2020年广东省实验中学中考数学一模试卷

合集下载

2020年广东省中考数学一模试卷(解析版)

2020年广东省中考数学一模试卷(解析版)
D、2xy2•(﹣x)=﹣2x2y2,正确;
(1)求证:BD是⊙O的切线;
(2)求证:CE2=EH•EA;
(3)若⊙O的半径为5,sinA= ,求BH的长.
25.如图,抛物线y=ax2+bx+c经过A(1,0)、B(4,0)、C(0,3)三点.
(1)求抛物线的解析式;
(2)如图①,在抛物线的对称轴上是否存在点P,使得四边形PAOC的周长最小?若存在,求出四边形PAOC周长的最小值;若不存在,请说明理由.
C.(﹣2x2y)3=﹣6x6y3D.2xy2•(﹣x)=﹣2x2y2
【考点】整式的除法;合并同类项;幂的乘方与积的乘方;单项式乘单项式.
【分析】根据同类项、同底数幂的除法、积的乘方以及整式的乘法计算即可.
【解答】解:A、﹣2x+3x=x,正确;
B、6xy2÷2xy=3y,正确;
C、(﹣2x2y)3=﹣8x6y3,错误;
23.如图,一次函数y=kx+b的图象与反比例函数y= 的图象相交于点A(1,5)和点B,与y轴相交于点C(0,6).
(1)求一次函数和反比例函数的解析式;
(2)现有一直线l与直线y=kx+b平行,且与反比例函数y= 的图象在第一象限有且只有一个交点,求直线l的函数解析式.
24.已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC.
(1)若抽取的成绩用扇形图来描述,则表示“第三组(79.5~89.5)”的扇形的圆心角为度;
(2)若成绩在90分以上(含90分)的同学可以获奖,请估计该校约有多少名同学获奖?
(3)某班准备从成绩最好的4名同学(男、女各2名)中随机选取2名同学去社区进行环保宣传,则选出的同学恰好是1男1女的概率为.

广东省实验中学中考一模数学考试卷(解析版)(初三)中考模拟.doc

广东省实验中学中考一模数学考试卷(解析版)(初三)中考模拟.doc

广东省实验中学中考一模数学考试卷(解析版)(初三)中考模拟姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)【题文】2的倒数是()A.2 B.﹣2 C. D.【答案】C【解析】试题分析:直接根据倒数的定义:乘积是1的两数互为倒数,解得2的倒数是.故选C.考点:倒数【题文】下列图形中,不是中心对称图形有()A. B. C. D.【答案】D【解析】试题分析:根据中心对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.可得:A、是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项正确.故选D.考点:中心对称图形【题文】数据5,7,8,8,9的众数是()A.5 B.7 C.8 D.9、【答案】C【解析】试题分析:根据众数是一组数据中出现次数最多的数,数据5、7、8、8、9中8出现了2次,且次数最多,所以众数是8.故选C.考点:众数【题文】下列四个几何体中,主视图是三角形的是(    )A. B. C. D.【答案】B【解析】试题分析:主视图是从几何体的正面看,主视图是三角形的一定是一个锥体,是长方形的一定是柱体,由此分析可得:主视图是三角形的一定是一个锥体,只有B是锥体.故选:B.考点:简单几何体的三视图【题文】下列计算正确的是()A.3a﹣a=3 B.a2+a2=a4 C.(3a)﹣(2a)=6a D.(a2)3=a6【答案】D【解析】试题分析:A:合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.由3a﹣a=2a,可得选项A不正确;B:合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.由a2+a2=2a2,可得选项B不正确;C:合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.由(3a)﹣(2a)=a,可得选项C不正确;D:幂的乘方,底数不变,指数相乘.由(a2)3=a6,可得选项D正确.故选:D.考点:1、幂的乘方与积的乘方;2、合并同类项【题文】函数中自变量x的取值范围是()A. x≥-3B. x≥-3且x≠1C. x≠1D. x≠-3且x≠1【答案】B【解析】试题分析:根据被开方数为非负数和分母不分0列不等式:,解得:x≥﹣3且x≠1.故选B.考点:函数自变量的取值范围【题文】如图,⊙O的半径为1,A、B、C是圆周上的三点,∠BAC=36°,则劣弧BC的长是()A. B. C. D.【答案】B【解析】试题分析:连接OB,OC,依据同弧所对的圆周角等于圆心角的一半,即可求得劣弧BC的圆心角的度数∠BOC=2∠BAC=2×36°=72°,然后利用弧长计算公式求解,则劣弧BC的长是:=.故选B.考点:1、弧长的计算;2、圆周角定理【题文】如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为()A. B. C. D.【答案】B【解析】试题分析:过C点作CD⊥AB,垂足为D,根据旋转性质可知,∠B′=∠B,把求tanB′的问题,转化为在Rt△BCD中求tanB=,tanB′=tanB=.故选B.考点:1、锐角三角函数的定义;2、旋转的性质【题文】二次函数y=ax2+bx+c的图象如图所示,反比例函数与正比例函数y=bx在同一坐标系内的大致图象是()A. B. C. D.【答案】B【解析】试题分析:由已知二次函数y=ax2+bx+c的图象开口方向可以知道a的取值范围a<0,对称轴在y轴的左边,可由,可以确定b的取值范围b<0,然后就可以确定反比例函数与正比例函数y=bx 在同一坐标系内的大致图象:反比例函数的图象在第二四象限,正比例函数y=bx的图象在第二四象限.故选:B.考点:1、二次函数的图象;2、正比例函数的图象;3、反比例函数的图象【题文】如图,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,…则第⑩个图形中平行四边形的个数是()A.54 B.110 C.19 D.109【答案】D【解析】试题分析:第①个图形中有1个平行四边形;第②个图形中有1+4=5个平行四边形;第③个图形中有1+4+6=11个平行四边形;第④个图形中有1+4+6+8=19个平行四边形;…第n个图形中有1+2(2+3+4+…+n)个平行四边形;第⑩个图形中有1+2(2+3+4+5+6+7+8+9+10)=109个平行四边形;故选D.考点:规律型:图形的变化类【题文】分解因式:2a2+4a=.【答案】2a(a+2)【解析】试题分析:直接提取公因式2a,进而分解因式得出2a2+4a=2a(a+2).考点:因式分解-提公因式法【题文】正n边形的一个外角的度数为60°,则n的值为.【答案】6【解析】试题分析:先根据正n边形的一个外角的度数为60°求出其内角的度数120°,再根据多边形的内角和公式=120°,解得n=6.考点:多边形内角与外角【题文】已知一次函数y=(m+2)x+3,若y随x值增大而增大,则m的取值范围是.【答案】m>﹣2【解析】试题分析:根据一次函数的图象与系数的关系列出关于m的不等式m+2>0,求出m的取值范围m>﹣2.考点:一次函数图象与系数的关系【题文】关于x的一元二次方程x2+(m﹣2)x+m+1=0有两个相等的实数根,则m的值是.【答案】0或8【解析】试题分析:先根据关于x的一元二次方程x2+(m﹣2)x+m+1=0有两个相等的实数根,可得△=(m﹣2)2﹣4(m+1)=0,即m2﹣8m=0,解得m=0或m=8.考点:根的判别式【题文】如图,将矩形纸片ABCD沿EF折叠,使点B与CD的中点B’重合.若AB=2,BC=3,则△FCB’与△B’DG的面积比为.【答案l【答案】100°【解析】试题分析:作点A关于BC的对称点A′,关于CD的对称点A″,根据轴对称确定最短路线问题,连接A′A″与BC、CD的交点即为所求的点M、N,利用三角形的内角和定理列式求出∠A′+∠A″=180°﹣∠130°=50°,再根据轴对称的性质和三角形的一个外角等于与它不相邻的两个内角的和可得∠AMN+∠ANM=2(∠A′+∠A″)=2×50°=100°.考点:轴对称-最短路线问题【题文】解方程:【答案】x=2【解析】试题分析:观察可得方程最简公分母为x﹣2,方程两边乘最简公分母,可以把分式方程转化为整式方程求解.试题解析:原方程即.方程两边都乘以(x﹣2),得x﹣1﹣1=3(x﹣2).解得x=2.经检验x=2是原方程的增根,∴原方程无解.考点:解分式方程【题文】先化简,再求值:(a+1)2﹣(a+1)(a﹣1),其中,a=﹣1.【答案】2a+2,【解析】试题分析:先根据完全平方公式和平方差公式算乘法,再合并同类项,最后代入求出即可.试题解析:(a+1)2﹣(a+1)(a﹣1)=a2+2a+1﹣a2+1=2a+2,当a=﹣1时,原式=2×(﹣1)+2=2.考点:整式的混合运算—化简求值【题文】以AB、AC为边向△ABC外作等边△A BD和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD .(尺规作图,不写作法,保留作图痕迹)【答案】作图与证明见解析【解析】试题分析:分别以A、B为圆心,AB长为半径画弧,两弧交于点D,连接AD,BD,同理连接AE,CE,如图所示,由三角形ABD与三角形ACE都是等边三角形,得到三对边相等,两个角相等,都为60度,利用等式的性质得到夹角相等,利用SAS得到三角形CAD与三角形EAB全等,利用全等三角形的对应边相等即可得证.试题解析:如图所示:∵△ABD和△ACE都是等边三角形,∴A D=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,∵在△CAD和△EAB中,,∴△CAD≌△EAB(SAS),∴BE=CD.考点:1、全等三角形的判定与性质;2、等边三角形的性质;3、作图—复杂作图【题文】我市某养殖场计划购买甲、乙两种鱼苗700尾,甲种鱼苗每尾3元,乙种鱼苗每尾5元.(1)若购买这两种鱼苗共用去2500元,则甲、乙两种鱼苗各购买多少尾?(2)购买甲种鱼苗不超过280尾,应如何选购鱼苗,使购买鱼苗的费用最低?并求出最低费用.【答案】(1)500,200(2)当选购甲种鱼苗280尾,乙种鱼苗420尾时,总费用最低,最低费用为2940元【解析】试题分析:(1)设购买甲种鱼苗x尾,乙种鱼苗y尾,根据题意列一元一次方程组求解即可;(2)设甲种鱼苗购买m尾,购买鱼苗的费用为w元,列出w与x之间的函数关系式,运用一次函数的性质解决问题.试题解析:(1)设购买甲种鱼苗x尾,乙种鱼苗y尾,根据题意可得:,解得:.答:购买甲种鱼苗500尾,乙种鱼苗200尾.(2)设甲种鱼苗购买m尾,购买鱼苗的费用为w元,则w=3m+5(700﹣m)=﹣2m+3500,∵﹣2<0,∴w随m的增大而减小,∵0<m≤280,∴当m=280时,w有最小值,w的最小值=3500﹣2×280=2940(元),∴700﹣m=420.答:当选购甲种鱼苗280尾,乙种鱼苗420尾时,总费用最低,最低费用为2940元.考点:1、一元一次不等式的应用;2、二元一次方程组的应用【题文】王老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调查,并将调查结果分成四类,A:优秀;B:良好;C:合格;D:一般;并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,王老师一共调查了名同学,其中C类女生有名,D类男生有名;(2)将上面的条形统计图补充完整;(3)从被调查的A类和D类学生中分别选取一位同学进行“一对一”互助学习,请求出所选两位同学恰好是一位男同学和一位女同学的概率.【答案】(1)20,2,1;(2)图形见解析(3)【解析】试题分析:(1)由条形统计图与扇形统计图,即可求得调查的总人数,继而分别求得C类女生与D类男生数;(2)由(1)可补全条形统计图;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两位同学恰好是一位男同学和一位女同学的情况,再利用概率公式即可求得答案.试题解析:(1)本次调查中,王老师一共调查了:(4+6)÷50%=20(名);其中C类女生有:20×25%﹣3=2(名),D类男生有:20﹣1﹣2﹣4﹣6﹣3﹣2﹣1=1(名);(2)如图:(3)画树状图得:∵共有6种等可能的结果,所选两位同学恰好是一位男同学和一位女同学的有3种情况,∴所选两位同学恰好是一位男同学和一位女同学的概率为:.考点:1、列表法与树状图法;2、扇形统计图;3、条形统计图【题文】如图,已知一次函数y=kx+b的图象交反比例函数(x>0)图象于点A、B,交x轴于点C.(1)求m得取值范围;(2)若点A的坐标是(2,﹣4),且,求m的值和一次函数的解析式.【答案】(1)m>,(2)4,y=x﹣5【解析】试题分析:(1)根据双曲线位于第四象限,比例系数k<0,列式求解即可;(2)先把点A的坐标代入反比例函数表达式求出m的值,从而的反比例函数解析式,设点B的坐标为B(x ,y),利用相似三角形对应边成比例求出y的值,然后代入反比例函数解析式求出点B的坐标,再利用待定系数法求解即可.试题解析:(1)根据题意,反比例函数图象位于第四象限,∴4﹣3m<0,解得:m>;(2)∵点A(2,﹣4)在反比例函数图象上,∴4﹣3m=2×(﹣4)=﹣8,∴解得:m=4,∴反比例函数解析式为y=﹣,∵,∴,设点B的坐标为(x,y),则点B到x轴的距离为﹣y,点A到x轴的距离为4,∴,解得:y=﹣1,∴﹣=﹣1,解得:x=8,∴点B的坐标是B(8,﹣1),设这个一次函数的解析式为y=kx+b,∵点A、B是一次函数与反比例函数图象的交点,∴,解得:,∴一次函数的解析式是y=x﹣5.考点:反比例函数与一次函数的交点问题【题文】已知如图,△ABC中AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B、M两点的⊙O交BC于G,交AB于点F,FB恰为⊙O的直径.(1)求证:AE与⊙O相切;(2)当BC=6,cosC=,求⊙O的直径.【答案】(1)证明见解析(2)4.8【解析】试题分析:(1)连接OM.根据OB=OM,得∠1=∠3,结合BMl∴AE⊥BC,∴OM⊥AE,∴AE与⊙O相切;(2)设圆的半径是r.∵AB=AC,AE是角平分线,∴BE=CE=3,∠ABC=∠C,又cosC=,∴AB=BE÷cosB=12,则OA=12﹣r.∵OM∥BE,∴,即,解得r=2.4.则圆的直径是4.8.考点:1、切线的判定与性质;2、等腰三角形的性质;3、圆周角定理;4、解直角三角形【题文】如图①,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以每秒1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,点P,Q分别从点A 、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t妙(t≥0).(1)若三角形CPQ是等腰三角形,求t的值.(2)如图②,过点P作PD∥BC,交AB于点D,连接PQ;①是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由,并探究如何改变点Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度.②当t取何值时,△CPQ的外接圆面积的最小?并且说明此时△CPQ的外接圆与直线AB的位置关系?【答案】(1)2(2)①不存在,②t=时,PQ最小值为,△CPQ的外接圆与直线AB相交【解析】试题分析:(1)根据CQ=CP,列出方程即可解决.(2))①不存在.不妨设四边形PDBQ是菱形,推出矛盾即可.②如图,⊙O是△PQC的外接圆的圆心,作OM⊥AB于M,OE⊥AC于E,OF⊥BC于F,连接OB、OC、OA,由•AC•OF+•AC•OE+•AB•OM=•BC•AC求出OM以及圆的半径即可解决问题.试题解析:(1)∵△CBP是等腰三角形,∠C=90°,∴CQ=CP,∴6﹣t=2t,∴t=2,∴t=2秒时,△CBP是等腰三角形.(2)①不存在.理由:不妨设四边形PDBQ是菱形,则PD=BQ,∴t=8﹣2t,∴t=,∴CQ=,PC=6﹣=,BQ=PD=,∴OQ==6,∴PQ≠BQ,∴假设不成立,∴不存在.设点Q的速度为每秒a个单位长度.∵四边形PDBQ是菱形,∴PD=BD,∴t=10﹣t,∴t=,∴BQ=PD=,∴6﹣a=,∴a=.∴点Q的速度为每秒个长度单位时,使四边形PDBQ在某一时刻为菱形.②如图,⊙O是△PQC的外接圆的圆心,作OM⊥AB于M,OE⊥AC于E,OF⊥BC于F,连接OB、OC、OA.∵PQ===,∴t=时,PQ最小值为.此时PC=,CQ=,PQ=,∵•AC•OF+•AC•OE+•AB•OM=•BC•AC,∴×8×+×6×+×10×OM=24,∴OM=,∴OM<OP,∴△CPQ的外接圆与直线AB相交.考点:圆的综合题【题文】已知抛物线y=﹣x2+3x+4交y轴于点A,交x轴于点B,C(点B在点C的右侧).过点A作垂直于y轴的直线l.在位于直线l下方的抛物线上任取一点P,过点P作直线PQ平行于y轴交直线l于点Q .连接AP.(1)写出A,B,C三点的坐标;(2)若点P位于抛物线的对称轴的右侧:①如果以A,P,Q三点构成的三角形与△AOC相似,求出点P的坐标;②若将△APQ沿AP对折,点Q的对应点为点M.是否存在点P,使得点M落在x轴上?若存在,求出点P的坐标;若不存在,请说明理由;③设AP的中点是R,其坐标是(m,n),请直接写出m和n的关系式,并写出m的取值范围.【答案】(1)B(4,0),C(﹣1,0)(2)①P(,)或(7,24)②P(4,0)或(5,﹣6)③m<0,或m>【解析】试题分析:(1)先令x=0求出y的值即可得出A点坐标,再令y=0求出x的值即可得出BC两点的坐标;(2)①分△AQP∽△AOC与△AQP∽△COA两种情况进行讨论;②过点M作y轴的平行线交直线AQ于点E,过点P作PF⊥直线ME于点F,设Q(x,4),则P(x,﹣x2+3x+4),PQ=x2﹣3x=PM,再由△AEM∽△MFP求出PF的表达式,在Rt△AOM中根据勾股定理求出x的值,进而可得出P点坐标③根据在位于直线l下方的抛物线上任取一点P,则有a<0或a>3,由点P在抛物线上即可建立m与n的关系.试题解析:(1)∵令x=0,则y=4,∴A(0,4);∵令y=0,则﹣x2+3x+4=0,解得x1=4,x2=﹣1,∴B(4,0),C(﹣1,0);(2)①∵以A,P,Q三点构成的三角形与△AOC相似,∴△AQP∽△AOC与△AQP∽△COA,∴或,即或,解得x=或x=7,均在对称轴的右侧,∴P(,)或(7,24);②如图所示,过点M作y轴的平行线交直线AQ于点E,过点P作PF⊥直线ME于点F,设Q(x,4),则P(x,﹣x2+3x+4),PQ=x2﹣3x=PM,∵∠EAM+∠EMA=90°,∠EMA+∠FMP=90°,∴∠FMP=∠EAM.∵∠MFP=∠AEM=90°,∴△AEM∽△MFP,∴.∵MP=x2﹣3x,∴,∴PF=4x﹣12,∴OM=(4x﹣12)﹣x=3x﹣12,在Rt△AOM中,∵OM2+OA2=AM2,即(3x﹣12)2+42=x2,解得x1=4,x2=5均在抛物线对称轴的右侧,∴P(4,0)或(5,﹣6).③∵抛物线y=﹣x2+3x+4和A(0,4),∴抛物线和直线l的交点坐标为A(0,4),(3,4),设P(a,﹣a2+3a+4);(a<0或a>3)∵AP的中点是R,A(0,4),∴=m,=n,∴n=﹣2m2+3m+4,∵a<0或a>3,∴2m<0,或2m>3,∴m<0,或m>.考点:二次函数综合题。

2020年广东中考数学模拟试卷(附答案和解析)

2020年广东中考数学模拟试卷(附答案和解析)

23.如图,正方形 ABCD 的边长为 1,对角线 AC、BD 交 于点 O,E 是 BC 延长线上一点,且 AC=EC,连接 AE 交 BD 于点 P. (1)求∠DAE 的度数; (2)求 BP 的长.
第 3页 共 4页
五、解答题(三)(本大题共 2 小题,每小题 10 分,共 20 分) 24.如图,已知一次函数 y = kx+b(k ≠ 0) 的图象与 x 轴、 y 轴分别交于点 A、B 两点,且与反比例 函数 y = m (m ≠ 0) 的图象在第一象限第一象限内的部分交于点 C , CD 垂直于 x 轴于点 D ,其中
2020年广东名校中考数学学科线上一模 试卷(二)
说 明:本试卷共 4 页,满分 120 分,考试时间 90 分钟.
注意事项: 1. 选择题、填空题和解答题的答案写在答题卡上,若写在试卷上不计成绩. 2. 作图(含辅助线)和列表时用铅笔(如 2B 铅笔),要求痕迹清晰.
一、选择题(本大题共 10 个小题,每小题 3 分,共 30 分)
九年级数学答案第 3 页(共 5 页)
即1+1√2
=
√2−BP BP
∴BP=1
┅┅┅┅┅┅┅8 分
五、解答题(三)
24.(1)答: A( - 2,0) , C ( 2, 4) ┅┅┅┅┅2 分(写对一个点的坐标得 1 分)
(2) y = x +2 , y = 8 x
┅┅┅┅┅6 分 (求对一个表达式得 2 分)
四、解答题(二)(本大题共 3 小题,每小题 8 分,共 24 分)
21.如图是一块直角三角形木板,其中∠C=90°,AC=1.5m,面积为 1.5m2.一 位木匠想把它加工成一个面积最大且无拼接的正方形桌面,∠C 是这个正方形 的一个内角. (1)请你用尺规为这位木匠在图中作出符合要求的正方形; (2)求加工出的这个正方形桌面的边长.

2020广东省中考数学模拟试卷(一)(含答案和解析)

2020广东省中考数学模拟试卷(一)(含答案和解析)

2020广东省中考数学模拟试卷(一)说明:1. 全卷共4页,满分为120分,考试用时为90分钟.2. 答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡上填写自己的准考证号、姓名、考场号、座位号.用2B铅笔把对应该号码的标号涂黑.3. 选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4. 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5. 考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的.1.-16的相反数是()A.6B.-6C.16D.-162.港珠澳大桥被英国《卫报》誉为“新世界七大奇迹”之一,它是世界总体跨度最长的跨海大桥,全长55 000米.数字55 000用科学记数法表示为()A.5.5×104B.55×104C.5.5×105D.0.55×1063.已知∠α=60°32',则∠α的余角是()A.29°28'B.29°68'C.119°28'D.119°68'4.一元二次方程x2+px-2=0的一个根为x=2,则p的值为()A.1B.2C.-1D.-25.某校女子排球队12名队员的年龄分布如下表所示:年龄(岁) 13 14 15 16人数(人) 1 2 5 4则该校女子排球队12名队员年龄的众数、中位数分别是()A.13,14B.14,15C.15,15D.15,146.下列图形既是中心对称图形又是轴对称图形的是()A B C D图象的一个交点坐标为(-1,2),则另一个交点的坐7.若正比例函数y=-2x与反比例函数y=kx标为()A.(2,-1)B.(1,-2)C.(-2,-1)D.(-2,1)8.下列运算中,正确的是()A.2x·3x2=5x3B.x4+x2=x6C.(x2y)3=x6y3D.(x+1)2=x2+19.如图,AB是☉O的弦,OC⊥AB交☉O于点C,点D是☉O上一点,∠ADC=30°,则∠BOC的度数为()A.30°B.40°C.50°D.60°10.如图1,在矩形ABCD中,E是AD上一点,点P从点B沿折线BE-ED-DC运动到点C时停止;点Q从点B沿BC运动到点C时停止,速度均为每秒1个单位长度.如果点P,Q同时开始运动,设运动时间为t,△BPQ的面积为y,已知y与t的函数图象如图2所示,有以下结论:①BC=10; ②cos ∠ABE=35; ③当0≤t ≤10时,y=25t 2;④当t=12时,△BPQ 是等腰三角形; ⑤当14≤t ≤20时,y=110-5t. 其中正确的有( )A.2个B.3个C.4个D.5个二、填空题(本大题共7小题,每小题4分,共28分) 11. 因式分解:ab-7a= .12. 若一个多边形的内角和等于它的外角和,则这个多边形的边数为 .13. 一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷得点数大于4的概率是 .14. 若a-b=2,则代数式5+2a-2b 的值是 .15. 如图,数轴上A ,B 两点所表示的数分别是-4和2,点C 是线段AB 的中点,则点C 所表示的数是 .16. 观察以下一列数:3,54,79,916,1125,…,则第20个数是 .17. 将长为2、宽为a (a 大于1且小于2)的长方形纸片按如图①所示的方式折叠并压平,剪下一个边长等于长方形宽的正方形,称为第一次操作;再把剩下的长方形按如图②所示的方式折叠并压平,剪下一个边长等于此时长方形宽的正方形,称为第二次操作;如此反复操作下去……若在第n 次操作后,剩下的长方形恰为正方形,则操作终止,当n=3时,a 的值为 .三、解答题(一)(本大题共3小题,每小题6分,共18分) 18. 计算: (3-π)0-2cos 30°+|1-√3|+(12)-1.19 .先化简,再求值: x 2-1x 2-2x+1·1x+1-1x , 其中x=2.20. 小甘到文具超市去买文具.请你根据图中的对话信息,求中性笔和笔记本的单价分别是多少元?四、解答题(二)(本大题共3小题,每小题8分,共24分)21.(1)如图1,已知EK垂直平分线段BC,垂足为D,AB与EK相交于点F,连接CF.求证:∠AFE=∠CFD.(2)如图2,在Rt△GMN中,∠M=90°,P为MN的中点.①用直尺和圆规在GN边上求作点Q,使得∠GQM=∠PQN(保留作图痕迹,不要求写作法);②在①的条件下,如果∠G=60°,那么Q是GN的中点吗?为什么?22. 某校为了解八年级男生“立定跳远”成绩的情况,随机选取该年级部分男生进行测试,以下是根据测试成绩绘制的统计图表的一部分.成绩等级频数(人) 频率优秀15 0.3良好及格不及格 5(1) 被测试男生中,成绩等级为“优秀”的男生人数为人,成绩等级为“及格”的男生人数占被测试男生总人数的百分比为%;(2) 被测试男生的总人数是多少?成绩等级为“不及格”的男生人数占被测试男生总人数的百分比是多少?(3) 若该校八年级共有180名男生,根据调查结果,估计该校八年级男生成绩等级为“良好”的学生人数.23. 如图,抛物线y=12x 2-32x-2与x 轴交于A ,B 两点,与y 轴交于点C ,点D 与点C 关于x 轴对称.(1) 求点A ,B ,C 的坐标; (2) 求直线BD 的解析式;(3) 在直线BD 下方的抛物线上是否存在一点P ,使△PBD 的面积最大?若存在,求出点P 的坐标; 若不存在,请说明理由.五、解答题(三)(本大题共2小题,每小题10分,共20分)24. 如图,点O 是线段AH 上一点,AH=3,以点O 为圆心,OA 的长为半径作☉O ,过点H 作AH 的垂线交☉O 于C ,N 两点,点B 在线段CN 的延长线上,连接AB 交☉O 于点M ,以AB ,BC 为边作▱ABCD.(1) 求证:AD 是☉O 的切线;(2) 若OH=13AH ,求四边形AHCD 与☉O 重叠部分的面积; (3) 若NH=13AH ,BN=54,连接MN ,求OH 和MN 的长.25. 如图1,已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.(1)证明与推断:①求证:四边形CEGF是正方形;的值是多少?②推断:AGBE(2)探究与证明:将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图2,试探究线段AG与BE 之间的数量关系,并说明理由;(3)拓展与运用:正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图3,延长CG交AD于点H,若AG=6,GH=2 √2,求BC的长.参考答案1.C2.A3.A4.C5.C6.C7.B8.C9.D 10.B 11.a (b-7) 12.4 13.13 14.9 15.-1 16.41400 17.65或3218.解:原式=1-2×√32+√3-1+2=2. 19.解:原式=(x+1)(x-1)(x-1)2·1x+1-1x=1x-1-1x =x x(x-1)-x-1x(x-1)=1x(x-1), 当x=2时,原式=12×1=12. 20.解:设中性笔和笔记本的单价分别是x 元、y 元, 根据题意,得{12y +20x =11212x +20y =144,解得{x =2y =6. 答:中性笔和笔记本的单价分别是2元、6元. 21.(1)证明:∵EK 垂直平分线段BC ,∴FC=FB ,CD=BD ,∴∠CFD=∠BFD , ∵∠BFD=∠AFE ,∴∠AFE=∠CFD.(2)①解:如图,作点P 关于GN 的对称点P',连接P'M 交GN 于Q ,连接PQ ,点Q 即为所求.②解:结论:Q 是GN 的中点.理由如下:设PP'交GN 于K.∵∠G=60°,∠GMN=90°,∴∠N=30°, ∵PK ⊥KN ,∴PK=KP'=12PN , ∴PP'=PN=PM ,∴∠P'=∠PMP',∵∠NPK=∠P'+∠PMP'=60°,∴∠PMP'=30°,∴∠N=∠QMN=30°,∠G=∠GMQ=60°,∴QM=QN ,QM=QG ,∴QG=QN ,∴Q 是GN 的中点.22.解:(1)15 20(2)被测试男生的总人数为15÷0.3=50(人),成绩等级为“不及格”的男生人数占被测试男生总人数的百分比为550×100%=10%.(3)由(1)(2)可知,优秀占30%,及格占20%,不及格占10%,则良好占40%, 故该校八年级男生成绩等级为“良好”的学生人数为180×40%=72(人). 23.解:(1)解方程12x 2-32x-2=0,得x 1=-1,x 2=4, ∴A 点坐标为(-1,0),B 点坐标为(4,0).当x=0时,y=-2,∴C 点坐标为(0,-2).(2)∵点D 与点C 关于x 轴对称,∴D 点坐标为(0,2).设直线BD 的解析式为y=kx+b ,则{0=4k +b 2=b ,解得{k =-12b =2, ∴直线BD 的解析式为y=-12x+2. (3)如图,作PE ∥y 轴交BD 于E ,设P (m,12m 2-32m-2),则E (m,-12m +2),∴PE=-12m+2-(12m 2-32m-2)=-12m 2+m+4, ∴S △PBD =12·PE ·(x B -x D )=12×(-12m 2+m +4)×4 =-m 2+2m+8=-(m-1)2+9,∵-1<0,∴当m=1时,△PBD 的面积最大,面积的最大值为9, 此时,P 的坐标为(1,-3).24.(1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∵∠AHC=90°,∴∠HAD=90°,即OA ⊥AD ,又∵OA 是☉O 的半径,∴AD 是☉O 的切线.(2)解:如图,连接OC ,∵OH=12OA ,AH=3,∴OH=1,OA=2, ∵在Rt △OHC 中,∠OHC=90°,OH=12OC , ∴∠OCH=30°,∴∠AOC=∠OHC+∠OCH=120°, ∴S 扇形OAC =120×π×22360=4π3, ∵CH=√22-12=√3,∴S △OHC =12×1×√3=√32, ∴四边形AHCD 与☉O 重叠部分的面积=S 扇形OAC +S △OHC =4π3+√32. (3)解:∵AH ⊥NC ,NH=13AH ,AH=3, ∴CH=NH=1.设☉O 的半径OA=OC=r ,OH=3-r ,在Rt △OHC 中,OH 2+HC 2=OC 2,∴(3-r )2+12=r 2,∴r=53,∴OH=43, 在Rt △ABH 中,AH=3,BH=54+1=94,∴AB=154, 在Rt △ACH 中,AH=3,CH=1,得AC=√10, ∵∠BMN+∠AMN=180°,∠NCA+∠AMN=180°, ∴∠BMN=∠NCA.在△BMN 和△BCA 中,∠B=∠B ,∠BMN=∠BCA ,∴△BMN ∽△BCA ,∴MN AC =BN AB ,即MN 10=54154, ∴MN=√103,∴OH=43,MN=√103. 25.(1)①证明:∵四边形ABCD 是正方形, ∴∠BCD=90°,∠BCA=45°,∵GE ⊥BC ,GF ⊥CD ,∴∠CEG=∠CFG=∠ECF=90°,∴四边形CEGF 是矩形,∠CGE=∠ECG=45°, ∴EG=EC ,∴四边形CEGF 是正方形.②解:由①知四边形CEGF 是正方形,∴∠CEG=∠B=90°,∠ECG=45°,∴GE ∥AB ,CG CE =√2,∴AG BE =CG CE=√2. (2)解:如图,连接CG ,由旋转性质知∠BCE=∠ACG=α,在Rt △CEG 和Rt △CBA 中,CE CG =cos 45°=√22,CB CA =cos 45°=√22, ∴CG CE =CA CB=√2, ∴△ACG ∽△BCE ,∴AG BE =CA CB=√2, ∴线段AG 与BE 之间的数量关系为AG=√2BE.(3)解:∵∠CEF=45°,点B ,E ,F 三点共线, ∴∠BEC=135°,∵△ACG ∽△BCE ,∴∠AGC=∠BEC=135°,∴∠AGH=45°=∠CAH , ∵∠CHA=∠AHG ,∴△AHG ∽△CHA ,∴AG AC =GH AH =AH CH, 设BC=CD=AD=a ,则AC=√2a ,由AG AC =GH AH ,得√2a =2√2AH ,∴AH=23a ,∴DH=AD -AH=13a ,∴CH=√CD 2+DH 2=√103a , 由AG AC =AH CH ,得√2a =23a √103a , 解得a=3 √5,即BC=3 √5.。

