第四章图形认识初步拔高题精选
第四章图形认识初步课后练习题答案
![第四章图形认识初步课后练习题答案](https://img.taocdn.com/s3/m/66c8b31d0b4c2e3f56276307.png)
第四章 图形认识初步4.1 多姿多彩的图形4.1.1几何图形练习(二)1.(1)上面(2)正面(3)背面 2.⑷ ⑹ ⑶4.1.2 点、线、面、体练习(一)1.其中是平面的是(1) (2) 是曲面的是(3)、(4)、(5)2.略习题4.11.第一排的图形从左至右的名称依次是:棱柱、球、圆柱、棱锥、圆锥2.球、棱柱、长方体、正方体、圆柱等基本几何体组成3.三角形、圆、五边形、长方形、半圆等基本平面图形组成4.A、从正面看 B、从上面看B、从左面看D、从后面看E、从右面看5.从左到右,上排的第一个图形对应下排的第三个几何体;上排的第二个图形对应下排的第四个几何体;上排的第三个图形对应下排的第二个几何体;上排的第四个图形对应下排的第一个几何体。
6.除了上排的第三个图形外,其它的图形都可以折叠成一个正方体。
还可以画出其它的一些图形(画图略)7.第一个图主要由(长方体)组成;第二个图形由长方体、球体和圆柱体组成;第三个圆形由长方体、棱柱和梭锥组成;第四个图形主要由圆柱体组成。
8.略9.从不同的方位看,几何体的形状不同。
10.略11.(1)可能是a或b两个图形的侧面展开图;(2)可能是b或c两个图形的侧面展开图;(3)可能是a或a两个图形的侧面展开图。
12.从左到右依次可折叠成:圆柱 五棱柱 圆锥 三棱柱13.能看到6个或7个小正方体14.略4.2直线、射线、线段练习 (一)略练习 (二)略习题 4.21.略2.画图略3.画图略4.画图略5.画图略6.提示:折叠时,使AB边与AC边重合:这是基本作法。
7.略8.(1)A、B两地间河道的长度变为最短。
(2)可使游人更长时间地、更好地领略湖面的风光,如果修一座直的桥,则桥的路程大缩短,即减少了游人在桥上行走的路程,其依据是:两点之间,线段最短。
9.略10.要从A到B,直接连结线段AB,则AB是蚂蚁爬行的最短路线。
要从A爬到C,可先画出该正方体的侧面展开图,确定出A、c两点的位置之后。
第四章图形认识初步复习与提高(含答案)
![第四章图形认识初步复习与提高(含答案)](https://img.taocdn.com/s3/m/d923c1fafc4ffe473268ab2b.png)
第四章积累与提高【要点归纳】1.几何图形的有关概念棱柱的特点有:(1)_上下底面相同___;(2)侧面都是长方形___.从不同方向观察物体时,要学会用语言合理清晰地表达出__物体形状__,体会到从不同方向观察物体可能看到__不一样的结果.2.直线、射线、线段的关系射线是直线上一点和它一旁的部分,线段是直线上两点之间的部分,直线、射线不能度量,线段有长度,能计算和度量. 线段的中点把线段分成两条相等的线段3.角的有关概念角是由两条有公共端点的射线组成的图形:角分为锐角、钝角、直角、平角、周角.1°=60′,1′=60″4.角平分线是一条射线,它把已知角分成两个相等的角.4.余角、补角的定义.两角之和为90°的角是互为余角,两角之和为180°的角是互为补角.5.几个重要性质(1)两点确定一条直线.(2)两点之间线段最短.(3)同角(或等角)的余角相等;同角(或等角)的补角相等.本章需要注意的几个问题:1.关于点和线的理解,要明确线段、射线、直线的区别与联系,以及它们的表示方法,掌握线段、直线的性质,能够正确进行线段、线段的中点的相关计算.2.对于角的计算问题,要明确角的有关概念及分类,会进行角的和、差、倍、分的计算,了解角平分线和互余、互补两角的定义及性质.3.对于解答、推理或计算问题要明确用到的定义及性质,找到它们之间的联系,才能得出正确的结果或结论.本章主要的数学思想与方法:转化思想、数形结合思想、分类讨论思想、方程思想.【题型归类】类型一、几何体和它的平面展开图例1.如图2是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面,与“迎”相对的面上的汉字是(A)A. 文B.明C.奥D.运「分析」解决此题的关键在于,要准确把握住正方体的展开图的每行或每列中若出现相连的3个面,不相邻的两个面就是相对面.因此与“迎” 相对面上的汉字应该是“文”.类型二、线段的有关计算例2.如图4-2-32,点B、C在线段AD上,M是AB的中点,N是CD的中点,若MN=a,BC=b,求AD的长.「分析」本题首先将线段AD转化成五条线段的和,然后通过线段中点的等量关系进行合并,再将未知线段转化为已知线段,此过程中巧妙转化是解题的关键.解:AD = AM+MB+BC+CN+ND= 2(BM+CN)+BC= 2(MN-BC)+BC= 2(a b-)+b= 2a b-.类型三、角的有关计算例3.如图4-3-14,∠AOB=90°,∠AOC为∠AOB外的一个锐角,且∠AOC=30°,射线OM平分∠BOC,ON平分∠AOC,(1)求∠MON 的度数;(2)如果(1)中∠AOB=α,其它条件不变,求∠MON 的度数;(3)如果(1)中∠AOC=β(β为锐角),其它条件不变,求∠MON 的度数; (4)从(1)、(2)、(3)的结果中,你能看出什么规律?「分析」线段的计算与角的计算存在着紧密的联系,它们之间可以互相借鉴解法。
第4章图形的初步认识单元测试题(含答案)加强题
![第4章图形的初步认识单元测试题(含答案)加强题](https://img.taocdn.com/s3/m/7ad0456d02768e9951e738fe.png)
AC MADBNC F AHEDBG第4章 图形的初步认识单元加强题一、选择1.如图,已知AB=8,AP=5,OB=6,则OP 的长是( ) A.2 B.3 C.4 D.52.由两个角的和组成的角与这两个角的差组成的角互补,则这两个角( )A.一个是锐角,一个是钝角;B.都是钝角;C.都是直角;D.必有一个是直角3.已知1条直线能将平面分成两部分,2条直线能将平面分成3和4部分,则3 条直线最多能将平面分成( ) A.4部分 B.6部分 C.7部分 D.8部分4.从一点O 引三条直线,以O 为顶点且小于平角的角在图中有( ) A.5个 B.10个 C.12个 D.18个5.如图,若AB ∥CD,则∠A+∠M+∠N+∠C=( ) A.180° B.360° C.540° D.720°6.用一平面去截一正方体,得到的截面的图形可能是以下图形中的( )(1)三角形;(2)四边形;(3)五边形;(4)六边形. A.(1)(2)(3) B.(1)(2)(4); C.(1)(3)(4)D.(1)(2)(3)(4)7.若平行直线EF,GH 与相交直线AB,CD 相交成如图所示的图形,则共得同旁内角( )A.4对B.8对C.12对D.16对 二、填空8.一个角的补角减去这个角的余角,所得的角等于__________.9.如图,其中共有_______个三角形.10.一个角余角的2倍和它的补角的12互为补角,则这个角的度数为______.11.如图,已知AB ∥CD,E 在AB 和CD 之间,且∠B=40°,∠D=20°,则∠BED=____.12.如图,已知∠ABC+∠BCD+∠EDC=360°,则AB 和ED 的位置关系是_______.13.如果一条直线和两条平行线中的一条垂直,那么这条直线和另一条直线的位置关系是__________. 三、解答 14.如图,C,D,E将线段AB分成四部分,且AC:CD:DE:EB=2:3:4:5,M,P,Q,N 分别是AC,CD,DE,EB 的中点,且MN=21cm,求PQ 的长.M P N15.如图,在△ABC 中,DE ∥BC,CD 是∠ACB 的平分线,∠B=70°,∠第12题 CA EB第11题CAE D B第9题AE DA=56°,求∠BDC的度数.E C ADB16.过点O任意作四条直线,求证:以O为顶点的角中至少有一个不大于45°.答案:一、1.B2.D3.C4.C5.C6.D7.C提示:5.过M,N分别作AB的平行线.二、8.90° 9.10 10.36° 11.60°提示:过E作EF∥AB.12.平行提示:过C作CG∥AB.13.垂直三、14.PQ=7(cm)15.∠BDC=83°16.证明:如答图,实际上只需证8个角中至少有一个不大于45°即可.所以假设∠1,∠2,…,∠8都大于45°,则∠1+∠2+…+∠8>45°×8=360°,而由周角定义可知∠1+∠2+…+∠8=360°, 这与上式矛盾.所以结论成立.87 654321。
七年级数学第四章图形的初步认识(知识点归纳+达标检测)
![七年级数学第四章图形的初步认识(知识点归纳+达标检测)](https://img.taocdn.com/s3/m/f6a25148a36925c52cc58bd63186bceb19e8ed02.png)
第四章图形的初步认识(知识点归纳+达标检测)4.1.1认识几何图形几何图形我们见过的长方体、圆柱、圆锥、球、圆、线段、点,以及小学学过的三角形、四边形等,都是从形形色色的物体外形中得出的。
我们把这些图形称为几何图形。
1)立体图形长方体、正方体、球、圆柱、圆锥等。
2)平面图形平面图形的概念线段、角、三角形、长方形、圆等它们的各部分都在同一平面内,它们是平面图形。
注:立体图形与平面图形是两类不同的几何图形,它们的区别和联系:立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内;立体图形中某些部分是平面图形。
【达标提升】下列几种图形:①长方形;②梯形;③正方体;④圆柱;⑤圆锥;⑥球.其中属于立体图形的是()A.①②③;B.③④⑤;C.①③⑤;D.③④⑤⑥总结:1、2、平面图形与立体图形的关系:立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内;立体图形中某些部分是平面图形。
4.1.2几何图形立体图形转化平面图形1:从正面、左面、上面观察得到的平面图形你能画出来吗?【达标提升】1.如图是由七个相同的小正方体堆成的物体,从上面看这个物体的图是()A.B.C.D.2.右图是由几个小立方块所搭几何体的俯视图,请画出这个几何体的主视图和左视图。
现实物体几何图形平面图形立体图形看外形4.1.3几何图形(一)、立体图形的展开1、试一试:在你想象的基础上,请将准备好的长方体、圆柱、圆锥和三棱柱的纸盒剪开展平,看看与下面的展开图一样吗?圆柱圆锥三棱柱长方体思考:请你指出上面展开图各部分与几何体的哪一部分相对应?2、剪一剪、画一画:动手把一个立方体的包装盒沿一边剪开,铺平,看看它的展开图由哪些平面图形组成;再把展开的纸板复原,你有什么体会?再将所有的展开图画出来,以上画出了部分了展开图,除此之外还有5种,共有11种,请你画出其余5种。
(二)、立体图形的折叠探究:下图是一些立体图形的展开图,用它们能围成怎样的立体图形?做一做:下面是一些常见几何体的展开图,你能正确说出这些几何体的名字么?【达标提升】1.下列图形中,不是正方体的表面展开图的是()A.B.C.D.12122.一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是()A.和B.谐C.沾D.益4.2.1点、线、面、体1.几何体的概念(1)长方体是一个几何体,我们还学过哪些几何体?_______________________________________________________________________;(2)观察长方体和圆柱体,说出围成这两个几何体的面有哪些?这些面有什么区别?2.面的分类通过对上面问题的解决,得出面的分类:____面和___面。
备战中考数学(湘教版)巩固复习第四章图形的认识(含解析)
![备战中考数学(湘教版)巩固复习第四章图形的认识(含解析)](https://img.taocdn.com/s3/m/986ff834c1c708a1284a44e9.png)
2021备战中考数学〔湘教版〕稳固复习-第四章图形的认识〔含解析〕一、单项选择题1.如图,是一个正方体的外表展开图,那么原正方体中与“建〞字所在的面相对的面上标的字是〔〕A.美B.丽C.和D.县2.如图,左面的平面图形绕轴旋转一周,可以得到的立体图形是〔〕A. B. C. D.3.如图,将一副三角尺按不同位置摆放,∠α与∠β互余的是〔〕A. B.C. D.4.如图是一个正方体的展开图。
这个正方体各对面的式子之积是相等的,那么x的值为〔〕A. B.2 C.2 D.5.以下列举的物体中,与乒乓球的形状类似的是〔〕A.铅笔B.西瓜C.音箱D.茶杯6.关于直线、射线、线段的有关说法正确的有()(1)、直线AB和直线BA是同一条直线(2)、射线AB和射线BA是同一条射线(3)、线段AB和线段BA是同一条线段(4)、线段一定比直线短(5)、射线一定比直线短(6)、线段的长度可以度量,而直线、射线的长度不可能度量。
