初中数学考点尺规作图
初中数学专题尺规作图(含答案)
第28课时尺规作图◆考点聚焦1.掌握基本作图,尺规作图的要求与步骤.2.利用基本作图工具画三角形、四边形、圆以及简单几何体的三视图,•对简单的作图能叙述作法.3.运用基本作图、结合相关的数学知识(平移、旋转、对称、•位似)等进行简单的图案设计.4.运用基本作图解决实际问题.◆备考兵法1.熟练掌握基本作图.2.在画几何体的三视图时,要注意其要求,•即“长对正”“高平齐”“宽相等”.3.认真分析题意,善于把实际问题转化为基本作图.◆识记巩固1.尺规作图的定义:_____________.2.基本作图包括:_______,_______,________,________,_______.3.三角形三边的垂直平分线的交点叫三角形的外心,•三角形三内角平分线的交点叫三角形的内心,外心到三角形的_______的距离相等,内心到三角形_______的距离相等.识记巩固参考答案:1.限定只能使用圆规和没有刻度的直尺作图2.作线段作角作线段的垂直平分线过一点作已知直线的垂线作角平分线3.顶点三边◆典例解析例1 (2008,新疆建设兵团)(1)请用两种不同的方法,用尺规在所给的两个矩形中各作一个不为正方形的菱形,且菱形的四个顶点都在矩形的边上.(保留作图痕迹)(2)写出你的作法.解析(1)所作菱形如图①,②所示.说明:作法相同的图形视为同一种,例如类似图③,•图④的图形视图与图②是同一种.①②③④(2)图①的作法:作矩形A1B1C1D1四条边的中点E1,F1,G1,H1,连结H1E1,E1F1,G1F1,G1H1.四边形E1F1G1H1即为菱形.图②的作法:在B2C2上取一点E2,使E2C2>A2E2且E2不与B2重合,连结A2E2.以A2为圆心,A2E2为半径画弧,交A2D2于H2;以E2为圆心,A2E2为半径画弧,交B2C2于F2;连结H2F2,则四边形A2E2F2H2为菱形.例2 如图,已知∠AOB,OA=OB,点E在OB边上,四边形AEBF是矩形.请你只用无刻度的直尺在图中画∠AOB的平分线(请保留画图痕迹).解析连结AB.因为OA=OB,因此△ABO为等腰三角形.要作出∠AOB的平分线,•只要确定出AB的中点即可.因AEBF为矩形,因此连结AB,EF,相交于M.根据矩形的性质,M即为AB的中点.连结OM,射线OM即为所求的角平分线.例3台球是一项高雅的体育运动,其中包含了许多物理学,几何学知识.如图是一个台球桌,目标球F与本球E之间有一个G球阻挡,现在击球者想通过击打E球先撞击球台的AB边,经过一次反弹后再撞击F球,他应将E球打到AB边上的哪一点?•请在图中用尺规作图这一点H,并作出E球的运行路线(不写画法,保留作图痕迹).解析作点E关于直线AB的对称点E1,连结E1F,E1F与AB相交于点H,球E•的运动路线是EH→HF.点评本例是把实际问题通过抽象,把求H点的问题先转化为作E•点关于直线AB的对称点问题加以解决.数学课程标准对尺规作图提出了明确要求,是中考的重要内容之一,在复习时要掌握基本作图,要善于把具体问题的作图转化为基本作图.•学会对作图问题进行分析,归纳,掌握画法.◆中考热身1.(2008,江苏镇江)如图,在△ABC中,作∠ABC的平分线BD,交AC于D,作线段BD 的垂直平分线EF,分别交AB于E,BC于F,垂足为O,连结DF,在所作图中,寻找一对全等三角形,并加以证明.(不定作法,保留作图痕迹)2.(2008,山西太原)如图,在△ABC中,∠BAC=2∠C.(1)在图中作出△ABC的内角平分线AD;(要求:尺规作图,保留作图痕迹,•不写证明)(2)在已作出的图形中,写出一对相似三角形,并说明理由.3.(2008,四川成都)如图,已知点A是锐角∠MON内的一点,试分别在OM,ON上确定点B,点C,使ABC•的周长最小,写出你作图的主要步骤并标明你所确定的点_________.(要求画出草图,保留作图痕迹)◆迎考精练一、基础过关训练1.在Rt△ABC中,已知∠C=90°,AD是∠BAC的平分线.