计算机中数值的表示
数值数据的表示方式
定点纯小数和定点纯整数的表示范围与数的机器码表示有关,在后面 介绍各种数的机器码表示时,再详细讨论。
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
数据的表示方法和转化。
数据的表示方法和转化。
数据表示方法:数据表示方法是指如何将实际的数据映射到计算机中,以便于进行处理和存储。
常见的数据表示方法有以下几种:1. 二进制表示法二进制表示法是将数据转化为由0和1组成的二进制数,是计算机内部数据的存储方式。
在二进制表示法中,每个0或1被称为“位”(bit),8位二进制数称为1个“字节”(byte)。
例如,数字5可以表示为二进制数101。
2. 十进制表示法十进制表示法是我们日常生活中通用的表示方法,使用0-9这10个数字来表示各种数值。
在计算机中,十进制数通常被转换为二进制数,然后处理和存储。
例如,数字5可以表示为10进制数5。
3. 八进制表示法八进制表示法使用0-7这8个数字来表示各种数值。
在计算机中,八进制数通常被转换为二进制数,然后处理和存储。
例如,数字5可以表示为八进制数5。
4. 十六进制表示法十六进制表示法使用0-9这10个数字和字母A-F来表示各种数值。
在计算机中,十六进制数通常被转换为二进制数,然后处理和存储。
例如,数字5可以表示为十六进制数5。
数据转换:数据的转换是指将需要处理的数据从一种格式转换为另一种格式的过程。
常见的数据转换有以下几种:1. 十进制转二进制将十进制数转换为二进制数,可以采用“除以二取余”法,即将十进制数一直除以2,直到商为0为止,将所有余数倒序排列即为二进制数。
例如,将数字21转换为二进制数,步骤如下:21/2=10/2=5/2=2/2=1/2=0 商 1 0 1 0 1 余数 1 0 1 0 1将余数倒序排列,得到二进制数10101。
2. 二进制转十进制将二进制数转换为十进制数,可以采用“加权和”法,即将二进制数从低位到高位按照权值进行相乘,然后求和即可。
例如,将二进制数10101转换为十进制数,步骤如下:1*1+0*2+1*4+0*8+1*16=21因此,二进制数10101转换为十进制数21。
3. 十六进制转十进制将十六进制数转换为十进制数,可以将十六进制数的每个位数按照权值相乘,然后求和即可。
第四讲:计算机中的数据表示---2、数值型与非数值型数据
JPG格式:
由联合照片专家组开发的文件 格式,是一种压缩技术。
优点:具有调节图像质量的功 能,允许用不同的压缩比例对 文件压缩。
二、 计算机中的数据表示
1.数据的单位 2.数值数据的表示3.文本数据的表示 4.图形和图像的表示
二、 计算机中的数据表示
1.数据的单位 2.数值数据的表示 3.文本数据的表示
• ASCII编码 • 汉字编码
汉字编码 (1)信息交换码
国标码 区位码 BIG5码 GBK编码
二、 计算机中的数据表示
1.数据的单位 2.数值数据的表示 3.文本数据的表示
• ASCII编码 • 汉字编码
汉字编码 (2)汉字的输入码(外码) 利用键盘符号 26字母+数字 将形态各异的汉字输入计算机而编制的代码。 分音码、形码和音形混合码。
二、 计算机中的数据表示
1.数据的单位 2.数值数据的表示
• 带符号数的表示
带符号数的表示 在计算机中只能用数字化信息来表示数的正负 规定用“0”表示正号,用“1”表示负号
例如:在机器中用8位二进制码分别表示+90和-90
二、 计算机中的数据表示
1.数据的单位 2.数值数据的表示
• 带符号数的表示
• ASCII编码
ASCII编码(American Standard Code for Information Interchange) 美国标准信息交换码,已被国际标准化组织认定为国际 标准。 ASCII码用一个字节(8位)表示, 最高位总是0,其余7位可表示2^7=128个字符。
ASCII码表
二、 计算机中的数据表示
数值数据在计算机中的表示方法
数值数据在计算机中的表示方式日常生活中,经常采用的进位制很多,比如,一打等于十二个(十二进制)、一小时等于六十分(六十进制)、一米等于十分米(十进制)等等。
其中十进制是最常用的,它的特点是有10个数码:0~9,进位关系是“逢十进一”。
而在计算机中数的表示是采用二进制。
为了书写和读数方便还用到八进制和十六进制。
如表1.1。
1. 计算机中的二进制数二进制是逢二进一,所有的数都用两个数字符号0或1表示。
二进制的每一位只能表示0或1。
例如:(1)10 = (001)2 ,(2)10 = (010)2 ,(3)10 = (011)2 。