A.2B.3C.4D.57.用一副三角板画角,不能画出的角的度数是〔〕A.15°B.75°C.145°D.165°8.如图,那么不含阴影局部的矩形的个数是〔〕A.15B.24C.25D.26二、填空题9.一只小蚂蚁从如下图的正方体的顶点A沿着棱爬向有蜜糖的点B,它只能经过三条棱,请你数一数,小蚂蚁有________种爬行道路.10.几何学中,有“点动成________,线动成________,________动成体〞的原理.11.假设∠A=62°48′,那么∠A的余角=________.12.写出一个侧面展开图是长方形的几何体是________.13.如图,∠AOC和∠DOB都是直角,假如∠DOC=28°,那么∠AOB=________.14.我们所学的常见的立体图形有________体,________体,________体.15.如图,OB平分∠AOC,∠AOD=78°,∠BOC=20°,那么∠COD的度数为________°.16.如图是一个正方体的展开图,在a、b、c处填上一个适当的数,使得正方体相对的面上的两数互为相反数,那么的值为________三、计算题17.一个角的补角比这个角的余角的2倍还多40°,求这个角的度数.18.假设一个角比它的补角大20°,求这个角的度数.四、解答题19.如图,直角三角形ABC的两条直角边AB和BC分别长4厘米和3厘米,如今以斜边AC 为轴旋转一周.求所形成的立体图形的体积.五、综合题20.一艘客轮由西向东行驶,在A点处测得距灯塔B的间隔为40nmile,前进方向AC与直线AB夹角为30°.〔1〕分别用方向和间隔描绘灯塔相对于客轮的位置和客轮相对于灯塔的位置?〔2〕假如在灯塔B的周围25nmile的范围内有暗礁,客轮假设不改变方向有没有触礁的危险.〔温馨提示:按照适当的比例画图测量换算〕21.如图,在∠ABC中,AC的中点为D,BC的中点为E,F是DE的中点,动点G在边AB上,连接GF,延长GF到点H,使HF=GF,连接HD,HE.〔1〕求证:四边形HDGE是平行四边形.〔2〕∠C=90°,∠A=30°,AB=4.①当AG为何值时,四边形HDGE是矩形;②当AG为何值时,四边形HDGE是菱形.22.如图,∠COA=90°,∠COD比∠DOA大28°,且OB是∠COA的平分线.〔1〕求∠BOD的度数;〔2〕将条件中的28°改为32°,那么∠BOD=________;〔3〕将条件中的28°改为n°,那么∠BOD=________.答案解析局部一、单项选择题1.【答案】D【考点】几何体的展开图【解析】【解答】解:正方体的外表展开图,相对的面之间一定相隔一个正方形,“建〞与“县〞是相对面.应选D.【分析】正方体的外表展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.2.【答案】C【考点】点、线、面、体【解析】【解答】解:梯形绕下底边旋转是圆柱加圆台,故C正确;应选:C.【分析】根据面动成体,梯形绕下底边旋转是圆柱加圆台,可得答案.3.【答案】A【考点】余角和补角【解析】【解答】解:A,∠α与∠β互余,故本选项正确;B,∠α=∠β,故本选项错误;C,∠α=∠β,故本选项错误;D,∠α与∠β互补,故本选项错误,应选:A.【分析】根据余角和补角的概念、结合图形进展判断即可.4.【答案】A【考点】几何体的展开图【解析】【分析】正方体的外表展开图,相对的面之间一定相隔一个正方形确定出相对面,再根据对面的式子之积相等计算.【解答】正方体的外表展开图,相对的面之间一定相隔一个正方形,“〞与“〞是相对面,“2〞与“〞是相对面,“〞与“x〞是相对面,∠正方体各对面的式子之积是相等的,∠x=×,解得x=.应选A.【点评】此题主要考察了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.5.【答案】B【考点】认识立体图形【解析】【分析】此题考察的是立体图形的初步认识,乒乓球的形状类似于球体,结合球的特征进展判断.【解答】A、铅笔类似于圆柱的形状,故本选项错误;B、西瓜类似于球的形状,与乒乓球的形状类似,故本选项正确;C、音箱类似于长方体的形状,故本选项错误;D、茶杯类似于圆柱的形状,故本选项错误;应选B.【点评】结合生活中实际事物和常见立体图形的特征可以解决此类问题.6.【答案】B【考点】直线、射线、线段【解析】【分析】根据直线、线段及射线的定义及特点可判断各项,从而可得出答案.【解答】〔1)直线AB和直线BA是同一条直线,此说法正确;〔2)射线AB和射线BA的顶点不同,不是同一条射线,此说法错误;〔3)线段AB和线段BA是同一条线段,此说法正确;〔4)直线没有长度,故此说法错误;〔5)射线和直线都没长度,故此说法错误;〔6)线段的长度可以度量,而直线、射线的长度不可能度量,此说法正确.综上可得〔1)〔3)〔6)正确.应选B.【点评】此题考察直线、线段及射线的知识,属于根底题,关键是掌握根本概念.7.【答案】C【考点】角的计算【解析】【分析】15°=45-30,75=45+30,165=90+45+30,只有145°不能用三角板画出。
初级中学数学课堂学习检测-第4章-图形认识初步
![初级中学数学课堂学习检测-第4章-图形认识初步](https://img.taocdn.com/s3/m/3ea6bae53086bceb19e8b8f67c1cfad6195fe9c7.png)
第四章图形认识初步测试1 立体图形与平面图形学习要求观察认识生活中的简单立体图形和平面图形.通过学习立体图形的三视图和它的展开图,了解如何把立体图形转化为平面图形来研究和处理,体会立体图形与平面图形的关系.课堂学习检测一、填空题1.把下面几何体的标号写在相对应的括号里.长方体: { } 棱柱体: { }圆柱体: { } 球体: { }圆锥体: { }2.讲台上放着一本书,书上放着一个粉笔盒,请说明下面的三幅图分别是从哪个方向看到的?①②③3.用如图所示的平面图形可以折成的多面体是______.二、选择题4.人民英雄纪念碑的中间部分是一个长方体,它的形状类似于()(A)棱柱(B)圆柱(C)圆锥(D)球5.奥运会的标志是五环,这五环中的每一个环的形状与下列哪个形状类似()(A)三角形(B)正方形(C)圆(D)长方形6.下图中,不是左图所示物体视图的是()7.下列四张图中,能经过折叠围成一个棱柱的是().三、解答题8.下图中哪些图形是立体的,哪些是平面的?综合、运用、诊断一、填空题9.分别写出表面能展开成如图所示的五种平面图的几何体的名称.(1)_______(2)_______(3)_______(4)_______(5)_______10.如果将标号为A,B,C,D的正方形沿图中的虚线剪开拼接后得到标号为P,Q,M,N的四组图形,试按照“哪个正方形剪开后得到哪组图形”的对应关系填空.A与________对应,B与______对应,C与______对应,D与______对应.二、选择题11.如下图所示,电视台的摄像机①、②、③、④在不同位置拍摄了四幅画面,则A图像是______号摄像机所拍,B图像是______号摄像机所拍,C图像是______号摄像机所拍,D 图像是______号摄像机所拍.12.几何体( )展开后如左图.(A)棱柱(B)球(C)圆柱(D)圆锥13.不能折成左图的长方体的是().三、做一做14.如图,哪些图形经过折叠可以围成一个棱柱?先想一想,再折一折.15.如下图,这是从上面看到的由四个小正方体搭成的立体图形得到的平面图形,画出从正面看这四个小正方体搭成的立体图形的平面图形.16.如下图,这是一个多面体的展开图,每个面上都标注了字母.请根据要求回答问题:(1)如果A面在多面体的底部,那么哪一面会在上面?(2)如果E面在前面,从左面看是F面,那么哪一面会在上面?(3)从下面看是C面,D面在后面,那么哪一面会在上面?拓展、探究、思考17.把正方体的6个面分别涂上不同的颜色,并画上朵数不等的花,各面上的颜色与花朵数的情况列表如下:现将上述大小相同,颜色、花朵分布完全一样的四个正方体拼成一个在同一平面上放置的长方体 , 如下图所示 , 那么长方体的下底面共有______朵花 .18 . 如果图(1)~(10)均是正方体A 的展开图 , 正方体的每一面分别有1 , 2 , 3 , 4 , 5 , 6六个数 , 请你在图(2)~(10)的空格上填上相应的数 .(1) (2) (3) (4)(5) (6) (7) (8) (9) (10)19 . 有一个长方形的硬纸正好可以分成15个小正方形 , 如图 , 试把它剪成3份 , 每份有5个小正方形相连 , 折起来都可以成为一个无盖的正方体纸盒 , 应该怎样剪 ?测试2 点 、 线 、 面 、 体学习要求知道点是几何学中最基本的概念 . 点动成线 , 线动成面 , 面动成体 .课堂学习检测一 、 填空题1 . 面与面相交得到______线与线相交得到______圆锥的侧面和底面相交成______条线 , 这条线是______的(填“直”或“曲”) .2 . 如图所示的几何体是四棱锥 , 它是由______个三角形和一个形组成的 .3 . 三棱柱有______个顶点 , ______个面 , ______条棱 , ______条侧棱 , ______个侧面 , 侧面形状是______形 , 底面形状是______形 .4 . 笔尖在纸上划过就能写出汉字 , 这说明了______ ; 汽车的雨刮器摆动就能刮去挡风玻璃上的雨滴 , 这说明了______ ; 长方形纸片绕它的一边旋转形成了一个圆柱体 , 这说明了______ . 二 、 选择题5 . 按组成面的侧面“平”与“曲”划分 , 与圆柱为同一类的几何体是( ) .(A)圆锥 (B)长方体 (C)正方体 (D)棱柱 6 . 圆锥的侧面展开图不可能是( ) .(A)小半个圆 (B)半个圆 (C)大半圆 (D)圆7.将下面的直角梯形绕直线l旋转一周,可以得到如下图所示的立体图形的是().8.下列说法错误的是().(A)长方体、正方体都是棱柱(B)棱柱的侧棱长都相等(C)棱柱的侧面都是三角形(D)如果棱柱的底面各边长相等,那么它的各个侧面的面积一定相等综合、运用、诊断三、解答题9.如图,第一行的图形绕虚线旋转一周,便能形成第二行的某个几何体,用线连一连.10.如图,说出下列各几何体的名称,哪些可以由平面图形的旋转得到?11.观察图中的圆柱和棱柱:(1)棱柱、圆柱各由几个面组成?它们都是平的吗?(2)圆柱的侧面与底面相交成几条线,它们是直的吗?(3)棱柱有几个顶点?经过每个顶点有几条棱?12.图(1)、(2)是否是几何体的展开平面图,先想一想,再折一折,如果是,请说出折叠后的几何体名称、底面形状、侧面形状、棱数、侧棱数与顶点数.(1)(2)13.已知一个长方体,它的长比宽多2cm,高比宽多1cm,而且知道这个长方体所有棱长的和为48cm,则这个长方体的长、宽、高各是多少?拓展、探究、思考14.下面有编号Ⅰ~Ⅸ的九个多面体.(1)如果我们用V表示多面体的顶点数,E表示多面体的棱数,F表示多面体的面数.请分别数一下这些多面体的V,E,F各是多少?(2)想一想,V,E,F之间有什么关系?①面数F是否随顶点数V的增大而增大?答:____________________________________________________________;②棱的数目E是否随顶点的数目V的增大而增大?答:____________________________________________________________;③V+F与E之间有何关系?答:____________________________________________________________.测试3 直线、射线、线段学习要求理解两点确定一条直线的事实,并体会它们在解决实际问题中的作用;掌握直线、射线、线段的表示方法,建立初步的符号感;理解直线、射线、线段的联系和区别,进一步发展抽象概括的能力.课堂学习检测一、填空题1.要把木条固定在墙上至少要钉______个钉子,这是因为____________________.2.经过一点的直线有______条;经过两点的直线有______条;并且______一条;经过三点的直线______存在,如点C不在经过A、B两点的直线AB上,那么______经过A、B、C 三点的直线.3.把线段向一个方向延长,得到的是________;把线段向两个方向延长,得到的是______.4.线段有______个端点,射线有______个端点,直线有______个端点.5.如图,点O在线段AB______;点B在射线AB______;点A是线段AB的一个______.6.如图,图中有______条射线,______条线段,这些线段是__________.7.如图,AC,BD交于点O,图中共有______条线段,它们分别是______.8.如图,图中有______条线段,它们是______图中以A点为端点的射线有______条,它们是______图中有______条直线,它们是______.二、选择题9.根据“反向延长线段CD”这句话,下图表示正确的是().10.如图所示,有直线、射线和线段,根据图中的特征判断其中能相交的是()11.下列说法中正确的有()①钢笔可看作线段②探照灯光线可看作射线③笔直的高速公路可看作一条直线④电线杆可看作线段(A)1个(B)2个(C)3个(D)4个12.下列说法中正确的语句共有()①直线AB与直线BA是同一条直线②线段AB与线段BA表示同一条线段③射线AB与射线BA表示同一条射线④延长射线AB至C,使AC=BC⑤延长线段AB至C,使BC=AB⑥直线总比线段长(A)2个(B)3个(C)4个(D)5个三、读句画图13.(1)点P在直线AB上,点M在直线AB外.(2)直线AB、CD交于点O,点M在直线AB上,但不在CD上.(3)经过点O的三条直线a,b,c.14.按要求画图:(1)画直线BD.(2)画射线AC和AD.(3)延长线段AB.(4)反向延长线段AB.15.看图写话:(1)(2)综合、运用、诊断16.判断题.()(1)下图中,射线EO和射线ED是同一条射线.()(2)下图中,射线EO和射线OE是同一条射线.()(3)下图中,射线EO和射线OD是同一条射线.()(4)下图中,线段DE和线段ED是同一条线段.()(5)下图中,直线DO和直线ED是同一条直线.()(6)两条线段最多有一个公共点.()(7)反向延长射线AB.()(8)延长直线AB到C.()(9)射线是直线长度的一半.()(10)在一条直线上取n个点可以得到2n条射线.()(11)三点能确定三条直线.()(12)如果直线a和b有两个公共点,那么它们一定重合.()(13)延长线段AB就得到直线AB.()(14)若三条直线两两相交,则交点有3个.17.解答下列问题:(1)两条直线在同一平面内的位置关系有几种?(2)画图表示,两条直线可以把一个平面分成几个部分?三条直线呢?(3)平面上4条直线最多可以把平面分成多少个部分?拓展、探究、思考18.填表19.解答下列问题:(1)过三个已知点,一定可以画出直线吗?(2)经过平面上三个点中的每两点可以画多少条直线?(3)经过平面上四个点中的每两点可以画多少条直线?(4)若在平面上有n个点,过其中任意两点画直线,最多可以画几条?测试4 线段的比较学习要求理解线段的性质,线段的中点和两点间的距离,能对线段进行度量和比较.课堂学习检测一、填空题1 .(1)把一条线段二等分的______叫做这条线段的______ .(2)______叫做两点间的距离.(3)若A、B、C、D为直线l上顺次四点,则AB+BD=AC+______;AC+BD=AD+______.(4)若点C在线段AB的延长线上,则AC与AB的大小关系是______ ,并且AB+BC=______,AC-AB=______.(5)线段的基本性质是__________________________________________.(6)如图,A是直线BC外一点,请用不等号分别连接下列各式:AB+AC______BC;AB+BC______AC;AC+BC______AB:想一想:AB-AC________BC2.根据图形填空:(1)如图,若AB=BC=CD=DE,那么①AE=______AB,②AC=______AE;③AD=______AE,④CE=______AD.(2)如图,已知D、E分别是线段AB、BC的中点,①若AB=3cm,BC=5cm,则DE=______cm;②若AC=8cm,EC=3cm,则AD=______cm.二、选择题3.在所有连接两点的线中()(A)直线最短(B)线段最短(C)弧线最短(D)射线最短4 . 在下列说法中 , 正确的是( )(A)任何一条线段都有中点(B)射线AB 和射线BA 是同一射线 (C)延长线段AB 就得到直线AB (D)连接A , B 就得到AB 的距离5 . 