解析几何专题测试
高考数学《解析几何》专项训练及答案解析

高考数学《解析几何》专项训练一、单选题1.已知直线l 过点A (a ,0)且斜率为1,若圆224x y +=上恰有3个点到l 的距离为1,则a 的值为( )A .B .±C .2±D .2.已知双曲线2222:1x y C a b-=(0,0)a b >>,过右焦点F 的直线与两条渐近线分别交于A ,B ,且AB BF =uu u r uu u r,则直线AB 的斜率为( ) A .13-或13B .16-或16C .2D .163.已知点P 是圆()()22:3cos sin 1C x y θθ--+-=上任意一点,则点P 到直线1x y +=距离的最大值为( )AB .C 1D 2+4.若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( )A .⎡⎣B .(C .33⎡-⎢⎣⎦D .33⎛⎫- ⎪ ⎪⎝⎭5.已知抛物线C :22x py =的焦点为F ,定点()M ,若直线FM 与抛物线C 相交于A ,B 两点(点B 在F ,M 中间),且与抛物线C 的准线交于点N ,若7BN BF =,则AF 的长为( )A .78B .1C .76D6.已知双曲线2222:1x y C a b-=(0,0)a b >>的两个焦点分别为1F ,2F ,以12F F 为直径的圆交双曲线C 于P ,Q ,M ,N 四点,且四边形PQMN 为正方形,则双曲线C 的离心率为( )A .2-BC .2D7.已知抛物线C :22(0)y px p =>的焦点F ,点00(2p M x x ⎛⎫>⎪⎝⎭是抛物线上一点,以M 为圆心的圆与直线2p x =交于A 、B 两点(A 在B 的上方),若5sin 7MFA ∠=,则抛物线C 的方程为( )A .24y x =B .28y x =C .212y x =D .216y x =8.已知离心率为2的椭圆E :22221(0)x y a b a b +=>>的左、右焦点分别为1F ,2F ,过点2F 且斜率为1的直线与椭圆E 在第一象限内的交点为A ,则2F 到直线1F A ,y 轴的距离之比为( )A .5B .35C .2D二、多选题9.已知点A 是直线:0l x y +=上一定点,点P 、Q 是圆221x y +=上的动点,若PAQ ∠的最大值为90o ,则点A 的坐标可以是( )A .(B .()1C .)D .)1,110.已知抛物线2:2C y px =()0p >的焦点为F ,F ,直线l 与抛物线C交于点A 、B 两点(点A 在第一象限),与抛物线的准线交于点D ,若8AF =,则以下结论正确的是( ) A .4p = B .DF FA =uuu r uu rC .2BD BF = D .4BF =三、填空题11.已知圆C 经过(5,1),(1,3)A B 两点,圆心在x 轴上,则C 的方程为__________.12.已知圆()2239x y -+=与直线y x m =+交于A 、B 两点,过A 、B 分别作x 轴的垂线,且与x轴分别交于C 、D 两点,若CD =m =_____.13.已知双曲线()2222:10,0x y C a b a b-=>>的焦距为4,()2,3A 为C 上一点,则C 的渐近线方程为__________.14.已知抛物线()220y px p =>,F 为其焦点,l 为其准线,过F 任作一条直线交抛物线于,A B 两点,1A 、1B 分别为A 、B 在l 上的射影,M 为11A B 的中点,给出下列命题: (1)11A F B F ⊥;(2)AM BM ⊥;(3)1//A F BM ;(4)1A F 与AM 的交点的y 轴上;(5)1AB 与1A B 交于原点. 其中真命题的序号为_________.四、解答题15.已知圆22:(2)1M x y ++=,圆22:(2)49N x y -+=,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C . (1)求曲线C 的方程;(2)设不经过点(0,Q 的直线l 与曲线C 相交于A ,B 两点,直线QA 与直线QB 的斜率均存在且斜率之和为-2,证明:直线l 过定点.16.已知椭圆方程为22163x y +=.(1)设椭圆的左右焦点分别为1F 、2F ,点P 在椭圆上运动,求1122PF PF PF PF +⋅u u u r u u u u r的值;(2)设直线l 和圆222x y +=相切,和椭圆交于A 、B 两点,O 为原点,线段OA 、OB 分别和圆222x y +=交于C 、D 两点,设AOB ∆、COD ∆的面积分别为1S 、2S ,求12S S 的取值范围.参考答案1.D 【解析】 【分析】因为圆224x y +=上恰有3个点到l 的距离为1,所以与直线l 平行且距离为1的两条直线,一条与圆相交,一条与圆相切,即圆心到直线l 的距离为1,根据点到直线的距离公式即可求出a 的值. 【详解】直线l 的方程为:y x a =-即0x y a --=.因为圆224x y +=上恰有3个点到l 的距离为1,所以与直线l 平行且距离为1的两条直线,一条与圆相交,一条与圆相切,而圆的半径为2,即圆心到直线l 的距离为1.1=,解得a =故选:D . 【点睛】本题主要考查直线与圆的位置关系的应用,以及点到直线的距离公式的应用,解题关键是将圆上存在3个点到l 的距离为1转化为两条直线与圆的位置关系,意在考查学生的转化能力与数学运算能力,属于中档题. 2.B 【解析】 【分析】根据双曲线的离心率求出渐近线方程,根据AB BF =u u u r u u u r,得到B 为AF 中点,得到B 与A 的坐标关系,代入到渐近线方程中,求出A 点坐标,从而得到AB 的斜率,得到答案. 【详解】因为双曲线2222:1x y C a b-=(0,0)a b >>,又222c e a =22514b a =+=,所以12b a =,所以双曲线渐近线为12y x =± 当点A 在直线12y x =-上,点B 在直线12y x =上时, 设(),A A Ax y (),B B B x y ,由(c,0)F 及B 是AF 中点可知22A B A B x c x y y +⎧=⎪⎪⎨⎪=⎪⎩,分别代入直线方程,得121222A A A A y x y x c ⎧=-⎪⎪⎨+⎪=⋅⎪⎩,解得24A Ac x c y ⎧=-⎪⎪⎨⎪=⎪⎩,所以,24c c A ⎛⎫-⎪⎝⎭, 所以直线AB 的斜率AB AFk k =42cc c =--16=-,由双曲线的对称性得,16k =也成立. 故选:B. 【点睛】本题考查求双曲线渐近线方程,坐标转化法求点的坐标,属于中档题. 3.D 【解析】 【分析】计算出圆心C 到直线10x y +-=距离的最大值,再加上圆C 的半径可得出点P 到直线10x y +-=的距离的最大值. 【详解】圆C 的圆心坐标为()3cos ,sin θθ+,半径为1,点C 到直线10x y +-=的距离为sin 14d πθ⎛⎫===++≤+ ⎪⎝⎭因此,点P 到直线1x y +=距离的最大值为12122++=+. 故选:D. 【点睛】本题考查圆上一点到直线距离的最值问题,当直线与圆相离时,圆心到直线的距离为d ,圆的半径为r ,则圆上一点到直线的距离的最大值为d r +,最小值为d r -,解题时要熟悉这个结论的应用,属于中等题. 4.D 【解析】设直线方程为(4)y k x =-,即40kx y k --=,直线l 与曲线22(2)1x y -+=有公共点,圆心到直线的距离小于等于半径22411k k d k -=≤+,得222141,3k k k ≤+≤,选择C 另外,数形结合画出图形也可以判断C 正确. 5.C 【解析】 【分析】由题意画出图形,求出AB 的斜率,得到AB 的方程,求得p ,可得抛物线方程,联立直线方程与抛物线方程,求解A 的坐标,再由抛物线定义求解AF 的长. 【详解】解:如图,过B 作'BB 垂直于准线,垂足为'B ,则'BF BB =,由7BN BF =,得7'BN BB =,可得1sin 7BNB '∠=, 3cos 7BNB '∴∠=-,tan 43BNB '∠=又()23,0M ,AB ∴的方程为2343y x =-, 取0x =,得12y =,即10,2F ⎛⎫ ⎪⎝⎭,则1p =,∴抛物线方程为22x y =. 联立223432y x x y ⎧=-⎪⎨⎪=⎩,解得23A y =.12172326A AF y ∴=+=+=. 故选:C . 【点睛】本题考查抛物线的简单性质,考查直线与抛物线位置关系的应用,考查计算能力,是中档题. 6.D 【解析】 【分析】设P 、Q 、M 、N 分别为第一、二、三、四象限内的点,根据对称性可得出22,22P c ⎛⎫⎪ ⎪⎝⎭,将点P 的坐标代入双曲线C 的方程,即可求出双曲线C 的离心率. 【详解】设双曲线C 的焦距为()20c c >,设P 、Q 、M 、N 分别为第一、二、三、四象限内的点, 由双曲线的对称性可知,点P 、Q 关于y 轴对称,P 、M 关于原点对称,P 、N 关于x 轴对称,由于四边形PQMN 为正方形,则直线PM 的倾斜角为4π,可得,22P c ⎛⎫ ⎪ ⎪⎝⎭, 将点P 的坐标代入双曲线C 的方程得2222122c c a b -=,即()22222122c c a c a -=-, 设该双曲线的离心率为()1e e >,则()2221221e e e -=-,整理得42420e e -+=,解得22e =,因此,双曲线C 故选:D. 【点睛】本题考查双曲线离心率的计算,解题的关键就是求出双曲线上关键点的坐标,考查计算能力,属于中等题. 7.C 【解析】 【分析】根据抛物线的定义,表示出MF ,再表示出MD ,利用5sin 7MFA ∠=,得到0x 和p 之间的关系,将M 点坐标,代入到抛物线中,从而解出p 的值,得到答案.【详解】抛物线C :22(0)y px p =>, 其焦点,02p F ⎛⎫⎪⎝⎭,准线方程2p x =-,因为点(002p M x x ⎛⎫> ⎪⎝⎭是抛物线上一点, 所以02p MF x =+AB所在直线2p x =, 设MD AB ⊥于D ,则02p MD x =-, 因为5sin 7MFA ∠=,所以57 MD MF=,即5272pxpx-=+整理得03x p=所以()3,66M p将M点代入到抛物线方程,得()26623p p=⨯,0p>解得6p=,所以抛物线方程为212y x=故选:C.【点睛】本题考查抛物线的定义,直线与圆的位置关系,求抛物线的标准方程,属于中档题.8.A【解析】【分析】结合椭圆性质,得到a,b,c的关系,设2AF x=,用x表示112,AF F F,结合余弦定理,用c表示x,结合三角形面积公式,即可。
高中数学解析几何测试题(答案版)

高中数学解析几何测试题(答案版)高中数学解析几何测试题(答案版)第一部分:平面解析几何1. 已知平面P1:2x + 3y - 4 = 0和平面P2:5x - 7y + 2z + 6 = 0,求平面P1和平面P2的夹角。
解析:首先,我们需要根据平面的一般式方程确定法向量。
对于平面P1,法向量为(n1, n2, n3) = (2, 3, 0),对于平面P2,法向量为(n4, n5,n6) = (5, -7, 2)。
根据向量的内积公式,平面P1和平面P2的夹角θ可以通过以下公式计算:cosθ = (n1 * n4 + n2 * n5 + n3 * n6) / √[(n1^2 + n2^2 + n3^2) * (n4^2 + n5^2 + n6^2)]代入数值计算,得到cosθ ≈ 0.760,因此夹角θ ≈ 40.985°。
2. 已知四边形ABCD的顶点坐标为A(1, 2, 3),B(4, 5, 6),C(7, 8, 9)和D(10, 11, 12),判断四边形ABCD是否为平行四边形,并说明理由。
解析:要判断四边形ABCD是否为平行四边形,我们需要比较四边形的对角线的斜率。
四边形ABCD的对角线分别为AC和BD。
根据两点间距离公式,我们可以计算出AC的长度为√99,BD的长度为√99。
同时,我们还需要计算坐标向量AC = (6, 6, 6)和坐标向量BD = (9, 9, 9)。
由于AC和BD的长度相等,且坐标向量AC与坐标向量BD的比值为1∶1∶1,因此四边形ABCD是一个平行四边形。
第二部分:空间解析几何3. 已知直线L1:(x - 1) / 2 = y / 3 = (z + 2) / -1和直线L2:(x - 4) / 3= (y - 2) / 1 = (z + 6) / 2,判断直线L1和直线L2是否相交,并说明理由。
解析:为了判断直线L1和直线L2是否相交,我们可以通过解方程组的方法来求解交点。
大学解析几何考试题及答案详解

大学解析几何考试题及答案详解一、选择题1. 下列哪个选项不是平面直角坐标系中的点的坐标表示?A. (x, y)B. (y, x)C. (-3, 4)D. (2, -5)答案:B详解:在平面直角坐标系中,点的坐标表示为有序数对 (x, y),其中 x 表示横坐标,y 表示纵坐标。
选项 B 中的表示 (y, x) 与常规的坐标表示不符,因此不是正确的坐标表示。
2. 已知点 A(2, 3) 和点 B(5, 1),线段 AB 的中点 M 的坐标是多少?A. (3, 2)B. (4, 2)C. (3.5, 2)D. (2, 1)答案:B详解:线段的中点坐标可以通过求两个端点坐标的平均值得到。
对于点 A(2, 3) 和点 B(5, 1),中点 M 的坐标为:M(x, y) = ((x1 + x2) / 2, (y1 + y2) / 2) = ((2 + 5) / 2,(3 + 1) / 2) = (3.5, 2)因此,正确答案是 C,但选项 B 也正确,这里可能是题目选项设置的错误。
二、填空题1. 如果一条直线的斜率 k = 2,且通过点 (1, 3),那么这条直线的方程是 ____________。
答案:y - 3 = 2(x - 1)详解:已知直线的斜率 k 和一个点 (x1, y1),可以使用点斜式方程 y - y1 = k(x - x1) 来表示直线。
将已知的斜率 k = 2 和点 (1, 3) 代入,得到直线方程 y - 3 = 2(x - 1)。
2. 椭圆的标准方程是 ________,其中 a 和 b 是椭圆的长半轴和短半轴。
答案:(x^2 / a^2) + (y^2 / b^2) = 1详解:椭圆的标准方程是以椭圆的中心为原点的坐标系中,椭圆的长半轴为 a,短半轴为 b 时的方程。
这个方程描述了所有到椭圆两个焦点距离之和等于常数 2a 的点的集合。
三、解答题1. 已知直线 l1: y = x + 1 与直线 l2: y = -2x + 6 相交于点 P。
解析几何专项训练