2020年广东省实验中学中考数学一模试卷(解析版)

2020年广东省实验中学中考数学一模试卷(解析版)

2020年广东省实验中学中考数学一模试卷一.选择题(共10小题)1.0这个数()A.是正数B.是负数C.不是有理数D.是整数2.新冠病毒(2019﹣nCoV)是一种新的Sarbecovirus亚属的β冠状病毒,它是一类具有囊膜的正链单股RNA病毒,其遗传物质是所有RNA病毒中最大的,也是自然界广泛存在的一大类病毒.其粒子形状并不规则,直径约60﹣220nm,平均直径为100nm(纳米).1米=109纳米,100nm可以表示为()米.A.0.1×10﹣6B.10×10﹣8C.1×10﹣7D.1×10113.下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.﹣2与D.2与|﹣2|4.下列计算,正确的是()A.x4﹣x3=x B.x5÷x3=x2C.x•x3=x3D.(xy2)2=xy4 5.在下列因式分解的过程中,分解因式正确的是()A.x2+2x+4=(x+2)2B.x2﹣4=(x+4)(x﹣4)C.x2﹣4x+4=(x﹣2)2D.x2+4=(x+2)26.已知x=3是关于x的方程ax+2x﹣3=0的解,则a的值为()A.﹣1B.﹣2C.﹣3D.17.将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为()A.y=2(x+2)2+3B.y=2(x﹣2)2+3C.y=2(x﹣2)2﹣3D.y=2(x+2)2﹣38.已知反比例函数图象如图所示,下列说法正确的是()A.k>0B.y随x的增大而减小C.若矩形OABC面积为2,则k=2D.若图象上两个点的坐标分别是M(﹣2,y1),N(﹣1,y2),则y1<y29.如图,在长方形ABCD中,放入六个形状大小相同的长方形,所标尺寸如图所示,则图中阴影部分面积为()A.44cm2B.36cm2C.96cm2D.84cm210.关于x的一元二次方程kx2﹣2x+1=0有两个实数根,那么实数k的取值范围是()A.k≤1B.k<1且k≠0C.k≤1且k≠0D.k≥1二.填空题(共6小题)11.使式子有意义的x的取值范围是.12.把多项式9m2﹣36n2分解因式的结果是.13.在平面直角坐标系中,若点M(﹣2,3)与点N(x,3)之间的距离是5,则x的值是.14.已知函数y=﹣x2﹣2x,当时,函数值y随x的增大而增大.15.实数a在数轴上的位置如图所示,化简|a﹣2|+=.16.二次函数y=ax2+bx+c(a<0)的图象与x轴的两个交点A、B的横坐标分别为﹣3、1,与y轴交于点C,下面四个结论:①16a+4b+c>0:②若P(﹣5,y1),Q(,y2)是函数图象上的两点,则y1<y2;③c=3a;④若△ABC是等腰三角形,则b=﹣或﹣.其中正确的有.(请将正确结论的序号全部填在横线上)三.解答题(共9小题)17.计算:.18.解方程:.19.先化简,再求值:,再从不等式组<x<中选取一个你认为合适的整数作为x的值代入求值.20.对于实数a,b,定义新运算“*”:a*b=,例如:4*2,因为4>2,所以4*2=42﹣4×2=8.(1)求(﹣7)*(﹣2)的值;(2)若x1,x2是一元次方程x2﹣5x﹣6=0的两个根,求x1*x2的值.21.某单位计划从商店购买同一种品牌的钢笔和笔记本,已知购买一支钢笔比购买一个笔记本多用20元,若用1500元购买钢笔和用600元购买笔记本,则购买钢笔的数量是购买笔记本数量的一半.(1)求购买一支钢笔、一个笔记本各需要多少元?(2)经商谈,商店给予优惠,优惠方式是每购买一支钢笔赠送一个笔记本;如果此单位需要笔记本的数量是钢笔数量的3倍还少6个,且购买钢笔和笔记本的总费用不超过1020元,那么最多可购买多少支钢笔?22.一次函数y=kx+6与二次函数y=ax2+c的图象的一个交点坐标为(1,2),另一个交点是该二次函数图象的顶点.(1)求k,a,c的值;(2)过点A(0,m)(0<m<6)且垂直于y轴的直线与二次函数y=ax2+c的图象相交于B,C两点,点O为坐标原点,记W=OA2+BC2,求W关于m的函数解析式,并求W 的最小值.23.如图,一次函数y1=k1x+4与反比例函数y2=的图象交于点A(2,m)和B(﹣6,﹣2),与y轴交于点C.(1)k1=,k2=;(2)根据函数图象知,①当y1>y2时,x的取值范围是;②当x为时,y2>﹣2x.(3)过点A作AD⊥x轴于点D,点P是反比例函数在第一象限的图象上一点,设直线OP与线段AD交于点E,当S四边形ODAC:S△ODE=4:1时,求点P的坐标.(4)点M是y轴上的一个动点,当△MBC为直角三角形时,直接写出点M的坐标.24.如图,抛物线y=ax2+bx(a>0)过点E(8,0),矩形ABCD的边AB在线段OE上(点A在点B的左侧),点C、D在抛物线上,∠BAD的平分线AM交BC于点M,点N是CD的中点,已知OA=2,且OA:AD=1:3.(1)求抛物线的解析式;(2)F、G分别为x轴,y轴上的动点,顺次连接M、N、G、F构成四边形MNGF,求四边形MNGF周长的最小值;(3)在x轴下方且在抛物线上是否存在点P,使△ODP中OD边上的高为?若存在,求出点P的坐标;若不存在,请说明理由;(4)矩形ABCD不动,将抛物线向右平移,当平移后的抛物线与矩形的边有两个交点K、L,且直线KL平分矩形的面积时,求抛物线平移的距离.25.已知抛物线y=x2﹣bx+c(b,c为常数,b>0)经过点A(﹣1,0),点M(m,0)是x轴正半轴上的动点.(1)当b=2时,求抛物线的顶点坐标;(2)点D(b,y D)在抛物线上,当AM=AD,m=3时,求b的值;(3)点Q(b+,y Q)在抛物线上,当AM+2QM的最小值为时,求b的值.(说明:y D表示D点的纵坐标,y Q表示Q点的纵坐标)2020年广东省实验中学中考数学一模试卷参考答案与试题解析一.选择题(共10小题)1.0这个数()A.是正数B.是负数C.不是有理数D.是整数【分析】根据0的意义,可得答案.【解答】解:A、0不是正数也不是负数,故A错误;B、0不是正数也不是负数,故B错误;C、0是有理数,故C错误;D、0是整数,故D正确.故选:D.2.新冠病毒(2019﹣nCoV)是一种新的Sarbecovirus亚属的β冠状病毒,它是一类具有囊膜的正链单股RNA病毒,其遗传物质是所有RNA病毒中最大的,也是自然界广泛存在的一大类病毒.其粒子形状并不规则,直径约60﹣220nm,平均直径为100nm(纳米).1米=109纳米,100nm可以表示为()米.A.0.1×10﹣6B.10×10﹣8C.1×10﹣7D.1×1011【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:100nm=100×10﹣9m=1×10﹣7m.故选:C.3.下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.﹣2与D.2与|﹣2|【分析】根据只有符号不同的两个数叫做互为相反数对各选项分析判断后利用排除法求解.【解答】解:A、=2,﹣2与是互为相反数,故本选项正确;B、=﹣2,﹣2与相等,不是互为相反数,故本选项错误;C、﹣2与﹣是互为倒数,不是互为相反数,故本选项错误;D、|﹣2|=2,2与|﹣2|相等,不是互为相反数,故本选项错误.故选:A.4.下列计算,正确的是()A.x4﹣x3=x B.x5÷x3=x2C.x•x3=x3D.(xy2)2=xy4【分析】根据同底数幂的除法,可判断还能A、B,根据同底数幂的乘法底数不变指数相加,可判断C,根据积的乘方,可判断D.【解答】解:A、不是同底数幂的除法指数不能相减,故A错误;B、同底数幂的除法底数不变指数相减,故B正确;C、同底数幂的乘法底数不变指数相加,故C错误;D、积的乘方等于乘方的积,故D错误;故选:B.5.在下列因式分解的过程中,分解因式正确的是()A.x2+2x+4=(x+2)2B.x2﹣4=(x+4)(x﹣4)C.x2﹣4x+4=(x﹣2)2D.x2+4=(x+2)2【分析】各项分解得到结果,即可作出判断.【解答】解:A、原式不能分解,不符合题意;B、原式=(x+2)(x﹣2),不符合题意;C、原式=(x﹣2)2,符合题意;D、原式不能分解,不符合题意,故选:C.6.已知x=3是关于x的方程ax+2x﹣3=0的解,则a的值为()A.﹣1B.﹣2C.﹣3D.1【分析】根据方程的解为x=3,将x=3代入方程即可求出a的值.【解答】解:将x=3代入方程得:3a+2×3﹣3=0,解得:a=﹣1.故选:A.7.将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为()A.y=2(x+2)2+3B.y=2(x﹣2)2+3C.y=2(x﹣2)2﹣3D.y=2(x+2)2﹣3【分析】根据“上加下减、左加右减”的原则进行解答即可.【解答】解:将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度,得到的抛物线的解析式为y=2(x﹣2)2+3,故选:B.8.已知反比例函数图象如图所示,下列说法正确的是()A.k>0B.y随x的增大而减小C.若矩形OABC面积为2,则k=2D.若图象上两个点的坐标分别是M(﹣2,y1),N(﹣1,y2),则y1<y2【分析】由反比例函数的图象可得k<0,y随x的增大而增大;由矩形OABC面积为2,可得k=﹣2.【解答】解:如图,k<0,y随x的增大而增大;∵矩形OABC面积为2,k=﹣2,故选:D.9.如图,在长方形ABCD中,放入六个形状大小相同的长方形,所标尺寸如图所示,则图中阴影部分面积为()A.44cm2B.36cm2C.96cm2D.84cm2【分析】设小长方形的长为xcm,宽为ycm,观察图形,可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再利用阴影部分的面积=大长方形的面积﹣6×小长方形的面积,即可求出结论.【解答】解:设小长方形的长为xcm,宽为ycm,依题意,得:,解得:,∴14×(6+2×2)﹣6×8×2=44(cm2).故选:A.10.关于x的一元二次方程kx2﹣2x+1=0有两个实数根,那么实数k的取值范围是()A.k≤1B.k<1且k≠0C.k≤1且k≠0D.k≥1【分析】若一元二次方程有两不等实数根,则根的判别式△=b2﹣4ac≥0,建立关于k 的不等式,求出k的取值范围.还要注意二次项系数不为0.【解答】解:∵关于x的一元二次方程kx2﹣2x+1=0有两个实数根,∴根的判别式△=b2﹣4ac=4﹣4k≥0,且k≠0.即k≤1且k≠0.故选:C.二.填空题(共6小题)11.使式子有意义的x的取值范围是x≥﹣.【分析】二次根式的被开方数是非负数.【解答】解:根据题意,得2x+1≥0,解得,x≥﹣.故答案是:x≥﹣.12.把多项式9m2﹣36n2分解因式的结果是9(m﹣2n)(m+2n),.【分析】首先提公因式9,再利用平方差进行二次分解即可.【解答】解:原式=9(m2﹣4n2)=9(m﹣2n)(m+2n),故答案为:9(m﹣2n)(m+2n).13.在平面直角坐标系中,若点M(﹣2,3)与点N(x,3)之间的距离是5,则x的值是﹣7或3.【分析】点M、N的纵坐标相等,则直线MN在平行于x轴的直线上,根据两点间的距离,可列出等式|x+2|=5,从而解得x的值.【解答】解:∵点M(﹣2,3)与点N(x,3)之间的距离是5,∴|x+2|=5,解得x=﹣7或3.故答案为:﹣7或3.14.已知函数y=﹣x2﹣2x,当x<﹣1时,函数值y随x的增大而增大.【分析】先运用配方法将抛物线写成顶点式y=﹣(x+1)2+1,由于a=﹣1<0,抛物线开口向下,对称轴为直线x=1,根据抛物线的性质可知当x<﹣1时,y随x的增大而增大,即可求出.【解答】解:∵y=﹣x2﹣2x=﹣(x+1)2+1,a=﹣1<0,抛物线开口向下,对称轴为直线x=﹣1,∴当x<﹣1时,y随x的增大而增大,故答案为:x<﹣1.15.实数a在数轴上的位置如图所示,化简|a﹣2|+=2.【分析】先根据点a在数轴上的位置判断出其大小,再去绝对值符号,合并同类项即可.【解答】解:∵由图可知,2<a<4,∴原式=a﹣2+=a﹣2+4﹣a=2.故答案为:2.16.二次函数y=ax2+bx+c(a<0)的图象与x轴的两个交点A、B的横坐标分别为﹣3、1,与y轴交于点C,下面四个结论:①16a+4b+c>0:②若P(﹣5,y1),Q(,y2)是函数图象上的两点,则y1<y2;③c=3a;④若△ABC是等腰三角形,则b=﹣或﹣.其中正确的有①④.(请将正确结论的序号全部填在横线上)【分析】①根据抛物线开口方向和与x轴的两交点可知:当x=﹣4时,y<0,即16a﹣4b+c<0;②根据图象与x轴的交点A、B的横坐标分别为﹣3,1确定对称轴是:x=﹣1,可得:(﹣4.5,y3)与Q(,y2)是对称点,所以y1<y2;③根据对称轴和x=1时,y=0可得结论;④要使△ACB为等腰三角形,则必须保证AB=BC=4或AB=AC=4或AC=BC,先计算c的值,再联立方程组可得结论.【解答】解:①∵a<0,∴抛物线开口向下,∵图象与x轴的交点A、B的横坐标分别为﹣3,1,∴当x=﹣4时,y<0,即16a﹣4b+c<0;故①正确,符合题意;②∵图象与x轴的交点A、B的横坐标分别为﹣3,1,∴抛物线的对称轴是:x=﹣1,∵P(﹣5,y1),Q(,y2),﹣1﹣(﹣5)=4,﹣(﹣1)=3.5,由对称性得:(﹣4.5,y3)与Q(,y2)是对称点,∴则y1<y2;故②不正确,不符合题意;③∵﹣=﹣1,∴b=2a,当x=1时,y=0,即a+b+c=0,∴3a+c=0,∴c=﹣3a,故③错误,不符合题意;④要使△ACB为等腰三角形,则必须保证AB=BC=4或AB=AC=4或AC=BC,当AB=BC=4时,∵BO=1,△BOC为直角三角形,又∵OC的长即为|c|,∴c2=16﹣1=15,∵由抛物线与y轴的交点在y轴的正半轴上,∴c=,与b=2a、a+b+c=0联立组成解方程组,解得b=﹣;同理当AB=AC=4时,∵AO=3,△AOC为直角三角形,又∵OC的长即为|c|,∴c2=16﹣9=7,∵由抛物线与y轴的交点在y轴的正半轴上,∴c=,与b=2a、a+b+c=0联立组成解方程组,解得b=﹣;同理当AC=BC时,在△AOC中,AC2=9+c2,在△BOC中,BC2=c2+1,∵AC=BC,∴1+c2=c2+9,此方程无实数解.经解方程组可知有两个b值满足条件.故④正确,符合题意.综上所述,正确的结论是①④.故答案是:①④.三.解答题(共9小题)17.计算:.【分析】根据负整数指数幂、零指数幂、绝对值的意义计算,然后分母有理化后合并即可.【解答】解:原式=2×1+﹣=2.18.解方程:.【分析】观察可得最简公分母是(x﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘(x﹣1),得:x+1=﹣(x﹣3)+x﹣1,解得:x=1.检验:把x=1代入(x﹣1)=0,即x=1不是原分式方程的解.则原分式方程无解.19.先化简,再求值:,再从不等式组<x<中选取一个你认为合适的整数作为x的值代入求值.【分析】首先计算括号里面分式的加法,然后再计算括号外分式的除法,化简后,再确定x的值,然后代入x的值可得答案.【解答】解:原式=[+]•,=•,=•,=,∵x+1≠0,x﹣1≠0,x≠0,∴x≠±1和0,∴选x=2,当x=2时,原式==1.20.对于实数a,b,定义新运算“*”:a*b=,例如:4*2,因为4>2,所以4*2=42﹣4×2=8.(1)求(﹣7)*(﹣2)的值;(2)若x1,x2是一元次方程x2﹣5x﹣6=0的两个根,求x1*x2的值.【分析】(1)根据题中的新定义化简,计算即可得到结果;(2)求出已知方程的解得到x1与x2的值,利用题中新定义计算即可得到结果.【解答】解:(1)∵﹣7<﹣2,∴(﹣7)*(﹣2)=14﹣4=10;(2)方程x2﹣5x﹣6=0变形得:(x+1)(x﹣6)=0,解得:x=﹣1或x=6,当x1=﹣1,x2=6时,x1*x2=﹣6﹣36=﹣42;当x1=6,x2=﹣1时,x1*x2=36+6=42.21.某单位计划从商店购买同一种品牌的钢笔和笔记本,已知购买一支钢笔比购买一个笔记本多用20元,若用1500元购买钢笔和用600元购买笔记本,则购买钢笔的数量是购买笔记本数量的一半.(1)求购买一支钢笔、一个笔记本各需要多少元?(2)经商谈,商店给予优惠,优惠方式是每购买一支钢笔赠送一个笔记本;如果此单位需要笔记本的数量是钢笔数量的3倍还少6个,且购买钢笔和笔记本的总费用不超过1020元,那么最多可购买多少支钢笔?【分析】(1)设购买一个笔记本需要x元,则购买一支钢笔需要(x+20)元,根据数量=总价÷单价结合用1500元购买钢笔的数量是用600元购买笔记本数量的一半,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买m支钢笔,则购买(3m﹣6)个笔记本,根据总价=单价×数量结合总费用不超过1020元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.【解答】解:(1)设购买一个笔记本需要x元,则购买一支钢笔需要(x+20)元,依题意,得:2×=,解得:x=5,经检验,x=5是原分式方程的解,且符合题意,∴x+20=25.答:购买一支钢笔需要25元,购买一个笔记本需要5元.(2)设购买m支钢笔,则购买(3m﹣6)个笔记本,依题意,得:25m+5(3m﹣6﹣m)≤1020,解得:m≤30.答:最多可购买30支钢笔.22.一次函数y=kx+6与二次函数y=ax2+c的图象的一个交点坐标为(1,2),另一个交点是该二次函数图象的顶点.(1)求k,a,c的值;(2)过点A(0,m)(0<m<6)且垂直于y轴的直线与二次函数y=ax2+c的图象相交于B,C两点,点O为坐标原点,记W=OA2+BC2,求W关于m的函数解析式,并求W 的最小值.【分析】(1)由交点为(1,2),代入y=kx+6,可求得k,由y=ax2+c可知,二次函数的顶点在y轴上,即x=0,则可求得顶点的坐标,从而可求c值,最后可求a的值(2)由(1)得二次函数解析式为y=﹣4x2+6,令y=m,得4x2+m﹣6=0,可求x的值,再利用根与系数的关系式,即可求解.【解答】解:(1)由题意得,k+6=2,解得k=﹣4,又∵二次函数顶点为(0,6),∴c=6,把(1,2)代入二次函数表达式得a+c=2,解得a=﹣4;(2)由(1)得二次函数解析式为y=﹣4x2+6,令y=m,得4x2+m﹣6=0,∴x=±=±,设B,C两点的坐标分别为(x1,m)(x2,m),则BC=|x1﹣x2|=2×=,∴W=OA2+BC2=m2+6﹣m=+,∴当m=时,W取得最小值.23.如图,一次函数y1=k1x+4与反比例函数y2=的图象交于点A(2,m)和B(﹣6,﹣2),与y轴交于点C.(1)k1=1,k2=12;(2)根据函数图象知,①当y1>y2时,x的取值范围是﹣6<x<0或x>2;②当x为x>0时,y2>﹣2x.(3)过点A作AD⊥x轴于点D,点P是反比例函数在第一象限的图象上一点,设直线OP与线段AD交于点E,当S四边形ODAC:S△ODE=4:1时,求点P的坐标.(4)点M是y轴上的一个动点,当△MBC为直角三角形时,直接写出点M的坐标.【分析】(1)根据点B的坐标,利用待定系数法即可求出k1、k2的值;(2)观察两函数图象的上下位置关系,由此即可得出不等式的解集;(3)根据一次函数图象上点的坐标特征求出点A、C的坐标,根据梯形的面积公式求出S四边形ODAC的值,进而即可得出S△ODE的值,结合三角形的面积公式即可得出点E的坐标,利用待定系数法即可求出直线OP的解析式,再联立直线OP与双曲线的解析式成方程组,通过解方程组求出点P的坐标;(4)分∠CMB=90°或∠CBM=90°两种情况考虑,当∠CMB=90°时,根据点B的坐标即可找出点M的坐标;当∠CBM=90°时,由直线AB的解析式可得出△BCM为等腰直角三角形,根据等腰直角三角形的性质结合点A、B的坐标即可得出点M的坐标.综上即可得出结论.【解答】解:(1)将点B(﹣6,﹣2)代入y1=k1x+4,﹣2=﹣6k1+4,解得:k1=1;将点B(﹣6,﹣2)代入y2=①,﹣2=,解得:k2=12.故答案为:1;12.(2)①观察函数图象可知:当﹣6<x<0或x>2时,一次函数图象在反比例函数图象上方,∴当y1>y2时,x的取值范围是﹣6<x<0或x>2.故答案为:﹣6<x<0或x>2.②过点O作直线l:y=﹣2x,如图1所示.观察图形可知:x>0时,反比例函数图象在直线l上方,故答案为:x>0.(3)依照题意,画出图形,如图2所示.当x=2时,m=x+4=6,∴点A的坐标为(2,6);当x=0时,y1=x+4=4,∴点C的坐标为(0,4).∵S四边形ODAC=(OC+AD)•OD=×(4+6)×2=10,S四边形ODAC:S△ODE=4:1,∴S△ODE=OD•DE=×2DE=10×,∴DE=2.5,即点E的坐标为(2,2.5).设直线OP的解析式为y=kx,将点E(2,2.5)代入y=kx,得2.5=2k,解得:k=,∴直线OP的解析式为y=x②.联立①②并解得:,,∵点P在第一象限,∴点P的坐标为(,).(4)依照题意画出图形,如图3所示.当∠CMB=90°时,BM∥x轴,∴点M的坐标为(0,﹣2);当∠CBM=90°时,∵直线AC的解析式为y=x+4,∴∠BCM=45°,∴△BCM为等腰直角三角形,∴CM=﹣2x B=12,∴点M的坐标为(0,﹣8).综上所述:当△MBC为直角三角形时,点M的坐标为(0,﹣2)或(0,﹣8).24.如图,抛物线y=ax2+bx(a>0)过点E(8,0),矩形ABCD的边AB在线段OE上(点A在点B的左侧),点C、D在抛物线上,∠BAD的平分线AM交BC于点M,点N是CD的中点,已知OA=2,且OA:AD=1:3.(1)求抛物线的解析式;(2)F、G分别为x轴,y轴上的动点,顺次连接M、N、G、F构成四边形MNGF,求四边形MNGF周长的最小值;(3)在x轴下方且在抛物线上是否存在点P,使△ODP中OD边上的高为?若存在,求出点P的坐标;若不存在,请说明理由;(4)矩形ABCD不动,将抛物线向右平移,当平移后的抛物线与矩形的边有两个交点K、L,且直线KL平分矩形的面积时,求抛物线平移的距离.【分析】(1)由点E在x轴正半轴且点A在线段OE上得到点A在x轴正半轴上,所以A(2,0);由OA=2,且OA:AD=1:3得AD=6.由于四边形ABCD为矩形,故有AD⊥AB,所以点D在第四象限,横坐标与A的横坐标相同,进而得到点D坐标.由抛物线经过点D、E,用待定系数法即求出其解析式.(2)画出四边形MNGF,由于点F、G分别在x轴、y轴上运动,故可作点M关于x轴的对称点点M',作点N关于y轴的对称点点N',得FM=FM'、GN=GN'.易得当M'、F、G、N'在同一直线上时N'G+GF+FM'=M'N'最小,故四边形MNGF周长最小值等于MN+M'N'.根据矩形性质、抛物线线性质等条件求出点M、M'、N、N'坐标,即求得答案.(3)因为OD可求,且已知△ODP中OD边上的高,故可求△ODP的面积.又因为△ODP的面积常规求法是过点P作PQ平行y轴交直线OD于点Q,把△ODP拆分为△OPQ 与△DPQ的和或差来计算,故存在等量关系.设点P坐标为t,用t表示PE的长即列得方程.求得t的值要讨论是否满足点P在x轴下方的条件.(4)由KL平分矩形ABCD的面积可得K在线段AB上、L在线段CD上,画出平移后的抛物线可知,点K由点O平移得到,点L由点D平移得到,故有K(m,0),L(2+m,﹣6).易证KL平分矩形面积时,KL一定经过矩形的中心H且被H平分,求出H坐标为(4,﹣3),由中点坐标公式即求得m的值.【解答】解:(1)∵点A在线段OE上,E(8,0),OA=2∴A(2,0)∵OA:AD=1:3∴AD=3OA=6∵四边形ABCD是矩形∴AD⊥AB∴D(2,﹣6)∵抛物线y=ax2+bx经过点D、E∴解得:∴抛物线的解析式为y=x2﹣4x(2)如图1,作点M关于x轴的对称点点M',作点N关于y轴的对称点点N',连接FM'、GN'、M'N'∵y=x2﹣4x=(x﹣4)2﹣8∴抛物线对称轴为直线x=4∵点C、D在抛物线上,且CD∥x轴,D(2,﹣6)∴y C=y D=﹣6,即点C、D关于直线x=4对称∴x C=4+(4﹣x D)=4+4﹣2=6,即C(6,﹣6)∴AB=CD=4,B(6,0)∵AM平分∠BAD,∠BAD=∠ABM=90°∴∠BAM=45°∴BM=AB=4∴M(6,﹣4)∵点M、M'关于x轴对称,点F在x轴上∴M'(6,4),FM=FM'∵N为CD中点∴N(4,﹣6)∵点N、N'关于y轴对称,点G在y轴上∴N'(﹣4,﹣6),GN=GN,∴C四边形MNGF=MN+NG+GF+FM=MN+N'G+GF+FM'∵当M'、F、G、N'在同一直线上时,N'G+GF+FM'=M'N'最小∴C四边形MNGF=MN+M'N'==2+10=12∴四边形MNGF周长最小值为12.(3)存在点P,使△ODP中OD边上的高为.过点P作PQ∥y轴交直线OD于点Q,∵D(2,﹣6)∴OD=,直线OD解析式为y=﹣3x,设点P坐标为(t,t2﹣4t)(0<t<8),则点Q(t,﹣3t),①如图2,当0<t<2时,点P在点D左侧,∴PQ=y Q﹣y P=﹣3t﹣(t2﹣4t)=﹣t2+t,∴S△ODP=S△OPQ+S△DPQ=PQ•x P+PQ•(x D﹣x P)=PQ(x P+x D﹣x P)=PQ•x D=PQ=﹣t2+t∵△ODP中OD边上的高h=,∴S△ODP=OD•h,∴﹣t2+t=×2×,方程无解②如图3,当2<t<8时,点P在点D右侧∴PE=y P﹣y E=t2﹣4t﹣(﹣3t)=t2﹣t∴S△ODP=S△OPQ﹣S△DPQ=PQ•x P﹣PQ•(x P﹣x D)=PQ(x P﹣x P+x D)=PQ•x D =t2﹣t∴t2﹣t=×2×解得:t1=﹣4(舍去),t2=6∴P(6,﹣6)综上所述,点P坐标为(6,﹣6)满足使△ODP中OD边上的高为.(4)设抛物线向右平移m个单位长度后与矩形ABCD有交点K、L∵KL平分矩形ABCD的面积∴K在线段AB上,L在线段CD上,如图4∴K(m,0),L(2+m,﹣6)连接AC,交KL于点H∵S△ACD=S四边形ADLK=S矩形ABCD∴S△AHK=S△CHL∵AK∥LC∴△AHK∽△CHL∴∴AH=CH,即点H为AC中点∴H(4,﹣3)也是KL中点∴∴m=3∴抛物线平移的距离为3个单位长度.25.已知抛物线y=x2﹣bx+c(b,c为常数,b>0)经过点A(﹣1,0),点M(m,0)是x轴正半轴上的动点.(1)当b=2时,求抛物线的顶点坐标;(2)点D(b,y D)在抛物线上,当AM=AD,m=3时,求b的值;(3)点Q(b+,y Q)在抛物线上,当AM+2QM的最小值为时,求b的值.(说明:y D表示D点的纵坐标,y Q表示Q点的纵坐标)【分析】(1)将点A(﹣1,0)代入y=x2﹣bx+c,求出c关于b的代数式,再将b代入即可求出c的值,可进一步写出抛物线解析式及顶点坐标;(2)将点D(b,y D)代入抛物线y=x2﹣bx﹣b﹣1,求出点D纵坐标为﹣b﹣1,由b>0判断出点D(b,﹣b﹣1)在第四象限,且在抛物线对称轴x=的右侧,过点D作DE ⊥x轴,可证△ADE为等腰直角三角形,利用锐角三角函数可求出b的值;(3)将点Q(b+,y Q)代入抛物线y=x2﹣bx﹣b﹣1,求出Q纵坐标为﹣﹣,可知点Q(b+,﹣﹣)在第四象限,且在直线x=b的右侧,点N(0,1),过点Q 作直线AN的垂线,垂足为G,QG与x轴相交于点M,过点Q作QH⊥x轴于点H,则点H(b+,0),在Rt△MQH中,可知∠QMH=∠MQH=45°,设点M(m,0),则可用含b的代数式表示m,因为AM+2QM=,可得方程[(﹣)﹣(﹣1)]+2•[(b+)﹣(﹣)]=,即可求解.【解答】解:(1)∵抛物线y=x2﹣bx+c经过点A(﹣1,0),∴1+b+c=0,即c=﹣b﹣1,当b=2时,y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的顶点坐标为(1,﹣4);(2)由(1)知,抛物线的解析式为y=x2﹣bx﹣b﹣1,∵点D(b,y D)在抛物线y=x2﹣bx﹣b﹣1上,∴y D=b2﹣b•b﹣b﹣1=﹣b﹣1,由b>0,得b>>0,﹣b﹣1<0,∴点D(b,﹣b﹣1)在第四象限,且在抛物线对称轴x=的右侧,如图1,过点D作DE⊥x轴,垂足为E,则点E(b,0),∴AE=b+1,DE=b+1,得AE=DE,∴在Rt△ADE中,∠ADE=∠DAE=45°,∴AD=AE,由已知AM=AD,m=3,∴3﹣(﹣1)=(b+1),∴b=2﹣1;(3)∵点Q(b+,y Q)在抛物线y=x2﹣bx﹣b﹣1上,∴y Q=(b+)2﹣b(b+)﹣b﹣1=﹣﹣,可知点Q(b+,﹣﹣)在第四象限,且在直线x=b的右侧,∵AM+2QM=2(AM+QM),∴可取点N(0,1),如图2,过点Q作直线AN的垂线,垂足为G,QG与x轴相交于点M,由∠GAM=45°,得AM=GM,则此时点M满足题意,过点Q作QH⊥x轴于点H,则点H(b+,0),在Rt△MQH中,可知∠QMH=∠MQH=45°,∴QH=MH,QM=MH,∵点M(m,0),∴0﹣(﹣﹣)=(b+)﹣m,解得,m=﹣,∵AM+2QM=,∴[(﹣)﹣(﹣1)]+2•[(b+)﹣(﹣)]=,∴b=6.。