即十进制数1,2,3用二进制表示分别为:001,010,011等等。
计算机采用二进制的原因在于:(1)0和1两个数可分别用电器中两种状态来表示,很容易用电器元件来实现。
如开关的接通为1,断开为0;高电平为1,低电平为0等,而要用电路的状态来表示我们已熟悉的十进制等,就要制作出具有十个稳定状态的元件,这是相当困难的;(2)计算机只能直接识别二进制数符0和1,而且二进制的运算公式很简单,计算机很容易实现,逻辑判断也容易。
(3)可以节省设备。
2. 八进制二进制的缺点是表示一个数需要的位数多,书写数据和指令不方便。
通常,为方便起见,将二进制数从低向高每三位或四位组成一组。
例如:有一个二进制(100100001100)2,若每三位一组,即:(100,100,001,100)2可表示成八进制数(4414)8,如此表示使得每组的值大小是从0(000)~7(111),且数值逢八进一,即为八进制。
3. 十六进制若每四位为一组,即:(1001,0000,1100)2,每组的值大小是从0(0000)~15(1111),且逢16进一,即为十六进制。
用A,B,C,D,E,F分别代表10到15的6个数,则上面的二进制数可以表示成十进制数(90C)16。
4. 有关的概念位(Bit)指一位二进制代码,它只具有“0”和“1”两个状态。
计算机中的数据表示方法
计算机中的数据表示方法计算机中的数据表示方法数据是指能够输入计算机并被计算机处理的数字、字母和符号的集合。
平常所看到的景象和听到的事实,都可以用数据来描述。
数据经过收集、组织和整理就能成为有用的信息。
1. 计算机中数的单位在计算机内部,数据都是以二进制的形式存储和运算的。
计算机数据的表示经常使用到以下几个概念。
(1) 位位(bit)简写为b,音译为比特,是计算机存储数据的最小单位,是二进制数据中的一个位,一个二进制位只能表示0或1两种状态,要表示更多的信息,就得把多个位组合成一个整体,每增加一位,所能表示的信息量就增加一倍。
(2) 字节字节(Byte)简记为B,规定一个字节为8位,即1Byte = 8bit。
字节是计算机数据处理的基本单位,并主要以字节为单位解释信息。
每个字节由8个二进制位组成。
通常,一个字节可存放一个ASCII码,两个字节存放一个汉字国际码。
(3) 字字(Word)是计算机进行数据处理时,一次存取、加工和传送的数据长度。
一个字通常由一个或若干个字节组成,由于字长是计算机一次所能处理信息的实际位数,所以,它决定了计算机数据处理的速度,是衡量计算机性能的一个重要标识,字长越长,性能越好。
计算机型号不同,其字长是不同的,常用的字长有8位、16位、32位和64位。
计算机存储器容量以字节数来度量,经常使用的度量单位有KB、MB和GB,其中B代表字节。
各度量单位可用字节表示为:【例1-18】一台计算机,内存标注2GB,外存硬盘标注为500GB,则它实际可存储的内外存字节数分别如下:内存容量= 2 × 1024 × 1024 × 1024B硬盘容量= 500 × 1024 × 1024 × 1024B2. 计算机中数的表示在计算机内部,任何信息都以二进制代码表示(即0与1的组合来表示)。
一个数在计算机中的表示形式,称为机器数。
机器数所对应的原来的数值称为真值,由于采用二进制,必须要把符号数字化,通常是用机器数的最高位作为符号位,仅用来表示数符。
数值在计算机中的表示形式
数值在计算机中的表示形式一、信息和数据的概念有两类数据:⏹ 1.数值数据:如+15、-17.6;⏹ 2.非数值数据:如字母(A、B……)、符号(+、&……)、汉字,也叫字符数据。
⏹存在计算机中信息都是采用二制编码形式二、计算机为什么采用二进制?⏹由计算机电路所采用的器件所决定的。
⏹采用二进制的优点:运算简单、电路实现方便、成本低廉。
常用的各种进位制及表示⏹1、二进制:数码 0,1 基 2 表示形式 B⏹2、八进制:数码 0,1,…,7 基 8 表示形式O⏹3、十进制:数码 0,1,…,9 基 10 表示形式D⏹4、十六进制:数码 0,1,…,9,A,B,C,D,E,F 基 16 表示形式H⏹如:100111O,1011D,1011001BH,1011DH,1011B(100111)B (780)D (1289ABC)Hr进制转换成十进制an ...a1a0.a-1...a-m (r) = a*rn + …+ a*r1 + a*r0 +a*r-1+...a*r-m 10101(B)=1 × 24+ 0 × 23+1 × 22+ 0× 21 +1 × 20 =24+22+1=21101.11(B)=22+1+2-1+2-2=5.75101(O)=82+1=6571(O)=7 8+1=57101A(H)=163+16+10=4106十进制转换成r进制⏹整数部分:除以r取余数,直到商为0,余数从右到左排列。