如图 , 下列关系式中与右图不符合的是( )(A)AC +CD =AB -BD (B)AB -CB =AD -BC (C)AB -CD =AC +BD (D)AD -AC =CB -DB综合 、 运用 、 诊断一 、 选择题6 . 如下图 , 从A 地到B 地有多条道路 , 人们会走中间的直路 , 而不会走其他的曲折的路 , 这是因为( ) .(A)两点确定一条直线 (B)两点之间线段最短(C)两直线相交只有一个交点 (D)两点间的距离7 . 对于线段的中点 , 有以下几种说法 : ①因为AM =MB , 所以M 是AB 的中点 ; ②若AM=MB =21AB , 则M 是AB 的中点 ; ③若AM =21AB , 则M 是AB 的中点 ; ④若A , M , B 在一条直线上 , 且AM =MB , 则M 是AB 的中点 . 以上说法正确的是 ) .(A)①②③ (B)①③ (C)②④ (D)以上结论都不对8 . 已知A , B , C 为直线l 上的三点 , 线段AB =9cm , BC =1cm , 那A , C 两点间的距离是( ) . (A)8cm (B)9cm (C)10cm (D)8cm 或10cm 9 . 已知线段OA =5cm , OB =3cm , 则下列说法正确的是( )(A)AB =2cm (B)AB =8cm (C)AB =4cm (D)不能确定AB 的长度 . 10 . 已知线段AB =10cm , AP +BP =20cm . 下列说法正确的是( )(A)点P 不能在直线AB 上 (B)点P 只能在直线AB 上 (C)点P 只能在线段AB 的延长线上 (D)点P 不能在线段AB 上 11 . 能判定A , B , C 三点共线的是( )(A)AB =3 , BC =4 , AC =6 (B)AB =13 , BC =6 , AC =7 (C)AB =4 , BC =4 , AC =4 (D)AB =3 , BC =4 , AC =512 . 已知数轴上的三点A , B , C 所对应的数a , b , c 满足a <b <c , abc <0和a +b +c =0 , 那么线段AB 与BC 的大小关系是( ) . (A)AB >BC (B)AB =BC (C)AB <BC (D)不确定 二 、 解答题13 . 已知C 为线段AB 的中点 , AB =10cm , D 是AB 上一点 , 若CD =2cm , 求BD 的长 . 14 . 已知C , D 两点将线段AB 分为三部分 , 且AC ∶CD ∶DB =2∶3∶4 , 若AB 的中点为M ,BD 的中点为N , 且MN =5cm , 求AB 的长 . 15 . 如图 , 延长线段AB 到C , 使,21AB BCD 为AC 的中点 , DC =2 , 求AB 的长 .拓展 、 探究 、 思考16 . 已知 : 如图 , 点C 在线段AB 上 , 点M 、 N 分别是AC 、 BC 的中点 .(1)若线段AC =6 , BC =4 , 求线段MN 的长度 ; (2)若AB =a , 求线段MN 的长度 ; (3)若将(1)小题中“点C 在线段AB 上”改为“点C 在直线AB 上” , (1)小题的结果会有变化吗 ? 求出MN 的长度 .17 . 如图 , 这是一根铁丝围成的长方体 , 长 、 宽 、 高分别为6cm 、 5cm 、 4cm . 有一只蚂蚁从A 点出发沿棱爬行 , 每条棱不允许重复 , 则蚂蚁回到A 点时 , 最多爬行多少厘米 ? 把蚂蚁所走的路线用字母按顺序表示出来 .测试5 角的度量学习要求理解角的概念 , 掌握角的表示方法 , 能利用画图工具作一个角 , 会度量一个角的大小(在角度制下) , 能进行简单的计算 . 理解周角 、 平角的概念 .课堂学习检测一 、 填空题1 . (1)____________的图形叫做角 , ____________________叫做角的顶点 , _____________________叫做角的边 .(2)角也可以看作是由一条___________绕着它的___________而形成的图形 , 这条射线的起始位置叫做角的______ , 其终止位置叫做角的__________ .(3)一条射线绕其端点O 按逆时针方向旋转得到∠AOB , 当角的终边OB 旋转到与角的始边OA 成一条直线时 , 称∠AOB 为______ ; 若角的终边继续旋转 , 当角的终边OB 与角的始边OA 重合时 , 称∠AOB 为______ . (4)以度 、 分 、 秒为单位的角度制规定 , 把一个周角______ , 每一份叫做1度 , 记作______ ; 把1度的角______ , 每一份叫做1分 , 记作______ ; 把1分的角______ , 每一份叫做1秒 , 记作______ . 这样 , 1周角是______° , 1平角是______° , 1°=______' , 1′=______″ .2 . 用三个字母表示图中所注的∠1 、 ∠2 、 ∠3 :(1) (2) (3)∠1是______;∠1是______;∠1是______;∠2是______;∠2是______;∠2是______;∠3是______;∠3是______;∠3是______;∠4是______.3.图中以OC为边的角有______个,它们分别是______二、选择题4.下列说法中正确的是().(A)两条射线组成的图形叫做角(B)平角的两边构成一条直线(C)角的两边都可以延长(D)由射线OA、OB组成的角,可以记作∠OAB5.下列四个图形中,能用∠1,∠AOB,∠O三种方法表示同一个角的是)6.如图,图中共有()个角.(A)6(B)7(C)8(D)97.如图所示,点O在直线AB上,图中小于180°的角共有().(A)7个(B)8个(C)9个(D)10个8.下列说法正确的是()(A)一个周角就是一条射线(B)平角是一条直线(C)角的两边越长,角就越大(D)∠AOB也可以表示为∠BOA9.从早晨6点到上午8点,钟表的时针转过的角的度数为().(A)45°(B)60°(C)75°(D)90°10.若有一条公共边的两个三角形称为一对“共边三角形”,则下图中以BC为公共边的“共边三角形”有()(A)2对(B)3对(C)4对(D)6对练合、运用、诊断一、填空题11.如图,图中能用一个大写字母表示的角有几个?分别把它们表示出来._________________________ .12.图中共有______个小于平角的角,它们分别是__________________ ,其中以D为顶点的小于平角的角有______个.13.计算:(1)0.4°=______' ;(2)0.6′=______″;(3)24′=______°;(4)12″=______′;(5)57.32°=______°______′______″;(6)17°14′24″=______°;(7)17°40′÷3=______°______′______″;(8)25°36′18″×6=______°______′______″.(9)18.6°+42°34′(10)360°÷7(精确到1′)(11)32°16′25″×4-78°25′(12)180°-37°5′×4+93.1°÷5二、解答题14.时钟的时针1小时旋转多少度?时钟的分针1分钟旋转多少度?15.5点整时,时钟的时针与分针之间的夹角是多少度?16.时钟在8:30时,时针与分针的夹角为多少度?拓展、探究、思考17.已知:如图,AOB是直线,∠1∶∠2∶∠3=1∶3∶2,求∠DOB的度数.18.如图,PQ是一条线段,有一只蚂蚁从点C出发,按顺时针方向沿着图中实线爬行,最后又回到点C , 则蚂蚁共转了____________的角 .19 . 如图 , (1)中有______个角 , (2)中有______个角 ; (3)中有______个角 . 以此类推 , 若一个角内有n 条射线 , 则可有______个角 .测试6 角的比较与运算学习要求会比较两个角的大小 , 能进行角的运算(和 、 差 、 倍 、 分) . 理解角的平分线以及直角 、 锐角 、 钝角的概念 .课堂学习检测一 、 填空题1 . 要比较∠α 和∠β 的大小 , 可先让∠α 的顶点与∠β 的顶点______ , ∠α 的始边与∠β 的始边也______ , 并且∠α 的终边与∠β 的终边都在它们的始边的同一侧 . 若∠α 的终边落在∠β 的内部 , 则称∠α ______∠β ; 若∠α 的终边落在∠β 的外部 , 则称∠α ______∠β ;若∠α 的终边恰与∠β 的终边重合 , 则称∠α ______∠β .(如图所示 , ∠AOB =α ; ∠AOC =β )2 . 如图 , 若OC 是∠AOB 的平分线 , 则______=______ ; 或______=______21=______ ; 或______=2______=2______ .3 . 如图 , OM 是∠AOB 的平分线且∠AOM =30° , 则∠BOM =______ ; ∠AOB =______ .4 . 如图 , 在横线上填上适当的角 :(1)∠AOC =______+______ ; (2)∠AOD -∠BOD =______ ; (3)∠BOC =______-∠COD ;(4)∠BOC =∠AOC +______-______ . 5 . 按图填空 :(1)∠ABC 是∠ABD 与∠DBC 的______ ; (2)∠BDC 是∠ADC 与∠ADB 的_______ . 6 . 如图 , (1)若∠AOB =∠COD ,则∠AOC =∠______ . (2)若∠AOC =∠BOD , 则∠______=∠______ .二 、 选择题7 . 在小于平角的∠AOB 的内部取一点C , 并作射线OC , 则一定存在( ) .(A)∠AOC >∠BOC (B)∠AOC =∠BOC (C)∠AOB >∠AOC (D)∠BOC >∠AOC 8 . 如图 , ∠AOB =∠COD , 则( ) .(A)∠1>∠2 (B)∠1=∠2 (C)∠1<∠2(D)∠1与∠2的大小无法比较9 . 射线OC 在∠AOB 的内部 , 下列四个式子中不能判定OC 是∠AOB 的平分线的是( ) . (A)∠AOB =2∠AOC (B)∠BOC =∠AOC (C)∠AOC 21∠AOB (D)∠AOC +∠BOC =∠AOB10 . 不能用一副三角板拼出的角是( ) .(A)120° (B)105° (C)100° (D)75°11 . 如图 , OC 是∠AOB 的平分线 , OD 平分∠AOC , 且∠COD =25° , 则∠AOB =( ) .(A)100° (B)75° (C)50° (D)20°12 . 如果∠AOB =34° , ∠BOC =18° , 那么∠AOC 的度数是( ) .(A)52° (B)16° (C)52°或16° (D)52°或18° 13 . 如图 , 射线OD 是平角∠AOB 的平分线 , ∠COE =90° , 那么下列式子中错误的是( ) .(A)∠AOC =∠DOE(B)∠COD =∠BOE (C)∠AOD =∠BOD (D)∠BOE =∠AOC14 . 已知α 、 β 是两个钝角 , 计算)(61β+a 的值 , 四位同学算出了四种不同的答案 , 分别为24° , 48° , 76° , 86° , 其中只有一个答案是正确的 , 那么你认为正确的是( ) (A)24° (B)48° (C)76° (D)86° 三 、 解答题15 . 下面是小马虎解的一道题 .题目 : 在同一平面上 , 若∠BOA =70° , ∠BOC =15° , 求∠AOC 的度数 . 解 : 根据题意可画出下图 .∵∠AOC =∠BOA -∠BOC=70°-15° =55° ,∴∠AOC =55° . 若你是老师 , 会给小马虎满分吗 ? 若会 , 说明理由 . 若不会 , 请将小马虎的错误指出 , 并给出你认为正确的解法 .综合 、 运用 、 诊断16 . 如图 , OT 平分∠AOB , 也平分∠COD ,那么∠AOT =∠______ ,∠AOC =∠______ ,∠AOD =∠______17 . 如图 , OA ⊥OB , OC ⊥OD , ∠AOD =146° , 则∠BOC =______ .18 . 读语句画图并填空 :画平角∠AOC , 用量角器画∠AOC 的平分线OB , 因为OB 平分∠AOC , 所以∠AOB =∠=AOC 21_______ , 再用量角器画∠BOC 的平分线OD , 图中∠AOD =∠______+∠______=______° . 19 . 作图 .(1)用一副三角板可以画出多少个小于平角的角 ? 请用一副三角板画出15° , 75°角 .(2)作∠MPQ 的平分线PR , 则∠______=∠______21=∠______ .(3)利用圆规和直尺画一个角 .已知 : ∠AOB ,求作 : ∠A ′O ′B ′ , 使得∠A ′O ′B ′=∠AOB .20 . 如图 , OD 、 OE 分别是∠AOC 和∠BOC 的平分线 , ∠AOD =40° , ∠BOE =25° , 求∠AOB 的度数 .解 : ∵OD 平分∠AOC , OE 平分∠BOC ,∴∠AOC =2∠AOD , ∠BOC =2∠______ .∵∠AOD =40° , ∠BOE =25° , ∴∠BOC =______ , ∠AOC =______ . ∴∠AOB =____ .21 . 已知 : 如图 , ∠ABC =∠ADC , DE 是∠ADC 的平分线 , BF 是∠ABC 的平分线 .求证 : ∠2=∠3 .证明 : ∵DE 是∠ADC 的平分线 ,∴∠2=______ .∵BF 是∠ABC 的平分线 , ∴∠3=______ .又∵∠ABC =∠ADC , ∴∠2=∠3 .拓展 、 探究 、 思考22 . 已知 : ∠AOB =31.5° , ∠BOC =24.3° , 求∠AOC 的度数 .23 . 如图 , 从O 点引四条射线OA 、 OB 、 OC 、 OD , 若∠AOB , ∠BOC , ∠COD , ∠DOA 度数之比为1∶2∶3∶4 .(1)求∠BOC 的度数 .(2)若OE 平分∠BOC , OF 、 OG 三等分∠COD , 求∠EOG . 24 . 如图 , ∠AOB 的平分线为OM , ON 为∠MOA 内的一条射线 , OG 为∠AOB 外的一条射线 ,某同学经过认真的分析 , 得出一个关系式是∠MON =21(∠BON -∠AON ) , 你认为这个同学得出的关系式是正确的吗 ? 若正确 , 请把得出这个结论的过程写出来 .测试7 余角和补角学习要求理解一个角的余角和补角的概念 , 理解方向角的概念 , 并能解决有关角的计算问题 .课堂学习检测一 、 填空题1 . 如果两个角的______ , 那么称这两个角______余角 , 即其中一个角是____________ .2 . 