解析几何专项训练一.选择题(共12小题)1.已知椭圆G:的离心率为,⊙M过椭圆G的一个顶点和一个焦点,圆心M在此椭圆上,则满足条件的点M的个数是()A.4B.8C.12D.162.已知F为抛物线y2=ax(a>0)的焦点,M点的坐标为(4,0),过点F作斜率为k1的直线与抛物线交于A,B两点,延长AM,BM交抛物线于C,D两点,设直线CD的斜率为k2,且k1=k2,则a=()A.8B.8C.16D.163.已知双曲线的左、右焦点分别为F1、F2,过F2的直线交双曲线于P,Q两点且PQ⊥PF1,若|PQ|=λ|PF1|,,则双曲线离心率e的取值范围为()A.B.C.D.4.已知中心在坐标原点的椭圆与双曲线有公共焦点,且左、右焦点分别是F1、F2,这两条曲线在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形,若|PF1|=8,椭圆与双曲线的离心率分别为e1,e2,则+的取值范围是()A.(1,+∞)B.(1,4)C.(2,4)D.(4,8)5.已知F1、F2是双曲线﹣=1(a>0,b>0)的左右焦点,P是双曲线右支上一点,点E是线段PF1中点,且•=0,sin∠PF2F1≥2sin∠PF1F2,则双曲线离心率的取值范围是()A.[5,+∞)B.[,+∞)C.(1,5]D.(1,]6.下列三图中的多边形均为正多边形,M,N是所在边的中点,双曲线均以图中的F1,F2为焦点,设图示①②③中的双曲线的离心率分别为e1,e2,e3、则e1,e2,e3的大小关系为()A.e1>e2>e3B.e1<e2<e3C.e2=e3<e1D.e1=e3>e27.过曲线C1:=1(a>0,b>0)的左焦点F1作曲线C2:x2+y2=a2的切线,设切点为M,延长F1M交曲线C3:y2=2px(p>0)于点N,其中C1,C3有一个共同的焦点,若=,则曲线C1的离心率为()A.B.C.D.8.如图,在正方体ABCD﹣A1B1C1D1中,E是棱CC1的中点,F是侧面B1BCC1上的动点,并且A1F∥平面AED1,则动点F的轨迹是()A.圆B.椭圆C.抛物线D.线段9.设双曲线C的中心为点O,若有且只有一对相交于点O,所成的角为60°的直线A1B1和A2B2,使|A1B1|=|A2B2|,其中A1、B1和A2、B2分别是这对直线与双曲线C的交点,则该双曲线的离心率的取值范围是()A.B.C.D.10.下列四个命题中不正确的是()A.若动点P与定点A(﹣4,0)、B(4,0)连线P A、PB的斜率之积为定值,则动点P 的轨迹为双曲线的一部分B.设m,n∈R,常数a>0,定义运算“*”:m*n=(m+n)2﹣(m﹣n)2,若x≥0,则动点的轨迹是抛物线的一部分C.已知两圆A:(x+1)2+y2=1、圆B:(x﹣1)2+y2=25,动圆M与圆A外切、与圆B内切,则动圆的圆心M的轨迹是椭圆D.已知A(7,0),B(﹣7,0),C(2,﹣12),椭圆过A,B两点且以C为其一个焦点,则椭圆的另一个焦点的轨迹为双曲线11.抛物线y2=2px(p>0)的准线交x轴于点C,焦点为F.A、B是抛物线上的两点.己知A.B,C三点共线,且|AF|、|AB|、|BF|成等差数列,直线AB的斜率为k,则有()A.B.C.D.12.如图,椭圆C1:+═1(a>b>0)的离心率为,x轴被曲线C2:y=x2﹣b截得的线段长等于C1的长半轴长.C2与y轴的交点为M,过坐标原点O的直线l与C2相交于点A,B,两直线MA,MB分别与C1相交于点D,E.①曲线C1,C2的方程分别为+y2=1,y=x2﹣1;②MD⊥ME;③记△MAB,△MDE的面积分别为S1,S2,则的最大值为;④记△MAB,△MDE的面积分别为S1,S2,当=时,直线l的方程为:y=x或y=﹣x.以上列说法正确的有()A.1个B.2个C.3个D.4个二.填空题(共4小题)13.设椭圆C:+=1与函数y=tan的图象相交于A1,A2两点,若点P在椭圆C上,且直线P A2的斜率的取值范围[﹣2,﹣1],那么直线P A1斜率的取值范围是.14.若存在实数a、b使得直线ax+by=1与线段AB(其中A(1,0),B(2,1))只有一个公共点,且不等式+≥20(a2+b2)对于任意θ∈(0,)成立,则正实数p 的取值范围为.15.已知椭圆的离心率为,长轴AB上2016个等分点从左到右依次为点M1,M2,…,M2015,过M1点作斜率为k(k≠0)的直线,交椭圆C于P1,P2两点,P1点在x轴上方;过M2点作斜率为k(k≠0)的直线,交椭圆C于P3,P4两点,P3点在x轴上方;以此类推,过M2015点作斜率为k(k≠0)的直线,交椭圆C于P4029,P4030两点,P4029点在x轴上方,则4030条直线AP1,AP2,…,AP4030的斜率乘积为.16.如图,曲线C1是椭圆+=1的一部分,F1,F2是其两焦点.曲线C2是以原点O为顶点、F2为焦点的抛物线的一部分,A是曲线C1和C2的一个公共点,并且∠AF2F1为钝角.我们把由曲线C1和C2合成的曲线C称为“月食圆”.①若|AF1|=7,|AF2|=5,则曲线C1、C2的方程分别为+=1(﹣6≤x≤3)、y2=8x(0≤x≤3)②过F2作直线l,分别于“月食圆”依次交于B、C、D、E四点,若B(x1,y1),E(x2,y2),C(x3,y3),D(x4,y4),则x1x2x3x4为定值;③连接BF1,EF2,在△BF1F2中,记∠F1BF2=α,∠BF1F2=β,∠F1F2B=γ,则e=;④若P、Q为椭圆+=1上两动点,且OP⊥OQ,则S△OPQ的最小值是.以上说法正确的有.三.解答题(共6小题)17.已知椭圆C:+=1(a>b>0)的长轴长为4,焦距为2.(Ⅰ)求椭圆C的方程;(Ⅱ)过动点M(0,m)(m>0)的直线交x轴于点N,交C于点A,P(P在第一象限),且M是线段PN的中点,过点P作x轴的垂线交C于另一点Q,延长QM交C于点B.(ⅰ)设直线PM,QM的斜率分别为k,k′,证明为定值;(ⅱ)求直线AB的斜率的最小值.18.已知椭圆的左、右焦点分别为F1、F2,短轴两个端点为A、B,且四边形F1AF2B是边长为2的正方形.(1)求椭圆的方程;(2)若C、D分别是椭圆长的左、右端点,动点M满足MD⊥CD,连接CM,交椭圆于点P.证明:为定值.(3)在(2)的条件下,试问x轴上是否存异于点C的定点Q,使得以MP为直径的圆恒过直线DP、MQ的交点,若存在,求出点Q的坐标;若不存在,请说明理由.19.如图,在平面直角坐标系xoy中,已知椭圆C:=1(a>b>0)的离心率e=,左顶点为A(﹣4,0),过点A作斜率为k(k≠0)的直线l交椭圆C于点D,交y轴于点E.(1)求椭圆C的方程;(2)已知P为AD的中点,是否存在定点Q,对于任意的k(k≠0)都有OP⊥EQ,若存在,求出点Q的坐标;若不存在说明理由;(3)若过O点作直线l的平行线交椭圆C于点M,求的最小值.20.已知椭圆的左顶点为A,右焦点为F,右准线为l,l与x轴相交于点T,且F是A T的中点.(1)求椭圆的离心率;(2)过点T的直线与椭圆相交于M,N两点,M,N都在x轴上方,并且M在N,T之间,且NF=2MF.①记△NFM,△NFA的面积分别为S1,S2,求;②若原点O到直线TMN的距离为,求椭圆方程.21.已知椭圆的上顶点M与左、右焦点F1,F2构成三角形MF1F2面积为,又椭圆C的离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)直线l与椭圆C交于A(x1,y1),B(x2,y2)两点,且x1+x2=2,又直线l1:y=k1x+m 是线段AB的垂直平分线,求实数m的取值范围;(Ⅲ)椭圆C的下顶点为N,过点T(t,2)(t≠0)的直线TM,TN分别与椭圆C交于E,F两点.若△TMN的面积是△TEF的面积的k倍,求k的最大值.22.已知椭圆C1:+=1(a>b>0)左右两个焦点分别为F1,F2,R(1,)为椭圆C1上一点,过F2且与x轴垂直的直线与椭圆C1相交所得弦长为3.抛物线C2的顶点是椭圆C1的中心,焦点与椭圆C1的右焦点重合.(Ⅰ)求椭圆C1和抛物线C2的方程;(Ⅱ)过抛物线C2上一点P(异于原点O)作抛物线切线l交椭圆C1于A,B两点,求△AOB 面积的最大值;(Ⅲ)过椭圆C1右焦点F2的直线l1与椭圆相交于C,D两点,过R且平行于CD的直线交椭圆于另一点Q,问是否存在直线l1,使得四边形RQDC的对角线互相平分?若存在,求出l1的方程;若不存在,说明理由.2016年12月23日1398211256的高中数学组卷参考答案与试题解析一.选择题(共12小题)1.(2012•顺义区二模)已知椭圆G:的离心率为,⊙M过椭圆G的一个顶点和一个焦点,圆心M在此椭圆上,则满足条件的点M的个数是()A.4B.8C.12D.16【解答】解:设椭圆G:的左、右焦点分别为F1,F2,左、右顶点分别为A1,A2,下顶点为B1,上顶点为B2,∵椭圆G:的离心率为,⊙M过椭圆G的一个顶点和一个焦点,圆心M在此椭圆上,∴A1F1、A1F2、A2F1、A2F2、B1F1、B2F1的垂直平分线与椭圆G的坐标都是满足条件的点M,∴满足条件的点M的个数是12个.故选C.2.(2016春•湖南期末)已知F为抛物线y2=ax(a>0)的焦点,M点的坐标为(4,0),过点F作斜率为k1的直线与抛物线交于A,B两点,延长AM,BM交抛物线于C,D两点,设直线CD的斜率为k 2,且k1=k2,则a=()A.8B.8C.16D.16【解答】解:设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),则k1==,k2=,∵k 1=k2,∴y1+y2=(y3+y4).设AC所在直线方程为x=ty+4,代入抛物线方程,可得y2﹣aty﹣4a=0,∴y1y3=﹣4a,同理y2y4=﹣4a,∴y1+y2=(+),∴y 1y2=﹣2a,设AB所在直线方程为x=ty+,代入抛物线方程,可得y2﹣aty﹣=0,∴y1y2=﹣,∴﹣2a=﹣,∴a=8.故选:B3.(2016•四川二模)已知双曲线的左、右焦点分别为F1、F2,过F2的直线交双曲线于P,Q两点且PQ⊥PF1,若|PQ|=λ|PF1|,,则双曲线离心率e的取值范围为()A.B.C.D.【解答】解:可设P,Q为双曲线右支上一点,由PQ⊥PF1,|PQ|=λ|PF1|,在直角三角形PF 1Q中,|QF1|==|PF1|,由双曲线的定义可得:2a=|PF1|﹣|PF2|=|QF1|﹣|QF2|,由|PQ|=λ|PF1|,即有|PF2|+|QF2|=λ|PF1|,即为|PF1|﹣2a+|PF1|﹣2a=λ|PF1|,∴(1﹣λ+)|PF 1|=4a,解得|PF1|=.|PF2|=|PF1|﹣2a=,由勾股定理可得:2c=|F1F2|=,即有()2+[]2=4c2,即为+=e2.令t=1﹣λ+,则上式化为e 2==8(﹣)2+,由t=1﹣λ+=1+,且≤λ≤,由t关于λ单调递减,可得≤t<即≤≤,由 [,],可得e2在[,]递增,≤e2≤,解得≤e≤.可得椭圆离心率的取值范围是[,].故选:C.4.(2016春•厦门期末)已知中心在坐标原点的椭圆与双曲线有公共焦点,且左、右焦点分别是F1、F2,这两条曲线在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形,若|PF1|=8,椭圆与双曲线的离心率分别为e1,e2,则+的取值范围是()A.(1,+∞)B.(1,4)C.(2,4)D.(4,8)【解答】解:设椭圆与双曲线的标准方程分别为:,.(a1,a2,b1,b2>0,a1>b1)∵△PF1F2是以PF1为底边的等腰三角形,|PF1|=8,∴8+2c=2a1,8﹣2c=2a2,即有a1=4+c,a2=4﹣c,(c<4),再由三角形的两边之和大于第三边,可得2c+2c>8,可得c>2,即有2<c<4.由离心率公式可得+====,∵2<c<4,∴<<,则2<<4,即2<+<4,故+的取值范围是(2,4),故选:C5.(2016•东阳市模拟)已知F1、F2是双曲线﹣=1(a>0,b>0)的左右焦点,P是双曲线右支上一点,点E是线段PF 1中点,且•=0,sin∠PF2F1≥2sin∠PF1F2,则双曲线离心率的取值范围是()A.[5,+∞)B.[,+∞)C.(1,5]D.(1,]【解答】解:设|PF1|=x,|PF2|=y,∵点E是线段PF 1中点,且•=0,∴⊥,且OE∥PF2,即PF1⊥PF2,则满足y﹣x=2a,x2+y2=4c2,∵sin∠PF2F1≥2sin∠PF1F2,∴由正弦定理得y≥2x,则≥2,设m=≥2,∵e2======1+=1+,∵当m≥2时,y=m+﹣2在m≥2时,为增函数,则y=m+﹣2≥2+﹣2=,即0<≤4,则1<1+≤5,即1<e2≤5,则1<e≤,故双曲线离心率的取值范围是(1,],故选:D.6.(2016•杭州模拟)下列三图中的多边形均为正多边形,M,N是所在边的中点,双曲线均以图中的F1,F2为焦点,设图示①②③中的双曲线的离心率分别为e1,e2,e3、则e1,e2,e3的大小关系为()A.e1>e2>e3B.e1<e2<e3C.e2=e3<e1D.e1=e3>e2【解答】解:①设等边三角形的边长为2,以底边为x轴,以底边的垂直平分线为y轴,建立平面直角坐标系,则双曲线的焦点为(±1,0),且过点(,),∵(,)到两个焦点(﹣1,0),(1,0)的距离分别是和,∴,c=1,∴.②正方形的边长为,分别以两条对角线为x轴和y轴,建立平面直角坐标系,则双曲线的焦点坐标为(﹣1,0)和(1,0),且过点().∵点()到两个焦点(﹣1,0),(1,0)的距离分别是和,∴,c=1,∴.③设正六边形的边长为2,以F1F1所在直线为x轴,以F1F1的垂直平分线为y轴,建立平面直角坐标系,则双曲线的焦点为(﹣2,0)和(2,0),且过点(1,),∵点(1,)到两个焦点(﹣2,0)和(2,0)的距离分别为2和2,∴a=﹣1,c=2,∴.所以e1=e3>e2.故选D.7.(2015秋•成都月考)过曲线C1:=1(a>0,b>0)的左焦点F1作曲线C2:x2+y2=a2的切线,设切点为M,延长F1M交曲线C3:y2=2px(p>0)于点N,其中C1,C3有一个共同的焦点,若=,则曲线C 1的离心率为()A.B.C.D.【解答】解:设双曲线的右焦点为F',则F'的坐标为(c,0)因为曲线C1与C3有一个共同的焦点,所以y2=4cx,因为=,所以=﹣=,则M为F1N的中点,因为O为F1F'的中点,M为F1N的中点,所以OM为△NF1F'的中位线,所以OM∥PF'因为|OM|=a,所以|NF'|=2a又NF'⊥NF1,|F1F'|=2c所以|NF1|=2b设N(x,y),则由抛物线的定义可得x+c=2a,∴x=2a﹣c过点F1作x轴的垂线,点N到该垂线的距离为2a由勾股定理y2+4a2=4b2,即4c(2a﹣c)+4a2=4(c2﹣a2)得e2﹣e﹣1=0,∴e=.故选:A.8.(2014•江门一模)如图,在正方体ABCD﹣A1B1C1D1中,E是棱CC1的中点,F是侧面B1BCC1上的动点,并且A1F∥平面AED1,则动点F的轨迹是()A.圆B.椭圆C.抛物线D.线段【解答】解:取棱BB1的中点N,棱B1C1的中点,则MN∥BC1,∵BC1∥AD1,∴MN∥AD1,∵MN 平面AED1,AD1 平面AED1,∴MN∥平面AED1,同理,A1N∥平面AED1,∵MN∩A1N=N,∴平面A1NM∥平面AED1,∵F是侧面B1BCC1上的动点,∴F是线段MN上的点时,A1F∥平面AED1,故选:D.9.(2013•重庆)设双曲线C的中心为点O,若有且只有一对相交于点O,所成的角为60°的直线A1B1和A2B2,使|A1B1|=|A2B2|,其中A1、B1和A2、B2分别是这对直线与双曲线C的交点,则该双曲线的离心率的取值范围是()A.B.C.D.【解答】解:不妨令双曲线的方程为,由|A1B1|=|A2B2|及双曲线的对称性知A1,A2,B1,B2关于x轴对称,如图,又∵满足条件的直线只有一对,当直线与x轴夹角为30°时,双曲线的渐近线与x轴夹角大于30°,双曲线与直线才能有交点A1,A2,B1,B2,若双曲线的渐近线与x轴夹角等于30°,则无交点,则不可能存在|A1B1|=|A2B2|,当直线与x轴夹角为60°时,双曲线渐近线与x轴夹角大于60°,双曲线与直线有一对交点A1,A2,B1,B2,若双曲线的渐近线与x轴夹角等于60°,也满足题中有一对直线,但是如果大于60°,则有两对直线.不符合题意,∴tan30°,即,∴,∵b2=c2﹣a2,∴,∴,∴,∴双曲线的离心率的范围是.故选:A.10.(2012•安徽模拟)下列四个命题中不正确的是()A.若动点P与定点A(﹣4,0)、B(4,0)连线P A、PB的斜率之积为定值,则动点P 的轨迹为双曲线的一部分B.设m,n∈R,常数a>0,定义运算“*”:m*n=(m+n)2﹣(m﹣n)2,若x≥0,则动点的轨迹是抛物线的一部分C.已知两圆A:(x+1)2+y2=1、圆B:(x﹣1)2+y2=25,动圆M与圆A外切、与圆B内切,则动圆的圆心M的轨迹是椭圆D.已知A(7,0),B(﹣7,0),C(2,﹣12),椭圆过A,B两点且以C为其一个焦点,则椭圆的另一个焦点的轨迹为双曲线【解答】解:A:设P(x,y),因为直线P A、PB的斜率存在,所以x≠±4,直线P A、PB的斜率分别是k1=,k2=,∴×=,化简得9y2=4x2﹣64,即(x≠±4),∴动点P的轨迹为双曲线的一部分,A正确;B:∵m*n=(m+n)2﹣(m﹣n)2,∴==,设P(x,y),则y=,即y 2=4ax(x≥0,y≥0),即动点的轨迹是抛物线的一部分,B正确;C:由题意可知,动圆M与定圆A相外切与定圆B相内切∴MA=r+1,MB=5﹣r∴MA+MB=6>AB=2∴动圆圆心M的轨迹是以A,B为焦点的椭圆,C正确;D设此椭圆的另一焦点的坐标D(x,y),∵椭圆过A、B两点,则CA+DA=CB+DB,∴15+DA=13+DB,∴DB﹣DA=2<AB,∴椭圆的另一焦点的轨迹是以A、B为焦点的双曲线一支,D错误故选D11.(2013•温州二模)抛物线y2=2px(p>0)的准线交x轴于点C,焦点为F.A、B是抛物线上的两点.己知A.B,C三点共线,且|AF|、|AB|、|BF|成等差数列,直线AB的斜率为k,则有()A.B.C.D.【解答】解:∵抛物线y2=2px的准线方程为x=﹣,∴准线与x轴的交点C坐标为(﹣,0)因此,得到直线AB方程为y=k(x﹣),与抛物线y2=2px消去y,化简整理,得,设A(x1,y1),B(x2,y2),由根与系数的关系得∴|AB|==•=•=•∵|AF|、|AB|、|BF|成等差数列,∴|AF|+|BF|=2|AB|,根据抛物线的定义得|AF|=x1+,|BF|=x2+,因此,得到x 1+x2+p=2•,即+p=2•,化简得=,约去得•=∴(1+k2)(1﹣k2)=,解之得k2=故选:D12.(2015春•成都校级月考)如图,椭圆C1:+═1(a>b>0)的离心率为,x轴被曲线C2:y=x2﹣b截得的线段长等于C1的长半轴长.C2与y轴的交点为M,过坐标原点O的直线l与C2相交于点A,B,两直线MA,MB分别与C1相交于点D,E.①曲线C1,C2的方程分别为+y2=1,y=x2﹣1;②MD⊥ME;③记△MAB,△MDE的面积分别为S1,S2,则的最大值为;④记△MAB,△MDE的面积分别为S1,S2,当=时,直线l的方程为:y=x或y=﹣x.以上列说法正确的有()A.1个B.2个C.3个D.4个【解答】解:①∵=,又a 2=b2+c2,可解得a=2b.在y=x2﹣b中,令y=0,得x=,∴2=a.联立解得a=2,b=1.∴曲线C1,C2的方程分别为+y2=1,y=x2﹣1.②由,得x2﹣kx﹣1=0,设A(x1,y1),B(x2,y2),∴x1+x2=k,x1x2=﹣1.∵M(0,﹣1),∴=x1x2+(y1+1)(y2+1)=x1x2+y1y2+y1+y2+1=﹣1﹣k2+k2+1=0,∴MA⊥MB,∴MD⊥ME.③设直线MA的斜率为k,则直线MA的方程为y=kx﹣1.由,解得,或.则点A的坐标为(k,k2﹣1).又直线MB的斜率为﹣,同理可得点B的坐标为,于是S 1=|MA|•|MB|=•=.由,得(1+4k12)x2﹣8k1x=0.解得,或,则点D的坐标为.又直线ME的斜率为﹣.同理可得点E的坐标为.于是S2=|MD|•|ME|=.故=≥=,当且仅当k2=1时取等号,因此不正确.④由③令==,解得k2=4或,∴k l==.∴直线l的方程为:y=x或y=﹣x.正确.综上可得:只有①②④正确.故选:C.二.填空题(共4小题)13.(2016•长沙校级一模)设椭圆C:+=1与函数y=tan的图象相交于A1,A2两点,若点P在椭圆C上,且直线P A2的斜率的取值范围[﹣2,﹣1],那么直线P A1斜率的取值范围是.【解答】解:∵椭圆C:+=1与函数y=tan的图象相交于A1,A2两点,∴A1,A2两点关于原点对称,设A1(x1,y1),A2(﹣x1,﹣y1),=1,=.设P(x0,y0),则=1,可得:=.∴=.∵直线P A2的斜率k1的取值范围[﹣2,﹣1],∴﹣2≤≤﹣1,==k2,∴k1k2===.∴,∴﹣1,解得.那么直线P A1斜率的取值范围是.故答案为:.14.(2016•南通模拟)若存在实数a、b使得直线ax+by=1与线段AB(其中A(1,0),B(2,1))只有一个公共点,且不等式+≥20(a2+b2)对于任意θ∈(0,)成立,则正实数p的取值范围为[1,+∞).【解答】解:∵直线ax+by=1与线段AB有一个公共点,∴点A(1,0),B(2,1)在直线ax+by=1的两侧,∴(a﹣1)(2a+b﹣1)≤0,即,或;画出它们表示的平面区域,如图所示.a2+b2表示原点到区域内的点的距离的平方,由图可知,当原点O到直线2x+y﹣1=0的距离为原点到区域内的点的距离的最小值,∵d min=那么a2+b2的最小值为:d2=.由于存在实数a、b使得不等式+≥20(a2+b2)对于任意θ∈(0,)成立,∴≥20(a2+b2)min=4,∵θ∈(0,),∴sinθ,cosθ∈(0,1).∴+=(sin2θ+cos2θ)=1+p++≥1+p+2=1+p+2,当且仅当tan2θ=时取等号.∴1+p+2≥4,p>0,解得1≤p.∴tanθ=1,即时取等号.故答案为:[1,+∞).15.(2016•江苏二模)已知椭圆的离心率为,长轴AB上2016个等分点从左到右依次为点M1,M2,…,M2015,过M1点作斜率为k(k≠0)的直线,交椭圆C 于P1,P2两点,P1点在x轴上方;过M2点作斜率为k(k≠0)的直线,交椭圆C于P3,P4两点,P3点在x轴上方;以此类推,过M2015点作斜率为k(k≠0)的直线,交椭圆C于P4029,P4030两点,P4029点在x轴上方,则4030条直线AP1,AP2,…,AP4030的斜率乘积为﹣2﹣2015.【解答】解:由题意可得e==,可得a2=2b2=2c2,设M n的坐标为(t,0),直线方程为y=k(x﹣t),代入椭圆方程x2+2y2=2b2,可得(1+2k2)x2﹣4tk2x+2k2t2﹣2b2=0,即有x1+x2=,x1x2=,•=•======,可令t=﹣,﹣,…,﹣,﹣,0,,,…,,,即有AP1,AP2,…,AP4030的斜率乘积为•(•…•)••(•…•)=﹣.故答案为:﹣2﹣2015.16.(2015春•成都校级月考)如图,曲线C1是椭圆+=1的一部分,F1,F2是其两焦点.曲线C2是以原点O为顶点、F2为焦点的抛物线的一部分,A是曲线C1和C2的一个公共点,并且∠AF2F1为钝角.我们把由曲线C1和C2合成的曲线C称为“月食圆”.①若|AF1|=7,|AF2|=5,则曲线C1、C2的方程分别为+=1(﹣6≤x≤3)、y2=8x(0≤x≤3)②过F2作直线l,分别于“月食圆”依次交于B、C、D、E四点,若B(x1,y1),E(x2,y2),C(x3,y3),D(x4,y4),则x1x2x3x4为定值;③连接BF1,EF2,在△BF1F2中,记∠F1BF2=α,∠BF1F2=β,∠F1F2B=γ,则e=;④若P、Q为椭圆+=1上两动点,且OP⊥OQ,则S△OPQ的最小值是.以上说法正确的有①③④.【解答】解:①椭圆方程为=1,(a>b>0).则2a=|AF1|+|AF2|=7+5=12,得a=6,设A(x,y),F1(﹣c,0),F2(c,0),则(x+c)2+y2=72,(x﹣c)2+y2=52,两式相减得xc=6,由抛物线定义可知|AF2|=x+c=5,则c=2,x=3或x=2,c=3,又∠AF2F1为钝角,则x=2,c=3舍去.曲线C1、C2的方程分别为+=1(﹣6≤x≤3)、y2=8x(0≤x≤3)②当直线l⊥x轴时,直线l的方程为x=c,x1x2x3x4=c4当直线l不垂直x轴时,设B(x1,y1),E(x2,y2),C(x3,y3),D(x4,y4),联立,化为(b2+a2k2)x2﹣2ca2k2x+a2k2c2﹣a2b2=0,∴x1x2=,联立,化为:k2x2﹣(2ck2+4c)x+k2c2=0,∴x3x4=c2.∴x1x2x3x4=×c2≠c4.因此不为定值.③连接BF1,EF2,在△BF1F2中,由正弦定理可得:====,解得e==,正确.④设P(x1,y1),Q(x2,y2),直线PQ的方程为:y=kx+m.联立,化为:(a2k2+b2)x2+2kma2x+a2m2﹣a2b2=0,△>0,∴x1+x2=﹣,x1x2=.∵OP⊥OQ,∴=x1x2+y1y2=0y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2.∴(1+k2)×﹣km×+m2=0.化简得:(a2+b2)m2=a2b2(1+k2).∴=.∴点O到直线PQ的距离d==为定值.∵=|OP|•|OQ|,∴d2(|OP|2+|OQ|2)=|OP|2|OQ|2≥d2•2|OP||OQ|,∴|OP||OQ|≥2d2,则S△OPQ=≥d2=.因此正确.综上可得:只有①③④正确.故答案为:①③④.三.解答题(共6小题)17.(2016•山东)已知椭圆C:+=1(a>b>0)的长轴长为4,焦距为2.(Ⅰ)求椭圆C的方程;(Ⅱ)过动点M(0,m)(m>0)的直线交x轴于点N,交C于点A,P(P在第一象限),且M是线段PN的中点,过点P作x轴的垂线交C于另一点Q,延长QM交C于点B.(ⅰ)设直线PM,QM的斜率分别为k,k′,证明为定值;(ⅱ)求直线AB的斜率的最小值.【解答】解:(Ⅰ)椭圆C:+=1(a>b>0)的长轴长为4,焦距为2.可得a=2,c=,b=,可得椭圆C的方程:;(Ⅱ)过动点M(0,m)(m>0)的直线交x轴于点N,交C于点A,P(P在第一象限),设N(﹣t,0)t>0,M是线段PN的中点,则P(t,2m),过点P作x轴的垂线交C于另一点Q,Q(t,﹣2m),(ⅰ)证明:设直线PM,QM的斜率分别为k,k′,k==,k′==﹣,==﹣3.为定值;(ⅱ)由题意可得,m2=4﹣t2,QM的方程为:y=﹣3kx+m,PN的方程为:y=kx+m,联立,可得:x2+2(kx+m)2=4,即:(1+2k2)x2+4mkx+2m2﹣4=0可得x A=,y A=+m,同理解得x B=,y B=,x A﹣x B=k﹣=,y A﹣y B=k+m﹣()=,k AB===,由m>0,x0>0,可知k>0,所以6k+,当且仅当k=时取等号.此时,即m=,符合题意.所以,直线AB的斜率的最小值为:.18.(2016•衡阳三模)已知椭圆的左、右焦点分别为F1、F2,短轴两个端点为A、B,且四边形F1AF2B是边长为2的正方形.(1)求椭圆的方程;(2)若C、D分别是椭圆长的左、右端点,动点M满足MD⊥CD,连接CM,交椭圆于点P.证明:为定值.(3)在(2)的条件下,试问x轴上是否存异于点C的定点Q,使得以MP为直径的圆恒过直线DP、MQ的交点,若存在,求出点Q的坐标;若不存在,请说明理由.【解答】解:(1)a=2,b=c,a2=b2+c2,∴b2=2;∴椭圆方程为(4分)(2)C(﹣2,0),D(2,0),设M(2,y0),P(x1,y1),直线CM:,代入椭圆方程x2+2y2=4,得(6分)∵x1=﹣,∴,∴,∴(8分)∴(定值)(10分)(3)设存在Q(m,0)满足条件,则MQ⊥DP(11分)(12分)则由,从而得m=0∴存在Q(0,0)满足条件(14分)19.(2016•上海模拟)如图,在平面直角坐标系xoy中,已知椭圆C:=1(a>b>0)的离心率e=,左顶点为A(﹣4,0),过点A作斜率为k(k≠0)的直线l交椭圆C于点D,交y轴于点E.(1)求椭圆C的方程;(2)已知P为AD的中点,是否存在定点Q,对于任意的k(k≠0)都有OP⊥EQ,若存在,求出点Q的坐标;若不存在说明理由;(3)若过O点作直线l的平行线交椭圆C于点M,求的最小值.【解答】解:(1)∵椭圆C:=1(a>b>0)的离心率e=,左顶点为A(﹣4,0),∴a=4,又,∴c=2.…(2分)又∵b2=a2﹣c2=12,∴椭圆C的标准方程为.…(4分)(2)直线l的方程为y=k(x+4),由消元得,.化简得,(x+4)[(4k2+3)x+16k2﹣12)]=0,∴x1=﹣4,.…(6分)当时,,∴.∵点P为AD的中点,∴P的坐标为,则.…(8分)直线l的方程为y=k(x+4),令x=0,得E点坐标为(0,4k),假设存在定点Q(m,n)(m≠0),使得OP⊥EQ,则k OP k EQ=﹣1,即恒成立,∴(4m+12)k﹣3n=0恒成立,∴,即,∴定点Q的坐标为(﹣3,0).…(10分)(3)∵OM∥l,∴OM的方程可设为y=kx,由,得M点的横坐标为,…(12分)由OM∥l,得=…(14分)=,当且仅当即时取等号,∴当时,的最小值为.…(16分)20.(2016•南通模拟)已知椭圆的左顶点为A,右焦点为F,右准线为l,l与x轴相交于点T,且F是A T的中点.(1)求椭圆的离心率;(2)过点T的直线与椭圆相交于M,N两点,M,N都在x轴上方,并且M在N,T之间,且NF=2MF.①记△NFM,△NFA的面积分别为S1,S2,求;②若原点O到直线TMN的距离为,求椭圆方程.【解答】解:(1)由F是A T的中点,可得,即(a﹣2c)(a+c)=0,又a、c>0,则a=2c,可得;(2)①解法一:过M,N作直线l的垂线,垂足分别为M1,N1,依题意,,又NF=2MF,故NN1=2MM1,故M是NT的中点,可得,又F是A T中点,即有S△ANF=S△TNF,故;解法二:有a=2c,即为,椭圆方程为,F(c,0),T(4c,0),设M(x1,y1),N(x2,y2),点M在椭圆上,即有,=,同理,又NF=2MF,故2x1﹣x2=4c,得M是N,T的中点,可得,又F是A T中点,可得S△ANF=S△TNF,则;②解法一:设F(c,0),则椭圆方程为,由①知M是N,T的中点,不妨设M(x0,y0),则N(2x0﹣4c,2y0),又M,N都在椭圆上,即有即,两式相减得:,解得,可得,故直线MN的斜率为,直线MN的方程为,即,原点O到直线TMN的距离为,依题意,解得,故椭圆方程为.解法二:设F(c,0),则椭圆方程为,由①知M是N,T的中点,故2x1﹣x2=4c,直线MN的斜率显然存在,不妨设为k,故其方程为y=k(x﹣4c),与椭圆联立,并消去y得:,整理得:(4k2+3)x2﹣32ck2x+64k2c2﹣12c2=0,(*)设M(x1,y1),N(x2,y2),即有,由解得,即有,解之得,即.直线MN的方程为,即,原点O到直线TMN的距离为,依题意,解得,故椭圆方程为.21.(2016•日照一模)已知椭圆的上顶点M与左、右焦点F1,F2构成三角形MF 1F2面积为,又椭圆C的离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)直线l与椭圆C交于A(x1,y1),B(x2,y2)两点,且x1+x2=2,又直线l1:y=k1x+m 是线段AB的垂直平分线,求实数m的取值范围;(Ⅲ)椭圆C的下顶点为N,过点T(t,2)(t≠0)的直线TM,TN分别与椭圆C交于E,F两点.若△TMN的面积是△TEF的面积的k倍,求k的最大值.【解答】解:(Ⅰ)椭圆离心率,又,a 2=b2+c2,解得a=2,b=1,∴椭圆方程:..…(4分)(Ⅱ)设AB的中点D(x0,y0),A(x1,y1),B(x2,y2),则x1+x2=2x0=2,所以x0=1,y1+y2=2y0.(y0≠0)又A(x1,y1)、B(x2,y2)在椭圆C上,所以由②﹣①得,即.…(6分)即,l1:y=4y0x+m.当x0=1时,y0=4y0+m,所以.所以D点的坐标为.又D在椭圆C内部,所以,解得且m≠0.…(9分)(Ⅲ)因为S△TMN==|t|,直线方程为:y=,联立,得x E=,所以E(,)到直线3x﹣ty﹣t=0的距离d==,直线方程为:y=,联立,得x F=,所以F(,),∴|TF|==,∴S△TEF==••=,所以=,令t2+12=n>12,则=,当且仅当n=24,即等号成立,所以k的最大值为.…(14分)22.(2016•日照二模)已知椭圆C1:+=1(a>b>0)左右两个焦点分别为F1,F2,R(1,)为椭圆C1上一点,过F2且与x轴垂直的直线与椭圆C1相交所得弦长为3.抛物线C2的顶点是椭圆C1的中心,焦点与椭圆C1的右焦点重合.(Ⅰ)求椭圆C1和抛物线C2的方程;(Ⅱ)过抛物线C2上一点P(异于原点O)作抛物线切线l交椭圆C1于A,B两点,求△AOB 面积的最大值;(Ⅲ)过椭圆C1右焦点F2的直线l1与椭圆相交于C,D两点,过R且平行于CD的直线交椭圆于另一点Q,问是否存在直线l1,使得四边形RQDC的对角线互相平分?若存在,求出l1的方程;若不存在,说明理由.【解答】解:(Ⅰ)设F2(c,0),令x=c,代入椭圆方程可得,y=±b=±,由题意可得=3,又R(1,)在椭圆上,可得+=1,解得a=2,b=,c=1,可得椭圆C1的方程为+=1;即有抛物线的焦点为(1,0),可得抛物线C2的方程为y2=4x;(Ⅱ)设P(t2,2t)(t≠0),设抛物线切线l的方程为y﹣2t=k(x﹣t2),由y2=4x两边对x求导,可得2yy′=4,即为y′=,可得k==,即有切线l的方程为t(y﹣2t)=x﹣t2,即为x=ty﹣t2,代入椭圆方程3x2+4y2=12,可得(4+3t2)y2﹣6t3y+3t4﹣12=0,设A(x1,y1),B(x2,y2),即有△=36t6﹣12(4+3t2)(t4﹣4)>0,得0<t2<4,y1+y2=,y1y2=,|AB|=•=•=4••,原点到直线l的距离为d=,则△AOB面积S=|AB|•d=2t2•,令u=4+3t2,0<t2<4,可得4<u<16,则S=•=•,可令v=u+,由4<u<16,可得v=u+在(4,16)递增,可得8<v<17,即有S=•,即有当v=∈(8,17)时,S取得最大值•=.由u+=,解得u=,t=<2,故当t=时,△AOB的面积取得最大值;(Ⅲ)可设直线l1:y=m(x﹣1),代入椭圆3x2+4y2=12,可得(3+4m2)x2﹣8m2x+4m2﹣12=0,设C(x1,y1),D(x2,y2),可得x1+x2=,x1x2=,直线RQ:y=m(x﹣1)+,代入椭圆3x2+4y2=12,可得(3+4m2)x2+(12﹣8m)mx+4m2﹣12m﹣3=0,设Q(x3,y3),可得x3+1=,x3•1=,假设四边形RQCD的对角线互相平分,可得四边形RQCD为平行四边形,RD与QC的中点重合.即有=,即为x1﹣x2=1﹣x3,即有(x1﹣x2)2=(x1+x2)2﹣4x1x2=(1﹣x3)2,则有(,)2﹣=(1﹣)2,即为=,解得m=.故存在直线l1,方程为y=x﹣.。
解析几何试题库完整

解析几何题库一、选择题1.已知圆C 与直线x -y =0 及x -y -4=0都相切,圆心在直线x +y =0上,则圆C 的方程为 A.22(1)(1)2x y ++-= B.22(1)(1)2x y -++= C.22(1)(1)2x y -+-= D.22(1)(1)2x y +++=[解析]圆心在x +y =0上,排除C 、D,再结合图象,或者验证A 、B 中圆心到两直线的距离等于半径错误!即可. [答案]B 2.直线1y x =+与圆221x y +=的位置关系为〔A .相切B .相交但直线不过圆心C .直线过圆心D .相离 [解析]圆心(0,0)为到直线1y x =+,即10x y -+=的距离1222d ==,而2012<<,选B 。
[答案]B 3.圆心在y 轴上,半径为1,且过点〔1,2的圆的方程为〔A .22(2)1xy +-=B .22(2)1xy ++=C .22(1)(3)1x y -+-=D .22(3)1xy +-=解法1〔直接法:设圆心坐标为(0,)b ,则由题意知2(1)(2)1o b -+-=,解得2b =,故圆的方程为22(2)1x y +-=。
解法2〔数形结合法:由作图根据点(1,2)到圆心的距离为1易知圆心为〔0,2,故圆的方程为22(2)1x y +-=解法3〔验证法:将点〔1,2代入四个选择支,排除B,D,又由于圆心在y 轴上,排除C 。
[答案]A4.点P 〔4,-2与圆224x y +=上任一点连续的中点轨迹方程是〔A.22(2)(1)1x y -++= B.22(2)(1)4x y -++=C.22(4)(2)4x y ++-=D.22(2)(1)1x y ++-=[解析]设圆上任一点为Q 〔s,t,PQ 的中点为A 〔x,y,则⎪⎪⎩⎪⎪⎨⎧+-=+=2224t y s x ,解得:⎩⎨⎧+=-=2242y t x s ,代入圆方程,得〔2x -42+〔2y +22=4,整理,得:22(2)(1)1x y -++=[答案]A5.已知直线12:(3)(4)10,:2(3)230,l kx k y l k x y -+-+=--+=与平行,则k 得值是〔A. 1或3B.1或5C.3或5D.1或2 [解析]当k =3时,两直线平行,当k ≠3时,由两直线平行,斜率相等,得:kk --43=k -3,解得:k =5,故选C 。
解析几何练习题及答案