广东省实验中学2020年中考数学一模试题有答案精析

广东省实验中学2020年中考数学一模试题有答案精析

广东省实验中学2020年中考数学一模试卷(解析版)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的4个选项中只有一项释符合题目要求的)1.2的倒数是()A.2 B.﹣2 C. D.﹣2.下列图形中,不是中心对称图形有()A. B. C. D.3.数据5,7,8,8,9的众数是()A.5 B.7 C.8 D.9、4.下列四个几何体中,主视图是三角形的是()A. B. C. D.5.下列计算正确的是()A.3a﹣a=3 B.a2+a2=a4C.(3a)﹣(2a)=6a D.(a2)3=a66.函数y=中自变量x的取值范围是()A.x≥﹣3 B.x≥﹣3且x≠1 C.x≠1 D.x≠﹣3且x≠17.如图,⊙O的半径为1,A、B、C是圆周上的三点,∠BAC=36°,则劣弧BC的长是()A. B. C. D.8.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为()A. B. C. D.9.二次函数y=ax2+bx+c的图象如图所示,反比例函数与正比例函数y=bx在同一坐标系内的大致图象是()A. B. C. D.10.如图,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,…则第⑩个图形中平行四边形的个数是()A.54 B.110 C.19 D.109二、填空题(本大题共6小题,每小题3分,共18分)11.分解因式:2a2+4a=.12.正n边形的一个外角的度数为60°,则n的值为.13.已知一次函数y=(m+2)x+3,若y随x值增大而增大,则m的取值范围是.14.关于x的一元二次方程x2+(m﹣2)x+m+1=0有两个相等的实数根,则m的值是.15.如图,将矩形纸片ABCD沿EF折叠,使点B与CD的中点B'重合.若AB=2,BC=3,则△FCB'与△B'DG的面积比为.16.如图,四边形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为.三、解答题17.(9分)解方程:18.(9分)先化简,再求值:(a+1)2﹣(a+1)(a﹣1),其中,a=﹣1.19.(10分)以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD.(尺规作图,不写作法,保留作图痕迹)20.(10分)我市某养殖场计划购买甲、乙两种鱼苗700尾,甲种鱼苗每尾3元,乙种鱼苗每尾5元.(1)若购买这两种鱼苗共用去2500元,则甲、乙两种鱼苗各购买多少尾?(2)购买甲种鱼苗不超过280尾,应如何选购鱼苗,使购买鱼苗的费用最低?并求出最低费用.21.(12分)王老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调查,并将调查结果分成四类,A:优秀;B:良好;C:合格;D:一般;并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,王老师一共调查了名同学,其中C类女生有名,D类男生有名;(2)将上面的条形统计图补充完整;(3)从被调查的A类和D类学生中分别选取一位同学进行“一对一”互助学习,请求出所选两位同学恰好是一位男同学和一位女同学的概率.22.(12分)如图,已知一次函数y=kx+b的图象交反比例函数y=(x>0)图象于点A、B,交x轴于点C.(1)求m得取值范围;(2)若点A的坐标是(2,﹣4),且=,求m的值和一次函数的解析式.23.(12分)已知如图,△ABC中AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B、M两点的⊙O交BC于G,交AB于点F,FB恰为⊙O的直径.(1)求证:AE与⊙O相切;(2)当BC=6,cosC=,求⊙O的直径.24.(14分)如图①,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以每秒1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,点P,Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t妙(t≥0).(1)若三角形CPQ是等腰三角形,求t的值.(2)如图②,过点P作PD∥BC,交AB于点D,连接PQ;①是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由,并探究如何改变点Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度.②当t取何值时,△CPQ的外接圆面积的最小?并且说明此时△CPQ的外接圆与直线AB 的位置关系?25.(14分)已知抛物线y=﹣x2+3x+4交y轴于点A,交x轴于点B,C(点B在点C的右侧).过点A作垂直于y轴的直线l.在位于直线l下方的抛物线上任取一点P,过点P 作直线PQ平行于y轴交直线l于点Q.连接AP.(1)写出A,B,C三点的坐标;(2)若点P位于抛物线的对称轴的右侧:①如果以A,P,Q三点构成的三角形与△AOC相似,求出点P的坐标;②若将△APQ沿AP对折,点Q的对应点为点M.是否存在点P,使得点M落在x轴上?若存在,求出点P的坐标;若不存在,请说明理由;③设AP的中点是R,其坐标是(m,n),请直接写出m和n的关系式,并写出m的取值范围.2020年广东省实验中学中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的4个选项中只有一项释符合题目要求的)1.2的倒数是()A.2 B.﹣2 C. D.﹣【考点】倒数.【分析】直接根据倒数的定义进行解答即可.【解答】解:∵2×=1,∴2的倒数是.故选C.【点评】本题考查的是倒数的定义,即乘积是1的两数互为倒数.2.下列图形中,不是中心对称图形有()A. B. C. D.【考点】中心对称图形.【分析】根据中心对称图形的概念求解.【解答】解:A、是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项正确.故选D.【点评】本题考查了中心对称图形的知识,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.3.数据5,7,8,8,9的众数是()A.5 B.7 C.8 D.9、【考点】众数.【分析】根据众数是一组数据中出现次数最多的数据解答即可.【解答】解:数据5、7、8、8、9中8出现了2次,且次数最多,所以众数是8.故选C.【点评】本题考查了众数的定义,熟记定义是解题的关键,需要注意,众数有时候可以不止一个.4.下列四个几何体中,主视图是三角形的是()A. B. C. D.【考点】简单几何体的三视图.【分析】主视图是从几何体的正面看,主视图是三角形的一定是一个锥体,是长方形的一定是柱体,由此分析可得答案.【解答】解:主视图是三角形的一定是一个锥体,只有B是锥体.故选:B.【点评】此题主要考查了几何体的三视图,主要考查同学们的空间想象能力.5.下列计算正确的是()A.3a﹣a=3 B.a2+a2=a4C.(3a)﹣(2a)=6a D.(a2)3=a6【考点】幂的乘方与积的乘方;合并同类项.【分析】A:合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.B:合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.C:合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.D:幂的乘方,底数不变,指数相乘.【解答】解:∵3a﹣a=2a,∴选项A不正确;∵a2+a2=2a2,∴选项B不正确;∵(3a)﹣(2a)=a,∴选项C不正确;∵(a2)3=a6,∴选项D正确.故选:D.【点评】此题主要考查了幂的乘方与积的乘方、合并同类项的方法,熟练掌握运算性质和法则是解题的关键.6.函数y=中自变量x的取值范围是()A.x≥﹣3 B.x≥﹣3且x≠1 C.x≠1 D.x≠﹣3且x≠1【考点】函数自变量的取值范围.【分析】根据被开方数为非负数和分母不分0列不等式计算.【解答】解:根据题意得:,解得:x≥﹣3且x≠1.故选B.【点评】本题考查了函数自变量的取值范围,要注意几点:①被开方数为非负数;②分母不分0;③a0中a≠0.7.如图,⊙O的半径为1,A、B、C是圆周上的三点,∠BAC=36°,则劣弧BC的长是()A. B. C. D.【考点】弧长的计算;圆周角定理.【分析】连接OB,OC,依据同弧所对的圆周角等于圆心角的一半,即可求得劣弧BC的圆心角的度数,然后利用弧长计算公式求解即可.【解答】解:连接OB,OC.∠BOC=2∠BAC=2×36°=72°,则劣弧BC的长是:=π.故选B.【点评】本题考查了弧长的计算公式以及圆周角定理,正确理解圆周角定理是关键.8.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为()A. B. C. D.【考点】锐角三角函数的定义;旋转的性质.【分析】过C点作CD⊥AB,垂足为D,根据旋转性质可知,∠B′=∠B,把求tanB′的问题,转化为在Rt△BCD中求tanB.【解答】解:过C点作CD⊥AB,垂足为D.根据旋转性质可知,∠B′=∠B.在Rt△BCD中,tanB==,∴tanB′=tanB=.故选B.【点评】本题考查了旋转的性质,旋转后对应角相等;三角函数的定义及三角函数值的求法.9.二次函数y=ax2+bx+c的图象如图所示,反比例函数与正比例函数y=bx在同一坐标系内的大致图象是()A. B. C. D.【考点】二次函数的图象;正比例函数的图象;反比例函数的图象.【分析】由已知二次函数y=ax2+bx+c的图象开口方向可以知道a的取值范围,对称轴可以确定b的取值范围,然后就可以确定反比例函数与正比例函数y=bx在同一坐标系内的大致图象.【解答】解:∵二次函数y=ax2+bx+c的图象开口方向向下,∴a<0,对称轴在y轴的左边,∴x=﹣<0,∴b<0,∴反比例函数的图象在第二四象限,正比例函数y=bx的图象在第二四象限.故选:B.【点评】此题主要考查了从图象上把握有用的条件,准确选择数量关系解得a的值,简单的图象最少能反映出2个条件:开口向下a<0;对称轴的位置即可确定b的值.10.如图,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,…则第⑩个图形中平行四边形的个数是()A.54 B.110 C.19 D.109【考点】规律型:图形的变化类.【分析】得到第n个图形在1的基础上如何增加2的倍数个平行四边形即可.【解答】解:第①个图形中有1个平行四边形;第②个图形中有1+4=5个平行四边形;第③个图形中有1+4+6=11个平行四边形;第④个图形中有1+4+6+8=19个平行四边形;…第n个图形中有1+2(2+3+4+…+n)个平行四边形;第⑩个图形中有1+2(2+3+4+5+6+7+8+9+10)=109个平行四边形;故选D.【点评】考查图形的变化规律;得到第n个图形中平行四边形的个数在第①个图形中平行四边形的个数1的基础上增加多少个2是解决本题的关键.二、填空题(本大题共6小题,每小题3分,共18分)11.分解因式:2a2+4a=2a(a+2).【考点】因式分解-提公因式法.【分析】直接提取公因式2a,进而分解因式得出即可.【解答】解:2a2+4a=2a(a+2).故答案为:2a(a+2).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.正n边形的一个外角的度数为60°,则n的值为6.【考点】多边形内角与外角.【分析】先根据正n边形的一个外角的度数为60°求出其内角的度数,再根据多边形的内角和公式解答即可.【解答】解:∵正n边形的一个外角的度数为60°,∴其内角的度数为:180°﹣60°=120°,∴=120°,解得n=6.故答案为:6.【点评】本题考查的是多边形的内角与外角,熟知多边形的内角和公式是解答此题的关键.13.已知一次函数y=(m+2)x+3,若y随x值增大而增大,则m的取值范围是m>﹣2.【考点】一次函数图象与系数的关系.【分析】根据一次函数的图象与系数的关系列出关于m的不等式,求出m的取值范围即可.【解答】解:∵一次函数y=(m+2)x+3中,y随x值增大而增大,∴m+2>0,解得m>﹣2.故答案为:m>﹣2.【点评】本题考查的是一次函数的图象与系数的关系,熟知一次函数y=kx+b(k≠0)中,当k>0时,函数图象经过一三象限是解答此题的关键.14.关于x的一元二次方程x2+(m﹣2)x+m+1=0有两个相等的实数根,则m的值是0或8.【考点】根的判别式.【分析】先根据方程有两个相等的实数根列出关于m的方程,求出m的值即可.【解答】解:∵关于x的一元二次方程x2+(m﹣2)x+m+1=0有两个相等的实数根,∴△=(m﹣2)2﹣4(m+1)=0,即m2﹣8m=0,解得m=0或m=8.故答案为:0或8.【点评】本题考查的是根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△=0时,方程有两个相等的两个实数根.15.如图,将矩形纸片ABCD沿EF折叠,使点B与CD的中点B'重合.若AB=2,BC=3,则△FCB'与△B'DG的面积比为16:9.【考点】翻折变换(折叠问题);矩形的性质.【分析】设BF=x,则CF=3﹣x,B'F=x,在Rt△B′CF中,利用勾股定理求出x的值,继而判断△DB′G∽△CFB′,根据面积比等于相似比的平方即可得出答案.【解答】解:设BF=x,则CF=3﹣x,B'F=x,∵点B′为CD的中点,∴B′C=1,在Rt△B′CF中,B'F2=B′C2+CF2,即x2=1+(3﹣x)2,解得:x=,即可得CF=3﹣=.∵∠DB′G+∠DGB'=90°,∠DB′G+∠CB′F=90°,∴∠DGB′=∠CB′F,∴Rt△DB′G∽Rt△CFB′,根据面积比等于相似比的平方可得:=()2=()2=.故答案为:16:9.【点评】此题考查的是翻折变换,解答本题的关键是求出FC的长度,然后利用面积比等于相似比的平方进行求解.16.如图,四边形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为100°.【考点】轴对称-最短路线问题.【分析】作点A关于BC的对称点A′,关于CD的对称点A″,根据轴对称确定最短路线问题,连接A′A″与BC、CD的交点即为所求的点M、N,利用三角形的内角和定理列式求出∠A′+∠A″,再根据轴对称的性质和三角形的一个外角等于与它不相邻的两个内角的和可得∠AMN+∠ANM=2(∠A′+∠A″),然后计算即可得解.【解答】解:如图,作点A关于BC的对称点A′,关于CD的对称点A″,连接A′A″与BC、CD的交点即为所求的点M、N,∵∠BAD=130°,∠B=∠D=90°,∴∠A′+∠A″=180°﹣∠130°=50°,由轴对称的性质得:∠A′=∠A′AM,∠A″=∠A″AN,∴∠AMN+∠ANM=2(∠A′+∠A″)=2×50°=100°.故答案为:100°.【点评】本题考查了轴对称确定最短路线问题,轴对称的性质,三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,确定出点M、N的位置是解题的关键,要注意整体思想的利用.三、解答题17.解方程:【考点】解分式方程.【分析】观察可得方程最简公分母为x﹣2,方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:原方程即.方程两边都乘以(x﹣2),得x﹣1﹣1=3(x﹣2).解得x=2.经检验x=2是原方程的增根,∴原方程无解.【点评】(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.18.先化简,再求值:(a+1)2﹣(a+1)(a﹣1),其中,a=﹣1.【考点】整式的混合运算—化简求值.【分析】先根据完全平方公式和平方差公式算乘法,再合并同类项,最后代入求出即可.【解答】解:(a+1)2﹣(a+1)(a﹣1)=a2+2a+1﹣a2+1=2a+2,当a=﹣1时,原式=2×(﹣1)+2=2.【点评】本题考查了整式的混合运算和求值的应用,能正确运用运算法则进行化简是解此题的关键.19.(10分)(2020•广东校级一模)以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD.(尺规作图,不写作法,保留作图痕迹)【考点】全等三角形的判定与性质;等边三角形的性质;作图—复杂作图.【分析】分别以A、B为圆心,AB长为半径画弧,两弧交于点D,连接AD,BD,同理连接AE,CE,如图所示,由三角形ABD与三角形ACE都是等边三角形,得到三对边相等,两个角相等,都为60度,利用等式的性质得到夹角相等,利用SAS得到三角形CAD与三角形EAB全等,利用全等三角形的对应边相等即可得证.【解答】解:如图所示:证明:∵△ABD和△ACE都是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,∵在△CAD和△EAB中,,∴△CAD≌△EAB(SAS),∴BE=CD.【点评】此题考查了全等三角形的判定与性质,等边三角形的性质以及基本作图,熟练掌握全等三角形的判定与性质是解本题的关键.20.(10分)(2020•广东校级一模)我市某养殖场计划购买甲、乙两种鱼苗700尾,甲种鱼苗每尾3元,乙种鱼苗每尾5元.(1)若购买这两种鱼苗共用去2500元,则甲、乙两种鱼苗各购买多少尾?(2)购买甲种鱼苗不超过280尾,应如何选购鱼苗,使购买鱼苗的费用最低?并求出最低费用.【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)设购买甲种鱼苗x尾,乙种鱼苗y尾,根据题意列一元一次方程组求解即可;(2)设甲种鱼苗购买m尾,购买鱼苗的费用为w元,列出w与x之间的函数关系式,运用一次函数的性质解决问题.【解答】解:(1):(1)设购买甲种鱼苗x尾,乙种鱼苗y尾,根据题意可得:,解得:.答:购买甲种鱼苗500尾,乙种鱼苗200尾.(2)设甲种鱼苗购买m尾,购买鱼苗的费用为w元,则w=3m+5(700﹣m)=﹣2m+3500,∵﹣2<0,∴w随m的增大而减小,∵0<m≤280,∴当m=280时,w有最小值,w的最小值=3500﹣2×280=2940(元),∴700﹣m=420.答:当选购甲种鱼苗280尾,乙种鱼苗420尾时,总费用最低,最低费用为2940元.【点评】本题主要考查了二元一次方程组、一元一次不等式以及一次函数应用问题,审清题意,找到等量或不等关系是解决问题的关键.21.(12分)(2020•禅城区一模)王老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调查,并将调查结果分成四类,A:优秀;B:良好;C:合格;D:一般;并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,王老师一共调查了20名同学,其中C类女生有2名,D类男生有1名;(2)将上面的条形统计图补充完整;(3)从被调查的A类和D类学生中分别选取一位同学进行“一对一”互助学习,请求出所选两位同学恰好是一位男同学和一位女同学的概率.【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)由条形统计图与扇形统计图,即可求得调查的总人数,继而分别求得C类女生与D类男生数;(2)由(1)可补全条形统计图;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两位同学恰好是一位男同学和一位女同学的情况,再利用概率公式即可求得答案.【解答】解:(1)本次调查中,王老师一共调查了:(4+6)÷50%=20(名);其中C类女生有:20×25%﹣3=2(名),D类男生有:20﹣1﹣2﹣4﹣6﹣3﹣2﹣1=1(名);故答案为:20,2,1;(2)如图:(3)画树状图得:∵共有6种等可能的结果,所选两位同学恰好是一位男同学和一位女同学的有3种情况,∴所选两位同学恰好是一位男同学和一位女同学的概率为:=.【点评】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.22.(12分)(2020•广东校级一模)如图,已知一次函数y=kx+b的图象交反比例函数y=(x>0)图象于点A、B,交x轴于点C.(1)求m得取值范围;(2)若点A的坐标是(2,﹣4),且=,求m的值和一次函数的解析式.【考点】反比例函数与一次函数的交点问题.【分析】(1)根据双曲线位于第四象限,比例系数k<0,列式求解即可;(2)先把点A的坐标代入反比例函数表达式求出m的值,从而的反比例函数解析式,设点B的坐标为B(x,y),利用相似三角形对应边成比例求出y的值,然后代入反比例函数解析式求出点B的坐标,再利用待定系数法求解即可.【解答】解:(1)根据题意,反比例函数图象位于第四象限,∴4﹣3m<0,解得:m>;(2)∵点A(2,﹣4)在反比例函数图象上,∴4﹣3m=2×(﹣4)=﹣8,∴解得:m=4,∴反比例函数解析式为y=﹣,∵=,∴=,设点B的坐标为(x,y),则点B到x轴的距离为﹣y,点A到x轴的距离为4,∴==,解得:y=﹣1,∴﹣=﹣1,解得:x=8,∴点B的坐标是B(8,﹣1),设这个一次函数的解析式为y=kx+b,∵点A、B是一次函数与反比例函数图象的交点,∴,解得:,∴一次函数的解析式是y=x﹣5.【点评】本题主要考查了反比例函数图象与一次函数图象的交点问题,待定系数法求函数解析式,求出点B的坐标是解题的关键,也是本题的难点.23.(12分)(2020•广东校级一模)已知如图,△ABC中AB=AC,AE是角平分线,BM 平分∠ABC交AE于点M,经过B、M两点的⊙O交BC于G,交AB于点F,FB恰为⊙O 的直径.(1)求证:AE与⊙O相切;(2)当BC=6,cosC=,求⊙O的直径.【考点】切线的判定与性质;等腰三角形的性质;圆周角定理;解直角三角形.【分析】(1)连接OM.根据OB=OM,得∠1=∠3,结合BM平分∠ABC交AE于点M,得∠1=∠2,则OM∥BE;根据等腰三角形三线合一的性质,得AE⊥BC,则OM⊥AE,从而证明结论;(2)设圆的半径是r.根据等腰三角形三线合一的性质,得BE=CE=3,再根据解直角三角形的知识求得AB=12,则OA=12﹣r,从而根据平行线分线段成比例定理求解.【解答】(1)证明:连接OM.∵OB=OM,∴∠1=∠3,又BM平分∠ABC交AE于点M,∴∠1=∠2,∴∠2=∠3,∴OM∥BE.∵AB=AC,AE是角平分线,∴AE⊥BC,∴OM⊥AE,∴AE与⊙O相切;(2)解:设圆的半径是r.∵AB=AC,AE是角平分线,∴BE=CE=3,∠ABC=∠C,又cosC=,∴AB=BE÷cosB=12,则OA=12﹣r.∵OM∥BE,∴,即,解得r=2.4.则圆的直径是4.8.【点评】此题综合运用了等腰三角形的性质、平行线的判定及性质、切线的判定、平行线分线段成比例定理以及解直角三角形的知识.连接过切点的半径是圆中常见的辅助线之一.24.(14分)(2020•广东校级一模)如图①,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以每秒1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,点P,Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t妙(t≥0).(1)若三角形CPQ是等腰三角形,求t的值.(2)如图②,过点P作PD∥BC,交AB于点D,连接PQ;①是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由,并探究如何改变点Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度.②当t取何值时,△CPQ的外接圆面积的最小?并且说明此时△CPQ的外接圆与直线AB 的位置关系?【考点】圆的综合题.【分析】(1)根据CQ=CP,列出方程即可解决.(2))①不存在.不妨设四边形PDBQ是菱形,推出矛盾即可.②如图,⊙O是△PQC的外接圆的圆心,作OM⊥AB于M,OE⊥AC于E,OF⊥BC于F,连接OB、OC、OA,由•AC•OF+•AC•OE+•AB•OM=•BC•AC求出OM以及圆的半径即可解决问题.【解答】解:(1)∵△CBP是等腰三角形,∠C=90°,∴CQ=CP,∴6﹣t=2t,∴t=2,∴t=2秒时,△CBP是等腰三角形.(2)①不存在.理由:不妨设四边形PDBQ是菱形,则PD=BQ,∴t=8﹣2t,∴t=,∴CQ=,PC=6﹣=,BQ=PD=,∴OQ==6,∴PQ≠BQ,∴假设不成立,∴不存在.设点Q的速度为每秒a个单位长度.∵四边形PDBQ是菱形,∴PD=BD,∴t=10﹣t,∴t=,∴BQ=PD=,∴6﹣a=,∴a=.∴点Q的速度为每秒个长度单位时,使四边形PDBQ在某一时刻为菱形.②如图,⊙O是△PQC的外接圆的圆心,作OM⊥AB于M,OE⊥AC于E,OF⊥BC于F,连接OB、OC、OA.∵PQ===,∴t=时,PQ最小值为.此时PC=,CQ=,PQ=,∵•AC•OF+•AC•OE+•AB•OM=•BC•AC,∴×8×+×6×+×10×OM=24,∴OM=,∴OM<OP,∴△CPQ的外接圆与直线AB相交.【点评】本题考查圆综合题、等腰直角三角形的性质、二次函数最小值问题、勾股定理、三角形面积等知识,解题的关键是灵活应用这些知识解决问题,学会解题常用辅助线,学会利用面积法解决问题,属于中考压轴题.25.(14分)(2020•广东校级一模)已知抛物线y=﹣x2+3x+4交y轴于点A,交x轴于点B,C(点B在点C的右侧).过点A作垂直于y轴的直线l.在位于直线l下方的抛物线上任取一点P,过点P作直线PQ平行于y轴交直线l于点Q.连接AP.(1)写出A,B,C三点的坐标;(2)若点P位于抛物线的对称轴的右侧:①如果以A,P,Q三点构成的三角形与△AOC相似,求出点P的坐标;②若将△APQ沿AP对折,点Q的对应点为点M.是否存在点P,使得点M落在x轴上?若存在,求出点P的坐标;若不存在,请说明理由;③设AP的中点是R,其坐标是(m,n),请直接写出m和n的关系式,并写出m的取值范围.【考点】二次函数综合题.【分析】(1)先令x=0求出y的值即可得出A点坐标,再令y=0求出x的值即可得出BC 两点的坐标;(2)①分△AQP∽△AOC与△AQP∽△COA两种情况进行讨论;②过点M作y轴的平行线交直线AQ于点E,过点P作PF⊥直线ME于点F,设Q(x,4),则P(x,﹣x2+3x+4),PQ=x2﹣3x=PM,再由△AEM∽△MFP求出PF的表达式,在Rt△AOM中根据勾股定理求出x的值,进而可得出P点坐标③根据在位于直线l下方的抛物线上任取一点P,则有a<0或a>3,由点P在抛物线上即可建立m与n的关系.【解答】解:(1)∵令x=0,则y=4,∴A(0,4);∵令y=0,则﹣x2+3x+4=0,解得x1=4,x2=﹣1,∴B(4,0),C(﹣1,0);(2)①∵以A,P,Q三点构成的三角形与△AOC相似,∴△AQP∽△AOC与△AQP∽△COA,∴或,即或,解得x=或x=7,均在对称轴的右侧,∴P(,)或(7,24);②如图所示,过点M作y轴的平行线交直线AQ于点E,过点P作PF⊥直线ME于点F,设Q(x,4),则P(x,﹣x2+3x+4),PQ=x2﹣3x=PM,∵∠EAM+∠EMA=90°,∠EMA+∠FMP=90°,∴∠FMP=∠EAM.∵∠MFP=∠AEM=90°,∴△AEM∽△MFP,∴.∵MP=x2﹣3x,∴,∴PF=4x﹣12,∴OM=(4x﹣12)﹣x=3x﹣12,在Rt△AOM中,∵OM2+OA2=AM2,即(3x﹣12)2+42=x2,解得x1=4,x2=5均在抛物线对称轴的右侧,∴P(4,0)或(5,﹣6).③∵抛物线y=﹣x2+3x+4和A(0,4),∴抛物线和直线l的交点坐标为A(0,4),(3,4),设P(a,﹣a2+3a+4);(a<0或a>3)∵AP的中点是R,A(0,4),∴=m,=n,∴n=﹣2m2+3m+4,∵a<0或a>3,∴2m<0,或2m>3,∴m<0,或m.【点评】此题是二次函数综合题,主要涉及到相似三角形的判定与性质、二次函数图象上点的坐标特点及用待定系数法求二次函数的解析式等知识,在解答(2)时要分△AQP∽△AOC 与△AQP∽△COA两种情况进行讨论.。