如果两个角的______ , 那么称这两个角______补角 , 即其中一个角是____________ .3 . 若∠α =n ° , 则∠α 的余角是______ , ∠α 的补角是______ .4 . 若一个角的补角是150° , 则这个角的余角是____________ .5 . 若∠1与∠2分别是∠3的余角 , 则∠1______∠2 .6 . 若∠1是∠3的余角 , ∠2是∠4的余角 , 且∠3=∠4 , 则∠1____∠2 .7 . 如图 , ∠AOD 的余角是______ , 补角是______ .8.若∠β 与∠α 互补,∠γ 与∠α 互余,则∠β 与∠γ 的差为____________.9.如图,已知A,O,E三点在同一条直线上,OB平分∠AOC,OD平分∠COE,则∠BOC与∠COD的关系为____________.10.若轮船甲自A岛沿北偏东45°的方向行驶30海里到达B岛,轮船乙自A岛沿南偏西70°的方向行驶50海里到达C岛,则∠BAC=____________.二、选择题11.已知∠α =35°19′,则∠α 的余角等于().(A)144°41′(B)144°81′(C)54°41′(D)54°81′12.下列说法中正确的是().(A)大于直角的角叫钝角(B)小于平角的角叫钝角(C)不大于直角的角叫锐角(D)大于0°且小于直角的角叫锐角13.∠A的补角是∠C,∠C又是∠B的余角,则∠A一定是().(A)锐角(B)钝角(C)直角(D)无法确定14.已知:如图,∠AOB=∠COD=90°,则∠1与∠2的关系是).(A)互余(B)互补(C)相等(D)无法确定15.轮船航行到C处测得小岛A的方向为北偏西32°,那么从A观测此时的C处的方向为().(A)南偏东32°(B)东偏南32°(C)南偏东68°(D)东偏南68°16.下面说法中正确的是().(A)一个锐角的余角比这个角大(B)一个锐角的余角比这个角小(C)一个锐角的补角比这个角大(D)一个钝角的补角比这个角大17.下列说法中,正确的是().(A)一个角的余角一定是钝角(B)一个角的补角一定是钝角(C)锐角的余角一定是锐角(D)锐角的补角一定是锐角18.已知点C,O,B三点共线,∠COD=90°,∠COD绕点O由图(1)的位置旋转到图(2)的位置后,∠COB与∠AOD的关系是().(1) (2) (A)相等 (B)互补 (C)相等或互补 (D)不能确定三 、 解答题19 . 在图中画出表示下列方向的射线 :(1)南偏西30° (2)南偏东25°(3)北偏西20° (4)北偏东65° (5)东北方向 (6)西南方向20.(1)一个角的余角为54°求这个角的补角的度数 .(2)两个角的比是7∶3 , 它们的差是72° , 求这两个角的度数 . 21 . 如图 , 分别指出A , B , C , D 在O 的什么方向 ?综合 、 运用 、 诊断22 . 若一个角的余角比它的补角的92还多1° , 求这个角 . 23 . 用1∶10000的比例尺画图 , 并按要求填空(精确0.1cm) :(1)如下图 , 甲从O 点向北偏西60°走了200米 , 到达A 处 ; 乙从O 点向南偏西60°走了200米 , 到达B 处 , 用刻度尺量出AB =______cm , AB 的实际距离是______ . A 在B 的__________方向 .(2)如下图 , 某人从O 点向东北方向走了200米到达M 点 , 再从M 点向正西方向走了282米 , 到达N 点 , 用刻度尺量出ON =______cm , ON 实际距离是______ , 此时N 在O 的______方向 .(3)某人在O 点的北偏东60°方向上 , 距O 点300米 , 他向正南方向走了600米 , 到达A 处后 , 想去O 点 , 那么他要向______方向 , 走______米 .24 . 已知∠α 的余角是∠β 的补角的,31并且,23αβ∠=∠求∠α +∠β 的值 . 25 . 作图题 .(1)已知 : ∠α .求作 : ∠α 的补角 , 并画出∠α 的补角的平分线 .(2)已知 : ∠α .求作 : ∠α 的余角 , 并画出∠α 的余角的平分线 .26 . 填写下列空白和理由 :(1)如图所示 ,∵∠α 与∠β 互余 ,∴∠α +∠β =90° .(理由 : ______________)(2)如图所示 ,∵A , O , B 三点在同一直线上 ,∴∠________+∠________=180° .(理由 : __________________.)∴∠AOC 与∠BOC 互补 .(理由 : __________________.)(3)如图 ,∵∠AOB+∠BOC+∠COD+∠DOA=1周角,∴∠AOB+∠BOC+∠COD+∠DOA=360°.(理由_____________________.)∵∠AOB=∠COD=90°,∴∠AOD+∠BOC=180°.(理由:__________________)又∵∠BOC=42°,∴∠AOD=180°-∠BOC=180°-42°=__________.。
第四章《图形认识初步》综合复习检测卷(四)及答案
![第四章《图形认识初步》综合复习检测卷(四)及答案](https://img.taocdn.com/s3/m/b22f571565ce0508763213fd.png)
第四章《图形认识初步》综合复习检测卷(四)一、选择题(每小题3分,共30分)1.下列关于棱柱的说法:①棱柱的所有面都是平面;②棱柱的所有棱长都相等;③棱柱的所以侧面都是长方形或正方形;④棱柱的侧面个数与底面边数相等;⑤棱柱的上、下底面形状、大小相等其中正确的有 ( ).(A )2个 (B )3个 (C )4个 (D )5个2.下列图形中是正方体的表面展开图的是 ( ).(A) (B) (C) (D)3.如图1,点C 是线段AB 的中点,点D 线段BC 的中点,下列等式不正确的是( ).(A )CD=AC-DB (B )CD=AD-BC (C )CD=21AB-BD (D )CD=31AB图14.一个物体的从正面、左面、上面三个方向看是下面三个图形,则该物体形状的名称为 ( )(A) 圆柱 (B) 棱柱(C) 圆锥 (D) 球 正面 左面 上面5.下列判断正确的是 ( ). 图2(A )平角是一条直线 (B )凡是直角都相等(C )两个锐角的和一定是锐角 (D )角的大小与两条边的长短有关6.如图3,∠AOB =∠COD =90°,那么∠AOC=∠BOD ,这是根据 ( ).(A)直角都相等 (B) 同角的余角相等(C)同角的补角相等 (D)互为余角的两个角相等图37. 点M 、O 、N 顺次在同一直线上,射线0C 、0D 在直线MN 同侧,且∠MOC=64°,∠DON=46°,北则∠MOC 的平分线与∠DON 的平分线夹角的度数是 ( ).(A )85° (B )105° (C )125° (D )145°8. 某测绘装置上一枚指针原来指向南偏西50°(如图4), 把这枚指针按逆时针方向旋转41周,则结果指针的指向 ( ). (A )南偏东50º (B )西偏北50º(C )南偏东40º (D )南偏东45° 图49.如图5,每个长方体的六个面上分别写着1~6这六个数,并且任意两个相对的面上所写的两个数之和所写的两个数之和都等于7,靠在一起的长方体中,相连接两个面的数字之和等于8,图中打“?”的面上所写的数字是 ( ).(A )3 (B )5 (C )2 (D )110.计算180°-48°39′40″-67°41′35″的值是 ( ). 图5(A )63°38′45″ (B )58°39′40″ (C )64°39′40″ (D )63°78′65″二、填空题(每小题2分,共20分)11.如图6所示的图形绕虚线旋转一周,所围成的几何体是_____.图6 图7 12.如图7是一个正方体纸盒的展开图,在其中的四个正方形内有数字1、2、3和-3,要在其余正方形内分别填上-1、-2,使得按虚线折成正方体后,相对面上的两个数互为相反数,则A 处应填_____.13.植树时,只要定出_______个树坑的位置,就能确定同一行树坑所在直线,根据是_______.14.如图8是三个几何体的展开图,请写出这三个立体图形_________ __________ ________图815.某工程队在修筑高速公路时,有时需要将弯曲的道路改直,以缩短路程,这样作的理论依据是________.16.如图9,点C是∠AOB的边OA上一点,D、E是OB上两点,则图中共有_____条线段,_____条射线,_____个小于平角的角.图9 图1017.如果一个角的补角是150°,那么这个角的余角是________.18.乘火车从A站出发,沿途经过3个车站可到达B站,那么在A、B两站之间共有____种不同的票价.19.如图10,将一副三角板叠放在一起,使直角的定顶点重合于点0,则∠AOC+∠DOB=_____.20.在直线l上取A、B、C三点,使得AB=4cm,BC=3cm,如果0是线段AC的中点,则线段OB的长度为_________.三、解答题(1-6每小题6分,7-8分每小题7分)21.观察图11中的几何体,画出从正面、左面、上面三个方向看,得到的平面图形。
人教版七年级数学上册第四章 几何图形初步 知识点总结及精选题
![人教版七年级数学上册第四章 几何图形初步 知识点总结及精选题](https://img.taocdn.com/s3/m/98cd3bceb9f3f90f76c61bed.png)
几何图形初步知识点总结及精选题1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、生活中的立体图形圆柱柱体棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……生活中的立体图形球体(按名称分) 圆锥椎体棱锥4、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。
棱柱的所有侧棱长都相等,棱柱的上下两个底面是相同的多边形,直棱柱的侧面是长方形。
棱柱的侧面有可能是长方形,也有可能是平行四边形。
5、正方体的平面展开图:11种6、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。
7、三视图物体的三视图指主视图、俯视图、左视图。
主视图:从正面看到的图,叫做主视图。
左视图:从左面看到的图,叫做左视图。
俯视图:从上面看到的图,叫做俯视图。
平面图形的认识线段,射线,直线 名称 不同点联系 共同点延伸性 端点数 线段 不能延伸 2 线段向一方延长就成射线,向两方延长就成直线都是直的线射线 只能向一方延伸 1 直线可向两方无限延伸无点、直线、射线和线段的表示在几何里,我们常用字母表示图形。
一个点可以用一个大写字母表示,如点A一条直线可以用一个小写字母表示或用直线上两个点的大写字母表示,如直线l ,或者直线AB一条射线可以用一个小写字母表示或用端点和射线上另一点来表示(端点字母写在前面),如射线l ,射线AB一条线段可以用一个小写字母表示或用它的端点的两个大写字母来表示,如线段l ,线段AB点和直线的位置关系有两种:①点在直线上,或者说直线经过这个点。
图形的初步认识拔高题
![图形的初步认识拔高题](https://img.taocdn.com/s3/m/280482f0192e45361066f5f3.png)
图形的初步认识拔高题考点一、正方体的侧面展开图(共十一种)分类记忆:第一类,中间四连方,两侧各一个,共六种。
第二类,中间三连方,两侧各有一、二个,共三种。
第三类,中间二连方,两侧各有二个,只有一种。
第四类,两排各三个,只有一种。
典型例题如图四个图形都是由6个大小相同的正方形组成,其中是正方体展开图的是()A.①②③B.②③④C.①③④ D.①②④1、下图可以沿线折叠成一个带数字的正方体,每三个带数字的面交于正方体的一个顶点,则相交于一个顶点的三个面上的数字之和最小是( )A. 7 B. 8 C. 9 D. 102、一个正方体的展开图如右图所示,每一个面上都写有一个自然数并且相对两个面所写的两个数之和相等,那么a+b-2c= ()A.40 B.38 C.36 D. 343、将如图所示的正方体沿某些棱展开后,能得到的图形是()★★★★A. B. C. D.考点二、常见立体图形的平面展开图下面是四个立体图形的展开图,则相应的立体图形依次是( )A.正方体、圆柱、三棱柱、圆锥 B.正方体、圆锥、三棱柱、圆柱C.正方体、圆柱、三棱锥、圆锥 D.正方体、圆柱、四棱柱、圆锥如图是一个长方体的表面展开图,每个面上都标注了字母,请根据要求回答问题:(1)如果A面在长方体的底部,那么哪一个面会在上面?(2)若F面在前面,B面在左面,则哪一个面会在上面?(字母朝外)(3)若C面在右面,D面在后面,则哪一个面会在上面?(字母朝外)考点三、立体图形的三视图.如图,是由几个相同的小正方体搭成的几何体的三种视图,则搭成这个几何体的小正方体的个数是 ( )A.3 B.4C.5 D.6c 84 25ba 1236 4 5俯视图左视图主视图正方体每一面不同的颜色对应着不同的数字,将四个这样的正方体如图拼成一个水平放置的长方体,那么长方体的下底面数字和为 .观察下列由棱长为 1的小正方体摆成的图形,寻找规律,如图⑴所示共有1个小立方体,其中1个看得见,0个看不见;如图⑵所示:共有8个小立方体,其中7个看得见,1个看不见;如图⑶所示:共有27个小立方体,其中19个看得见,8个看不见……(1)写出第⑹个图中看不见的小立方体有个;(2)猜想并写出第(n)个图形中看不见的小立方体的个数为____ ______个.考点四、(一)数线段——数角——数三角形问题1、直线上有n个点,可以得到多少条线段?分析:点线段2 13 3 =1+24 6=1+2+35 10=1+2+3+46 15=1+2+3+4+5……n 1+2+3+ … +(n-1)=()21-nn问题2.如图,在∠AOB内部从O点引出两条射线OC、OD,则图中小于平角的角共有()个(A) 3 (B) 4 (C) 5 (D) 6拓展:1、在∠AOB内部从O点引出n条射线图中小于平角的角共有多少个?射线角1 3 =1+22 6=1+2+33 10=1+2+3+4……n 1+2+3+ … +(n+1)=()()221+ +nn类比:从O点引出n条射线图中小于平角的角共有多少个?射线角2 13 3 =1+24 6=1+2+35 10=1+2+3+4……n 1+2+3+ … +(n-1)=()21-nn类比联想:如图,可以得到多少三角形?考点五、线段计算(线段中点应用)1. 利用几何的直观性,寻找所求量与已知量的关系例1. 如图所示,点C 分线段AB 为5:7,点D 分线段AB 为5:11,若CD =10cm ,求AB 。
[基础知识]第四章图形认识初步复习资料