解析几何一、选择题1.已知两点A (-3,3),B (3,-1),则直线AB 的斜率是()A.3B.-3C.33D.-33解析:斜率k =-1-33--3=-33,故选D.答案:D2.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是()A.1B.-1C.-2或-1D.-2或1解析:①当a =0时,y =2不合题意.②a ≠0,x =0时,y =2+a .y =0时,x =a +2a,则a +2a=a +2,得a =1或a =-2.故选D.答案:D3.两直线3x +y -3=0与6x +my +1=0平行,则它们之间的距离为()A.4B.21313C.51326D.71020解析:把3x +y -3=0转化为6x +2y -6=0,由两直线平行知m =2,则d =|1--6|62+22=71020.故选D.4.(2014皖南八校联考)直线2x -y +1=0关于直线x =1对称的直线方程是()A.x +2y -1=0B.2x +y -1=0C.2x +y -5=0D.x +2y -5=0解析:由题意可知,直线2x -y +1=0与直线x =1的交点为(1,3),直线2x -y +1=0的倾斜角与所求直线的倾斜角互补,因此它们的斜率互为相反数,直线2x -y +1=0的斜率为2,故所求直线的斜率为-2,所以所求直线的方程是y -3=-2(x -1),即2x +y -5=0.故选C.答案:C5.若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值围是()A.π6,D.π3,π2解析:由题意,可作直线2x +3y -6=0的图象,如图所示,则直线与x 轴、y 轴交点分别为A (3,0),B (0,2),又直线l 过定点(0,-3),由题知直线l 与线段AB 相交(交点不含端点),从图中可以看出,直线l B.答案:B6.(2014一模)过点A (2,3)且垂直于直线2x +y -5=0的直线方程为()A.x -2y +4=0B.2x +y -7=0C.x -2y +3=0D.x -2y +5=0解析:直线2x +y -5=0的斜率为k =-2,∴所求直线的斜率为k ′=12,∴方程为y -3=12(x -2),即x -2y +4=0.答案:A7.过点(2,1)且在x 轴上截距与在y 轴上截距之和为6的直线方程为____________.解析:由题意知截距均不为零.设直线方程为x a +yb =1,b =6,+1b=1,=3=3=4=2.故所求直线方程为x +y -3=0或x +2y -4=0.答案:x +y -3=0或x +2y -4=08.(2014质检)若过点A (-2,m ),B (m,4)的直线与直线2x +y +2=0平行,则m 的值为________.解析:∵过点A ,B 的直线平行于直线2x +y +2=0,∴k AB =4-m m +2=-2,解得m =-8.答案:-89.若过点P (1-a,1+a )与Q (3,2a )的直线的倾斜角为钝角,则实数a 的取值围是________.解析:由直线PQ 的倾斜角为钝角,可知其斜率k <0,即2a -1+a 3-1-a <0,化简得a -1a +2<0,∴-2<a <1.答案:(-2,1)10.已知k ∈R ,则直线kx +(1-k )y +3=0经过的定点坐标是________.解析:令k =0,得y +3=0,令k =1,得x +3=0.+3=0,+3=0,=-3,=-3,所以定点坐标为(-3,-3).答案:(-3,-3)三、解答题11.已知两直线l 1:x +y sin α-1=0和l 2:2x sin α+y +1=0,试求α的值,使(1)l 1∥l 2;(2)l 1⊥l 2.解:(1)法一当sin α=0时,直线l 1的斜率不存在,l 2的斜率为0,显然l 1不平行于l 2.当sin α≠0时,k 1=-1sin α,k 2=-2sin α.要使l 1∥l 2,需-1sin α=-2sin α,即sin α=±22,∴α=k π±π4,k ∈Z .故当α=k π±π4,k ∈Z 时,l 1∥l 2.法二由l 1∥l 22α-1=0,α≠0,∴sin α=±22,∴α=k π±π4,k ∈Z .故当α=k π±π4,k ∈Z 时,l 1∥l 2.(2)∵l 1⊥l 2,∴2sin α+sin α=0,即sin α=0.∴α=k π,k ∈Z .故当α=k π,k ∈Z 时,l 1⊥l 2.12.设直线l 1:y =k 1x +1,l 2:y =k 2x -1,其中实数k 1,k 2满足k 1k 2+2=0.(1)证明l 1与l 2相交;(2)证明l 1与l 2的交点在椭圆2x 2+y 2=1上.证明:(1)假设l 1与l 2不相交,则l 1∥l 2即k 1=k 2,代入k 1k 2+2=0,得k 21+2=0,这与k 1为实数的事实相矛盾,从而k 1≠k 2,即l 1与l 2相交.(2)法一=k 1x +1,=k 2x -1解得交点P而2x 2+y 2=8+k 22+k 21+2k 1k 2k 22+k 21-2k 1k 2=k 21+k 22+4k 21+k 22+4=1.即P (x ,y )在椭圆2x 2+y 2=1上.即l 1与l 2的交点在椭圆2x 2+y 2=1上.法二交点P 的坐标(x ,y-1=k 1x ,+1=k 2x ,故知x ≠0.1=y -1x,2=y +1x.代入k 1k 2+2=0,得y -1x ·y +1x+2=0,整理后,得2x 2+y 2=1.所以交点P 在椭圆2x 2+y 2=1上.第八篇第2节一、选择题1.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为()A.x 2+(y -2)2=1B.x 2+(y +2)2=1C.(x -1)2+(y -3)2=1D.x 2+(y -3)2=1解析:由题意,设圆心(0,t ),则12+t -22=1,得t =2,所以圆的方程为x 2+(y -2)2=1,故选A.答案:A2.(2014模拟)动点P 到点A (8,0)的距离是到点B (2,0)的距离的2倍,则动点P 的轨迹方程为()A.x 2+y 2=32B.x 2+y 2=16C.(x -1)2+y 2=16D.x 2+(y -1)2=16解析:设P (x ,y ),则由题意可得2x -22+y 2=x -82+y 2,化简整理得x 2+y 2=16,故选B.答案:B3.(2012年高考卷)已知圆C :x 2+y 2-4x =0,l 是过点P (3,0)的直线,则()A.l 与C 相交B.l 与C 相切C.l 与C 相离D.以上三个选项均有可能解析:x 2+y 2-4x =0是以(2,0)为圆心,以2为半径的圆,而点P (3,0)到圆心的距离为d =3-22+0-02=1<2,点P (3,0)恒在圆,过点P (3,0)不管怎么样画直线,都与圆相交.故选A.答案:A4.(2012年高考卷)将圆x 2+y 2-2x -4y +1=0平分的直线是()A.x +y -1=0B.x +y +3=0C.x -y +1=0D.x -y +3=0解析:由题知圆心在直线上,因为圆心是(1,2),所以将圆心坐标代入各选项验证知选项C 符合,故选C.答案:C5.(2013年高考卷)垂直于直线y =x +1且与圆x 2+y 2=1相切于第一象限的直线方程是()A.x +y -2=0B.x +y +1=0C.x +y -1=0D.x +y +2=0解析:与直线y =x +1垂直的直线方程可设为x +y +b =0,由x +y +b =0与圆x 2+y 2=1相切,可得|b |12+12=1,故b =± 2.因为直线与圆相切于第一象限,故结合图形分析知b =-2,则直线方程为x +y -2=0.故选A.答案:A6.(2012年高考卷)直线x +3y -2=0与圆x 2+y 2=4相交于A 、B 两点,则弦AB 的长度等于()A.25B.23C.3D.1解析:因为圆心到直线x +3y -2=0的距离d =|0+3×0-2|12+32=1,半径r =2,所以弦长|AB |=222-12=2 3.故选B.答案:B 二、填空题7.(2013年高考卷)直线y =2x +3被圆x 2+y 2-6x -8y =0所截得的弦长等于________.解析:圆的方程可化为(x -3)2+(y -4)2=25,故圆心为(3,4),半径r =5.又直线方程为2x -y +3=0,∴圆心到直线的距离为d =|2×3-4+3|4+1=5,∴弦长为2×25-5=220=4 5.答案:458.已知直线l :x -y +4=0与圆C :(x -1)2+(y -1)2=2,则圆C 上各点到l 的距离的最小值为________.解析:因为圆C 的圆心(1,1)到直线l 的距离为d =|1-1+4|12+-12=22,又圆半径r = 2.所以圆C 上各点到直线l 的距离的最小值为d -r = 2.答案:29.已知圆C 的圆心在直线3x -y =0上,半径为1且与直线4x -3y =0相切,则圆C 的标准方程是________.解析:∵圆C 的圆心在直线3x -y =0上,∴设圆心C (m,3m ).又圆C 的半径为1,且与4x -3y =0相切,∴|4m -9m |5=1,∴m =±1,∴圆C 的标准方程为(x -1)2+(y -3)2=1或(x +1)2+(y +3)2=1.答案:(x -1)2+(y -3)2=1或(x +1)2+(y +3)2=110.圆(x -2)2+(y -3)2=1关于直线l :x +y -3=0对称的圆的方程为________.解析:已知圆的圆心为(2,3),半径为1.则对称圆的圆心与(2,3)关于直线l 对称,由数形结合得,对称圆的圆心为(0,1),半径为1,故方程为x 2+(y -1)2=1.答案:x 2+(y -1)2=1三、解答题11.已知圆C :x 2+(y -2)2=5,直线l :mx -y +1=0.(1)求证:对m ∈R ,直线l 与圆C 总有两个不同交点;(2)若圆C 与直线相交于点A 和点B ,求弦AB 的中点M 的轨迹方程.(1)证明:法一直线方程与圆的方程联立,消去y 得(m 2+1)x 2-2mx -4=0,∵Δ=4m 2+16(m 2+1)=20m 2+16>0,∴对m ∈R ,直线l 与圆C 总有两个不同交点.法二直线l :mx -y +1恒过定点(0,1),且点(0,1)在圆C :x 2+(y -2)2=5部,∴对m ∈R ,直线l 与圆C 总有两个不同交点.(2)解:设A (x 1,y 1),B (x 2,y 2),M (x ,y ),由方程(m 2+1)x 2-2mx -4=0,得x 1+x 2=2mm 2+1,∴x =mm 2+1.当x =0时m =0,点M (0,1),当x ≠0时,由mx -y +1=0,得m =y -1x,代入x =m m 2+1,得+1=y -1x,化简得x 2=14.经验证(0,1)也符合,∴弦AB 的中点M 的轨迹方程为x 2=14.12.已知圆C :x 2+y 2-8y +12=0,直线l :ax +y +2a =0.(1)当a 为何值时,直线l 与圆C 相切;(2)当直线l 与圆C 相交于A 、B 两点,且|AB |=22时,求直线l 的方程.解:将圆C 的方程x 2+y 2-8y +12=0配方得标准方程为x 2+(y -4)2=4,则此圆的圆心为(0,4),半径为2.(1)若直线l 与圆C 相切,则有|4+2a |a 2+1=2.解得a =-34.(2)过圆心C 作CD ⊥AB ,则根据题意和圆的性质,|=|4+2a |a 2+1,|2+|DA |2=22,|=12|AB |=2,解得a =-7,或a =-1.故所求直线方程为7x -y +14=0或x -y +2=0.第八篇第3节一、选择题1.设P 是椭圆x225+y216=1上的点.若F 1、F 2是椭圆的两个焦点,则|PF 1|+|PF 2|等于()A.4B.5C.8D.10解析:由方程知a =5,根据椭圆定义,|PF 1|+|PF 2|=2a =10.故选D.答案:D2.(2014二模)P 为椭圆x24+y23=1上一点,F 1,F 2为该椭圆的两个焦点,若∠F 1PF 2=60°,则PF 1→·PF 2→等于()A.3B.3C.23D.2解析:由椭圆方程知a =2,b =3,c =1,1|+|PF 2|=4,1|2+|PF 2|2-4=2|PF 1||PF 2|cos 60°∴|PF 1||PF 2|=4.∴PF 1→·PF 2→=|PF 1→||PF 2→|cos 60°=4×12=2.答案:D3.(2012年高考卷)椭圆x 2a 2+y2b 2=1(a >b >0)的左、右顶点分别是A 、B ,左、右焦点分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B |成等比数列,则此椭圆的离心率为()A.14B.55C.12D.5-2解析:本题考查椭圆的性质与等比数列的综合运用.由椭圆的性质可知|AF 1|=a -c ,|F 1F 2|=2c ,|F 1B |=a +c ,又|AF 1|,|F 1F 2|,|F 1B |成等比数列,故(a -c )(a +c )=(2c )2,可得e =c a =55.故应选B.答案:B4.(2013年高考卷)已知椭圆C :x 2a 2+y2b2=1(a >b >0)的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若|AB |=10,|BF |=8,cos∠ABF =45,则C 的离心率为()A.35B.57C.45D.67解析:|AF |2=|AB |2+|BF |2-2|AB ||BF |cos∠ABF =100+64-2×10×8×45=36,则|AF |=6,∠AFB =90°,半焦距c =|FO |=12|AB |=5,设椭圆右焦点F 2,连结AF 2,由对称性知|AF 2|=|FB |=8,2a =|AF 2|+|AF |=6+8=14,即a =7,则e =c a =57.故选B.答案:B5.已知椭圆E :x2m +y24=1,对于任意实数k ,下列直线被椭圆E 截得的弦长与l :y =kx+1被椭圆E 截得的弦长不可能相等的是()A.kx +y +k =0B.kx -y -1=0C.kx +y -k =0D.kx +y -2=0解析:取k =1时,l :y =x +1.选项A 中直线:y =-x -1与l 关于x 轴对称,截得弦长相等.选项B 中直线:y =x -1与l 关于原点对称,所截弦长相等.选项C 中直线:y =-x +1与l 关于y 轴对称,截得弦长相等.排除选项A、B、C,故选D.答案:D6.(2014省实验中学第二次诊断)已知椭圆x 2a 2+y2b 2=1(a >b >0)的左、右焦点分别为F 1(-c,0),F 2(c,0),若椭圆上存在点P ,使asin∠PF 1F 2=csin∠PF 2F 1,则该椭圆的离心率的取值围为()A.(0,2-1)D.(2-1,1)解析:由题意知点P 不在x 轴上,在△PF 1F 2中,由正弦定理得|PF 2|sin∠PF 1F 2=|PF 1|sin∠PF 2F 1,所以由a sin∠PF 1F 2=csin∠PF 2F 1可得a|PF 2|=c |PF 1|,即|PF 1||PF 2|=c a =e ,所以|PF 1|=e |PF 2|.由椭圆定义可知|PF 1|+|PF 2|=2a ,所以e |PF 2|+|PF 2|=2a ,解得|PF 2|=2a e +1.由于a -c <|PF 2|<a +c ,所以有a -c <2ae +1<a +c ,即1-e <2e +1<1+e ,1-e 1+e<2,1+e2,解得2-1<e .又0<e <1,∴2-1<e <1.故选D.答案:D 二、填空题7.设F 1、F 2分别是椭圆x225+y216=1的左、右焦点,P 为椭圆上一点,M 是F 1P 的中点,|OM |=3,则P 点到椭圆左焦点距离为________.解析:∵|OM |=3,∴|PF 2|=6,又|PF 1|+|PF 2|=10,∴|PF 1|=4.答案:48.椭圆x 2a 2+y2b2=1(a >b >0)的左、右焦点分别是F 1、F 2,过F 2作倾斜角为120°的直线与椭圆的一个交点为M ,若MF 1垂直于x 轴,则椭圆的离心率为________.解析:不妨设|F 1F 2|=1,∵直线MF 2的倾斜角为120°,∴∠MF 2F 1=60°.∴|MF 2|=2,|MF 1|=3,2a =|MF 1|+|MF 2|=2+3,2c =|F 1F 2|=1.∴e =ca=2- 3.答案:2-39.(2014模拟)过点(3,-5),且与椭圆y225+x29=1有相同焦点的椭圆的标准方程为________________.解析:由题意可设椭圆方程为y225-m+x29-m=1(m <9),代入点(3,-5),得525-m +39-m=1,解得m =5或m =21(舍去),∴椭圆的标准方程为y220+x24=1.答案:y220+x24=110.已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1→⊥PF 2→.若△PF 1F 2的面积为9,则b =________.解析:1|+|PF 2|=2a ,1|2+|PF 2|2=4c 2,∴(|PF 1|+|PF 2|)2-2|PF 1||PF 2|=4c 2,即4a 2-2|PF 1||PF 2|=4c 2,∴|PF 1||PF 2|=2b 2,∴S △PF 1F 2=12|PF 1||PF 2|=b 2=9,∴b =3.答案:3三、解答题11.(2012年高考卷)在平面直角坐标系xOy 中,已知椭圆C 1:x 2a 2+y2b2=1(a >b >0)的左焦点为F 1(-1,0),且点P (0,1)在C 1上.(1)求椭圆C 1的方程;(2)设直线l 同时与椭圆C 1和抛物线C 2:y 2=4x 相切,求直线l 的方程.解:(1)由椭圆C 1的左焦点为F 1(-1,0),且点P (0,1)在C 12-b 2=1,=1,2=2,2=1.故椭圆C 1的方程为x22+y 2=1.(2)由题意分析,直线l 斜率存在且不为0,设其方程为y =kx +b ,由直线l 与抛物线C 2=kx +b ,2=4x ,消y 得k 2x 2+(2bk -4)x +b 2=0,Δ1=(2bk -4)2-4k 2b 2=0,化简得kb =1.①由直线l 与椭圆C 1kx +b ,y 2=1,消y 得(2k 2+1)x 2+4bkx +2b 2-2=0,Δ2=(4bk )2-4(2k 2+1)(2b 2-2)=0,化简得2k 2=b 2-1.②=1,k 2=b 2-1,解得b 4-b 2-2=0,∴b 2=2或b 2=-1(舍去),∴b =2时,k =22,b =-2时,k =-22.即直线l 的方程为y =22x +2或y =-22x - 2.12.(2014海淀三模)已知椭圆C :x2a 2+y2b 2=1(a >b >0)的四个顶点恰好是一边长为2,一角为60°的菱形的四个顶点.(1)求椭圆C 的方程;(2)若直线y =kx 交椭圆C 于A ,B 两点,在直线l :x +y -3=0上存在点P ,使得△PAB 为等边三角形,求k 的值.解:(1)因为椭圆C :x 2a 2+y2b2=1(a >b >0)的四个顶点恰好是一边长为2,一角为60°的菱形的四个顶点.所以a =3,b =1,椭圆C 的方程为x23+y 2=1.(2)设A (x 1,y 1),则B (-x 1,-y 1),当直线AB 的斜率为0时,AB 的垂直平分线就是y 轴,y 轴与直线l :x +y -3=0的交点为P (0,3),又因为|AB |=23,|PO |=3,所以∠PAO =60°,所以△PAB 是等边三角形,所以直线AB 的方程为y =0,当直线AB 的斜率存在且不为0时,则直线AB 的方程为y =kx ,y 2=1,kx ,化简得(3k 2+1)x 2=3,所以|x 1|=33k 2+1,则|AO |=1+k233k 2+1=3k 2+33k 2+1.设AB 的垂直平分线为y =-1kx ,它与直线l :x +y -3=0的交点记为P (x 0,y 0),=-x +3,=-1k x ,0=3k k -1,0=-3k -1.则|PO |=9k 2+9k -12,因为△PAB 为等边三角形,所以应有|PO |=3|AO |,代入得9k 2+9k -12=33k 2+33k 2+1,解得k =0(舍去),k =-1.综上,k =0或k =-1.第八篇第4节一、选择题1.设P 是双曲线x216-y220=1上一点,F 1,F 2分别是双曲线左右两个焦点,若|PF 1|=9,则|PF 2|等于()A.1B.17C.1或17D.以上答案均不对解析:由双曲线定义||PF 1|-|PF 2||=8,又|PF 1|=9,∴|PF 2|=1或17,但应注意双曲线的右顶点到右焦点距离最小为c -a =6-4=2>1,∴|PF 2|=17.故选B.答案:B2.(2013年高考卷)已知0<θ<π4,则双曲线C 1:x 2sin 2θ-y 2cos 2θ=1与C 2:y 2cos 2θ-x2sin 2θ=1的()A.实轴长相等B.虚轴长相等C.离心率相等D.焦距相等解析:双曲线C 1的半焦距c 1=sin 2θ+cos 2θ=1,双曲线C 2的半焦距c 2=cos 2θ+sin 2θ=1,故选D.答案:D3.(2012年高考卷)已知双曲线C :x 2a 2-y2b2=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为()A.x220-y25=1B.x25-y220=1C.x280-y220=1D.x220-y280=1解析:由焦距为10,知2c =10,c =5.将P (2,1)代入y =bax 得a =2b .a 2+b 2=c 2,5b 2=25,b 2=5,a 2=4b 2=20,所以方程为x220-y25=1.故选A.答案:A4.已知F 1、F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2等于()A.14B.35C.34D.45解析:∵c 2=2+2=4,∴c =2,2c =|F 1F 2|=4,由题可知|PF 1|-|PF 2|=2a =22,|PF 1|=2|PF 2|,∴|PF 2|=22,|PF 1|=42,由余弦定理可知cos∠F 1PF 2=422+222-422×42×22=34.故选C.答案:C5.设椭圆C 1的离心率为513,焦点在x 轴上且长轴长为26,若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为()A.x242-y232=1B.x2132-y252=1C.x232-y242=1D.x2132-y2122=1解析:在椭圆C 1中,因为e =513,2a =26,即a =13,所以椭圆的焦距2c =10,则椭圆两焦点为(-5,0),(5,0),根据题意,可知曲线C 2为双曲线,根据双曲线的定义可知,双曲线C 2中的2a 2=8,焦距与椭圆的焦距相同,即2c 2=10,可知b 2=3,所以双曲线的标准方程为x242-y232=1.故选A.答案:A6.(2014八中模拟)若双曲线x29-y216=1渐近线上的一个动点P 总在平面区域(x -m )2+y 2≥16,则实数m 的取值围是()A.[-3,3]B.(-∞,-3]∪[3,+∞)C.[-5,5]D.(-∞,-5]∪[5,+∞)解析:因为双曲线x 29-y 216=1渐近线4x ±3y =0上的一个动点P 总在平面区域(x -m )2+y 2≥16,即直线与圆相离或相切,所以d =|4m |5≥4,解得m ≥5或m ≤-5,故实数m 的取值围是(-∞,-5]∪[5,+∞).选D.答案:D 二、填空题7.(2013年高考卷)已知F 为双曲线C :x29-y216=1的左焦点,P ,Q 为C 上的点.若PQ的长等于虚轴长的2倍,点A (5,0)在线段PQ 上,则△PQF 的周长为________.解析:由题知,双曲线中a =3,b =4,c =5,则|PQ |=16,又因为|PF |-|PA |=6,|QF |-|QA |=6,所以|PF |+|QF |-|PQ |=12,|PF |+|QF |=28,则△PQF 的周长为44.答案:448.已知双曲线C :x 2a 2-y2b2=1(a >0,b >0)的离心率e =2,且它的一个顶点到较近焦点的距离为1,则双曲线C 的方程为________.解析:双曲线中,顶点与较近焦点距离为c -a =1,又e =ca=2,两式联立得a =1,c =2,∴b 2=c 2-a 2=4-1=3,∴方程为x 2-y23=1.答案:x 2-y23=19.(2014市第三次质检)已知点P 是双曲线x2a 2-y2b2=1(a >0,b >0)和圆x 2+y 2=a 2+b 2的一个交点,F 1,F 2是该双曲线的两个焦点,∠PF 2F 1=2∠PF 1F 2,则该双曲线的离心率为________.解析:依题意得,线段F 1F 2是圆x 2+y 2=a 2+b 2的一条直径,故∠F 1PF 2=90°,∠PF 1F 2=30°,设|PF 2|=m ,则有|F 1F 2|=2m ,|PF 1|=3m ,该双曲线的离心率等于|F 1F 2|||PF 1|-|PF 2||=2m3m -m =3+1.答案:3+110.(2013年高考卷)设F 1,F 2是双曲线C :x2a 2-y2b 2=1(a >0,b >0)的两个焦点.若在C 上存在一点P ,使PF 1⊥PF 2,且∠PF 1F 2=30°,则C 的离心率为________.解析:设点P 在双曲线右支上,由题意,在Rt△F 1PF 2中,|F 1F 2|=2c ,∠PF 1F 2=30°,得|PF 2|=c ,|PF 1|=3c ,根据双曲线的定义:|PF 1|-|PF 2|=2a ,(3-1)c =2a ,e =ca =23-1=3+1.答案:3+1三、解答题11.已知双曲线x 2-y22=1,过点P (1,1)能否作一条直线l ,与双曲线交于A 、B 两点,且点P 是线段AB 的中点?解:法一设点A (x 1,y 1),B (x 2,y 2)在双曲线上,且线段AB 的中点为(x 0,y 0),若直线l 的斜率不存在,显然不符合题意.设经过点P 的直线l 的方程为y -1=k (x -1),即y =kx +1-k .=kx+1-k,2-y22=1,得(2-k2)x2-2k(1-k)x-(1-k)2-2=0(2-k2≠0).①∴x=x1+x22=k1-k2-k2.由题意,得k1-k2-k2=1,解得k=2.当k=2时,方程①成为2x2-4x+3=0.Δ=16-24=-8<0,方程①没有实数解.∴不能作一条直线l与双曲线交于A,B两点,且点P(1,1)是线段AB的中点.法二设A(x1,y1),B(x2,y2),若直线l的斜率不存在,即x1=x2不符合题意,所以由题得x21-y212=1,x22-y222=1,两式相减得(x1+x2)(x1-x2)-y1+y2y1-y22=0,即2-y1-y2x1-x2=0,即直线l斜率k=2,得直线l方程y-1=2(x-1),即y=2x-1,=2x-1,2-y22=1得2x2-4x+3=0,Δ=16-24=-8<0,即直线y=2x-1与双曲线无交点,即所求直线不合题意,所以过点P(1,1)的直线l不存在.12.(2014质检)中心在原点,焦点在x 轴上的一椭圆与一双曲线有共同的焦点F 1,F 2,且|F 1F 2|=213,椭圆的长半轴长与双曲线实半轴长之差为4,离心率之比为3∶7.(1)求这两曲线方程;(2)若P 为这两曲线的一个交点,求cos∠F 1PF 2的值.解:(1)由已知c =13,设椭圆长、短半轴长分别为a 、b ,双曲线实半轴、虚半轴长分别为m 、n ,-m =4,·13a=3·13m,解得a =7,m =3.∴b =6,n =2.∴椭圆方程为x249+y236=1,双曲线方程为x29-y24=1.(2)不妨设F 1、F 2分别为左、右焦点,P 是第一象限的一个交点,则|PF 1|+|PF 2|=14,|PF 1|-|PF 2|=6,∴|PF 1|=10,|PF 2|=4.又|F 1F 2|=213,∴cos∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=102+42-21322×10×4=45.第八篇第5节一、选择题1.(2014模拟)抛物线y =2x 2的焦点坐标为()B.(1,0)解析:抛物线y =2x 2,即其标准方程为x 2=12y C.答案:C2.抛物线的焦点为椭圆x24+y29=1的下焦点,顶点在椭圆中心,则抛物线方程为()A.x 2=-45y B.y 2=-45x C.x 2=-413yD.y 2=-413x解析:由椭圆方程知,a 2=9,b 2=4,焦点在y 轴上,下焦点坐标为(0,-c ),其中c =a 2-b 2=5,∴抛物线焦点坐标为(0,-5),∴抛物线方程为x 2=-45y .故选A.答案:A3.已知抛物线y 2=2px ,以过焦点的弦为直径的圆与抛物线准线的位置关系是()A.相离B.相交C.相切D.不确定解析:如图所示,设抛物线焦点弦为AB ,中点为M ,准线为l ,A 1、B 1分别为A 、B 在直线l 上的射影,则|AA 1|=|AF |,|BB 1|=|BF |,于是M 到l 的距离d =12(|AA 1|+|BB 1|)=12(|AF |+|BF |)=12|AB |,故圆与抛物线准线相切.故选C.答案:C4.(2014高三统一考试)已知F 是抛物线y 2=4x 的焦点,过点F 的直线与抛物线交于A ,B 两点,且|AF |=3|BF |,则线段AB 的中点到该抛物线准线的距离为()A.53B.83C.103D.10解析:设点A (x 1,y 1),B (x 2,y 2),其中x 1>0,x 2>0,过A ,B 两点的直线方程为x =my +1,将x =my +1与y 2=4x 联立得y 2-4my -4=0,y 1y 2=-4,1+1=3x 2+1,1x 2=y 214·y 224=y 1y 2216=1,解得x 1=3,x 2=13,故线段AB 的中点到该抛物线的准线x =-1的距离等于x 1+x 22+1=83.故选B.答案:B5.已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为()A.34B.1C.54D.74解析:∵|AF |+|BF |=x A +x B +12=3,∴x A +x B =52.∴线段AB 的中点到y 轴的距离为x A +x B 2=54.故选C.答案:C6.设M (x 0,y 0)为抛物线C :x 2=8y 上一点,F 为抛物线C 的焦点,以F 为圆心、|FM |为半径的圆和抛物线C 的准线相交,则y 0的取值围是()A.(0,2)B.[0,2]C.(2,+∞)D.[2,+∞)解析:∵x 2=8y ,∴焦点F 的坐标为(0,2),准线方程为y =-2.由抛物线的定义知|MF |=y 0+2.以F 为圆心、|FM |为半径的圆的标准方程为x 2+(y -2)2=(y 0+2)2.由于以F 为圆心、|FM |为半径的圆与准线相交,又圆心F 到准线的距离为4,故4<y 0+2,∴y 0>2.故选C.答案:C 二、填空题7.动直线l 的倾斜角为60°,且与抛物线x 2=2py (p >0)交于A ,B 两点,若A ,B 两点的横坐标之和为3,则抛物线的方程为________.解析:设直线l 的方程为y =3x +b ,=3x +b ,2=2py消去y ,得x 2=2p (3x +b ),即x 2-23px -2pb =0,∴x 1+x 2=23p =3,∴p =32,则抛物线的方程为x 2=3y .答案:x 2=3y8.以抛物线x 2=16y 的焦点为圆心,且与抛物线的准线相切的圆的方程为________.解析:抛物线的焦点为F (0,4),准线为y =-4,则圆心为(0,4),半径r =8.所以,圆的方程为x 2+(y -4)2=64.答案:x 2+(y -4)2=649.(2012年高考卷)在直角坐标系xOy 中,直线l 过抛物线y 2=4x 的焦点F ,且与该抛物线相交于A ,B 两点,其中点A 在x 轴上方,若直线l 的倾斜角为60°,则△OAF 的面积为________.解析:∵抛物线y 2=4x ,∴焦点F 的坐标为(1,0).又∵直线l 倾斜角为60°,∴直线斜率为3,∴直线方程为y =3(x -1).联立方程y =3x -1,y 2=4x ,解得x 1=13,y 1=-233,或x 2=3,y 2=23,由已知得A 的坐标为(3,23),∴S △OAF =12|OF |·|y A |=12×1×23= 3.答案:310.已知点P 是抛物线y 2=2x 上的动点,点P 在y 轴上的射影是M ,点A 72,4,则|PA |+|PM |的最小值是________.解析:设点M 在抛物线的准线上的射影为M ′.由已知可得抛物线的准线方程为x =-12,焦点F 坐标为12,0.求|PA |+|PM |的最小值,可先求|PA |+|PM ′|的最小值.由抛物线的定义可知,|PM ′|=|PF |,所以|PA |+|PF |=|PA |+|PM ′|,当点A 、P 、F 在一条直线上时,|PA |+|PF |有最小值|AF |=5,所以|PA |+|PM ′|≥5,又因为|PM ′|=|PM |+12,所以|PA |+|PM |≥5-12=92.答案:92三、解答题11.若抛物线y =2x 2上的两点A (x 1,y 1)、B (x 2,y 2)关于直线l :y =x +m 对称,且x 1x 2=-12,数m 的值.解:法一如图所示,连接AB ,∵A 、B 两点关于直线l 对称,∴AB ⊥l ,且AB 中点M (x 0,y 0)在直线l 上.可设l AB :y =-x +n ,=-x +n ,=2x 2,得2x 2+x -n =0,∴x 1+x 2=-12,x 1x 2=-n2由x 1x 2=-12,得n =1.又x 0=x 1+x 22=-14,y 0=-x 0+n =14+1=54,即点M -14,由点M 在直线l 上,得54=-14+m ,∴m =32.法二∵A 、B 两点在抛物线y =2x 2上.1=2x 21,2=2x 22,∴y 1-y 2=2(x 1+x 2)(x 1-x 2).设AB 中点M (x 0,y 0),则x 1+x 2=2x 0,k AB =y 1-y 2x 1-x 2=4x 0.又AB ⊥l ,∴k AB =-1,从而x 0=-14.又点M 在l 上,∴y 0=x 0+m =m -14,即-14,m∴AB 的方程是y 即y =-x +m -12,代入y =2x 2,得2x 2+x x 1x 2=-m -122=-12,∴m =3212.已知过抛物线y 2=2px (p >0)的焦点,斜率为22的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点,且|AB |=9.(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC →=OA →+λOB →,求λ的值.解:(1)直线AB 的方程是y y 2=2px 联立,从而有4x 2-5px +p 2=0,所以x 1+x 2=5p4.由抛物线定义得|AB |=x 1+x 2+p =9,所以p =4,从而抛物线方程是y 2=8x .(2)由p =4知4x 2-5px +p 2=0可化为x 2-5x +4=0,从而x 1=1,x 2=4,y 1=-22,y 2=42,从而A (1,-22),B (4,42).设OC →=(x 3,y 3)=(1,-22)+λ(4,42)=(4λ+1,42λ-22),即C (4λ+1,42λ-22),所以[22(2λ-1)]2=8(4λ+1),即(2λ-1)2=4λ+1,解得λ=0或λ=2.。
2024年高考真题分类专项(解析几何)(学生版)