⏹小数部分:乘以r取整数,整数从左到右排列。
例如,将一个十进制整数108.375转换为二进制整数。
108.375=1101100.011二进制数转换成八进制数⏹⏹二进制数转换成八进制数的方法是:将二进制数从小数点开始,整数部分从右向左3位一组,小数部分从左向右3位一组,若不足三位用0补足即可。
例如,将1100101110.1101B转换为八进制数的方法如下:。
数据在计算机中的表示
二进制与十六进制的转换
05
数据处理
减法运算
减法运算与加法运算类似,只不过是结果的符号位需要根据减数和被减数的符号来确定。
除法运算
除法运算可以通过连续的减法和移位操作实现,同样适用于整数和浮点数等数据类型。
乘法运算
乘法运算可以通过连续的加法和移位操作实现,适用于整数和浮点数等数据类型。
加法运算
使用专业的数据恢复工具,如数据恢复软件或硬件设备,来恢复误删除或损坏的数据。
数据恢复工具
遵循标准的数据恢复流程,确保数据能够完整、准确地恢复。
数据恢复流程
在数据恢复过程中,要警惕潜在的安全风险,如数据泄露和恶意软件感染。
数据安全风险
数据恢复
感谢您的观看
THANKS
总结词
详细描述
十六进制与十进制的转换
二进制和十六进制都是计算机内部使用的数字表示方式,它们之间的转换对于理解计算机内部操作至关重要。
总结词
二进制与十六进制之间的转换可以通过分组和权值计算实现。将二进制数每4位一组分为若干组,再将每组转换为相应的十六进制数。反之,将十六进制数每1位转换为4位的二进制数。例如,二进制数10100101转换为十六进制数为2D。
由一系列字符组成,如"Hello"、"World"等。
字符编码
用于将字符转换为计算机内部可以处理的二进制代码,如ASCII码、Unicode码等。
布尔型数据
只有两个值,真(True)和假(False)。
枚举型数据
一组固定的值,如星期几、月份等。
逻辑型数据
02
数据存储
数据的最小单位,表示二进制的一位,可以是0或1。
太字节(TB)
计算机中数的表示和存储
“计算机中数的表示和存储”习题一.概念题1.浮点数:知识点:计算机中数值的表示。
对应章节内容:第二章第一点(3)提示:浮点数的概念。
答案:小数点位置不固定,在数据中的位置可以左右移动。
2.位:知识点:数据单位。
对应章节内容:第二章第三点提示:位的概念。
答案:计算机中最小的信息单位,又称比特。
比特既没有颜色,也没有大小和重量。
分别表示0和1。
3.字节:知识点:数据单位。
对应章节内容:第二章第三点提示:字节的概念。
答案:简写为B,1字节由8个二进制数位组成。
计算机中用来表示存储空间大小的基本容量单位。
4.字:知识点:数据单位。
对应章节内容:第二章第三点提示:字节的概念。
答案:计算机信息交换、加工、存储的基本单元。
字用二进制码表示,一个字由一个字节或若干字节构成。
字长是衡量计算机性能的一个重要指标。
二. 填空题1.计算机中最小的信息单位____;计算机中用来表示存储空间大小的基本容量单位_____;计算机信息交换、加工、存储的基本单元_____。
知识点:数据单位。
对应章节内容:第二章第三点提示:位、字节、字的定义。
答案:位;字节;字2.在汉字编码的分类中,放大后会失真的是____。
知识点:汉字编码。
对应章节内容:第二章第三点(3)提示:汉字编码的分类。
答案:点阵汉字。
3.100.345(D)=______(B)知识点:进制转换。
对应章节内容:第二章第一点提示:十进制转二进制:整数部分:除二取余,倒序排列;小数部分:乘二取整,正序排列。
答案:1100100.010114.1101101110.110101(B)=_____(H)知识点:进制转换。
对应章节内容:第二章第一点提示:二→十六:以小数点为基准,分别向左、右进行“四位并一位”,不足补零;十六→二:以小数点为基准,分别向左、右进行“一位拉四位”。
答案:36E.D45.-0.31001×220中“20”是该浮点数的_______。
知识点:浮点数。
计算机中数据的表示
计算机中数据的表示一、计算机中数据的表示方法我们在初一的信息技术课程(第一单元)中已经知道,计算机中的数据都是用二进制来表示的。
这是因为:计算机是一个电器,在计算机中用电路的接通和断开、电压的高和低等类似的两种对立的状态来表示数据是最容易的。
二进制中只有0和1两个数字。
