⅱ)求二面角的余弦值的大小.
19、已知等差数列满足,为的前项和.
(Ⅰ)求通项及;
(Ⅱ)设是首项为1,公比为2的等比数列,求数列的通项公式及其前项和.
20、已知函数是的一个极值点.
(1)求函数的单调区间;
(2)若当时,恒成立,求的取值范围.
21、已知圆直线
(Ⅰ)求圆的圆心坐标和圆的半径;
(Ⅱ)求证:直线过定点;
(Ⅲ)判断直线被圆截得的弦何时最长,何时最短?并求截得的弦长最短时的值,以及最短长度.
20192019学年高三级第一次月考参考答案
三、简答题
17.(1)解:由概率分布的性质有0.1+a +2a +0.3 =1,解得a=0.2. 所以的概率分布为
0123
0.10.20.40.3
所以.
(2)解:设事件表示两个月内共被投诉3次,事件表示两个月内有一个月被投诉3次,另外一个月被投诉0次,事件表示两个月内有一个月被投诉2次,另外一个月被投诉1次,则由事件的独立性得,,
所以.
所以该企业在这两个月内共被消费者投诉3次的概率为0.22.
18、由已知SBA=45,所以AB=SA=1易求得,AP=PD= ,2分
又因为AD=2,所以AD2=AP2+PD2,所以. 4分
因为SA底面ABCD,平面ABCD,
所以SAPD,5分
由于SAAP=A 所以平面SAP. 6分
(Ⅱ)设Q为AD的中点,连结PQ,7分
由于SA底面ABCD,且SA 平面SAD,
则平面SAD平面PAD 8分
,PQ平面SAD,SD 平面SAD,.
过Q作QR ,垂足为,连接,则.
又,,
所以. 13分
所以二面角A-SD-P的余弦为. 14分
解法二:因为底面,
所以,SBA是SB与平面ABCD所成的角. 1分
由已知SBA=45,所以AB=SA=1建立空间直角坐标系(如图) 由已知,P为BC中点.
于是A(0,0,0)、B(1,0,0) 、P(1,1,0)、D(0,2,0)、S(0,0,1)3分
(Ⅰ)易求得,
,. 4分
因为,.
所以,.
由于,所以平面. 6分
(Ⅱ)设平面SPD的法向量为.
由,得解得,所以. 9分
又因为AB平面SAD,所以是平面SAD的法向量,易得. 9分
所以. 13分
所以所求二面角的余弦值为.14分
20、解:(1)∵且是的一个极值点
,-------2分
------4分
由得或,函数的单调增区间为,;--6分
由得,函数的单调减区间为,----8分
(2)由(1)知,函数在上单调递减,在上单调递增当时,函数取得最小值,= ,----10分
时,恒成立等价于-----12分
即。

-------14分
21、(I)圆:
可变为:1分
由此可知圆的圆心坐标为,半径为3分
(Ⅱ)由直线
可得4分
对于任意实数,要使上式成立,必须5分
我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。

为什么在现代化教学的今天,我们念了十几年书的高中毕业生甚至大学生,竟提起作文就头疼,写不出像样的文章呢?吕叔湘先生早在1978年就尖锐地提出:“中小学语文教学效果差,中学语文毕业生语文水平低,……十几年上课总时数是9160课时,语文是2749课时,恰好是30%,十年的时间,二千七百多课时,用来学本国语文,却是大多数不过关,岂非咄咄怪事!”寻根究底,其主要原因就是腹中无物。

特别是写议论文,初中水平以上的学生都知道议论文的“三要素”是论点、论据、论证,也通晓议论文的基本结构:提出问题――分析问题――解决问题,但真正动起笔来就犯难了。

知道“是这样”,就是讲不出“为什么”。

根本原因还是无“米”下“锅”。

于是便翻开作文集锦之类的书大段抄起来,抄人家的名言警句,抄人家的事例,不参考作文书就很难写出像样的文章。

所以,词汇贫乏、内容空洞、千篇一律便成了中学生作文的通病。

要解决这个问题,不能单在布局谋篇等写作技方面下功夫,必须认识到“死记硬背”的重要性,让学生积累足够的“米”。

唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义已经相去甚远。

而对那些特别讲授“武事”或讲解“经籍”者,又称“讲师”。

“教授”和“助教”均原为学官称谓。

前者始于宋,乃“宗学”“律学”“医学”“武学”等科目的讲授者;而后者则于西晋武帝时代即已设立了,主要协助国子、博士培养生徒。

“助教”在古代不仅要作入流的学问,其教书育人的职责也十分明晰。

唐代国子学、太学等所设之“助教”一席,也是当朝打眼的学官。

至明清两代,只设国子监(国子学)一科的“助教”,其身价不谓显赫,也称得上朝廷要员。

至此,无论是“博士”“讲师”,还是“教授”“助教”,其今日教师应具有的基本概念都具有了。

解得:6分
所以直线过定点7分
我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。

为什么在现代化教学的今天,我们念了十几年书的高中毕业生甚至大学生,竟提起作文就头疼,写不出像样的文章呢?吕叔湘先生早在1978年就尖锐地提出:“中小学语文教学效果差,中学语文毕业生语文水平低,……十几年上课总时数是9160课时,语文是2749课时,恰好是30%,十年的时间,二千七百多课时,用来学本国语文,却是大多数不过关,岂非咄咄怪事!”寻根究底,其主要原因就是腹中无物。

特别是写议论文,初中水平以上的学生都知道议论文的“三要素”是论点、论据、论证,也通晓议论文的基本结构:提出问题――分析问题――
解决问题,但真正动起笔来就犯难了。

知道“是这样”,就是讲不出“为什么”。

根本原因还是无“米”下“锅”。

于是便翻开作文集锦之类的书大段抄起来,抄人家的名言警句,抄人家的事例,不参考作文书就很难写出像样的文章。

所以,词汇贫乏、内容空洞、千篇一律便成了中学生作文的通病。

要解决这个问题,不能单在布局谋篇等写作技方面下功夫,必须认识到“死记硬背”的重要性,让学生积累足够的“米”。

相关文档
最新文档