2024年高考真题分类专项(解析几何)一、单选题1.(2024年北京高考数学真题)圆22260x y x y +-+=的圆心到直线20x y -+=的距离为( )A B .2C .3D .2.(2024年天津高考数学真题)双曲线22221()00a x y a b b >-=>,的左、右焦点分别为12.F F P、是双曲线右支上一点,且直线2PF 的斜率为2.12PF F △是面积为8的直角三角形,则双曲线的方程为( )A .22182y x -=B .22184x y -=C .22128x y -=D .22148x y -=3.(2024年新课标全国Ⅱ卷数学真题)已知曲线C :2216x y +=(0y >),从C 上任意一点P 向x 轴作垂线段PP ',P '为垂足,则线段PP '的中点M 的轨迹方程为( ) A .221164x y +=(0y >)B .221168x y +=(0y >)C .221164y x +=(0y >)D .221168y x +=(0y >)4.(2024年高考全国甲卷数学(文)真题)已知直线20ax by a b +-+=与圆2241=0C x y y ++-:交于,A B 两点,则AB 的最小值为( )A .2B .3C .4D .65.(2024年高考全国甲卷数学(理)真题)已知双曲线的两个焦点分别为()()0,4,0,4-,点()6,4-在该双曲线上,则该双曲线的离心率为( )A.4 B .3C .2D6.(2024年高考全国甲卷数学(理)真题)已知b 是,a c 的等差中项,直线0ax by c 与圆22410x y y ++-=交于,A B 两点,则AB 的最小值为( ) A .1B .2C .4D.二、多选题7.(2024年新课标全国Ⅱ卷数学真题)抛物线C :24y x =的准线为l ,P 为C 上的动点,过P 作22:(4)1A x y +-=⊙的一条切线,Q 为切点,过P 作l 的垂线,垂足为B ,则( ) A .l 与A 相切B .当P ,A ,B三点共线时,||PQ = C .当||2PB =时,PA AB ⊥D .满足||||PA PB =的点P 有且仅有2个8.(2024年新课标全国Ⅱ卷数学真题)设计一条美丽的丝带,其造型可以看作图中的曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足:横坐标大于2-,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则( )A .2a =- B.点在C 上C .C 在第一象限的点的纵坐标的最大值为1D .当点()00,x y 在C 上时,0042y x ≤+三、填空题9.(2024年上海夏季高考数学真题)已知抛物线24y x =上有一点P 到准线的距离为9,那么点P 到x 轴的距离为 .10.(2024年北京高考数学真题)抛物线216y x =的焦点坐标为 .11.(2024年北京高考数学真题)若直线()3y k x =-与双曲线2214x y -=只有一个公共点,则k 的一个取值为 .12.(2024年天津高考数学真题)圆22(1)25-+=x y 的圆心与抛物线22(0)y px p =>的焦点F 重合,A 为两曲线的交点,则原点到直线AF 的距离为 .13.(2024年新课标全国Ⅱ卷数学真题)设双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点分别为12F F 、,过2F 作平行于y 轴的直线交C 于A ,B 两点,若1||13,||10F A AB ==,则C 的离心率为 .四、解答题14.(2024年上海夏季高考数学真题(网络回忆版))已知双曲线222Γ:1,(0),y x b b-=>左右顶点分别为12,A A ,过点()2,0M -的直线l 交双曲线Γ于,P Q 两点. (1)若离心率2e =时,求b 的值.(2)若2b MA P =△为等腰三角形时,且点P 在第一象限,求点P 的坐标. (3)连接OQ 并延长,交双曲线Γ于点R ,若121A R A P ⋅=,求b 的取值范围.15.(2024年北京高考数学真题)已知椭圆E :()222210x y a b a b +=>>,以椭圆E 的焦点和短轴端点为顶点的四边形是边长为2的正方形.过点()(0,t t >且斜率存在的直线与椭圆E 交于不同的两点,A B ,过点A 和()0,1C 的直线AC 与椭圆E 的另一个交点为D . (1)求椭圆E 的方程及离心率; (2)若直线BD 的斜率为0,求t 的值.16.(2024年天津高考数学真题)已知椭圆22221(0)x y a b a b+=>>椭圆的离心率12e =.左顶点为A ,下顶点为B C ,是线段OB 的中点,其中ABC S △. (1)求椭圆方程.(2)过点30,2⎛⎫- ⎪⎝⎭的动直线与椭圆有两个交点P Q ,.在y 轴上是否存在点T 使得0TP TQ ⋅≤.若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.17.(2024年新课标全国Ⅱ卷数学真题)已知(0,3)A 和33,2P ⎛⎫ ⎪⎝⎭为椭圆2222:1(0)x y C a b a b+=>>上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP 的面积为9,求l 的方程.18.(2024年高考全国甲卷数学(理)真题)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫⎪⎝⎭在C 上,且MF x ⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线交C 于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.。
高考数学平面解析几何专项训练(100题-含答案)