二进制的基本运算规则:0+0=0 ,0+1=1 ,1+0=1 ,1+1=100*0=0 ,0*1=0 ,1*0=0 ,1*1=1二进制和十进制整数的相互转换十进制→二进制方法:除二取余数例:(25)10=(11001)2二进制→十进制方法:乘权求和例:(110101)2=1*25+1*24+0*23+1*22+0*21+1*20=32+16+0+4+0+1=(53)10类似于十进制数按位数展开:如:(486795)10=4*105+8*104+6*103+7*102+9*101+5*100=400000+80000+6000+700+90+5二进制和十进制小数的相互转换十进制→二进制方法:乘二取整数例:(0.35)10≈(0.01011)2二进制→十进制方法:乘权求和不过这个权是负的,也就是倒数例:(0.101101)2=1/21+0/22+1/23+1/24+0/25+1/26=0.5+0+0.125+0.0625+0+0.015625=(0.703125)10在不同进制的转换过程中,一般都要把整数部分和小数部分分别进行转换。
十进制数转换为二进制数后,往往会变得很长,为了解决这一问题,我们在计算机中引入了八进制数和十六进制数。
十六进制数中除了使用数字0-9以外,还要使用大写英文字母A-F分别对应十进制数的10-15。
八进制数中的每一位数字可以转换为三位二进制数字,十六进制数中的每一位数字可以转换为四位二进制数字。
二、计算机中的机器码在计算机中,参加运算的数有正与负之分,数的符号也是用二进制来表示的。
用二进制表示带符号的数称为机器码。
计算机中数值的表示
计算机中数值的表示
1.1 机器数的编码表示
[Y]原=11001010 [Y]补=11001010+模=11001010+100000000=100000000+11001010
=100000000+(-1001010)=11111111+1-1001010 =(11111111-1001010)+1 可以看出,上式中(11111111-1001010)符号位为1,数值位为各位取 反,即有: [Y]补=10110101+1=10110110 其中(10110101)我们对(-1001010)定义为反码,即符号位为1,数值位 各位取反。
计算机中数值的表示
1.3 十进制数的编码
★用8421码实现加、减运算时的规则比较复杂,4位0、1码可编码 0000~1111共16个码,十进制只有0~9共10个码,某些情况下,需要 对运算结果进行加6修正。8421码加法修正规则为: (1)4位一组二进制数,两个8421码表示的数相加之和等于或小于1001, 即十进制的9时,不需要修正,在各组内,二进制代码相加,仍遵循 “逢二进一”的规则。 (2)4位一组二进制数,两个8421码相加结果大于1001(十进制9)时, 则应该对该组的4位进行“加6修正”,使它向高一组产生进位。 (3)4位一组二进制数,两个8421码相加结果大于或等于10000(十进制 16),而向高一组进位时,则应该对该4位进行“加6修正”。
计算机中数值的表示
1.1 机器数的编码表示
正数的补数即该正数本身。 一个正数和一个负数互为补数时,它们绝对值之和即为模数。 一个负数可用它的正补数来代替,而这个正补数可以用模加上负
计算机数的表示方法及运算
计算机数的表示方法及运算计算机数的表示方法和运算是计算机科学中的基础知识,它涉及到计算机中数值的表示方式以及各种运算操作的执行。
在本文中,我们将重点讨论计算机中数的表示方法和运算规则,以帮助读者更好地理解这一概念。
一、计算机中数的表示方法1. 二进制表示法二进制是计算机中最基本的数制,它由两个数字0和1组成。
计算机中的所有数据都以二进制的形式存储和处理。
例如,整数14的二进制表示为00001110,其中最左边的位称为最高有效位(Most Significant Bit,简称MSB),最右边的位称为最低有效位(Least Significant Bit,简称LSB)。
2. 十进制表示法十进制是我们平常生活中最常用的数制。
在计算机中,我们可以使用十进制表示法来表示数值。
例如,整数14的十进制表示为14。
3. 八进制表示法八进制是一种以8为基数的表示方法。
在计算机中,我们可以使用八进制表示法来表示数值。
例如,整数14的八进制表示为16。
4. 十六进制表示法十六进制是一种以16为基数的表示方法。
在计算机中,我们可以使用十六进制表示法来表示数值。
例如,整数14的十六进制表示为0xE。
二、计算机数的运算规则1. 二进制数的运算在计算机中,二进制数的运算规则与十进制数类似。
常见的二进制运算包括加法、减法、乘法和除法。
在进行二进制运算时,需要注意进位和借位的处理。
2. 进制之间的转换在计算机中,我们通常需要在不同进制之间进行转换。