2020年广东省广外附中实验学校中考数学一模考试测试卷解析版

2020年广东省广外附中实验学校中考数学一模考试测试卷解析版

2020年广东省广外附中实验学校中考数学一模试卷解析版一、选择题(每小题3分,共30分)1.在实数|-5|,-(-3),0,π中,最小的数是()A.|−5|B.−(−3)C.0D.π2.下列设计的图案中,是中心对称图形但不是轴对称图形的是()A. B. C. D.3.预计到2025年,中国5G用户将超过460000000,将460000000用科学记数法表示为()A.4.6×109B.46×107C.4.6×108D.0.46×1094.下列计算正确的是()A.a2+a2=a4B.(a+b)2=a2+b2C.(a3)3=a9D.a3⋅a2=a65.已知点P(1﹣a,2a+6)在第四象限,则a的取值范围是()A.a<﹣3B.﹣3<a<1C.a>﹣3D.a>16.数据是某班六位同学定点投篮(每人投10个)的情况,投进篮筐的个数为6,9,8,4,0,3,这组数据的平均数、中位数和极差分别是( )A.6,6,9B.6,5,9C.5,6,6D.5,5,97.如图在△ABC中,AC=BC,过点C作CD⊥AB,垂足为点D,过D作DE∥BC交AC于点E,若BD=6,AE =5,则sin∠EDC的值为()A.35B.725C.45D.24258.若一次函数y=2x+6与y=kx的图象的交点纵坐标为4,则k的值是()A.﹣4B.﹣2C.2D.49.已知二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①abc>0,②2a+b=O,③b2﹣4ac<0,④4a+2b+c>0其中正确的是()A.①③B.只有②C.②④D.③④10.如图,在△ABC中,∠BAC=90°,AB=AC=3,点D在BC上且BD=2CD,E,F分别在AB,AC上运动且始终保持∠EDF=45°,设BE=x,CF=y,则y与x之间的函数关系用图象表示为:()A. B. C. D.二、填空题(每小题4分,共28分)11.计算:√12 -(1)-1-3tan 30°+|-2|=________。

2020年广东省实验中学中考数学一模试卷

2020年广东省实验中学中考数学一模试卷

2020年广东省实验中学中考数学一模试卷
一、选择题(共10小题,每小题3分,满分30分)
1.(3分)0这个数()
A.是正数B.是负数C.不是有理数D.是整数
2.(3分)新冠病毒(2019﹣nCoV)是一种新的Sarbecovirus亚属的β冠状病毒,它是一类具有囊膜的正链单股RNA 病毒,其遗传物质是所有RNA病毒中最大的,也是自然界广泛存在的一大类病毒.其粒子形状并不规则,直径约60﹣220nm,平均直径为100nm(纳米).1米=109纳米,100nm可以表示为()米.
A.0.1×10﹣6B.10×10﹣8C.1×10﹣7D.1×1011
3.(3分)下列各组数中互为相反数的是()
A.﹣2与B.﹣2与C.﹣2与D.2与|﹣2|
4.(3分)下列计算,正确的是()
A.x4﹣x3=x B.x5÷x3=x2C.x•x3=x3D.(xy2)2=xy4
5.(3分)在下列因式分解的过程中,分解因式正确的是()
A.x2+2x+4=(x+2)2B.x2﹣4=(x+4)(x﹣4)
C.x2﹣4x+4=(x﹣2)2D.x2+4=(x+2)2
6.(3分)已知x=3是关于x的方程ax+2x﹣3=0的解,则a的值为()
A.﹣1B.﹣2C.﹣3D.1
7.(3分)将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为()A.y=2(x+2)2+3B.y=2(x﹣2)2+3
C.y=2(x﹣2)2﹣3D.y=2(x+2)2﹣3
8.(3分)已知反比例函数图象如图所示,下列说法正确的是()
A.k>0
B.y随x的增大而减小
C.若矩形OABC面积为2,则k=2。

2020年广东省广州市中考数学一模试卷及解析

2020年广东省广州市中考数学一模试卷及解析

2020年广省广州市中考一模试卷数学试卷一、选择题(本大题共10小题,共30分) 1. -2020的相反数是( )A. -2020B. 2020C.20201- D.20201- 2. 下列图案由正多边形拼成,其中既是轴对称图形又是中心对称图形的是( )A.B.C. D.3. 如图几何体的俯视图是( )A. B. C. D.4. 下列运算正确的是( )A. a 6÷a 3=a 2B. a 4−a =a 3C. 2a ⋅3a =6aD. (−2x 2y)3=−8x 6y 35. 使分式x2x−4有意义的x 的取值范围是( )A. x =2B. x ≠2C. x =−2D. x ≠06. 下列说法正确的是( )A. 一个游戏中奖的概率是110,则做10次这样的游戏一定会中奖B. 为了了解一批炮弹的杀伤半径,应采用全面调查的方式C. 一组数据8,8,7,10,6,8,9的众数和中位数都是8D. 若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动小7. 在二次函数y =−x 2+2x +1的图象中,若y 随x 的增大而增大,则x 的取值范围是( ) A. x <1 B. x >1 C. x <−1 D. x >−18. 已知x 1、x 2是关于x 的方程x 2−ax −2=0的两根,下列结论一定正确的是( )A. x 1≠x 2B. x 1+x 2>0C. x 1⋅x 2>0D. x 1<0,x 2<09. 如图,已知圆锥的母线长为6,圆锥的高与母线所夹的角为θ,且sinθ=13,则该圆锥的侧面积是( )A. 24√2πB. 24πC. 16πD. 12π10. 如图1,点E 为矩形ABCD 边AD 上一点,点P ,点Q 同时从点B 出发,点P 沿BE →ED →DC 运动到点C 停止,点Q 沿BC 运动到点C 停止,它们的运动速度都是1cm/s ,设P 、Q 出发t 秒时,△BPQ 的面积为y(cm 2),已知y 与t 的函数关系的图象如图2(曲线OM 为抛物线的一部分),则下列结论:①AD =BE =5cm ;②当0<t ≤5时,y =25t 2;③直线NH 的解析式为y =−25t +27;④若△ABE与△QBP相似,则t=294秒,其中正确结论的个数为()A. 4B. 3C. 2D. 1二、填空题(本大题共6小题,共18分)11.因式分解:a2−2ab+b2=______.12.分式方程1x−2=3x的解是______.13.要了解全市中考生的数学成绩在某一范围内的学生所占比例的大小,需知道相应样本的______(填“平均数”或“频数分布”)14.科技改变生活,手机导航极大方便了人们的出行.如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶6千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C.小明发现古镇C恰好在A地的正北方向,则B、C两地的距离是______千米.15.等腰三角形ABC中,顶角A为40°,点P在以A为圆心,BC长为半径的圆上,且BP=BA,则∠PBC的度数为______.16.如图,▱ABCD的对角线AC、BD交于点O,DE平分∠ADC交AB于点E,∠BCD=60°,AD=12AB,连接OE.下列结论:①S▱ABCD= AD⋅BD;②DB平分∠CDE;③AO=DE;④S△ADE=5S△OFE,其中正确的结论是______.三、计算题(本大题共2小题,共22分)17.某学校为了增强学生体质,决定开设以下体育课外活动项目:A.篮球B.乒乓球C.羽毛球D.足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有______人;(2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).18.【问题情境】已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?【数学模型】设该矩形的长为x,周长为y,则y与x的函数关系式为y=2(x+ax)(x>0).【探索研究】(1)我们可以借鉴以前研究函数的经验,先探索函数y=x+1x(x>0)的图象和性质.x (1)413121234…y……③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数y=x+1x(x>0)的最小值.【解决问题】(2)用上述方法解决“问题情境”中的问题,直接写出答案.四、解答题(本大题共7小题,共80分)19.解不等式组{−2x≤03x−1<520.如图,在菱形ABCD中,对角线AC,BD相交于点O,BD=8,tan∠ABD=3,求线段AB的长.4(k>0)21.如图,已知矩形OABC中,OA=2,AB=4,双曲线y=kx与矩形两边AB、BC分别交于E、F.(1)若E是AB的中点,求F点的坐标;(2)若将△BEF沿直线EF对折,B点落在x轴上的D点,作EG⊥OC,垂足为G,证明△EGD∽△DCF,并求k的值.22.荔枝是深圳的特色水果,小明的妈妈先购买了2千克桂味和3千克糯米糍,共花费90元;后又购买了1千克桂味和2千克糯米糍,共花费55元.(每次两种荔枝的售价都不变)(1)求桂味和糯米糍的售价分别是每千克多少元;(2)如果还需购买两种荔枝共12千克,要求糯米糍的数量不少于桂味数量的2倍,请设计一种购买方案,使所需总费用最低.23.联想三角形外心的概念,我们可引入如下概念.定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.举例:如图1,若PA=PB,则点P为△ABC的准外心.AB,应用:如图2,CD为等边三角形ABC的高,准外心P在高CD上,且PD=12求∠APB的度数.探究:已知△ABC为直角三角形,斜边BC=5,AB=3,准外心P在AC边上,试探究PA的长.24.如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG 交DC于H,折痕为EF,连接BP、BH.(1)求证:∠APB=∠BPH;(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论;(3)设AP为x,四边形EFGP的面积为S,求出S与x的函数关系式,试问S是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.25.抛物线y=a(x+2)2+c与x轴交于A,B两点,与y轴负半轴交于点C,已知点A(−1,0),OB=OC.(1)求此抛物线的解析式;(2)若把抛物线与直线y=−x−4的交点称为抛物线的不动点,若将此抛物线平移,使其顶点为(m,2m),当m满足什么条件时,平移后的抛物线总有不动点;(3)Q为直线y=−x−4上一点,在此抛物线的对称轴上是否存在一点P,使得∠APB=2∠AQB,且这样的Q点有且只有一个?若存在,请求出点P的坐标;若不存在,请说明理由.答案和解析1.【答案】B【解析】解:-2020的相反数是:2020.故选:B.直接利用相反数的定义分析得出答案.此题主要考查了相反数,正确把握定义是解题关键.2.【答案】B【解析】解:A、是轴对称图形,不是中心对称图形,故A选项不符合题意;B、是轴对称图形,也是中心对称图形,故B选项符合题意;C、是轴对称图形,不是中心对称图形,故C选项不符合题意;D、是轴对称图形,不是中心对称图形,故D选项不符合题意.故选:B.根据轴对称图形与中心对称图形的概念结合各图形的特点求解.本题考查了中心对称图形与轴对称图形的概念.判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.3.【答案】C【解析】解:从上面看得到图形为,故选:C.找到从几何体的上面看所得到图形即可.此题主要考查了简单几何体的三视图,三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.注意所看到的线都要用实线表示出来.4.【答案】D【解析】解:(A)原式=a3,故A错误;(B)原式=a4−a,故B错误;(C)原式=6a2,故C错误;故选:D.根据整式的运算法则即可求出答案.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.5.【答案】B有意义,【解析】解:∵分式x2x−4∴2x−4≠0,即x≠2.故选:B.先根据分式有意义的条件列出关于x的不等式,求出x的取值范围即可.本题考查的是分式有意义的条件,即分式的分母不为0.6.【答案】C【解析】解:A、一个游戏中奖的概率是1,做10次这样的游戏也不一定会中奖,故此10选项错误;B、为了了解一批炮弹的杀伤半径,应采用抽样调查的方式,故此选项错误;C、一组数据8,8,7,10,6,8,9的众数和中位数都是8,故此选项正确;D、若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动大;故此选项错误;故选:C.根据概率的意义可判断出A的正误;根据抽样调查与全面调查意义可判断出B的正误;根据众数和中位数的定义可判断出C的正误;根据方差的意义可判断出D的正误.此题主要考查了概率、抽样调查与全面调查、众数和中位数、方差,关键是注意再找中位数时要把数据从小到大排列再找出位置处于中间的数.7.【答案】A【解析】解:∵a=−1<0,∴二次函数图象开口向下,又对称轴是直线x=1,∴当x<1时,函数图象在对称轴的左边,y随x的增大增大.故选:A.抛物线y=−x2+2x+1中的对称轴是直线x=1,开口向下,x<1时,y随x的增大而增大.本题考查了二次函数y=ax2+bx+c(a≠0)的性质:当a<0,抛物线开口向下,对称轴为直线x=−b,在对称轴左边,y随x的增大而增大.2a8.【答案】A【解析】解:A.∵△=(−a)2−4×1×(−2)=a2+8>0,∴x1≠x2,结论A正确;B.∵x1、x2是关于x的方程x2−ax−2=0的两根,∴x1+x2=a,∵a的值不确定,∴B结论不一定正确;C.∵x1、x2是关于x的方程x2−ax−2=0的两根,∴x1⋅x2=−2,结论C错误;D.∵x1⋅x2=−2,∴x1、x2异号,结论D错误.故选:A.A.根据方程的系数结合根的判别式,可得出△>0,由此即可得出x1≠x2,结论A正确;B.根据根与系数的关系可得出x1+x2=a,结合a的值不确定,可得出B结论不一定正确;C.根据根与系数的关系可得出x1⋅x2=−2,结论C错误;D.由x1⋅x2=−2,可得出x1、x2异号,结论D错误.综上即可得出结论.本题考查了根的判别式以及根与系数的关系,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.9.【答案】D【解析】解:∵sinθ=1,母线长为6,3×6=2,∴圆锥的底面半径=13∴该圆锥的侧面积=12×6×2π⋅2=12π.故选:D .先根据正弦的定义计算出圆锥的半径=2,然后根据扇形的面积公式求圆锥的侧面积. 本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长. 10.【答案】B【解析】解:①根据图(2)可得,当点P 到达点E 时点Q 到达点C , ∵点P 、Q 的运动的速度都是1cm/s , ∴BC =BE =5cm ,∴AD =BE =5(故①正确);②如图1,过点P 作PF ⊥BC 于点F ,根据面积不变时△BPQ 的面积为10,可得AB =4, ∵AD//BC ,∴∠AEB =∠PBF ,∴sin∠PBF =sin∠AEB =ABBE =45, ∴PF =PBsin∠PBF =45t ,∴当0<t ≤5时,y =12BQ ⋅PF =12t ⋅45t =25t 2(故②正确);③根据5−7秒面积不变,可得ED =2,当点P 运动到点C 时,面积变为0,此时点P 走过的路程为BE +ED +DC =11, 故点H 的坐标为(11,0),设直线NH 的解析式为y =kx +b ,将点H(11,0),点N(7,10)代入可得:{11k +b =07k +b =10,解得:{k =−52b =552.故直线NH 的解析式为:y =−52t +552,(故③错误);④当△ABE 与△QBP 相似时,点P 在DC 上,如图2所示:∵tan∠PBQ =tan∠ABE =34, ∴PQBQ =34,即11−t 5=34,解得:t =294.(故④正确);综上可得①②④正确,共3个.故选:B .据图(2)可以判断三角形的面积变化分为三段,可以判断出当点P 到达点E 时点Q 到达点C ,从而得到BC 、BE 的长度,再根据M 、N 是从5秒到7秒,可得ED 的长度,然后表示出AE 的长度,根据勾股定理求出AB 的长度,然后针对各小题分析解答即可.本题考查了二次函数的综合应用及动点问题的函数图象,根据图(2)判断出点P到达点E时,点Q到达点C是解题的关键,也是本题的突破口,难度较大.11.【答案】(a−b)2【解析】解:原式=(a−b)2故答案为:(a−b)2根据完全平方公式即可求出答案.本题考查因式分解法,解题的关键是熟练运用因式分解法,本题属于基础题型.12.【答案】3【解析】解:去分母得:x=3(x−2),去括号得:x=3x−6,解得:x=3,经检验x=3是分式方程的解.分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.13.【答案】频数分布【解析】解:频数分布是反映一组数据中,某一范围内的数据的出现的次数,通过次数计算出所占的比,而平均数则反映一组数据集中变化趋势,故答案为:频数分布.平均数是反映一组数据集中变化趋势,而频数分布则反映某一范围内的数出现的次数,即频数,因此选择频数分布.考查频数分布的意义、平均数的意义及求法,理解各个统计量的意义和反映数据的特征,才是解决问题的关键.14.【答案】3√6【解析】解:作BE⊥AC于E,在Rt△ABE中,sin∠BAC=BEAB,∴BE=AB⋅sin∠BAC=6×√32=3√3,由题意得,∠C=45°,∴BC=BEsinC =3√3÷√22=3√6(千米),故答案为:3√6.作BE⊥AC于E,根据正弦的定义求出BE,再根据正弦的定义计算即可.本题考查的是解直角三角形的应用−方向角问题,掌握方向角的概念、熟记锐角三角函数的定义是解题的关键.15.【答案】30°或110°【解析】解:如图,当点P在直线AB的右侧时.连接AP.∵AB=AC,∠BAC=40°,∴∠ABC=∠C=70°,∵AB=AB,AC=PB,BC=PA,∴△ABC≌△BAP,∴∠ABP=∠BAC=40°,∴∠PBC=∠ABC−∠ABP=30°,当点P′在AB的左侧时,同法可得∠ABP′=40°,∴∠P′BC=40°+70°=110°,故答案为30°或110°.分两种情形,利用全等三角形的性质即可解决问题;本题考查全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.16.【答案】①②【解析】解:∵∠BAD=∠BCD=60°,∠ADC=120°,DE平分∠ADC,∴∠ADE=∠DAE=60°=∠AED,∴△ADE是等边三角形,∴AD=AE=1AB,2∴E是AB的中点,∴DE=BE,∴∠BDE=1∠AED=30°,2∴∠ADB=90°,即AD⊥BD,∴S▱ABCD=AD⋅BD,故①正确;∵∠CDE=60°,∠BDE=30°,∴∠CDB=∠BDE,∴DB平分∠CDE,故②正确;∵Rt△AOD中,AO>AD,∴AO>DE,故③错误;∵O是BD的中点,E是AB的中点,∴OE是△ABD的中位线,AD,∴OE//AD,OE=12∴△OEF∽△ADF,∴S△ADF=4S△OEF,且AF=2OF,∴S△AEF=2S△OEF,∴S△ADE=6S△OFE,故④错误;故答案为:①②.求得∠ADB=90°,即AD⊥BD,即可得到S▱ABCD=AD⋅BD;依据∠CDE=60°,∠BDE= 30°,可得∠CDB=∠BDE,进而得出DB平分∠CDE;依据Rt△AOD中,AO>AD,即AD,进而得可得到AO>DE;依据OE是△ABD的中位线,即可得到OE//AD,OE=12到△OEF∽△ADF,依据S△ADF=4S△OEF,S△AEF=2S△OEF,即可得到S△ADE=6S△OFE.本题考查了平行四边形的性质,等边三角形的判定和性质,直角三角形的性质,平行四边形的面积公式以及相似三角形的判定与性质的综合运用,熟练掌握性质定理和判定定理是解题的关键.17.【答案】(1)200;(2)补全图形,如图所示:甲 乙 丙 丁 甲 --- (乙,甲) (丙,甲) (丁,甲) 乙 (甲,乙) --- (丙,乙) (丁,乙) 丙 (甲,丙) (乙,丙) --- (丁,丙) 丁(甲,丁)(乙,丁)(丙,丁)---所有等可能的结果为种,其中符合要求的只有种, 则P =212=16.【解析】解:(1)根据题意得:20÷36360=200(人),则这次被调查的学生共有200人;故答案为:200; (2)见答案; (3)见答案. 【分析】(1)由喜欢篮球的人数除以所占的百分比即可求出总人数;(2)由总人数减去喜欢A ,B 及D 的人数求出喜欢C 的人数,补全统计图即可;(3)根据题意列出表格,得出所有等可能的情况数,找出满足题意的情况数,即可求出所求的概率.此题考查了条形统计图,扇形统计图,以及列表法与树状图法,弄清题意是解本题的关键.18.【答案】解:(1)①故答案为:174,103,52,2,52,103,174.函数y =x +1x 的图象如图:②答:函数两条不同类型的性质是:当0<x <1时,y 随x 的增大而减小,当x >1时,y 随x 的增大而增大;当x =1时,函数y =x +1x(x >0)的最小值是2.③y =x +1x =x 2+1x=x 2−2x+1x+2=(x−1)2x+2,∵x >0,所以(x−1)2x≥0,所以当x =1时,(x−1)2x的最小值为0,∴函数y=x+1x(x>0)的最小值是2.(2)答:矩形的面积为a(a为常数,a>0),当该矩形的长为√a时,它的周长最小,最小值是4√a.【解析】(1)①把x的值代入解析式计算即可;②根据图象所反映的特点写出即可;③根据完全平方公式(a+b)2=a2+2ab+b2,进行配方即可得到最小值;(2)根据完全平方公式(a+b)2=a2+2ab+b2,进行配方得到y=2[(√x−√ax)2+2√a],即可求出答案.本题主要考查对完全平方公式,反比例函数的性质,二次函数的最值,配方法的应用,一次函数的性质等知识点的理解和掌握,能熟练地运用学过的性质进行计算是解此题的关键.19.【答案】解:{−2x≤0 ①3x−1<5 ②解不等式①得:x≥0解不等式②得:x<2∴不等式组的解集为0≤x<2.【解析】别求出各不等式的解集,再求出其公共解集.本题考查的是解一元一次不等式组,熟知解一元一次不等式的基本步骤是解答此题的关键.20.【答案】解:∵四边形ABCD为菱形∴BO=OD,∠AOB=90°∵BD=8∴BO=4∵tan∠ABD=AOBO,∴34=AO4∴AO=3在Rt△ABC中,AO=3,OB=4则AB=√AD2+OB2=√32+42=5【解析】由菱形的性质可得BO=OD=4,∠AOB=90°,由锐角三角函数可求AO=3,由勾股定理可求AB的长.本题考查了菱形的性质,锐角三角函数,勾股定理,熟练运用菱形的性质是本题的关键.21.【答案】解:(1)∵点E是AB的中点,OA=2,AB=4,∴点E的坐标为(2,2),将点E的坐标代入y=kx,可得k=4,即反比例函数解析式为:y=4x,∵点F的横坐标为4,∴点F的纵坐标=44=1,故点F的坐标为(4,1);(2)由折叠的性质可得:BE =DE ,BF =DF ,∠B =∠EDF =90°, ∵∠CDF +∠EDG =90°,∠GED +∠EDG =90°, ∴∠CDF =∠GED ,又∵∠EGD =∠DCF =90°, ∴△EGD∽△DCF ,结合图形可设点E 坐标为(k2,2),点F 坐标为(4,k4),则CF =k4,BF =DF =2−k4,ED =BE =AB −AE =4−k2,在Rt △CDF 中,CD =√DF 2−CF 2=√(2−k 4)2−(k4)2=√4−k ,∵CD GE=DFED ,即√4−k2=2−k44−k 2,∴√4−k =1, 解得:k =3.【解析】(1)根据点E 是AB 中点,可求出点E 的坐标,将点E 的坐标代入反比例函数解析式可求出k 的值,再由点F 的横坐标为4,可求出点F 的纵坐标,继而得出答案; (2)证明∠GED =∠CDF ,然后利用两角法可判断△EGD∽△DCF ,设点E 坐标为(k2,2),点F 坐标为(4,k4),即可得CF =k4,BF =DF =2−k4,在Rt △CDF 中表示出CD ,利用对应边成比例可求出k 的值.本题考查了反比例函数的综合,解答本题的关键是利用点E 的纵坐标,点F 的横坐标,用含k 的式子表示出其他各点的坐标,注意掌握相似三角形的对应边成比例的性质,难度较大.22.【答案】解:(1)设桂味的售价为每千克x 元,糯米糍的售价为每千克y 元; 根据题意得:{2x +3y =90x +2y =55,解得:{x =15y =20;答:桂味的售价为每千克15元,糯米糍的售价为每千克20元;(2)设购买桂味t 千克,总费用为W 元,则购买糯米糍(12−t)千克, 根据题意得:12−t ≥2t , ∴t ≤4,∵W =15t +20(12−t)=−5t +240, k =−5<0,∴W 随t 的增大而减小,∴当t =4时,W 的最小值=220(元),此时12−4=8; 答:购买桂味4千克,糯米糍8千克时,所需总费用最低.【解析】(1)设桂味的售价为每千克x 元,糯米糍的售价为每千克y 元;根据单价和费用关系列出方程组,解方程组即可;(2)设购买桂味t 千克,总费用为W 元,则购买糯米糍(12−t)千克,根据题意得出12−t ≥2t ,得出t ≤4,由题意得出W =−5t +240,由一次函数的性质得出W 随t 的增大而减小,得出当t =4时,W 的最小值=220(元),求出12−4=8即可.本题考查了一次函数的应用、二元一次方程组的应用;根据题意方程方程组和得出一次函数解析式是解决问题的关键.23.【答案】应用:解:①若PB =PC ,连接PB ,则∠PCB =∠PBC , ∵CD 为等边三角形的高, ∴AD =BD ,∠PCB =30°, ∴∠PBD =∠PBC =30°, ∴PD =√33DB =√36AB , 与已知PD =12AB 矛盾,∴PB ≠PC ,②若PA =PC ,连接PA ,同理可得PA ≠PC , ③若PA =PB ,由PD =12AB ,得PD =BD , ∴∠APD =45°, 故∠APB =90°;探究:解:∵BC =5,AB =3, ∴AC =√BC 2−AB 2=√52−32=4, ①若PB =PC ,设PA =x ,则x 2+32=(4−x)2,∴x =78,即PA =78,②若PA =PC ,则PA =2,③若PA =PB ,由图知,在Rt △PAB 中,不可能. 故PA =2或78.【解析】应用:连接PA 、PB ,根据准外心的定义,分①PB =PC ,②PA =PC ,③PA =PB三种情况利用等边三角形的性质求出PD 与AB 的关系,然后判断出只有情况③是合适的,再根据等腰直角三角形的性质求出∠APB =45°,然后即可求出∠APB 的度数; 探究:先根据勾股定理求出AC 的长度,根据准外心的定义,分①PB =PC ,②PA =PC ,③PA =PB 三种情况,根据三角形的性质计算即可得解.本题考查了线段垂直平分线的性质,等腰三角形的性质,勾股定理,读懂题意,弄清楚准外心的定义是解题的关键,根据准外心的定义,要注意分三种情况进行讨论. 24.【答案】(1)证明:如图1,∵PE =BE , ∴∠EBP =∠EPB .又∵∠EPH =∠EBC =90°,∴∠EPH −∠EPB =∠EBC −∠EBP . 即∠PBC =∠BPH . 又∵AD//BC , ∴∠APB =∠PBC . ∴∠APB =∠BPH .(2)△PHD 的周长不变为定值8.证明:如图2,过B 作BQ ⊥PH ,垂足为Q . 由(1)知∠APB =∠BPH ,在△ABP和△QBP中{∠APB=∠BPH ∠A=∠BQPBP=BP,∴△ABP≌△QBP(AAS).∴AP=QP,AB=BQ.又∵AB=BC,∴BC=BQ.又∵∠C=∠BQH=90°,BH=BH,∴△BCH≌△BQH.∴CH=QH.∴△PHD的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.(3)如图3,过F作FM⊥AB,垂足为M,则FM=BC=AB.又∵EF为折痕,∴EF⊥BP.∴∠EFM+∠MEF=∠ABP+∠BEF=90°,∴∠EFM=∠ABP.又∵∠A=∠EMF=90°,∴△EFM≌△PBA(ASA).∴EM=AP=x.∴在Rt△APE中,(4−BE)2+x2=BE2.解得,BE=2+x28.∴CF=BE−EM=2+x28−x.又∵折叠的性质得出四边形EFGP与四边形BEFC全等,∴S=12(BE+CF)BC=12(4+x24−x)×4.即:S=12x2−2x+8.配方得,S=12(x−2)2+6,∴当x=2时,S有最小值6.【解析】(1)根据翻折变换的性质得出∠PBC=∠BPH,进而利用平行线的性质得出∠APB=∠PBC即可得出答案;(2)首先证明△ABP≌△QBP,进而得出△BCH≌△BQH,即可得出PD+DH+PH= AP+PD+DH+HC=AD+CD=8;(3)利用已知得出△EFM≌△BPA,进而利用在Rt△APE中,(4−BE)2+x2=BE2,利用二次函数的最值求出即可.此题主要考查了翻折变换的性质以及全等三角形的判定与性质和勾股定理、二次函数的最值问题等知识,熟练利用全等三角形的判定得出对应相等关系是解题关键.25.【答案】解:(1)由抛物线y=a(x+2)2+c可知,其对称轴为x=−2,∵点A坐标为(−1,0),∴点B坐标为(−3,0),∵OB=OC,∴C点坐标为(0,−3).将A(−1,0)、C(0,−3)分别代入解析式得,{a +c =04a +c =−3,解得,{a =−1c =1,则函数解析式为y =−x 2−4x −3.(2)由题意平移后的抛物线的解析式为y =−(x −m)2+2m , 由{y =−x −4y =−(x −m)2+2m ,消去y 得到:x 2−(2m +1)x +m 2−2m −4=0, ∵平移后的抛物线总有不动点, ∴△≥0,∴4m 2+4m +1−4(m 2−2m −4)≥0, 解得m ≥−1712.(3)如图,设P(−2,m),以P 为圆心的圆与直线y =−x −4相切,切点为D ,直线y =−x −4交抛物线的对称轴于E ,则E(−2,−2)∴PE =m +2,PD =√22PE ,∵PA =PD , ∴(m+2)22=1+m 2,解得m =2±√6,故P(−2,2+√6)或(−2,2−√6).【解析】(1)根据函数的解析式可以得到函数的对称轴是x =−2,则B 点的坐标可以求得,求得OB 的长,则C 的坐标可以求得,把A 、C 的坐标代入函数解析式即可求得;(2)由题意平移后的抛物线的解析式为y =−(x −m)2+2m ,由{y =−x −4y =−(x −m)2+2m ,消去y 得到:x 2−(2m +1)x +m 2−2m −4=0,平移后的抛物线总有不动点,推出△≥0,由此构建不等式即可解决问题;(3)设P(−2,m),以P 为圆心的圆与直线y =−x −4相切,根据切线的性质即可求解. 本题考查二次函数综合题、待定系数法求函数的解析式、一次函数的应用,以及直线与圆相切的判定等知识,解题的关键是学会用转化的思想思考问题,属于中考压轴题.。