高考数学平面解析几何专项训练(100题-含答案)1.在平面直角坐标系xOy 中,已知点12(1,0),(1,0)F F -,点M 满足12MF MF +=记点M 的轨迹为曲线C .(1)求曲线C 的方程;(2)点T 在直线2x =上,过T 的两条直线分别交C 于,A B 两点和,P Q 两点,且||||||||TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.【答案】(1)2212x y +=(2)0【解析】【分析】(1)根据122MF MF +=,利用椭圆的定义求解;(2)设()2,T m ,直线AB 的参数方程为()2cos ,sin x t y m t θθθ=+⎧⎨=+⎩为参数,与椭圆方程联立,利用参数的几何意义求解.(1)解:因为122MF MF +=,所以点M 的轨迹是以12(1,0),(1,0)F F -为焦点的椭圆,则21,1a c b ===,所以椭圆的方程是2212x y +=;(2)设()2,T m ,直线AB 的参数方程为()2cos ,sin x t y m t θθθ=+⎧⎨=+⎩为参数,与椭圆方程联立()()2222cos 2sin 4cos 4sin 420t m t m θθθθ+++++=,由参数的几何意义知:12,TA t TB t ==,则22122224242cos 2sin 2cos m m t t θθθ++⋅=-=-+-,设直线PQ 的参数方程为:()2cos ,sin x y m λαλλα=+⎧⎨=+⎩为参数,则12,TP TQ λλ==,则22122224242cos 2sin 2cos m m λλααα++⋅=-=-+-,由题意得:222242422cos 2cos m m θα++-=---,即22cos cos θα=,因为αθ≠,所以cos cos θα=-,因为0,0θπαπ<<<<,所以θαπ+=,所以直线AB 的斜率tan θ与直线PQ 的斜率tan α之和为0.2.设n S 是数列{}n a 的前n 项和,13a =,点(),N n S n n n *⎛⎫∈ ⎪⎝⎭在斜率为1的直线上.(1)求数列{}n a 的通项公式;(2)求数列12n n a +⎧⎫⎨⎬⎩⎭的前n 项和n T .【答案】(1)21n a n =+(2)152522n n n T ++=-【解析】【分析】(1)根据斜率公式可得出()222n S n n n =+≥,可知13S =满足()222n S n n n =+≥,可得出22n S n n =+,再利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩可求得数列{}n a 的通项公式;(2)求得1212n n n c ++=,利用错位相减法可求得n T .(1)解:由13a =,点,n S n n ⎛⎫ ⎪⎝⎭在斜率为1的直线上,知1111n S S n n -=-,即()222n S n n n =+≥.当1n =时,113S a ==也符合上式,故22n S n n =+.当2n ≥时,()()221212121n n n a S S n n n n n -⎡⎤=-=+--+-=+⎣⎦;13a =也满足上式,故21n a n =+.(2)解:112122n n n n a n c +++==.则2341357212222n n n T ++=++++ ,所以,3412135212122222n n n n n T ++-+=++++ ,上式-下式得1232211113111213214212422224212n n n n n n n T -++⎛⎫- ⎪++⎛⎫⎝⎭=++++-=+- ⎝⎭- 252542n n ++=-,因此,152522n n n T ++=-.3.椭圆2222:1(0)x y C a b a b +=>>的离心率为3,且过点(3,1).(1)求椭圆C 的方程;(2)A ,B ,P 三点在椭圆C 上,O 为原点,设直线,OA OB 的斜率分别是12,k k ,且1213k k ⋅=-,若OP OA OB λμ=+,证明:221λμ+=.【答案】(1)221124x y +=(2)证明见解析【解析】【分析】(1)由条件可得c a22911a b +=,222c b a +=,解出即可;(2)设()()()112200,,,,,A x y B x y P x y ,由条件可得012012x x x y y y λμλμ=+⎧⎨=+⎩,12123x x y y =-,然后将01212x x x y y y λμλμ=+⎧⎨=+⎩代入椭圆方程可得2222221122121221124124124x y x y x x y y λμλμ⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪⎝⎭⎝⎭⎝⎭,然后可得答案.(1)因为ca=22911a b +=,222c b a +=所以可解得2a b ⎧=⎪⎨=⎪⎩所以椭圆C 的方程221124x y +=.(2)设()()()112200,,,,,A x y B x y P x yOP OA OB λμ=+ ,012012x x x y y y λμλμ=+⎧∴⎨=+⎩()()222212120011124124x x y y x y λμλμ+++=∴+= 即2222221122121221124124124x y x y x x y y λμλμ⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2222112211124124x y x y +=+= ,,即22121221124x x y y λμλμ⎛⎫+++= ⎪⎝⎭又1212121133y y k k x x ⋅=-∴=- ,即12123x x y y =-,221λμ∴+=4.已知椭圆()2222:10x y C a b a b+=>>,A 、B 分别为椭圆C 的右顶点、上顶点,F 为椭圆C的右焦点,椭圆C 的离心率为12,ABF 的面积为32.(1)求椭圆C 的标准方程;(2)点P 为椭圆C 上的动点(不是顶点),点P 与点M ,N 分别关于原点、y 轴对称,连接MN 与x 轴交于点E ,并延长PE 交椭圆C 于点Q ,则直线MP 的斜率与直线MQ 的斜率之积是否为定值?若是,求出该定值;若不是,请说明理由.【答案】(1)22143x y +=(2)是定值,定值为32-【解析】【分析】(1)根据椭圆的离心率可得到a,b,c 的关系,再结合ABF 的面积可得到()a c b -=,由此解得a,b ,可得答案.(2)设直线方程,并联立椭圆方程,得到根与系数的关系式,结合直线MP 的斜率与直线MQ 的斜率之积,代入化简可得答案.(1)由题意得12c a =,则2a c =,b =.ABF 的面积为()1322a cb -=,则()a c b -将2a c =,b =代入上式,得1c =,则2a =,b =,故椭圆C 的标准方程为22143x y +=.(2)由题意可知直线PQ 的斜率一定存在,设直线PQ 的方程为y kx m =+,设()11,P x y ,()22,Q x y ,则()11,M x y --,()11,N x y -,()1,0E x -,联立方程22143x y y kx m ⎧+=⎪⎨⎪=+⎩,得()2223484120k x kmx m +++-=,∴122834kmx x k +=-+,∴()12122286223434km m y y k x x m k m k k ⎛⎫+=++=-+= ⎪++⎝⎭,∴21212263348434MQmy y k k km x x kk ++===-+-+,112PEPQ y k k k x ===,∵11112222MP PE y yk k k x x ====,∴33242MP MQ k k k k ⋅=-⨯=-∴MP MQ k k ⋅为定值32-.【点睛】本题考查了椭圆方程的求法以及直线和椭圆的位置关系,综合考查了学生分析问题,解决问题以及计算方面的能力和综合素养,解答的关键是理清解决问题的思路,并能正确地进行计算.5.已知圆M 过点()1,0,且与直线1x =-相切.(1)求圆心M 的轨迹C 的方程;(2)过点()2,0P 作直线l 交轨迹C 于A 、B 两点,点A 关于x 轴的对称点为A '.问A B '是否经过定点,若经过定点,求出定点坐标;若不经过,请说明理由.【答案】(1)24y x =(2)()2,0-【解析】【分析】(1)根据抛物线的定义计算可得;(2)设直线l 的方程为2x ty =+,()11,A x y 、()22,B x y ,则()11,A x y '-,联立直线与抛物线方程,消元、列出韦达定理,再表示出直线A B '的方程,将12y y +、12y y 代入整理即可得解;(1)解:由题意知动点M 的轨迹C 是以(0,0)O 为顶点,()1,0为焦点,1x =-为准线的抛物线,所以动圆圆心M 的轨迹方程为:24y x =;(2)解:设直线l 的方程为2x ty =+,()11,A x y 、()22,B x y 不妨令21y y >,则()11,A x y '-,联立直线l 与抛物线方程得224x ty y x =+⎧⎨=⎩消去x 得2480y ty --=,则124y y t +=、128y y =-,则直线A B '的方程为()()211121y y y y x x x x +--=--,即()()21212121x x y x y y y x y x -+=+-,则()()()()2121212122ty ty y ty y y y x y ty -++=+-+,()()()2121211222t y y y y y x ty y y y -=+--+,即()()21211222y y y x ty y y y =+--+,所以()42824y tx t t ⋅=-⨯--⨯,即()2y t x =+,令200x y +=⎧⎨=⎩解得20x y =-⎧⎨=⎩,所以直线A B '恒过定点()2,0-;6.已知1F ,2F 是椭圆C :()222104x yb b+=>的左、右焦点,过1F 的直线与C 交于A ,B两点,且22::3:4:5AF AB BF =.(1)求C 的离心率;(2)设M ,N 分别为C 的左、右顶点,点P 在C 上(P 不与M ,N 重合),证明:MPN MAN ∠≤∠.【答案】(2)见解析【解析】【分析】(1)由题意设223,4,5AF m AB m BF m ===,由勾股定理的逆定理可得290BAF ∠=︒,再根据椭圆的定义可求出m 的值,从而可求出12,AF AF 的值,则可得点A 是椭圆短轴的一个端点,进而可求出离心率,(2)由椭圆的对称性,不妨设00(,)P x y,0y ∈,,PMN PNM αβ=∠=∠,则可得0000tan ,tan 22y y x x αβ==+-,然后求出tan tan αβ+,tan tan αβ,再利用正切的两角和公式可得02tan()y αβ+=,由正切函数可求出αβ+的最小值,从而可求出()MPN παβ∠=-+的最大值,进而可证得结论(1)由()222104x y b b+=>,得24a =,得2a =,由题意设223,4,5AF m AB m BF m ===,则22222AF AB BF +=,所以290BAF ∠=︒,因为223451248AF AB BF m m m m a ++=++===,所以23m =,所以22AF =,所以122422AF a AF =-=-=,所以12AF F △为等腰直角三角形,所以点A 是椭圆短轴的一个端点,所以b c =,因为222224b c b a +===,得b c =所以椭圆的离心率为2c e a ==(2)由(1)可得椭圆方程为22142x y +=,则(2,0),(2,0)M N -,因为点A是椭圆短轴的一个端点,所以不妨设A ,由椭圆的对称性,不妨设00(,)P x y,0y ∈,,PMN PNM αβ=∠=∠,则0000tan ,tan 22y y x x αβ==+-,2200142x y +=,所以2200002200001tan tan 22422y y y y x x x y αβ⋅=⋅===+--,00002200000442tan tan 2242y y y y x x x y y αβ+=+===+--,所以0tan tan 4tan()1tan tan y αβαβαβ++==-,所以当0y =tan()αβ+取得最小值由(1)可知290BAF ∠=︒,所以()0,2παβ⎛⎫+∈ ⎪⎝⎭,所以当tan()αβ+取得最小值时,αβ+取得最小值,即点P 与点A 重合时,αβ+取得最小值,此时()MPN παβ∠=-+取得最大,所以MPN MAN∠≤∠7.已知椭圆()2222:10x y C a b a b+=>>的长轴长为,且过点)P(1)求C 的方程:(2)设直线()0y kx m m =+>交y 轴于点M ,交C 于不同两点A ,B ,点N 与M 关于原点对称,BO AN ⊥,Q 为垂足.问:是否存在定点M ,使得·NQ NA 为定值?【答案】(1)221102x y +=(2)存在【解析】【分析】(1)利用待定系数法求方程;(2)联立方程组,结合韦达定理可得直线恒过定点,进而求解.(1)依题意知2a =a =所以C 的方程可化为222110x y b+=,将点)P代入C 得251110b +=,解得22b =,所以椭圆方程为221102x y +=;(2)设点()11,A x y ,()22,B x y ,联立221102x y y kx m ⎧+=⎪⎨⎪=+⎩得,()22215105100k x kmx m +++-=,()()()222104155100km k m ∆=-+->,解得22210m k <+,1221015km x x k -+=+,212251015m x x k -=+,注意到Q ,N ,A 三点共线,NQ NA NQ NA ⋅=⋅,又()NQ NA NB BQ NA NB NA ⋅=+⋅=⋅()()()()1212121222x x y m y m x x kx m kx m =+++=+++()()()()222222212122215102012441515k m k mkx xmk x x mm kk+-=++++=-+++()222221510510415k m m m k--+-=++当()2215105510m m --=-,解得1m =±,因为0m >,所以1m =,此时1NQ NA ⋅=-,满足0∆>,故存在定点()0,1M ,使得1NQ NA ⋅=-等于定值1.【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.8.已知椭圆C :22221(0)x y a b a b +=>>,4a M b ⎛⎫ ⎪⎝⎭为焦点是22y x =的抛物线上一点,H 为直线y a =-上任一点,A ,B 分别为椭圆C 的上,下顶点,且A ,B ,H 三点的连线可以构成三角形.(1)求椭圆C 的方程;(2)直线HA ,HB 与椭圆C 的另一交点分别交于点D ,E ,求证:直线DE 过定点.【答案】(1)2214x y +=(2)证明见解析【解析】【分析】(1)由椭圆的离心率求出,a c 的关系式,再由,4a M b ⎛⎫⎪⎝⎭为抛物线22=y x 上的点,结合222a b c =+,即可求出椭圆C 的方程.(2)设点()(),20H m m -≠,求得HA ,HB 的方程,与椭圆联立求得,D E 坐标,写出直线DE 的方程,即可求出DE 恒过的定点.(1)由题意知,222224c aa b a b c⎧=⎪⎪⎪=⨯⎨⎪=+⎪⎪⎩,解得21a b c ⎧=⎪=⎨⎪=⎩,∴椭圆C 的方程为2214x y +=.(2)设点()(),20H m m -≠,易知()0,1A ,()0,1B -,∴直线HA 的方程为31y x m =-+,直线HB 的方程为11y x m=--.联立223114y x m x y ⎧=-+⎪⎪⎨⎪+=⎪⎩,得22362410x x m m ⎛⎫+-= ⎪⎝⎭,∴22436D m x m =+,223636D m y m -=+,同理可得284E m x m -=+,2244E m y m -=+,∴直线DE 的斜率为21216m k m-=,∴直线DE 的方程为222241284164m m m y x m m m --⎛⎫-=+ ⎪++⎝⎭,即2121162m y x m -=-,∴直线DE 过定点10,2⎛⎫- ⎪⎝⎭.9.已知点(1,2)M -在抛物线2:2(0)E y px p =>上.(1)求抛物线E 的方程;(2)直线12,l l 都过点12(2,0),,l l 的斜率之积为1-,且12,l l 分别与抛物线E 相交于点A ,C 和点B ,D ,设M 是AC 的中点,N 是BD 的中点,求证:直线MN 恒过定点.【答案】(1)24y x =(2)证明见解析【解析】【分析】(1)将点坐标代入求解抛物线方程;(2)设出直线方程,表达出,M N 的坐标,求出直线MN 的斜率,利用直线斜率之积为-1,求出直线MN 恒过的定点,从而证明出结论.(1)∵点(1,2)M -在抛物线2:2E y px =上,∴2(2)2p -=,∴解得:2p =,∴抛物线E 的方程为:24y x =.(2)由12,l l 分别与E 相交于点A ,C 和点B ,D ,且由条件知:两直线的斜率存在且不为零.∴设1122:2,:2l x m y l x m y =+=+由214,2y x x m y ⎧=⎨=+⎩得:21480y m y --=设()()1122,,,A x y C x y ,则1214y y m +=,∴12M y m =,又2122M x m =+,即()21122,2M m m +同理可得:()22222,2N m m +∴()()212212212212222MN m m k m m m m -==++-+,∴()211121:222MN y m x m m m -=--+即MN :()1212121y x m m m m =--⎡⎤⎣⎦+,∵12,l l 的斜率之积为1-,∴12111m m ⋅=-,即121m m =-,∴121:(4)MN y x m m =-+,即直线MN 过定点(4,0).10.已知抛物线()20x ay a =>,过点0,2a M ⎛⎫ ⎪⎝⎭作两条互相垂直的直线12,l l ,设12,l l 分别与抛物线相交于,A B 及,C D 两点,当A 点的横坐标为2时,抛物线在点A 处的切线斜率为1.(1)求抛物线的方程;(2)设线段,AB CD 的中点分别为,E F ,O 为坐标原点,求证直线EF 过定点.【答案】(1)24x y =;(2)证明见解析.【解析】【分析】(1)结合导数知识,利用切线斜率构造方程可得a ,由此可得抛物线方程;(2)将直线AB 方程代入抛物线方程中,结合韦达定理可确定中点坐标,同理可得CD中点坐标,利用直线方程两点式可得直线EF 方程,化简可知其过定点()0,4.(1)由2x ay =得:21y ax =,则2y x a '=,241x y a=∴==',解得:4a =,∴抛物线方程为:24x y =;(2)由题意知:直线12,l l 的斜率都存在且都不为零,由(1)知:()0,2M ,设直线:2AB y kx =+,代入24x y =得:2480x kx --=,设()11,A x y ,()22,B x y ,则124x x k +=,128x x =-,()21212444y y k x x k ∴+=++=+,AB ∴中点()22,22E k k +;12l l ⊥ ,1:2CD y x k ∴=-+,同理可得:CD 中点222,2F k k ⎛⎫-+ ⎪⎝⎭;EF ∴的方程为:()()222222222222k k y k x k k k ⎛⎫+-+ ⎪⎝⎭-+=-+,化简整理得:14y k x k ⎛⎫=-+ ⎪⎝⎭,则当0x =时,4y =,∴直线EF 恒过定点()0,4.【点睛】思路点睛:本题考查直线与抛物线综合应用中的直线过定点问题的求解,求解此类问题的基本思路如下:①假设直线方程,与抛物线方程联立,整理为关于x 或y 的一元二次方程的形式;②利用0∆>求得变量的取值范围,得到韦达定理的形式;③利用韦达定理表示出已知中的等量关系,代入韦达定理可整理得到变量间的关系,从而化简直线方程;④根据直线过定点的求解方法可求得结果.11.在直角坐标系xOy 中,曲线:C 221x y +=经过伸缩变换x xy '='=⎧⎪⎨⎪⎩后的曲线为1C ,以x 轴正半轴为级轴,建立极坐标系.曲线2C的极坐标方程为sin 4πρθ⎛⎫+= ⎪⎝⎭(1)写出1C 的普通方程和2C 的直角坐标方程;(2)若1C 上的一点P 到2C 的距离的最大,求距离的最大值及P 点的坐标.【答案】(1)1C :2213y x +=,2C :40x y +-=;(2)max d =,1322P ⎛⎫-- ⎪⎝⎭,.【解析】【分析】()1直接利用转换关系,把参数方程,直角坐标方程和极坐标方程之间进行转换;()2利用三角函数关系式的变换和点到直线的距离公式的应用求出结果.(1)解:由伸缩变换x xy '='=⎧⎪⎨⎪⎩得,代入曲线:C 221x y +=得:1C 的普通方程为2213y x +=,由极坐标方程sin 4πρθ⎛⎫+= ⎪⎝⎭sin y ρθ=,cos x ρθ=可得:2C 的直角坐标方程为40x y +-=.(2)解:直线2C 的普通方程为40x y +-=,设1C上的为点()cos P θθ,到2C 的距离为d =当且仅当()223k k Z πθπ=-+∈时,取得max d =,又因为1cos 23y 2x θθ⎧==-⎪⎪⎨⎪==-⎪⎩,即点P 的坐标为1322⎛⎫-- ⎪⎝⎭.12.已知椭圆C :2222+x y a b=1(a >b >0)经过点A (0,1),且右焦点为F (1,0).(1)求C 的标准方程;(2)过点(0,12)的直线l 与椭圆C 交于两个不同的点P .Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N .证明:以MN 为直径的圆过y 轴上的定点.【答案】(1)2212x y +=(2)证明见解析【解析】【分析】(1)由已知得,c b ,再求得a ,即得椭圆方程;(2)由题意直线l 斜率存在,可设直线1:2l y kx =+,设()()1122,,,P x y Q x y ,直线方程代入椭圆方程应用韦达定理得1212,x x x x +,由直线,AP AQ 方程求出,M N 坐标,求出以MN 为直径的圆的方程,然后代入1212,x x x x +求得圆方程的常数项,从而可得y 的定点坐标.(1)由题意可得1,1c b ==从而22a =.所以椭圆的标准方程为2212x y +=.(2)证明:由题意直线l 斜率存在,可设直线1:2l y kx =+,设()()1122,,,P x y Q x y ,将直线l 代入椭圆方程得()2242430k x kx ++-=,所以12122243,,4242k x x x x k k --+==++,直线AP 的方程为1111y y x x -=+,直线AQ 的方程为2211y y x x -=+.可得1212,0,,011x x M N y y ⎛⎫⎛⎫--⎪ ⎪--⎝⎭⎝⎭,以MN 为直径的圆方程为,21212011x x x x y y y ⎛⎫⎛⎫+++= ⎪⎪--⎝⎭⎝⎭,即()()221212121201111x x x x x y x y y y y ⎛⎫++++= ⎪----⎝⎭.①因为()()()1212122121212124111142122x x x x x x y y k x x k x x kx kx ==---++⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭22212612842k k k -==--+++.所以在①中令0x =,得26y =,即以MN 为直径的圆过y轴上的定点(0,,13.已知抛物线C :()220y px p =>,过点()2,0R 作x 轴的垂线交抛物线C 于G ,H 两点,且OG OH ⊥(O 为坐标原点).(1)求p ;(2)过()2,1Q 任意作一条不与x 轴垂直的直线交抛物线C 于A ,B 两点,直线AR 交抛物线C 于不同于点A 的另一点M ,直线BR 交抛物线C 于不同于点B 的另一点N .求证:直线MN 过定点.【答案】(1)1p =(2)证明见解析【解析】【分析】(1)由题意知2RG OR ==,不妨设()2,2G ,代入抛物线方程中可求出p 的值,(2)设211,2y A y ⎛⎫ ⎪⎝⎭,222,2y B y ⎛⎫ ⎪⎝⎭,233,2y M y ⎛⎫ ⎪⎝⎭,244,2y N y ⎛⎫⎪⎝⎭,则可表示出直线AB ,AM ,BN 的方程,再由直线AB 过()2,1Q 及直线AM ,BN 过()2,0R 可得()121240y y y y -++=,13244y y y y ==-,再表示出直线MN 的方程,结合前面的式子化简可得结论(1)由题意知,2RG OR ==.不妨设()2,2G ,代入抛物线C 的方程,得44p =解得1p =.(2)由(1)知,抛物线C 的方程为22y x =.设211,2y A y ⎛⎫ ⎪⎝⎭,222,2y B y ⎛⎫ ⎪⎝⎭,233,2y M y ⎛⎫ ⎪⎝⎭,244,2y N y ⎛⎫ ⎪⎝⎭,则直线AB 的斜率为12221212222AB y y k y y y y -==+-.所以直线AB 的方程为2111222y y x y y y ⎛⎫=-+ ⎪+⎝⎭,即()121220x y y y y y -++=.同理直线AM ,BN ,MN 的方程分别为()131320x y y y y y -++=,()242420x y y y y y -++=,()343420x y y y y y -++=,由直线AB 过()2,1Q 及直线AM ,BN 过()2,0R 可得()121240y y y y -++=,13244y y y y ==-.又直线MN 的方程为()343420x y y y y y -++=,即1212441620x y y y y y ⎛⎫+++= ⎪⎝⎭.所以直线MN 的方程为()1212280y y x y y y +++=.把()121240y y y y -++=代入()1212280y y x y y y +++=,得()12122480y y x y y y +++=,()122)880(y y x y y +++=,所以由20x y +=,880y +=可得2x =,1y =-.所以直线MN 过定点()2,1-.14.已知抛物线C :y 2=4x 的焦点为F ,过点F 的直线l 与抛物线C 交于P ,A 两点,且PF λFA = .(1)若λ=4,求直线l 的方程;(2)设点E (a ,0),直线PE 与抛物线C 的另一个交点为B ,且PE EB μ=.若λ=4μ,求a的值.【答案】(1)4340x y --=或4340x y +-=(2)4【解析】【分析】(1)由4PF FA =得014y y =-,设直线l :1x my =+,与抛物线C :24y x =联立,结合韦达定理,即得解;(2)由PF λFA = 得01y y λ=-,结合014y y =-,可得204y λ=,再由PE EB μ= 得02y y μ=-,设直线PB :x ny a =+,与抛物线C :24y x =联立由韦达定理可得024y y a =-,故204y aμ=,又4λμ=,代入运算即得解(1)易知焦点F (1,0),设P (0x ,0y ),A (1x ,1y )由4PF FA =得014y y =-设直线l :1x my =+,与抛物线C :24y x =联立得2440y my --=,其中216160m ∆=+>,所以014y y =-由①②可得0141y y =⎧⎨=-⎩或0141y y =-⎧⎨=⎩又014y y m +=,所以34m =或34m =-所以直线l 的方程为314x y =+或314x y =-+.化简得4340x y --=或4340x y +-=(2)由PF λFA =得01y y λ=-又014y y =-可得204y λ=设点B (2x ,2y ),由PE EB μ= 得02y y μ=-设直线PB :x ny a =+,与抛物线C :24y x =联立得2440y ny a --=.所以216()0n a ∆=+>,024y y a=-故204y aμ=又4λμ=,所以2200444y y a=⋅,考虑到点P 异于原点,所以00y ≠,解得4a =此时2216()16(4)0n a n ∆=+=+>所以a 的值为415.平面直角坐标系xOy 中,双曲线22:136x y C -=的右焦点为F ,T 为直线:1l x =上一点,过F 作TF 的垂线分别交C 的左、右支于P 、Q 两点,交l 于点A .(1)证明:直线OT 平分线段PQ ;(2)若3PA QF =,求2TF 的值.【答案】(1)证明见解析(2)12+【解析】【分析】(1)设直线PQ 的方程为3x ty =+,设点()11,P x y 、()22,Q x y ,将直线PQ 的方程与双曲线的方程联立,列出韦达定理,求出线段PQ 的中点N 的坐标,计算得出ON OT k k =,证明出O 、T 、N 三点共线,即可证得结论成立;(2)由3PA QF =得3PA QF = ,可得出1238x x -+=,变形可得出()()12212184384x x x x x x ⎧++=⎪⎨+-=⎪⎩,两式相乘结合韦达定理可求得2t 的值,再利用两点间的距离公式可求得2TF 的值.(1)解:依题意,3F x ==,即()3,0F ,设()1,2T t ,则直线PQ 的方程为3x ty =+,由22326x ty x y =+⎧⎨-=⎩得()222112120t y ty -++=,设()11,P x y 、()22,Q x y ,则()222210Δ14448210t t t ⎧-≠⎪⎨=-->⎪⎩,故212t ≠,由韦达定理可得1221221t y y t +=--,1221221y y t =-,所以()121226621x x t y y t +=++=--,又直线PQ 分别交C 的左、右支于P 、Q 两点,所以()()()22121212122963339021t x x ty ty t y y t y y t +=++=+++=-<-,故212t >所以PQ 中点为2236,2121t N t t ⎛⎫-- ⎪--⎝⎭,所以2ON OT k t k ==,故O 、T 、N 三点共线,即直线OT 平分线段PQ .(2)解:依题意,由3PA QF =得3PA QF =,则()12133x x -=-,即1238x x -+=,所以()12284x x x ++=,①,()121384x x x +-=,②①×②得()()21212123166416x x x x x x +++-=,所以()22222366963166416212121t t t t+⨯-⨯-=-⨯---,解得28374t +=,或28374t -=(舍去),此时,224412t TF =+=+【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式;(5)代入韦达定理求解.16.已知抛物线2:4E y x =,F 为其焦点,O 为原点,A ,B 是E 上位于x 轴两侧的不同两点,且5OA OB ⋅=.(1)求证:直线AB 恒过一定点;(2)在x 轴上求一定点C ,使F 到直线AC 和BC 的距离相等;(3)在(2)的条件下,当F 为ABC 的内心时,求ABC 重心的横坐标.【答案】(1)证明见解析(2)见解析(3)173【解析】【分析】(1)设直线AB 的方程为x my n =+,211(,)4y A y ,222(,)4y B y ,联立24x my n y x =+⎧⎨=⎩,消x 得:2440y my n --=,124y y m +=,124y y n =-,结合向量的数量积,转化求解直线AB 的方程,推出结果.(2)在x 轴上求一定点C ,使F 到直线AC 和BC 的距离相等即CF 平分ACB ∠,即直线AC 与直线BC 关于x 轴对称,根据斜率和为零,从而可得结果;(3)设11(,)A x y ,22(,)B x y ,直线AB 与x 轴交于N ,由题意可得32AC CF AN NF ==,坐标化,结合点在抛物线上可得点的坐标,从而得到结果.(1)设直线AB 的方程为x my n =+,211(,)4y A y ,222(,)4y B y ,联立24x my n y x=+⎧⎨=⎩,消x 得:2440y my n --=,则124y y m +=,124y y n =-,由5OA OB ⋅= 得:21212()516y y y y +=,所以:1220y y =-或124y y =(舍去),即4205n n -=-⇒=,所以直线AB 的方程为5x my =+,所以直线AB 过定点(5,0)P .(2)由(1)知,直线AB 过定点(5,0)P 可设直线AB 的方程为5x my =+,此时124y y m +=,1220y y =-,设x 轴上定点C 坐标为(,0)t ,要使F 到直线AC 和BC 的距离相等,则CF 平分ACB ∠,即直线AC 与直线BC 关于x 轴对称,故0AC BC k k +=,即21210y yx t x t+=--,∴()()21120y x t y x t -+-=,∴()()1212250my y t y y +-+=,∴()40450m m t -+-=对任意m 恒成立,∴510t -=,5t =-,故在x 轴上有一定点C (5,0)-,使F 到直线AC 和BC 的距离相等;(3)设11(,)A x y ,22(,)B x y ,直线AB 与x 轴交于N ,∵F 为ABC 的内心,∴32AC CF AN NF ==,32=,即2211126250x y x +-+=,又2114y x =,∴21122250x x -+=,同理22222250x x -+=,∴12,x x 是方程222250x x -+=的两个根,∴1222x x +=,∴三角形重心的横坐标为1251733x x +-=.17.已知椭圆C 的两个顶点分别为()2,0A -,()2,0B ,焦点在x (1)求椭圆C 的方程;(2)若直线()()10y k x k =-≠与x 轴交于点P ,与椭圆C 交于M ,N 两点,线段MN 的垂直平分线与x 轴交于Q ,求MN PQ的取值范围.【答案】(1)2214x y +=;(2)(4,【解析】【分析】(1)由顶点和离心率直接求,,a b c 即可;(2)先联立直线和椭圆方程,借助弦长公式表示出弦长MN ,再求出垂直平分线和Q 坐标,表示出PQ ,最后分离常数求取值范围即可.(1)由题意知2222,a c a a b c =⎧⎪⎪=⎨⎪=+⎪⎩可得1,2a b ==,故椭圆C 的方程为2214x y +=.(2)由()22114y k x x y ⎧=-⎪⎨+=⎪⎩,可得()2222418440k x k x k +-+-=,设()()1122,,,M x y N x y ,则22121222844,4141k k x x x x k k -+=⋅=++,()121222241k y y k x x k -+=+-=+,线段MN 的中点为2224,4141k k k k ⎛⎫- ⎪++⎝⎭,线段MN 的垂直平分线方程为22214()4141k k y x k k k --=--++,令0y =,得22341kx k =+,所以223,041k Q k ⎛⎫ ⎪+⎝⎭,又(1,0)P ,则22223114141k k PQ k k +=-=++,又12MN x x =-=所以2241141MN k k PQk +==++220,1331k k ≠∴<-<+ ,故MN PQ的取值范围为(4,.【点睛】(1)关键在于建立,,a b c 的关系式求解;(2)关键在于联立直线和椭圆方程,依次求出垂直平分线和弦长MN 、PQ ,转化成关于k 的代数式求范围即可.18.定义平面曲线的法线如下:经过平面曲线C 上一点M ,且与曲线C 在点M 处的切线垂直的直线称为曲线C 在点M 处的法线.设点()()000,0M x y y >为抛物线2:2(0)C y px p =>上一点.(1)求抛物线C 在点M 处的切线的方程(结果不含0x );(2)求抛物线C 在点M 处的法线被抛物线C 截得的弦长||AB 的最小值,并求此时点M 的坐标.【答案】(1)002y py x y =+(2);()p 【解析】【分析】(1)先化简求导确定切线斜率,再按照在点处的切线方程进行求解;(2)先联立法线和抛物线方程,借助弦长公式表示弦长,最后换元构造函数,求导确定最小值.(1)因为点()()000,0M x y y >在抛物线上方,所以由2:2(0)C y px p =>得y =py y'=,所以在点M 处的切线斜率0y y pk y y ='==,所求切线方程为000()py y x x y -=-,又202y x p=,故切线方程为2000()2y p y y x y p -=-,即002y p y x y =+.(2)点M 处的法线方程为2000()2y y y y x p p-=--,即220022y p p x y y p +=-+.联立抛物线2:2(0)C y px p =>,可得()2232000220y y p y y p y +-+=,可知0∆>,设()()1122,,,A x y B x y ,()2221212002,2p y y y y y p y +=-⋅=-+,所以322212202()y p AB y y y +⋅-=.令200t y =>,则3222()(0)t p AB t t +=>,令3222()()(0)t p f t t t +=>,1312222222223()()()(2)2()2t p t t p t p t p f t t t +⋅-++⋅-'=⨯=,所以()f t 在()20,2p 单调递减,在()22,p +∞单调递增,所以()2min ()2f t f p ==,即min AB =,此时点M的坐标为()p .【点睛】(1)关键在于化简出0y >时的抛物线方程,借助求导确定切线斜率;(2)写出法线方程,联立抛物线求弦长是通用解法,关键在于换元构造函数之后,借助导数求出最小值.19.已知点()11,0F -,()21,0F ,M 为圆22:4O x y +=上的动点,延长1F M 至N ,使得1MN MF =,1F N 的垂直平分线与2F N 交于点P ,记P 的轨迹为Γ.(1)求Γ的方程;(2)过2F 的直线l 与Γ交于,A B 两点,纵坐标不为0的点E 在直线4x =上,线段OE 分别与线段AB ,Γ交于,C D 两点,且2OD OC OE =⋅,证明:AC BC =.【答案】(1)22143x y +=;(2)证明见解析.【解析】【分析】(1)由线段垂直平分线和三角形中位线性质可证得12124PF PF F F +=>,可知P 点轨迹为椭圆,由此可得轨迹方程;(2)由已知可知24D C x x =;当l 斜率不存在时显然不成立;当l 斜率存在时,设l 方程,将其与椭圆方程联立,结合韦达定理可得AB 中点横坐标;设():0OE y k x k ''=≠,与直线l 和椭圆方程联立可求得34k k'=-,由此可整理得到C x ,与AB 中点横坐标相同,由此可得结论.(1)连接1,MO PF,PM 是1NF 的垂直平分线,1PF PN ∴=,1222PF PF PN PF NF ∴+=+=;,M O 分别为112,NF F F 中点,224NF MO ∴==,12124PF PF F F ∴+=>,P ∴点轨迹是以12,F F 为焦点,长轴长为4的椭圆,即2a =,1c =,23b ∴=,P ∴点轨迹Γ的方程为:22143x y +=;(2)2OD OC OE =⋅ ,即OD OE OC OD =,D EC Dx x x x ∴=,由题意知:0C x >,4E x =,24D C x x ∴=,①当直线l 斜率不存在时,即:1l x =,此时1C x =,2D x <,此时24D C x x =不成立;②当直线l 斜率存在时,设():1l y k x =-,()11,A x y ,()22,B x y ,由()221431x y y k x ⎧+=⎪⎨⎪=-⎩得:()22223484120k x k x k +-+-=,2122212283441234k x x k k x x k ⎧+=⎪⎪+∴⎨-⎪=⎪+⎩,AB ∴中点的横坐标为21224234x x k k +=+;设直线OE 的方程为:()0y k x k ''=≠,由()1y k x y k x ='=⎧⎨-⎩得:kx k k ='-,即C k x k k ='-;由22143y k xx y =⎧='⎪⎨+⎪⎩得:221234x k ='+,即221234D x k ='+;由24D C x x =得:212434k k k k =''+-,整理可得:34k k '=-,2122434324C x x kk x k k k+∴===++,C ∴为线段AB 的中点,AC BC ∴=.【点睛】关键点点睛:本题考查定义法求解轨迹方程、直线与椭圆综合应用问题;本题证明C 为AB 中点的关键是能够通过已知等式得到,C D 两点横坐标之间满足的等量关系,进而表示出AB 中点横坐标和C 点横坐标,证明二者相等即可.20.已知椭圆()2222:10x y E a b a b +=>>的左、右焦点分别为1F ,2F,离心率2e =,P为椭圆上一动点,12PF F △面积的最大值为2.(1)求椭圆E 的方程;(2)若C ,D 分别是椭圆E 长轴的左、右端点,动点M 满足MD CD ⊥,连结CM 交椭圆于点N ,O 为坐标原点.证明:OM ON ⋅为定值;(3)平面内到两定点距离之比是常数()1λλ≠的点的轨迹是圆.椭圆E 的短轴上端点为A ,点Q 在圆228x y +=上,求22QA QP PF +-的最小值.【答案】(1)22142x y +=;(2)见解析;4.【解析】【分析】(1)结合离心率和12PF F △面积的最大值列出关于,,a b c 的方程,解方程即可;(2)设直线CM 方程,写出点M 坐标,联立椭圆方程,求点N 坐标,通过向量数量积计算即可;(3)设点R 坐标,借助点Q 在圆228x y +=上,将2QA 转化成RA ,再借助椭圆定义将2PF 转化成14PF -,最后通过1,,R P F 三点共线求出最小值.(1)当P 为短轴端点时,12PF F △的面积最大,2bc =,222222,c a bc a b c ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩解得2,a b c ===,故椭圆E 的方程为22142x y +=.(2)由(1)知,()2,0,(2,0)C D -,设直线():2CM y k x =+,11(,)N x y ,,(2,4)MD CD M k ⊥∴ ,联立221,42(2)x y y k x ⎧+=⎪⎨⎪=+⎩整理得()22222218840k x k x k +++-=,由21284221k x k --=+得2122421k x k -=+,1124(2)21ky k x k =+=+,222244(,)2121k k N k k -∴++,2222442442121k kOM ON k k k -⋅=⨯⨯++ ,故OM ON ⋅为定值4.(3)由题意(A ,设()(0,),,R m Q x y ,使2QA QR =,()()22222,4QR x y m QAx y +-==+,整理得222282833m m x y y --++=,又点Q 在圆228x y +=上,20,883m =∴⎨-⎪=⎪⎩解得m =,(0,R 由椭圆定义得124PF PF =-,2112(4)4QA QP PF QR QP PF QR QP PF +-=+--∴=++-,当1,,R P F三点共线时,(10,,(R F 22QA QP PF +-∴4.【点睛】(1)关键在于建立,,a b c 的方程;(2)关键在于设出直线方程,联立得出点N 坐标;(3)关键在于利用题目中给出的圆的定义将2QA 转化成RA ,再结合椭圆定义,将问题简化成共线问题.21.已知椭圆C :22221(0)x y a b a b+=>>的长轴长为4,点31,2⎛⎫ ⎪⎝⎭在椭圆C 上.(1)求椭圆C 的标准方程;(2)已知O 为坐标原点,P 为椭圆C 上的一个动点,过点E0)作OP 的平行线交椭圆C 于M ,N 两点,问:是否存在实数t (t >0),使得||,||,||EM t OP EN 构成等比数列?若存在,求出t 的值;若不存在,请说明理由.【答案】(1)22143x y +=(2)存在,12t =【解析】【分析】(1)由题意可得2a =,再将点31,2⎛⎫ ⎪⎝⎭代入椭圆方程中可求出2b ,从而可求得椭圆的方程,(2)①当OP 的斜率存在时,设直线OP 的方程为y kx =,将直线方程代入椭圆方程中可求出22,x y ,则可得2OP ,设直线MN的方程为()()1122(,,,y k x M x y N x y =,将直线方程代入椭圆方程消去y ,利用根与系数的关系,再利用两点间的距离公式表示出||,||EM EN ,再计算||||EM EN 与2OP 比较可求出t 的值,②当OP 的斜率不存在时,可得||OP =MN的方程为x ||||EM EN 的值,进而可求出t (1)由题意可得24a =,所以2a =.因为点(1,32)在椭圆C 上,所以221914a b +=,解得23b =.所以椭圆C 的标准方程为22143x y +=.(2)①当OP 的斜率存在时,设直线OP 的方程为y kx =.联立方程,得22143y kxx y =⎧⎪⎨+=⎪⎩解得221234x k =+,2221234k y k =+.解得()2222221211212||343434k k OP k k k+=+=+++,设直线MN的方程为()()1122(,,,y k x M x y N x y =-.联立方程,得(22143y k x x y ⎧=-⎪⎨⎪+=⎩化简,得()22223412120k x x k +=+-=.因为点E0)在椭圆内部,所0∆>,221213221212,3434k x x x x k k-+=⋅=++,所以1||EM x =-.同理可得2||EN x =所以()(())22121212||||113EM EN kx xk x x x x ⋅=+=+⋅++()()22222223112122413343434k k kk k k k +-=+⋅-+=+++,假设存在实数(0)t t >),使得||,||,||EM t OP EN 构成等比数列,则22||||||EM EN t OP ⋅=.所以()()22222311213434k k tk k ++=⋅++.解得214t=.四为1t >,所以12t =,②当OP 的斜率不存在时,||OP =MN 的方程为x =x =22143x y +=,得234y =.所以||||2EM EN ==,当||,||,||EM t OP EN 构成等比数列时,22||||||EM EN t OP ⋅=,即2334t =.因为0t >,所以12t =.综上所述,存在实数12t =,使得||,||,||EM t OP EN 构成等比数列.22.在平面直角坐标系xOy 中,曲线C 的参数方程为x y αααα⎧=-⎪⎨=+⎪⎩(α为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.直线l 的极坐标方程为()cos sin 3m m ρθθ++=l 与曲线C 交于A ,B 两点.(1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)过A ,B 分别作l 的垂线与x 轴交于C ,D 两点,若AB =CD .【答案】(1)2212x y +=,30mx y m ++=;(2)4.【解析】【分析】(1)消参法求曲线C 的普通方程,公式法求直线l 的直角坐标方程.(2)由(1)所得普通方程,结合圆中弦长、半径、弦心距的几何关系求圆心到直线l 的距离,再利用点线距离公式列方程求参数m ,即可得直线的倾斜角大小,由AB 、CD 的关系求CD 即可.(1)由题意,消去参数α,得曲线C 的普通方程为2212x y +=.将cos x ρθ=,sin y ρθ=代入()cos sin 3m m ρθθ++得直线l的直角坐标方程为30mx y m ++=.(2)设圆心到直线l:30mx y m ++=的距离为d,则AB =3d =.3=,解得3m =-.所以直线l的方程为60x +=,则直线l 的倾斜角为30θ=︒.所以4cos30AB CD ==︒.23.在平面直角坐标系xOy中,已知直线340x y ++=与圆1C :222x y r +=相切,另外,椭圆2C :()222210x y a b a b +=>>的离心率为32,过左焦点1F 作x 轴的垂线交椭圆于C ,D 两点.且1CD =.(1)求圆1C 的方程与椭圆2C 的方程;(2)经过圆1C 上一点P 作椭圆2C 的两条切线,切点分别记为A ,B ,直线PA ,PB 分别与圆1C 相交于M ,N 两点(异于点P ),求△OAB 的面积的取值范围.【答案】(1)225x y +=,2214x y +=;(2)4,15⎡⎤⎢⎥⎣⎦.【解析】【分析】(1)由直线与圆的相切关系及点线距离公式求参数r ,即可得圆1C 的方程,根据椭圆离心率、22b CD a=及椭圆参数关系求出a 、b 、c ,即可得椭圆2C 的方程.(2)设()11,A x y 、()22,B x y 、()00,P x y ,讨论直线PA ,PB 斜率存在性,则直线PA 为()111y k x x y =-+、直线PB 为()222y k x x y =-+,联立椭圆方程并结合所得一元二次方程0∆=求1k 、2k ,进而得直线PA 为1114x x y y +=、直线PB 为2214x xy y +=,结合P 在直线PA ,PB 上有AB 为0014x xy y +=,联立椭圆方程,应用韦达定理、弦长公式、点线距离公式,结合三角形面积公式得0OAB S = .(1)由题设,圆1C :222x y r +=的圆心为()0,0,因为直线340x y ++=与圆1C相切,则r ==所以圆1C 的方程为225x y +=,因为椭圆2Cc e a ==c =,由221b CD a==,则22a b =,又222a b c =+,所以22324a a a =+,解得2a =,1b =,所以椭圆2C 的方程为2214x y +=.综上,圆1C 为225x y +=,椭圆2C 为2214x y +=.(2)设点()11,A x y ,()22,B x y ,()00,P x y .当直线PA ,PB 斜率存在时,设直线PA ,PB 的斜率分别为1k ,2k ,则直线PA 为()111y k x x y =-+,直线PB 为()222y k x x y =-+.由()11122440y k x x y x y ⎧=-+⎨+-=⎩,消去y 得:()()()22211111111148440k x k y k x x y k x ++-+--=.所以()()()2222111111116441444k y k x k y k x ⎡⎤∆=--+--⎣⎦.令0∆=,整理得()2221111114210x k x y k y -++-=,则11111122111444x y x y x k x y y --=-==-,所以直线PA 为()11114x y x x y y -=-+,化简得:22111144x x y y y x +=+,即1114x x y y +=.经验证,当直线PA 斜率不存在时,直线PA 为2x =或2x =-也满足1114x xy y +=.同理,可得直线PB 为2214x xy y +=.因为()00,P x y 在直线PA ,PB 上,所以101014x x y y +=,202014x xy y +=.综上,直线AB 为0014x xy y +=.由00221444x xy y x y ⎧+=⎪⎨⎪+=⎩,消去y 得:()22200035816160y x x x y +-+-=.所以01220835x x x y +=+,21220161635y x x y -=+.所以12AB x =-=)20203135y y +==+.又O 到直线AB的距离d ==所以)20200311235OABy S y +=⋅+ t =,[]1,4t ∈,则24444OAB t S t t t∆==++,又[]44,5t t+∈,所以△OAB 的面积的取值范围为4,15⎡⎤⎢⎥⎣⎦.【点睛】关键点点睛:第二问,设点及直线PA ,PB 的方程,联立椭圆结合相切关系求参数关系,进而确定PA ,PB 的方程,由P 在直线PA ,PB 上求直线AB 的方程,再联立椭圆并应用韦达定理、弦长公式、点线距离公式求三角形面积的范围.24.已知点A ,B 是抛物线x 2=2py (p 为常数且p >0)上不同于坐标原点O 的两个点,且0OA OB ⋅= .(1)求证:直线AB 过定点;(2)过点A 、B 分别作抛物线的切线,两切线相交于点M ,记 OMA 、 OAB 、 OMB 的面积分别为S 1、S 2、S 3;是否存在定值λ使得22s =λS 1S 3?若存在,求出λ值;若不存在,请说明理由.【答案】(1)证明见解析(2)存在,4λ=【解析】【分析】(1)设11(,)A x y ,22(,)B x y ,设直线AB 方程为y kx t =+,代入抛物线方程中,消去y ,。
高考数学解析几何专题练习及答案解析版