例如,可以将二进制数转换为十进制数,或将十进制数转换为二进制数。
转换的方法可以采用逐位相加或逐位相乘的方式进行。
3. 补码表示法计算机中一般采用补码表示法来表示整数。
补码是指将一个数的正负符号位按位取反,然后加1得到的新数。
例如,整数-1的补码表示为11111111。
4. 浮点数的表示在计算机中,浮点数用于表示带有小数点的数值。
浮点数的表示采用科学计数法,其中包括尾数和指数两部分。
尾数用来表示数的大小,而指数用来表示小数点的位置。
计算机数据的表示形式
计算机数据的表示形式计算机中的数据都是以二进制的形式存储和表示的。
在计算机中,每一位二进制数字都被称作一个比特(bit),8个比特组成一个字节(byte)。
计算机中的所有数据都是由比特和字节组成的,下面我们来介绍一些常见的数据表示形式。
1. 整数在计算机中,整数通常使用二进制补码表示,即将正数的二进制表示不变,负数则将其二进制表示取反再加1。
例如,对于-5,其二进制表示为11111011,加1后为11111100。
这样做的好处是能够将加减法运算转化为位运算,从而提高运算速度。
2. 浮点数浮点数用于表示小数,通常使用IEEE754标准中的单精度(float)和双精度(double)格式。
其中,单精度浮点数占用32位(4个字节),双精度浮点数占用64位(8个字节)。
浮点数的二进制表示包括一个符号位、指数位和小数位,其中指数位使用偏移码表示,可以表示正负数和0。
3. 字符在计算机中,字符通常使用ASCII码表示,即每个字符对应一个唯一的8位二进制码。
例如,字母A的ASCII码为01000001,数字1的ASCII码为00110001。
随着Unicode编码的普及,计算机也开始使用更多的16位或32位编码来表示字符集。
4. 图像图像在计算机中通常以像素的形式表示,每个像素包含一个颜色值。
在黑白图像中,每个像素只有一个二进制位表示黑或白。
在彩色图像中,每个像素通常使用RGB格式表示,即使用3个字节分别表示红、绿、蓝三种颜色的亮度值。
此外,还有一些其他的颜色格式如CMYK等。
5. 音频音频在计算机中通常以数字信号的形式表示。
在数字音频中,采样定理要求将模拟音频转换为数字形式,通常使用16位或24位的PCM编码表示。
此外,还有一些其他的数字音频格式如AAC、MP3等。
6. 视频视频在计算机中通常以帧的形式表示,每一帧包含一个图像。
视频编码的常见格式有MPEG、AVI、WMV等。
视频编码通常使用压缩算法来减小数据量,常见的压缩算法有H.264、VP9等。
表示数的四种方式
表示数的四种方式
表示数的四种方式包括:
1. 十进制表示法:十进制是最常见的数表示方法,使用0-9这10个数字来表示数值。
它基于每一位的权值,从右向左依次增加10的幂。
例如,数值256在十进制表示法中以以下形式呈现:256。
2. 二进制表示法:二进制是一种只使用0和1两个数字表示数值的方法。
它基于每一位的权值,从右向左依次增加2的幂。
例如,数值9在二进制表示法中以以下形式呈现:1001。
3. 八进制表示法:八进制是一种只使用0-7这8个数字表示数值的方法。
它基于每一位的权值,从右向左依次增加8的幂。
例如,数值27在八进制表示法中以以下形式呈现:33。
4. 十六进制表示法:十六进制是一种使用0-9和A-F这16个数字(A
代表10,B代表11,以此类推)表示数值的方法。
它基于每一位的权值,从右向左依次增加16的幂。
例如,数值173在十六进制表示法中以以下形式呈现:AD。
不同进制的表示法在不同领域和应用中有其特定的用途。
在计算机科学和电子工程中,二进制和十六进制常用于表达二进制代码和寄存器值。
而在日常生活和大多数数学应用中,常使用十进制表示法。
计算机中数值的三种表示方法详解:原码,反码, 补码
计算机中数值的三种表示方法详解原码,反码,补码最近在学习软件评测师的知识,其中涉及到计算机的原码, 反码和补码等知识. 通过网上查阅资料,进行了深入学习,分享给大家。
本文主要从以下几点进行介绍:如何计算原码,反码,补码?为何要使用反码和补码?希望本文对大家学习计算机基础有所帮助一. 机器数和真值在学习原码, 反码和补码之前, 需要先了解机器数和真值的概念.1、机器数一个数在计算机中的二进制表示形式, 叫做这个数的机器数。
机器数是带符号的,在计算机用一个数的最高位存放符号, 正数为0, 负数为1.比如,十进制中的数+3 ,计算机字长为8位,转换成二进制就是00000011。
如果是-3 ,就是10000011 。
那么,这里的00000011 和10000011 就是机器数。