2020年广东省广州市育才实验中学中考第一次模拟考试数学试卷

2020年广东省广州市育才实验中学中考第一次模拟考试数学试卷

广州市育才实验中学2020年中考数学 第一次模拟考试(考试时间:120分钟 满分:150分)第一部分 选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分) 1.如果16=a ,那么a 的值为( ) A.6 B.61 C.-6 D.61-2.下列二次根式是最简二次根式的是( ) A.21 B.712C.8D.3 3.如图,在△ABC 中,AB=AC ,∠A=30°,直线a ∥b ,顶点C 在直线b 上,直线a 交AB 于点D ,交AC 于点E ,若∠1=145°,则∠2的度数是( )A.30°B.35°C.40°D.45°4.某正方体的每个面上都有一个汉字,如图是它的一中展开图,那么在原正方体中,与“点”字所在面相对的面上的汉字是( )A.青B.春C.梦D.想5.如图,在平面直角坐标系xOy 中,A ,B 为一次函数图象上的两点,若点A 的坐标为(x ,y),点B 的坐标为(x +a ,y +b),则下列结论正确的是( )A .a >0B .a <0C .b =0D .b >06.如图,在Rt △ABC 中,∠B =90°,分别以A ,C 为圆心,大于12AC 长为半径画弧,两弧相交于点M ,N ,作直线MN ,与AC ,BC 分别交于点D ,E ,连接AE 当AB =5,BC =9时,则△ABE 的周长是( )A .19B .4C .14D .137.如图,△ABC 内接于⊙O ,若AB =BC ,∠ABC =120°,则∠ADB 的度数为( )A .15°B .30°C .45°D .60°8.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是( )A.12B.34C.112D.512 9.如图,正方形MNCB 在宽为2的矩形纸片一端,对折正方形MNCB 得到折痕AE ,再翻折纸片,使AB 与AD 重合.以下结论错误的是( )A.52102+=AH B.215-=BC CD C.EH CD BC ⋅=2D.515sin +=∠AHD 10.抛物线c bx ax y ++=2(c b a ,,是常数),0>a ,顶点坐标为),21(m .给出下列结论:①若点),(1y n 与点那么( )A.①正确,②正确B.①正确,②错误C.①错误,②正确D.①错误,②错误第二部分 选择题(共120分)二、填空题(本大题共6个小题,每小题3分,共18分)11.计算:(4+a)(4-a)= .12.如图,在ABCD 中,AB =3 cm ,BC =5 cm ,BE ,CF 分别是∠ABC 与∠BCD 的平分线,交AD 于点E ,F ,则线段EF 的长为 .第12题图 第14题图 第15题图13.对于实数a ,b ,定义运算“*”,a*b =⎩⎪⎨⎪⎧a 2-ab (a >b ),ab -b 2(a ≤b ),例如4*2,因为4>2,所以4*2=42-4×2=8,若x 1,x 2是一元二次方程x 2-9x +20=0的两个根,则x 1*x 2= .14.如图,E ,F 是正方形ABCD 的对角线AC 上的两点,AC =8,AE =CF =2,则四边形BEDF 的周长是 . 15.如图,在矩形ABCD 中,AB =3,AD =3,点P 是边AD 上的一个动点,连接BP ,作点A 关于直线BP 的对称点A 1,连接A 1C ,设A 1C 的中点为Q ,当点P 从点A 出发,沿边AD 运动到点D 时停止运动,点Q 的运动路径长为 .16.如图,矩形硬纸片ABCD 的顶点A 在y 轴的正半轴及原点上滑动,顶点B 在x 轴的正半轴及原点上滑动,点E 为AB 的中点,AB=24,BC=5,给出谢了列结论:①点A 从点O 出发,到点B 运动至点O 为止,点E 经过的路径长为12π;②△OAB 的面积的最大值为144;③当OD 最大时,点D 的坐标为)2626125,262625(,其中正确的结论是 (填写序号).三、解答题(本大题共9个小题,共102分) 17.(本题共2个小题,每小题5分,共10分) (1)计算:02)2(60tan 3)21(27-+︒--+-π(2)解方程组:⎩⎨⎧=+-=-②02①823y x y x18.(10分)某校八年级甲、乙两班各有50名学生,为了解这两个班学生身体素质情况,进行了抽样调查.从这两个班各随机抽取10名学生进行身体素质测试,测试成绩如下甲班65 75 75 80 60 50 75 90 85 65 乙班90 55 80 70 55 70 95 80 65 70 整理上面数据,得到如下统计表:样本数据的平均数,众数,中位数如下表所示:班级 平均数 中位数 众数 甲班 m 75 75 乙班7370n根据以上信息,解答下列问题: (1)求表中m 的值; (2)表中n 的值为____;(3)若规定测试成绩在80分以上(含80分)的学生身体素质为优秀,请估计乙班50名学生中身体素质为优秀的学生的人数.19.(10分)酒令是中国民间风俗之一.白居易曾诗曰:“花时同醉破春愁,醉折花枝当酒筹”饮酒行令,是中国人在饮酒时助兴的一种特有方式,不仅要以酒助兴,往往还伴之以赋诗填词、猜迷形拳之举,最早诞生于西周,完备于隋唐,“虎棒鸡虫令”是其中一种:“二人相对,以筷子相声,同时或喊虎、喊棒、喊鸡、喊虫,以棒打虎、虎吃鸡、鸡吃虫、虫瞌棒论胜负,负者饮.若棒兴鸡、或虫兴虎同时出现(解释:若棒与鸡,虎与虫同时喊出)或两人喊出同一物,则不分胜负,继续喊”.依据上述规则,张三和李四同时随机地喊出其中一物,两人只喊一次.(1)求张三喊出“虎”取胜的概率;(2)用列表法或画树状图法,求李四取胜的概率;(3)直接写出两人能分出胜负的概率.20.(10分)某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了1元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2 000元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有4%的损耗,该水果店希望售完这些水果获利不低于3 780元,则该水果每千克售价至少为多少元?21.(8分)如图,一辆轿车在经过某路口的感应线B 和C 处时,悬臂灯杆上的电子警察拍摄到两张照片,两感应线之间距离BC 为6.2 m ,在感应线B ,C 两处测得电子警察A 的仰角分别为∠ABD =45°,∠ACD =28°.求电子警察安装在悬臂灯杆上的高度AD 的长.(结果精确到0.1 m .参考数据:sin 28°≈0.47,cos 28°≈0.88,tan 28°≈0.53)22.(10分)如图,直线y 1=k 1x +b 与双曲线y 2=k 2x 在第一象限内交于A ,B 两点,已知A(1,m),B(2,1).(1)直接写出不等式y 2>y 1的解集; (2)求直线AB 的解析式;(3)设点P 是线段AB 上的一个动点,过点P 作PD ⊥x 轴于点D ,E 是y 轴上一点,求△PED 的面积S 的最大值.23.(10分)如图,在△ABC 中,以AC 为直径的⊙O 交AB 于点D ,连接CD ,∠BCD=∠A.(1)求证:BC 是⊙O 的切线;(2)若BC=5,BD=3,求点O 到CD 的距离.24.(12分)(2019山西 中考)(本题13分)综合与探究如图,抛物线62++=bx ax y 经过点A (-2,0),B (4,0)两点,与y 轴交于点C ,点D 是抛物线上一个动点,设点D 的横坐标为)41(<<m m .连接AC ,BC ,DB ,DC. (1)求抛物线的函数表达式; (2)△BCD 的面积等于△AOC 的面积的43时,求m 的值; (3)在(2)的条件下,若点M 是x 轴上的一个动点,点N 是抛物线上一动点,试判断是否存在这样的点M,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形,若存在,请直接写出点M 的坐标;若不存在,请说明理由.25.(12分)数学课上,张老师出示了问题:如图①,AC ,BD 是四边形ABCD 的对角线,若∠ACB =∠ACD =∠ABD =∠ADB =60°,则线段BC ,CD ,AC 三者之间有何等量关系?经过思考,小明展示了一种正确的思路:如图②,延长CB 到E ,使BE =CD ,连接AE ,证得△ABE ≌△ADC ,从而容易证明△ACE 是等边三角形,故AC =CE ,所以AC =BC +CD.小亮展示了另一种正确的思路:如图③,将△ABC 绕着点A 逆时针旋转60°,使AB 与AD 重合,从而容易证明△ACF 是等边三角形,故AC =CF ,所以AC =BC +CD.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图④,如果把“∠ACB =∠ACD =∠ABD =∠ADB =60°”改为“∠ACB =∠ACD =∠ABD =∠ADB =45°”,其它条件不变,那么线段BC ,CD ,AC 三者之间有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明.=α”,其它条件不变,那么线段BC ,CD ,AC 三者之间有何等量关系?针对小华提出的问题,请你写出结论,不用证明.参考答案第一部分 选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分) 1.如果16=a ,那么a 的值为( B ) A.6 B.61 C.-6 D.61-2.下列二次根式是最简二次根式的是( D ) A.21 B.712C.8D.3 3.如图,在△ABC 中,AB=AC ,∠A=30°,直线a ∥b ,顶点C 在直线b 上,直线a 交AB 于点D ,交AC 于点E ,若∠1=145°,则∠2的度数是( A )A.30°B.35°C.40°D.45°上的汉字是( B )A.青B.春C.梦D.想5.如图,在平面直角坐标系xOy 中,A ,B 为一次函数图象上的两点,若点A 的坐标为(x ,y),点B 的坐标为(x +a ,y +b),则下列结论正确的是( B )A .a >0B .a <0C .b =0D .b >06.如图,在Rt △ABC 中,∠B =90°,分别以A ,C 为圆心,大于12AC 长为半径画弧,两弧相交于点M ,N ,作直线MN ,与AC ,BC 分别交于点D ,E ,连接AE 当AB =5,BC =9时,则△ABE 的周长是( C )A .19B .4C .14D .137.如图,△ABC 内接于⊙O ,若AB =BC ,∠ABC =120°,则∠ADB 的度数为( B )A .15°B .30°C .45°D .60°8.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是( D )A.12B.34C.112D.512重合.以下结论错误的是( D )A.52102+=AH B.215-=BC CD C.EH CD BC ⋅=2 D.515sin +=∠AHD 10.抛物线c bx ax y ++=2(c b a ,,是常数),0>a ,顶点坐标为),21(m .给出下列结论:①若点),(1y n 与点)223(2y n ,-在该抛物线上,当21<n 时,则21y y <;②关于x 的一元二次方程012=+-+-m c bx ax 无实数解,那么( A )A.①正确,②正确B.①正确,②错误C.①错误,②正确D.①错误,②错误第二部分 选择题(共120分)二、填空题(本大题共6个小题,每小题3分,共18分)11.计算:(4+a)(4-a)=__16-a__.12.如图,在ABCD 中,AB =3 cm ,BC =5 cm ,BE ,CF 分别是∠ABC 与∠BCD 的平分线,交AD 于点E ,F ,则线段EF 的长为 1 cm .第12题图 第14题图 第15题图13.对于实数a ,b ,定义运算“*”,a*b =⎩⎪⎨⎪⎧a 2-ab (a >b ),ab -b 2(a ≤b ),例如4*2,因为4>2,所以4*2=42-4×2=8,若x 1,x 2是一元二次方程x 2-9x +20=0的两个根,则x 1*x 2= ±5 .14.如图,E ,F 是正方形ABCD 的对角线AC 上的两点,AC =8,AE =CF =2,则四边形BEDF 的周长是 8 5 .15.如图,在矩形ABCD 中,AB =3,AD =3,点P 是边AD 上的一个动点,连接BP ,作点A 关于直线BP 的对称点A 1,连接A 1C ,设A 1C 的中点为Q ,当点P 从点A 出发,沿边AD 运动到点D 时停止运动,点Q 的16.如图,矩形硬纸片ABCD 的顶点A 在y 轴的正半轴及原点上滑动,顶点B 在x 轴的正半轴及原点上滑动,点E 为AB 的中点,AB=24,BC=5,给出谢了列结论:①点A 从点O 出发,到点B 运动至点O 为止,点E 经过的路径长为12π;②△OAB 的面积的最大值为144;③当OD 最大时,点D 的坐标为)2626125,262625(,其中正确的结论是 ②③ (填写序号).三、解答题(本大题共9个小题,共102分) 17.(本题共2个小题,每小题5分,共10分) (1)计算:02)2(60tan 3)21(27-+︒--+-π【解析】原式=5133433=+-+ (3)解方程组:⎩⎨⎧=+-=-②02①823y x y x【解析】(2)①+②得:84-=x ,解得2-=x ,将2-=x 代入②得:022=+-y ,解得1=y ∴原方程组的解为⎩⎨⎧=-=12y x 18.(10分)某校八年级甲、乙两班各有50名学生,为了解这两个班学生身体素质情况,进行了抽样调查.从这两个班各随机抽取10名学生进行身体素质测试,测试成绩如下甲班65 75 75 80 60 50 75 90 85 65 乙班90 55 80 70 55 70 95 80 65 70 整理上面数据,得到如下统计表:样本数据的平均数,众数,中位数如下表所示:班级 平均数 中位数 众数 甲班 m 75 75 乙班7370n根据以上信息,解答下列问题: (1)求表中m 的值; (2)表中n 的值为____;(3)若规定测试成绩在80分以上(含80分)的学生身体素质为优秀,请估计乙班50名学生中身体素质为优秀的学生的人数.解:(1)72;(2)70;(3)20人.19.(10分)酒令是中国民间风俗之一.白居易曾诗曰:“花时同醉破春愁,醉折花枝当酒筹”饮酒行令,是中国人在饮酒时助兴的一种特有方式,不仅要以酒助兴,往往还伴之以赋诗填词、猜迷形拳之举,最早诞生于西周,完备于隋唐,“虎棒鸡虫令”是其中一种:“二人相对,以筷子相声,同时或喊虎、喊棒、喊鸡、喊虫,以棒打虎、虎吃鸡、鸡吃虫、虫瞌棒论胜负,负者饮.若棒兴鸡、或虫兴虎同时出现(解释:若棒与鸡,虎与虫同时喊出)或两人喊出同一物,则不分胜负,继续喊”.依据上述规则,张三和李四同时随机地喊出其中一物,两人只喊一次.(1)求张三喊出“虎”取胜的概率;(2)用列表法或画树状图法,求李四取胜的概率; (3)直接写出两人能分出胜负的概率.解:(1)张三喊出“虎”取胜的概率为14;(2)分别用1,2,3,4表示老虎,棒子,鸡,虫,列表得:1234∵由表可知,共有16种可能的结果,其中李四取胜的结果共有4种, ∴P(李四取胜)=416=14;(3)从上表可知,张三取胜的结果共有4种, ∴P(张三取胜)=416=14,∵P(李四取胜)=14,∴两人能分出胜负的概率各为12.20.(10分)某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了1元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2 000元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有4%的损耗,该水果店希望售完这些水果获利不低于3 780元,则该水果每千克售价至少为多少元?解:(1)设水果店第一次购进水果x 元,第二次购进水果y 元, 由题意得⎩⎪⎨⎪⎧x +y =2 000,y 4-1=2×x4,解得⎩⎪⎨⎪⎧x =800y =1 200. ∴水果店第一次购进水果800元,第二次购进水果1 200元. (2)设该水果每千克售价为m 元,第一次购进800÷4=200(千克), 第二次购进1 200÷3=400(千克),由题意[200×(1-3%)+400×(1-4%)]m -2 000≥3 780.解得m ≥10.∴该水果每千克售价为10元.21.(8分)如图,一辆轿车在经过某路口的感应线B 和C 处时,悬臂灯杆上的电子警察拍摄到两张照片,两感应线之间距离BC 为6.2 m ,在感应线B ,C 两处测得电子警察A 的仰角分别为∠ABD =45°,∠ACD =28°.求电子警察安装在悬臂灯杆上的高度AD 的长.(结果精确到0.1 m .参考数据:sin 28°≈0.47,cos 28°≈0.88,tan 28°≈0.53)解:根据题意可知∠ADC =90°, ∵∠ABD =45°,∴∠DAB =45°, ∴∠DAB =∠ABD ,∴DA =DB.在Rt △ADC 中,∠ACD =28°,BC =6.2 m ,∴tan 28°=ADDC ,∴AD =0.53(AD +6.2),∴AD =6.99≈7.0 m ,答:电子警察安装在悬臂灯杆上的高度AD 的长为7.0 m.22.(10分)如图,直线y 1=k 1x +b 与双曲线y 2=k 2x 在第一象限内交于A ,B 两点,已知A(1,m),B(2,1).(1)直接写出不等式y 2>y 1的解集; (2)求直线AB 的解析式;(3)设点P 是线段AB 上的一个动点,过点P 作PD ⊥x 轴于点D ,E 是y 轴上一点,求△PED 的面积S 的最大值.解:(1)0<x <1或x >2; (2)y 1=-x +3;(3)设点P(x ,-x +3),且1≤x ≤2,则S =12PD ·OD =-12x 2+32x =-12×⎝ ⎛⎭⎪⎫x -322+98,∵-12<0,∴当x =32时,S 有最大值,最大值为98.23.(10分)如图,在△ABC 中,以AC 为直径的⊙O 交AB 于点D ,连接CD ,∠BCD=∠A.(1)求证:BC 是⊙O 的切线;(2)若BC=5,BD=3,求点O 到CD 的距离.(1)证明:∵AC 是⊙O 的直径,∴∠ADC=90°(1分) ∠A+∠ACD=90°,∵∠BCD=∠A ,∴∠BCD+∠ACD=90°(2分) ∴OC ⊥BC ,∵OC 是⊙O 的半径,∴BC 是⊙O 的切线.(3分)(2)解:过点O 作OE ⊥CD 于点E ,如图所示(4分)在Rt △BCD 中,∵BC=5,BD=3,∴CD=4(5分)∵∠ADC=∠CDB=90°,∠BCD=∠A. ∴Rt △BDC ∽Rt △CDA.∴43==CD BD AD CD ,∴316=AD (6分) ∵OE ⊥CD ,∴E 为CD 的中点(7分)又∵点O 是AC 的中点,∴OE=3821=AD (8分) 25.(12分)(2019山西 中考)(本题13分)综合与探究如图,抛物线62++=bx ax y 经过点A (-2,0),B (4,0)两点,与y 轴交于点C ,点D 是抛物线上一个动点,设点D 的横坐标为)41(<<m m .连接AC ,BC ,DB ,DC.(4)求抛物线的函数表达式; (5)△BCD 的面积等于△AOC 的面积的43时,求m 的值; (6)在(2)的条件下,若点M 是x 轴上的一个动点,点N 是抛物线上一动点,试判断是否存在这样的点M,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形,若存在,请直接写出点M 的坐标;若不存在,请说明理由.【解析】.解:(1)抛物线c bx ax y ++=2经过点A (-2,0),B (4,0),∴⎩⎨⎧=++=+-064160624b a b a ,解得⎪⎪⎩⎪⎪⎨⎧=-=2343b a ,∴抛物线的函数表达式为623432++-=x x y(2)作直线DE ⊥x 轴于点E ,交BC 于点G ,作CF ⊥DE ,垂足为F. ∵点A 的坐标为(-2,0),∴OA=2由0=x ,得6=y ,∴点C 的坐标为(0,6),∴OC=6 ∴S △OAC =6622121=⨯⨯=⋅⋅OC OA ,∵S △BCD =43S △AOC =29643=⨯ 设直线BC 的函数表达式为n kx y +=,由B ,C 两点的坐标得⎩⎨⎧==+604n n k ,解得⎪⎩⎪⎨⎧=-=623n k∴直线BC 的函数表达式为623+-=x y . ∴点G 的坐标为),623,(+-m m ∴m m m m m DG 343)623(6234322+-=+--++-= ∵点B 的坐标为(4,0),∴OB=4S △BCD=S △CDG+S △BDG=BO DG BE CF DG BE DG CF DG ⋅⋅=+⋅=⋅⋅+⋅⋅21)(212121 =m m m m 62343432122+-=⨯+-)(∴296232=+-m m ,解得11=m (舍),32=m ,∴m 的值为3(3))0,14(),0,14(),0,0(),0,8(4321-M M M M如下图所示,以BD 为边或者以BD 为对角线进行平行四边形的构图 以BD 为边进行构图,有3种情况,采用构造全等发进行求解.∵D 点坐标为)415,3(,所以21,N N 的纵坐标为415 415623432=++-x x ,解得3,121=-=x x (舍)可得)0,0(),415,1(22M N ∴- ∴43,N N 的纵坐标为415-时,141,14141562343212+=-=-=++-x x x x ,∴)0,14(),415,141(33M N ∴-+,)0,14(),415,141(44-∴--M N以BD 为对角线进行构图,有1种情况,采用中点坐标公式进行求解. ∵)0,8(),4150415),1(43(),415,1(111M M N ∴-+--+∴-25.(12分)数学课上,张老师出示了问题:如图①,AC ,BD 是四边形ABCD 的对角线,若∠ACB =∠ACD =∠ABD =∠ADB =60°,则线段BC ,CD ,AC 三者之间有何等量关系?经过思考,小明展示了一种正确的思路:如图②,延长CB 到E ,使BE =CD ,连接AE ,证得△ABE ≌△ADC ,从而容易证明△ACE 是等边三角形,故AC =CE ,所以AC =BC +CD.小亮展示了另一种正确的思路:如图③,将△ABC 绕着点A 逆时针旋转60°,使AB 与AD 重合,从而容易证明△ACF 是等边三角形,故AC =CF ,所以AC =BC +CD.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图④,如果把“∠ACB =∠ACD =∠ABD =∠ADB =60°”改为“∠ACB =∠ACD =∠ABD =∠ADB=45°”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明.(2)小华提出:如图⑤,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB =α”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小华提出的问题,请你写出结论,不用证明.解:(1)BC+CD=2AC;理由:如图④,延长CD至E,使DE=BC,∵∠ABD=∠ADB=45°,∴AB=AD,∠BAD=180°-∠ABD-∠ADB=90°.∵∠ACB=∠ACD=45°,∴∠ACB+∠ACD=90°,∴∠BAD+∠BCD=180°,∴∠ABC+∠ADC=180°.∵∠ADC+∠ADE=180°,∴∠ABC=∠ADE.∴△ABC≌△ADE(SAS),∴∠ACB=∠AED=45°,AC=AE,∴△ACE是等腰直角三角形,∴CE=2AC.∵CE=CD+DE=CD+BC,∴BC+CD=2AC;(2)BC+CD=2AC·cos α.理由:如图⑤,延长CD至E,使DE=BC,∵∠ABD=∠ADB=α,∴AB=AD,∠BAD=180°-∠ABD-∠ADB=180°-2α.∵∠ACB=∠ACD=α,∴∠ACB+∠ACD=2α,∴∠BAD+∠BCD=180°,∴∠ABC+∠ADC=180°.∵∠ADC+∠ADE=180°,∴∠ABC=∠ADE.∴△ABC≌△ADE(SAS),∴∠ACB=∠AED=α,AC=AE,∴∠AEC=α.过点A作AF⊥CE于F,∴CE=2CF.在Rt△ACF中,∠ACD=α,CF=AC·cos∠ACD=AC·cos α,∴CE=2CF=2AC·cos α.∵CE=CD+DE=CD+BC,∴BC+CD=2AC·cos α.。