![[基础知识]第四章图形认识初步复习资料](https://img.taocdn.com/s3/m/946e592cfad6195f312ba6cd.png)
第四章图形认识初步复习资料[基础知识]一、多姿多彩的图形∵∴°′″∠1.把的各种图形统称为几何图形。
几何图形包括立体图形和平面图形。
各部分不都在同一平面内的图形是图形;如各部分都在同一平面内的图形是图形。
如▲会画出同一个物体从不同方向(正面、上面、侧面)看得的平面图形(视图)[1].▲知道并会画出常见几何体的表面展开图.2.点、线、面、体组成几何图形,点是构成图形的基本元素。
点、线、面、体之间有如图所示的联系:▲知道由常见平面图形经过旋转所得的几何体的形状。
[基础练习]画出下列几何体的三视图正面看上面看左面看二、直线、射线、线段1.直线公理:经过两点有一条直线,一条直线。
简述为:.·两条不同的直线有一个时,就称两条直线相交,这个公共点叫它们的。
·射线和线段都是直线的一部分。
2.直线、射线、线段的记法【如下表示】3.线段的中点:把一条线段分成相等的两条线段的点,叫做线段的中点。
·如图,点M 是线段AB 的中点,则有AM=MB=21AB 或 2AM=2MB=AB 用符号语言表示就是: 因为 点M 是线段AB 的中点 所以 AM=MB=21 ( 或 AM=2=AB)类似的,把线段分成相等的三条线段的点,叫线段的三等分点。
把线段分成相等的n 条线段的点,叫线段的n 等分点。
4.线段公理:两点的所有连线中,线段最短。
简述为:之间,最短。
·两点之间的距离的定义:连接两点之间的,叫做这两点的距离。
▲会结合图形比较线段的大小;会画线段的“和”“差”图。
▲会根据几何作图语句画出符合条件的图形,会用几何语句描述一个图形。
[基础练习]1.写出图中所有线段的大小关系,“和”及“差”。
2.根据下列语句画图①延长线段AB与直线L交于点C.②连接MP.③反向延长PM.④在PC的方向上截取PD=PM.3.判断下列说法是否正确(1)直线AB与直线BA不是同一条直线()(2)用刻度尺量出直线AB的长度()(3)直线没有端点,且可以用直线上任意两个字母来表示()(4)线段AB中间的点叫做线段AB的中点()(5)取线段AB的中点M,则AB-AM=BM ()(6)连接两点间的直线的长度,叫做这两点间的距离()(7)一条射线上只有一个点,一条线段上有两个点()4.已知点A、B、C三个点在同一条直线上,若线段AB=8,BC=5,则线段AC=_________5.电筒发射出去的光线,给了我们的形象6.如图,四点A 、B 、C 、D 在一直线上,则图中有______条线段,有_______条射线;若AC=12cm ,BD=8cm ,且AD=3BC ,则AB=______,BC=______,CD=____7.已知点A 、B 、C 三个点在同一条直线上,若线段AB=8,BC=5,则线段AC=_________8.如图,若C 为线段AB 的中点,D 在线段CB 上,6=DA ,4=DB ,则CD=_____9.C 为线段AB 上的一点,点D 为CB 的中点,若AD=4,求AC+AB 的长。
第四章图形认识初步(原卷版)-2020-2021学年七年级数学上册期中期末复习考点强化训练(人教版)
![第四章图形认识初步(原卷版)-2020-2021学年七年级数学上册期中期末复习考点强化训练(人教版)](https://img.taocdn.com/s3/m/80da913c76eeaeaad0f33013.png)
第四章图形认识初步考点强化训练一、几何体的三视图1.下列图形中,不是正方体的展开图的是()A.B.C.D.2.图中几何体从左边看得到的图形是()A.B.C.D.3.下图是由6个大小相同的正方体拼成的几何体,则下列说法正确的是()A.从正面看和从左面看到的图形相同B.从正面看和从上面看到的图形相同C.从上面看和从左面看到的图形相同D.从正面、左面、上面看到的图形都不相同4.一个正方体的每个面都写有一个汉字,其表面展开图如图所示,则在该正方体中,和“知”相对的面上写的汉字是()A.就B.是C.力D.量5.如图是一个正方体展开图,把展开图折叠成正方体后,“行”字一面的相对面上的字是()A.能B.我C.最D.棒6.如图是一个长方体包装盒,则它的平面展开图是A.B.C.D.7.如图是由几个大小相同的小正方体搭成的几何体从不同方向看到的平面图形,则搭成这个几何体的小正方体有()A.3个B.4个C.5个D.6个8.如图,是由7块正方体木块堆成的物体,请说出图(1)、图(2)、图(3)分别是从哪一个方向看得到的.(1)__________ (2)__________(3)__________9.由大小相同的小立方块搭成的几何体如图,请在下图的方格中画出该几何体的俯视图和左视图.10.一个几何体由几个大小相同的小立方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,请画出从正面和从左面看到的这个几何体的形状图.11.用一平面去截下列几何体,其截面可能是三角形的有( )A .4个B .3个C .2个D .1个二、线段的关系与计算12.下列说法错误的是( ) A .两点之间,线段最短B .过两点有且只有一条直线C .延长线段OA 到B ,使AB OA =D .连接两点的线段叫做两点的距离13.如图,C,D 是线段AB 上两点.若CB=4cm,DB=7cm ,且D 是AC 的中点,则AB=, ,A .10cmB .11cmC .12cmD .14cm14.线段1AB =,1C 是AB 的中点,2C 是1C B 的中点,3C 是2C B 的中点,4C 是3C B 的中点,依此类推,线段AC 5的长为( ) A .116B .132C .1516D .313215.如图,B 、C 两点把线段MN 分成三部分,其比为MB :BC :CN =2:3:4,点P 是MN 的中点,PC =2cm ,则MN 的长为()A .30cmB .36cmC .40cmD .48cm16.已知A 、B 、C 为直线l 上的三点,线段AB =9cm ,BC =1cm ,那么A 、C 两点间的距离是( ) A .10cmB .8cmC .10cm 或8cmD .以上说法都不对17.如图,线段15AB cm =,点C 在AB 上,23BC AC =,D 为BC 的中点,则线段AD 的长为( )A .10cmB .13cmC .12cmD .9cm18.如图,点C 是线段AB 的中点,点D 是线段BC 的中点,下列等式正确的是( )A .CD =AC -DB B .CD =AB -DBC .AD = AC -DBD .AD =AB -BC19.如图,点P 是线段AB 上的点,其中不能说明点P 是线段AB 中点的是( ,A .AB,2APB .AP,BPC .AP,BP,ABD .12BP AB =20.如图,点C 在线段AB 上,8AC cm =,6CB cm =,点M ,N 分别是AC 、BC 的中点,则线段MN 的长为________cm21.已知线段6AB cm =,点C 在直线AB 上,2BC cm =,点D 为线段AC 的中点,则线段DB 的长为 _____________cm .22.已知线段AB=10cm ,点C 是直线AB 上的一点,AC=4cm ,则线段BC 的长度是__________23.如图,已知线段AB =12cm ,点N 在AB 上,NB =2cm ,M 是AB 中点,那么线段MN 的长为_____cm .24.如图,AD =12DB ,BC =4m ,AC =10m ,求线段DC 的长.25.点O 是线段AB 的中点,OB =14cm ,点P 将线段AB 分为两部分,AP :PB =5:2. ①求线段OP 的长.②点M 在线段AB 上,若点M 距离点P 的长度为4cm ,求线段AM 的长.26.如图,点C 是AB 的中点,D,E 分别是线段AC,CB 上的点,且AD,23AC,DE,35AB ,若AB,24 cm ,求线段CE 的长.27.如图,已知B 、C 是线段AD 上两点,且AB ︰BC ︰CD=2︰4︰3,点M 是AC 的中点,若CD=6,求MC 的长.28.如图,线段AB 8=,点C 是线段AB 的中点,点D 是线段BC 的中点.()1求线段AD 的长;()2在线段AC 上有一点E ,1CE BC 3=,求AE 的长. 29.如图,点C 是线段AB 上的一点,延长线段AB 到点D ,使2BD CB =.(1)请依题意补全图形;(2)若9AD =,3AC =,M 是AD 的中点,求线段MB 的长.30.已知线段AB =10cm ,直线AB 上有一点C ,BC =6cm ,M 为线段AB 的中点,N 为线段BC 的中点,求线段MN 的长.三、角的度数的计算31.10时整,钟表的时针与分针之间所成的角的度数是( ) A .30°B .60°C .90°D .120°32.已知,AOB =45°,,BOC =30°,则,AOC = . 33.35.15°=_____°_____′_____″;12°15′36″=_____°.34.在同一平面内,已知∠AOB=50°,∠COB=30°,则∠AOC 等于___________四、互余与互补的角的关系与计算35.如图,∠AOB =∠COD =90°,那么∠AOC=∠BOD ,这是根据( )A .直角都相等B .同角的余角相等C .同角的补角相等D .互为余角的两个角相等36.已知A ∠是它的补角的4倍,那么A ∠=( ) A .144︒B .36︒C .90︒D .72︒37.将一副三角尺按不同位置摆放,摆放方式中∠α 与∠β 互余的是( )A .B .C .D .38.如图,已知DO ⊥AB 于点O ,CO ⊥OE ,则图中与∠DOE 互余的角有( )个A .1B .2C .3D .439.一个角的余角是5134',这个角的补角是__________. 40.已知,1=30°,则,1的补角等于 . 41.一个角的余角比这个角的12少30°,则这个角的度数是_____. 42.已知∠α=72°36′,则∠α的余角的补角是________度. 43.一个角的补角与它的余角的3倍的差是40°,则这个角为_____. 44. 若,A=62°48′,则,A 的余角= . 45.一个角的余角比它的补角的12少20︒,则这个角是__________ 46.若∠B 的余角为57.12°,则∠B =_____°_____’_____” 47.已知∠A 的余角是∠A 的补角的13,则∠A =________. 五、角平分线及其计算48.如图,BD 平分ABC ∠,BE 把ABC ∠分成2:5的两部分,21DBE ∠=,则ABC ∠的度数( )49.OB 是∠AOC 内部一条射线,OM 是∠AOB 平分线,ON 是∠AOC 平分线,OP 是∠NOA 平分线,OQ 是∠MOA 平分线,则∠POQ∶∶BOC =( )A.1∶2B.1∶3C.2∶5D.1∶450.如图,点A,O,B在同一条直线上,射线OD平分∠AOC,射线OE在∠BOC的内部,且∠COE与∠AOE 的补角相等,若∠AOD=50°,则∠COE的度数为()A.30°B.40°C.50°D.80°51.如图所示,已知∠AOC=∠BOD=80°,∠BOC=30°,则∠AOD的度数为()A.160°B.110°C.130°D.140°53.如图,OC是∠AOB的平分线,∠BOD=13∠DOC,∠BOD=12°,则∠AOD的度数为( )A.70°B.60°C.50°D.48°54.如图,点O在直线AB上,射线OC平分,DOB,若,COB=35°,则,AOD等于( ).A.35°B.70°C.110°D.145°55.如图,将一个三角板60°角的顶点与另一个三角板的直角顶点重合,∠1=27°40′,∠2的大小是( )A.27°40′B.57°40′C.58°20′D.62°20′56.如图4,已知O是直线AB上一点,∠1=30°,OD平分∠BOC,则∠2的度数是_______度.六、角的计算57.如图所示,O是直线AB与CD的交点,∠BOM:∠DOM=1:2,∠CON=90°,∠NOM=68°,则∠BOD =_____°.58.如图,直线AB、CD相交于点O,OB平分∠EOD,∠COE=100°,则∠AOC=_____°.59.如图,直线AB与CD相交于点O,射线OM是∠AOC的平分线,如果∠BOC=110°,那么∠AOM=______°.60.如图,点O在直线AB上,射线OD平分,AOC,若,AOD=20°,则,COB的度数为_____度.61.如图,点A、O、B在一条直线上,∠AOC=130°,OD是∠BOC的平分线,则∠COD=___度.七、角度综合计算62.如图,已知∠BOC =2∠AOC ,OD 平分∠AOB ,且∠COD =20°,求∠AOB 的度数. 63.直线AB 、CD 相交于点O ,OE 平分∠AOD ,∠FOC=90°,∠1=40°,求∠2与∠3的度数.64.如图,已知∠AOB=90°,∠EOF=60°,OE 平分∠AOB ,OF 平分∠BOC ,求∠AOC 和∠COB 的度数. 65.如图,已知OE 是∠AOC 的角平分线,OD 是∠BOC 的角平分线. (1)若∠AOC=120°,∠BOC=30°,求∠DOE 的度数; (2)若∠AOB=90°,∠BOC=α,求∠DOE 的度数.66.如图,直线AB ,CD 相交于点O ,OE 平分BOC ∠,OF OE ⊥ (1)写出与BOF ∠互余的角(2)若57BOF ∠=,求AOD ∠的度数67.如图,已知直线AB 和CD 相交于O 点,90COE ∠=︒,OF 平分AOE ∠,28COF ∠=︒,求BOD ∠的度数.68.如图,直线AB 与CD 相交于点O ,OF 是∠BOD 的平分线,OE ⊥OF , (1)若∠BOE=∠DOF+38°,求∠AOC 的度数;(2)试问∠COE 与∠BOE 之间有怎样的大小关系?请说明理由.69.如图,已知A ,O ,B 三点在同一条直线上,OD 平分∠AOC ,OE 平分∠BOC .(1)若∠BOC=62°,求∠DOE 的度数;(2)若∠BOC=α,求∠DOE 的度数;(3)通过(1)(2)的计算,你能总结出什么结论,直接简写出来,不用说明理由. 70.如图,以点O 为端点按顺时针方向依次作射线OA 、OB 、OC 、OD.(1)若∠AOC 、∠BOD 都是直角,∠BOC =60°,求∠AOB 和∠DOC 的度数. (2)若∠BOD =100°,∠AOC =110°,且∠AOD =∠BOC+70°,求∠COD 的度数. (3)若∠AOC =∠BOD =α,当α为多少度时,∠AOD 和∠BOC 互余?并说明理由. 71.综合与探究:问题情境:如图,已知∠AOB =90°,射线OC 在∠AOB 的外部且0°<∠BOC <180°.OM 是∠AOC 的角平分线,ON 是∠BOC 的角平分线. 