考点二:集合的基本运算

合集下载

第二讲 集合之间的基本关系及其运算

第二讲  集合之间的基本关系及其运算

第二讲 集合之间的基本关系及其运算一.知识盘点知识点一:集合间的基本关系注意:1.A B A B B AA B A B A B A B =⇔⊆⊆⎧⊆⎨⊂⇔⊆≠⎩且且2.涉及集合间关系时,不要忘记空集和集合本身的可能性。

3.集合间基本关系必须熟记的3个结论(1)空集是任意一个集合的子集;是任意一个非空集合的真子集,即,().A B B Φ⊆Φ⊂≠Φ(2)任何一个集合是它自身的子集,空集只有一个子集即本身 (3)含有n 个元素的集合的子集的个数是2n 个,非空子集的个数是21n - ;真子集个数是21n - ,非空真子集个数是22n -。

知识点二:集合的基本运算运算 符号语言 Venn 图 运算性质交集{}|A B x x A =∈∈且x B()(),AB A A B B ⊆⊆ (),AA A AB B A ==A B A A B =⇔⊆ A Φ=Φ并集{}|A B x x A x B =∈∈或()(),A A B B A B ⊆⊆ (),A A A A B B A ==,A B B A B A A =⇔⊆Φ=补集{}|U C A x x U x A =∈∉且,U U C U C U =ΦΦ=()(),U U U C C A A A C A U ==()U AC A =Φ()()()U U U C A B C A C B = ()()()U U U C A B C A C B =二.例题精讲Ep1.下列说法正确的是A. 高一(1)班个子比较高的同学可以组成一个集合B. 集合{}2|,x N x x ∈= 则用列举法表示是{}01,UAC. 如果{}264,2,m m ∈++2, 则实数m 组成的集合是{}-22,D. {}{}(){}222||,|x y xy y x x y y x =====解析:A.与集合的确定性不符;B.对;C.与集合的互异性不符;D 。

{}2|x y x R == ,{}{}2||0y y x y y ==≥ ,(){}2,|x y y x = 是二次函数2y x = 的点集Ep2.已知集合A={}2|1log ,kx N x ∈<< 集合A 中至少有三个元素,则A.K>8B.K ≥ 8C.K>16D.K ≥ 16解析:由题设,集A 至少含有2,3,4三个元素,所以2log 4k> ,所以k>16.Ep3.已知集合M={}{}2|,|,x y x R N x x m m M =∈==∈ ,则集合M 、N 的关系是A.M N ⊂B.N M ⊂C.R M C N ⊆D.R N C M ⊆ 解析:[]1,1M =- ,{}|01N x x =≤≤ ,故选B.Ep4.已知集合M={}0,1 ,则满足M N M = 的集合N 的个数是 A.1 B.2 C.3 D.4 解析:M N M =,故N M ⊆ ,故选D.Ep5已知集合{}{}2|1,|1M x x N x ax ==== ,如果N M ⊆ ,则实数a 的取值集合是{}.1A {}.1,1B - {}.0,1C {}.1,0,1D -解析:{}1,1M =- , N M ⊆,故N 的可能:{}{}{},1,1,1,1Φ-- ,故a 的取值集合{}1,0,1-Ep6.已知集合{}{}2|20180,|lg(3)A x x x B x N y x =-+≥=∈=- ,则集合A B 的子集的个数是解析:{}|02018A x x =≤≤ ,{}{}|3-x>00,1,2B x N =∈= ,故{}0,1,2A B = 故子集个数328=A.4B.7C.8D.16Ep7.已知集合{}{}2|2,|M x x x N x x a =<+=> ,如果M N ⊆ ,则实数a 的取值范围是.(,1]A -∞- .(,2]B -∞ .[2,)C +∞ .[1,)D -+∞解析:{}|12M x x =-<< ,M N ⊆,故1a ≥-Ep8.已知集合{}2|30A x N x x *=∈-< 则满足B A ⊆ 的集合B 的个数是 A.2 B.3 C.4 D.8 解析:{}{}|03=12A x N x *=∈<<, ,故选CEp9.已知集合{}{}|12,|13,M x x N x x M N =-<<=≤≤=则.(1,3]A - B.(1,2]- .[1,2)C D.(2,3]解析:选CEp10.如果集合{}{}(1)2|10,|log 0,x A x x B x -=-≤≤=≤则A B={}.|11A x x -≤< {}.|11B x x -<≤ {}.0C {}.|11D x x -≤≤ 解析:{}10||0111x B x x x x ⎧->⎫⎧==≤<⎨⎨⎬-≤⎩⎩⎭,故选D.Ep11.设集合 {}{}2|11,|,,()R A x x B y y x x A A C B =-<<==∈=则{}.|01A x x ≤< {}.|10.B x x -<< {}|01C x x =<< {}.|11D x x -<<解析:{}|01B y y =≤<,则{}|01R C B y y =<≥或y,(){}{}{}|11|01|10R AC B x x y y y x x =-<<<≥=-<<或 选B.Ep12.已知集合{}{}2|11,|20,A x x B x x x =-<<=--<则 )R C A B =(.(1,0]A - .[1,2)B - .[1,2)C .(1,2]D解析:{}|12B x x =-<< ,{}|11R C A x x x =≤-≥或 (){}|12R C A B x x =≤< ,选C.三.总结提高1.题型归类(1)2个集合之间的关系判断(2)已知2个集合之间的关系,求参数问题 (3)求子集或真子集的个数问题 (4)2个有限集之间的运算(5)1个有限集和1个无限集之间的运算 (6)2个无限集之间的运算(7)已知集合的运算结果,求参数问题 2.方法总结(1)判断集合间关系的方法a.化简集合,从表达式中寻找两个集合之间的关系b.用列举法表示集合,从元素中寻找关系c.利用数轴,在数轴上表示出两个集合(集合为数集),比较端点之间的大小关系,从而确定两个集合之间的关系。

第02讲 集合的运算(7大考点13种解题方法)(解析版)

第02讲 集合的运算(7大考点13种解题方法)(解析版)

第02讲集合的运算(7大考点13种解题方法)考点考向集合之间的基本运算如果一个集合包含了我们所要研究的各个集合的全部元素,这样的集合就称为全集,全集通常用字母U 表示;集合的并集集合的交集集合的补集图形符号A ∪B ={x |x ∈A ,或x ∈B }A ∩B ={x |x ∈A ,且x ∈B }∁U A ={x |x ∈U ,且x ∉A }1.由所有属于集合A 或属于集合B 的元素组成的集合叫A 与B 的并集,记作A ∪B ;符号表示为A ∪B ={x |x ∈A 或x ∈B }2.并集的性质A ∪B =B ∪A ,A ∪A =A ,A ∪∅=A ,A ⊆A ∪B .3.对于两个给定的集合A 、B ,由所有属于集合A 且属于集合B 的元素组成的集合叫A 与B 的交集,记作A ∩B。

符号为A ∩B ={x |x ∈A 且x ∈B }。

4.交集的性质A ∩B =B ∩A ,A ∩A =A ,A ∩∅=∅,A ∩B ⊆A .5、对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,记作∁U A 。

符号语言:∁U A ={x |x ∈U ,且x ∉A }。

【要点注意】1.A ⊆B ⇔A ∩B =A ⇔A ∪B =B ()()UUA B A B U ⇔=∅⇔=痧.2.德▪摩根定律:①并集的补集等于补集的交集,即()=()()U UU A B A B 痧;②交集的补集等于补集的并集,即()=()()U UU AB A B 痧.方法技巧1.求集合并集的两种基本方法:(1)定义法:若集合是用列举法表示的,可以直接利用并集的定义求解;(2)数形结合法:若集合是用描述法表示的由实数组成的数集,则可以借助数轴求解.2.求集合交集的方法为:(1)定义法,(2)数形结合法.(3)若A ,B 是无限连续的数集,多利用数轴来求解.但要注意,利用数轴表示不等式时,含有端点的值用实点表示,不含有端点的值用空心点表示.3.集合基本运算的求解规律(1)离散型数集或抽象集合间的运算,常借用Venn 图求解.(2)集合中的元素若是连续的实数,常借助数轴求解,但是要注意端点值能否取到的情况.(3)根据集合运算求参数,先把符号语言译成文字语言,然后灵活应用数形结合求解.考点精讲考点一:交集题型一:交集的概念及运算1.(2022·浙江衢州·高一阶段练习)已知集合{1,2,3}A =,{2,3,4}B =,则A B =()A .{1,2,3,4}B .{2,3}C .{1,2}D .∅【答案】B【分析】根据交集的定义可求A B .【详解】{}2,3AB =,故选:B.2.(2022·全国·高一)已知集合{}22A x x =-<<,{}2,0,1,2B =-,则A B =()A .{}1,0,1-B .{}0,1C .{}2,0,1,2-D .{}1,0,1,2-【答案】B【分析】根据集合的交集运算,即可得答案.【详解】因为{}22A x x =-<<,{}2,0,1,2B =-,所以{0,1}A B =,故选:B .题型二:根据交集的结果求集合或参数3.(2017·浙江·长兴县教育研究中心高一期中)已知集合{}2,3,4,5A =,{}1,B a =,若{}5A B =,则=a ()A .2B .3C .4D .5【答案】D【分析】根据集合的交运算结果,即可求得参数值.【详解】因为{}5A B =,故可得{}51,a ∈,则5a =.故选:D.4.(2021·湖北·车城高中高一阶段练习)若集合{}322P x x =<≤,非空集合{}2135Q x a x a =+≤<-,则能使()Q PQ ⊆成立的所有实数a 的取值范围为()A .(1,9)B .[1,9]C .[6,9)D .(6,9]【答案】D【分析】由()Q P Q ⊆知Q P ⊆,据此列出不等式组即可求解.【详解】∵()Q P Q ⊆,∴P Q Q ⋂=,Q P ⊆,∴21352133522a a a a +<-⎧⎪+>⎨⎪-≤⎩,解得69a <≤,故选:D.题型三:根据交集的结果求集合元素个数5.(2021·河南·襄城县实验高级中学高一阶段练习)已知集合()1,A x y y x ⎧⎫==⎨⎬⎩⎭,(){},B x y y x ==,则AB 中元素的个数为()A .0B .1C .2D .3【答案】C【分析】联立方程解得11x y =⎧⎨=⎩或11x y =-⎧⎨=-⎩,得到答案.【详解】1y x y x⎧=⎪⎨⎪=⎩,解得11x y =⎧⎨=⎩或11x y =-⎧⎨=-⎩,故A B 中有两个元素.故选:C.6.(2022·江苏·高一)若集合{}1,2,3,4A B =,{}1,2A B =,集合B 中有3个元素,则A中元素个数为()A .1B .2C .3D .不确定【答案】C【分析】根据条件得到{}1,2,3B =或{}1,2,4B =,进而可得集合A 中元素个数.【详解】{}1,2AB =,则集合B 中必有元素1,2当{}1,2,3B =时,{}1,2,4A =,当{}1,2,4B =时,{}1,2,3A =,故集合A 中元素个数为3.故选:C.考点二:并集题型四:并集的概念及运算1.(多选)(2021·福建·晋江市磁灶中学高一阶段练习)已知集合{|2}A x x =<,{|320}B x x =->,则()A .32AB x x ⎧⎫⋂=<⎨⎬⎩⎭B .A B =∅C .{}2A B x x ⋃=<D .A B R=【答案】AC【分析】先求得集合B ,由此确定正确选项.【详解】3{|320}{|}2B x x B x x =->==<,所以32A B x x ⎧⎫⋂=<⎨⎬⎩⎭,{}2A B x x ⋃=<.故选:AC2.(多选)(2021·福建省同安第一中学高一阶段练习)已知集合{|2}A x x =<,{|320}B x x =->,则()A .32AB x x ⎧⎫⋂=<⎨⎬⎩⎭B .A B =∅C .A B R=D .{}A B 2x x ⋃=<【答案】AD【解析】先化简集合B ,再由交集和并集的概念,即可得出结果.【详解】因为集合{|2}A x x =<,{}33202B x x x x ⎧⎫=->=<⎨⎬⎩⎭,因此32A B x x ⎧⎫⋂=<⎨⎬⎩⎭,{}A B 2x x ⋃=<.故选:AD.题型五:根据并集的结果求集合或参数3.(多选)(2022·湖北武汉·二模)已知集合{}{}1,4,,1,2,3A a B ==,若{}1,2,3,4A B =,则a 的取值可以是()A .2B .3C .4D .5【答案】AB【分析】根据并集的结果可得{}1,4,a {}1,2,3,4,即可得到a 的取值;【详解】解:因为{}1,2,3,4A B =,所以{}1,4,a {}1,2,3,4,所以2a =或3a =;故选:AB4.(多选)(2021·湖南·高一期中)已知集合{}1,4,M x =,{}2,3N =,若{}1,2,3,4M N =U ,则x 的可能取值为()A .1B .2C .3D .4【答案】BC【分析】根据题意,结合集合中元素的互异性及两个集合的并集的定义,即可求解.【详解】由题意,集合{}1,4,M x =,{}2,3N =,且{}1,2,3,4M N =U 根据集合中元素的互异性及两个集合的并集的定义,可得2x =或3x =.故选:BC.题型六:根据并集的结果求集合元素个数5.(多选)(2021·广东揭阳·高一期末)若集合{}0,1,2,A x =,2{1,}B x =,A B A ⋃=则满足条件的实数x 为()A .0B .1C .D .【答案】CD【分析】由A B A ⋃=说明B 是A 的子集,然后利用子集的概念分类讨论x 的取值.【详解】解:由A B A ⋃=,所以B A ⊆.又{}0,1,2,A x =,2{1,}B x =,所以20x =,或22x =,或2x x =.20x =时,集合A 违背集合元素的互异性,所以20x ≠.22x =时,x =或x =2x x =时,得0x =或1x =,集合A 均违背集合元素互异性,所以2x x ≠.所以满足条件的实数x 的个数有2个.故选CD .【点睛】本题考查了并集及其运算,考查了子集的概念,考查了集合中元素的特性,解答的关键是要考虑集合中元素的互异性,是基本的概念题,也是易错题.考点三:补集、全集题型七:补集的概念及运算1.(2022·广东汕尾·高一期末)全集U =R ,集合{}3A x x =≤-,则 U A =ð______.【答案】{}3x x >-【分析】直接利用补集的定义求解【详解】因为全集U =R ,集合{}3A x x =≤-,所以 U A =ð{}3x x >-,故答案为:{}3x x >-2.(2022·江苏·高一单元测试)若全集S ={2,3,4},集合A ={4,3},则S A ð=____;若全集S ={三角形},集合B ={锐角三角形},则S B ð=______;若全集S ={1,2,4,8},A =∅,则S A ð=_______;若全集U ={1,3,a 2+2a +1},集合A ={1,3},U A ð={4},则a =_______;已知U 是全集,集合A ={0,2,4},U A ð={-1,1},U B ð={-1,0,2},则B =_____.【答案】{2}{直角三角形或钝角三角形}{1,2,4,8}1或-3{1,4}【分析】利用补集的定义,依次分析即得解【详解】若全集S ={2,3,4},集合A ={4,3},由补集的定义可得S A ð={2};若全集S ={三角形},集合B ={锐角三角形},由于三角形分为锐角、直角、钝角三角形,故S B ð={直角三角形或钝角三角形};若全集S ={1,2,4,8},A =∅,由补集的定义S A ð={1,2,4,8};若全集U ={1,3,a 2+2a +1},集合A ={1,3},U A ð={4},故{1,3,4}U U A A =⋃=ð即2214a a ++=,即223(1)(30a a a a +-=-+=),解得=a 1或-3;已知U 是全集,集合A ={0,2,4},U A ð={-1,1},故{1,0,1,2,4}U U A A =⋃=-ð,U B ð={-1,0,2},故B ={1,4}。