2020年广东省中考数学模拟卷1-答案

2020年广东省中考数学模拟卷1-答案

备战2020中考全真模拟卷04数 学(考试时间:90分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

5.考试范围:广东中考全部内容。

第Ⅰ卷一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.7-的相反数是 A .7- B .17-C .7D .1【答案】C .【解析】7-的相反数为7,故选C .2.地球的表面积约为2510000000km ,将510000000用科学记数法表示为 A .90.5110⨯ B .85.110⨯C .95.110⨯D .75110⨯【答案】B .【解析】8510000000 5.110=⨯,故选B . 3.下列图形中,是中心对称图形的是 A .B .C .D .【答案】B .【解析】A 、不是中心对称图形,是轴对称图形,故本选项错误;B 、是中心对称图形,不是轴对称图形,故本选项正确;C 、不是中心对称图形,是轴对称图形,故本选项错误;D 、不是中心对称图形,是轴对称图形,故本选项错误.故选B .4.某车间需加工一批零件,车间20名工人每天加工零件数如表所示:每天加工零件数的中位数和众数为 A .6,5 B .6,6 C .5,5 D .5,6【答案】A .【解析】由表知数据5出现了6次,次数最多,所以众数为5;因为共有20个数据, 所以中位数为第10、11个数据的平均数,即中位数为6662+=,故选A . 5.若点(,)P a b 在第三象限,则(,)M ab a --应在 A .第一象限 B .第二象限C .第三象限D .第四象限【答案】B .【解析】Q 点(,)P a b 在第三象限,0a ∴<,0b <,0a ∴->,0ab -<,∴点(,)M ab a --在第二象限.故选B .6.下列各式计算正确的是A .32523a a a +=B .=C .6243()()0a a ÷=D .3249()a a a =g【答案】B .【解析】A 、3a 和22a 不是同类项,不能合并,故本选项错误;B 、项正确;C 、6243()()1a a ÷=,原式计算错误,故本选项错误;D 、32410()a a a =g ,原式计算错误,故本选项错误.故选B .7.如图,直线//a b ,直角三角形如图放置,90DCB ∠=︒,若165B ∠+∠=︒,则2∠的度数为A .20︒B .25︒C .30︒D .35︒【答案】B .【解析】由三角形的外角性质可得,3165B ∠=∠+∠=︒,//a b Q ,90DCB ∠=︒,2180390180659025∴∠=︒-∠-︒=︒-︒-︒=︒.故选B .8.由方程组213x m y m+=⎧⎨-=⎩,可得x 与y 的关系是A .24x y +=-B .24x y -=-C .24x y +=D .24x y -=【答案】C .【解析】213x m y m +=⎧⎨-=⎩①②,把②代入①得:231x y +-=,整理得:24x y +=,故选C .9.如图,AB 是O e 的直径,点C 为O e 外一点,CA 、CD 是O e 的切线,A 、D 为切点,连接BD 、AD .若48ACD ∠=︒,则DBA ∠的大小是( )A .32︒B .48︒C .60︒D .66︒【答案】D .【解析】CA Q 、CD 是O e 的切线,CA CD ∴=, 48ACD ∠=︒Q ,66CAD CDA ∴∠=∠=︒,CA AB ⊥Q ,AB 是直径,90ADB CAB ∴∠=∠=︒, 90DBA DAB ∴∠+∠=︒,90CAD DAB ∠+∠=︒, 66DBA CAD ∴∠=∠=︒,故选D .10.如图,是二次函数2y ax bx c =++的图象,①0abc >;②0a b c ++<;③420a b c -+<;④240ac b -<,其中正确结论的序号是A .①②③B .①③C .②④D .③④【答案】D .【解析】由图象可得,0a <,0b >,0c >,0abc ∴<,故①错误;当1x =时,0y a b c =++>,故②错误;当2x =-时,420y a b c =-+<,故③正确; 函数图象与x 轴有两个交点,则240b ac ->,故240ac b -<,故④正确,故选D .第Ⅱ卷二、填空题(本大题共7小题,每小题4分,共28分) 11.分解因式:29x -=__________. 【答案】(3)(3)x x +-.【解析】29(3)(3)x x x -=+-.故答案为:(3)(3)x x +-. 12.关于x 的不等式(32)2a x -<的解为232x a >-,则a 的取值范围是__________. 【答案】23a <. 【解析】Q 关于x 的不等式(32)2a x -<的解为232x a >-,320a ∴-<,解得:23a <,故答案为:23a <.13.定义运算“※”,规定x ※2y ax by =+,其中a ,b 为常数,且1※25=,2※16=,则2※3=__________. 【答案】10.【解析】根据题意得:2546a b a b +=⎧⎨+=⎩,解得:12a b =⎧⎨=⎩,则2※34610=+=.故答案为:10.14.算术平方根等于它本身的数是__________. 【答案】0和1.【解析】算术平方根等于它本身的数是0和1.15.一个多边形的每个外角都等于72︒,则这个多边形的边数为__________.【答案】5.【解析】多边形的边数是:360725÷=.故答案为:5.16.观察下列一组数:37911,1,,,2101726--,⋯,根据该组数的排列规律,可推出第10个数是__________.【答案】21101-. 【解析】由分析知:第10个数为21101-,故答案为:21101-. 17.如图,在Rt ABC ∆中,90C ∠=︒,5AC =,以AB 为一边向三角形外作正方形ABEF ,正方形的中心为O,OC =BC 边的长为__________.【答案】3.【解析】作EQ x ⊥轴,以C 为坐标原点建立直角坐标系,CB 为x 轴,CA 为y 轴,则(0,5)A . 设(,0)B x ,由于O 点为以AB 一边向三角形外作正方形ABEF 的中心,AB BE ∴=,90ABE ∠=︒, 90ACB ∠=︒Q ,90BAC ABC ∴∠+∠=︒,90ABC EBQ ∠+∠=︒,BAC EBQ ∴∠=∠,在ABC ∆和BEQ ∆中,90ACB BQE BAC EBQ AB EB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,()ACB BQE AAS ∴∆≅∆,5AC BQ ∴==,BC EQ =,设BC EQ x ==,O ∴为AE 中点,OM ∴为梯形ACQE 的中位线,52xOM +∴=, 又1522x CM CQ +==Q ,O ∴点坐标为5(2x +,5)2x+,根据题意得:OC =3x =,则3BC =.故答案为:3.三、解答题(一)(本大题共3小题,每小题6分,共18分)18.计算:01)|3|+-. 【解析】原式132=+-2=.19.先化简,再求值:82(2)224x x x x x +-+÷--,其中12x =-. 【解析】原式24482(2)()222x x x x x x x -+-=+--+g2(2)2(2)22x x x x +-=-+g 2(2)x =+ 24x =+,当12x =-时,原式12()42=⨯-+14=-+3=.20.如图,在平行四边形ABCD 中,E 是AD 边上一点,且AE AB =,连接BE .(1)尺规作图:作A ∠的平分线AF 交BC 于F ,交BE 于G (不需要写作图过程,保留作图痕迹); (2)若8BE =,5AB =,求AF 的长.【解析】(1)射线AF 如图所示.(2)AE AB =Q ,AF 平分BAE ∠, AG BE ∴⊥,4EG BG ∴==,在Rt AGB ∆中,5AB =Q ,4BG =,3AG ∴==,Q 四边形ABCD 是平行四边形,//AD BC ∴,EFA BAG AFB ∴∠=∠=∠,BA BF ∴=, BG AF ⊥Q ,3AG GF ∴==,6AF ∴=.四、解答题(二)(本大题共3小题,每小题7分,共21分) 21.列方程解应用题:中华优秀传统文化是中华民族的“根”和“魂”,是我们必须世代传承的文化根脉、文化基因.为传承优秀传统文化,某校为各班购进《三国演义》和《水浒传》连环画若干套,其中每套《三国演义》连环画的价格比每套《水浒传》连环画的价格贵60元,用4800元购买《水浒传》连环画的套数是用3600元购买《三国演义》连环画套数的2倍,求每套《水浒传》连环画的价格.【解析】设每套《水浒传》连环画的价格为x 元,则每套《三国演义》连环画的价格为(60)x +元. 由题意,得48003600260x x =⨯+ 解得120x =经检验,120x =是原方程的解,且符合题意. 答:每套《水浒传》连环画的价格为120元.22.如图,矩形ABCD 中ABD ∠,CDB ∠的平分线BE ,DF 分别交边AD ,BC 于点E ,F . (1)求证:四边形BEDF 为平行四边形;(2)当ABE ∠的度数是__________时,四边形BEDF 是菱形.【解析】(1)Q 四边形ABCD 是矩形, //AB DC ∴、//AD BC ,ABD CDB ∴∠=∠,BE Q 平分ABD ∠、DF 平分BDC ∠,12EBD ABD ∴∠=∠,12FDB BDC ∠=∠,EBD FDB ∴∠=∠,//BE DF ∴,又//AD BC Q ,∴四边形BEDF 是平行四边形; (2)当30ABE ∠=︒时,四边形BEDF 是菱形,BE Q 平分ABD ∠,260ABD ABE ∴∠=∠=︒,30EBD ABE ∠=∠=︒,Q 四边形ABCD 是矩形,90A ∴∠=︒,9030EDB ABD ∴∠=︒-∠=︒,30EDB EBD ∴∠=∠=︒,EB ED ∴=,又Q 四边形BEDF 是平行四边形,∴四边形BEDF 是菱形, 故答案为:30︒.23.有三张正面分别写有数字1-,1,2的卡片,它们除数字不同无其它差别,现将这三张卡片背面朝上洗匀后.(1)随机抽取一张,求抽到数字2的概率;(2)先随机抽取一张,以其正面数字作为k 值,将卡片放回再随机抽一张,以其正面的数字作为b 值,请你用恰当的方法表示所有可能的结果,并求出直线y kx b =+的图象不经过第四象限的概率. 【解析】(1)Q 共有3张卡片,分别写有数字1-,1,2,P ∴(抽到数字12)3=;(2)列表如下:可能出现的结果有9种,使得直线y kx b =+的图象不经过第四象限的结果有4种,既(1,1),(2,1),(1,2),(2,2),所以P (图象不经过第四象限)49=. 五、解答题(三)(本大题共2小题,每小题10分,共20分)24.如图1,已知AB 是O e 的直径,AC 是O e 的弦,过O 点作OF AB ⊥交O e 于点D ,交AC 于点E ,交BC 的延长线于点F ,点G 是EF 的中点,连接CG (1)判断CG 与O e 的位置关系,并说明理由; (2)求证:22OB BC BF =g ;(3)如图2,当2DCE F ∠=∠,3CE =, 2.5DG =时,求DE 的长.【解析】(1)CG 与O e 相切,理由如下: 如图1,连接CE ,AB Q 是O e 的直径,90ACB ACF ∴∠=∠=︒,Q 点G 是EF 的中点,GF GE GC ∴==,AEO GEC GCE ∴∠=∠=∠, OA OC =Q ,OCA OAC ∴∠=∠, OF AB ⊥Q ,90OAC AEO ∴∠+∠=︒, 90OCA GCE ∴∠+∠=︒,即OC GC ⊥, CG ∴与O e 相切;(2)90AOE FCE ∠=∠=︒Q ,AEO FEC ∠=∠,OAE F ∴∠=∠, 又B B ∠=∠Q ,ABC FBO ∴∆∆∽,∴BC ABBO BF=,即BO AB BC BF =g g , 2AB BO =Q ,22OB BC BF ∴=g ;(3)由(1)知GC GE GF ==, F GCF ∴∠=∠,2EGC F ∴∠=∠,又2DCE F ∠=∠Q ,EGC DCE ∴∠=∠, DEC CEG ∠=∠Q ,ECD EGC ∴∆∆∽,∴EC EDEG EC=,3CE =Q , 2.5DG =,∴32.53DEDE =+,整理,得:2 2.590DE DE +-=,解得:2DE =或 4.5DE =-(舍),故2DE =.25.如图①,在平面直角坐标系中,二次函数213y x bx c =-++的图象与坐标轴交于A ,B ,C 三点,其中点A 的坐标为(3,0)-,点B 的坐标为(4,0),连接AC ,BC .动点P 从点A 出发,在线段AC 上以每秒1个单位长度的速度向点C 作匀速运动;同时,动点Q 从点O 出发,在线段OB 上以每秒1个单位长度的速度向点B 作匀速运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为t 秒.连接PQ . (1)填空:b =__________,c =__________;(2)在点P ,Q 运动过程中,APQ ∆可能是直角三角形吗?请说明理由;(3)点M 在抛物线上,且AOM ∆的面积与AOC ∆的面积相等,求出点M 的坐标.【解析】(1)设抛物线的解析式为(3)(4)y a x x =+-. 将13a =-代入得:211433y x x =-++,13b ∴=,4c =.(2)在点P 、Q 运动过程中,APQ ∆不可能是直角三角形. 理由如下:连结QC .Q 在点P 、Q 运动过程中,PAQ ∠、PQA ∠始终为锐角,11 ∴当APQ ∆是直角三角形时,则90APQ ∠=︒.将0x =代入抛物线的解析式得:4y =,(0,4)C ∴.AP OQ t ==Q ,5PC t ∴=-,Q 在Rt AOC ∆中,依据勾股定理得:5AC =在Rt COQ ∆中,依据勾股定理可知:2216CQ t =+在Rt CPQ ∆中依据勾股定理可知:222PQ CQ CP =-,在Rt APQ ∆中,222AQ AP PQ -= 2222CQ CP AQ AP ∴-=-,即2222(3)16(5)t t t t +-=+--解得: 4.5t =,Q 由题意可知:04t 剟4.5t ∴=不合题意,即APQ ∆不可能是直角三角形.(3 )AO Q 是AOM ∆与AOC ∆的公共边∴点M 到AO 的距离等于点C 到AO 的距离即点M 到AO 的距离等于CO所以M 的纵坐标为4或4-把4y =代入211433y x x =-++得2114433x x -++=,解得10x =,21x =,把4y =-代入211433y x x =-++得2114433x x -++=-,解得1x,2x =,(1,4)M或M 4)-或M 4)-.。

2020年广东省广州市中考数学一模试卷

2020年广东省广州市中考数学一模试卷

2020年广东省广州市中考数学一模试卷一、选择题(本题有10个小题,每小题3分,满分30分.下面每小题给出的四个选项中,只有一个是正确的.)1. 在实数13,0,−1,−√2中,最小的实数是()A.−√2B.−1C.0D.132. 如图所示的几何体的俯视图是()A. B. C. D.3. 下列运算正确的是()A.1 x +1y=1x+yB.(−p2q)3=−p5q3C.√a⋅√b=√abD.(a+b)2=a2+b24. 如图所示,将面积为5的△ABC沿BC方向平移至△DEF的位置,平移的距离是边BC长的两倍,那么图中的四边形ACED的面积为()A.10B.15C.20D.255. 学校抽查了30名学生参加“学雷锋社会实践”活动的次数,并根据数据绘制成了条形统计图,则30名学生参加活动的平均次数是()A.2 B.2.8 C.3 D.3.36. 菱形具有而平行四边形不具有的性质是()A.对角线互相垂直B.两组对角分别相等C.对角线互相平分D.两组对边分别平行7. 不等式组{x+3>0x−2≤0的解集是()A.x<2B.x≥−3C.−3<x≤2D.x≤28. 如图,△ABC的顶点都是正方形网格中的格点,则tan∠ABC=()A.12B.2C.√55D.2√559. 已知α,β是一元二次方程x2−5x−2=0的两个实数根,则α2+αβ+β2的值为()A.−1B.9C.23D.2710. 如图,直线y=23x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时,点P的坐标为()A.(−3,0)B.(−6,0)C.(−32,0) D.(−52,0)二、填空题(本题有6个小题,每小题3分,共18分.)太阳半径约为696 000千米,数字696 000用科学记数法表示为________.若a<1,化简√(a−1)2−1=________.分式方程2x+1=1的解是________.如图,是用一把直尺、含60∘角的直角三角板和光盘摆放而成,点A为60∘角与直尺交点,点B为光盘与直尺唯一交点,若AB=3,则光盘的直径是________.如图,圆锥的底面半径为6cm,高为8cm,那么这个圆锥的侧面积是60πcm2.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①BE+DF=EF;②CE=CF;③∠AEB=75∘;④S正方形ABCD =2+√3,其中正确的序号是________.三、解答题(本题有9个小题,共102分,解答要求写出文字说明、证明过程或计算步骤.)计算4cos45∘−√8+(π−√3)0+(−1)3.如图,在▱ABCD中,对角线AC、BD交于点O,M为AD中点,连接OM、CM,且CM交BD于点N,ND=1.(1)证明:△MNO∼△CND;(2)求BD的长.先化简,再求值:x2x+y−y2x+y,其中x=2+√3,y=2−√3.当前,“精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要“建档立卡”.某初级中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A1,A2,A3,A4,现对A1,A2,A3,A4统计后,制成如图所示的统计图.(1)求七年级已“建档立卡”的贫困家庭的学生总人数;(2)将条形统计图补充完整,并求出A1所在扇形的圆心角的度数;(3)现从A1,A2中各选出一人进行座谈,若A1中有一名女生,A2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.如图,一次函数y=ax+b与反比例函数y=kx的图象交于A,B两点,点A坐标为(6, 2),点B坐标为(−4, n),直线AB交y轴于点C,过C作y轴的垂线,交反比例函数图象于点D,连接OD,BD.(1)分别求出一次函数与反比例函数的解析式;(2)求四边形OCBD的面积.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?如图,在△ABC中,∠ACB=90∘,点O是BC上一点.(1)尺规作图:作⊙O,使⊙O与AC、AB都相切.(不写作法与证明,保留作图痕迹)(2)若⊙O与AB相切于点D,与BC的另一个交点为点E,连接CD、DE,求证:DB2=BC∗BE.如图,已知顶点为C(0, −3)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15∘?若存在,求出点M的坐标;若不存在,请说明理由.如图①,在四边形ABCD中,AC⊥BD于点E,AB=AC=BD,点M为BC中点,N为线段AM上的点,且MB =MN(1)求证:BN平分∠ABE;(2)若BD=1,连接DN,当四边形DNBC为平行四边形时,求线段BC的长;(3)若点F为AB的中点,连接FN、FM(如图②),求证:∠MFN=∠BDC.参考答案与试题解析2020年广东省广州市中考数学一模试卷一、选择题(本题有10个小题,每小题3分,满分30分.下面每小题给出的四个选项中,只有一个是正确的.)1.【答案】A【考点】算术平方根实数大小比较【解析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:∵−√2<−1<0<13,∴最小的实数是−√2.故选A.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.【答案】C【考点】简单组合体的三视图【解析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】如图所示的几何体的俯视图是.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.【答案】C【考点】完全平方公式分式的加减运算二次根式的乘除法幂的乘方与积的乘方【解析】直接利用积的乘方运算以及二次根式的乘法运算法则、完全平方公式分别计算得出答案.【解答】A、1x+1y=y+xxy,故此选项错误;B、(−p2q)3=−p6q3,故此选项错误;C、√a⋅√b=√ab,正确;D、(a+b)2=a2+2ab+b2,故此选项错误;【点评】此题主要考查了积的乘方运算以及二次根式的乘法运算、完全平方公式,正确掌握相关运算法则是解题关键.4.【答案】B【考点】平移的性质【解析】设点A到BC的距离为ℎ,根据平移的性质用BC表示出AD、CE,然后根据三角形的面积公式与梯形的面积公式列式进行计算即可得解.【解答】设点A到BC的距离为ℎ,则S△ABC=12BC⋅ℎ=5,∵平移的距离是BC的长的2倍,∴AD=2BC,CE=BC,∴四边形ACED的面积=12(AD+CE)⋅ℎ=12(2BC+BC)⋅ℎ=3×12BC⋅ℎ=3×5=15.【点评】本题考查了平移的性质,三角形的面积,主要用了对应点间的距离等于平移的距离的性质.5.【答案】C【考点】条形统计图算术平均数【解析】平均数的计算方法是求出所有数据的和,然后除以数据的总个数.注意本题不是求3,5,11,11这四个数的平均数.【解答】解:(3×1+5×2+11×3+11×4)÷30=(3+10+33+44)÷30=90÷30=3.故30名学生参加活动的平均次数是3.故选C.【点评】本题考查加权平均数,条形统计图和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.6.【答案】A【考点】平行四边形的性质菱形的性质【解析】根据菱形、平行四边形的性质一一判断即可.【解答】A、正确.对角线互相垂直是菱形具有而平行四边形不具有的性质;B、错误.两组对角分别相等,是菱形和平行四边形都具有的性质;C、错误.对角线互相平分,是菱形和平行四边形都具有的性质;D、错误.两组对边分别平行,是菱形和平行四边形都具有的性质;【点评】本题考查菱形的性质、平行四边形的性质等知识,解题的关键是熟练掌握特殊四边形的性质,属于中考基础题.7.【答案】C【考点】解一元一次不等式组【解析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】{x+3>0x−2≤0∵解不等式①得:x>−3,解不等式②得:x≤2,∴不等式组的解集是−3<x≤2,【点评】本题考查了解一元一次不等式组,能根据不等式的解集找出不等式组的解集是解此题的关键.8.【答案】A【考点】勾股定理解直角三角形【解析】把∠ABC放在直角三角形ABD中,利用锐角三角函数定义求出tan∠ABC的值即可.【解答】在Rt△ABD中,AD=2,BD=4,则tan∠ABC=ADBD=24=12,【点评】此题考查了解直角三角形,以及勾股定理,熟练掌握锐角三角函数定义是解本题的关键.9.【答案】D【考点】根与系数的关系【解析】根据根与系数的关系α+β=−ba,αβ=ca,求出α+β和αβ的值,再把要求的式子进行整理,即可得出答案.【解答】∵α,β是方程x2−5x−2=0的两个实数根,∴α+β=5,αβ=−2,又∵α2+αβ+β2=(α+β)2−βα,∴α2+αβ+β2=52+2=27;【点评】此题考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法,若方程两个为x1,x2,则x1+x2=−ba,x1x2=ca.10.【答案】C【考点】线段的中点一次函数图象上点的坐标特点轴对称——最短路线问题【解析】此题暂无解析【解答】解:因为直线y=23x+4与x轴、y轴分别交于点A和点B,所以可以求出A、B两点的坐标分别为A(−6,0),B(0,4),C点为AB的中点,故C点坐标为(−3,2),D点为OB的中点,故D点坐标为(0,2),则点D关于x轴对称点为D1(0,−2).所以过C、D1点的直线方程为y=−43x−2 ,该直线方程与x轴的交点即为P点,当y=0时,解得x=−32,所以P点坐标为(−32,0).故选C.【点评】此题暂无点评二、填空题(本题有6个小题,每小题3分,共18分.)【答案】6.96×105【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.本题中696 000有6位整数,n=6−1=5.【解答】696 000=6.96×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.【答案】−a【考点】二次根式的性质与化简【解析】√(a−1)2−1=|a−1|−1,根据a的范围,a−1<0,所以|a−1|=−(a−1),进而得到原式的值.【解答】∵a<1,∴a−1<0,∴√(a−1)2−1=|a−1|−1=−(a−1)−1=−a+1−1=−a.【点评】本题考查了二次根式的性质与化简,对于√a2化简,应先将其转化为绝对值形式,再去绝对值符号,即√a2=|a|.【答案】x=1【考点】解分式方程【解析】观察可得最简公分母是(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】方程的两边同乘(x+1),得2=x+1,解得x=1.检验:把x=1代入(x+1)=2≠0.∴原方程的解为:x=1.【点评】本题考查了分式方程的解法,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.【答案】6√3【考点】含30度角的直角三角形切线的性质【解析】如图,点C为光盘与直角三角板唯一的交点,连接OB,利用切线的性质得到OB⊥AB,OA平分∠BAC,则可计算出∠OAB=60∘,然后在Rt△OAB中利用含30度的直角三角形三边的关系求出OB,从而得到光盘的直径.【解答】如图,点C为光盘与直角三角板唯一的交点,连接OB,∴OB⊥AB,OA平分∠BAC,∵∠BAC=180∘−60∘=120∘,∴∠OAB=60∘,在Rt△OAB中,OB=√3AB=3√3,∴光盘的直径为6√3.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系;若没有已知切点,则作垂线段得到圆的半径.【答案】底面半径为6cm,高为8cm,则底面周长=12π,由勾股定理得,母线长=10,那么侧面面积=12×12π×10=60πcm2.【考点】圆锥的计算【解析】利用勾股定理易得圆锥的母线长,那么圆锥的侧面积=底面周长×母线长÷2.【解答】底面半径为6cm,高为8cm,则底面周长=12π,由勾股定理得,母线长=10,那么侧面面积=12×12π×10=60πcm2.【点评】本题利用了勾股定理,圆的周长公式和扇形面积公式求解.【答案】②③④【考点】等边三角形的性质全等三角形的性质与判定正方形的性质【解析】由正方形的性质得AB=AD,∠B=∠D=90∘,由等边三角形的性质得AE=AF,则可判断Rt△ABE≅△ADF,得到BE =DF ,∠BAE =∠DAF ,加上∠EAF =60∘,易得∠BAE =∠DAF =15∘,利用互余得∠AEB =75∘,则可对③进行判断;由于CB =CD ,BE =DF ,则CE =CF ,于是可对②进行判断;先判断△CEF 为等腰直角三角形得到CE =CF =√22EF =√2,设正方形的边长为x ,则AB =x ,BE =x −√2,在Rt △ABE 中利用勾股定理得x 2+(x −√2)2=22,解得x 1=√2+√62,x 2=√2−√62(舍去),则可计算出BE +DF =√6−√2,于是可判断①错误;然后利用正方形面积公式可对④进行判断. 【解答】∵ 四边形ABCD 为正方形, ∴ AB =AD ,∠B =∠D =90∘, ∵ △AEF 为等边三角形, ∴ AE =AF ,在Rt △ABE 和△ADF 中, {AE =AF AB =AD, ∴ Rt △ABE ≅△ADF ,∴ BE =DF ,∠BAE =∠DAF , 而∠EAF =60∘,∴ ∠BAE =∠DAF =15∘,∴ ∠AEB =75∘,所以③正确, ∵ CB =CD ,∴ CB −BE =CD −DF , 即CE =CF ,所以②正确; ∴ △CEF 为等腰直角三角形, ∴ CE =CF =√22EF =√2,设正方形的边长为x ,则AB =x ,BE =x −√2, 在Rt △ABE 中,∵ AB 2+BE 2=AE 2, ∴ x 2+(x −√2)2=22, 整理得x 2−√2x −1=0,解得x 1=√2+√62,x 2=√2−√62(舍去), ∴ BE +DF =2(x −√2)=2(√2+√62−√2)=√6−√2≠2,所以①错误;∴ S 正方形ABCD =x 2=(√2+√62)2=2+√3,所以④正确.【点评】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.也考查了全等三角形的判定与性质和等边三角形的性质.三、解答题(本题有9个小题,共102分,解答要求写出文字说明、证明过程或计算步骤.) 【答案】 原式=4×√22−2√2+1−1=2√2−2√2+1−1=0.【考点】 实数的运算特殊角的三角函数值零指数幂【解析】本题涉及零指数幂、特殊角的三角函数值、二次根式化简、乘方4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果. 【解答】 原式=4×√22−2√2+1−1=2√2−2√2+1−1=0.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算. 【答案】证明:∵ 四边形ABCD 是平行四边形,对角线AC 、BD 交于点O , ∴ 点O 是AC 的中点. ∵ M 为AD 中点,∴ OM 是△ACD 的中位线, ∴ OM // CD ,∴ ∠OMN =∠NCD . 又∠MNO =∠CND , ∴ △MNO ∼△CND ;∵ OM 是△ACD 的中位线, ∴ OM =12CD.∵ 由(1)知,△MNO ∼△CND ,ND =1, ∴OM CD=ON DN =12,∴ ON =12,∴ OD =ON +ND =32,∴ BD =2OD =3.【考点】相似三角形的性质与判定 三角形中位线定理 平行四边形的性质【解析】(1)由两角法证得结论;(2)由△MNO ∼△CND ,可得到OM:CD =1:2,表示出ON 与DN ,即可确定出OD 的长度,则BD =2OD . 【解答】证明:∵ 四边形ABCD 是平行四边形,对角线AC 、BD 交于点O ,∴点O是AC的中点.∵M为AD中点,∴OM是△ACD的中位线,∴OM // CD,∴∠OMN=∠NCD.又∠MNO=∠CND,∴△MNO∼△CND;∵OM是△ACD的中位线,∴OM=12CD.∵由(1)知,△MNO∼△CND,ND=1,∴OMCD =ONDN=12,∴ON=12,∴OD=ON+ND=32,∴BD=2OD=3.【点评】此题考查了相似三角形的判定与性质以及平行四边形的性质.熟练掌握相似三角形的判定与性质是解本题的关键.【答案】原式=x 2−y2x+y =(x+y)(x−y)x+y=x−y,当x=2+√3,y=2−√3时,原式=2+√3−2+√3=2√3.【考点】分式的化简求值【解析】原式利用同分母分式的减法法则变形,约分得到最简结果,将x与y的值代入计算即可求出值.【解答】原式=x 2−y2x+y =(x+y)(x−y)x+y=x−y,当x=2+√3,y=2−√3时,原式=2+√3−2+√3=2√3.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.【答案】总数人数为:6÷40%=15人A2的人数为15−2−6−4=3(人)补全图形,如图所示A1所在圆心角度数为:215×360∘=48∘画出树状图如下:故所求概率为:P=36=12【考点】扇形统计图条形统计图列表法与树状图法【解析】(1)根据A3的人数除以A3所占的百分比即可求出总人数.(2)根据A1的人数的所占的百分比即可取出圆心角的度数.(3)列出树状图即可求出答案.【解答】总数人数为:6÷40%=15人A2的人数为15−2−6−4=3(人)补全图形,如图所示A1所在圆心角度数为:215×360∘=48∘画出树状图如下:故所求概率为:P=36=12【点评】本题考查统计与概率,解题的关键是熟练运用统计与概率的公式,本题属于基础题型.【答案】解:(1)∵反比例函数y = kx的图象过A(6, 2),∴2 = k6,解得k=12,故反比例函数的解析式为y = 12x.∵B(−4, n)在y = 12x的图象上,∴n = 12 − 4,解得n=−3,∴B(−4, −3).∵一次函数y=ax+b过A,B点,则 { 6a + b = 2, − 4a + b = − 3,解得 { a = 12, b = − 1,故一次函数解析式为y = 12x−1.(2)由y = 12x−1,当x=0时,y=−1,∴C(0, −1),由y = 12x ,当y=−1时,−1 = 12x,x=−12,∴D(−12, −1),S OCBD=S△ODC+S△BDC = 12 ×|−12|×|−1|+12×|−12|×|−2|=6+12=18.【考点】待定系数法求反比例函数解析式待定系数法求一次函数解析式反比例函数与一次函数的综合三角形的面积【解析】(1)已知A点坐标,根据待定系数法,可得反比例函数解析式,根据点的坐标满足函数解析式,可得B点坐标,根据待定系数法,可得一次函数解析式;(2)根据面积的和,可得答案.【解答】解:(1)∵反比例函数y = kx的图象过A(6, 2),∴2 = k6,解得k=12,故反比例函数的解析式为y = 12x.∵B(−4, n)在y = 12x的图象上,∴n = 12 − 4,解得n=−3,∴B(−4, −3).∵一次函数y=ax+b过A,B点,则 { 6a + b = 2, − 4a + b = − 3,解得 { a = 12, b = − 1,故一次函数解析式为y = 12x−1.(2)由y = 12x−1,当x=0时,y=−1,∴C(0, −1),由y = 12x,当y=−1时,−1 = 12x,x=−12,∴D(−12, −1),S OCBD=S△ODC+S△BDC = 12 ×|−12|×|−1|+12×|−12|×|−2|=6+12=18.【点评】本题考查了反比例函数与一次函数的交点问题,待定系数法求解析式的关键,利用面积的和差求解四边形的面积.【答案】解:(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,根据题意得:3⋅1600x =6000x+2,解得:x=8,经检验,x=8是分式方程的解.答:第一批饮料进货单价为8元.(2)设销售单价为m元,根据题意得:200(m−8)+600(m−10)≥1200,解得:m≥11.答:销售单价至少为11元.【考点】一元一次不等式的实际应用分式方程的应用【解析】(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,根据单价=总价÷单价结合第二批饮料的数量是第一批的3倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设销售单价为m元,根据获利不少于1200元,即可得出关于m的一元一次不等式,解之取其最小值即可得出结论.【解答】解:(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,根据题意得:3⋅1600x =6000x+2,解得:x=8,经检验,x=8是分式方程的解.答:第一批饮料进货单价为8元.(2)设销售单价为m元,根据题意得:200(m−8)+600(m−10)≥1200,解得:m≥11.答:销售单价至少为11元.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,列出关于m的一元一次不等式.【答案】如图,⊙O即为所求.连结OD.∵AB是⊙O的切线,∴OD⊥AB,∴∠ODB=90∘,即∠1+∠2=90∘,∵CE是直径,∴∠3+∠2=90∘,∴∠1=∠3,∵OC=OD,∴∠4=∠3,∴∠1=∠4,又∵∠B=∠B,∴△CDB∽△DEB,∴DBBE=BCDB,∴DB2=BC∗BE.【考点】作图—复杂作图直线与圆的位置关系切线的判定与性质【解析】(1)利用角平分线的性质作出∠BAC的角平分线,利用角平分线上的点到角的两边距离相等得出O点位置,进而得出答案.(2)根据切线的性质,圆周角的性质,由AA可证△CDB∽△DEB,再根据相似三角形的性质即可求解.【解答】如图,⊙O即为所求.连结OD.∵AB是⊙O的切线,∴OD⊥AB,∴∠ODB=90∘,即∠1+∠2=90∘,∵CE是直径,∴∠3+∠2=90∘,∴∠1=∠3,∵OC=OD,∴∠4=∠3,∴∠1=∠4,又∵∠B=∠B,∴△CDB∽△DEB,∴DBBE=BCDB,∴DB2=BC∗BE.【点评】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作. 【答案】将(0, −3)代入y =x +m , 可得:m =−3;将y =0代入y =x −3得:x =3, 所以点B 的坐标为(3, 0),将(0, −3)、(3, 0)代入y =ax 2+b 中, 可得:{b =−39a +b =0 ,解得:{a =13b =−3,所以二次函数的解析式为:y =13x 2−3; 存在,分以下两种情况:①若M 在B 上方,设MC 交x 轴于点D ,则∠ODC =45∘+15∘=60∘, ∴ OD =OC ⋅tan 30∘=√3,设DC 为y =kx −3,代入(√3, 0),可得:k =√3, 联立两个方程可得:{y =√3x −3y =13x 2−3 , 解得:{x 1=0y 1=−3 ,{x 2=3√3y 2=6,所以M 1(3√3, 6);②若M 在B 下方,设MC 交x 轴于点E ,则∠OEC =45∘−15∘=30∘, ∴ ∠OCE =60∘,∴ OE =OC ⋅tan 60∘=3√3,设EC 为y =kx −3,代入(3√3, 0)可得:k =√33, 联立两个方程可得:{y =√33x −3y =13x 2−3 , 解得:{x 1=0y 1=−3 ,{x 2=√3y 2=−2,所以M 2(√3, −2),综上所述M 的坐标为(3√3, 6)或(√3, −2).【考点】二次函数综合题 【解析】(1)把C(0, −3)代入直线y =x +m 中解答即可;(2)把y =0代入直线解析式得出点B 的坐标,再利用待定系数法确定函数关系式即可; (3)分M 在BC 上方和下方两种情况进行解答即可. 【解答】将(0, −3)代入y =x +m , 可得:m =−3;将y =0代入y =x −3得:x =3, 所以点B 的坐标为(3, 0),将(0, −3)、(3, 0)代入y =ax 2+b 中, 可得:{b =−39a +b =0 ,解得:{a =13b =−3,所以二次函数的解析式为:y =13x 2−3; 存在,分以下两种情况:①若M 在B 上方,设MC 交x 轴于点D ,则∠ODC =45∘+15∘=60∘, ∴ OD =OC ⋅tan 30∘=√3,设DC 为y =kx −3,代入(√3, 0),可得:k =√3, 联立两个方程可得:{y =√3x −3y =13x 2−3 , 解得:{x 1=0y 1=−3 ,{x 2=3√3y 2=6,所以M 1(3√3, 6);②若M 在B 下方,设MC 交x 轴于点E ,则∠OEC =45∘−15∘=30∘, ∴ ∠OCE =60∘,∴ OE =OC ⋅tan 60∘=3√3,设EC 为y =kx −3,代入(3√3, 0)可得:k =√33,联立两个方程可得:{y =√33x −3y =13x 2−3 , 解得:{x 1=0y 1=−3 ,{x 2=√3y 2=−2,所以M 2(√3, −2),综上所述M 的坐标为(3√3, 6)或(√3, −2).【点评】此题主要考查了二次函数的综合题,需要掌握待定系数法求二次函数解析式,待定系数法求一次函数解析式等知识是解题关键. 【答案】证明:如图①,∵ AB =AC , ∴ ∠ABC =∠ACB , ∵ M 是BC 的中点, ∴ AM ⊥BC ,在Rt △ABM 中,∠MAB +∠ABC =90∘, 在Rt △CBE 中,∠EBC +∠ACB =90∘, ∴ ∠MAB =∠EBC , ∵ MB =MN ,∴ △MBN 是等腰直角三角形, ∴ ∠MNB =∠MBN =45∘,∵ ∠EBC +∠NBE =∠MAB +∠ABN =∠MNB =45∘, ∴ ∠NBE =∠ABN ,即BN 平分∠ABE ; 设BM =CM =MN =a ,∵ 四边形DNBC 是平行四边形, ∴ DN =BC =2a , 在△ABN 和△DBN 中, ∵ {AB =DB∠NBE =∠ABN BN =BN,∴ △ABN ≅△DBN(SAS), ∴ AN =DN =2a ,在Rt △ABM 中,由AM 2+MB 2=AB 2,可得:(2a +a)2+a 2=1, 解得:a =±√1010(负值舍去), ∴ BC =2a =√105; ∵ F 是AB 的中点,∴ 在Rt △MAB 中,MF =AF =BF , ∴ ∠MAB =∠FMN , ∵ ∠MAB =∠CBD , ∴ ∠FMN =∠CBD , ∵MF AB=MN BC=12,即MF BD=MN BC,∴ △MFN ∽△BDC ,∴ ∠MFN =∠BDC .【考点】 四边形综合题 【解析】(1)由AB =AC 知∠ABC =∠ACB ,由等腰三角形三线合一知AM ⊥BC ,从而根据∠MAB +∠ABC =∠EBC +∠ACB 知∠MAB =∠EBC ,再由△MBN 为等腰直角三角形知∠EBC +∠NBE =∠MAB +∠ABN =∠MNB =45∘可得证;(2)设BM =CM =MN =a ,知DN =BC =2a ,证△ABN ≅△DBN 得AN =DN =2a ,Rt △ABM 中利用勾股定理可得a 的值,从而得出答案;(3)F 是AB 的中点知MF =AF =BF 及∠FMN =∠MAB =∠CBD ,再由MFAB =MN BC=12,即MF BD =MN BC,得△MFN ∽△BDC ,即可得证. 【解答】证明:如图①,∵ AB =AC , ∴ ∠ABC =∠ACB , ∵ M 是BC 的中点, ∴ AM ⊥BC ,在Rt △ABM 中,∠MAB +∠ABC =90∘, 在Rt △CBE 中,∠EBC +∠ACB =90∘, ∴ ∠MAB =∠EBC , ∵ MB =MN ,∴ △MBN 是等腰直角三角形, ∴ ∠MNB =∠MBN =45∘,∵ ∠EBC +∠NBE =∠MAB +∠ABN =∠MNB =45∘, ∴ ∠NBE =∠ABN ,即BN 平分∠ABE ; 设BM =CM =MN =a ,∵ 四边形DNBC 是平行四边形, ∴ DN =BC =2a , 在△ABN 和△DBN 中, ∵ {AB =DB∠NBE =∠ABN BN =BN,∴ △ABN ≅△DBN(SAS), ∴ AN =DN =2a ,在Rt △ABM 中,由AM 2+MB 2=AB 2,可得:(2a +a)2+a 2=1, 解得:a =±√1010(负值舍去), ∴ BC =2a =√105; ∵ F 是AB 的中点,∴ 在Rt △MAB 中,MF =AF =BF , ∴ ∠MAB =∠FMN , ∵ ∠MAB =∠CBD , ∴ ∠FMN =∠CBD ,∵MFAB =MNBC=12,即MFBD=MNBC,∴△MFN∽△BDC,∴∠MFN=∠BDC.【点评】本题是四边形的综合题,解题的关键是掌握等腰三角形三线合一的性质、直角三角形和平行四边形的性质及全等三角形与相似三角形的判定与性质等知识点.。