以AB上一点O为圆心,AD•为弦作⊙O(不写作法,保留作图痕迹).2.请你画出一个以BC为底边的等腰△ABC,使底边上的高AD=BC.(1)求tanB和sinB的值.(2)在你所画的等腰△ABC中,假设底边BC=5米,求腰上的高BE.3.作一条直线,平分如图所示图形的面积:4.现有m,n两堵墙,两个同学分别站在A处和B处,请问小明在哪个区域内活动才不会被任何一个同学发现?(画图,用阴影表示)5.按下列要求作图,不写画法,要保留作图痕迹.(1)在图1中,作出AB的中点M,作出∠BCD的平分线CN,延长CD到点P,使DP=2CD;(2)如图2是一个破损的机器部件,它的残留边缘是圆弧,请作图找出圆弧所在的圆心.图1 图26.如图,Rt△ABC的斜边AB=5,cosA=35.(1)用尺规作图作线段AC的垂直平分线(保留作图痕迹,不要求写作法,证明);(2)若直线L与AB,AC分别相交于D,E两点,求DE的长.7.成绵高速公路OA和绵广高速公路OB在绵阳市相交于点O,在∠AOB•内部有两个城镇C,D,若要修一个大型农贸市场P,使P到OA与OB的距离相等,且PC=PD,用尺规作出市场P的位置.(不写作法,保留作图痕迹)二、能力提升训练8.已知正方形ABCD的面积为S.(1)求作:四边形A1B1C1D1,使得点A1和点A关于点B对称,点B1和点B关于点C 对称,点C1和点C关于点D对称,点D1和点D关于点A对称;(只要求画出图形,不要求写作法)(2)用S1表示(1)中所作出的四边形A1B1C1D1的面积;(3)若将已知条件中的正方形改为任意四边形,面积仍为S,并按(1)•的要求作出一个新的四边形,面积为S2,则S1与S2是否相等?为什么?参考答案:中考热身1.解:(1)画角平分线,线段的垂直平分线.(2)△BOE≌△BOF≌△DOF.证明(略)2.解:(1)如图,AD即为所求(2)△ABD∽△CBA,理由如下:∵AD平分∠BAC,∠BAC=2∠C,∴∠BAD=∠BCA.又∵∠B=∠B,∴△ABD∽△CBA.3.分别作点A关于OM,ON的对称点A′,A″;连结A′A″,分别交OM,ON于点B,点C,则点B,点C即为所求作图略迎考精练基础过关训练1.点拨:作AD的垂直平分线与AB的交点即为圆心,OA为半径.(作图略)2.解:①画线段BC:②作BC的垂直平分线MN与BC相交于D;③在DM上截取DA=BC;④连结AB,AC,△ABC即为所求.(1)tanB=2,sinB=255,(2)BE=25米.3.点拨:过几何体中心的任一条直线均可将该图形分成面积相等的两部分.(•如图)4.解:小明在图中的阴影部分区域就不会被两个同学发现.5.(1)作图略.(2)点拨:在残片的圆弧上任选两条弦,分别作它们的中垂线,其交点即为圆心.6.点拨:(1)①分别以A,C为圆心,以大于12AC为半径画弧,两弧相交于M,N;•②连结MN,过MN的直线即为所求的直线L.(2)DE=2. 7.点拨:(1)作∠AOB的角平分线OE;(2)作DC的垂直平分线MN;(3)MN 交OE 于P 点,P 即为所求. 能力提升训练8.解:(1)如图1.图1 图2 (2)设正方形ABCD 的边长为a ,∴S=a 2. 依题意A 1D 1=A 1B 1=B 1C 1=C 1D 15. 易证A 1B 1C 1D 1是正方形, ∴S 1111A B C D =5a 2,∴S 1=5S . (3)S 1=S 2.证明如下:如图2,连结BD 1,BD .在△BDD 1中,AB 是中线, ∴S △ABD =S △ABD1.在△AA 1D 1中,BD 1是中线, ∴S △ABD1=S △A1BD1,S △AA1D1=2S △ABD1, 同理S △OC1B1=2S △CBD , ∴S △AA1D1+S △OC1B1=2S . 同理S △DD1C1+S △BA1B1=2S , ∴S 四边形1111A B C D =5S=S 2, ∴S 1=S 2.。
中考专题复习——初中最基本的尺规作图总结与典型例题