高一数学复习考点知识与题型专题讲解3---集合的基本运算

高一数学复习考点知识与题型专题讲解3---集合的基本运算

高一数学复习考点知识与题型专题讲解1.3集合的基本运算【考点梳理】考点一:并集考点二:交集考点三:全集与补集1.全集(1)定义:如果一个集合含有所研究问题中涉及的所有元素,那么就称这个集合为全集.(2)记法:全集通常记作U.2.补集对于一个集合A,由全集U中不属于集合A的所有元素组成的自然语言集合称为集合A相对于全集U的补集,记作∁U A符号语言∁U A={x|x∈U,且x∉A}图形语言【题型归纳】【题型归纳】题型一:根据交集求集合或者参数问题1.集合{2,2,4,6}A =-,{}2120B x x x =+-<,则A B =( )A .}{2,2,4-B .{2}-C .{2,4}D .{2,2}-2.已知集合{}1A x x =≤,{}0B x x a =-≤,且A B ⋂≠∅,那么实数a 的取值范围是( ). A .1a ≤-B .1a ≤C .1a ≥-D .1a ≥ 3.已知集合302x A x -⎧⎫=≤⎨⎬+⎩⎭,{}|32,B x x x =-≤≤∈Z ,则A B 中元素的个数为( ) A .4B .5C .6D .无数个题型二:根据并集求集合或者参数问题4.集合{}0,2,A a =,{}21,B a =,若{}0,1,2,4,16A B ⋃=,则a 的值为( )A .1B .2C .3D .45.若集合{}2135A x a x a =+≤≤-,{}516B x x =≤≤,则能使A B B ⋃=成立的所有a 组成的集合为( )A .{}27a a ≤≤B .{}67a a ≤≤C .{}7a a ≤D .∅6.已知集合{}27A x x =-≤≤,{}121B x m x m =+≤≤-,则使A B A ⋃=的实数m 的取值范围可是( )A .{}36m m -≤≤B .{}4m m ≤C .{}24m m <<D .{}6m m <题型三:根据补集运算求集合或者参数问题7.已知全集{}22,4,U a =,集合{}4,3A a =+,{}1U A =ð,则a 的所有可能值形成的集合为( )A .{}1-B .{}1C .{}1,1-D .∅ 8.设集合,集合,若,则的取值范围是A .B .C .D .9.已知全集{}1,3,5,7,9U =,集合{}5,7A =,,则a 的值为A .3B .3-C .±3D .9±题型四:集合的交并补集合或参数问题10.若全集{}12345678U =,,,,,,,,集合{}2356A =,,,,集合{}13467B =,,,,,则集合()U A C B ⋂等于( )A .{}23568,,,,B .{}25,C .{}36,D .{}256,, 11.设集合U =R ,{}13A x x =<<,{}2B x x =<,则图中阴影部分表示的集合( )A .{}1x x ≥B .{}3x x ≤C .{}12x x <≤D .{}23x x ≤<12.集合()11,13M x y y x x ⎧⎫==-⎨⎬--⎩⎭,()(){}2,2,N x y y a x a R ==-∈,若M N ⋂=∅,则实数a的取值范围是( )A .[)0,2B .[)0,4C .[)0,8D .()0,16【双基达标】一、单选题13.已知集合,A B 满足A B A =,那么下列各式中一定成立的是( ) A .A B B .B A C .A B B ⋃=D .A B A ⋃=14.设M ,N 是非空集合,且M N U ⊆⊆(U 为全集),则下列集合表示空集的是( ) A .()UMN ðB .()UM N ðIC .()()U UM N 痧D .M N ⋂15.已知集合2{|43}A y y x x x R ==-+∈,,2{|22}B y y x x x R ==--+∈,则A B ⋂等于( )A .ΦB .RC .{}13-,D .[]13,-16.已知集合{}2340A x x x =+-=,集合(){}2120B x x a x a =++--=,且A B A ⋃=,则实数a 的取值集合为( )A .{}3,2-B .{}3,0,2-C .{}3a a ≥-D .{}32a a a <-=或17.已知集合{3A x x =<或}7x ≥,{}B x x a =<,若()U A B ≠∅ð,则a 的取值范围为( ) A .3a >B .3a ≥C .7a ≥D .7a >18.设数集3|4M x m x m ⎧⎫=≤≤+⎨⎬⎩⎭,1|3N x n x n ⎧⎫=-≤≤⎨⎬⎩⎭,且M ,N 都是集合{|01}x x ≤≤的子集.如果把b a -叫做{|}x a x b ≤≤的长度,那么集合M N ⋂的长度的最小值是( ) A .13B .1C .112D .3419.已知集合()13A =,,集合{|21}.B x m x m =<<-若A B =∅,则实数m 的取值范围是( )A .3123m <…B .0m …C .32m …D .3123m << 20.已知集合{}|0A x x a =-=,{}|10B x ax =-=,且A B B =,则实数a 等于( ) A .1B .1-或1C .1或0D .1或1-或021.某地对农户抽样调查,结果如下:电冰箱拥有率为45%,电视机拥有率为55%,洗衣机拥有率为65%,拥有上述三种电器的任意两种的占35%,三种电器齐全的为25%,那么一种电器也没有的农户所占比例是( ) A .20%B .10%C .15%D .12%22.如图,I 是全集,M 、P 、S 是I 的3个子集,则阴影部分所表示的集合是( )A .(M ∩P )∩SB .(M ∩P )∪SC .(M ∩P )∩(∁I S )D .(M ∩P )∪(∁I S )【高分突破】一:单选题23.设全集{|}2U x x ∈≤Z =,{|10,}A x x x U =+≤∈,{}2,0,2B =-,则()U A B =ð( ) A .{}1B .{}0,2C .{2,0,1,2}-D .(1,2]{2}-⋃-24.已知集合{}21,M x x k k Z ==+∈,集合{}43,N y y k k Z ==+∈,则M N ⋃=( ) A .{}62,x x k k Z =+∈B .{}42,x x k k Z =+∈ C .{}21,x x k k Z =+∈D .∅25.设集合{}1A x x =≥,{}12B x x =-<<,则()R A B ⋂=ð( ) A .{}1x x >-B .{}1x x ≥C .{}11x x -<<D .{}12x x ≤<26.集合{}22A x x =-<<,{}13B x x =-≤<,那么A B =( ) A .{}23x x -<<B .{}12x x -≤<C .{}21x x -<<D .{}23x x << 27.已知集合{}|5S x N x =∈≤,{}22|T x R xa =∈=,且{}1S T ⋂=,则S T ⋃=( ) A .{1,2}B .{0,1,2}C .{-1,0,1,2}D .{-1,0,1,2,3} 28.已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则S T ?( )A .∅B .SC .TD .Z29.设()x x P f x x x Q ∈⎧=⎨-∈⎩,,,其中P Q ,为实数集R 的两个非空子集,定义:()(){}f P y y f x x P ==∈,,()(){}f Q y y f x x Q ==∈,.给出以下四个判断:①若,P Q φ⋂=则()()f P f Q φ⋂=;②若,P Q φ⋂=则()()f P f Q φ⋂≠; ③若,P Q R ⋃=则()()f P f Q R ⋃=;④若,P Q R ⋃≠()()f P f Q R ⋃≠. 其中正确的判断个数为( ) A .0个B .1个C .2个D .3个二、多选题30.设集合{|11A x a x a =-<<+,}x R ∈,{|15B x x =<<,}x R ∈,则下列选项中,满足A B =∅的实数a 的取值范围可以是( )A .{|06}a a 剟B .{|2a a …或4}a …C .{|0}a a …D .{|8}a a … 31.已知全集U 的两个非空真子集A ,B 满足()U A B B =ð,则下列关系一定正确的是( )A .AB =∅B .A B B =C .A B U ⋃=D .()U B A A =ð32.给定数集M ,若对于任意a ,b M ∈,有a b M +?,且a b M -∈,则称集合M 为闭集合,则下列说法中不正确的是( ) A .集合{}4,2,0,2,4M =--为闭集合 B .正整数集是闭集合C .集合{|3,}M n n k k Z ==∈为闭集合D .若集合12,A A 为闭集合,则12A A ⋃为闭集合 33.图中阴影部分用集合符号可以表示为( )A .()ABC ⋂⋃ B .()A B CC .()U A B C ⋂⋂ðD .()()A B A C ⋂⋃⋂34.设集合{|11A x a x a =-<<+,}x R ∈,{|15B x x =<<,}x R ∈,则下列选项中,满足A B ⋂≠∅的实数a 的取值范围可以是( )A .{|06}a a 剟B .{|2a a …或4}a …C .{|0}a a …D .{|8}a a …35.(多选)已知集合{}{}|27,|121A x x B x m x m =-≤≤=+<<-,则使A B A ⋃=的实数m 的取值范围可以是( ) A .{}|34m m -≤≤B .{}|2m m > C .{}|24m m <<D .{}|4m m ≤36.已知U 为全集,则下列说法正确的是( )A .若AB =∅,则()()U U A B U =痧B .若A B =∅,则A =∅或B =∅C .若A B =∅,则()()U U A B U =痧D .若A B =∅,则A B ==∅三、填空题37.若集合{}0,1,2,3,4M =,{}1,3,5N =,P M N =⋂,则集合P 的子集个数为______. 38.某单位共有员工85人,其中68人会骑车,62人会驾车,既会骑车也会驾车的人有57人,则既不会骑车也不会驾车的人有___________人.39.已知集合{|01}A x x =<<,集合{|11}B x x =-<<,集合{}0C x x m =+>∣,若A B C ⋃⊆,则实数m 的取值范围是_____________.40.已知集合A ={(x ,y )|y =ax 2},B ={(x ,y )|y =x 2+2x +b },且(-1,2)∈A ∩B ,则a+b =________.41.已知方程x 2+mx +2=0与x 2+x +n =0的解集分别为A 和B ,且A ∩B ={1},则m +n =________.42.设2{|40}A x x x =+=,22{|2(1)10}B x x a x a =+++-=,其中x ∈R ,如果A B B =,则实数a 的取值范围__.四、解答题43.已知集合{}2|20A x x x =--=,{}2|230B x x ax a =++-=.(1)若0a =,求A B ;(2)若A B B =,求a 的取值集合. 44.若集合{|A x =240}xx ->,2{|3(1)(21)0}B x x mx m m =-++-<.(1)若A B B ≠I ,求实数m 的取值范围;(2)当x ∈R 时,不存在元素x 使x ∈A 与x ∈B 同时成立,求实数m 的取值范围. 45.在①{}=1A B ⋂,②A B =,③BA 这三个条件中任选一个,补充在下面问题中,若问题中的集合存在,求实数a 的值;若问题中的集合不存在,说明理由.问题:是否存在集合,A B ,满足集合{}2|320A x x x =-+=,集合{}22|6+60B x x ax a a =+-=,使得__________成立?(注:如果选择多个条件分别解答,按第一个解答计分.) 46.已知集合{}1A x x =<,集合{2B x x =<-或}3x >. (1)求A B ,()RAB ð;(2)若{}12C x m x m =-+<<,且C ≠∅,()RC A B ⊆ð,求实数m 的取值范围.47.回答下列问题:(1)已知{}{}25,12|,|1A x x B x m x m A B B =-≤≤=+≤≤-⋂=,求m 的取值范围;(2)设U =R ,集合{}(){}223|20,1|0A x x x B x x m x m =++==+++=,若()U A B φ⋂=ð,求m的值.48.已知全集U =R ,集合{}{}27205A x x B x x x =<<=--≤≤-, (1)求()(),U U A B A B ⋂⋃痧;(2)若集合{}()2,U C x a x a C B R =≤≤-⋃=ð,求实数a 的取值范围.【答案详解】1.D【详解】 由题得{}(4)(3)0(4,3)B x x x =+-<=-,所以A B ={2,2}-.故选:D2.C【详解】 解:由1x ≤,得11x -≤≤,所以{}11A x x =-≤≤,由0x a -≤,得x a ≤,所以{}B x x a =≤,因为A B ⋂≠∅,所以1a ≥-,故选:C3.A【详解】 由{}30232x A x x x -⎧⎫=≤=-<≤⎨⎬+⎩⎭,{}|32,B x x x =-≤≤∈Z , 所以{}1,0,1,2A B ⋂=-,所以A B 中元素的个数为4.故选:A4.D【详解】因集合{}0,2,A a =,{}21,B a =,且{}0,1,2,4,16A B ⋃=, 于是得4a =,此时216a =,满足条件,即4a =,若16a =,此时2256a =,不满足条件,舍去,所以a 的值为4.故选:D5.C【分析】A B B A B ⋃=⇔⊆,考虑A =∅和A ≠∅两种情况,得到21353516215a a a a +≤-⎧⎪-≤⎨⎪+≥⎩,解得答案. 【详解】A B B A B ⋃=⇔⊆当A =∅时,即2135a a +>-,6a <时成立;当A ≠∅时,满足21353516215a a a a +≤-⎧⎪-≤⎨⎪+≥⎩,解得67a ≤≤; 综上所述:7a ≤.故选:C.6.B【详解】 由题意,集合{}27A x x =-≤≤,{}121B x m x m =+≤≤-,因为A B A ⋃=,可得B A ⊆,当B φ=时,可得121m m +>-,解得2m <;当B φ≠时,可得12217121m m m m +≥-⎧⎪-≤⎨⎪+≤-⎩,解得24m ≤≤, 综上可得,实数m 的取值范围{}4m m ≤.故选:B.7.A【详解】由U A U ⊆ð,即{}1{}22,4,a ⊆,则21a =,解得1a =±, 若1a =,则34a +=,而{}4,3A a =+,不符合集合中元素的互异性,舍去;若1a =-,则{}2,4,1U =,{}4,2A =,{}1U A =ð,符合题意.所以a 的所有可能值形成的集合为{}1-.故选:A.8.B【详解】 试题分析:{}|24()2R R C A x x C A B a ∴=≤≤⋂≠∅∴> 9.C【详解】试题分析:由()23{39U a C A A U a a =⋃=∴∴=±=10.B【详解】若全集{}12345678U =,,,,,,,,集合{}2356A =,,,,集合{}13467B =,,,,,∴U B ð{}2,5,8=, 则集合()U A B ⋂=ð{}25,,11.D【详解】解:图中阴影部分表示的集合为()U A B ∩ð, ∵{}2B x x =<,∴{}2U B x x =≥ð{}13A x x =<<,∴(){}23U A B x x ⋂=≤<ð,故选:D.12.C 令1113x x ---2=(2)a x -即22(2)(1)(3)a x x x -=--- 若0a =,则上式无解,满足M N ⋂=∅,符合题意.若0a ≠,得22(2)(1)(3)x x x a-=---令222()(2)(1)(3)(2)(43)g x x x x x x x =---=--+则22()2(2)(43)(2)(24)g x x x x x x =---'++-()22(2)287x x x =--+ 令()0g x '=得123222,2,222x x x =-==+ 易得()g x 得最小值为()()1314g x g x ==-,无最大值. 