2、真值因为第一位是符号位,所以机器数的形式值就不等于真正的数值。
例如上面的有符号数10000011,其最高位1代表负,其真正数值是-3 而不是形式值131(10000011转换成十进制等于131)。
所以,为区别起见,将带符号位的机器数对应的真正数值称为机器数的真值。
例:0000 0001的真值= +000 0001 = +1,1000 0001的真值= –000 0001 = –1二. 原码, 反码, 补码的基础概念和计算方法.计算机中的符号数有三种表示方法,即原码、反码和补码。
三种表示方法均有符号位和数值位两部分,符号位都是用0表示“正”,用1表示“负”,而数值位,三种表示方法各不相同。
1. 原码原码就是符号位加上真值的绝对值, 即用第一位表示符号, 其余位表示值. 比如如果是8位二进制:[+1]原 = 0000 0001[-1]原 = 1000 0001第一位是符号位. 因为第一位是符号位, 所以8位二进制数的取值范围就是: [1111 1111 , 0111 1111]即[-127 , 127]原码是人脑最容易理解和计算的表示方式.2. 反码反码的表示方法是:正数的反码是其本身负数的反码是在其原码的基础上, 符号位不变,其余各个位取反.[+1] = [00000001]原 = [00000001]反[-1] = [10000001]原 = [11111110]反可见如果一个反码表示的是负数, 人脑无法直观的看出来它的数值. 通常要将其转换成原码再计算.3. 补码补码的表示方法是:正数的补码就是其本身负数的补码是在其原码的基础上, 符号位不变, 其余各位取反, 最后+1. (即在反码的基础上+1)[+1] = [00000001]原 = [00000001]反 = [00000001]补[-1] = [10000001]原 = [11111110]反 = [11111111]补对于负数, 补码表示方式也是人脑无法直观看出其数值的. 通常也需要转换成原码在计算其数值.简单总结以下,反码和补码的表示方式以及计算方法.对于正数,三种编码方式的结果都相同:正整数的原码、反码、补码完全一样,即符号位固定为0,数值位相同。
数据在计算机内的表示
数值数据在机内的表示在选择计算机的数值数的表示方式时,需要考虑以下几个因素:(1)要表示的数的类型(小数、整数、实数和复数);(2)可能遇到的数值范围;(3)数值精确度;(4)数据存储和处理所需要的硬件代价。
2.1.1.1 定点数与浮点数计算机处理的数值数据多数带有小数,小数点在计算机中通常有两种表示方法,一种是约定所有数值数据的小数点隐含在某一个固定位置上,称为定点表示法,简称定点数;另一种是小数点位置可以浮动,称为浮点表示法,简称浮点数。
1. 定点数表示法(fixed-point)所谓定点格式,即约定机器中所有数据的小数点位置是固定不变的。
在计算机中通常采用两种简单的约定:将小数点的位置固定在数据的最高位之前,或者是固定在最低位之后。
一般常称前者为定点小数,后者为定点整数。
定点小数是纯小数,约定的小数点位置在符号位之后、有效数值部分最高位之前。
若数据x 的形式为x = x0.x1x2…x n( 其中x0为符号位,x1~x n是数值的有效部分,也称为尾数,x1为最高有效位),则在计算机中的表示形式为:一般说来,如果最末位x n = 1,前面各位都为0 ,则数的绝对值最小,即|x|mi n = 2-n。
如果各位均为1,则数的绝对值最大,即|x|ma x =1-2-n 。
所以定点小数的表示范围是:2- n ≤ | x| ≤ 1 - 2- n定点整数是纯整数,约定的小数点位置在有效数值部分最低位之后。
若数据x 的形式为x = x0x1x2…x n ( 其中x0为符号位,x1~x n是尾数,x n为最低有效位),则在计算机中的表示形式为:定点整数的表示范围是:1≤ | x| ≤ 2n- 1当数据小于定点数能表示的最小值时,计算机将它们作0处理,称为下溢;大于定点数能表示的最大值时,计算机将无法表示,称为上溢,上溢和下溢统称为溢出。
计算机采用定点数表示时,对于既有整数又有小数的原始数据,需要设定一个比例因子,数据按其缩小成定点小数或扩大成定点整数再参加运算,运算结果,根据比例因子,还原成实际数值。
计算机中如何表示数字(1-6讲)
计算机中如何表示数字-01机器数与真值机器数就是数值在计算机中的表示形式,真值则是它在现实中的实际数值。
可以这样简单的理解。
因为计算机只能直接识别和处理用0、1两种状态的二进制形式的数据,所以在计算机中无法按人们的日常书写习惯用正、负符号加绝对值来表示数值,而与数字一样采用二进制代码0和1来表示正、负号。