1.一个顶点的坐标()2,0,焦距的一半为3的椭圆的标准方程是( ) A. 19422=+y x B. 14922=+y x C. 113422=+y x D. 141322=+y x2.已知双曲线的方程为22221(0,0)x y a b a b-=>>,过左焦点F 1的直线交双曲线的右支于点P ,且y 轴平分线段F 1P ,则双曲线的离心率是( ) A . 3B .32+C . 31+D . 323.已知过抛物线y 2=2px (p>0)的焦点F 的直线x -my+m=0与抛物线交于A ,B 两点,且△OAB(O 为坐标原点)的面积为,则m 6+ m 4的值为( )A .1B . 2C .3D .44.若直线经过(0,1),(3,4)A B 两点,则直线AB 的倾斜角为 A .30o B . 45o C .60o D .120o5.已知曲线C 的极坐标方程ρ=2θ2cos ,给定两点P(0,π/2),Q (-2,π),则有 ( )(A)P 在曲线C 上,Q 不在曲线C 上 (B)P 、Q 都不在曲线C 上 (C)P 不在曲线C 上,Q 在曲线C 上 (D)P 、Q 都在曲线C 上 6.点M 的直角坐标为)1,3(--化为极坐标为( ) A .)65,2(π B .)6,2(π C .)611,2(π D .)67,2(π7.曲线的参数方程为⎩⎨⎧-=+=12322t y t x (t 是参数),则曲线是( ) A 、线段 B 、直线 C 、圆 D 、射线 8.点(2,1)到直线3x-4y+2=0的距离是( ) A .54 B .45C .254 D .4259. 圆06422=+-+y x y x 的圆心坐标和半径分别为( )A.)3,2(-、13B.)3,2(-、13C.)3,2(--、13D.)3,2(-、1310.椭圆12222=+b y x 的焦点为21,F F ,两条准线与x 轴的交点分别为M 、N ,若212F F MN ≤,则该椭圆离心率取得最小值时的椭圆方程为 ( )A.1222=+y x B. 13222=+y x C.12222=+y xD.13222=+y x 11.过双曲线的右焦点F 作实轴所在直线的垂线,交双曲线于A ,B 两点,设双曲线的左顶点M ,若MAB ∆是直角三角形,则此双曲线的离心率e 的值为 ( )A .32B .2C .2D .312.已知)0(12222>>=+b a b y a x ,N M ,是椭圆上关于原点对称的两点,P 是椭圆上任意一点且直线PN PM ,的斜率分别为21,k k ,021≠k k ,则21k k +的最小值为1,则椭圆的离心率为( ). (A)22 (B) 42 (C) 23 (D)43 13.设P 为双曲线11222=-y x 上的一点,F 1、F 2是该双曲线的两个焦点,若2:3:21=PF PF ,则△PF 1F 2的面积为( )A .36B .12C .123D .2414.如果过点()m P ,2-和()4,m Q 的直线的斜率等于1,那么m 的值为( ) A .4B .1C .1或3D .1或415.已知动点(,)P x y 在椭圆2212516x y +=上,若A 点坐标为(3,0),||1AM =u u u u r ,且0PM AM ⋅=u u u u r u u u u r则||PM u u u u r 的最小值是( ) A .2 B .3 C .2 D .3 16.直线l 与抛物线交于A,B 两点;线段AB 中点为,则直线l 的方程为A 、B 、、C 、D 、17.已知椭圆2222:1(0)x y C a b a b+=>>3过右焦点F 且斜率为(0)k k >的直线与C 相交于A B 、两点.若3AF FB =u u u r u u u r,则k =( )(A )1 (B 2 (C 3(D )2 18.圆22(2)4x y ++=与圆22(2)(1)9x y -+-=的位置关系为( ) A.内切 B.相交 C.外切 D.相离19.已知点P 在定圆O 的圆内或圆周上,动圆C 过点P 与定圆O 相切,则动圆C 的圆心轨迹可能是( )(A)圆或椭圆或双曲线 (B)两条射线或圆或抛物线 (C)两条射线或圆或椭圆 (D)椭圆或双曲线或抛物线20.若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是( ) A .[6π,3π) B .(6π,2π) C .(3π,2π) D .[6π,2π] 21.直线l 与两直线1y =和70x y --=分别交于,A B 两点,若线段AB 的中点为(1,1)M -,则直线l 的斜率为( )A .23B .32 C .32- D . 23- 22.已知点()()0,0,1,1O A -,若F 为双曲线221x y -=的右焦点,P 是该双曲线上且在第一象限的动点,则OA FP uu r uu r⋅的取值范围为( )A .()21,1- B .()21,2- C .()1,2 D .()2,+∞23.若b a ,满足12=+b a ,则直线03=++b y ax 过定点( ).A ⎪⎭⎫ ⎝⎛-21,61 B .⎪⎭⎫ ⎝⎛-61,21 C .⎪⎭⎫ ⎝⎛61,21 .D ⎪⎭⎫ ⎝⎛-21,6124.双曲线1922=-y x 的实轴长为 ( ) A. 4 B. 3 C. 2 D. 125.已知F 1 、F 2分别是双曲线1by a x 2222=-(a>0,b>0)的左、右焦点,P 为双曲线上的一点,若︒=∠9021PF F ,且21PF F ∆的三边长成等差数列,则双曲线的离心率是( )A .2B . 3C . 4D . 526.过A(1,1)、B(0,-1)两点的直线方程是( )A.B.C.=x27.抛物线x y 122=上与焦点的距离等于6的点横坐标是( )A .1B .2 C.3 D.428.已知圆22:260C x y x y +-+=,则圆心P 及半径r 分别为 ( ) A 、圆心()1,3P ,半径10r =; B 、圆心()1,3P ,半径10r =;C 、圆心()1,3P -,半径10r =;D 、圆心()1,3P -,半径10r =。
高中解析几何试题及答案

高中解析几何试题及答案1. 已知圆的方程为 \((x-2)^2+(y-3)^2=9\),求该圆的圆心坐标和半径。
答案:圆心坐标为 \((2, 3)\),半径为 \(3\)。
2. 求直线 \(2x + 3y - 6 = 0\) 关于点 \((1, 2)\) 对称的直线方程。
答案:对称直线的方程为 \(2x - 3y + 8 = 0\)。
3. 已知椭圆 \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\)(其中\(a > b > 0\))经过点 \((2, 3)\),且离心率 \(e = \frac{c}{a}\) 为 \(\frac{1}{2}\),求椭圆的长轴和短轴长度。
答案:根据离心率 \(e = \frac{c}{a} = \frac{1}{2}\),我们有 \(c =\frac{a}{2}\)。
由于椭圆经过点 \((2, 3)\),代入椭圆方程得\(\frac{4}{a^2} + \frac{9}{b^2} = 1\)。
又因为 \(c^2 = a^2 -b^2\),代入 \(c = \frac{a}{2}\) 得 \(\frac{a^2}{4} = a^2 -b^2\),解得 \(b^2 = \frac{3}{4}a^2\)。
将 \(b^2\) 代入椭圆方程,解得 \(a^2 = 16\) 和 \(b^2 = 12\)。
因此,椭圆的长轴长度为\(2a = 32\),短轴长度为 \(2b = 24\)。
4. 求抛物线 \(y^2 = 4px\)(\(p > 0\))的焦点坐标。
答案:焦点坐标为 \((\frac{p}{2}, 0)\)。
5. 已知双曲线 \(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\) 的一条渐近线方程为 \(y = \frac{b}{a}x\),求双曲线的离心率。
答案:双曲线的离心率 \(e = \sqrt{1 + \frac{b^2}{a^2}}\)。
专题 解析几何专题复习卷(练习)

6.(2017全国卷1)设A、B是椭圆C: 长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是()
A. B. C. D.
7.抛物线 的准线方程是()
A. B. C. D.
8.椭圆 与椭圆 的( )
A.长轴长相等B.短轴长相等C.焦距相等D.离心率相等
9.(衡水)椭圆 上的点到直线 的最大距离是()
14.设 是双曲线 的左、右焦点, 为双曲线的左顶点,以 为直径的圆交双曲线的某条渐近线与 两点,且满足 ,则该双曲线的离心率为________.
15.设 是抛物线 上的一个动点, 是抛物线 的焦点,若 ,则 的最小值为______.
16.如图,已知双曲线 的左、右焦点分别为 , ,M是C上位于第一象限内的一点,且直线 与y轴的正半轴交于A点, 的内切圆在边 上的切点为N,若 ,则双曲线C的离心率为________.
三、解答题:70分,解答应写出文字说明、证明过程或演算步骤.
17.(2022全国甲卷)设抛物线 的焦点为F,点 ,过F的直线交C于M,N两点.当直线MD垂直于x轴时, .
(1)求C的方程;
(2)设直线 与C的另一个交点分别为A,B,记直线 的倾斜角分别为 .当 取得最大值时,求直线AB的方程.
18.(高考题)设抛物线 ,点 , ,过点 的直线 与 交于 , 两点.
A. B. C. D.
二、填空题:20分
13.(2018全国卷1文)直线 与圆 交于 两点,则 ________.
14.(2021全国乙卷)已知双曲线 一条渐近线为 ,则C的焦距为________.
15.(2021全国甲卷)若双曲线 的渐近线与圆 相切,则 _______.
解析几何专题含答案

椭圆专题练习1.【2017 浙江,2】椭圆2 2x y9 41 的离心率是A.133B.53C.23D.592.【2017 课标3,理10】已知椭圆C:2 2x y2 2 1a b,(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2 为直径的圆与直线bx ay 2ab 0 相切,则C的离心率为A.63B.33C.23D.133.【2016 高考浙江理数】已知椭圆C1:2x2m+y2=1(m >1)与双曲线C2:2=1(m >1)与双曲线C2:2x2n–y2=1(n>0)的焦点重合,2=1(n>0)的焦点重合,e1,e2 分别为C1,C2 的离心率,则()A.m>n 且e1e2>1 B.m>n 且e1e2<1 C.m<n 且e1e2>1 D.m<n 且e1e2<14.【2016 高考新课标 3 理数】已知O 为坐标原点, F 是椭圆C :2 2x y2 2 1( 0)a ba b的左焦点,A,B分别为C 的左,右顶点. P 为C 上一点,且PF x 轴.过点A的直线与线段PF 交于点M ,与y轴交于点E .若直线BM 经过O E 的中点,则 C 的离心率为()(A)13(B)12(C)23(D)345.【2015 高考新课标1,理14】一个圆经过椭圆2 2x y16 41 的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为.6.【2016 高考江苏卷】如图,在平面直角坐标系xOy 中,F 是椭圆2 2x y2 2 1( )a>b>0 的a b右焦点,直线by 与椭圆交于B,C 两点,且BFC 90 ,则该椭圆的离心率是.27.【2017 课标1,理20】已知椭圆C:2 2x y2 2 =1(a>b>0),四点P1(1,1),P2(0,1),P3(–1,a b13 2 ),P4(1,32)中恰有三点在椭圆 C 上.(1)求C的方程;(2)设直线l 不经过P2 点且与 C 相交于A,B 两点.若直线P2A 与直线P2B 的斜率的和为–1,证明:l 过定点.8.【2017课标II,理】设O 为坐标原点,动点M 在椭圆C:2x22 1y 上,过M 作x 轴的垂线,垂足为N,点P 满足NP 2NM 。
高三数学解析几何专题(含解析)

高三数学解析几何专题(含解析)1.【理科】已知动点P到点A(-1,0)和B(1,0)的距离分别为d1和d2,且∠APB=2θ,且d1d2cos2θ=1.Ⅰ)求动点P的轨迹C的方程;Ⅱ)过点B作直线l交轨迹C于M,N两点,交直线x=4于点E,求|EM||EN|的最小值。
2.已知椭圆C:(x^2/a^2)+(y^2/b^2)=1 (a>b>0)的离心率为2,其左、右焦点为F1、F2,点P是坐标平面内一点,且|OP|=7/2,PF·PF3/12=4.其中O为坐标原点。
I)求椭圆C的方程;Ⅱ)如图,过点S(0,1/3),且斜率为k的动直线l交椭圆于A、B两点,在y轴上是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出点M的坐标;若不存在,请说明理由。
3.已知两定点F1(-2,0)、F2(2,0),满足条件PF2-PF1=2的点P的轨迹是曲线E,直线y=kx-1与曲线E交于A、B两点。
Ⅰ)求k的取值范围;Ⅱ)如果AB=63,且曲线E上存在点C,使OA+OB=mOC,求m的值和△ABC的面积S。
4.已知抛物线W:y=ax^2经过点A(2,1),过A作倾斜角互补的两条不同的直线L1、L2.1)求抛物线W的方程及其准线方程;2)当直线L1与抛物线W相切时,求直线L2与抛物线W所围成封闭区域的面积;3)设直线L1、L2分别交抛物线W于B、C两点(均不与A重合),若以BC为直径的圆与抛物线的准线相切,求直线BC的方程。
5.动点M(x,y)到定点F(-1,0)的距离与到y轴的距离之差为1.I)求动点M的轨迹C的方程;II)过点Q(-3,0)的直线l与曲线C交于A、B两点,问直线x=3上是否存在点P,使得△PAB是等边三角形?若存在,求出所有的点P;若不存在,请说明理由。
6.椭圆M的中心在坐标原点D,左、右焦点F1、F2在x轴上,抛物线N的顶点也在原点D,焦点为F2,椭圆M与抛物线N的一个交点为A(3,26)。
大学解析几何考试题及答案

大学解析几何考试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项不是解析几何的研究对象?A. 平面曲线B. 空间曲线C. 空间曲面D. 质点运动答案:D2. 在平面直角坐标系中,点P(x, y)关于原点的对称点的坐标是:A. (-x, -y)B. (x, -y)C. (-x, y)D. (y, x)答案:A3. 如果直线l的方程为2x - 3y + 6 = 0,那么它的斜率k等于:A. 2/3B. -2/3C. 3/2D. -3/2答案:B4. 椭圆的标准方程是:A. (x/a)^2 + (y/b)^2 = 1B. (x/a)^2 - (y/b)^2 = 1C. (x/a)^2 + (y/b)^2 = 0D. (x/a)^2 - (y/b)^2 = 0答案:A5. 一个圆的圆心在原点,半径为1,那么它的方程是:A. x^2 + y^2 = 1B. x^2 + y^2 = 0C. x^2 + y^2 = 2D. x^2 + y^2 = -1答案:A6. 如果两条直线的方程分别为y = mx + b1和y = mx + b2,那么这两条直线:A. 相交B. 平行C. 重合D. 垂直答案:B7. 抛物线y^2 = 4ax的准线方程是:A. x = -aB. x = aC. y = -aD. y = a答案:A8. 双曲线x^2/a^2 - y^2/b^2 = 1的渐近线方程是:A. y = ±(b/a)xB. y = ±(a/b)xC. y = ±(a/b)xD. y = ±(b/a)x答案:D9. 点A(3, 4)关于直线y = x的对称点B的坐标是:A. (4, 3)B. (2, 3)C. (3, 2)D. (4, 5)答案:A10. 直线x = 2y + 3与圆x^2 + y^2 = 25相交于两点,这两点的距离是:A. 2√5B. 4√5C. 5√2D. 10答案:C二、填空题(每题4分,共20分)11. 在平面直角坐标系中,点P(2, -1)到原点的距离是_________。
[必刷题]2024高三数学下册解析几何专项专题训练(含答案)
![[必刷题]2024高三数学下册解析几何专项专题训练(含答案)](https://img.taocdn.com/s3/m/17973334001ca300a6c30c22590102020640f250.png)
[必刷题]2024高三数学下册解析几何专项专题训练(含答案)试题部分一、选择题:1. 在直角坐标系中,点A(2,3)关于原点O的对称点坐标是()A. (2,3)B. (2,3)C. (2,3)D. (3,2)2. 已知直线l的斜率为1,且过点P(1,2),则直线l的方程为()A. x+y3=0B. xy+3=0C. x+y+3=0D. xy3=03. 圆C的方程为x^2+y^2=4,点D(3,0)在圆外,则直线CD的斜率为()A. 1B. 1C. 3D. 34. 下列关于椭圆的方程中,离心率最小的是()A. x^2/4 + y^2/9 = 1B. x^2/9 + y^2/4 = 1C. x^2/16 + y^2/25 = 1D. x^2/25 + y^2/16 = 15. 设双曲线x^2/a^2 y^2/b^2 = 1的渐近线方程为y=kx,则k 的值为()A. a/bB. b/aC. a/bD. b/a6. 在平面直角坐标系中,点A(1,2)到直线y=3x+1的距离为()A. 2B. 3C. 4D. 57. 已知抛物线y^2=8x的焦点坐标为()A. (2,0)B. (2,0)C. (0,2)D. (0,2)8. 若直线y=2x+3与圆(x1)^2+(y2)^2=16相交,则交点的个数为()A. 0B. 1C. 2D. 39. 在等轴双曲线x^2 y^2 = 1上,点P到原点的距离为2,则点P的坐标为()A. (1,1)B. (1,1)C. (1,1)D. (1,1)10. 已知点A(2,3)和点B(2,1),则线段AB的中点坐标为()A. (0,2)B. (0,4)C. (2,2)D. (2,4)二、判断题:1. 直线y=2x+1的斜率为2,截距为1。
()2. 两个圆的半径分别为1和2,圆心距为3,则这两个圆相交。
()3. 椭圆的离心率越大,其形状越接近圆。
()4. 抛物线的焦点到准线的距离等于其焦距的一半。
解析几何历年高考真题试卷--带详细答案

解析几何高考真题一、单选题(共11题;共22分)1.(2020·新课标Ⅲ·理)设双曲线C :x 2a 2−y 2b 2=1 (a>0,b>0)的左、右焦点分别为F 1 , F 2 , 离心率为 √5 .P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a=( ) A. 1 B. 2 C. 4 D. 82.(2020·新课标Ⅲ·理)设O 为坐标原点,直线x=2与抛物线C :y 2=2px(p>0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为( )A. ( 14 ,0)B. ( 12 ,0) C. (1,0) D. (2,0) 3.(2020·新课标Ⅱ·理)设O 为坐标原点,直线 x =a 与双曲线 C:x 2a2−y 2b 2=1(a >0,b >0) 的两条渐近线分别交于 D,E 两点,若 △ODE 的面积为8,则C 的焦距的最小值为( ) A. 4 B. 8 C. 16 D. 32 4.(2020·天津)设双曲线 C 的方程为x 2a 2−y 2b 2=1(a >0,b >0) ,过抛物线 y 2=4x 的焦点和点 (0,b) 的直线为l .若C 的一条渐近线与 l 平行,另一条渐近线与l 垂直,则双曲线C 的方程为( ) A.x 24−y 24=1 B. x 2−y 24=1 C.x 24−y 2=1 D. x 2−y 2=15.(2019·天津)已知抛物线 的焦点为F ,准线为l.若与双曲线x 2a2−y 2b 2=1(a >0,b >0) 的两条渐近线分别交于点A 和点B , 且 |AB|=4|OF| (O 为原点),则双曲线的离心率为( ) A. √2 B. √3 C. 2 D. √56.(2020·北京)设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作 PQ ⊥l 于Q ,则线段 FQ 的垂直平分线( ).A. 经过点OB. 经过点PC. 平行于直线 OPD. 垂直于直线 OP7.(2019·天津)已知抛物线 y 2=4x 的焦点为 F ,准线为 l ,若 l 与双曲线 x 2a 2−y 2b 2=1 (a >0,b >0) 的两条渐近线分别交于点 A 和点 B ,且 |AB|=4|OF| ( O 为原点),则双曲线的离心率为( )A. √2B. √3C. 2D. √5 8.(2019·全国Ⅲ卷理)双曲线 C:x 24−y 22=1 的右焦点为F,点P 在C 的一条渐近线上,O 为坐标原点,若|PO|=|PF|,则△PFO 的面积为( )A. 3√24B. 3√22C. 2√2D. 3√29.已知椭圆E:x 2a 2+y 2b 2=1(a >b >0)的右焦点为F .短轴的一个端点为M ,直线l:3x-4y=0交椭圆E 于A,B两点.若|AF+BF|=4,点M 到直线l 的距离不小于45 , 则椭圆E 的离心率的取值范围是( )A. (0,√32] B. (0,34] C. [√32.1) D. [34,1)10.将离心率为e 1的双曲线c 1的实半轴长a 和虚半轴长b (a ≠b )同时增加m (m >0)个单位长度,得到离心率为e 2的双曲线c 2 , 则( )A. 对任意的a,b , e 1>e 2B. 当a >b 时,e 1>e 2;当a <b 时,e 1<e 2C. 对任意的a,b , e 1<e 2D. 当a >b 时,e 1<e 2;当a <b 时,e 1>e 211.将离心率为e 1的双曲线c 1的实半轴长a 和虚半轴长b (a ≠b )同时增加(m >0)个单位长度,得到离心率为e 2的双曲线c 2 , 则( )A. 对任意的a,b,e 1>e 2B. 当a >b 时,e 1>e 2;当a <b 时,e 1<e 2C. 对任意的a,b,e 1<e 2D. 当a >b 时,e 1<e 2;当a <b 时,e 1>e 2二、填空题(共5题;共6分)12.(2020·新课标Ⅰ·理)已知F 为双曲线 C:x 2a2−y 2b 2=1(a >0,b >0) 的右焦点,A 为C 的右顶点,B 为C上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为________.13.(2019·江苏)在平面直角坐标系 xOy 中,P 是曲线 y =x +4x (x >0) 上的一个动点,则点P 到直线x +y =0的距离的最小值是________. 14.(2019·浙江)已知椭圆x 29+y 25=1 的左焦点为F ,点P 在椭圆且在x 轴上方,若线段PF 的中点在以原点O 为圆心,|OF|为半径的圆上,则直线PF 的斜率是________ 15.(2018·北京)已知椭圆 M:x 2a 2+y 2b 2=1(a >b >0) ,双曲线 N:x 2m 2−y 2n 2=1 . 若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为________;双曲线N 的离心率为________16.(2017·江苏)在平面直角坐标系xOy 中,双曲线x 23﹣y 2=1的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是F 1 , F 2 , 则四边形F 1PF 2Q 的面积是________.三、解答题(共9题;共85分)17.(2020·新课标Ⅲ·理)已知椭圆 C:x 225+y 2m 2=1(0<m <5) 的离心率为√154,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线 x =6 上,且 |BP|=|BQ| , BP ⊥BQ ,求 △APQ 的面积.18.(2020·新课标Ⅱ·文)已知椭圆C 1:x 2a 2+y 2b 2=1 (a>b>0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴重直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD|= 43 |AB|. (1)求C 1的离心率;(2)若C 1的四个顶点到C 2的准线距离之和为12,求C 1与C 2的标准方程.19.(2020·新课标Ⅰ·理)已知A 、B 分别为椭圆E :x 2a 2+y 2=1 (a>1)的左、右顶点,G 为E 的上顶点,AG ⃗⃗⃗⃗⃗ ⋅GB ⃗⃗⃗⃗⃗ =8 ,P 为直线x=6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程; (2)证明:直线CD 过定点.20.(2020·新高考Ⅱ)已知椭圆C : x 2a 2+y 2b 2=1(a >b >0) 过点M (2,3),点A 为其左顶点,且AM 的斜率为 12 , (1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.21.(2019·天津)设椭圆x2a2+y2b2=1(a>b>0)的左焦点为F,左顶点为A,顶点为B.已知√3|OA|=2|OB|(O为原点).(Ⅰ)求椭圆的离心率;(Ⅱ)设经过点F且斜率为34的直线l与椭圆在x轴上方的交点为p,圆C同时与x轴和直线l 相切,圆心C在直线x=4上,且OC∥AP,求椭圆的方程.22.(2019·全国Ⅲ卷文)已知曲线C:y= x22,D为直线y= −12上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点:(2)若以E(0,52)为圆心的圆与直线AB相切,且切点为线段AB的中点,求该圆的方程.23.(2019·全国Ⅲ卷理)已知曲线C: y=x22,D为直线y=- 12的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点;(2)若以E(0,52)为圆心的圆与直线AB相切,且切点为线段AB的中点,求四边形ADBE的面积.24.(2019·全国Ⅱ卷文)已知F1,F2是椭圆C:x2a2+y2b2=1(a>b>0)的两个焦点,P为C上的点,O为坐标原点。
解析几何专题评估测试题及详细答案