要使22(2)(1)(3)x x x a -=---无解,必须214a -<-,即08a <<又0a =符合题意,所以实数a 的取值范围是[)0,8.故选:C.13.CA B A A B ⋂=⇔⊆选项A. 当A B =时,满足题意,但不满足A B ,故选项A 不正确.选项B. 由题意A B ⊆,故选项B 不正确.选项C. 由题意A B ⊆,则A B B ⋃=,选项C 正确.选项D. 由题意A B ⊆,则A B B ⋃=,故选项D 不正确.故选:C14.A【详解】集合M 是非空集合,对集合M 中任一元素x ,∵M N U ⊆⊆,∴x ∈N ,∴U x N ∉ð,又若U y N ∈ð,则y N ∉,∵M N ⊆,∴y M ∉,∴()U M N ⋂=∅ð.故选:A.15.D【详解】集合2{|43}A y y x x x R ==-+∈,,化简得{|1}A y y =≥-2{|22}B y y x x x R ==--+∈,,化简得{}|3B y y =≤[]13A B ∴⋂=-,,选项ABC 错误,选项D 正确.故选:D .16.A【详解】 由题意知集合{}{}2340=4,1A x x x =+-=-,对于方程()()2120x a x a ++-+=,解得12x a =--,21x =.因为A B A ⋃=,则B A ⊆.①当21a --=时,即3a =-时,B A ⊆成立;②当21a --≠时,即当3a ≠-时,因为B A ⊆,则24a --=-,解得2a =.综上所述,a 的取值集合为{}3,2-.故选:A.17.A【详解】 依题意得{}37U A x x =≤<ð,若()U A B ≠∅ð,则3a >,故选:A .18.C【详解】解:根据新定义可知集合M 的长度为34,集合N 的长度为13,当集合M N ⋂的长度最小时,M 与N 应分别在区间[]01,上的左右两端, 故M N ⋂的长度的最小值是31114312+-=. 故选:C .19.B【详解】解:由A B =∅,得: ①若21m m ?,即13m ≥时,B =∅,符合题意;②若21m m <-,即13m <时,因为A B =∅,则1311m m ⎧<⎪⎨⎪-≤⎩或1323m m ⎧<⎪⎨⎪≥⎩,解得103m ≤<, 综上所述:0m ≥,∴实数m 的取值范围为:0m ≥.故选:B .20.D【详解】由A B B =可得B A ⊆,且{}A a =,当0a =时,B =∅,满足A B B =符合题意,当0a ≠时,1B a ⎧⎫=⎨⎬⎩⎭,若B A ⊆,则1a a =,解得:1a =或1a =-,综上所述:实数a 等于1或1-或0,故选:D.21.A【详解】解:设农户总共为100家,则有55家农户有电视机,45家农户有电冰箱,65家农户有洗衣机,有25家农户同时拥有这三种电器,另外75家只有其中两种或一种或没有电器.设只有电冰箱和电视机的农户有a 家,只有电冰箱和洗衣机的农户有b 家,只有洗衣机和电视机的农户有c 家,只有电视机、电冰箱、洗衣机的分别有d 、e 、f 家,没有任何电器的农户有x 家. 那么对于拥有电冰箱的农户可得出:2545a b e +++=①那么对于拥有电视机的农户可得出:2555a c d +++=②那么对于拥有洗衣机的农户可得出:2565b c f +++=③把上面三个式子相加可得:()290a b c d e f +++++=④对于拥有上述三种电器的任意两种的占35%,得到:35a b c ++=⑤把⑤代入④可得到20d e f ++=⑥因为农户共有100家,所以25100a b c d e f x +++++++=,把⑤和⑥代入上式得到20x =,即一种电器也没有的农户所占比例为20%,故选:A .22.C【详解】解:依题意,由图知,阴影部分对应的元素a 具有性质a ∈M ,a ∈P ,I a S ∈ð,所以阴影部分所表示的集合是()()I M P S ⋂⋂ð,故选:C.23.C【详解】 因为{}{|}2,1,0,21,2U x x =--∈≤Z =,{}{|10,}2,1A x x x U =+≤∈=--, 所以{}0,1,2U A =ð,所以(){}2,0,1,2U A B -=ð.故选:C.24.C【详解】 因为集合{}21,M x x k k ==+∈Z , 集合{}(){}43,2211,N y y k k y y k k ==+∈==++∈Z Z ,因为x ∈N 时,x M ∈成立, 所以{}21,M N x x k k ⋃==+∈Z .故选:C.25.C【详解】 由题意,集合{}1A x x =≥,{}12B x x =-<<,根据补集的运算,可得R {|1}A x x =<ð,所以(){}R 11A B x x ⋂=-<<ð. 故选:C.26.A【详解】 因为{}22A x x =-<<,{}13B x x =-≤<, 所以{}23A B x x ⋃=-<<,故选:A.27.C【详解】{}{}|50,1,2S x N x =∈≤=,而{}1S T ⋂=,所以1T ∈,则21a =,所以{}{}22|1,1T x R x a =∈==-,则{}1,0,1,2S T ⋃=-故选:C.28.C【详解】任取t T ∈,则()41221t n n =+=⋅+,其中n Z ∈,所以,t S ∈,故T S ⊆, 因此,S T T =.故选:C.29.A【详解】解:若{}1P =,{}1Q =-, 则(){}1f P =,(){}1f Q =, 则()()f P f Q φ⋂≠,故①错; 若{}1P =,{}0Q =,则(){}1f P =,(){}0f Q =, 则()()f P f Q φ⋂=,故②错; 若{P =非负实数},{Q =负实数}, 则()()f P f Q R ⋃≠,故③错,若{P =非负实数},{Q =正实数}, 则()()f P f Q R ⋃=,故④错,故选:A .30.CD【详解】 解:集合{|11A x a x a =-<<+,}x R ∈,{|15B x x =<<,}x R ∈,满足A B =∅, 15a ∴-…或11a +…,解得6a …或0a …. 对照四个选项,∴实数a 的取值范围可以是{|0}a a …或{|8}a a …. 故选:CD .31.CD【详解】令{}1,2,3,4U =,{}2,3,4A =,{}1,2B =,满足()U A B B =ð,但A B ⋂≠∅,A B B ≠I ,故A ,B 均不正确;由()U A B B =ð,知U A B ⊆ð,∴()()U U A A A B =⊆ð,∴A B U ⋃=,由U A B ⊆ð,知U B A ⊆ð,∴()U B A A =ð,故C ,D 均正确.故选:CD.32.ABD【详解】选项A :当集合{}4,2,0,2,4M =--时,2,4M ∈,而246M +=∉,所以集合M 不为闭集合,A 选项错误;选项B :设,a b 是任意的两个正整数,则a b M +?,当a b <时,-a b 是负数,不属于正整数集,所以正整数集不为闭集合,B 选项错误;选项C :当{}3,M n n k k Z ==∈时,设12123,3,,a k b k k k Z ==∈,则()()12123,3a b k k M a b k k M +=+∈-=-∈,所以集合M 是闭集合,C 选项正确; 选项D :设{}{}1232A n n k k Z A n n k k Z ==∈==∈,,,,由C 可知,集合12,A A 为闭集合,()122,3A A ∈⋃,而()()1223A A +∉⋃,故12A A ⋃不为闭集合,D 选项错误.故选:ABD .33.AD【详解】解:由图可知,阴影部分是集合B 与集合C 的并集,再由集合A 求交集,或是集A 与B 的交集并上集合A 与C 的交集,所以阴影部分用集合符号可以表示为()A B C ⋂⋃或()()A B A C ⋂⋃⋂,故选:AD34.CD【详解】集合{|11A x a x a =-<<+,}x R ∈,{|15B x x =<<,}x R ∈,满足A B ⋂≠∅,15a ∴-…或11a +…,解得6a …或0a …,∴实数a 的取值范围可以是{|0a a …或6}a …,结合选项可得CD 符合. 故选:CD.35.ACD【详解】,A B A B A ⋃=⊆∴,①若B 不为空集,则121m m +<-,解得2m >,{}{}|27,|121A x x B x m x m =-≤≤=+<<-12m ∴+≥-,且217m -≤,解得34m -≤≤,此时24m <≤;②若B 为空集,则121m m +≥-,解得2m ≤,符合题意,综上实数m 满足4m ≤即可,故选:ACD.36.ACD【详解】A ,因为()()()U U U C A CBC A B ⋃=⋂,A B =∅,所以()()()U U U C A C B C A B U ⋃=⋂=,A 说法正确;B ,若A B =∅,则集合,A B 不一定为空集,只需两个集合中无公共元素即可,B 说法错误,;C ,因为()()()U U U C A C B C A B =⋃,A B =∅,所以()()()U U U C A C B C A B U ⋂=⋃=,说法正确;D ,A B =∅,即集合,A B 中均无任何元素,可得A B ==∅,D 说法正确. 故选:ACD37.4【详解】解:∵集合{}0,1,2,3,4M =,{}1,3,5N =,P M N =⋂,∴{}1,3P =,∴集合P 的子集个数为:224=.故答案为:4.38.12【详解】设会骑车的人组合的集合为A ,会驾车的人组成的集合为B ,既会骑车也会驾车的人组成的集合为集合C ,易知A B C =,记card()A 表示集合A 中的元素个数,则有()()()()68625773card A B card A card B card A B =+-=+-=,所以既不会骑车也不会驾车的人为857312-=.故答案为:1239.[)1+∞,【详解】 解:集合{|01}A x x =<<,集合{|11}B x x =-<<,{|11}A B x x ∴⋃=-<<,集合{}{}0C x x m x x m =+>=>-∣∣, 又A B C ⋃⊆,1m ∴--…,解得1m ….∴实数m 的取值范围是[)1+∞,.故答案为:[)1+∞,. 40.5【详解】∵(-1,2)∈A ∩B ,∴()()()22212112a b⎧=-⎪⎨=-+-⨯+⎪⎩,,解得:a =2,b =3. ∴a +b =5.故答案为:541.-5【详解】∵A ∩B ={1},∴1既是方程x 2+mx +2=0的根,又是方程x 2+x +n =0的根.∴120110m n ++=⎧⎨++=⎩解得:32m n =-⎧⎨=-⎩经检验,当32m n =-⎧⎨=-⎩时,适合题意.∴m +n =-5. 故答案为:5-42.1a ≤-或1a =由A 中方程变形得:(4)0x x +=,解得:0x =或4x =-,即{4A =-,0},由22{|2(1)10}B x x a x a =+++-=,其中x ∈R ,且A B B =,分两种情况考虑:若B =∅时,224(1)4(1)880a a a ∆=+--=+<,即1a <-,满足题意;若B ≠∅时,224(1)4(1)880a a a ∆=+--=+≥,即1a ≥-,当1a =-时,{}{}222{|2(1)10}|00B x x a x a x x =+++-====,符合题意;当1a >-时,{}4,0B =-,所以2402(1)401a a -+=-+⎧⎨-⨯=-⎩,解得1a =,符合题意; 综上,a 的范围为1a ≤-或1a =.故答案为:1a ≤-或1a =43.(1){}3,1,3,2--;(2)[)26,.【详解】解:{}{}2|201,2A x x x =--==-,(1)当0a =时,{}{}2303,3B x x =-==-,{}3,1,3,2A B ∴=-- (2)A B B =B A ∴⊆,当B ≠∅时,{}1B ∴=-或{}2B =或{}1,2B =-当1B -∈时,130a +-=,解得:2a =,{}{}22101B x x x ∴=++==-,满足题意, 当2B ∈时,4430a +-=,解得:14a =-,2770,2424x B x x ⎧⎫⎧⎫∴=--==-⎨⎬⎨⎬⎩⎭⎩⎭,不满足题意, 若{}1,2B =-,则121232a a -=-+=⎧⎨-=-⎩,无解, 所以,当B ≠∅时,2a =,当B =∅时,()()()224238+12260a a a a a a ∆=--=-=--<,解得26a <<,a ∴的取值集合为[)26,.44.(1)23m <<或-12m <<;(2)1522m ≤≤.解:由240x x ->,即()40x x ->,解得0x <或4x >,所以{|0A x x =<或4}x >;方程23(1)(21)0x mx m m -++-=的根是121+,21x m x m ==-. (1)若A B B ≠I ,则B 不是A 的子集,且B ≠∅.当121m m +<-即2m >时,{|121}B x m x m =+<<-,满足210142m m m ->⎧⎪+<⎨⎪>⎩,解得23m <<;当121m m +>-即2m <时,{|211}B x m x m =-<<+,满足214102m m m -<⎧⎪+>⎨⎪<⎩,解得12m -<<; 当2m =时,B =∅,不符合题意.综上,实数m 的取值范围是23m <<或12m -<<.(2)当x ∈R 时,不存在元素x 使x ∈A 与x ∈B 同时成立,所以A B =∅. 若2m =时,B =∅,符合条件;当121m m +<-即2m >时,{|121}B x m x m =+<<-,满足214102m m m -≤⎧⎪+≥⎨⎪>⎩,解得522m <≤; 当121m m +>-即2m <时,{|211}B x m x m =-<<+,满足210142m m m -≥⎧⎪+≤⎨⎪<⎩,解得122m ≤<. 综上,实数m 的取值范围是1522m ≤≤.45由条件可得{}1,2A =解:选编号①,要使得{}=1A B ⋂,则1,2B B ∈∉所以26+60a a a +-=且264+620a a a ⨯⨯+-≠解得2a =-选编号②,由{}1,2A B ==,即226+60x ax a a +-=的两根为1,2 由韦达定理可得261+2=6126a a a -⎧⎪⎪⎨-⎪⨯=⎪⎩解得3a =-选编号③由B A 则B =∅或{}1B =或{}2B =当B =∅时,即()223624020a a a a ∆=--<⇒-<<当{}1B =时,261+1=62116a a a a -⎧⎪⎪⇒=-⎨-⎪⨯=⎪⎩, 当{}2B =时,2262+2=46240226a a a a a a a-⎧⎪=-⎧⎪⇒⇒⎨⎨--=-⎩⎪⨯=⎪⎩无解, 综上可得20a -≤<46.【详解】(1)因为集合{}1A x x =<,集合{2B x x =<-或}3x >,所以{1A B x x ⋃=<或}3x >, {}23R B x x =-≤≤ð,故(){}21R A B x x ⋂=-≤<ð;(2)因为C ≠∅,()R C A B ⊆ð,所以121221m m m m -+<⎧⎪-+≥-⎨⎪≤⎩,解得112m -<≤, 故实数m 的取值范围为11,2⎛⎤- ⎥⎝⎦. 47.【详解】(1)∵A B B =,即B A ⊆,当B φ=时,121m m +>-,解得2m <;当B φ≠时,121m m +>-,解得2m <;∴12112215m m m m +≤-⎧⎪+≥-⎨⎪-≤⎩,即23m ≤≤, 综上:m 的取值范围是3m ≤.(2)∵{}{}2320|1,2A x x x =++==--,又(){}2|10B x x m x m =+++=,若1m ≠时{1,}B m =--;若1m =时{1}B =-. 由()U A B φ⋂=ð,得B A ⊆,即1m -=-或2m -=-, ∴1m =或2.48.(1){}{}{}2720525A x x B x x x x x =<<=--≤≤-=-≤≤,, {2U A x x ∴=≤ð或}7x ≥,{2U B x x =<-ð或}5x >, (){}(){57,5U U A B x x A B x x ∴⋂=<<⋃=≤痧或}7x ≥. (2){2U B x x =<-ð或}5x >,()U C B R ⋃=ð,225a a ≤-⎧∴⎨-≥⎩,解得3a ≤-.。

