高二年级11月月考数学理试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河北容城中学高二年级2014年11月份月考数学试题
命题人 段美英 审题人 段飞华
一、选择题(每小题5分,共60分)
1.已知椭圆2
214
x y +=,则椭圆的焦距长为( )
(A). 1 (B). 2 (C). (D). 23
2. 一个年级有12个班,每个班有50名同学,随机编号为1-50,为了了解他们在课外的兴趣,要求每班第40号同学留下来进行问卷调查,这里运用的抽样方法是( )
(A ) 抽签法 (B)系统抽样法 (C)随机数表法 (D)分层抽样法 3.若命题“p ∨q ”为真,“﹁p ”为真,则( ) (A) p 真q 真 (B) p 假q 假 (C)p 真q 假 (D)p 假q 真
4.从区间()0,1内任取一个实数,则这个数小于5
6的概率是( )
(A )35 (B) 45 (C)
5
6 (D)
16
25
5.已知椭圆C 1、C 2的离心率分别为e 1、e 2,若椭圆C 1比C 2更圆,则e 1与e 2的大小
关系正确的是 ( )
(A )e 1<e 2 (B) e 1=e 2 (C) e 1>e 2 (D) e 1、e 2大小不确定 6.计算机中常用16进制,采用数字0~9和字母A ~F 共16个计数符号与10进制得对应关系如下表:
例如用16进制表示D+E =1B ,则A×B=( )
(A ) 6E (B) 7C (C)5F (D) B0
7.某产品分为甲、乙、丙三级,其中乙、丙两级均属次品,若生产中出现乙级品的概率为0.03,出现丙级品的概率为0.01,则对产品抽查一次抽得正品的概率是( )
(A)0.99 (B)0.98 (C)0.97 (D)0.96
8.将x=2005输入如图所示的程序框图得结果 ( )
(A )-2005 (B) 2005 (C) 0
(D) 2006
9.已知|x|≤2,|y|≤2,点P 的坐标为(x ,y),则当x ,y ∈Z 时,P 满足(x -2)2+(y -2)2
≤4的概率为( )
(A)
225 (B) 425 (C) 625 (D) 8
25
10.已知椭圆22
143
x y +
=的长轴的左、右端点分别为A 、B ,在椭圆上有一个异于点A 、B 的动点P ,若直线PA 的斜率k PA =1
2
,则直线PB 的斜率k PB 为
( )
(A)
32 (B) -
32 (C)
34 (D) -
34
11.下列说法正确的是( )
(A )“1>a ”是“)1,0(log )(≠>=a a x x f a 在),0(+∞上为增函数”的充要条件 (B )命题“R x ∈∃使得0322<++x x ”的否定是:“032,2>++∈∀x x R x ” (C )“1-=x ”是“0322=++x x ”的必要不充分条件 (D ) 命题:p “2cos sin ,≤+∈∀x x R x ”,则p ⌝是真命题
12.已知椭圆22
22:1(0)x y C a b a b
+=>>的左焦点为F,C 与过原点的直线相交于A,B 两点,
连接AF,BF. 若AB 10=,BF 8=,4
cos ABF 5
∠=,则C 的离心率为 ( )
(A ) (B) (C) (D)
二、填空题(每题5分,共20分)
13.如图阴影部分是圆O 的内接正方形,随机撒314粒黄豆,则预测黄豆落在正方形内的约_____粒.
14.已知x,y 的取值如下表所示,若y 与x 线性相关,且0.95,y x a a ∧
=+=则
15. 表示椭圆,则k 的取值范围为___________
16.已知2
214
x y +=,1F ,2F 分别为其左右焦点,P 为椭圆上一点,则12F PF ∠的取值
范围是 三、解答题:(共70分)
17. (10分)求椭圆9x 2+25y 2=900的长轴和短轴的长、离心率、焦点和顶点的坐标. .
18. (12分)为了对某课题进行研究,用分层抽样方法从三所高校A 、B 、C 的相关人员中,抽取若干人组成研究小组,有关数据如下表(单位:人)
(1)求x 、y ;
(2)若从高校B 、C 抽取的人中选2人作专题发言,求这二人来自高校C 的概率。
19.(12分)已知动点P 与平面上两定点(1,0),(1,0)A B -连线的斜率的积为定值2-. (1)试求动点P 的轨迹方程C.
(2)设直线:1l y x =+与曲线C 交于M 、N 两点,求|MN|
20.(12分)已知p :函数2
()()1
f x m m x =--的图象在R 上递减;q :曲线()2231y x m x =+-+与x 轴交于不同两点,如果p 或q 为真,p 且q 为假,求m 的取
值范围.
21.(12分)设函数()f x = D. (1)a ∈{1,2,3,4},b ∈{1,2,3},求使D=R 的概率; (2)a ∈[0,4],b ∈[0,3],求使D=R 的概率.
22.(12分)已知直线:220l mx y m -+=(m R ∈)和椭圆22
22:1(0)x y C a b a b
+=>>,
椭圆C 的离心率为
2
2
,连接椭圆的四个顶点形成四边形的面积为. (Ⅰ)求椭圆C 的方程;
(Ⅱ)设直线l 与椭圆C 交于A ,B 两点,若以线段AB 为直径的圆过原点,求实数
m 的值.