这样在计算机中表示带符号的数值数据时,符号和数均采用了0、1进行了代码化。
这种采用二进制表示形式,连同正负符号一起代码化的数据,称为机器数或者机器码(即,数值在计算机中的二进制表示形式)。
与机器数对应,用正、负符号加绝对值来表示的实际数值称为真值。
根据约定机器数是否存在符号位,机器数可以分为无符号数和带符号数。
无符号数是指计算机字长的所有二进制位均表示数值。
带符号数是指机器数分为符号位和数值两部分,且均采用二进制表示。
一般约定最高位表示符号。
例1-1: 10011001作为无符号定点整数时,真值是153;作为带符号定点整数时,第一位是符号位,1代表负号,二进制数10011001的真值是-0011001,转化成十进制是-25。
对于带符号数,根据小数点位置固定与否,又可以分为定点数和浮点数。
在介绍浮点数之前我们要将注意力完全放在定点数上面,要有点耐心,对定点数的理解程度决定了我们对浮点数的理解程度,因为可以将浮点数看成是对定点数的一种应用,以后就会明白了。
好了,先看一看什么是定点数。
定点数约定所有数据的小数点位置均是相同且固定不变的。
计算机中通常使用的定点数有定点小数和定点整数两类。
定点小数:对于一个长度为n位的机器数,定点小数约定小数点在符号位和最高数值位之间,如下数符(最高位,占用1位). 尾数(剩余n-1位)小数点只是一个约定,是隐含的,不占用空间。
定点整数:对于一个长度为n位的机器数,定点整数约定小数点在最低数值位之后,如下数符(最高位,占用1位)尾数(剩余n-1位).小数点也是隐含的。
例1-2:下的八位二进制数,我们看看它们所代表的值是多少定点小数:1.1011001 真值=-0.1011001=-0.6953125定点整数:11011001 真值=-1011001=-89真值:127=+1111111 定点整数:01111111真值:-0.125=-0.001 定点小数:1.0010000总结上面的内容,机器数的特点是:1. 符号数值化,0代表正、1代表负。
数值型数据的表示及处理
原码、反码、补码数值在计算机中表示形式为机器数,计算机只能识别0和1,使用的是二进制,而在日常生活中人们使用的是十进制,"正如亚里士多德早就指出的那样,今天十进制的广泛采用,只不过我们绝大多数人生来具有10个手指头这个解剖学事实的结果.尽管在历史上手指计数(5,10进制)的实践要比二或三进制计数出现的晚.为了能方便的与二进制转换,就使用了十六进制和八进制.下面进入正题. 数值有正负之分,计算机就用一个数的最高位存放符号(0为正,1为负).这就是机器数的原码了.假设机器能处理的位数为8.即字长为1byte,原码能表示数值的范围为(-127~-0 +0~127)共256个. 有了数值的表示方法就可以对数进行算术运算.但是很快就发现用带符号位的原码进行乘除运算时结果正确,而在加减运算的时候就出现了问题,如下: 假设字长为8bits ,( 1 ) 10- ( 1 )10 = ( 1 )10 + ( -1 )10 =(00000001)原+ (10000001)原= (10000010)原= ( -2 ) 显然不正确(十进制的1减1当然为0)。
因为在两个整数的加法运算中是没有问题的,于是就发现问题出现在带符号位的负数身上,对除符号位外的其余各位逐位取反就产生了反码.反码的取值空间和原码相同且一一对应. 下面是反码的减法运算: ( 1 )10 - ( 1 ) 10= ( 1 ) 10+ ( -1 ) 10= (00000001) 反+ (11111110)反= (11111111)反= ( -0 ) 有问题. ( 1 )10 - ( 2)10 = ( 1 )10 + ( -2 )10 = (00000001) 反+ (11111101)反= (11111110)反= ( -1 ) 正确。
问题出现在(+0)和(-0)上,在人们的计算概念中零是没有正负之分的.(印度人首先将零作为标记并放入运算之中,包含有零号的印度数学和十进制计数对人类文明的贡献极大). 于是就引入了补码概念. 负数的补码就是对反码加一,而正数不变,正数的原码反码补码是一样的.在补码中用(-128)代替了(-0),所以补码的表示范围为: (-128~0~127)共256个. 注意-128没有相对应的原码和反码, (-128) = (10000000) 补码的加减运算如下: ( 1 ) 10- ( 1 ) 10= ( 1 )10 + ( -1 )10 = (00000001)补+ (11111111)补= (00000000)补= ( 0 ) 正确( 1 ) 10- ( 2) 10= ( 1 )10 + ( -2 )10 = (00000001) 补+ (11111110) 补= (11111111)补= ( -1 ) 正确所以补码的设计目的是: ⑴使符号位能与有效值部分一起参加运算,从而简化运算规则. ⑵使减法运算转换为加法运算,进一步简化计算机中运算器的线路设计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数值型数据由数字组成,表示数量,用于算术操作中。