特例探究:(1)如图1,①当∠BOC =40°时,∠MON 的度数为 °; ②当∠BOC <90°时,求∠MON 的度数; 猜想拓广:(2)若∠AOB =α(0<α<90°),①当∠AOB +∠BOC <180°时,则∠MON 的度数是 °;(用含α的代数式表示)②当∠AOB +∠BOC >180°时,请在图2中画出图形,并直接写出∠MON 的度数.(用含α的代数式表示) 72.已知:O 是直线AB 上的一点,COD ∠是直角,OE 平分BOC ∠, ,1)如图1.若30AOC ∠=︒.求DOE ∠的度数;,2)在图1中,AOC a ∠=,直接写出DOE ∠的度数(用含a 的代数式表示);,3)将图1中的DOC ∠绕顶点O 顺时针旋转至图2的位置,探究AOC ∠和DOE ∠的度数之间的关系.写出你的结论,并说明理由.73.如图1,点O 是弹力墙MN 上一点,魔法棒从OM 的位置开始绕点O 向ON 的位置顺时针旋转,当转到ON 位置时,则从ON 位置弹回,继续向OM 位置旋转;当转到OM 位置时,再从OM 的位置弹回,继续转向ON 位置,…,如此反复.按照这种方式将魔法棒进行如下步骤的旋转:第1步,从OA 0(OA 0在OM 上)开始旋转α至OA 1;第2步,从OA 1开始继续旋转2α至OA 2;第3步,从OA 2开始继续旋转3α至OA 3,….例如:当α=30°时,OA 1,OA 2,OA 3,OA 4的位置如图2所示,其中OA 3恰好落在ON 上,,A 3OA 4=120°; 当α=20°时,OA 1,OA 2,OA 3,OA 4,OA 3的位置如图3所示,中第4步旋转到ON 后弹回,即,A 3ON+,NOA 4=80°,而OA 5恰好与OA 2重合. 解决如下问题:(1)若α=35°,在图4中借助量角器画出OA 2,OA 3,其中,A 3OA 2的度数是 ;(2)若α<30°,且OA4所在的射线平分,A2OA3,在如图5中画出OA1,OA2,OA3,OA4并求出α的值;(3)若α<30°,且,A2OA4=20°,求对应的α值.74.点O为直线AB上一点,将一直角三角板OMN的直角顶点放在点O处.射线OC平分∠MOB.(1)如图1,若∠AOM=30°,求∠CON的度数;(2)在图1中,若∠AOM=a,直接写出∠CON的度数(用含a的代数式表示);(3)将图1中的直角三角板OMN绕顶点O顺时针旋转至图2的位置,一边OM在射线OB上方,另一边ON在直线AB 的下方.①探究∠AOM和∠CON的度数之间的关系,写出你的结论,并说明理由;②当∠AOC=3∠BON时,求∠AOM的度数.11。
人教版最新第四章章《图形认识初步》单元复习题
![人教版最新第四章章《图形认识初步》单元复习题](https://img.taocdn.com/s3/m/985398c7998fcc22bcd10d9b.png)
第四章章《图形认识初步》单元复习题一、选择题(每题2分,共24分)1、如图3-1,下列图形中,不是正方体展开图的是(2面上的两个数之和相等,如图所示,你能看到的数为7、则六个整数的和为()A.51 B.52 C.57 D.3、如果要在一条直线上得到10条不同的线段,那么在这条直线上至少要选用()个不同的点。
A.20 B.10 C.7 D.54、下列说法中,正确的有()①过两点有且只有一条直线②连结两点的线段叫做两点的距离③两点之间,线段最短④若AB=BC,则点B是线段AC A.1个 B.2个 C.3个 D.4个5、平面内两两相交的6条直线,交点个数最少为m个,最多为n等于()A.12 B.16 C.20 D.22 6、一条铁路上有10个站,则共需要制 ( ) 种火车票。
A.45 B.55 C.90 D.1107、M、N两点的距离是20,有一点P,如果PM+PN=30是()A.P点必在线段MN上 B.P点必在直线MN上C.P点必在直线MN外 D.P点可能在直线MN外,也可能在直线MN上8、如图是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔。
如果一个球按图中所示的方向被击出(球可以经过多次反弹),那么该球最后将落入的球袋是()A.1 号袋 B.2 号袋 C.3 号袋 D.4 号袋9、赵师傅透过放大5倍的放大镜从正上方看30°的角,则通过放)度。
90° C.150° D.180°30°走了50米到达A点,乙也从O点出发,沿80米到达B点,则∠AOB为()115° C.175° D.185°、(06常州)下列左图表示一个由相同小立方块搭成的小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为()二、填空题(每题3分,共27分)、过A、B、C三点中两点作直线,小明说有三条,小林说有一条,小颖说不是一条就是三条,你认为_______的说法是对的。
第4章 图形的初步认识 华东师大版七年级上册数学单元测试(含答案)
![第4章 图形的初步认识 华东师大版七年级上册数学单元测试(含答案)](https://img.taocdn.com/s3/m/f9fa7b4a7dd184254b35eefdc8d376eeafaa1760.png)
第4章图形的初步认识(单元测试)华东师大新版七年级上册数学一.选择题(共7小题)1.时钟的时针由4点转到5点45分,时针转过的角度是( )A.52030'B.50045'C.5405'D.10045'2.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB 的大小为( )A.69°B.111°C.141°D.159°3.如图,点A,O,B在同一条直线上,OC平分∠DOB,已知,∠AOE=30°30',∠DOC=65°15',则∠DOE的度数是( )A.70°B.78°C.80°D.84°4.如图所示,下列说法错误的是( )A.∠DAO可用∠DAC表示B.∠COB也可用∠O表示C.∠2也可用∠OBC表示D.∠CDB也可用∠1表示5.用3个同样的小正方体摆出的几何体,从三个方向看到的图形分别如图:....=∠A.∠AOC=∠BOCB.∠AOC<∠AOBC.∠AOC=∠BOC或∠.如图所示,图(表面上),请根据要求回答问题:,求的值;运动秒后都停止运动,此时恰有=BD第4章图形的初步认识(单元测试)华东师大新版七年级上册数学参考答案与试题解析一.选择题(共7小题)1.时钟的时针由4点转到5点45分,时针转过的角度是( )A.52030'B.50045'C.5405'D.10045'【答案】A【解答】解:钟表12个数字,每相邻两个数字之间的夹角为30°,每相邻两个数字之间有5个格,每格之间的度数为6°,时钟的时针由4点转到5点45分,时针转过的5+5×格,时针转过的度数=6°×(5+5×)=52°30′.故选:A.2.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB 的大小为( )A.69°B.111°C.141°D.159°【答案】C【解答】解:由题意得:∠1=54°,∠2=15°,∠3=90°﹣54°=36°,∠AOB=36°+90°+15°=141°,故选:C.3.如图,点A,O,B在同一条直线上,OC平分∠DOB,已知,∠AOE=30°30',∠DOC=65°15',则∠DOE的度数是( )A.70°B.78°C.80°D.84°【答案】C【解答】解:∵OC平分∠DOB,∠DOC=65°15',∴∠BOD=2∠DOC=130°30′,∴∠AOD=180°﹣130°30′=49°30′,∴∠DOE=∠AOD+∠AOE=49°30′+30°30′=80°.故选:C.4.如图所示,下列说法错误的是( )A.∠DAO可用∠DAC表示B.∠COB也可用∠O表示C.∠2也可用∠OBC表示D.∠CDB也可用∠1表示【答案】B【解答】解:A、∠DAO可用∠DAC表示,本选项说法正确;B、∠COB不能用∠O表示,本选项说法错误;C、∠2也可用∠OBC表示,本选项说法正确;D、∠CDB也可用∠1表示,本选项说法正确;故选:B.5.用3个同样的小正方体摆出的几何体,从三个方向看到的图形分别如图:这个几何体是( )A.B.C.D.【答案】B【解答】解:由俯视图可知,小正方体摆出的几何体为:,故选:B.6.如图是由几个相同的小正方体组成的几何体,则下列说法正确的是( )A.左视图面积最大B.俯视图面积最小C.左视图面积和正视图面积相等D.俯视图面积和正视图面积相等【答案】D【解答】解:观察图形可知,几何体的主视图由4个正方形组成,俯视图由4个正方形组成,左视图由3个正方形组成,所以左视图的面积最小,俯视图面积和正视图面积相等.故选:D.=∠A.∠AOC=∠BOCB.∠AOC<∠AOBC.∠AOC=∠BOC或∠=∠=∠===×【答案】(1(2)图形见解答.【解答】解:的距离为×∴△ABM的面积=×10×5=25.或△ABM′的面积=×10×21=105.19.如图甲,点O是线段AB上一点,C、D两点分别从O、B同时出发,以2cm/s、4cm/s的速度在直线AB上运动,点C在线段OA之间,点D在线段OB之间.(1)设C、D两点同时沿直线AB向左运动t秒时,AC:OD=1:2,求的值;(2)在(1)的条件下,若C、D运动秒后都停止运动,此时恰有OD﹣AC=BD,求CD的长;(3)在(2)的条件下,将线段CD在线段AB上左右滑动如图乙(点C在OA之间,点D在OB 之间),若M、N分别为AC、BD的中点,试说明线段MN的长度总不发生变化.【答案】见试题解答内容【解答】解:(1)设AC=x,则OD=2x,又∵OC=2t,DB=4t∴OA=x+2t,OB=2x+4t,∴;(2)设AC=x,OD=2x,又OC=×2=5(cm),BD=×4=10(cm),由OD﹣AC=BD,得2x﹣x=×10,x=5,OD=2x=2×5=10(cm),=AC=×=BC=×=acm=AC=BC=AC+BC=AB=acm=AC=BC=AC﹣BC=()=bcm(2)数轴上表示a和﹣5的两点A和B之间的距离是 |a+5| ;(3)若数轴上三个有理数a、b、c满足|a﹣b|=1,|a﹣c|=7,则|b﹣c|的值为 6或8 ;(4)当a= 1 时,|a+3|+|a﹣1|+|a﹣4|的值最小,最小值是 7 .【答案】见试题解答内容【解答】解:(1)2﹣(﹣3)=5,故答案为:5;(2)|AB|=|a﹣(﹣5)|=|a+5|,故答案为:|a+5|;(3)当a>b>c时,|b﹣c|=|a﹣c|﹣|a﹣b|=7﹣1=6;当b>a>c时,|b﹣c|=|a﹣c|+|a﹣b|=7+1=8;C点在A,B两点之间时不符合题意,综上|b﹣c|的值为6或8,故答案为:6或8;(4)∵当﹣3≤a≤4时,|a+3|+|a﹣4|的最小值为7,∴只需要|a﹣1|的值最小即可,此时a=1,|a﹣1|=0,∴当a=1时,|a+3|+|a﹣1|+|a﹣4|的值最小,最小值是7.故答案为:1;7.。
华师大版七年级上册数学第4章 图形的初步认识含答案(精练)
![华师大版七年级上册数学第4章 图形的初步认识含答案(精练)](https://img.taocdn.com/s3/m/94581ca78662caaedd3383c4bb4cf7ec4afeb6a3.png)
华师大版七年级上册数学第4章图形的初步认识含答案一、单选题(共15题,共计45分)1、如图,已知直线AB、CD相交于点O,OE平分∠COB,若∠EOB=50°,则∠BOD的度数是:()A.50 °B.60 °C.80 °D.70 °2、一个圆锥的母线长为10,侧面展开图是半圆,则圆锥的侧面积是()A.100πB.50πC.20πD.10π3、下列物体的形状类似于球的是()A.乒乓球B.羽毛球C.茶杯D.白织灯泡4、如图是由5个小立方块搭建而成的几何体,它的俯视图是()A. B. C. D.5、如图是一个正方体的展开图,把展开图折叠成正方体后,标有“☆“的一面相对面上的字是()A.神B.奇C.数D.学6、如图,在长方体的数学课本上放有一个圆柱体,则它的主视图为()A. B. C. D.7、如图,四个几何体分别为长方体、圆柱体、球体和三棱柱,这四个几何体中截面不可能是长方形的几何体是()A. B. C.D.8、下面如图所示的几何体的俯视图是()A. B. C. D.9、下列结论,其中正确的为()①圆柱由3个面围成,这3个面都是平面②圆锥由2个面围成,这2个面中,1个是平的,1个不是平的③球仅由1个面围成,这1个面是平的④正方体由6个面围成,这6个面都是平的A.①②B.②③C.②④D.③④10、将坐标的正方体展开能得到的图形是()A. B. C. D.11、下列四个图形中,是三棱锥的表面展开图的是()A. B. C. D.12、如图所示,能读出的线段共有()A.8条B.10条C.6条D.以上都错13、已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.108cm 3B.100 cm 3C.92cm 3D.84cm 314、如图是几何体的三视图及相关数据,则下列判断错误的是()A. B. C. D.15、小李同学的座右铭是“态度决定一切“,他将这几个字写在一个正方体纸盒的每个面上,其平面展开图如图所示,那么在该正方体中,和“切”相对的字是()A.态B.度C.决D.定二、填空题(共10题,共计30分)16、若一个角等于53°17′,则这个角的余角等于________.17、如图,有一圆柱,其高为12cm,它的底面半径为3cm,在圆柱下底面A处有一只蚂蚁,它想得到上面B处的食物,则蚂蚁经过的最短路程为________ cm.(π取3)18、如图,长方体的底面边长分别为2cm和4cm,高为5cm.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为________cm.19、如图,该图中不同的线段数共有________条.20、一个人从A点出发向北偏西30° 方向走到B点,再从B点出发向南偏西15°方向走到C点,那么∠ABC=________。
2022-2023学年人教版七年级数学上册第四章几何图形初步专题练习试题(解析卷)
![2022-2023学年人教版七年级数学上册第四章几何图形初步专题练习试题(解析卷)](https://img.taocdn.com/s3/m/d906c2f0988fcc22bcd126fff705cc1755275f6f.png)