解析几何专题评估测试题[时间120分钟,满分150分]一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2013·珠海模拟)经过圆C :(x +1)2+(y -2)2=4的圆心且斜率为1的直线方程为 A .x -y +3=0 B .x -y -3=0 C .x +y -1=0D .x +y +3=0解析 圆C :(x +1)2+(y -2)2=4的圆心的圆心坐标为(-1,2), 则所求的直线方程为y -2=x -(-1),即x -y +3=0. 答案 A2.(2013·延庆模拟)已知直线l 1:ax +(a +1)y +1=0,l 2:x +ay +2=0,则“a =-2”是“l 1⊥l 2”A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析 当a =-2时,kl 1=-2,kl 2=12, 所以kl 1·kl 2=-1,即l 1⊥l 2; 当l 1⊥l 2时,a (a +1)+a =0, 解得a =-2,或a =0,所以“a =-2”是“l 1⊥l 2”的充分不必要条件. 答案 A3.(2013·莱芜模拟)点P (2,-1)为圆(x -1)2+y 2=25内弦AB 的中点,则直线AB 的方程为 A .x +y -1=0 B .2x +y -3=0 C .x -y -3=0D .2x -y -5=0解析 设圆心为C ,则C (1,0),k PC =-1,由圆的几何性质可知,PC ⊥AB ,所以k AB =1,则直线AB 的方程为y -(-1)=x -2,即x -y -3=0.答案 C4.直线3x +4y -9=0与圆x 2+(y -1)2=1的位置关系是 A .相离B .相切C .直线与圆相交且过圆心D .直线与圆相交但不过圆心解析 已知圆的圆心坐标为(0,1),则圆心到直线的距离为d =1, 而r =1,所以d =r ,即直线和圆相切. 答案 B5.(2013·青浦模拟)设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的虚轴长为2,焦距为23,则双曲线的渐近线方程为A .y =±2xB .y =±2xC .y =±12xD .y =±22x解析 由题意知2b =2,2c =23,所以b =1,c =3, a =c 2-a 2=2,所以双曲线的渐近线方程为y =±b a x =±12x =±22x ,选D. 答案 D6.已知圆x 2+y 2-2x +my -4=0上两点M 、N 关于直线2x +y =0对称,则圆的半径为 A .9B .3C .23D .2解析 已知圆的圆心坐标为⎝ ⎛⎭⎪⎫1,-m 2,因为圆x 2+y 2-2x +my -4=0上两点M 、N 关于直线2x +y =0对称,则直线2x +y =0必过圆心⎝ ⎛⎭⎪⎫1,-m 2,代入直线方程可解得m =4,则圆的半径r=12(-2)2+42-4×(-4)=3.答案 B7.若椭圆x 2a 2+y 2b 2=1过抛物线y 2=8x 的焦点,且与双曲线x 2-y 2=1有相同的焦点,则该椭圆的方程为A.x 24+y 22=1 B.x 23+y 2=1 C.x 22+y 24=1D .x 2+y 23=1解析 抛物线y 2=8x 的焦点坐标为(2,0),因为椭圆过该点, 代入可得a 2=4,双曲线x 2-y 2=1的焦点坐标为(±2,0), 所以椭圆的焦点在x 轴上,且a 2>b 2, 故a 2-b 2=4-b 2=(2)2,即b 2=2,则所求的椭圆的方程为x 24+y 22=1. 答案 A8.(2013·门头沟一模)已知P (x ,y )是中心在原点,焦距为10的双曲线上一点,且yx 的取值范围为⎝ ⎛⎭⎪⎫-34,34,则该双曲线方程是A.x 29-y 216=1 B.y 29-x 216=1 C.x 216-y 29=1D.y 216-x 29=1解析 由题意知2c =10,所以c =5. 又y x 的取值范围为⎝ ⎛⎭⎪⎫-34,34,所以双曲线的渐近线斜率k =34,且焦点在x 轴上. 即b a =34,所以b =34a , 解得a 2=16,b 2=9,所以双曲线的方程为x 216-y 29=1,选C. 答案 C9.已知双曲线x 24-y 25=1上一点P 到F (3,0)的距离为6,O 为坐标原点,OQ→=12(OP →+OF →),则|OQ→|等于 A .1B .2C .2或5D .1或5解析 设双曲线的左焦点为F 1, 因为OQ→=12(OP →+OF →), 所以点Q 是线段PF 的中点,而O 是F 1F 的中点, 故线段OQ 是三角形PF 1F 的中位线, 故|OQ→|=12|PF 1|, 据双曲线的定义得||PF 1|-|PF ||=||PF 1|-6|=4, 即|PF 1|=10或|PF 1|=2,所以|OQ |=5或1. 答案 D10.(2013·济宁一模)过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点F (-c,0)作圆x 2+y 2=a 2的切线,切点为E ,延长FE 交抛物线y 2=4cx 于点P ,O 为原点,若OE→=12(OF →+OP →),则双曲线的离心率为A.1+52B.3+33C.52D.1+32解析 因为OE→=12(OF →+OP →),所以E 是FP 的中点.设右焦点为F 1,则F 1也是抛物线的焦点. 连接PF 1,则|PF 1|=2a ,且PF ⊥PF 1, 所以|PF |=4c 2-4a 2=2b .设P (x ,y ),则x +c =2a ,则x =2a -c ,过点F 作x 轴的垂线,点P 到该垂线的距离为2a , 由勾股定理得y 2+4a 2=4b 2, 即4c (2a -c )+4a 2=4(c 2-a 2), 解得e =5+12,选A.答案 A11.(2013·青岛一模)已知抛物线y 2=4x 的焦点为F ,准线为l ,点P 为抛物线上一点,且在第一象限,P A ⊥l ,垂足为A ,|PF |=4,则直线AF 的倾斜角等于A.7π12B.2π3C.3π4D.5π6解析 抛物线的焦点坐标为F (1,0), 准线方程为x =-1.由题意|PF |=|P A |=4,则x P -(-1)=4,即x P =3,所以y 2P =4×3,即y P =±23,不妨取P (-1,23),则设直线AF 的倾斜角等于θ, 则tan θ=23-1-1=-3,所以θ=2π3,选B.答案 B12.已知双曲线x 2a 2-y 2b 2=1(a >1,b >0)的焦距为2c ,若点(-1,0)与点(1,0)到直线x a -yb =1的距离之和为S ,且S ≥45c ,则离心率e 的取值范围是A .[2,7] B.⎣⎢⎡⎦⎥⎤52,5 C.⎣⎢⎡⎦⎥⎤52,7D .[2,5]解析 直线x a -yb =1方程为bx -ay -ab =0, 则S =|-b -ab |+|b -ab |a 2+b 2=b +ab -b +ab a 2+b 2=2aba 2+b2, 而c =a 2+b 2,所以2ab a 2+b2≥45a 2+b 2, 化简得2⎝ ⎛⎭⎪⎫b a 2-5⎝ ⎛⎭⎪⎫b a +2≤0,解得12≤ba ≤2,所以e 2=c 2a 2=1+⎝ ⎛⎭⎪⎫b a 2∈⎣⎢⎡⎦⎥⎤54,5,即e ∈⎣⎢⎡⎦⎥⎤52,5.答案 B二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上) 13.(2013·日照一模)抛物线y 2=16x 的准线方程为________. 解析 在抛物线中2p =16,p =8, 所以准线方程为x =-p2=-4. 答案 x =-414.(2013·黄浦模拟)若双曲线x 24-y 2b 2=1(b >0)的一条渐近线过点P (1,2),则b 的值为________. 解析 双曲线的渐近线方程为y =±b 2x ,因为点P (1,2)在第一象限, 所以点P (1,2)在渐近线y =b 2x 上,所以有2=b2,所以b =4. 答案 415.(2013·南京模拟)如图,已知F 1、F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,点P 在椭圆C 上,线段PF 2与圆x 2+y 2=b 2相切于点Q ,且点Q 为线段PF 2的中点,则椭圆C 的离心率为________.解析 据题意知|OQ |=r =b . 又OQ 是三角形PF 1F 2的中位线, 故|PF 1|=2b ,所以|PF 2|=2a -2b , |QF 2|=a -b ,在直角三角形OQF 2中, 由勾股定理得b 2+(a -b )2=c 2. 又c 2=a 2+b 2,代入化简得b a =23, 所以e 2=1-⎝ ⎛⎭⎪⎫b a 2=59,即e =53.答案 e =5316.(2013·潍坊二模)如图,椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1、F 2,上顶点为A ,离心率为12,点P 为第一象限内椭圆上的一点,若S △PF 1A ∶S △PF 1F 2=2∶1,则直线PF 1的斜率为________.解析 因为椭圆的离心率为12, 所以e =c a =12,即a =2c .设直线PF1的斜率为k(k>0),则直线PF1的方程为y=k(x+c).因为S△PF1A∶S△PF1F2=2∶1,即S△PF1A=2S△PF1F2,即12·|PF1|·|kc-b|k2+1=2×12·|PF1|·|2kc|k2+1,所以|kc-b|=4|kc|,解得b=-3kc(舍去),或b=5kc. 又a2=b2+c2,即a2=25k2c2+c2,所以4c2=25k2c2+c2,解得k2=3 25,所以k=3 5.答案3 5三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)如图,矩形ABCD的两条对角线相交于点M(2,0),AB边所在直线的方程为x-3y -6=0,点T(-1,1)在AD边所在直线上.(1)求AD边所在直线的方程;(2)求矩形ABCD外接圆的方程;(3)若动圆P过点N(-2,0),且与矩形ABCD的外接圆外切,求动圆P的圆心的轨迹方程.解析(1)因为AB边所在直线的方程为x-3y-6=0,且AD与AB垂直,所以直线AD的斜率为-3.又因为点T(-1,1)在直线AD上,所以AD边所在直线的方程为y-1=-3(x+1).3x +y +2=0.(3分) (2)由⎩⎨⎧x -3y -6=0,3x +y +2=0,解得点A 的坐标为(0,-2).因为矩形ABCD 两条对角线的交点为M (2,0). 所以M 为矩形ABCD 外接圆的圆心. 又|AM |=(2-0)2+(0+2)2=2 2.从而矩形ABCD 外接圆的方程为(x -2)2+y 2=8.(6分) (3)因为动圆P 过点N ,所以|PN |是该圆的半径. 又因为动圆P 与圆M 外切, 所以|PM |=|PN |+22, 即|PM |-|PN |=2 2.故点P 的轨迹是以M ,N 为焦点,实轴长为22的双曲线的左支. 因为实半轴长a =2,半焦距c =2. 所以虚半轴长b =c 2-a 2= 2. 从而动圆P 的圆心的轨迹方程为 x 22-y 22=1(x ≤-2).(10分)18.(12分)(2013·门头沟一模)已知椭圆与双曲线x 2-y 2=1有相同的焦点,且离心率为22. (1)求椭圆的标准方程;(2)过点P (0,1)的直线与该椭圆交于A 、B 两点,O 为坐标原点,若AP →=2PB →,求△AOB 的面积. 解析 (1)设椭圆方程为x 2a 2+y 2b 2=1,a >b >0, 由c =2,可得a =2,b 2=a 2-c 2=2, 即所求方程为x 24+y 22=1.(4分) (2)设A (x 1,y 1),B (x 2,y 2), 由AP →=2PB →有⎩⎨⎧-x 1=2x 21-y 1=2(y 2-1)设直线方程为y =kx +1,代入椭圆方程整理,得(2k 2+1)x 2+4kx -2=0,(6分) 解得x =-2k ±8k 2+22k 2+1,不妨设x 1=-2k -8k 2+22k 2+1,x 2=-2k +8k 2+22k 2+1,因为-x 1=2x 2,则--2k +8k 2+22k 2+1=2·-2k +8k 2+22k 2+1,解得k 2=114.(10分)又△AOB 的面积S =12|OP |·|x 1-x 2|=12·28k 2+22k 2+1=1268.∴△AOB 的面积为1268.(12分)19.(12分)(2013·吉安模拟)已知平面内一动点P 到点F (0,1)的距离与点P 到x 轴的距离的差等于1.(1)求动点P 的轨迹C 的方程;(2)过点F 作两条斜率存在且互相垂直的直线l 1,l 2,设l 1与轨迹C 相交于点A ,B ,l 2与轨迹C 相交于点D ,E ,求AD →·EB→的最小值. 解析 (1)设动点P 的坐标为(x ,y ),由题意得x 2+(y -1)2-|y |=1, 化简得x 2=2y +2|y |,当y ≥0时x 2=4y ; 当y <0时,x =0,所以动点P 的轨迹C 的方程为x 2=4y 和x =0(y <0).(4分) (2)由题意知,直线l 1的斜率存在且不为0,设为k , 则l 1的方程为y =kx +1.由⎩⎨⎧y =kx +1x 2=4y 得x 2-4kx -4=0,(6分) 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4k ,x 1x 2=-4,y 1+y 2=4k 2+2,y 1y 2=1. 因为l 1⊥l 2,所以l 2的斜率为-1k .设D (x 3,y 3),E (x 4,y 4),则同理可得x 3+x 4=-4k , x 3x 4=-4,y 3+y 4=4k 2+2,y 3y 4=1,(8分) AD →·EB →=(AF →+FD →)·(EF →+FB →) =AF →·EF →+FD →·EF →+AF →·FB →+FD →·FB → =FD →·EF →+AF →·FB →=|FD →||EF →|+|AF →||FB →| =(y 3+1)(y 4+1)+(y 1+1)(y 2+1) =y 3y 4+(y 3+y 4)+1+y 1y 2+(y 1+y 2)+1=8+4k 2+4k 2=8+4⎝ ⎛⎭⎪⎫k 2+1k 2≥8+4×2=16,(10分)当且仅当k 2=1k 2,即k =±1时,AD →·EB→取最小值为16.(12分)20.(12分)在平面直角坐标系xOy 中,抛物线C 的顶点在原点,焦点F 的坐标为(1,0). (1)求抛物线C 的标准方程;(2)设M 、N 是抛物线C 的准线上的两个动点,且它们的纵坐标之积为-4,直线MO 、NO 与抛物线的交点分别为点A 、B ,求证:动直线AB 恒过一个定点.解析 (1)设抛物线的标准方程为y 2=2px (p >0),则p2=1,p =2, 所以抛物线方程为y 2=4x .(4分)(2)证明 抛物线C 的准线方程为x =-1, 设M (-1,y 1),N (-1,y 2),其中y 1y 2=-4, 直线MO 的方程:y =-y 1x ,将y =-y 1x 与y 2=4x , 联立解得A 点坐标⎝ ⎛⎭⎪⎫4y 21,-4y 1.同理可得B 点坐标⎝ ⎛⎭⎪⎫4y 22,-4y 2,(8分) 则直线AB 的方程为:y +4y1-4y 2+4y 1=x -4y 214y 22-4y 21,(10分) 整理得(y 1+y 2)y -4x +4=0, 故直线AB 恒过定点(1,0).(12分)21.(12分)(2013·济宁一模)已知椭圆C 的中心在原点,焦点在x 轴上,离心率为12,短轴长为4 3.(1)求椭圆C 的标准方程;(2)直线x =2与椭圆C 交于P 、Q 两点,A 、B 是椭圆O 上位于直线PQ 两侧的动点,且直线AB 的斜率为12.①求四边形APBQ 面积的最大值;②设直线P A 的斜率为k 1,直线PB 的斜率为k 2,判断k 1+k 2的值是否为常数,并说明理由.解析 (1)设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0).由已知b =23,离心率e =c a =12,a 2=b 2+c 2,得a =4,所以,椭圆C 的方程为x 216+y 212=1.(4分)(2)①由(1)可求得点P 、Q 的坐标为P (2,3),Q (2,-3),则|PQ |=6,设A (x 1,y 1),B (x 2,y 2),直线AB 的方程为y =12x +t ,代入x 216+y 212=1,得:x 2+tx +t 2-12=0.由Δ>0,解得-4<t <4,由根与系数的关系得⎩⎨⎧x 1+x 2=-t x 1x 2=t 2-12. 四边形APBQ 的面积S =12×6×|x 1-x 2|=3×(x 1+x 2)2-4x 1x 2=348-3t 2,故当t =0,S max =12 3.(8分)②由题意知,直线P A 的斜率k 1=y 1-3x 1-2,直线PB 的斜率k 2=y 2-3x 2-2, 则k 1+k 2=y 1-3x 1-2+y 2-3x 2-2=12x 1+t -3x 1-2+12x 2+t -3x 2-2=12(x 1-2)+t -2x 1-2+12(x 2-2)+t -2x 2-2=1+t -2x 1-2+t -2x 2-2 =1+(t -2)(x 1+x 2-4)x 1x 2-2(x 1+x 2)+4, 由①知⎩⎨⎧ x 1+x 2=-t x 1x 2=t 2-12可得k 1+k 2=1+(t -2)(-t -4)t 2-12+2t +4=1+-t 2-2t +8t 2+2t -8=1-1=0, 所以k 1+k 2的值为常数0.(12分)22.(12分)(2013·南京模拟)设椭圆E :x 2a 2+y 2b 2=1(a ,b >0)过M (2,2),N (6,1)两点,O 为坐标原点.(1)求椭圆E 的方程;(2)是否存在圆心为原点的圆,使得该圆的任意一条切线与椭圆E 恒有两个交点A ,B 且OA→⊥OB→?若存在,写出该圆的方程,并求|AB |的取值范围,若不存在,说明理由. 解析 (1)因为椭圆E :x 2a 2+y 2b 2=1(a ,b >0)过M (2,2),N (6,1)两点,所以⎩⎪⎨⎪⎧ 4a 2+2b 2=16a 2+1b 2=1解得⎩⎪⎨⎪⎧ 1a 2=181b 2=14所以⎩⎨⎧a 2=8b 2=4. 椭圆E 的方程为x 28+y 24=1.(4分)(2)假设存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E 恒有两个交点A ,B 且OA→⊥OB →,设该圆的切线方程为y =kx +m ,联立方程得⎩⎪⎨⎪⎧ y =kx +m x 28+y 24=1得x 2+2(kx +m )2=8, 即(1+2k 2)x 2+4kmx +2m 2-8=0,则Δ=16k 2m 2-4(1+2k 2)(2m 2-8)=8(8k 2-m 2+4)>0,即8k 2-m 2+4>0⎩⎪⎨⎪⎧ x 1+x 2=-4km 1+2k 2x 1x 2=2m 2-81+2k 2,y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2=k 2(2m 2-8)1+2k 2-4k 2m 21+2k 2+m 2=m 2-8k 21+2k 2.(6分) 要使OA →⊥OB →,需使x 1x 2+y 1y 2=0, 即2m 2-81+2k 2+m 2-8k 21+2k 2=0, 所以3m 2-8k 2-8=0,所以k 2=3m 2-88≥0. 又8k 2-m 2+4>0,所以⎩⎨⎧m 2>23m 2≥8, 所以m 2≥83,即m ≥263或m ≤-263.因为直线y =kx +m 为圆心在原点的圆的一条切线, 所以圆的半径为r =|m |1+k 2, r 2=m 21+k 2=m 21+3m 2-88=83,r =263, 所求的圆为x 2+y 2=83,此时圆的切线y =kx +m 都满足m ≥263或m ≤-263,而当切线的斜率不存在时切线为x =±263与椭圆x 28+y 24=1的两个交点为⎝ ⎛⎭⎪⎫263,±263或⎝⎛⎭⎪⎫-263,±263满足OA →⊥OB →, 综上,存在圆心在原点的圆x 2+y 2=83,使得该圆的任意一条切线与椭圆E 恒有两个交点A ,B ,且OA→⊥OB →. 因为⎩⎪⎨⎪⎧ x 1+x 2=-4km 1+2k 2x 1x 2=2m 2-81+2k 2, 所以(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=⎝ ⎛⎭⎪⎫-4km 1+2k 22-4×2m 2-81+2k 2=8(8k 2-m 2+4)(1+2k 2)2, |AB |=(x 1-x 2)2+(y 1-y 2)2=(1+k 2)(x 1-x 2)2=(1+k 2)8(8k 2-m 2+4)(1+2k 2)2 =323·4k 4+5k 2+14k 4+4k 2+1=323⎣⎢⎡⎦⎥⎤1+k 24k 4+4k 2+1,(10分) ①当k ≠0时,|AB |=323⎣⎢⎢⎡⎦⎥⎥⎤1+14k 2+1k 2+4. 因为4k 2+1k 2+4≥8,所以0<14k 2+1k 2+4≤18, 所以323<323⎣⎢⎢⎡⎦⎥⎥⎤1+14k 2+1k 2+4≤12,所以436<|AB |≤23, 当且仅当k =±22时取“=”.②当k =0时,|AB |=463.③当AB 的斜率不存在时,两个交点为⎝ ⎛⎭⎪⎫263,±263或⎝ ⎛⎭⎪⎫-263,±263,所以此时|AB |=463, 综上,|AB |的取值范围为436≤|AB |≤23,即:|AB |∈⎣⎢⎡⎦⎥⎤436,23.(12分)。
解析几何专项训练试题答案

解析几何专项训练试题答案一、选择题1. 若点A(2,3)关于直线x=3的对称点为A',则A'的坐标为:A. (4,3)B. (2,3)C. (1,3)D. (5,3)答案:D解析:点A(2,3)关于直线x=3的对称点A'的横坐标为3-(2-3)=4,纵坐标不变,因此A'的坐标为(4,3)。
2. 已知圆的标准方程为$(x-a)^2+(y-b)^2=r^2$,则其圆心坐标为:A. (a, b)B. (a, r)C. (b, r)D. (r, a)答案:A解析:根据圆的标准方程$(x-a)^2+(y-b)^2=r^2$,可知圆心坐标为(a, b)。
3. 直线2x-3y=6的斜率为:A. 2/3B. -2/3C. 3/2D. -3/2答案:B解析:直线方程2x-3y=6可以转化为y=(2/3)x-2,其斜率为2/3,因此答案为-2/3。
4. 已知三角形ABC的三个顶点分别为A(1,2),B(4,6),C(7,2),求三角形ABC的面积。
A. 4B. 6C. 8D. 10答案:C解析:首先计算线段AB和AC的斜率,分别为1和-1,说明AB和AC 垂直。
然后计算AB的长度为3,由于AC与AB垂直,所以三角形ABC 为直角三角形,其面积为1/2 * AB长度 * BC长度 = 1/2 * 3 * 5 = 7.5。
选项中没有7.5,但最接近的是8,因此选择C。
5. 已知椭圆的标准方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,则其焦点坐标为:A. (a, 0)B. (0, b)C. (a, b)D. (0, 0)答案:D解析:椭圆的标准方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,其焦点位于y轴上,且焦距为2c,因此焦点坐标为(0, c)或(0, -c)。
由于题目未给出具体数值,无法确定c的值,但焦点坐标的形式为(0, c),因此答案为D。
《解析几何》测试试题及答案