高中数学1.1考点2-集合的基本运算及应用

高中数学1.1考点2-集合的基本运算及应用

高考真题(2019•天津卷(文))设集合, , ,则 A .{2}B .{2,3}C .{-1,2,3}D .{1,2,3,4}【解析】因为,所以.故选D 。

【答案】D(2019•全国III 卷(文))已知集合,则()A .B .C .D .【解析】,∴,则,故选A .【答案】A(2019•全国II 卷(文))已知集合,,则A ∩B =A .(–1,+∞)B .(–∞,2)C .(–1,2) {}1,1,2,3,5A =-{}2,3,4B ={|13}C x R x =∈<()A C B ={1,2}A C =(){1,2,3,4}A C B ={}{}21,0,1,21A B x x ,=-=≤A B ⋂={}1,0,1-{}0,1{}1,1-{}0,1,221,x ≤∴11x -≤≤{}11B x x =-≤≤{}1,0,1A B ⋂=-={|1}A x x >-{|2}B x x =<D .【解析】由题知,,故选C . 【答案】C(2019•全国I 卷(文))已知集合,则A .B .C .D .【解析】由已知得,所以,故选C .【答案】C(2019•北京卷(文))已知集合A ={x |–1<x <2},B ={x |x >1},则A ∪B =A .(–1,1)B .(1,2)C .(–1,+∞)D .(1,+∞)【解析】∵,∴,故选C . 【答案】C∅(1,2)AB =-{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,C U B A {}1,6{}1,7{}6,7{}1,6,7{}1,6,7U C A =U B C A ⋂={6,7}{|12},{|1}A x x B x =-<<=>(1,)A B ⋃=+∞高考数学:试卷答题攻略一、“六先六后”,因人因卷制宜。

考生可依自己的解题习惯和基本功,选择执行“六先六后”的战术原则。

1.1.3集合的基本运算(二)

1.1.3集合的基本运算(二)
U的子集,求 U A .
⑴ U=R,A={x|-1≤x2} ⑵ U=Z,A={x|x=3k,k∈Z}
典型例题
例3 已知全集 U={2,3,a2+2a-3}
A={|2a-1|, 2},若 U A={5},
求实数 a 的值.
课堂练习
1. 已知A={a, b}, B={a, b, c, d, e}, 则满足ACB的集合C共有__7__个. ≠
1.1.3集合的基本运算 (二)
平凉一中:黄丽霞
课前练习
已知A {x2,2x 1,4}, B {x 5,1 x,9}.A B 9
求A B
新课引入
在下面的范围内求方程 x 2 x2 3 0
的解集:
(1)有理数范围;(2)实数范围. 并回答不同的范围对问题结果有什么影 响?
2. 设U是全集,M、N是U的两个子集
⑴ 若 UM =N,则 M _=___ UN . ⑵ 若MN,则 UM ____ UN .
课堂小结
1.能熟练求解一个给定集合的补集; 2.注意一些特殊结论在解题中的应用.
课后作业
教材P.12习题A组第9、10题 B组第3、4题
新课引入
观察下列三个集合: U={高一年级的同学} A={高一年级参加军训的同学} B={高一年级没有参加军训的同学}
可以用韦恩图表示
A B
U
基本概念
补集
对于一个集合A,由全集U中不属于集 合A的所有元素组成的集合称为集合A 相对于全集U 的补集(complementary set),简称为集合A的补集.记作:CU A
⑴若S={2,3,4},A={4,3},则 S A= .
⑵若S={三角形},B={锐角三角形},

1-3 集合的基本运算(精讲)(解析版)

1-3 集合的基本运算(精讲)(解析版)