2020年广东省中考数学一模试卷 (含答案解析)

2020年广东省中考数学一模试卷 (含答案解析)

2020年广东省中考数学一模试卷一、选择题(本大题共10小题,共30.0分)1.−2011的相反数是()A. −2011B. −12011C. 2011 D. 120112.一组数据2,4,6,4,8的中位数为()A. 2B. 4C. 6D. 83.在平面直角坐标系中,点(3,−1)关于x轴对称的点的坐标为()A. (3,1)B. (−3,1)C. (1,−3)D. (−3,−1)4.一个多边形的内角和是1440°,求这个多边形的边数是()A. 7B. 8C. 9D. 105.若式子√4−3x在实数范围内有意义,则x的取值范围是()A. x>43B. x<43C. x≥43D. x≤436.如图,在△ABC中,点E、F分别为AB、AC的中点.若△ABC的周长为6,则△AEF的周长为()A. 12B. 3C. 4D. 不能确定7.将二次函数y=x2−4x−5向右平移1个单位,得到的二次函数为解析式为()A. y=x2−4x−6B. y=x2−4x−4C. y=x2−6xD. y=x2−6x−58.不等式组{x−2<03x<4x+3的解集为()A. −3<x<2B. −3<x<−2C. x<2D. x>−39.如图,正方形ABCD中,AB=1,M,N分别是AD,BC边的中点,沿BQ将△BCQ折叠,若点C恰好落在MN上的点P处,则PQ的长为()A. 12B. √33C. 13D. √310.已知抛物线y=ax2+bx+c(a>0)的对称轴为x=−1,交x轴的一个交点为(x1,0),且0<x1<1,则下列结论正确的有几个()①b>0,c<0;②a−b+c>0;③b<a;④3a+c>0;⑤9a−3b+c>0A. 1个B. 3个C. 2个D. 4个二、填空题(本大题共7小题,共28.0分)11.分解因式:xy―x=_____________.12.若单项式2a x+1b与−3a3b y+4是同类项,则x y=______.13.若(a−√2)2+|b−1|=0,则1的值为______ .a+b14.若x−2y=−3,则5−x+2y=______.BC的长为半径作15.如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于12弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠B=25°,则∠ACB 的度数为______.16.如图,若从一块半径是6cm的圆形纸片圆O上剪出一个圆心角为60°的扇形(点A、B、C在圆O上),再将剪下的扇形围成一个圆锥,则该圆锥的底面圆半径是______cm.17.如图,在平面直角坐标系中,已知点A(1,0)、B(1−t,0)、C(1+t,0)(t>0),点P在以D(3,3)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则t的最小值是____.三、计算题(本大题共1小题,共6.0分)18.先化简,再求值:[(x+2y)2−(x+4y)(3x+y)]÷(2x),其中x=−2,y=1.2四、解答题(本大题共7小题,共56.0分)19.解放中学为了了解学生对新闻、体育、动画、娱乐四类电视节目的喜爱程度,随机抽取了部分学生进行调查(每人限选1项),现将调查结果绘制成如下两幅不完整的统计图,根据图中所给的信息解答下列问题.(1)喜爱动画的学生人数和所占比例分别是多少?(2)请将条形统计图补充完整;(3)若该校共有学生1000人,依据以上图表估计该校喜欢体育的人数约为多少?20. 如图,∠A =∠D =90°,AB =CD ,AC ,BD 相交于点E .求证:(1)△ABC ≌△DCB ;(2)△EBC 是等腰三角形.21. 若方程组{3x +y =93ax −4by =18与{4x −y =5ax +by =−1的解相同,求a ,b 的值.22. 如图,⊙O 是△ABC 的外接圆,AC 是直径,弦BD =BA ,EB ⊥DC ,交DC 的延长线于点E .(1)求证:BE 是⊙O 的切线;(2)当sin∠BCE=3,AB=3时,求AD的长.423.倡导健康生活推进全民健身,某社区去年购进A,B两种健身器材若干件,经了解,B种健身器材的单价是A种健身器材的1.5倍,用7200元购买A种健身器材比用5400元购买B种健身器材多10件.(1)A,B两种健身器材的单价分别是多少元?(2)若今年两种健身器材的单价和去年保持不变,该社区计划再购进A,B两种健身器材共50件,且费用不超过21000元,请问:A种健身器材至少要购买多少件?(m>0,x>0)图象上的两点,一次函数y=kx+ 24.如图,点A(2,n)和点D是反比例函数y=mx3(k≠0)的图象经过点A,与y轴交于点B,与x轴交于点C,过点D作DE⊥x轴,垂足为E,连接OA,OD.已知△OAB与△ODE的面积满足S△OAB:S△ODE=3:4.(1)S△OAB=______,m=______;(2)已知点P(6,0)在线段OE上,当∠PDE=∠CBO时,求点D的坐标.25.如图,抛物线y=x2+bx+c与y轴交于点A(0,2),对称轴为直线x=−2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.(1)求此抛物线的解析式.(2)点P在x轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.-------- 答案与解析 --------1.答案:C解析:本题主要考查了相反数的定义,a的相反数是−a.根据相反数的定义即可求解.解:−2011的相反数是2011.故选C.2.答案:B解析:本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.解:一共5个数据,从小到大排列此数据为:2,4,4,6,8,故这组数据的中位数是4,故选B.3.答案:A解析:本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.解:点P(3,−1)关于x轴对称的点的坐标是(3,1),故选A.4.答案:D解析:解:设这个多边形的边数是n,根据题意得,(n−2)⋅180°=1440°,解得n=10.故选:D.根据多边形的内角和公式(n−2)⋅180°列出方程,然后求解即可.本题考查了多边形的内角和公式,熟记公式并列出方程是解题的关键.5.答案:D解析:此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.根据二次根式有意义的条件可得:4−3x≥0,再解即可.解:由题意得:4−3x≥0,解得:x≤43,故选D.6.答案:B解析:解:∵点E、F分别为AB、AC的中点.∴EF=12BC,EA=12BA,AF=12AC,∵△ABC的周长为6,即AB+AB+BC=6,∴△AEF的周长=AE+AF+EF=12(AB+AC+BC)=3,故选B.根据题意可得出EF=12BC,再根据三角形的周长公式可得出答案.本题考查了三角形的中位线定理,三角形的中位线等于第三边的一半.7.答案:C解析:此题主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式,解答此题可先将二次函数配成顶点式,写出顶点坐标,然后得到平移后的顶点坐标,从而可得到平移后的二次函数的解析式.解:y=x2−4x−5=(x−2)2−9,∴顶点坐标为(2,−9),向右平移一个单位后的顶点坐标为(3,−9),∴平移后的函数解析式为:y=(x−3)2−9=x2−6x+9−9=x2−6x.故选C.8.答案:A解析:解:解不等式x−2<0,得:x<2,解不等式3x<4x+3,得:x>−3,则不等式组的解集为−3<x<2,故选:A.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.答案:B解析:本题主要考查了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.由折叠的性质知∠BPQ=∠C=90°,利用直角三角形中的cos∠PBN=BN:PB=1:2,可求得∠PBN=60°,∠PBQ=30°,从而求出PQ=PBtan30°=1√3.3∠PBC,BC=PB=2BN=1,∠BPQ=∠C=90°,解:∵∠CBQ=∠PBQ=12∴cos∠PBN=BN:PB=1:2,∴∠PBN=60°,∠PBQ=30°,∴PQ=PBtan30°=13√3.故选:B.10.答案:B解析:本题考查了二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a>0,否则a<0;(2)b由对称轴和a的符号确定:由对称轴公式x=−b2a判断符号;(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0,否则c<0;(4)b2−4ac由抛物线与x轴交点的个数确定:2个交点,b2−4ac>0;1个交点,b2−4ac=0;没有交点,b2−4ac<0.先充分挖掘图象所给出的信息,包括对称轴、开口方向、与坐标轴的交点、顶点位置等,然后根据二次函数图象的性质解题.解:如图所示:①∵开口向上,∴a>0,又∵对称轴在y轴左侧,∴−b2a<0,∴b>0,又∵图象与y轴交于负半轴,∴c<0,正确.②由图,当x=−1时,y<0,把x=−1代入解析式得:a−b+c<0,错误.③∵对称轴在x=−12左侧,∴−b2a <−12,∴ba>1,∴b>a,错误.④由图,x1x2>−3×1=−3;根据根与系数的关系,x1x2=c,a >−3,故3a+c>0,正确.于是ca⑤由图,当x=−3时,y>0,把x=−3代入解析式得:9a−3b+c>0,正确.所以其中正确的有①④⑤,故选B.11.答案:x(y−1)解析:[分析]直接提取公因式x,进而分解因式得出答案.[详解]解:xy―x=x(y−1)故答案为:x(y−1).[点睛]此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.答案:18解析:解:单项式2a x+1b与−3a3b y+4是同类项,∴x+1=3,y+4=1,∴x=2,y=−3.∴x y=2−3=1.8故答案为:1.8依据同类项的相同字母指数相同列方程求解即可.本题主要考查的是同类项的定义,熟练掌握同类项的定义是解题的关键.13.答案:√2−1解析:解:由题意得,a−√2=0,b−1=0,解得a=√2,b=1,所以,1a+b =√2+1=√2−1.故答案为:√2−1.根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.14.答案:8解析:解:∵x−2y=−3,∴5−x+2y=5−(x−2y)=5−(−3)=8.故本题答案为8.将已知条件整体代入所求代数式即可.本题考查了代数式的求值,根据已知条件,运用整体代入的思想解题.15.答案:105°解析:解:由题意可得:MN垂直平分BC,则DC=BD,故∠DCB=∠DBC=25°,则∠CDA=25°+25°=50°,∵CD=AC,∴∠A=∠CDA=50°,∴∠ACB=180°−50°−25°=105°.故答案为:105°.利用线段垂直平分线的性质得出DC=BD,再利用三角形外角的性质以及三角形内角和定理得出即可.此题主要考查了基本作图以及线段垂直平分线的性质,得出∠A=∠CDA=50°是解题关键.16.答案:√3解析:连接OA,作OD⊥AB于点D,利用勾股定理即可求得AD的长,则AB的长可以求得,然后利用弧长公式即可求得弧长,即底面圆的周长,再利用圆的周长公式即可求得半径.本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.解:连接OA,BC,OB,作OD⊥AB于点D.∵圆O上剪出一个圆心角为60°的扇形(点A、B、C在圆O上),∴AB=AC,∠BAC=60°,∴△ABC为等边三角形,∴∠ACB=60°,∴∠AOB=2∠ACB=120°,又∵OA=OB,∴∠OAD=30°,在直角△OAD中,OA=6,∠OAD=30°,则AD=3√3.则AB=2AD=6√3,=2√3π,则扇形的弧长是:60π×6√3180设底面圆的半径是r,则2πr=2√3π,解得:r=√3.故答案为:√3.17.答案:√13−1解析:本题考查点与圆的位置关系、坐标与图形性质等知识,由题意PA=AB=AC=t,连接AD交⊙D于P,此时PA的值最小.解:∵AB=AC=t,∠BPC=90°,∴PA=AB=AC=t,连接AD交⊙D于P,此时PA的值最小,PA最小值=√32+22−1=√13−1,∴t的最小值为√13−1.故答案为√13−1.18.答案:解:[(x+2y)2−(x+4y)(3x+y)]÷(2x)=[x2+4xy+4y2−(3x2+xy+12xy+4y2)]÷(2x)=(x2+4xy+4y2−3x2−xy−12xy−4y2)÷(2x)=(−2x2−9xy)÷(2x)=−x−92y,当x=−2,y=12时,原式=2−94=−14.解析:本题主要考查整式的混合运算及求代数式的值,解题的关键是掌握整式的混合运算顺序和运算法则.先根据整式的混合运算顺序和运算法则化简原式,再将x、y的值代入计算可得.19.答案:解:(1)调查人数为20÷10%=200(人),喜欢动画的比例为(1−46%−24%−10%)=20%,喜欢动画的人数为200×20%=40(人);(2)补全图形:(3)该校喜欢体育的人数约有:1000×24%=240(人).解析:此题考查了条形统计图与扇形统计图.注意掌握条形统计图与扇形统计图的有关知识是解此题的关键.(1)首先由喜欢新闻的有20人,占10%,求得总人数;然后由扇形统计图,求得喜爱动画的学生人数所占比例,继而求得喜爱动画的学生人数;(2)由(1)可将条形统计图补充完整;(3)直接利用样本估计总体的方法求解即可求得答案.20.答案: 解:(1)∵∠A =∠D =90°,∴在Rt △ABC 和Rt △DCB 中,{BC =CB AB =DC, ∴Rt △ABC≌Rt △DCB(HL).(2)∵Rt △ABC≌Rt △DCB ,∴∠ACB =∠DBC ,∴BE =CE ,∴△EBC 是等腰三角形.解析: 本题考查了全等三角形的判定与性质以及等腰三角形的判定,证明三角形全等是解题的关键.(1)由“HL ”可证Rt △ABC≌Rt △DCB ;(2)由全等三角形的性质可得∠ACB =∠DBC ,可得BE =CE ,可得结论.21.答案:解:把3x +y =9和4x −y =5联立,得:{3x +y =9①4x −y =5②①+②得:7x =14,则x =2,把x =2代入①得:y =3,则{x =2y =3, 把{x =2y =3代入{3ax −4by =18ax +by =−1中, 得到{a −2b =32a +3b =−1解得:{a =1b =−1.解析:此题主要考查了二元一次方程组的解,熟练掌握方程组的解法是解本题的关键.将第一个方程组第一个方程与第二个方程组第一个方程联立求出x 与y 的值,代入剩下的方程得到关于a 与b 的方程组,即可求出a 与b 的值.22.答案:解:(1)证明:连结OB ,OD ,在△ABO 和△DBO 中,{AB =BD BO =BO OA =OD,∴△ABO≌△DBO(SSS),∴∠DBO =∠ABO ,∵∠ABO =∠OAB =∠BDC ,∴∠DBO =∠BDC ,∴OB//ED ,∵BE ⊥ED ,∴EB ⊥BO ,∴BE 是⊙O 的切线;(2)∵AC 是直径,∴∠ABC =90°,∵∠OBA +∠OBC =∠EBC +∠OBC =90°,∴∠OBA =∠EBC ,∴∠BAC =∠EBC ,∵BE ⊥DE ,∴∠E =90°,∴∠BCE +∠EBC =∠BAC +∠ACB =90°,∵∠BAC =∠EBC ,∴∠ACB =∠BCE ,∵sin∠BCE =34,∴sin∠ACB =34,∵AB =3,∴AC =4,∵∠BDE =∠BAC ,∴sin∠DBE =34,∵BD =AB =3,∴DE =94, ∴BE =√BD 2−DE 2=3√74,∵∠CBE =∠BAC =∠BDC ,∠E =∠E ,∴△BDE∽△CBE ,∴BE CE =DE BE ,∴CE =74,∴CD =12,∴AD =√AC 2−CD 2=3√72.解析:(1)连接OB ,OD ,证明△ABO≌△DBO ,推出OB//DE ,继而判断BE ⊥OB ,可得出结论;(2)根据圆周角定理得到∠ABC =90°,根据余角的性质得到∠ACB =∠BCE ,求得AC =4,根据勾股定理得到BE =2−DE 2=3√74,根据相似三角形的性质得到CE =74,根据勾股定理即可得到结论.本题考查了圆的切线性质与判定,全等三角形的性质与判定,锐角三角函数的定义等知识,综合程度较高,需要学生综合运用知识. 23.答案:解:(1)设A 种型号健身器材的单价为x 元/套,B 种型号健身器材的单价为1.5x 元/套, 根据题意,可得:7200x −54001.5x =10,解得:x =360,经检验x =360是原方程的根,1.5×360=540(元),因此,A ,B 两种健身器材的单价分别是360元,540元;(2)设购买A 种型号健身器材m 套,则购买B 种型号的健身器材(50−m)套,根据题意,可得:360m+540(50−m)≤21000,,解得:m≥3313因此,A种型号健身器材至少购买34套.解析:(1)设A种型号健身器材的单价为x元/套,B种型号健身器材的单价为1.5x元/套,根据“B 种健身器材的单价是A种健身器材的1.5倍,用7200元购买A种健身器材比用5400元购买B种健身器材多10件”,即可得出关于x的分式方程,解之即可得出结论;(2)设购买A种型号健身器材m套,则购买B种型号的健身器材(50−m)套,根据总价=单价×数量结合这次购买两种健身器材的总费用不超过21000元,即可得出关于m的一元一次不等式,解之取其最小值即可得出结论.本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出方程;(2)根据各数量之间的关系,正确列出一元一次不等式.24.答案:解:(1)3;8;(2)如图:由(1)知,反比例函数解析式是y=8.x∴2n=8,即n=4.故A(2,4),将其代入y=kx+3得到:2k+3=4..解得k=12x+3.∴直线AC的解析式是:y=12x+3=0,令y=0,则12∴x=−6,∴C(−6,0).∴OC =6.由(1)知,OB =3.设D(a,b),则DE =b ,PE =a −6.∵∠PDE =∠CBO ,∠COB =∠PED =90°,∴△CBO∽△PDE ,∴OB DE =OC PE ,即3b =6a−6 ①, 又ab =8 ②.联立①②,得{a =−2b =−4(舍去)或{a =8b =1. 故D (8,1).解析:本题考查了反比例函数综合题,需要掌握待定系数法确定函数关系式,函数图象上点的坐标特征,反比例函数系数k 的几何意义,三角形的面积公式,相似三角形的判定与性质等知识点,综合性较强.(1)由一次函数解析式求得点B 的坐标,易得OB 的长度,结合点A 的坐标和三角形面积公式求得S △OAB =3,所以S △ODE =4,由反比例函数系数k 的几何意义求得m 的值;(2)利用待定系数法确定直线AC 函数关系式,易得点C 的坐标;利用∠PDE =∠CBO ,∠COB =∠PED =90°判定△CBO∽△PDE ,根据该相似三角形的对应边成比例求得PE 、DE 的长度,易得点D 的坐标.解:(1)由一次函数y =kx +3知,B(0,3).又点A 的坐标是(2,n),∴S △OAB =12×3×2=3. ∵S △OAB :S △ODE =3:4.∴S △ODE =4.∵点D 是反比例函数y =m x (m >0,x >0)图象上的点, ∴12m =S △ODE =4,则m =8.故答案是:3;8;(2)见答案.25.答案:解:(1)由题意得:x=−b2a =−b2=−2,c=2,解得:b=4,c=2,则此抛物线的解析式为y=x2+4x+2;(2)∵抛物线对称轴为直线x=−2,BC=6,∴B横坐标为−5,C横坐标为1,把x=1代入抛物线解析式得:y=7,∴B(−5,7),C(1,7),设直线AB解析式为y=kx+2,把B坐标代入得:k=−1,即y=−x+2,作出直线CP,与AB交于点Q,过Q作QH⊥y轴,与y轴交于点H,BC与y轴交于点M,可得△AQH∽△ABM,∴QHBM =AQAB,∵点P在x轴上,直线CP将△ABC面积分成2:3两部分,∴AQ:QB=2:3或AQ:QB=3:2,即AQ:AB=2:5或AQ:AB=3:5,∵BM=5,∴QH=2或QH=3,当QH=2时,把x=−2代入直线AB解析式得:y=4,此时Q(−2,4),直线CQ解析式为y=x+6,令y=0,得到x=−6,即P(−6,0);当QH=3时,把x=−3代入直线AB解析式得:y=5,此时Q(−3,5),直线CQ解析式为y=12x+132,令y=0,得到x=−13,此时P(−13,0),综上,P的坐标为(−6,0)或(−13,0).解析:(1)由对称轴直线x=2,以及A点坐标确定出b与c的值,即可求出抛物线解析式;(2)由抛物线的对称轴及BC的长,确定出B与C的横坐标,代入抛物线解析式求出纵坐标,确定出B与C坐标,利用待定系数法求出直线AB解析式,作出直线CP,与AB交于点Q,过Q作QH⊥y轴,与y轴交于点H,BC与y轴交于点M,由已知面积之比求出QH的长,确定出Q横坐标,代入直线AB解析式求出纵坐标,确定出Q坐标,再利用待定系数法求出直线CQ解析式,即可确定出P的坐标.此题考查了待定系数法求二次函数解析式,二次函数性质,以及二次函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学一模试卷题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.0这个数()A. 是正数B. 是负数C. 不是有理数D. 是整数2.新冠病毒(2019-nCoV)是一种新的Sarbecovirus亚属的β冠状病毒,它是一类具有囊膜的正链单股RNA病毒,其遗传物质是所有RNA病毒中最大的,也是自然界广泛存在的一大类病毒.其粒子形状并不规则,直径约60-220nm,平均直径为100nm (纳米).1米=109纳米,100nm可以表示为()米.A. 0.1×10-6B. 10×10-8C. 1×10-7D. 1×10113.下列各组数中互为相反数的是()A. -2与B. -2与C. -2与D. 2与|-2|4.下列计算,正确的是()A. x4-x3=xB. x5÷x3=x2C. x•x3=x3D. (xy2)2=xy45.在下列因式分解的过程中,分解因式正确的是()A. x2+2x+4=(x+2)2B. x2-4=(x+4)(x-4)C. x2-4x+4=(x-2)2D. x2+4=(x+2)26.已知x=3是关于x的方程ax+2x-3=0的解,则a的值为()A. -1B. -2C. -3D. 17.将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为().A. y=2(x+2)2+3B. y=2(x-2)2+3C. y=2(x-2)2-3D. y=2(x+2)2-38.已知反比例函数图象如图所示,下列说法正确的是()A. k>0B. y随x的增大而减小C. 若矩形OABC面积为2,则k=2D. 若图象上两个点的坐标分别是M(-2,y1),N(-1,y2),则y1<y29.如图,在长方形ABCD中,放入六个形状大小相同的长方形,所标尺寸如图所示,则图中阴影部分面积为()A. 44cm2B. 36cm2C. 96cm2D. 84cm210.关于x的一元二次方程kx2-2x+1=0有两个实数根,那么实数k的取值范围是()A. k≤1B. k<1且k≠0C. k≤1且k≠0D. k≥1二、填空题(本大题共6小题,共18.0分)11.使式子有意义的x的取值范围是______.12.把多项式9m2-36n2分解因式的结果是______.13.在平面直角坐标系中,若点M(-2,3)与点N(x,3)之间的距离是5,则x的值是______.14.已知函数y=-x2-2x,当______时,函数值y随x的增大而增大.15.实数a在数轴上的位置如图所示,化简|a-2|+= ______ .16.二次函数y=ax2+bx+c(a<0)的图象与x轴的两个交点A、B的横坐标分别为-3、1,与y轴交于点C,下面四个结论:①16a+4b+c>0:②若P(-5,y1),Q(,y2)是函数图象上的两点,则y1<y2;③c=3a;④若△ABC是等腰三角形,则b=-或-.其中正确的有______.