3.5.1 定点数和浮点数的概念
在计算机中,数值型的数据有两种表示方法,一种叫做定点数,另一种叫做浮点数。
所谓定点数,就是在计算机中所有数的小数点位置固定不变。
定点数有两种:定点小数和定点整数。
定点小数将小数点固定在最高数据位的左边,因此,它只能表示小于1的纯小数。
定点整数将小数点固定在最低数据位的右边,因此定点整数表示的也只是纯整数。
由此可见,定点数表示数的范围较小。
为了扩大计算机中数值数据的表示范围,我们将12.34表示为0.1234×102,其中0.1234叫做尾数,10叫做基数,可以在计算机内固定下来。
2叫做阶码,若阶码的大小发生变化,则意味着实际数据小数点的移动,我们把这种数据叫做浮点数。
由于基数在计算机中固定不变,因此,我们可以用两个定点数分别表示尾数和阶码,从而表示这个浮点数。
其中,尾数用定点小数表示,阶码用定点整数表示。
在计算机中,无论是定点数还是浮点数,都有正负之分。
在表示数据时,专门有1位或2位表示符号,对单符号位来讲,通常用“1”表示负号;用“0”表示正号。
对双符号位而言,则用“11”表示负号;“00”表示正号。
通常情况下,符号位都处于数据的最高位。
3.5.2 定点数的表示
一个定点数,在计算机中可用不同的码制来表示,常用的码制有原码、反码和补码三种。
不论用什么码制来表示,数据本身的值并不发生变化,数据本身所代表的值叫做真值。
下面,我们就来讨论这三种码制的表示方法。
1. 原码
原码的表示方法为:如果真值是正数,则最高位为0,其它位保持不变;如果真值是负数,则最高位为1,其它位保持不变。
【例1】写出13和–13的原码(取8位码长)
解:因为13=(1101)2,所以13的原码是00001101,-13的原码是10001101。
采用原码,优点是转换非常简单,只要根据正负号将最高位置0或1即可。
但原码表示在进行加减运算时很不方便,符号位不能参与运算,并且0的原码有两种表示方法:+0的原码是00000000,-0的原码是10000000。
2. 反码
反码的表示方法为:如果真值是正数,则最高位为0,其它位保持不变;如果真值是负数,则最高位为1,其它位按位求反。
【例2】写出13和–13的反码(取8位码长)
解:因为13=(1101)2,所以13的反码是00001101,-13的反码是11110010。
反码跟原码相比较,符号位虽然可以作为数值参与运算,但计算完后,仍需要根据符号位进行调整。
另外0的反码同样也有两种表示方法:+0的反码是00000000,-0的反码是11111111。
为了克服原码和反码的上述缺点,人们又引进了补码表示法。
补码的作用在于能把减法运算化成加法运算,现代计算机中一般采用补码来表示定点数。
3. 补码
补码的表示方法为:若真值是正数,则最高位为0,其它位保持不变;若真值是负数,则最高位为1,其它位按位求反后再加1。
【例3】写出13和–13的补码(取8位码长)
解:因为13=(1101)2,所以13的补码是00001101,-13的补码是11110011。
补码的符号可以作为数值参与运算,且计算完后,不需要根据符号位进行调整。
另外,0的补码表示方法也是唯一的,即00000000。
3.5.3 浮点数的表示方法
浮点数表示法类似于科学计数法,任一数均可通过改变其指数部分,使小数点发生移动,如数23.45可以表示为:101×2.345、102×0.2345、103×0.02345等各种不同形式。
浮点数的一般表示形式为:N=2E ×D,其中,D称为尾数,E称为阶码。
如图3.1所示,为浮点数的一般形式。
图3.1 浮点数的一般形式
对于不同的机器,阶码和尾数各占多少位,分别用什么码制进行表示都有具体规定。
在实际应用中,浮点数的表示首先要进行规格化,即转换成一个纯小数与2m之积,并且小数点后的第一位是1。
【例4】写出浮点数(-101.11101)2的机内表示(阶码用4位原码表示,尾数用8位补码表示,阶码在尾数之前)
解:(-101.11101)2=(-0.10111101)2×23
阶码为3,用原码表示为0011
尾数为-0.10111101,用补码表示为1.01000011
因此,该数在计算机内表示为:00111.01000011。