1.3 集合的基本运算(精讲)考点一数集之间的基本运算【例1】(1)(2021·辽宁高三其他模拟)已知集合{}{}|3,,1,0,1,2,3A x x x N B =≤∈=-,则A B =( )A .{0,1,2,3}B .{1,2,3}C .{2,3}D .{}0,1,3(2)(2021·北京高考真题)已知集合{}|11A x x =-<<,{}|02B x x =≤≤,则A B =( )A .()1,2-B .(1,2]-C .[0,1)D .[0,1](3)(2021·浙江宁波市)设全集U =R ,集合{}1A x x =≥-,{}23B x x =-≤<,则集合()UA B⋂是( ) A .{}21x x -<<-B .{}21x x -≤<-C .21}x x -<≤- D .{}21x x -≤≤-【答案】(1)A (2)B (3)B【解析】(1)由题得{}{}|3,0,1,2,3A x x x N =≤∈=,{}1,0,1,2,3B =-,所以A B ={0,1,2,3}故选:A(2)由题意可得:{}|12AB x x =-<≤,即(]1,2A B =-.故选:B.(3)由{}1A x x =≥-,则{}U|1A x x =<-又{}23B x x =-≤<,所以(){}U |21A B x x ⋂=-≤<-故选:B 【一隅三反】1.(2021·黑龙江哈尔滨市)已知集合A ={﹣1,0,1,2},B ={x |0<x <3},则A ∩B =( ) A .{﹣1,0,1} B .{0,1} C .{﹣1,1,2} D .{1,2}【答案】D【解析】集合A ={﹣1,0,1,2},B ={x |0<x <3},则A ∩B ={1,2},故选:D 2.(2021·河南焦作市)已知集合{}1,3,5,7,9=U ,{}1,5,7A =,{}1,3B =,则()UA B =( )A .{}3,5,7,9B .{}3,5,7C .{}1,9D .{}9【答案】D 【解析】题意,{}{}{}1,1,5,731,3,5,7AB ==,又∵{}1,3,5,7,9=U ,∴(){}9U AB =.选:D.3.(2021·全国高考真题)设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()UA B =( )A .{3}B .{1,6}C .{5,6}D .{1,3}【答案】B【解析】由题设可得{}U1,5,6B =,故(){}U 1,6A B ⋂=,故选:B.4.(2021·全国)已知全集(){}(){}{N08},{1,2},()5,6,4,7UU U U x x A B A B B A =∈<<⋂=⋃=⋂=∣,则A 集合为( ) A .{1,2,4} B .{1,2,7}C .{1,2,3}D .{1,2,4,7}【答案】C【解析】由题意{1,2,3,4,5,6,7}U =,用Venn 图表示集合,A B ,依次填写()U AB ,()UA B ,()U B A ⋂,最后剩下的数字3只有填写在A B 中,所以{1,2,3}A =.故选:C .5.(2021·辽宁)若集合{{2}A x y B x x ===<∣∣,则A ∩B =( )A .{}12x x << B .{}1x x ≥C .{}2x x <D .{}12x x ≤<【答案】D【解析】由题意,得{}1A x x =≥,所以{}12A B x x ⋂=≤<.故选:D 6.(2021·四川自贡市)设集合A ={x |1≤x ≤3},B ={x |24x x --<0},则A ∩B =( ) A .{x |2<x ≤3} B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4}【答案】A【解析】∵A ={x |1≤x ≤3},B ={x |2<x <4},∴A ∩B ={x |2<x ≤3}.故选:A .考点二 点集之间的基本运算【例2】(2021·河北高三其他模拟)已知集合{}{}3(,)0,(,)M x y x y N x y y x =-===,则M N ⋂中元素的个数为( )A .0B .1C .2D .3【答案】D【解析】因为集合{}{}3(,)0,(,)M x y x y N x y y x=-===,所以{}3(,)(0,0),(1,1),(1,1)y x M N x y y x ⎧⎫=⎧⎪⎪⋂==--⎨⎨⎬=⎩⎪⎪⎩⎭,所以A B 中元素的个数为3,故选:D 【一隅三反】1.(2021·山东济南市)已知集合M ={(x ,y )|y =21x -,xy ≤0},N ={(x ,y )|y =x 24-},则M N ⋂中的元素个数为( ) A .0 B .1C .2D .1或2【答案】A【解析】∵集合M ={(x ,y )|y =2x ﹣1,xy ≤0},N ={(x ,y )|y =x 2﹣4},∴M ∩N ={(x ,y )|22104y x xy y x =-⎧⎨=-⎩,}=∅.∴M ∩N 中的元素个数为0.故选:A . 2.(2021·全国高三其他模拟)已知集合(){}()22,|1,,,{,|2M x y x y x y N x y x y +≤∈∈+≤==Z Z },则集合M ⋂N 中元素的个数是( ) A .6 B .7 C .8 D .9【答案】C【解析】由222x y +≤可得,222,2x y ≤≤,即x y ≤≤N 中的满足,x Z y Z ∈∈的整点有:()()()()()()()()()0,0,0,1,0,1,1,0,1,0,1,1,1,1,1,1,1,1------,共9个点,其中只有(1,1)这一个点不满足1x y +≤,故M N ⋂中的元素个数为8个,故选:C.3.(2021·江苏南通市)若集合{(,)30}M x y x y =-=∣,()22,}0{|N x y x y =+=,则( ) A .M N M ⋂= B .M N M ⋃= C .M N N ⋃= D .M N ⋂=∅【答案】B【解析】∵集合(),30{|}M x y x y =-=,(){}(){}22,00|,0N x y xy =+==,因为2230000x y x x y y -==⎧⎧⇒⎨⎨+==⎩⎩∴(){}0,0M N N ⋂==,所以M N M ⋃=,故选:B.考点三 韦恩图求交并补【例3】(1)(2021·北京101中学高三其他模拟)已知集合{}0,1A =,集合{}1,0,1,2,3B =-,则图中阴影部分表示的集合是( )A .[]1,3B .(]1,3C .{}1,2,3-D .{}1,0,2,3-(2)(2021·山东烟台市)已知集合M ,N 都是R 的子集,且RM N ⋂=∅,则M N =( )A .MB .NC .∅D .R(3)(2021·珠海市)下图中矩形表示集合U ,A ,B 是U 的两个子集,则不能表示阴影部分的是( )A .()UA B ⋂B .()BABC .()()UUA B ⋂D .A BA ⋃【答案】(1)C (2)A (3)C【解析】(1)依题意,由补集的韦恩图表示知,图中阴影部分表示的集合是BA ,因集合{}0,1A =,集合{}1,0,1,2,3B =-,则有{1,2,3}BA =-,所以图中阴影部分表示的集合是{}1,2,3-.故选:C (2)由题知:RM N ⋂=∅,所以M N ⊆,即M N M ⋂=.故选:A(3)由图知:当U 为全集时,阴影部分表示集合A 的补集与集合B 的交集, 当B 为全集时,阴影部分表示A B 的补集,当AB 为全集时,阴影部分表示A 的补集,故选:C.【一隅三反】1.(2021·浙江温州市)设全集U 为实数集R ,集合{A x R x =∈>,集合{0,1,2,3}B =,则图中阴影部分表示的集合为( )A .{}0B .{0,1}C .{3,4}D .{1,2,3,4}【答案】B【解析】图中的阴影部分表示集合B 中不满足集合A 的元素,所以阴影部分所表示的集合为{}0,1. 故选:B.2.(2021·沈阳市)已知非空集合A 、B 、C 满足:A B C ⊆,A C B ⋂⊆.则( ).A .BC = B .()A B C ⊆⋃ C .()B C A ⋂⊆D .A B A C ⋂=⋂【答案】C【解析】因为非空集合A 、B 、C 满足:AB C ⊆,A C B ⋂⊆,作出符合题意的三个集合之间关系的venn 图,如图所示,所以A B A C ⋂=⋂. 故选:D .3.(2021·江苏苏州市)已知U 为全集,非空集合A 、B 满足()UA B =∅,则( )A .AB ⊆ B .B A ⊆C .()()UU A B ⋂=∅ D .()()UU A B U ⋃=【答案】A【解析】如下图所示:()UAB =∅,由图可知,A B ⊆,()()U U U A B B ⋂=,故选:A.4.(2021·全国高三专题练习(文))若集合A ,B ,U 满足:A BU ,则U =( )A .UAB B .UBA C .UAB D .UBA【答案】B【解析】由集合A ,B ,U 满足:ABU ,U UBA ∴,如图所示:UAA U ∴=,UBA U =,UBB U = 故选:B考点四 利用集合运算求参数【例4】(1)(2021·山东泰安市)集合{}{}240,1,,2,.A a B a =-=-若{}2,1,0,4,16A B ⋃=--,则a =( ) A .±1B .2±C .3±D .4±(2)(2021·全国高三专题练习)设集合5,,b A a b a ⎧⎫=-⎨⎬⎩⎭,{},,1B b a b =+-,若{}2,1A B =-,则a =____,b =____.(3)(2021·重庆八中)已知集合{}12A x x =<<,集合{}B x x m =>,若()A B =∅R,则m 的取值范围为( )A .(],1-∞B .(],2-∞C .[)1,+∞D .[)2,+∞(4)(2021·河南安阳市)已知集合{}2230A x N x x *=∈--<,{}20B x ax =+=,若A B B =,则实数a 的取值集合为( ) A .{}1,2--B .{}1,0-C .2,0,1D .{}2,1,0--(5)(2021·全国高三月考(理))设集合{}2|20A x x mx =+-<,{}|13B x x =-≤≤,且{}23A B x x =|-<≤,则A B =( )A .{}|11x x -≤<B .{}|21x x -<<C .{}|21x x -<≤-D .{}|13x x <≤【答案】(1)B (2)1 2 (3)A (4)D (5)A【解析】(1)由{}2,1,0,4,16A B ⋃=--知,24416a a ⎧=⎨=⎩,解得2a =±故选:B(2)由{}2,1A B =-,得21b a a b ⎧=⎪⎨⎪-=-⎩或12ba ab ⎧=-⎪⎨⎪-=⎩.①当21ba ab ⎧=⎪⎨⎪-=-⎩时,解得12a b =⎧⎨=⎩,此时{}5,2,1A =-,{}2,3,1B =-,符合题意;②当12ba ab ⎧=-⎪⎨⎪-=⎩时,解得11a b =⎧⎨=-⎩,此时{}5,2,1A =-,集合B 中的元素不满足互异性,不符合题意.综上所述,1a =,2b =.故答案为:1;2. (3)由题知()AB =∅R,得A B ⊆,则1m ,故选:A .(4){}{}22301,2A x N x x *=∈--<=,因为AB B =,所以B A ⊆,当0a =时,集合{}20B x ax φ=+==,满足B A ⊆; 当0a ≠时,集合{}220B x ax x a ⎧⎫=+===-⎨⎬⎩⎭,由B A ⊆,{}1,2A =得21a -=或22a-=,解得2a =-或1a =-, 综上,实数a 的取值集合为{}2,1,0--.故选:D . (5)由题意,集合{|13}B x x =-≤≤,且{|23}AB x x =-<≤,可得2-是方程220x mx +-=的根,即2(2)(2)20m -+⨯--=,解得1m =, 所以{}{}2|20|21A x x x x x =+-<=-<<,则{|11}A B x x ⋂=-≤<.故选:A. 【一隅三反】1.(2021·全国高三)已知集合{}20,1,,{1,0,23}==+A a B a ,若AB A B =,则实数a 等于( )A .1-或3B .0或1-C .3D .1-【答案】C 【解析】由AB A B =可知A B =,故223a a =+,解得1a =-或3a =.当1a =-时,21a =,与集合元素互异性矛盾,故1a =-不正确. 经检验可知3a =符合题意.故选:C .2.(2021·辽宁沈阳市)已知集合{}{}21,0,1,,A B x x =-=,若AB B =,则实数x =( )A .1-B .1C .±1D .0或±1【答案】A 【解析】由AB B =得B A ⊆,0x =时,20x x ==不合题意,1x =时,21x x ==也不合题意, 1x =-时,21x =,满足题意.故选:A .3.(2021·安徽宣城市){}{}36,72A x x B x a x a =-≤<=-<≤ (1)A B B ⋃=,求a 的取值范围; (2)UA B ,求a 的取值范围.【答案】(1)[)3,4;(2)(],7-∞-.【解析】(1)A B B =,A B ∴⊆,7326a a -<-⎧∴⎨≥⎩,解得34a ≤<,即a 的取值范围为[)3,4;(2)可得{3U A x x =<-或}6x ≥, U A B,若B =∅,则72a a -≥,解得7a ≤-,满足题意; 若B ≠∅,则727326a a a a -<⎧⎪-≥-⎨⎪<⎩,不等式无解,综上,a 的取值范围为(],7-∞-.4.(2021·浙江高一期末)在“①A B =∅,②A B ⋂≠∅”这两个条件中任选一个,补充在下列横线中,求解下列问题:已知集合{|231}A x a x a =-<<+,{|01}B x x =<≤.(Ⅰ)若0a =,求A B ;(Ⅱ)若________(在①,②这两个条件中任选一个),求实数a 的取值范围.注:如果选择多个条件分别解答,按第一个解答记分.【答案】(1){|31}x x -<≤;(2)若选①,(,1][2,)-∞-+∞;若选②,()1,2-【解析】(1)当0a =时,{|31}A x x =-<<,{|01}B x x =<≤;所以{|31}A B x x =-<≤(2)若选①,A B =∅,当A =∅时,231a a -≥+,解得4a ≥,当A ≠∅时,4231a a <⎧⎨-≥⎩或410a a <⎧⎨+≤⎩,解得:24a ≤<或1a ≤-, 综上:实数a 的取值范围(,1][2,)-∞-+∞.若选②,A B ⋂≠∅,则23123110a a a a -<+⎧⎪-<⎨⎪+>⎩,即421a a a <⎧⎪<⎨⎪>-⎩,解得:1a 2-<<,所以实数a 的取值范围()1,2-.考点五 实际生活中集合间的运算【例5】(2021·山东高三专题练习)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著,某中学为了了解在校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《三国演义》的学生共有80位,阅读过《西游记》的学生共有60位,阅读过《西游记》且阅读过《三国演义》的学生共有40位,则在调查的100位同学中阅读过《三国演义》的学生人数为( )A.60 B.50 C.40 D.20【答案】A【解析】因为阅读过《西游记》或《三国演义》的学生共有80位,阅读过《西游记》的学生共有60位,-=位,所以只阅读了《三国演义》的学生有806020又因为阅读过《西游记》且阅读过《三国演义》的学生共有40位,=位,故选:A.所以只阅读过《三国演义》的学生共有20+4060【一隅三反】1.(2021·云南省云天化中学高一期末)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著,六盘水市第七中学为了解我校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则在调查的100位同学中阅读过《西游记》的学生人数为()A.80 B.70 C.60 D.50【答案】B【解析】因为阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,-=位,所以《西游记》与《红楼梦》两本书中只阅读了一本的学生共有906030因为阅读过《红楼梦》的学生共有80位,-=位,所以只阅读过《红楼梦》的学生共有806020所以只阅读过《西游记》的学生共有302010位,+=位,故选:B.故阅读过《西游记》的学生人数为1060702.(2021·全国高三专题练习)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A.0.5B.0.6C.0.7D.0.8【答案】C【解析】由题意得,阅读过《西游记》的学生人数为90-80+60=70,则其与该校学生人数之比为70÷100=0.7.故选C.3.(2021·吴县中学高一月考)某中学的学生积极参加体育锻炼,其中有95%的学生喜欢篮球或羽毛球,60%的学生喜欢篮球,82%的学生喜欢羽毛球,则该中学既喜欢篮球又喜欢羽毛球的学生数占该校学生总数的比例是( )A .63%B .47%C .55%D .42%【答案】B【解析】设只喜欢篮球的百分比为x ,只喜欢羽毛球的百分比为y ,两个项目都喜欢的百分比为z ,由题意,可得60x z +=,95x y z ++=,82y z +=,解得47z =.∴该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是47%.故选:B .4.(2021·广东清远市·高一期末)某幼儿园满天星班开设“小小科学家”、“小小演说家”兴趣小组,假设每位学员最少参加一个小组,其中有13位学员参加了“小小科学家”兴趣小组,有16位学员参加了“小小演说家”兴趣小组,有8位学员既参加了“小小科学家”兴趣小组,又参加了“小小演说家”兴趣小组,则该幼儿园满天星班学员人数为( )A .19B .20C .21D .37 【答案】C【解析】由条件可知该幼儿园满天星班学员人数为1316821+-=.故选:C。

集合的基本运算知识点总结

集合的基本运算知识点总结
集合的基本运算知识点总结
本节知识点:
(1)并集.
(2)交集.
(3)全集与补集.
(4)德·摩根定律.
知识点一 并集
自然语言一般地,由所有属于集合A或属于集合B的元素组成的集合,称为集合A与集合B的并集,记作 ,读作“A并B”.
符号语言 .
图形语言(用Venn图表示并集)图中阴影部分表示两个集合的并集.
知识点三 全集与补集
全集一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,记作U.
补集对于一个集合A,由全集U中不属于A的所有元素组成的集合称为集合A相对于全集U的补集,简称集合A的补集,记作CUA,即
CUA .
用Venn图表示为:
对补集的理解
(1)补集是相对于全集而言的,求一个集合的补集,结果因全集的不同而不同.所以求补集前,要先明确全集.
(2)交集概念中的“所有”二字不能省略,否则会漏掉一些元素,一定要将两个集合中的相同元素(公共元素)全部找出来.
(3)当集合A与集合B没有公共元素时,不能说集合A与集合B没有交集,而是交集为空集,.
交集的性质
性质
说明
交集运算满足交换律
任何集合与空集的交集都是空集
任何集合与其本身的交集等于这个集合本身
(1)A与B有公共元素,相互不包含(2)A与B没有公共部分
(3) (4)
(5)
对并集的理解
(1)求两个集合的并集是集合的一种运算,结果仍是一个集合,它是由属于集合A或集合B的元素组成的.
(2)并集概念中的“或”指的是只要满足其中一个条件即可.符号语言“ ”分为三种情况:
① ,但 ;② ,但 ;③ ,且 .
(1)求两个有限集的并集按照并集的定义进行计算,但要特别注意集合元素的互异性.

集合的基本运算(二)

集合的基本运算(二)

1.1.3集合的基本运算(二)一、三维目标:知识与目标:(1)掌握交集与并集的区别,了解全集、补集的意义;(2)正确理解补集的概念,正确理解符号“U C A ”的含义;(3)会求已知全集的补集,并能正确应用它们解决一些具体问题。

过程与方法:通过观察和类比,借助图理解集合补集的含义和集合的基本运算。

情感态度与价值观:体会直观图示对理解抽象概念的作用,培养数形结合的思想。

二、学习重、难点:重点:补集的有关运算及数轴的应用。

难点:对补集概念的理解。

三、学法指导:研读学习目标,了解本章重难点,精读教材,独立完成学案,通过小组学习解决部分疑难问题,再通过课堂各小组展示及质疑对抗,共同提高,完成学习任务。

四、知识链接:1.什么叫子集、真子集、集合相等?符号分别是怎样的?2.什么叫交集、并集?符号语言如何表示?3.已知A ={x|x +3>0},B ={x|x ≤-3},则A 、B 与R 有何关系?五、学习过程:思考1. U={全班同学}、A={全班参加足球队的同学}、B={全班没有参加足球队的同学},则U 、A 、B 有何关系?全集、补集概念及性质1.全集的定义:一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,记作U ,全集是相对于所研究问题而言的一个相对概念。

2.补集的定义:对于一个集合A , ,叫作集合A 相对于全集U 的补集,记作:读作:“A 在U 中的补集”,即{},U C A x x U x A =∈∉且用Venn 图表示:(阴影部分即为A 在全集U 中的补集)讨论:集合A 与U C A 之间有什么关系?→借助Venn 图分析。

,(),U U U U U U A C A A C A U C C A AC U C U ⋂=∅⋃===∅∅=巩固练习①.U={2,3,4},A={4,3},B=φ,则U C A = ,U C B = ;②.设U ={x|x<8,且x ∈N},A ={x|(x-2)(x-4)(x-5)=0},则U C A = ; ③.设U ={三角形},A ={锐角三角形},则U C A = 。