(请将正确结论的序号全部填在横线上)三、解答题(本大题共9小题,共102.0分)17.计算:.18.解方程:.19.先化简,再求值:,再从不等式组<x<中选取一个你认为合适的整数作为x的值代入求值.20.对于实数a,b,定义新运算“*”:a*b=,例如:4*2,因为4>2,所以4*2=42-4×2=8.(1)求(-7)*(-2)的值;(2)若x1,x2是一元次方程x2-5x-6=0的两个根,求x1*x2的值.21.某单位计划从商店购买同一种品牌的钢笔和笔记本,已知购买一支钢笔比购买一个笔记本多用20元,若用1500元购买钢笔和用600元购买笔记本,则购买钢笔的数量是购买笔记本数量的一半.(1)求购买一支钢笔、一个笔记本各需要多少元?(2)经商谈,商店给予优惠,优惠方式是每购买一支钢笔赠送一个笔记本;如果此单位需要笔记本的数量是钢笔数量的3倍还少6个,且购买钢笔和笔记本的总费用不超过1020元,那么最多可购买多少支钢笔?22.一次函数y=kx+6与二次函数y=ax2+c的图象的一个交点坐标为(1,2),另一个交点是该二次函数图象的顶点.(1)求k,a,c的值;(2)过点A(0,m)(0<m<6)且垂直于y轴的直线与二次函数y=ax2+c的图象相交于B,C两点,点O为坐标原点,记W=OA2+BC2,求W关于m的函数解析式,并求W的最小值.23.如图,一次函数y1=k1x+4与反比例函数y2=的图象交于点A(2,m)和B(-6,-2),与y轴交于点C.(1)k1=______,k2=______;(2)根据函数图象知,①当y1>y2时,x的取值范围是______;②当x为______时,y2>-2x.(3)过点A作AD⊥x轴于点D,点P是反比例函数在第一象限的图象上一点,设直线OP与线段AD交于点E,当S四边形ODAC:S△ODE=4:1时,求点P的坐标.(4)点M是y轴上的一个动点,当△MBC为直角三角形时,直接写出点M的坐标.24.如图,抛物线y=ax2+bx(a>0)过点E(8,0),矩形ABCD的边AB在线段OE上(点A在点B的左侧),点C、D在抛物线上,∠BAD的平分线AM交BC于点M,点N是CD的中点,已知OA=2,且OA:AD=1:3.(1)求抛物线的解析式;(2)F、G分别为x轴,y轴上的动点,顺次连接M、N、G、F构成四边形MNGF,求四边形MNGF周长的最小值;(3)在x轴下方且在抛物线上是否存在点P,使△ODP中OD边上的高为?若存在,求出点P的坐标;若不存在,请说明理由;(4)矩形ABCD不动,将抛物线向右平移,当平移后的抛物线与矩形的边有两个交点K、L,且直线KL平分矩形的面积时,求抛物线平移的距离.25.已知抛物线y=x2-bx+c(b,c为常数,b>0)经过点A(-1,0),点M(m,0)是x轴正半轴上的动点.(1)当b=2时,求抛物线的顶点坐标;(2)点D(b,y D)在抛物线上,当AM=AD,m=3时,求b的值;(3)点Q(b+,y Q)在抛物线上,当AM+2QM的最小值为时,求b的值.(说明:y D表示D点的纵坐标,y Q表示Q点的纵坐标)答案和解析1.【答案】D【解析】解:A、0不是正数也不是负数,故A错误;B、0不是正数也不是负数,故B错误;C、0是有理数,故C错误;D、0是整数,故D正确.故选:D.根据0的意义,可得答案.本题考查了有理数,注意0不是正数也不是负数,0是有理数.2.【答案】C【解析】解:100nm=100×10-9m=1×10-7m.故选:C.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.【答案】A【解析】解:A、=2,-2与是互为相反数,故本选项正确;B、=-2,-2与相等,不是互为相反数,故本选项错误;C、-2与-是互为倒数,不是互为相反数,故本选项错误;D、|-2|=2,2与|-2|相等,不是互为相反数,故本选项错误.故选:A.根据只有符号不同的两个数叫做互为相反数对各选项分析判断后利用排除法求解.本题考查了实数的性质,对各项准确计算是解题的关键.4.【答案】B【解析】解:A、不是同底数幂的除法指数不能相减,故A错误;B、同底数幂的除法底数不变指数相减,故B正确;C、同底数幂的乘法底数不变指数相加,故C错误;D、积的乘方等于乘方的积,故D错误;故选:B.根据同底数幂的除法,可判断还能A、B,根据同底数幂的乘法底数不变指数相加,可判断C,根据积的乘方,可判断D.本题考查了同底数幂的除法,根据法则计算是解题关键.5.【答案】C【解析】解:A、原式不能分解,不符合题意;B、原式=(x+2)(x-2),不符合题意;C、原式=(x-2)2,符合题意;D、原式不能分解,不符合题意,故选:C.各项分解得到结果,即可作出判断.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.6.【答案】A【解析】解:将x=3代入方程得:3a+2×3-3=0,解得:a=-1.故选:A.根据方程的解为x=3,将x=3代入方程即可求出a的值.此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.7.【答案】B【解析】【分析】本题考查的是二次函数的图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.根据“上加下减、左加右减”的原则进行解答即可.【解答】解:将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度,得到的抛物线的解析式为y=2(x-2)2+3,故选:B.8.【答案】D【解析】解:如图,k<0,y随x的增大而增大;∵矩形OABC面积为2,k=-2,故选:D.由反比例函数的图象可得k<0,y随x的增大而增大;由矩形OABC面积为2,可得k=-2.本题考查反比例函数的图象及性质;熟练掌握反比例函数的图象及性质是解题的关键.9.【答案】A【解析】解:设小长方形的长为xcm,宽为ycm,依题意,得:,解得:,∴14×(6+2×2)-6×8×2=44(cm2).故选:A.设小长方形的长为xcm,宽为ycm,观察图形,可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再利用阴影部分的面积=大长方形的面积-6×小长方形的面积,即可求出结论.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.10.【答案】C【解析】解:∵关于x的一元二次方程kx2-2x+1=0有两个实数根,∴根的判别式△=b2-4ac=4-4k≥0,且k≠0.即k≤1且k≠0.故选C.若一元二次方程有两不等实数根,则根的判别式△=b2-4ac≥0,建立关于k的不等式,求出k的取值范围.还要注意二次项系数不为0.本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.11.【答案】x≥-【解析】解:根据题意,得2x+1≥0,解得,x≥-.故答案是:x≥-.二次根式的被开方数是非负数.考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.12.【答案】9(m-2n)(m+2n),【解析】解:原式=9(m2-4n2)=9(m-2n)(m+2n),故答案为:9(m-2n)(m+2n).首先提公因式9,再利用平方差进行二次分解即可.此题主要考查了提公因式法与公式法分解因式,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.13.【答案】-7或3【解析】解:∵点M(-2,3)与点N(x,3)之间的距离是5,∴|x+2|=5,解得x=-7或3.故答案为:-7或3.点M、N的纵坐标相等,则直线MN在平行于x轴的直线上,根据两点间的距离,可列出等式|x+2|=5,从而解得x的值.本题是基础题,考查了坐标与图形的性质,当两点的纵坐标相等时,则这两点在平行于x轴的直线上.14.【答案】x<-1【解析】解:∵y=-x2-2x=-(x+1)2+1,a=-1<0,抛物线开口向下,对称轴为直线x=-1,∴当x<-1时,y随x的增大而增大,故答案为:x<-1.先运用配方法将抛物线写成顶点式y=-(x+1)2+1,由于a=-1<0,抛物线开口向下,对称轴为直线x=1,根据抛物线的性质可知当x<-1时,y随x的增大而增大,即可求出.本题考查了二次函数y=ax2+bx+c(a≠0)的性质,确定抛物线的对称轴是解答本题的关键,a>0,抛物线开口向上,在对称轴左侧y随x的增大而减小,在对称轴右侧y随x 的增大而增大;a<0,抛物线开口向下,在对称轴左侧y随x的增大而增大,在对称轴右侧y随x的增大而减小.15.【答案】2【解析】解:∵由图可知,2<a<4,∴原式=a-2+=a-2+4-a=2.故答案为:2.先根据点a在数轴上的位置判断出其大小,再去绝对值符号,合并同类项即可.本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.16.【答案】①④【解析】解:①∵a<0,∴抛物线开口向下,∵图象与x轴的交点A、B的横坐标分别为-3,1,∴当x=-4时,y<0,即16a-4b+c<0;故①正确,符合题意;②∵图象与x轴的交点A、B的横坐标分别为-3,1,∴抛物线的对称轴是:x=-1,∵P(-5,y1),Q(,y2),-1-(-5)=4,-(-1)=3.5,由对称性得:(-4.5,y3)与Q(,y2)是对称点,∴则y1<y2;故②不正确,不符合题意;③∵-=-1,∴b=2a,当x=1时,y=0,即a+b+c=0,∴3a+c=0,∴c=-3a,故③错误,不符合题意;④要使△ACB为等腰三角形,则必须保证AB=BC=4或AB=AC=4或AC=BC,当AB=BC=4时,∵BO=1,△BOC为直角三角形,又∵OC的长即为|c|,∴c2=16-1=15,∵由抛物线与y轴的交点在y轴的正半轴上,∴c=,与b=2a、a+b+c=0联立组成解方程组,解得b=-;同理当AB=AC=4时,∵AO=3,△AOC为直角三角形,又∵OC的长即为|c|,∴c2=16-9=7,∵由抛物线与y轴的交点在y轴的正半轴上,∴c=,与b=2a、a+b+c=0联立组成解方程组,解得b=-;同理当AC=BC时,在△AOC中,AC2=9+c2,在△BOC中,BC2=c2+1,∵AC=BC,∴1+c2=c2+9,此方程无实数解.经解方程组可知有两个b值满足条件.故④正确,符合题意.综上所述,正确的结论是①④.故答案是:①④.①根据抛物线开口方向和与x轴的两交点可知:当x=-4时,y<0,即16a-4b+c<0;②根据图象与x轴的交点A、B的横坐标分别为-3,1确定对称轴是:x=-1,可得:(-4.5,y3)与Q(,y2)是对称点,所以y1<y2;③根据对称轴和x=1时,y=0可得结论;④要使△ACB为等腰三角形,则必须保证AB=BC=4或AB=AC=4或AC=BC,先计算c的值,再联立方程组可得结论.本题考查了等腰三角形的判定、方程组的解、抛物线与坐标轴的交点、二次函数y=ax2+bx+c的图象与系数的关系等,综合性强,有一定难度.17.【答案】解:原式=2×1+-=2.【解析】根据负整数指数幂、零指数幂、绝对值的意义计算,然后分母有理化后合并即可.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.【答案】解:方程的两边同乘(x-1),得:x+1=-(x-3)+x-1,解得:x=1.检验:把x=1代入(x-1)=0,即x=1不是原分式方程的解.则原分式方程无解.【解析】观察可得最简公分母是(x-1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.此题考查了分式方程的求解方法.注意解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.注意解分式方程一定要验根.19.【答案】解:原式=[+]•,=•,=•,=,∵x+1≠0,x-1≠0,x≠0,∴x≠±1和0,∴选x=2,当x=2时,原式==1.【解析】首先计算括号里面分式的加法,然后再计算括号外分式的除法,化简后,再确定x的值,然后代入x的值可得答案.此题主要考查了分式的化简求值,关键是掌握分式的加、减、乘、除计算法则,正确把分式进行化简.20.【答案】解:(1)∵-7<-2,∴(-7)*(-2)=14-4=10;(2)方程x2-5x-6=0变形得:(x+1)(x-6)=0,解得:x=-1或x=6,当x1=-1,x2=6时,x1*x2=-6-36=-42;当x1=6,x2=-1时,x1*x2=36+6=42.【解析】(1)根据题中的新定义化简,计算即可得到结果;(2)求出已知方程的解得到x1与x2的值,利用题中新定义计算即可得到结果.此题考查了根与系数的关系,实数的运算,熟练掌握运算法则是解本题的关键.21.【答案】解:(1)设购买一个笔记本需要x元,则购买一支钢笔需要(x+20)元,依题意,得:2×=,解得:x=5,经检验,x=5是原分式方程的解,且符合题意,∴x+20=25.答:购买一支钢笔需要25元,购买一个笔记本需要5元.(2)设购买m支钢笔,则购买(3m-6)个笔记本,依题意,得:25m+5(3m-6-m)≤1020,解得:m≤30.答:最多可购买30支钢笔.【解析】(1)设购买一个笔记本需要x元,则购买一支钢笔需要(x+20)元,根据数量=总价÷单价结合用1500元购买钢笔的数量是用600元购买笔记本数量的一半,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买m支钢笔,则购买(3m-6)个笔记本,根据总价=单价×数量结合总费用不超过1020元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.22.【答案】解:(1)由题意得,k+6=2,解得k=-4,又∵二次函数顶点为(0,6),∴c=6,把(1,2)代入二次函数表达式得a+c=2,解得a=-4;(2)由(1)得二次函数解析式为y=-4x2+6,令y=m,得4x2+m-6=0,∴x=±=±,设B,C两点的坐标分别为(x1,m)(x2,m),则BC=|x1-x2|=2×=,∴W=OA2+BC2=m2+6-m=+,∴当m=时,W取得最小值.【解析】(1)由交点为(1,2),代入y=kx+6,可求得k,由y=ax2+c可知,二次函数的顶点在y轴上,即x=0,则可求得顶点的坐标,从而可求c值,最后可求a的值(2)由(1)得二次函数解析式为y=-4x2+6,令y=m,得4x2+m-6=0,可求x的值,再利用根与系数的关系式,即可求解.此题主要考查二次函数的性质及一次函数与二次函数图象的交点问题,此类问题,通常转化为一元二次方程,再利用根的判别式,根与系数的关系进行解答即可.23.【答案】1 12 -6<x<0或x>2 x>0【解析】解:(1)将点B(-6,-2)代入y1=k1x+4,-2=-6k1+4,解得:k1=1;将点B(-6,-2)代入y2=①,-2=,解得:k2=12.故答案为:1;12.(2)①观察函数图象可知:当-6<x<0或x>2时,一次函数图象在反比例函数图象上方,∴当y1>y2时,x的取值范围是-6<x<0或x>2.故答案为:-6<x<0或x>2.②过点O作直线l:y=-2x,如图1所示.观察图形可知:x>0时,反比例函数图象在直线l上方,故答案为:x>0.(3)依照题意,画出图形,如图2所示.当x=2时,m=x+4=6,∴点A的坐标为(2,6);当x=0时,y1=x+4=4,∴点C的坐标为(0,4).∵S四边形ODAC=(OC+AD)•OD=×(4+6)×2=10,S四边形ODAC:S△ODE=4:1,∴S△ODE=OD•DE=×2DE=10×,∴DE=2.5,即点E的坐标为(2,2.5).设直线OP的解析式为y=kx,将点E(2,2.5)代入y=kx,得2.5=2k,解得:k=,∴直线OP的解析式为y=x②.联立①②并解得:,,∵点P在第一象限,∴点P的坐标为(,).(4)依照题意画出图形,如图3所示.当∠CMB=90°时,BM∥x轴,∴点M的坐标为(0,-2);当∠CBM=90°时,∵直线AC的解析式为y=x+4,∴∠BCM=45°,∴△BCM为等腰直角三角形,∴CM=-2x B=12,∴点M的坐标为(0,-8).综上所述:当△MBC为直角三角形时,点M的坐标为(0,-2)或(0,-8).(1)根据点B的坐标,利用待定系数法即可求出k1、k2的值;(2)观察两函数图象的上下位置关系,由此即可得出不等式的解集;(3)根据一次函数图象上点的坐标特征求出点A、C的坐标,根据梯形的面积公式求出S四边形ODAC的值,进而即可得出S△ODE的值,结合三角形的面积公式即可得出点E的坐标,利用待定系数法即可求出直线OP的解析式,再联立直线OP与双曲线的解析式成方程组,通过解方程组求出点P的坐标;(4)分∠CMB=90°或∠CBM=90°两种情况考虑,当∠CMB=90°时,根据点B的坐标即可找出点M的坐标;当∠CBM=90°时,由直线AB的解析式可得出△BCM为等腰直角三角形,根据等腰直角三角形的性质结合点A、B的坐标即可得出点M的坐标.综上即可得出结论.本题考查了待定系数法求出一次(反比例)函数解析式、一次函数图象上点的坐标特征、梯形(三角形)的面积以及等腰直角三角形,解题的关键是:(1)根据点B的坐标,利用待定系数法求出k1、k2的值;(2)利用两函数图象的上下位置关系解不等式;(3)根据两图形面积间的关系找出点E的坐标;(4)分∠CMB=90°或∠CBM=90°两种情况寻找点M的坐标.24.【答案】解:(1)∵点A在线段OE上,E(8,0),OA=2∴A(2,0)∵OA:AD=1:3∴AD=3OA=6∵四边形ABCD是矩形∴AD⊥AB∴D(2,-6)∵抛物线y=ax2+bx经过点D、E∴解得:∴抛物线的解析式为y=x2-4x(2)如图1,作点M关于x轴的对称点点M',作点N关于y轴的对称点点N',连接FM'、GN'、M'N'∵y=x2-4x=(x-4)2-8∴抛物线对称轴为直线x=4∵点C、D在抛物线上,且CD∥x轴,D(2,-6)∴y C=y D=-6,即点C、D关于直线x=4对称∴x C=4+(4-x D)=4+4-2=6,即C(6,-6)∴AB=CD=4,B(6,0)∵AM平分∠BAD,∠BAD=∠ABM=90°∴∠BAM=45°∴BM=AB=4∴M(6,-4)∵点M、M'关于x轴对称,点F在x轴上∴M'(6,4),FM=FM'∵N为CD中点∴N(4,-6)∵点N、N'关于y轴对称,点G在y轴上∴N'(-4,-6),GN=GN'∴C四边形MNGF=MN+NG+GF+FM=MN+N'G+GF+FM'∵当M'、F、G、N'在同一直线上时,N'G+GF+FM'=M'N'最小∴C四边形=MN+M'N'=MNGF=2+10=12∴四边形MNGF周长最小值为12.(3)存在点P,使△ODP中OD边上的高为.过点P作PE∥y轴交直线OD于点E∵D(2,-6)∴OD=,直线OD解析式为y=-3x设点P坐标为(t,t2-4t)(0<t<8),则点E(t,-3t)①如图2,当0<t<2时,点P在点D左侧∴PE=y E-y P=-3t-(t2-4t)=-t2+t∴S△ODP=S△OPE+S△DPE=PE•x P+PE•(x D-x P)=PE(x P+x D-x P)=PE•x D=PE=-t2+t∵△ODP中OD边上的高h=,∴S△ODP=OD•h∴-t2+t=×2×方程无解②如图3,当2<t<8时,点P在点D右侧∴PE=y P-y E=t2-4t-(-3t)=t2-t∴S△ODP=S△OPE-S△DPE=PE•x P-PE•(x P-x D)=PE(x P-x P+x D)=PE•x D=PE=t2-t ∴t2-t=×2×解得:t1=-4(舍去),t2=6∴P(6,-6)综上所述,点P坐标为(6,-6)满足使△ODP中OD边上的高为.(4)设抛物线向右平移m个单位长度后与矩形ABCD有交点K、L∵KL平分矩形ABCD的面积∴K在线段AB上,L在线段CD上,如图4∴K(m,0),L(2+m,0)连接AC,交KL于点H∵S△ACD=S四边形ADLK=S矩形ABCD∴S△AHK=S△CHL∵AK∥LC∴△AHK∽△CHL∴∴AH=CH,即点H为AC中点∴H(4,-3)也是KL中点∴∴m=3∴抛物线平移的距离为3个单位长度.【解析】(1)由点E在x轴正半轴且点A在线段OE上得到点A在x轴正半轴上,所以A(2,0);由OA=2,且OA:AD=1:3得AD=6.由于四边形ABCD为矩形,故有AD⊥AB,所以点D在第四象限,横坐标与A的横坐标相同,进而得到点D坐标.由抛物线经过点D、E,用待定系数法即求出其解析式.(2)画出四边形MNGF,由于点F、G分别在x轴、y轴上运动,故可作点M关于x轴的对称点点M',作点N关于y轴的对称点点N',得FM=FM'、GN=GN'.易得当M'、F、G、N'在同一直线上时N'G+GF+FM'=M'N'最小,故四边形MNGF周长最小值等于MN+M'N'.根据矩形性质、抛物线线性质等条件求出点M、M'、N、N'坐标,即求得答案.(3)因为OD可求,且已知△ODP中OD边上的高,故可求△ODP的面积.又因为△ODP 的面积常规求法是过点P作PE平行y轴交直线OD于点E,把△ODP拆分为△OPE与△DPE的和或差来计算,故存在等量关系.设点P坐标为t,用t表示PE的长即列得方程.求得t的值要讨论是否满足点P在x轴下方的条件.(4)由KL平分矩形ABCD的面积可得K在线段AB上、L在线段CD上,画出平移后的抛物线可知,点K由点O平移得到,点L由点D平移得到,故有K(m,0),L(2+m,0).易证KL平分矩形面积时,KL一定经过矩形的中心H且被H平分,求出H坐标为(4,-3),由中点坐标公式即求得m的值.本题考查了矩形的性质,二次函数的图象与性质,轴对称求最短路径问题,勾股定理,坐标系中求三角形面积,抛物线的平移,相似三角形的判定和应用,中点坐标公式.易错的地方有第(1)题对点D、C、B坐标位置的准确说明,第(3)题在点D左侧不存在满足的P在点D左侧的讨论,第(4)题对KL必过矩形中心的证明.25.【答案】解:(1)∵抛物线y=x2-bx+c经过点A(-1,0),∴1+b+c=0,即c=-b-1,当b=2时,y=x2-2x-3=(x-1)2-4,∴抛物线的顶点坐标为(1,-4);(2)由(1)知,抛物线的解析式为y=x2-bx-b-1,∵点D(b,y D)在抛物线y=x2-bx-b-1上,∴y D=b2-b•b-b-1=-b-1,由b>0,得b>>0,-b-1<0,∴点D(b,-b-1)在第四象限,且在抛物线对称轴x=的右侧,如图1,过点D作DE⊥x轴,垂足为E,则点E(b,0),∴AE=b+1,DE=b+1,得AE=DE,∴在Rt△ADE中,∠ADE=∠DAE=45°,∴AD=AE,由已知AM=AD,m=3,∴3-(-1)=(b+1),∴b=2-1;(3)∵点Q(b+,y Q)在抛物线y=x2-bx-b-1上,∴y Q=(b+)2-b(b+)-b-1=--,可知点Q(b+,--)在第四象限,且在直线x=b的右侧,∵AM+2QM=2(AM+QM),∴可取点N(0,1),如图2,过点Q作直线AN的垂线,垂足为G,QG与x轴相交于点M,由∠GAM=45°,得AM=GM,则此时点M满足题意,过点Q作QH⊥x轴于点H,则点H(b+,0),在Rt△MQH中,可知∠QMH=∠MQH=45°,∴QH=MH,QM=MH,∵点M(m,0),∴0-(--)=(b+)-m,解得,m=-,∵AM+2QM=,∴[(-)-(-1)]+2•[(b+)-(-)]=,∴b=6.【解析】(1)将点A(-1,0)代入y=x2-bx+c,求出c关于b的代数式,再将b代入即可求出c的值,可进一步写出抛物线解析式及顶点坐标;(2)将点D(b,y D)代入抛物线y=x2-bx-b-1,求出点D纵坐标为-b-1,由b>0判断出点D(b,-b-1)在第四象限,且在抛物线对称轴x=的右侧,过点D作DE⊥x轴,可证△ADE为等腰直角三角形,利用锐角三角函数可求出b的值;(3)将点Q(b+,y Q)代入抛物线y=x2-bx-b-1,求出Q纵坐标为--,可知点Q(b+,--)在第四象限,且在直线x=b的右侧,点N(0,1),过点Q作直线AN的垂线,垂足为G,QG与x轴相交于点M,过点Q作QH⊥x轴于点H,则点H(b+,0),在Rt△MQH中,可知∠QMH=∠MQH=45°,设点M(m,0),则可用含b的代数式表示m,因为AM+2QM=,可得方程[(-)-(-1)]+2•[(b+)-(-)]=,即可求解.本题是二次函数综合题,考查了待定系数法求解析式,二次函数的性质,等腰直角三角形的性质,解题关键是能够根据给定参数判断点的位置,从而构造特殊三角形来求解.。

相关文档
最新文档