人教版七年级数学上册第四章几何图形初步专题练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列度分秒运算中,正确的是()A.48°39′+67°31′=115°10′B.90°﹣70°39′=20°21′C.21°17′×5=185°5′D.180°÷7=25°43′(精确到分)2、将如图所示的直棱柱展开,下列各示意图中不可能...是它的表面展开图的是()A.B.C.D .3、将下列各选项中的平面图形绕轴旋转一周,可得到如图所示的立体图形的是( ).A .B .C .D .4、下列说法中,正确的是()①已知40A ∠=︒,则A ∠的余角是50°②若1290∠+∠=︒,则1∠和2∠互为余角.③若123180∠+∠+∠=︒,则1∠、2∠和3∠互为补角.④一个角的补角必为钝角.A .①,②B .①,②,③C .③,④,②D .③,④5、A ,B ,C ,D 四个村庄之间的道路如图,从A 去D 有以下四条路线可走,其中路程最短的是( )A.A→C→B→D B.A→C→D C.A→E→D D.A→B→D6、点P是O内一点,过点P的最长弦的长为10cm,最短弦的长为6cm,则OP的长为()A.3cm B.4cm C.5cm D.6cm7、下列几何体中,是圆柱的为()A.B.C.D.8、如图,点A,B是正方体上的两个顶点,将正方体按图中所示方式展开,则在展开图中B 点的位置为()A.1B B.2B C.3B D.4B9、给出下列各说法:①圆柱由3个面围成,这3个面都是平的;②圆锥由2个面围成,这2个面中,1个是平的,1个是曲的;③球仅由1个面围成,这个面是平的;④正方体由6个面围成,这6个面都是平的.其中正确的为()A .①②B .②③C .②④D .③④10、下列各组图形中都是平面图形的是( )A .三角形、圆、球、圆锥B .点、线段、棱锥、棱柱C .角、三角形、正方形、圆D .点、角、线段、长方体第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,直线AB 、CD 相交于点O ,OE 平分∠BOD,若∠AOD -∠DOB=60°,则∠EOB=___.2、如图,AOB ∠的内部有射线OC 、OD ,且AOC BOC ∠=∠,12COD AOC ∠=∠,则OC 是_______的平分线,OC 是_______的一条三等分线,OC 也是_______的一条四等分线,OD 是_______的平分线,OD 也是_______的一条四等分线.3、一个角的余角为3527'︒,则这个角的补角为_______________.4、已知100A ∠=︒,则A ∠的补角等于________︒.5、已知点C 是线段AB 的中点,点D 是线段AC 的中点,那么线段:AD DB 的比值是_______.三、解答题(5小题,每小题10分,共计50分)1、如图,一把长度为5个单位的直尺AB 放置在如图所示的数轴上(点A 在点B 左侧),点A 、B 、C 表示的数分别是a 、b 、c ,若b 、c 同时满足:①c﹣b =3;②(b ﹣6)|5|b x -+3=0是关于x 的一元一次方程.(1)a = ,b = ,c = .(2)设直尺以2个单位/秒的速度沿数轴匀速向右移动,同时点P 从点A 出发,以m 个单位/秒的速度也沿数轴匀速向右移动,设运动时间为t 秒.①若B 、P 、C 三点恰好在同一时刻重合,求m 的值;②当t =1时,B 、P 、C 三个点中恰好有一个点到另外两个点的距离相等,请直接写出所有满足条件的m 的值.2、如图1,A 、O 、B 三点在同一直线上,∠BOD 与∠BOC 互补.(1)请判断∠AOC 与∠BOD 大小关系,并验证你的结论;(2)如图2,若OM 平分∠AOC ,ON 平分∠AOD ,∠BOD =30°,请求出∠MON 的度数.3、【新知理解】如图①,点M 在线段AB 上,图中共有三条线段AB 、AM 和BM ,若其中有一条线段的长度是另外一条线段长度的2倍,则称点M 是线段AB 的“奇点”.(1)线段的中点______这条线段的“奇点”(填“是”或“不是”)【初步应用】(2)如图②,若18CD cm =,点N 是线段CD 的奇点,则______CN cm =;【解决问题】(3)如图③,已知15AB cm =动点P 从点A 出发,以1/cm s 速度沿AB 向点B 匀速移动:点Q 从点B 出m s的速度沿BA向点A匀速移动,点P、Q同时出发,当其中一点到达终点时,运动停止,发,以2/设移动的时间为t,请直接写出t为何值时,A、P、Q三点中其中一点恰好是另外两点为端点的线段的奇点?4、如图,O在直线AC上,OD是∠AOB的平分线,OE在∠BOC内.(1)若OE是∠BOC的平分线,则有∠DOE=90°,试说明理由;(2)若∠BOE=1∠EOC,∠DOE=72°,求∠EOC的度数.25、观察下列多面体,并把下表补充完整.观察上表中的结果,你能发现a 、b 、c 之间有什么关系吗?请写出关系式.-参考答案-一、单选题1、D【解析】【分析】逐项计算即可判定.【详解】解: 4839+6731=11570=11610''''︒︒︒︒,故A 选项错误; 907039=1921''︒-︒︒,故B 选项错误;211751058510625'''︒⨯=︒=︒,故C 选项错误; 18072543'︒÷=︒,故D 选项正确.故选:D .【考点】本题主要考查度分秒的换算,掌握1=60,1=60''''︒是解题的关键.2、D【解析】【分析】由直棱柱展开图的特征判断即可.【详解】解:图中棱柱展开后,两个三角形的面不可能位于同一侧,因此D选项中的图不是它的表面展开图;故选D.【考点】本题考查了常见几何体的展开图,解决本题的关键是牢记三棱柱展开图的特点,即其两个三角形的面不可能位于展开图中侧面长方形的同一侧即可.3、B【解析】【分析】根据面动成体,平面图形旋转的特点逐项判断即可得.【详解】A、将平面图形绕轴旋转一周,得到的是上面大下面小中间凹,侧面是曲面的几何体,则此项不符题意;B、将平面图形绕轴旋转一周,得到的是上面小下面大中间凹,侧面是曲面的几何体,则此项符合题意;C、将平面图形绕轴旋转一周,得到的是上下底面等大,且中间凹的几何体,则此项不符题意;D、将平面图形绕轴旋转一周,得到的是一个圆台,则此项不符题意;故选:B.【考点】本题考查了平面图形旋转后的几何体,熟练掌握平面图形旋转的特点是解题关键.4、A【解析】【分析】根据余角及补角的定义进行判断即可.∵和为180度的两个角互为补角,和为90度的两个角互为余角,∴①已知∠A=40°,则∠A的余角=50°,正确,②若∠1+∠2=90°,则∠1和∠2互为余角,正确,③∠1、∠2和∠3三个角不能互为补角,故错误,④若一个角为120°,则这个角的补角为60°,不是钝角,故错误,∴正确的是:①②.故选:A.【考点】本题考查了余角及补角,掌握余角和补角的定义是解题的关键.5、C【解析】【分析】利用两点之间线段最短可直接得出结论.【详解】解析:利用两点之间线段最短的性质得出,路程最短的是:A→E→D,故选:C.【考点】本题考查了两点之间的距离,熟知两点之间线段最短是解题的关键.6、B【解析】根据直径是圆中最长的弦,知该圆的直径是10cm;最短弦即是过点P且垂直于过点P的直径的弦;根据垂径定理即可求得CP的长,再进一步根据勾股定理,可以求得OP的长.【详解】解:如图所示,CD⊥AB于点P.根据题意,得AB=10cm,CD=6cm.∴OC=5,CP=3∵CD⊥AB,CD=3cm.∴CP=12根据勾股定理,得OP.故选B.【考点】此题综合运用了垂径定理和勾股定理.正确理解圆中,过一点的最长的弦和最短的弦.7、A【解析】【分析】根据几何体的特征进行判断即可.A选项为圆柱,B选项为圆锥,C选项为四棱柱,D选项为四棱锥.故选:A.【考点】本题考查立体图形的认识,掌握立体图形的特征是解题的关键.8、B【解析】【分析】在验证立方体的展开图时,要细心观察每一个标志的位置是否一致,将展开图恢复成正方体,根据B 点所在的位置,可得结果.【详解】解:将展开图恢复成正方体,①面成为了正方体的右面,可知B2点即B点所处位置.【考点】本题考查正方体的表面展开图及空间想象能力.易错易混点是学生对相关图的位置想象不准确,从而错答,解决这类问题时,不妨动手实际操作一下,即可解决问题.9、C【分析】根据圆柱、圆锥、正方体、球,可得答案.【详解】解:①圆柱由3个面围成,2个底面是平面,1个侧面是曲面,故①错误;②圆锥由2个面围成,这2个面中,1个是平面,1个是曲面,故②正确;③球仅由1个面围成,这个面是曲面,故③错误;④正方体由6个面围成,这6个面都是平面,故④正确;故选:C.【考点】本题考查了认识立体图形,熟记各种图形的特征是解题关键.10、C【解析】【详解】分析:根据平面图形的定义逐一判断即可.详解:A.圆锥和球不是平面图形,故错误;B. 棱锥、棱柱不是平面图形,故错误;C.角,三角形,正方形,圆都是平面图形,故正确;D.长方体不是平面图形,故错误.故选C.点睛:本题考查了平面图形的定义,一个图形的各部分都在同一个平面内的图形叫做平面图形据此可解.二、填空题【解析】 【详解】∵∠AOD-∠BOD=60°, ∴∠AOD=∠BOD+60°,∵AB 为直线,∴∠AOD+∠BOD=∠AOB=180°, ∴∠BOD+60°+∠BOD=180°, ∴∠BOD=60°, ∵OE 平分∠BOD, ∴∠EOB=30° 故答案为: 30°.2、 AOB ∠ BOD ∠ AOB ∠ AOC ∠ AOB ∠ 【解析】 【分析】根据角平分线及三等分线和四等分线的定义逐个判断即可. 【详解】解:∵AOC BOC ∠=∠, ∴OC 是AOB ∠的平分线,∵12COD AOC ∠=∠,AOC BOC ∠=∠,∴12∠=∠COD BOC ,∴13COD BOD ∠=∠,∴OC 是BOD ∠的一条三等分线, ∵12COD AOC ∠=∠,AOC BOC ∠=∠,∴14AOD COD AOB ∠=∠=∠,∴OC 、OD 是AOB ∠的两条四等分线, ∵12COD AOC ∠=∠, ∴OD 是AOC ∠的平分线,故答案为:AOB ∠;BOD ∠;AOB ∠;AOC ∠;AOB ∠. 【点睛】本题考查了角的角平分线及三等分线和四等分线的定义,熟练掌握角平分线的定义是解决本题的关键. 3、12527'︒ 【解析】 【分析】直接根据余角和补角的概念即可求解. 【详解】解:解:由题意得,这个角是90︒-3527'︒=5433︒',则这个角的补角是180°5433-︒'=12527'︒. 故答案为:12527'︒. 【点睛】此题主要考查余角和补角的概念,正确理解概念是解题关键. 4、80 【解析】根据补角的概念计算即可. 【详解】 ∵∠A =100°,∴∠A 的补角=180°-100°=80°, 故答案为:80 【点睛】本题考查补角的概念,关键在于牢记基础知识. 5、13【解析】 【分析】 根据题意易得14AD AB =,34DB AB =,然后直接进行比值即可. 【详解】 解:由题意得14AD AB =,34DB AB =, ∴131::443AD DB AB AB ==. 【点睛】本题主要考查比值及化简比,熟练掌握求比值和化简比的方法是解题的关键. 三、解答题1、(1)-1,4,7;(2)①163;②6或7或7.5或8或9【分析】(1)根据已知条件和一元一次方程的定义可求b、c,进一步得到a;(2)①根据B、C两点恰好在同一时刻重合,可得关于x的方程,解方程求出x,再根据B、P、C三点恰好在同一时刻重合,可得关于m的方程,解方程求出m的值;②分五种情况进行讨论可求所有满足条件的m的值.【详解】解:(1)依题意有35160c bbb-=⎧⎪-=±⎨⎪-≠⎩,解得b=4,c=7,则a=4﹣5=﹣1.故答案为:﹣1,4,7;(2)①BC=3,AC=8,当B、C重合时,依题意有2t=3,解得t=32,依题意有32m=8,解得m=163.②7﹣4﹣2=1,当B是P、C中点时,依题意有5+2﹣m=1,解得m=6;当B与P重合时,依题意有m﹣2=5,解得m=7;当P是B、C中点时,依题意有m﹣1=5+2,2解得m=7.5;当P与C重合时,m=7﹣(﹣1)=8;当C是P、B中点时,依题意有m﹣1=7﹣(﹣1),解得m=9.综上所述,m=6或7或7.5或8或9.【考点】本题考查了一元一次方程的定义、数轴、绝对值、一元一次方程的应用,准确理解题意,灵活进行分类是解题的关键.2、(1)∠AOC=∠BOD,证明见解析;(2)60°【解析】【分析】(1)根据补角的性质即可求解;(2)根据角平分线的定义以及等量关系列出方程求解即可.【详解】解:(1)∠AOC =∠BOD ,理由如下: ∵A ,O ,B 三点共线, ∴∠AOC +∠BOC =180°, ∴∠AOC 与∠BOC 互补, ∵∠BOD 与∠BOC 互补, ∴∠AOC =∠BOD ; (2)∵∠BOD =30°, ∴∠AOC =∠BOD =30°, ∵OM 平分∠AOC ,∴1152AOM AOC =∠=∠,∵∠AOD +∠BOD =180°, ∴∠AOD =180°﹣30°=150°, ∵ON 平分∠AOD ,∴1752AON AOD =∠=∠,∴∠MON =∠AON ﹣∠AOM =60°. 【考点】本题考查的是角的有关计算和角平分线的定义,正确理解并灵活运用角平分线的定义是解题的关键. 3、(1)是;(2)6或9或12;(3)3t =或307或154或458或457或6 【解析】 【分析】(1)根据“奇点”的定义即可求解;(2)分①当N 为中点时, ②当N 为CD 的三等分点,且N 靠近C 点时,③当N 为CD 的三等分点,且N 靠近D 点时,进行讨论求解即可;(3)分①由题意可知A 不可能为P 、Q 两点的巧点,此情况排除;②当P 为A 、Q 的巧点时;③当Q 为A 、P 的巧点时;进行讨论求解即可. 【详解】(1)一条线段的长度是另外一条线段长度的2倍,则称这个点为该线段的“奇点”,∴线段的中点是这条线段的“奇点”,(2)18CD =,点N 是线段CD 的奇点,∴可分三种情况,①当N 为中点时,11892CN =⨯=,②当N 为CD 的三等分点,且N 靠近C 点时,11863CN =⨯=,③当N 为CD 的三等分点,且N 靠近D 点时,218123CN =⨯=(3)15AB =,t ∴秒后,(),15207.5AP t AQ t t ==-≤≤,①由题意可知A 不可能为P 、Q 两点的巧点,此情况排除;②当P 为A 、Q 的巧点时,有三种情况;1)点P 为AQ 中点时,则12AP AQ =,即()11522t t =-,解得:154t s = 2)点P 为AQ 三等分点,且点P 靠近点A 时,则13AP AQ =,即()11523t t =-,解得:3t s =3)点P 为AQ 三等分点,且点P 靠近点Q 时,则23AP AQ =,即()21523t t =-,解得:307t s =③当Q为A、P的巧点时,有三种情况;1)点Q为AP中点时,则12AQ AP=,即1522tt-=,解得:6t s=2)点Q为AP三等分点,且点Q靠近点A时,则13AQ AP=,即1523tt-=,解得:457t s=3)点Q为AP三等分点,且点Q靠近点P时,则23AQ AP=,即21523tt-=,解得:458t s=【考点】考查了两点间的距离,一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.4、(1)见解析;(2)72°【解析】【分析】(1)根据角平分线的定义可以求得∠DOE=12∠AOC=90°;(2)设∠EOB=x度,∠EOC=2x度,把角用未知数表示出来,建立x的方程,用代数方法解几何问题是一种常用的方法.【详解】(1)如图,因为OD是∠AOB的平分线,OE是∠BOC的平分线,所以∠BOD=12∠AOB,∠BOE=12∠BOC,所以∠DOE=12(∠AOB+∠BOC)=12∠AOC=90°;(2)设∠EOB=x,则∠EOC=2x,则∠BOD=12(180°–3x),则∠BOE+∠BOD=∠DOE,即x+12(180°–3x )=72°,解得x=36°,故∠EOC=2x=72°.【考点】本题考查了角平分线的定义.设未知数,把角用未知数表示出来,列方程组,求解.角平分线的运用,为解此题起了一个过渡的作用.5、8,15,18,6,7;2a c b +-=【解析】【详解】分析:结合三棱柱、四棱柱和五棱柱的特点,即可填表,根据已知的面、顶点和棱与n 棱柱的关系,可知n 棱柱一定有(n+2)个面,2n 个顶点和3n 条棱,进而得出答案,利用前面的规律得出a ,b ,c 之间的关系.详解:填表如下:根据上表中的规律判断,若一个棱柱的底面多边形的边数为n,则它有n个侧面,共有n+2个面,共有2n个顶点,共有3n条棱;故a,b,c之间的关系:a+c-b=2.点睛:此题通过研究几个棱柱中顶点数、棱数、面数的关系探索出n棱柱中顶点数、棱数、面数之间的关系(即欧拉公式),掌握常见棱柱的特征,可以总结一般规律:n棱柱有(n+2)个面,2n个顶点和3n条棱是解题关键.。