专题02:集合知识点与典型例题(解析版)-2022年高考数学一轮复习

专题02:集合知识点与典型例题(解析版)-2022年高考数学一轮复习

专题2:集合知识点与典型例题(解析版)考点一:集合的定义及其关系基础知识复习(1)集合的概念集合中的元素具有确定性、互异性和无序性.(2)常用数集及其记法N表示自然数集,N*或N表示正整数集,Z表示整数集,Q表示有理数集,R表+示实数集.1.下列各对象可以组成集合的是()A.与1非常接近的全体实数B.某校2015-2016学年度笫一学期全体高一学生C.高一年级视力比较好的同学D.与无理数π相差很小的全体实数【答案】B【分析】根据集合定义与性质一一判断即可.【详解】A中对象不确定,故错;B中对象可以组成集合;C中视力比较好的对象不确定,故错;D 中相差很小的对象不确定,故错.故选:B2.下列各组对象:①接近于0的数的全体;②比较小的正整数全体;③平面上到点O的距离等于1的点的全体;④正三角形的全体;.其中能构成集合的组数有()A.2组B.3组C.4组D.5组【答案】A【分析】根据集合元素满足确定性可判断①②③④⑤中的对象能否构成集合,即可得出结论. 【详解】①“接近于0的数的全体”的对象不确定,不能构成集合;②“比较小的正整数全体”的对象不确定,不能构成集合;③“平面上到点O的距离等于1的点的全体”的对象是确定的,能构成集合;④“正三角形的全体”的对象是确定的,能构成集合;”不确定,不能构成集合; 故③④正确. 故选:A.3.能够组成集合的是( ) A .与2非常数接近的全体实数 B .很著名的科学家的全体 C .某教室内的全体桌子 D .与无理数π相差很小的数 【答案】C 【分析】由集合中元素的特征:确定性、互异性、无序性,进行判断即可 【详解】解:A.与2非常接近的数不确定,∴不能构成集合; B.“很著名”,怎么算很著名,不确定,∴不能构成集合; C.某教室内的桌子是确定的,∴可构成集合;D.“相差很小”,怎么算相差很小是不确定的,∴不能构成集合. 故选:C.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. 4.下列元素与集合的关系表示不正确的是( ) A .0N ∈ B .0Z ∈C .32Q ∈ D .Q π∈【答案】D 【分析】根据元素与集合的关系直接判断即可. 【详解】根据元素与集合的关系可得0N ∈,0Z ∈,32Q ∈,Q π∉,故D 不正确,符合题意. 故选:D.5.设A ={y |y =﹣1+x ﹣2x 2},若m ∈A ,则必有( )A .m ∈{正有理数}B .m ∈{负有理数}C .m ∈{正实数}D .m ∈{负实数}【答案】D 【分析】求出函数212y x x =-+-的值域,就是集合A ,进而可判断结果 【详解】解:因为22177122()488y x x x =-+-=---≤-, 所以78A y y ⎧⎫=≤-⎨⎬⎩⎭;∴若m ∈A ,则m <0,所以m ∈{负实数}. 故选:D.6.(){}2414M x R k x k=∈+≤+,对任意的k ∈R ,总有( )A .2,0M M ∉∉B .2,0M M ∈∈C .2,0M M ∈∉D .2,0M M ∉∈【答案】B 【分析】依次将0x =和2x =代入讨论求解即可得答案. 【详解】解:将0x =代入得440k +≥显然成立,故0M ∈ 将2x =代入不等式得42422k k +≥+,即()22110k +≥﹣ ,显然成立,∴2M ∈;所以2,0M M ∈∈ 故选:B .(4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. 7.用描述法表示正偶数集______. 【答案】{|2,}x x n n N *=∈ 【分析】用描述法表示出正偶数集即可.【详解】因为偶数可以表示为2()n nN ,所以正偶数集为{|2,}x x n n N *=∈, 故答案为:{|2,}x x n n N *=∈.8.用列举法表示方程组02x y x y -=⎧⎨+=⎩的解集为_________.【答案】(){}1,1 【分析】解方程组,并用列举法表示点的集合. 【详解】 解:解方程组02x y x y -=⎧⎨+=⎩得11x y =⎧⎨=⎩,故方程组解的集合为:(){}1,1.故答案为:(){}1,1(5)集合的分类①含有有限个元素的集合叫做有限集. ②含有无限个元素的集合叫做无限集. ③不含有任何元素的集合叫做空集(∅). (6)子集、真子集、集合相等9.已知集合{}12A x x =≤≤,{}2,B y y x a x A ==+∈,若A B ⊆,则实数a 的取值范围为( ) A .[]1,2 B .[]2,1--C .[]22-,D .[]1,1-【答案】B 【分析】根据题意,求得集合B ,结合A B ⊆,列出不等式组,即可求解. 【详解】由题意,集合[]1,2A =,可得{}[]2,2,4B y y x a x A a a ==+∈=++, 因为A B ⊆,所以2142a a +≤⎧⎨+≥⎩,解得[]2,1a ∈--.故选:B.10.已知集合{}*A 2,n n x x N ==∈,{}*2n,n B x x N ==∈,则( )A .AB ⊆ B .B A ⊆C .A B ⋂=∅D .A B =【答案】A 【分析】可根据特殊元素与集合的关系作答. 【详解】A. *n 2,n N ∀∈为偶数,故2n B ∈,故A B ⊆B. 6,6B A ∈∉,故B 错C. 4,4B A ∈∈,故A B ⋂=∅错D. 6,6B A ∈∉,故D 错 故选:A11.下列集合与集合{2,3}A =相等的是( )A .{(2,3)}B .{(,})|2,3}x y x y ==C .{}2|560x x x -+=D .{}290x N x ∈-≤【答案】C 【分析】根据各选项对于的集合的代表元素,一一判断即可; 【详解】解:集合{2,3}A =,表示含有两个元素2、3的集合, 对于A :{(2,3)},表示含有一个点(2,3)的集合,故不相等; 对于B :{(,})|2,3}x y x y ==,表示的是点集,故不相等;对于C :{}2|560x x x -+=,表示方程2560x x -+=的解集,因为2560x x -+=的解为2x =,或3x =,所以{}{}2|5602,3x x x -+==对于D :{}{}2903,2,1,0,1,2,3x N x ∈-≤=---,故不相等故选:C12.已知集合{}{}1,2,3,4,5,61,2,3U A ==,,集合A 与B 的关系如图所示,则集合B 可能是( )A .{}2,4,5B .{}1,2,5C .{}1,6D .{}1,3【答案】D 【分析】由图可得B A ⊆,由选项即可判断. 【详解】解:由图可知:B A ⊆,{}1,2,3A =,由选项可知:{}1,3A ⊆, 故选:D.(7)已知集合A 有(1)n n ≥个元素,则它有2n个子集,它有21n-个真子集,它有21n-个非空子集,它有22n-非空真子集.13.集合{|14}A x N x =∈≤<的真子集的个数是( ) A .16 B .8C .7D .4【答案】C 【分析】先用列举法写出集合A ,再写出其真子集即可. 【详解】解:∵141,2,3{|}{}A x N x =∈≤<=,{|1}4A x N x ∴=∈≤<的真子集为:{}{}{},,,,{}1231,21,{},,3{}2,3∅共7个.故选:C .14.集合A ={a ,b ,c ,d }非空子集的个数是( ) A .13 B .14C .15D .16【答案】C 【分析】根据集合A 的元素个数求解. 【详解】∵集合A ={a ,b ,c ,d }中有4个元素, ∴非空子集的个数为:24﹣1=15, 故选:C.考点二:集合的基本运算 基础知识复习1.交集的定义:一般地,由所有属于A 且属于B 的元素所组成的集合,叫做A,B 的交集. 记作A ∩B(读作”A 交B ”),即A ∩B={x|x ∈A ,且x ∈B}.2、并集的定义:一般地,由所有属于集合A 或属于集合B 的元素所组成的集合,叫做A,B 的并集。

2024年高考数学----集合知识点

2024年高考数学----集合知识点

考法二 集合运算问题的求解方法 1.集合的基本运算 1)以“形”定“法”:看集合的表示方法,用列举法表示的集合,宜用Venn 图求解;用描述法表示的数集,常借助数轴分析得结果. 2)先“简”后“算”:运算前先对集合进行化简,分清是数集还是点集,是 函数定义域还是值域,是方程的解还是不等式的解集等. 2.已知集合的运算结果求参数值(或范围) 根据集合运算的结果,利用集合运算的定义和数轴建立关于参数的方程 (不等式)求解,注意对空集的讨论.
1
1
综上,可知k≤ 2 ,故实数k的取值范围为 k k≤ 2 .
答案 k k≤ 1
2
名师点睛 根据集合间的关系求参数的值(或取值范围)应注意: (1)两个转化:A∩B=A⇔A⊆B;A∪B=A⇔B⊆A. (2)空集的特殊性. ①若B⊆A,则分B=⌀和B≠⌀两类进行讨论. ②若A∩B=⌀,则集合A,B均为空集或A与B中只有一个空集或A,B虽然均 为非空集合但无公共元素. (3)结合数轴分析端点值的大小. (4)对结果进行检验,以避免集合中元素重复.
图形 表示意义 性质{x|x∈A或x∈B}
A∪⌀=A; A∪A=A; A∪B=B∪A; A∪B=A⇔B⊆A
{x|x∈A,且x∈B}
A∩⌀=⌀; A∩A=A; A∩B=B∩A; A∩B=A⇔A⊆B
{x|x∈U,且x∉A}
A∪(∁UA)=U; A∩(∁UA)=⌀; ∁U(∁UA)=A
知识拓展 1.德·摩根定律:∁U(A∪B)=(∁UA)∩(∁UB);∁U(A∩B)=(∁UA)∪(∁UB). 2.一般地,对任意两个有限集合A,B,有card(A∪B)=card(A)+card(B)-card(A ∩B).
2
答案 B
例1 (2022浙江温州4月检测,10)设集合A={x|-3≤x≤2},B={x|k-1≤x≤2k

集合间的基本运算

集合间的基本运算

集合间的基本运算一、知识概述1、交集的定义一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B={x|x A,且x B}.2、并集的定义一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即A B ={x|x A,或x B}.3、补集:一般地,设S是一个集合,A是S的一个子集(即),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集),记作,即=.性质:.全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,全集通常用S,U表示4、运算性质:(1);(2);(3);(4);(5);(6);.二、例题讲解例1、设集合A={-4,2m-1,m2},B={9,m-5,1-m},又A B={9},求实数m的值.解:∵A B={9},∴2m-1=9或m2=9,解得m=5或m=3或m=-3.若m=5,则A={-4,9,25},B={9,0,-4}与A B={9}矛盾;若m=3,则B中元素m-5=1-m=-2,与B中元素互异矛盾;若m=-3,则A={-4,-7,9},B={9,-8,4}满足A B={9}.∴m=-3.例2、设A={x|x2+ax+b=0},B={x|x2+cx+15=0},又A B={3,5},A∩B={3},求实数a,b,c的值.解:∵A∩B={3},∴3∈B,∴32+3c+15=0,∴c=-8,由方程x2-8x+15=0解得x=3或x=5.∴B={3,5}.由A(A B)={3,5}知,3∈A,5A(否则5∈A∩B,与A∩B={3}矛盾).故必有A={3},∴方程x2+ax+b=0有两相同的根3.由韦达定理得3+3=-a,33=b,即a=-6,b=9,c=-8.例3、已知A={x|x3+3x2+2x>0},B={x|x2+ax+b≤0},且A∩B={x|0<x≤2},A∪B={x|x>-2},求a、b的值.解:A={x|-2<x<-1或x>0},设B=[x1,x2],由A∩B=(0,2]知x2=2,且-1≤x1≤0,①由A∪B=(-2,+∞)知-2≤x1≤-1. ②由①②知x1=-1,x2=2,∴a=-(x1+x2)=-1,b=x1x2=-2.例4、已知A={x|x2-ax+a2-19=0},B={x|x2-5x+8=2},C={x|x2+2x-8=0}.若A∩B,且A∩C=,求a的值.解:∵B={x|(x-3)(x-2)=0}={3,2},C={x|(x+4)(x-2)=0}={-4,2},又∵A∩B,∴A∩B≠.又∵A∩C=,∴可知-4A,2A,3∈A.∴由9-3a+a2-19=0,解得a=5或a=-2.①当a=5时,A={2,3},此时A∩C={2}≠,矛盾,∴a≠5;②当a=-2时,A={-5,3},此时A∩C=,A∩B={3}≠,符合条件.综上①②知a=-2.例5、已知全集U={不大于20的质数},M,N是U的两个子集,且满足M∩()={3,5},()∩N={7,19},()∩()={2,17},求M、N.解:用图示法表示集合U,M,N(如图),将符合条件的元素依次填入图中相应的区域内,由图可知:M={3,5,11,13},N={7,11,13,19}.点评:本题用填图的方法使问题轻松地解决,但要注意的是在填图时,应从已知区域填起,从已知区域推测未知区域的元素.特别提示:下列四个区域:对应的集合分别是:①—;②—;③—;④—.一、选择题1、下列命题中,正确的是()A.若U=R,A U,;B.若U为全集,Φ表示空集,则Φ=Φ;C.若A={1,Φ,{2}},则{2}A;D.若A={1,2,3},B={x|x A},则A∈B.2、设数集且M、N都是集合{x|0≤x≤1}的子集,如果把b-a叫做集合{x|a≤x≤b}的“长度”,那么集合M∩N 的“长度”的最小值是()A. B.C. D.3、设M、N是两个非空集合,定义M与N的差集为M-N={x|x∈M且x N},则M-(M-N)等于()A.N B.M∩NC.M∪N D.M4、已知全集,集合M和的关系的韦恩(Venn)图如下图所示,则阴影部分所示的集合的元素共有()A.3个 B.2个C.1个 D.无穷个1、Φ=U,{2}∈A,{2}单独看是一个集合,但它又是A中的一个元素.2、集合M的“长度”为,集合N的“长度”为,而集合{x|0≤x≤1}的“长度”为1,故M∩N的“长度”最小值为3、M-N={x|x∈M且x N}是指图(1)中的阴影部分.同样M-(M-N)是指图(2)中的阴影部分.4、∵图形中的阴影部分表示的是集合,由解得集合,而N是正奇数的集合,∴,故选B.二、填空题5、已知集合A={x|x2-3x+2=0},集合B={x|ax-2=0}(其中a为实数),且A ∪B=A,则集合C={a|a使得A∪B=A}=_____________.5、{0,1,2}解析:A={1,2},由A∪B=A,得B A.∵1∈A,即得a=2;或2∈A,即得a=1;或B=Φ,此时a=0.∴C={0,1,2}.6、非空集合S{1,2,3,4,5},且若a∈S,则6-a∈S,这样的S共有___________个.6、6解析:S={1,5}或{2,4}或{3},或{1,3,5},或{2,4,3},或{1,5,2,4}.三、解答题7、设集合.(1)若,求实数a的值.(2)若,求实数a的值.7、解:(1)∵9,∴9 A.则a2=9或.解得a=±3或5.当时,(舍);当时,(符合);当时,(符合).综上知或.(2)由(1)知.8、已知全集U=R,<0,<或x>,若,求实数的取值范围8、解:依题设可知全集且≥0≤≤5,≤≤,由题设可知.分类如下:①若,则m+1>2m-1m<2.②若,则m+1≤2m-1,且,解得2≤m≤3.由①②可得:m≤3.∴实数m的取值范围为{m|m≤3}.9、已知全集U={|a-1|,(a-2)(a-1),4,6}.(1)若求实数a的值;(2)若求实数a的值.9、解:(1)∵且B U,∴|a-1|=0,且(a-2)(a-1)=1,或|a-1|=1,且(a-2)(a-1)=0;第一种情况显然不成立,在第二种情况中由|a-1|=1得a=0或a=2,∴a=2.(2)依题意知|a-1|=3,或(a-2)(a-1)=3,若|a-1|=3,则a=4,或a=-2;若(a-2)(a-1)=3,则经检验知a=4时,(4-2)(4-1)=6,与元素的互异性矛盾.∴a=-2或.10、设集合A ={|},B ={|,},若A B=B,求实数的值.10、解:先化简集合A=. 由A B=B,则B A,可知集合B可为,或为{0},或{-4},或.(i)若B=,则,解得<;(ii)若B,代入得=0=1或=,当=1时,B=A,符合题意;当=时,B={0}A,也符合题意.(iii)若-4B,代入得=7或=1,当=1时,已经讨论,符合题意;当=7时,B={-12,-4},不符合题意.综上可得,=1或≤.11、已知集合A={x|x2-4mx+2m+6=0},B={x|x<0},若A∩B≠,求实数m 的取值范围.11、解:设全集.若方程x2-4mx+2m+6=0的两根x1,x2均非负,则解得.∵{m|}关于U的补集是{m|m≤-1},∴实数m的取值范围是{m|m≤-1}.1、(全国I,1)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合中的元素共有()A.3个B.4个C.5个D.6个答案:A解析:2、(福建,2)已知全集U=R,集合A={x|x2-2x>0},则等于()A.{x|0≤x≤2} B.{x|0<x<2}C.{x|x<0或x>2} D.{x|x≤0或x≥2}答案:A解析:∵x2-2x>0,∴x(x-2)>0,得x<0或x>2,∴A={x|x<0或x>2},.3、(山东,1)集合A={0,2,a},B={1,a2}.若A∪B={0,1,2,4,16},则a的值为()A.0 B.1 C.2 D.4答案:D解析:∵A∪B={0,1,2,a,a2},又A∪B={0,1,2,4,16},∴{a,a2}={4,16},∴a=4,故选D.集合中的交、并、补等运算,可以借助图形进行思考。