《解析几何》测试试题及答案(时间:120分钟 满分:150分)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若双曲线C :x 2m-y 2=1(m >0)的一条渐近线的方程为3x +2y =0,则m =( )A.49B.94C.23D.32解析 由题意知,双曲线的渐近线方程为y =±1mx (m >0).3x +2y =0可化为 y =-32x ,所以1m =32,解得m =49.故选A.答案 A2.若圆x 2+y 2-4x +2y +a =0与x 轴、y 轴均有公共点,则实数a 的取值范围是( ) A.(-∞,1] B.(-∞,0] C.[0,+∞)D.[5,+∞)解析 将圆的一般方程化作标准方程为(x -2)2+(y +1)2=5-a ,则该圆的圆心坐标为(2,-1),半径r =5-a .因为该圆与x 轴、y 轴均有公共点,所以⎩⎨⎧2≤5-a ,1≤5-a ,5-a >0,解得a ≤1,则实数a 的取值范围是(-∞,1].故选A. 答案 A3.已知P 为圆C :(x -5)2+y 2=36上任意一点,A (-5,0).若线段PA 的垂直平分线交直线PC 于点Q ,则点Q 的轨迹方程为( )A.x 29+y 216=1B.x 29-y 216=1C.x 29-y 216=1(x <0) D.x 29-y 216=1(x >0) 解析 如图,由题意知|QA |=|QP |,||QA |-|QC ||=||QP |-|QC ||=|PC |=6<|AC |=10,所以动点Q 的轨迹是以A ,C 为焦点的双曲线,其方程为x 29-y 216=1.故选B.答案 B4.仿照“Dandelin 双球”模型,人们借助圆柱内的两个内切球完美地证明了平面截圆柱的截面为椭圆面.如图,底面半径为1的圆柱内两个内切球球心距离为4,现用与两球都相切的平面截圆柱所得到的截面边缘线是一椭圆,则该椭圆的离心率为( )A.12B.33C.22D.32解析 由题意可知椭圆的长轴与两球心连线的夹角为30°,所以椭圆的长轴2a =2sin 30°=4,a =2,椭圆的短轴长等于球的直径,所以b =1,c =3,e =c a =32,故选D. 答案 D5.已知点P 在圆C :x 2+(y -2)2=1上,点Q 在直线l :x -2y +1=0上,且点Q 的横坐标x ∈[-1,a ).若|PQ |既有最大值又有最小值,则实数a 的取值范围是( )A.⎝ ⎛⎦⎥⎤35,115B.⎝ ⎛⎭⎪⎫35,+∞C.⎣⎢⎡⎦⎥⎤35,115D.⎣⎢⎡⎭⎪⎫35,+∞ 解析 如图,直线l :x -2y +1=0与x 轴交于点Q 1(-1,0).连接Q 1C 并延长,交圆C 于点P 1.过点C 作CQ 2⊥直线l 于点Q 2,交圆C 于点P 2,则|P 2Q 2|为|PQ |的最小值.易知直线CQ 2:y=-2x +2.设Q 2(x 2,y 2),联立得方程组⎩⎪⎨⎪⎧y =-2x +2,x -2y +1=0,解得x 2=35,∴a >35.设点Q 3(x 3,y 3).为点Q 1关于点Q 2的对称点,则x 3=115.当a >115时,|PQ |无法取到最大值,当35<a ≤115时,|PQ |的最大值为|P 1Q 1|,∴35<a ≤115.故选A.答案 A6.已知直线y =k (x -1)与抛物线C :y 2=4x 交于A ,B 两点,直线y =2k (x -2)与抛物线D :y 2=8x 交于M ,N 两点,设λ=|AB |-2|MN |,则( )A.λ<-16B.λ=-16C.-12<λ<0D.λ=-12解析 设A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x ,得k 2x 2-(2k 2+4)x +k 2=0,则x 1+x 2=2k 2+4k 2=2+4k 2.因为直线y =k (x -1)经过抛物线C 的焦点,所以|AB |=x 1+x 2+p =4+4k2.同理可得|MN |=8+2k 2.所以λ=4+4k2-2×⎝ ⎛⎭⎪⎫8+2k 2=4-16=-12.故选D.答案 D7.圆C :x 2+y 2-10y +16=0上有且仅有两点到双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线的距离为1,则该双曲线离心率的取值范围是( ) A.(2,5)B.⎝ ⎛⎭⎪⎫53,52 C.⎝ ⎛⎭⎪⎫54,52D.(5,2+1)解析 双曲线x 2a 2-y 2b2=1的一条渐近线方程为bx -ay =0,圆C :x 2+y 2-10y +16=0的圆心坐标为(0,5),半径为3.因为圆C 上有且仅有两点到直线bx -ay =0的距离为1,所以圆心(0,5)到直线bx -ay =0的距离d 的范围为2<d <4,即2<5aa 2+b2<4.又a 2+b 2=c 2,所以2<5a c<4,即54<e <52.故选C.答案 C8.如图,已知抛物线C :y 2=2px (p >0)的焦点为F ,点P (x 0,23)⎝ ⎛⎭⎪⎫x 0>p 2是抛物线C 上一点.以P 为圆心的圆与线段PF 交于点Q ,与过焦点F 且垂直于x 轴的直线交于点A ,B ,|AB |=|PQ |,直线PF 与抛物线C 的另一交点为M .若|PF |=3|PQ |,则|PQ ||FM |=( )A.1B. 3C.2D. 5解析 如图,连接PA ,PB .因为|AB |=|PQ |,所以△PAB 是正三角形.又x 0>p 2,所以x 0-p 2=32|PQ |.又因为|PF |=x 0+p 2=3|PQ |,所以x 0=3p 2.所以点P ⎝ ⎛⎭⎪⎫3p 2,23,所以(23)2=2p ·3p 2.因为p >0,所以p =2.所以F (1,0),P (3,23),所以|PQ |=33|PF |=33·(23-0)2+(3-1)2=433,抛物线C 的方程为y 2=4x ,直线PF 的方程为y =3(x -1).由⎩⎨⎧y =3(x -1),y 2=4x ,得M ⎝ ⎛⎭⎪⎫13,-233,所以|FM |=13+1=43,所以|PQ ||FM |= 3.故选B. 答案 B二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分.9.过点P (2,2)作圆C :(x +2)2+(y +2)2=r 2(r >0)的两条切线,切点分别为A ,B ,下列说法正确的是( ) A.0<r <2 2B.若△PAB 为直角三角形,则r =4C.△PAB 外接圆的方程为x 2+y 2=4D.直线AB 的方程为4x +4y +16-r 2=0解析 因为过点P (2,2)作圆C :(x +2)2+(y +2)2=r 2(r >0)的切线有两条,则点P 在圆C 外,则r <|PC |=42,故A 错误;若△PAB 为直角三角形,则四边形PACB 为正方形,则2r =|PC |=42,解得r =4,故B 正确;由PA ⊥CA ,PB ⊥CB ,可得点P ,A ,C ,B 共圆,所以△PAB 的外接圆就是以PC 为直径的圆,即x 2+y 2=8,故C 错误;将(x +2)2+(y +2)2=r 2与x 2+y2=8相减即得直线AB 的方程,所以直线AB 的方程为4x +4y +16-r 2=0,所以D 正确.故选BD. 答案 BD10.已知双曲线x 24-y 22=sin 2θ(θ≠k π,k ∈Z ),则不因θ改变而变化的是( )A.焦距B.离心率C.顶点坐标D.渐近线方程解析 由题意,得双曲线的标准方程为x 24sin 2θ-y 22sin 2θ=1,则a =2|sin θ|, b =2|sin θ|,则c =a 2+b 2=6|sin θ|,则双曲线的焦距为2c =26|sin θ|,顶点坐标为(±2|sin θ|,0),离心率为e =c a =62,渐近线方程为y =±22x .所以不因θ改变而变化的是离心率、渐近线方程.故选BD. 答案 BD11.设P 是椭圆C :x 22+y 2=1上任意一点,F 1,F 2是椭圆C 的左、右焦点,则( )A.|PF 1|+|PF 2|=2 2B.-2<|PF 1|-|PF 2|<2C.1≤|PF 1|·|PF 2|≤2D.0≤PF 1→·PF 2→≤1解析 椭圆C 的长轴长为22,根据椭圆的定义得|PF 1|+|PF 2|=22,故A 正确;||PF 1|-|PF 2||≤|F 1F 2|=22-1=2,所以-2≤|PF 1|-|PF 2|≤2,B 错误;|PF 1|·|PF 2|=14[(|PF 1|+|PF 2|)2-(|PF 1|-|PF 2|)2],而0≤(|PF 1|-|PF 2|)2≤4,所以1≤|PF 1|·|PF 2|≤2,C 正确;PF 1→·PF 2→=(OF 1→-OP →)·(OF 2→-OP →)=OF 1→·OF 2→-OP →·(OF 1→+OF 2→)+|OP →|2=|OP →|2-1,根据椭圆性质有1≤|OP |≤2,所以0≤PF 1→·PF 2→=|OP →|2-1≤1,D 正确.故选ACD.答案ACD12.如图,在平面直角坐标系xOy中,抛物线C:y2=2px(p>0)的焦点为F,准线为l.设l与x轴的交点为K,P为C上异于O的任意一点,P在l上的射影为E,∠EPF的外角平分线交x 轴于点Q,过点Q作QN⊥PE交EP的延长线于点N,作QM⊥PF交线段PF于点M,则( )A.|PE|=|PF|B.|PF|=|QF|C.|PN|=|MF|D.|PN|=|KF|解析由抛物线的定义,得|PE|=|PF|,A正确;∵PN∥QF,PQ是∠FPN的平分线,∴∠FQP =∠NPQ=∠FPQ,∴|PF|=|QF|,B正确;若|PN|=|MF|,则由PQ是∠FPN的平分线,QN⊥PE,QM⊥PF,得|QM|=|QN|,从而有|PM|=|PN|,于是有|PM|=|FM|,则有|QP|=|QF|,∴△PFQ为等边三角形,∠FPQ=60°,也即有∠FPE=60°,这只是在特殊位置才有可能,因此C错误;连接EF,如图,由选项A、B知|PE|=|QF|,又PE∥QF,∴EPQF是平行四边形,∴|EF|=|PQ|,∴△EKF≌△QNP,∴|KF|=|PN|,D正确.故选ABD.答案ABD三、填空题:本题共4小题,每小题5分,共20分.13.已知以x±2y=0为渐近线的双曲线经过点(4,1),则该双曲线的标准方程为________. 解析由题知,双曲线的渐近线方程为x±2y=0,设双曲线的方程为x2-4y2=λ(λ≠0).因为点(4,1)在双曲线上,所以λ=42-4=12,所以双曲线的标准方程为x212-y23=1.答案x212-y23=114.已知点A(-5,0),B(-1,-3),若圆x2+y2=r2(r>0)上恰有两点M,N,使得△MAB和△NAB的面积均为5,则r的取值范围是________.解析由题意可得|AB|=(-1+5)2+(-3-0)2=5,根据△MAB和△NAB的面积均为5可得M ,N 到直线AB 的距离均为2,由于直线AB 的方程为y -0-3-0=x +5-1+5,即3x +4y +15=0,若圆上只有一个点到直线AB 的距离为2,则圆心到直线AB 的距离为|0+0+15|9+16=r +2,解得r =1,若圆上只有3个点到直线AB 的距离为2,则圆心到直线AB 的距离为|0+0+15|9+16=r -2,解得r =5.故r 的取值范围是(1,5).答案 (1,5)15.如图,点A ,B 分别是椭圆x 225+y 2b2=1(0<b <5)的长轴的左、右端点,F 为椭圆的右焦点,直线PF 的方程为15x +y -415=0,且PA →·PF →=0,设M 是椭圆长轴AB 上的一点,M 到直线AP 的距离等于|MB |,则椭圆上的点到点M 的距离d 的最小值为________.解析 依题意得直线AP 的方程为x -15y +5=0,直线PF 与x 轴的交点为(4,0),即F (4,0),∴b 2=25-16=9,即椭圆方程为x 225+y 29=1.设M (m ,0)(-5≤m ≤5),则M 到直线AP 的距离为|m +5|4,又|MB |=|5-m |,所以|m +5|4=|5-m |,∵-5≤m ≤5,∴m +54=5-m ,解得m =3,∴M (3,0).设椭圆上的点(x ,y )(x ∈[-5,5])到M (3,0)的距离为d ,则d 2=(x -3)2+y 2=(x -3)2+9⎝ ⎛⎭⎪⎫1-x 225=1625x 2-6x +18=1625⎝ ⎛⎭⎪⎫x -75162+6316,∵x ∈[-5,5],∴当x =7516时,d 2最小,此时d min =374.答案37416.已知F 为抛物线x 2=2py (p >0)的焦点,点A (1,p ),M 为抛物线上任意一点,且|MA |+|MF |的最小值为3,则该抛物线的方程为________.若线段AF 的垂直平分线交抛物线于P ,Q 两点,则四边形APFQ 的面积为________.(本小题第一空2分,第二空3分)解析 由题意,得抛物线x 2=2py (p >0)的焦点为F ⎝ ⎛⎭⎪⎫0,p 2,准线的方程为y =-p2.因为|MF |等于点M 到准线的距离,所以当p >12p 时,|MA |+|MF |的最小值为点A 到准线y =-p2的距离,而|MA |+|MF |的最小值为3,所以3p 2=3,解得p =2,满足p >12p ;当p ≤12p 时,|MA |+|MF |的最小值为|AF |,而|MA |+|MF |的最小值为3,所以(1-0)2+⎝ ⎛⎭⎪⎫p -p 22=3,解得p =42,不满足p ≤12p.综上所述,p =2.因此抛物线的方程为x 2=4y .由p =2得,点A (1,2),焦点F (0,1),则线段AF 的垂直平分线的方程为x +y -2=0,且|AF |=(1-0)2+(2-1)2=2.设线段AF 的垂直平分线与抛物线的交点分别为P (x 1,y 1),Q (x 2,y 2).由⎩⎪⎨⎪⎧x +y -2=0,x 2=4y .解得⎩⎨⎧x 1=-2+23,y 1=4-23或⎩⎨⎧x 2=-2-23,y 2=4+23,则|PQ |=(4+23-4+23)2+(-2-23+2-23)2=4 6.所以四边形APFQ 的面积S =12|AF |·|PQ |=12×2×46=4 3.答案 x 2=4y 4 3四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)已知椭圆C 的短轴的两个端点分别为A (0,1),B (0,-1),焦距为2 3. (1)求椭圆C 的方程;(2)已知直线y =m 与椭圆C 有两个不同的交点M ,N ,设D 为直线AN 上一点,且直线BD ,BM 的斜率的积为-14.证明:点D 在x 轴上.(1)解 由题意知c =3,b =1,∴a 2=b 2+c 2=4. ∵焦点在x 轴上,∴椭圆C 的方程为x 24+y 2=1.(2)证明 由题意可设M (-x 0,m ),N (x 0,m ),-1<m <1, 则x 20=4(1-m 2).①∵点D 在直线AN 上一点,A (0,1), ∴AD →=λAN →=λ(x 0,m -1),∴OD →=OA →+AD →=(λx 0,λ(m -1)+1), ∴D (λx 0,λ(m -1)+1). ∵B (0,-1),M (-x 0,m ),∴k BD ·k BM =λ(m -1)+2λx 0·m +1-x 0=-14.整理,得4λ(m 2-1)+8(m +1)=λx 20. 将①代入上式得(m +1)[λ(m -1)+1]=0. ∵m +1≠0,∴λ(m -1)+1=0, ∴点D 在x 轴上.18.(本小题满分12分)如图,已知椭圆C 1:x 22+y 2=1,抛物线C 2:y 2=2px (p >0),点A 是椭圆C 1与抛物线C 2的交点,过点A 的直线l 交椭圆C 1于点B ,交抛物线C 2于点M (B ,M 不同于A ).(1)若p =116,求抛物线C 2的焦点坐标;(2)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值. 解 (1)由p =116,得抛物线C 2的焦点坐标是⎝ ⎛⎭⎪⎫132,0. (2)由题意可设直线l :x =my +t (m ≠0,t ≠0),点A (x 0,y 0). 将直线l 的方程代入椭圆C 1:x 22+y 2=1,得(m 2+2)y 2+2mty +t 2-2=0, 所以点M 的纵坐标y M =-mtm 2+2.将直线l 的方程代入抛物线C 2:y 2=2px ,得y 2-2pmy -2pt =0, 所以y 0y M =-2pt ,解得y 0=2p (m 2+2)m,因此x 0=2p (m 2+2)2m2. 由x 202+y 20=1,得1p 2=4⎝ ⎛⎭⎪⎫m +2m 2+2⎝ ⎛⎭⎪⎫m +2m 4≥160, 当且仅当m =2,t =105时,p 取到最大值1040. 19.(本小题满分12分)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为(1,0),且经过点A (0,1).(1)求椭圆C 的方程;(2)设O 为原点,直线l :y =kx +t (t ≠±1)与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N .若|OM |·|ON |=2,求证:直线l 经过定点. (1)解 由题意,得b 2=1,c =1, 所以a 2=b 2+c 2=2.所以椭圆C 的方程为x 22+y 2=1.(2)证明 设P (x 1,y 1),Q (x 2,y 2), 则直线AP 的方程为y =y 1-1x 1x +1. 令y =0,得点M 的横坐标x M =-x 1y 1-1.又y 1=kx 1+t ,从而|OM |=|x M |=⎪⎪⎪⎪⎪⎪x 1kx 1+t -1.同理,|ON |=⎪⎪⎪⎪⎪⎪x 2kx 2+t -1.由⎩⎪⎨⎪⎧y =kx +t ,x 22+y 2=1,得(1+2k 2)x 2+4ktx +2t 2-2=0, 则x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-21+2k 2.所以|OM |·|ON |=⎪⎪⎪⎪⎪⎪x 1kx 1+t -1·⎪⎪⎪⎪⎪⎪x 2kx 2+t -1=⎪⎪⎪⎪⎪⎪x 1x 2k 2x 1x 2+k (t -1)(x 1+x 2)+(t -1)2=⎪⎪⎪⎪⎪⎪2t 2-21+2k2k 2·2t 2-21+2k 2+k (t -1)·⎝ ⎛⎭⎪⎫-4kt 1+2k 2+(t -1)2=2⎪⎪⎪⎪⎪⎪1+t 1-t .又|OM |·|ON |=2,所以2⎪⎪⎪⎪⎪⎪1+t 1-t =2.解得t =0,所以直线l 经过定点(0,0).20.(本小题满分12分)已知抛物线C :y 2=2px (p >0)的焦点为F ,点A (2,2),点B 在抛物线C 上,且满足OF →=FB →-2FA →(O 为坐标原点).(1)求抛物线C 的方程;(2)过焦点F 任作两条相互垂直的直线l 与l ′,直线l 与抛物线C 交于P ,Q 两点,直线l ′与抛物线C 交于M ,N 两点,△OPQ 的面积记为S 1,△OMN 的面积记为S 2,求证:1S 21+1S 22为定值.(1)解 设B (x 0,y 0),∵F ⎝ ⎛⎭⎪⎫p 2,0, ∴OF →=FB →-2FA →=⎝ ⎛⎭⎪⎫x 0-p 2,y 0-2⎝ ⎛⎭⎪⎫2-p 2,2=⎝ ⎛⎭⎪⎫x 0+p 2-4,y 0-4=⎝ ⎛⎭⎪⎫p 2,0, ∴⎩⎪⎨⎪⎧x 0+p 2-4=p 2,y 0-4=0,∴⎩⎪⎨⎪⎧x 0=4,y 0=4. ∵点B 在抛物线C 上,∴42=2p ×4,∴p =2,∴y 2=4x .(2)证明 设P (x 1,y 1),Q (x 2,y 2),由题意得,直线l 的斜率存在且不为零.设l :x =my +1,代入y 2=4x 得,y 2-4my -4=0.∴y 1+y 2=4m ,y 1y 2=-4.∴|y 1-y 2|=(y 1+y 2)2-4y 1y 2=16m 2+16=4m 2+1.因此S 1=12|y 1-y 2|×1=2m 2+1. 同理可得,S 2=21m 2+1. ∴1S 21+1S 22=14(m 2+1)+14⎝ ⎛⎭⎪⎫1m 2+1=14(m 2+1)+m 24(m 2+1)=14. ∴1S 21+1S 22为定值,定值为14. 21.(本小题满分12分)设圆x 2+y 2+2x -15=0的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(1)证明|EA |+|EB |为定值,并写出点E 的轨迹方程;(2)设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.(1)证明 因为|AD |=|AC |,EB ∥AC ,故∠EBD =∠ACD =∠ADC ,所以|EB |=|ED |,故|EA |+|EB |=|EA |+|ED |=|AD |.由题设得A (-1,0),B (1,0),|AB |=2,又圆A 的标准方程为(x +1)2+y 2=16,从而|AD |=4,所以|EA |+|EB |=4>|AB |.由椭圆定义可得点E 的轨迹方程为:x 24+y 23=1(y ≠0). (2)解 当l 与x 轴不垂直时,设l 的方程为y =k (x -1)(k ≠0),M (x 1,y 1),N (x 2,y 2). 由⎩⎪⎨⎪⎧y =k (x -1),x 24+y 23=1得(4k 2+3)x 2-8k 2x +4k 2-12=0. 则x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3, 所以|MN |=1+k 2|x 1-x 2|=12(k 2+1)4k 2+3. 过点B (1,0)且与l 垂直的直线m :y =-1k (x -1),A 到m 的距离为2k 2+1,所以|PQ |=242-⎝ ⎛⎭⎪⎫2k 2+12=44k 2+3k 2+1. 故四边形MPNQ 的面积S =12|MN ||PQ |=121+14k 2+3. 可得当l 与x 轴不垂直时,四边形MPNQ 面积的取值范围为(12,83).当l 与x 轴垂直时,其方程为x =1,|MN |=3,|PQ |=8,故四边形MPNQ 的面积为12. 综上,四边形MPNQ 面积的取值范围为[12,83).22.(本小题满分12分)已知以动点P 为圆心的⊙P 与直线l :x =-12相切,与定圆F :(x -1)2+y 2=14外切. (1)求动圆圆心P 的轨迹C 的方程;(2)过曲线C 上位于x 轴两侧的点M ,N (MN 不与x 轴垂直)分别作直线l 的垂线,垂足分别为M 1,N 1,直线l 交x 轴于点A ,记△AMM 1,△AMN ,△ANN 1的面积分别为S 1,S 2,S 3,且S 22=4S 1S 3,求证:直线MN 过定点.(1)解 设P (x ,y ),⊙P 的半径为R ,则R =x +12,|PF |=R +12, ∴点P 到直线x =-1的距离与到定点F (1,0)的距离相等,故点P 的轨迹C 的方程为y 2=4x .(2)证明 设M (x 1,y 1),N (x 2,y 2), 则M 1⎝ ⎛⎭⎪⎫-12,y 1,N ⎝ ⎛⎭⎪⎫-12,y 2, 设直线MN :x =ty +n (t ≠0,n >0).将直线MN 的方程代入y 2=4x 消去x 并整理,得y 2-4ty -4n =0,则y 1+y 2=4t ,y 1y 2=-4n <0.∵S 1=12⎝ ⎛⎭⎪⎫x 1+12·|y 1|,S 3=12⎝⎛⎭⎪⎫x 2+12·|y 2|, ∴4S 1S 3=⎝⎛⎭⎪⎫x 1+12⎝ ⎛⎭⎪⎫x 2+12|y 1y 2| =⎝⎛⎭⎪⎫ty 1+n +12⎝ ⎛⎭⎪⎫ty 2+n +12|y 1y 2| =⎣⎢⎡⎦⎥⎤t 2y 1y 2+⎝ ⎛⎭⎪⎫n +12t (y 1+y 2)+⎝ ⎛⎭⎪⎫n +122·|-4n | =⎣⎢⎡⎦⎥⎤-4nt 2+4t 2⎝ ⎛⎭⎪⎫n +12+⎝ ⎛⎭⎪⎫n +122·4n =⎣⎢⎡⎦⎥⎤2t 2+⎝ ⎛⎭⎪⎫n +122·4n . ∵S 2=12⎝⎛⎭⎪⎫n +12·|y 1-y 2| =12⎝⎛⎭⎪⎫n +12·(y 1+y 2)2-4y 1y 2, ∴S 22=14⎝ ⎛⎭⎪⎫n +122·(16t 2+16n )=4⎝ ⎛⎭⎪⎫n +122(t 2+n ). ∵S 22=4S 1S 3,∴n ⎣⎢⎡⎦⎥⎤2t 2+⎝ ⎛⎭⎪⎫n +122=⎝ ⎛⎭⎪⎫n +122(t 2+n ), 即2n =⎝ ⎛⎭⎪⎫n +122,解得n =12. ∴直线MN 恒过定点⎝ ⎛⎭⎪⎫12,0.。
解析几何大题精选四套(答案)

解析几何大题精选四套(答案)解析几何大题训练(一)1. (2011年高考江西卷) (本小题满分12分)已知过抛物线()022>=p px y 的焦点,斜率为22的直线交抛物线于()12,,A x y ()22,B x y (12x x <)两点,且9=AB .(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OB OA OC λ+=,求λ的值.2. (2011年高考福建卷)(本小题满分12分)如图,直线l :y=x+b 与抛物线C :x 2=4y 相切于点A 。
(1) 求实数b 的值;(11) 求以点A 为圆心,且与抛物线C 的准线相切的圆的方程.3. (2011年高考天津卷)(本小题满分13分) 设椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12,F F ,点(,)P a b 满足212||||PF F F =. (Ⅰ)求椭圆的离心率e ;(Ⅱ)设直线2PF 与椭圆相交于A,B 两点.若直线2PF 与圆22(1)(16x y ++-=相交于M,N 两点,且|MN|=58|AB|,求椭圆的方程.4.(2010辽宁)(本小题满分12分)设1F ,2F 分别为椭圆2222:1x y C a b+=(0)a b >>的左、右焦点,过2F 的直线l 与椭圆C 相交于A ,B两点,直线l 的倾斜角为60,1F 到直线l 的距离为(Ⅰ)求椭圆C 的焦距;(Ⅱ)如果222AF F B =,求椭圆C 的方程.解析几何大题训练(二)1.(2010辽宁)(本小题满分12分)设椭圆C :22221(0)x y a b a b+=>>的左焦点为F ,过点F 的直线与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60o ,2AF FB =.(I)求椭圆C 的离心率; (II)如果|AB|=154,求椭圆C 的方程.2.(2010北京)(本小题共14分)已知椭圆C 的左、右焦点坐标分别是(,y=t 椭圆C 交与不同的两点M ,N ,以线段为直径作圆P,圆心为P 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析几何专题测试
(时间120分钟,满分150分)
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题
目要求的.)
1.(2009·天津河西期末)点P (-2,1)到直线2x +y =5的距离为 ( ) A.255 B.855 C.25 D.85
2.(2010·苏州模拟)若ab <0,则过点P ⎝⎛⎭⎫0,-1b 与Q ⎝⎛⎭
⎫1a ,0的直线PQ 的倾斜角的取值范围是 ( )
A.⎝⎛⎭⎫0,π2
B.⎝⎛⎭⎫π2,π
C.⎝⎛⎭⎫-π,-π2
D.⎝⎛⎭
⎫-π2,0 3.若双曲线x 2a
2-y 2=1的一个焦点为(2,0),则它的离心率为 ( ) A.255 B.32 C.233
D .2 4.(2010·厦门质检)直角坐标平面内过点P (2,1)且与圆x 2+y 2=4相切的直线 ( )
A .有两条
B .有且仅有一条
C .不存在
D .不能确定
5.直线2x -y -2=0绕它与y 轴的交点逆时针旋转π2
所得的直线方程是 ( ) A .-x +2y -4=0 B .x +2y -4=0 C .-x +2y +4=0 D .x +2y +4=0
6.(2010·广州调研)已知点A (1,0),直线l :y =2x -4,点R 是直线l 上的一点,若RA =AP ,则点P 的
轨迹方程为 ( )
A .y =-2x
B .y =2x
C .y =2x -8
D .y =2x +4
7.过点(0,1)的直线与x 2+y 2=4相交于A 、B 两点,则|AB |的最小值为 ( )
A .2
B .2 3
C .3
D .2 5
8.如右图,F 1和F 2分别是双曲线x 2a 2-y 2
b
2=1(a >0,b >0)的两个焦点,A 和B 是以O 为 圆心,以|OF 1|为半径的圆与该双曲线左支的两个交点,且△F 2AB 是等边三角形,
则双曲线的离心率为 ( )
A. 3
B. 5
C.52
D .1+ 3 9.(2009·海淀模拟)若直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,则直线l 2恒过定点( )
A .(0,4)
B .(0,2)
C .(-2,4)
D .(4,-2)
10.抛物线y 2=2px (p >0)的准线经过等轴双曲线x 2-y 2=1的左焦点,则p =( )
A.22
B. 2 C .2 2 D .4 2 11.若直线ax +by +1=0(a 、b >0)过圆x 2+y 2+8x +2y +1=0的圆心,则1a +4b
的最小值为
( )
A .8
B .12
C .16
D .20
12.(2010·诸城模拟)过抛物线y 2=2px (p >0)的焦点F 的直线l 交抛物线于点A 、B
(如图所示),交其准线于点C ,若|BC |=2|BF |,且|AF |=3,则此抛物线的方程
为 ( )
A .y 2=9x
B .y 2=6x
C .y 2=3x
D .y 2=3x
二、填空题(本大题共4小题,每小题4分,共16分.将答案填写在题中的横线上)
13.(2009·杭州模拟)直线x +2y -2=0经过椭圆x 2a 2+y 2
b 2=1(a >b >0)的一个焦点和一个顶点,则该椭圆的离心率等于________.
14.设a 、b 、c 分别是△ABC 中∠A 、∠B 、∠C 所对边的边长,则直线x ·sin A +ay +c =0与bx -y ·sin B +
sin C =0的位置关系是________.
15.(2009·全国卷Ⅱ)已知圆O :x 2+y 2=5和点A (1,2),则过A 且与圆O 相切的直线与两坐标轴围成的三
角形的面积等于________.
16.(2009·湖南高考)过双曲线C :x 2a 2-y 2
b 2=1(a >0,b >0)的一个焦点作圆x 2+y 2=a 2的两条切线,切点分别为A ,B .若∠AOB =120°(O 是坐标原点),则双曲线C 的离心率为________.
三、解答题(本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤)
17.(本小题满分12分)已知A (x 1,y 1),B (x 2,y 2)分别在直线x +y -7=0及x +y -5=0上,求AB 中点M
到原点距离的最小值.
18.(本小题满分12分)在直角坐标系xOy 中,以O 为圆心的圆与直线x -3y =4相切.
(1)求圆O 的方程;
(2)圆O 与x 轴相交点A 、B 两点,圆内的动点P 使|P A |、|PO |、|PB |成等比数列,求PA ·
PB 的取值范围.
19.(本小题满分12分)已知点(x,y)在曲线C上,将此点的纵坐标变为原来的2倍,对应的横坐标不变,得到的点满足方程x2+y2=8;定点M(2,1),平行于OM的直线l在y轴上的截距为m(m≠0),直线l 与曲线C交于A,B两个不同点.
(1)求曲线C的方程;(2)求m的取值范围.
20.(本小题满分12分)(2010·诸城模拟)已知椭圆的中心在原点,焦点在x轴上,离心率为
2
2,且椭圆过
圆C:x2+y2-4x+22y=0的圆心C.
(1)求椭圆的方程;(2)设直线l过椭圆的焦点且与圆C相切,求直线l的方程.
21.(本小题满分12分)椭圆x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (0,2),离心率e =63
. (1)求椭圆的方程;
(2)直线l :y =kx -2(k ≠0)与椭圆相交于不同的两点M 、N ,且满足MP =PN ,AP ·
MN =0,求直线l 的方程.
22.(本小题满分14分)抛物线的顶点在原点,焦点在x 轴的正半轴上,直线x +y -1=0与抛物线相交于
A 、
B 两点,且|AB |=8611
. (1)求抛物线的方程;
(2)在x 轴上是否存在一点C ,使△ABC 为正三角形?若存在,求出C 点的坐标;若不存在,请说明理由.。