第四章图形认识的初步——知识总结+考点分析+典型例题(含答案)
![第四章图形认识的初步——知识总结+考点分析+典型例题(含答案)](https://img.taocdn.com/s3/m/f75116255901020207409c9c.png)
第四章 图形认识初步【知识要点】4.1多姿多彩的图形1.⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧平面图形球体椎体(棱锥、圆锥)柱体(棱柱、圆柱)立体图形几何图形 2.研究立体图形的方法(1)平面展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形。
这样的平面图形称为相应立体图形的展开图。
(2)从不同的方向看(“三视图”)3.几何图形的形成:点动成线,线动成面,面动成体。
4.几何图形的结构:点、线、面、体组成几何图形。
点是构成图形的基本元素。
4.2直线、射线、线段1.点:表示一个物体的位置,通常用一个大写字母表示,如点A 、点B 。
2.直线(1)直线的表示方法:①可以用这条直线上任意两点的字母(大写)来表示;②用一个小写字母来表示。
(2)直线的基本性质:经过两点有一条直线,并且只有一条直线。
简述为,两点确定一条直线。
(3)直线的特征:①直线没有端点,不可量度,向两方无限延伸; ②直线没有粗细; ③两点确定一条直线;④两条直线相交有唯一一个交点。
(4)点与直线的位置关系:①点在直线上(也可以说这条直线经过这个点); ②点在直线外(也可以说直线不经过这个点)。
(5)两条直线的位置关系有两种——相交、平行 3.射线:直线上一点和它一旁的部分叫做射线。
(1)射线的表示方法:①用两个大写字母表示,表示端点的字母写在前面,在两个字母前加上“射线”; ②用一个小写字母表示。
(2)射线的性质:①射线是直线的一部分;②射线只向一方无限延伸,有一个端点,不能度量、不能比较长短; ③射线上有无穷多个点;④两条射线的公共点可能没有,可能只有一个,可能有无穷多个。
4.线段:直线上两点和它们之间的部分叫做线段。
(1)线段的特点:线段是直的,它有两个端点,它的长度是有限的,可以度量,可以比较长短。
(2)线段的表示方法:①用两个端点的大写字母表示; ②用一个小写字母表示。
(3)线段的基本性质:两点的所有连线中,线段最短。
第4章《图形的初步认识》整章水平测试(C)及答案
![第4章《图形的初步认识》整章水平测试(C)及答案](https://img.taocdn.com/s3/m/2955bb4f7e21af45b307a83f.png)
9.如图,A、B、C分别表示学校、电影院、公园所在的位置,且电影院位在学校的正东方向上,公园在学校的南偏西 方向上,那么平面图上的 等于( )
A.115 B.155 C.25 D.65
(第9题) (第10题)
10.如图所示,已知A、O、B在同一条直线上,且 ,则 的余角有( )
A.3 B.5 C.6 D.不大于3
7.如图, ,若 ,为了使白球反弹后
能将黑球直接撞入袋中,那么击打白球时必须保
证 为( )
A.30 B.45
C.60 D.75 (第7题)
8.如果用“”表示一个立方体,用“”表示两个立方体的叠加,用“”表示三个立方体的叠加,若左图是一个由7个立方体叠成的立体图形,那么它的正视图是( )
(4)从(1)、(2)、(3)题的结论中你得出了什么结论?
(5)根据这一规律你能编一道类似的关于线段的题目吗?
13.小芳给自己家的小狗乐乐做了一个小木屋,其侧面如图所示.若她已测出 ,由于受条件影响,屋顶的
的度数无法测出.哥哥看到后说,不用测量,
他也能算出 的度数,你知道小芳的哥哥是怎
样做的吗?试着说出他的方案,并计算出 的度数.
第4章《图形的初步认识》整章水平测试(C)
一、耐心填一填
1.如果一个角是 ,那么这个角的余角为 ,补角为 .
2.如图,一条公路两次拐弯后,和原来的方向相同.也就是拐弯前后的两条路互相平行.第一次拐的角是 是 ,第二次拐的角 是 .
(第2题)(第3题)(第4题)
3.将书角斜折过去,直角顶点A落在F处,BC为折痕,如图所示,若 ,则 的度数为 .
A.1个B.2个C.பைடு நூலகம்个D.4个
三、细心解答下列问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教新课标版初中七上第四章图形认识初步拔高题精选(100分钟√100分)一、综合题(每题5分,共30分)1.将下列几何体分类,并说明理由.(如图4-5-1所示)2.如图4-5-2是由几个小立方块从上面看得到的平面图形,请画出从几何体的正面、左面看的示意图.3.如图4-5-3所示,共有几条线段,并分别指出.4.三条射线两两相交,三条射线分别是AX、BY和CZ,它们有三个交点,分别是M、N、P在这样形成的图形中,共有多少条可以用已有字母表示的线段和射线呢?5.画∠MAN=60°,在边AM上取AC=3 cm,以C为顶点,CA为一边,并在同侧作∠ACP=90°,在边AN上截取AB=2 cm,以B为顶点,BA为一边,并在同侧作∠ABQ=90°,BQ与CP交于D,请测量CD、BD的长及∠BAD的度数.6.时钟表面3点45分时,时针和分针所夹角的度数是多少?二、应用题(每题7分,共42分)7.如图4-5-4所示,将一张长方形的纸斜折过去,使角顶点A落在A′处,BC为折痕,然后把BE边折过去,使之与A′B边重合,折痕为BD,那么两折痕BC、BD间的夹角是多少度?8.如图4-5-5所示为一六角螺母,请画出从它的正面看,上面看,左面看的示意图.9.将图4-5-6(1)中a ×b 的矩形剪去一些小矩形得图(2),图(3),请分别求出各图形的周长,其中EF =c .10.现有一个17°的“模板”(如图4-5-7所示),请你设计一种办法,只用这个“模板”和铅笔在纸上画出1°的角来.11.如图4-5-8,若∠AOB =∠COD =16∠AOD ,已知∠COB =80°,求∠AOB ,∠AOD 的度数.12.已知一个角的补角比它的余角的3倍多10°,求这个角的度数.三、创新题(每题11分,共22分)13.线段AB 上有两点M 、N ,AM ∶MB =5∶11,AN ∶NB =5∶7,MN =1.5,求AB 的长度.14.如图4-5-9所示,已知AB 与CD 都是直线,EO ⊥AB ,OF 平分∠AOD ,∠1=27°20′,求∠2,∠3,∠4,∠5的度数.四、中考题(每题3分,共6分)15.(2002·云南)若线段AB =a ,C 是线段AB 上的任意一点,M 、N 分别是AC 和CB 的中点,则MN = .16.(2005·绍兴)将一张正方形纸片,沿图中虚线对折,得图③,然后剪去一个角,展开铺平后的图形如图4-5-10所示,则图中沿虚线的剪法是( ).附加题—竞赛趣味题(每题10分,共20分)1.如图4-5-11所示,在平整的地面上放有一个正方体,一只蚂蚁在顶点A处,它要爬到顶点B,问蚂蚁有几条最短路线,它应怎样确定爬行路线?2.有一长方形餐厅,长10 m,宽7 m,现只摆放两套同样大小的圆桌和椅子占据的地面部分可看成半径为1.5 m的圆形(如图4-5-12所示).在保证通道最狭窄处的宽度不小于0.5 m的前提下,此餐厅内能否摆下三套或四套同样大小的圆桌和椅子呢?请你摆放三套的两种方案中选取一种,在下方14×20方格纸内画出设计示意图.提示:画出的图应符合比例要求;为了保证示意图的清晰,请你有把握后才能将设计方案正式画在方格纸上.参考答案一、1.解法一:按柱、锥、球划分,(1)、(2)、(3)、(5)、(7)是一类,即柱体,(4)是锥体,(6)是球体.解法二:按组成面的曲或平划分,(2)、(4)、(6)是一类,组成它们的面中至少有一个是曲面,(1)、(3)、(5)、(7)是一类,组成它们的各面都是平面.点拨:本题答案不唯一,只要按照某种标准进行合理的分类即可.2.解:点拨:一种方法是先摆一下,再画.另一种方法是根据从上面看分别确定从正面看和从左边看几何体有几层,每层有几个方块.3.解:共有6条线段,它们是线段AB 、AC 、AD 、BC 、BD 、CD .点拨:计算线段的条数,要做到不重不漏.具体方法是:先固定最长线段的某一端点,然后顺次改变另一端点,再逐步改变起点,一一推进;按此方法可得到当直线l 上有A 1、A 2、A 3、…、A n 共n 个点时,以A 1、A 2、A 3、…、A n 中的两点为端点的线段共有1+2+3+4+…+(n -1)=(1)2n n 条. 4.共有9条线段,9条射线 分析:关键在于弄清在原来的一条射线上,共有几条可以用题目中的字母表示的线段和射线.不妨设点M ,N 在射线AX 上,如下图所示:用图中字母。
可写出MN ,AM ,AN 三条线段和AX ,MX ,NX 三条射线.5.略 分析:准确画出图形是解决此题的关键.如下图:6.时针和分针所夹角的度数是157.5°分析:正3点时,时针指向3,分针指向12,这时候时针与分针之间的夹角为90°.在3点45分时,分针指向数字9,此时分针共旋转了912×360°=270°,而时针的速度只有分针的112,故时针旋转了270°×112=22.5°.故时针与分针的夹角是:270°-90°-22.5°=157.5°.二、7.BC 、BD 间的夹角为90° 分析:由题意可得∠ABC =∠A ′BC ,∠A ′BD =∠DBE ,已知∠ABC +∠A ′BC +∠A ′BD +∠DBE =180°,因此2(∠A ′BC +∠A ′BD )=180°,所以∠A ′BC +∠A ′BD =90°,即BC 、BD 间的夹角为90°.8.解:9.原矩形图(1)的周长为2(a +b );图(2)的周长为2(a +b );图(3)的周长为2(a +b +c ) 分析:把原题图(2)中的CD 、EF 、GH 平移到AB 上,DE 、FG 和AH 移到BC 上,把图(3)中的CD 、IJ 平移到AB 上,DE 、FG 、HI 和JA 平移到BC 上,即可得出各图形的周长. 10.能分析:设“模板”角度为α,假设可由k 个α角与t 个180°角画出1°的角来,即k ,t 满足等式:k α+180°t =1°(*),则问题等价于求不定方程(*)的角.当α=17°时,即17k +180t =1,方程仍有解,且k =53,t =-5是一组解,即用模板连续画53个17°的角,得到901°的角,除去两个周角和一个平角即得1°的角.11.20° 120° 分析:因为已知∠AOB =∠COD =16∠AOD ,所以可以设∠AOB =x °,则可推出∠COD =x °,∠AOD =6x °,又根据图可以知道∠AOD =∠AOB +∠BOC +∠COD ,因此可以推出∠BOC =4x °,又告诉了∠COB 的度数,所以可求出图中所有角的度数.解:∵∠AOB =∠COD =16∠AOD , ∴设∠AOB =x °,则∠COD =x °,∠AOD =6x °,又∵∠AOD =∠AOB +∠BOC +∠COD ,∴∠BOC =∠AOD -∠AOB -∠COD =6x °-x °-x ° =4x °. 又∵∠BOC =80°.∴4x °=80°.x =20.6x =120.∴∠AOB =20°,∠AOD =120°.12.50° 分析:先用字母表示这个角的度数,然后根据题意列方程,将该问题转化为方程的问题来解决.解:设这个角为x °,则它的补角为180°-x °,它的余角为90°-x °.根据题意得180°-x °=3(90°-x °)+10°,解方程x °=50°.三、13.14.4 分析:如图:设AB =x ,则因为AM ∶MB =5∶11,且AM +MB =AB =x ,所以AM =516x ,同理:AN ∶NB =5∶7,所以AN =512x ,MN =AN -AM =512x -516x =1.5.所以x =14.4,即AB =14.4. 14.分析:利用同角的补角有∠1与∠3相等,∠BOC 与∠AOD 相等(同角补角相等);∠1与∠2互余;∠4与∠5相等(角平分线).解:因为EO ⊥AB ,所以∠AOE =∠EOB =90°,所以∠1+∠2=90°.因为∠1=27°20′,所以∠2=90°-∠1=62°40′.因为AB 、CD 为直线,所以∠1+∠5+∠4=∠3 +∠5+∠4,所以∠3=∠1=27°20′.因为∠1+∠AOD =180°,所以∠AOD =180°-∠1=152°40′.又因为OF 平分∠AOD ,所以∠4=∠5=12∠AOD =76°20′. 点拨:本题主要考查了角平分线、补角、余角的基本知识.四、15.2a 分析:如图: ∵M 是AC 的中点,∴AM =MC =12AC .∵N 是CB 的中点,∴CN =NB =12BC ,则MN =MC +NC =12AC +12BC =12(AC +BC )=12AB .∵AB =a ,故MN =2a . 16.C 点拨:考查学生的动手操作能力.附加题:1.4条最短路线 分析:把正方体凡带A 、B 点的两个面展开,根据两点之间,线路最短,只要连接AB 即可,共6条。
但底面行不通,故应减去两条.2.分析:设计的示意图应符合以下比例要求:①每个圆的半径为1.5 cm ;②每个圆的圆心到方格纸外框的距离不小于2 cm ;③任意两圆的圆心距不小于3.5 cm .解:摆放三套与四套的设计方案参考示意图如图所示.点拨:设计方案有多种情形,符合要求即可.。