集合的基本运算

集合的基本运算

考点2 集合的基本运算1. (15泰州一模)已知{}1,3,4A =,{}3,4,5B =,则A B =. 【考点】交集及其运算.【答案】{}3,4【分析】{}1,3,4A =,{}3,4,5B =, {}3,4A B ∴= .2. (江苏2015高考冲刺压轴卷二)已知集合{}2|20A x x x =--<,(){}|ln 1B x y x ==-,则A B = .【考点】本题考查集合、一元二次不等式的计算及对数函数的性质.【答案】{}|11x x -<<【分析】∵{}{}2|20|12A x x x x x =--=-<<<,(){}{}|ln 1|1B x y x x x ==-=<, ∴{}|11A B x x =- <<.3. (2015江苏高考冲刺压轴卷(三))设集合S ={x ∈N |0<x <6},T ={4,5,6},则S ∩T =.【考点】集合的交集运算.【答案】{}4,5【分析】S ={1,2,3,4,5},所以S ∩T ={}4,5. 4. (2015高考冲刺压轴卷(江苏)试卷一)已知集合{}{}1,2,4,,4A B a ==,若{}1,2,3,4A B = ,则A B = ________.【考点】集合的并集、交集运算.【答案】{}4【分析】根据{}1,2,4A =,{},4B a =,{}{}1,2,3,434A B a A B =⇒=⇒= . 5. (江苏省淮安市淮阴区南陈集中学2015届高三上学期10月调考数学试卷)已知集合2{|320}A x x x =-+≤,{}|1B x x =>,则集合A B = ________.【考点】集合的交集运算.【答案】{|12}x x <≤【分析】由A 中方程变形得:(1)(2)0x x --≤,解得:12x ≤≤,即{|12}A x x =≤≤; 由B 中方程解得:1x -<或1x >,即{|1B x x =-<或1}x >,则{|12}A B x x =< ≤. 6. (江苏省淮安市淮阴区南陈集中学2015届高三上学期10月调考数学试卷)已知[]2,2,4x y x =∈的值域为集合A ,22log (3)2(1)y x m x m ⎡⎤=-++-+⎣⎦定义域为集合B ,其中1m ≠.(1)当m =4,求A B ;(2)设全集为R ,若A B ⊆R ð,求实数m 的取值范围.【考点】交集及其运算,集合的包含关系判断及应用,对数函数的定义域.【解】(1)∵[]2,2,4xy x =∈的值域为[]4,16A =, 当m =4,27100x x -+->,解得(2,5)B =,∴[)4,5A B = .(2)若m >1,则{|2B x x =R ≤ð或1}x m +≥∴1413m m +⇒<≤≤.若m <1,则{|1B x x m =+R ≤ð或2}x ≥,此时A B ⊆R ð成立.综上所述,实数m 的取值范围为(,1)(1,3)-∞ . 7. (江苏省南通市2015届高三第一次模拟考试数学试题)已知集合{21}A =--,,{123}B =-,,,则A B = ________.【考点】集合的交集运算.【答案】{}1-【分析】∵集合{21}A =--,,{123}B =-,,,∴{}1A B =- . 8. (淮安都梁中学2015届高三10月调研)已知集合{}1,3,A m =,{}3,4B =,{}1,2,3,4A B = ,则m = .【考点】并集及其运算【答案】2【分析】因为{}1,2,3,4A B = ,因为B 中元素为3,4,所以A 中必然要有2,所以得到m 的值为2.9. (2015江苏省盐城市响水中学高三上调研)已知集合A ={y |y =12x,x ∈R };B ={y |2log 1y x=(-),x ∈R },则A ∩B = . 【考点】交集及其运算.【答案】(0,+∞) 【分析】由集合A ={y | y =12x ,x ∈R },可得A ={y |y >0},由B ={y|2log 1y x =(-),x ∈R },可得B ={y |y ∈R },∴A ∩B ={y |y >0},故答案为:(0,+∞). 10. (15江苏模拟(三))已知集合A ={1,2,3,4,5},集合B ={x |x <a },其中a ∈Z ,若A B={1,2},则a = .【答案】3 【分析】由A ={1,2,3,4,5},A B={1,2}可得{1,2}⊆B ,又因为a ∈Z ,所以a =3. 11.(15江苏高考压轴)已知集合{}1,0,3A =-,集合{}2B x y x ==-,则A B = .【答案】{}1,0-【分析】{}{}{}2202B x y x x x x x ==-=-=≥≤,又{}103A =-,,所以{}10A B =- ,12. (15南通海门包场9月调研)已知集合A ={-1,3,2m -1},B ={3,2m },且A ∩B =B ,那么实数m = .【考点】交集及其运算.【答案】1【分析】由A ∩B =B ,得B ⊆A .又A ={-1,3,2m -1},B ={3,2m },∴2m =2m -1,解得m =1.此时集合A 有意义. 13. (15南通海门包场9月调研)设全集U =R ,f (x )=2x +3x +2,g (x )=2x +(m +1)x +m ,m ∈R .(1)设集合A={x|f(x)=0},B={x|g(x)=0}.若(U Að)∩B=∅,求m的值.(2)设集合P={y|y=f(x)},Q={m|g(x)在区间[-1,+∞)上是增函数},求P∩Q.【考点】交、并、补集的混合运算.【解】(1)∵集合A={x|f(x)=0},B={x|g(x)=0}.∴A={-1,-2},-1∈B,-m∈B,若(U Að)∩B=∅,则-m∈A,即m=1或m=2,(2)∵集合P={y|y=f(x)}=[-14,+∞),Q={m|g(x)在区间[-1,+∞)上是增函数}={m|112m+--≤}=[1,+∞),∴P∩Q=[1,+∞).14. (15南通市直调考)已知集合A={-2,-1},B={-1,2,3},则A∪B= .【考点】并集及其运算.【答案】{-2,-1,2,3}【分析】集合A={-2,-1},B={-1,2,3},则A∪B={-2,-1,2,3}.15. (15连云港赣榆海头9月调研)已知集合A={-2,-1,0,1,2},集合B={x|2x<1},则A∩B= .【考点】交集及其运算.【答案】{0}【分析】∵集合A={-2,-1,0,1,2},集合B={x|2x<1}={x|-1<x<1},∴A∩B={0}.16. 设函数f(x)=2x-2ax-82a(a>0),记不等式f(x)≤0的解集为A.(1)当a=1时,求集合A;(2)若(-1,1)⊆A,求实数a的取值范围.【考点】集合的包含关系判断及应用.【解】(1)当a=1时,f(x)=2x-2x-8,由不等式2x-2x-8≤0,化为(x-4)(x+2)≤0,解得﹣2≤x≤4,∴集合A={x|-2≤x≤4}.(2)∵2x-2ax-82a≤0,∴(x-4a)(x+2a)≤0,又∵a>0,∴-2a≤x≤4a,∴A=[-2a,4a].又∵(-1,1)⊆A,∴1214a a--⎧⎨⎩≥≤,解得12a ≥, ∴实数a 的取值范围是1+2⎡⎫∞⎪⎢⎣⎭,.17.(15淮安市金湖中学高三上学期第一次学情检测数学试卷)若集合A ={x |y =1x -},B ={y |22y x =+},则A ∩B = .【考点】交集及其运算.【答案】[2,+∞)【分析】因为A ={x |y =1x -},B ={y |22y x =+},则A ={x |x ≥1},B ={y |y ≥2} 所以A ∩B =B ;故答案为:[2,+∞).18. (15江阴市高三上学期月考数学试卷)已知全集U ={1,2,3,4},集合A ={l ,2,3},B ={2,3,4},则U AB (∩)ð= . 【考点】交、并、补集的混合运算.【答案】{1,4}【分析】∵全集U ={1,2,3,4},集合A ={l ,2,3},B ={2,3,4},∴A ∩B ={2,3},则U AB (∩)ð={1,4}. 故答案为:{1,4}.19.(15南京市湖滨中学高三上学期10月学情检测数学试卷)已知集合A ={1},B ={1,9},则A ∪B = .【考点】并集及其运算.【答案】{1,9}【分析】∵A ={1},B ={1,9},∴A ∪B ={1,9}.20.(15南通市如东县栟茶高级中学高三上学期第二次学情调研)若集合A ={0,1},集合B ={0,-1},则A B = ________.【考点】并集及其运算.【答案】{-1,0,1}【分析】A B = {-1,0,1}.21. (15宿迁市沭阳县银河学校高三上学期开学试卷)若A ={x ∈Z |2≤2x ≤16},B ={3,4,5},则A ∩B = .【考点】指数函数单调性的应用;交集及其运算.【答案】{3,4}【分析】∵A={x∈Z|2≤2x≤16}={x∈Z|1≤x≤4}={1,2,3,4},B={3,4,5},∴A∩B={3,4}.22.(15无锡市高三上学期期中试卷)已知全集U={1,3,5,7,9},A={1,5,9},B={3,C(A∪B)的子集个数为______.5,9},则U【考点】交、并、补集的混合运算;子集.【答案】2【分析】∵A={1,5,9},B={3,5,9},∴A∪B={1,3,5,9},C(A∪B)={7},∵全集U={1,3,5,7,9}∴UC(A∪B)的子集个数为2个.则U23.(15南京一中等五校联考)已知集合M={x|x<1},N={x|lg(2x+1)>0},则M∩N=______.【考点】交集及其运算.【答案】(0,1)【分析】N={x|lg(2x+1)>0}={x|2x+1>1}={x|x>0},∵M={x|x<1},∴M∩N={x|0<x<1}=(0,1),故答案为:(0,1)。

集合的基本运算

集合的基本运算

本节课是集合这一章的核心内容,高考常考考点之一,所以一定要掌握并集,补集,交集的概念。

集合的基本运算是在学习集合定义以及集合的性质之后学到的,它对日后学习研究函数的定义域、值域、单调区间等内容起到知识储备作用。

1.教学重点:集合的交集与并集、补集的概念;2.教学难点:集合的交集与并集、补集“是什么”,“为什么”,“怎样做”;一、知识梳理1、集合的运算A∩B={x|x∈A且x∈B}.A∪B={x|x∈A或x∈B}.∁U A={x|x∈U,且x∉A}2、性质:A∪B=B∪A,A∪A=A,A∪∅=A,A∪B=A⇔B⊆A,A⊆(A∪B).A∩B=B∩A,A∩A=A,A∩∅=∅,A∩B=A⇔A⊆B,A∩B⊆A∪B,A∩B⊆A,A∩B⊆B.A ∪(∁U A )=U ,A ∩(∁U A )=∅,∁U (∁U A )=A二、题型探究类型一 并集、交集性质的应用例1 已知A ={x |2a ≤x ≤a +3},B ={x |x <-1或x >5},若A ∪B =B ,求实数a 的取值范围.反思与感悟 解此类题,首先要准确翻译,诸如“A ∪B =B ”之类的条件.在翻译成子集关系后,不要忘了空集是任何集合的子集.跟踪训练1 设集合A ={x |2x 2+3px +2=0},B ={x |2x 2+x +q =0},其中p ,q 为常数,x ∈R ,当A ∩B =⎩⎨⎧⎭⎬⎫12时,求p ,q 的值和A ∪B .解 ∵A ∩B =⎩⎨⎧⎭⎬⎫12,∴12∈A , ∴2×⎝⎛⎭⎫122+3p ×12+2=0, ∴p =-53,∴A =⎩⎨⎧⎭⎬⎫12,2. 又∵A ∩B =⎩⎨⎧⎭⎬⎫12,∴12∈B , ∴2×⎝⎛⎭⎫122+12+q =0,∴q =-1. ∴B =⎩⎨⎧⎭⎬⎫12,-1. ∴A ∪B =⎩⎨⎧⎭⎬⎫-1,12,2.类型二 补集性质的应用命题角度1 补集性质在集合运算中的应用例2 已知A ={0,2,4,6},∁U A ={-1,-3,1,3},∁U B ={-1,0,2},用列举法写出集合B .解 ∵A ={0,2,4,6},∁U A ={-1,-3,1,3},∴U ={-3,-1,0,1,2,3,4,6}.而∁U B ={-1,0,2},∴B =∁U (∁U B )={-3,1,3,4,6}.反思与感悟 从Venn 图的角度讲,A 与∁U A 就是圈内和圈外的问题,由于(∁U A )∩A =∅,(∁U A )∪A =U ,所以可以借助圈内推知圈外,也可以反推.跟踪训练2 如图所示的V enn 图中,A ,B 是非空集合,定义A *B 表示阴影部分的集合.若A ={x |0≤x ≤2},B ={y |y >1},则A *B =________________.考点 补集的概念及运算题点 无限集合的补集命题角度2 补集性质在解题中的应用例3 关于x 的方程:x 2+ax +1=0,①x 2+2x -a =0,②x 2+2ax +2=0,③若三个方程至少有一个有解,求实数a 的取值范围.考点 交并补集的综合问题题点 与交并补集运算有关的参数问题解 假设三个方程均无实根,则有⎩⎪⎨⎪⎧ Δ1=a 2-4<0,Δ2=4+4a <0,Δ3=4a 2-8<0,即⎩⎪⎨⎪⎧ -2<a <2,a <-1,-2<a < 2.解得-2<a<-1,∴当a≤-2或a≥-1时,三个方程至少有一个方程有实根,即a的取值范围为{a|a≤-2或a≥-1}.反思与感悟运用补集思想求参数取值范围的步骤(1)把已知的条件否定,考虑反面问题.(2)求解反面问题对应的参数的取值范围.(3)求反面问题对应的参数的取值集合的补集.跟踪训练3若集合A={x|ax2+3x+2=0}中至多有一个元素,求实数a的取值范围.考点交并补集的综合问题题点与交并补集运算有关的参数问题类型三集合的综合运算例4(1)已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则(∁U P)∪Q等于() A.{1} B.{3,5}C.{1,2,4,6} D.{1,2,3,4,5}考点交并补集的综合问题题点有限集合的交并补运算答案 C解析∵∁U P={2,4,6},∴(∁U P)∪Q={1,2,4,6}.(2)已知集合A={x|x≤a},B={x|1≤x≤2},且A∪(∁R B)=R,则实数a的取值范围是________.考点交并补集的综合问题题点无限集合的交并补运算答案{a|a≥2}反思与感悟解决集合的混合运算时,一般先计算括号内的部分,再计算其他部分.有限集混合运算可借助Venn图,与不等式有关的可借助数轴.跟踪训练4(1)已知集合U={x∈N|1≤x≤9},A∩B={2,6},(∁U A)∩(∁U B)={1,3,7},A∩(∁U B)={4,9},则B等于()A.{1,2,3,6,7} B.{2,5,6,8}C.{2,4,6,9} D.{2,4,5,6,8,9}考点交并补集的综合问题题点有限集合的交并补运算答案 B解析根据题意可以求得U={1,2,3,4,5,6,7,8,9},画出Venn图(如图所示),可得B={2,5,6,8},故选B.(2)已知集合U={x|x≤4},集合A={x|-2<x<3},B={x|-3≤x≤2},求A∩B,(∁U A)∪B,A∩(∁U B).考点交并补集的综合问题题点无限集合的交并补运算解如图所示.∵A={x|-2<x<3},B={x|-3≤x≤2},∴∁U A={x|x≤-2或3≤x≤4},∁U B={x|x<-3或2<x≤4}.A∩B={x|-2<x≤2},∴(∁U A)∪B={x|x≤2或3≤x≤4},A∩(∁U B)={x|2<x<3}.三、达标检测1、设集合A ={1,2},B ={1,2,3},C ={2,3,4},则(A ∩B )∪C 等于( )A .{1,2,3}B .{1,2,4}C .{2,3,4}D .{1,2,3,4}考点 并集、交集的综合运算题点 并集、交集的综合运算答案 D解析 A ∩B ={1,2},(A ∩B )∪C ={1,2}∪{2,3,4}={1,2,3,4}.2、已知M ={(x ,y )|x +y =2},N ={(x ,y )|x -y =4},那么M ∩N 为( )A .x =3,y =-1B .(3,-1)C .{3,-1}D .{(3,-1)}考点 交集的概念及运算题点 无限集合的交集运算答案 D3、已知集合A ={}1,2,A ∪B ={}1,2,3,4,则满足条件的集合B 的个数为( )A .1B .2C .3D .4考点 集合的交集、并集性质及应用题点 利用交集、并集性质求集合的个数答案 D解析 因为集合A ={}1,2,A ∪B ={}1,2,3,4,所以B 中至少含有3,4两个元素,所以满足条件的集合B 为{}3,4,{}3,4,1,{}3,4,2,{}3,4,1,2,共4个.4、已知A ={x |x +1>0},B ={-2,-1,0,1},则(∁R A )∩B 等于( )A .{-2,-1}B .{-2}C .{-1,0,1}D .{0,1}考点并交补集的综合问题题点有限集合的并交补运算答案 A解析因为集合A={x|x>-1},所以∁R A={x|x≤-1},则(∁R A)∩B={x|x≤-1}∩{-2,-1,0,1}={-2,-1}.5、已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=______,(∁U A)∩(∁U B)=________. 考点交并补集的综合问题题点无限集合的交并补运算答案{x|0<x<1}{x|0<x<1}6、若集合A={x|0≤x≤2},B={x|x<0或x>1},则图中阴影部分所表示的集合为________.考点Venn图表达的集合关系及运用题点Venn图表达的集合关系答案{x|x≤1或x>2}解析如图,设U=A∪B=R,A∩B={x|1<x≤2},∴阴影部分为∁U(A∩B)={x|x≤1或x>2}.。

1.1.3 集合的基本运算(2)

1.1.3 集合的基本运算(2)
反 思 总 结
1.反思你前面哪个步骤停留时间最长; 2.总结是什么原因造成的 (是之前相关知识基础不牢固 还是这次的某个概念自己理解错了);
3.反思你思考的时候在哪里卡住了, 着重这个地方,再次理解。
费曼学习法-实操
第六步 实践检验
(六) 实 践 检 验
1.实践是检验真理的唯一标准。前面你可能觉得自己学的都还不错, 那么最 后这步帮你再次验证,也帮你进一步加深理解;
场景记忆法小妙招
超级记忆法--身 体法
1. 头--神经系统 2. 眼睛--循环系统 3. 鼻子--呼吸系统 4. 嘴巴--内分泌系统 5. 手--运动系统 6. 胸口--消化系统 7. 肚子--泌尿系统 8. 腿--生殖系统
超级记忆法-记忆 方法
TIP1:在使用身体记忆法时,可以与前面提到过的五感法结合起来,比如产生 一 些听觉、视觉、触觉、嗅觉、味觉,记忆印象会更加深刻; TIP2:采用一些怪诞夸张的方法,比如上面例子中腿上面生长出了很多植物, 正 常在我们常识中不可能发生的事情,会让我们印象更深。
利用Venn图: card(A∪B∪C)=card(A)+ card(B)+ card(C) - card(A∩B)- card(A∩C)- card(C∩B)+ card(A∩B∩C)
B
A
A∩B
A∩B∩C B∩C A∩C
C
作业布置
1.教材P12 9,10 B组 4 2 补.某班有学生55人,其中音乐爱好 者34人,体育爱好者43人,还有4人既 不爱好体育也不爱好音乐,班级中既爱 好体育又爱好音乐的有多少人?
案例式 学习
顺序式 学习
冲刺式 学习
什么是学习力-高效学习必 备习惯
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考点二 集合的基本运算
1.(2010济南高一检测)设{}{}3,,1,2M a N ==,{}1M N ⋂=,M N ⋃为( )
A. {1,3,}a
B. {1,2,3,}a
C. {1,2,3}
D. {1,3}
【解析】选C ,由{1},M N ⋂=可知,a =1,故M N ⋃={1,2,3}.
2.(2010济宁高一检测)设全集{1,2,3,4,5}U =,{1,3,4}M =,{2,4,5}N =,
则()()U U C M C N ⋂等于( )
A .{4}
B .{1,3}
C .{2,5}
D .∅
【解析】选D ,{}{}2,5,1,3U U M N ==痧,故()()U U M N ⋂痧等于∅。

3、(2010 郑州高一检测)右图中阴影部分所表示的集合是( )
A.)]([C A C B U ⋃⋂
B.)()(C B B A ⋃⋃⋃
C.)()(B C B A U ⋂⋃
D.)]([C A C B U ⋂⋃
【解析】选A
4.(2010金华模拟)定义集合{}*A B x x A x B =∈∉且,若{}{}1,3,5,7,2,3,5A B ==,
则*A B 的子集个数为( )
A.1
B.2
C.3
D.4
【解析】选D ,A*B={1,7},所以A *B 的子集个数为22=4.
5.(2010南昌模拟)设集合U={1,2,3,4,5},A={1,2,3},CuB={2,5},则A ∩B=(
) A.{2} B.{1,3} C.{3} D.{1,2}
【解析】选B
6.(2010三明模拟)设全集为R ,集合)2,(-∞=A ,)6,5[-=B ,则B A C R ⋂)(等于( )
A .)6,2[
B .)6,2(
C .),2[+∞
D .),2(+∞
【解析】选A ,R A =ð[2,+∞),(A R ð)B = [2,6). 7.(2010长沙高一检测)已知全集}7,6,5,4,3,2,1{=U ,}5,4,3{=A ,}6,3,1{=B , 那么集合{2,7}为( )
A.A B
B.B A
C.()U C A B
D.()U C A B
【解析】选C ,{1,3,4,5,6}A B = ,故{2,7}=()U C A B .
8.(2010九江高一检测)已知集合A={x |x -m =0},B={x |mx -1=0},若A ∩B=B ,
则m 等于( )
A .1
B .0或1
C .-1或1
D .0或1或-1
【解析】选D ,由A ∩B=B ,可知,B =∅满足条件,此时m =0,当m ≠0时,由集合A 可得x =m ,
由集合B 可得,x =1m ,故m =1m
得m =±1. 9.(2010玉溪高一检测)设集合{1
234}U =,,,,{13}A =,,{34}B =,,则=⋃)(B A C u ( ) A.{1
34},, B.{14}, C.}2{ D.}3{ 【解析】选C
10.(2010德州高一摸拟)已知集合{}2|23A y y x x ==+-,1|,0B y y x x x ⎧
⎫==+>⎨⎬⎩⎭
,则有( ) A. A B ß B. A B Þ C. A B = D. A B ⋂=∅
【解析】选A ,(){}
[)2|144,A y y x ==+-=-+∞,[)2,B =+∞,故B A Ø
11.(2010南阳高一检测)设集合},2,1,0,2{}2,0,2{},1,0{}1,0,1{-=-⋃=-⋂A A 则满足上述条件的集合A 的个数为( )
A .1
B .2
C .3
D .4 【解析】选D ,由A {1,0,1}- ={0,1}可知,0,1∈A 而-1A ∉,A {-2,0,2}={-2,0,1,2},A 中可含元素-2,2,故满足条件的集合A 为{0,1}、{0,1,2}、{-2,0,1}、{-2,0,1,2}。

12.(2010衡阳高一检测)已知集合{(,)|2},{(,)|4}M x y x y N x y x y =+==-=,
那么集合M N ⋂为( )
A.3,1x y ==-
B.(3,1)-
C.{3,1}-
D.{(3,1)}- 【解析】选D
由{(,)|2},{(,)|4}M x y x y N x y x y =+==-=知,两集合表示元素为直线上的点,
故M N 为两直线的交点,但要写成集合形式。

13、(2010郴州模拟)已知全集U {
}5,4,3,2,1=,A {}3,1=,B {}4,3,2=,那么=⋃)(B C A U ______ 【解析】{}{}1,5,()1,3,5U U B A B =⋃=所以痧
答案:{}1,3,5
14.(2010泰州模拟)设集合{}{}|21,|02A x x B x x =-≤<=≤≤,则
()R C A B = 。

【解析】{}[]|21,)1,2A x x x A B =<-≥⋂=或故(
R R 痧 答案: [1,2]
15.(2010青岛模拟)已知集合[]2,2M =-,{}1,2N =,那么M N = .
答案:N
16.(2010温州高一检测)已知集合
{}|1A x x =≤,{}|B x x a =≥,且R B A = ,则实数a 的取值范围 是 .
答案:1a ≤
17.(2010南通模拟)已知集合A ={x | -2≤x ≤7 },B =(
)1,21m m +-,若A ∪B=A ,
则函数m 的取值范围是 .
【解析】 由A ∪B=A 得A B ⊆712,21≤--≥+∴m m 且 43≤≤-∴m
答案:43≤≤-m
18.(2010济南高一检测)设集合A ={1,2}, B ={2,3}, C ={2,3,4},则(A ∩B )∪C = .
【解析】{}{}2,2,3,4A B A B C ⋂=⋂⋃=故()
答案: {2,3,4}
【解析】}9,8,7,6,5,4,3,2,1{=⋃=B A U }9,7,5,3,1{=⋂B C A U }8,6,4,2{=B
答案: {}8642,,,
20.(2010玉溪高一检测)已知集合[]{}3,4,|132A B x m x m =-=-≤≤-,且A B A = , 则实数m 的取值范围____________.
【解析】由A B A =⋃得A B ⊆
当Φ=B 时,1m -〉32m -12
m ∴< 19.(2010朝阳模拟) 设全集{}
*|10U A B x N x =⋃=∈<,若{}4,3,2,1,0,12|=+==⋂n n m m B C A U ,则集合B=__________.
当Φ≠B 时,13213324m m m m -≤-⎧⎪-≥-⎨⎪-≤⎩
122
m ∴≤≤ 综上可知:2m ≤。

答案: 2m ≤
21.(2010安阳高一检测)设全集为R, 集合{}36A x x =≤<,{}29B x x =<<.
(1)分别求B A ⋂,()R C B A ;
(2)已知{}1+<<=a x a x C ,若B C ⊆,求实数a 的取值集合.
【解析】(1)A ∩B ={x ∣3≤x ﹤6}
{,2≤=x x B C R 或}9≥x ,()R C B A ∴= {,2≤x x 或,63<≤x 或}9≥x
(2),B C ⊆ 如图示(数轴略)⎩⎨
⎧≤+≥∴912a a 解之得[]8,2,82∈∴≤≤a a
22.(2010株洲模拟)已知集合{}01|2=-=x x A ,B=}
{220x x ax b -+=,若B ≠∅, 且A B A = ,求实数a ,b 的值。

【解析】由{}{}{},,1,1,1A B A B ⋃=≠∅--得B=1 当{}B=1时,方程2
20x ax b -+=有两个等根1,由韦达定理得11a b =⎧⎨=⎩ 当{}B=-1时,方程220x ax b -+=有两个等根-1,由韦达定理得11
a b =-⎧⎨=⎩
当{}B=1,-1时,方程220x ax b -+=有两个根1,1-,由韦达定理得01a b =⎧⎨=-⎩
23.(2010潍坊高一检测) 已知,},51|{}32|{φ=⋂>-<=+≤≤=B A x x x B a x a x A 若或, 求a 的取值范围。

【解析】3,32>∴+>=a a a A ,则若φ,此时符合题意;
221531
232≤≤-∴⎪⎩
⎪⎨⎧≤+-≥+≤≠a a a a a A ,则若φ,此时亦符合题意。

}3,22
1|{>≤≤-∴a a a a 或的取值范围是 24.(2010上海高一检测)已知集合{}1,4,A x =,集合{}21,x B =,且B A ⊆,
求实数x 的值及集合A , B 【解析】
2,4B A x ⊆∴= 或2x x = 由24x =,解得2x =或2x =-
由2x x =,解得0x =或1x =(舍1x =) 故 当2x =时,
{}{}1,4,2,1,4A B == ; 当2x =-时,
{}{}1,4,2,1,4A B =-=; 当0x =时,
{}{}1,4,0,1,0A B ==。

相关文档
最新文档