初中基本尺规作图总结与典型例题一、理解“尺规作图”的含义1.在几何中,我们把只限定用直尺(无刻度)和圆规来画图的方法,称为尺规作图.其中直尺只能用来作直线、线段、射线或延长线段;圆规用来作圆和圆弧.由此可知,尺规作图与一般的画图不同,一般画图可以动用一切画图工具,包括三角尺、量角器等,在操作过程中可以度量,但尺规作图在操作过程中是不允许度量成分的.2.基本作图:(1)用尺规作一条线段等于已知线段;(2)用尺规作一个角等于已知角. 利用这两个基本作图,可以作两条线段或两个角的和或差.二、熟练掌握尺规作图题的规范语言1.用直尺作图的几何语言:①过点×、点×作直线××;或作直线××;或作射线××;②连结两点××;或连结××;③延长××到点×;或延长(反向延长)××到点×,使××=××;或延长××交××于点×;2.用圆规作图的几何语言:①在××上截取××=××;②以点×为圆心,××的长为半径作圆(或弧);③以点×为圆心,××的长为半径作弧,交××于点×;④分别以点×、点×为圆心,以××、××的长为半径作弧,两弧相交于点×、×. 三、了解尺规作图题的一般步骤尺规作图题的步骤:1.已知:当作图是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件;2.求作:能根据题目写出要求作出的图形及此图形应满足的条件;3.作法:能根据作图的过程写出每一步的操作过程.当不要求写作法时,一般要保留作图痕迹.对于较复杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图寻找作法.在目前,我们只要能够写出已知,求作,作法三步(另外还有第四步证明)就可以了,而且在许多中考作图题中,又往往只要求保留作图痕迹,不需要写出作法,可见在解作图题时,保留作图痕迹很重要.尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。
中考数学基础复习第22课尺规作图课件
解得,x=5或-3(舍弃),∴BE=5.
变式2.(202X·长沙)人教版初中数学教科书八年级上册第48页告知我们一种 作已知角的平分线的方法: 已知:∠AOB. 求作:∠AOB的平分线. 作法:(1)以点O为圆心,适当长为半径画弧,交OA于点M,交OB于点N; (2)分别以点M,N为圆心,大于 1 MN的长为半径画弧,两弧在∠AOB的内部相交
4.(202X·北京)已知:如图,△ABC为锐角三角形,AB=AC,CD∥AB. 求作:线段BP,使得点P在直线CD上,且∠ABP= ∠BAC. 作法:①以点A为圆心,AC长为半径画圆,交直线CD于C,P两点;②连接BP.线段BP 就是所求作线段. (1)使用直尺和圆规,依作法补全图形.(保留作图痕迹)
2
∠CBA内交于点F;作射线BF交AC于点G.若CG=1,P为AB上一动点,则GP的最小值
为
(C)
A.无法确定
B. 1
2
C.1
D.2
5.(202X·河北)如图1,已知∠ABC,用尺规作它的角平分线.
如图2,步骤如下,
第一步:以B为圆心,以a为半径画弧,分别交射线BA,BC于点D,E;
第二步:分别以D,E为圆心,以b为半径画弧,两弧在∠ABC内部交于点P;
【解析】(1)则四边形ABCD就是所求作的四边形.
(2)∵AB∥CD,∴∠ABP=∠CDP,∠BAP=∠DCP,∴△ABP∽△CDP,∴ AB . AP
【考点3】尺规作图拓展应用
例3.(202X·苏州)如图,已知∠MON是一个锐角,以点O为圆心,任意长为半径画 弧,分别交OM,ON于点A,B,再分别以点A,B为圆心,大于 1 AB长为半径画弧,两
2
弧交于点C,画射线OC.过点A作AD∥ON,交射线OC于点D,过点D作DE⊥OC,交ON于
(完整版)初中最基本的尺规作图总结
尺规作图一、理解“尺规作图”的含义1.在几何中,我们把只限定用直尺(无刻度)和圆规来画图的方法,称为尺规作图.其中直尺只能用来作直线、线段、射线或延长线段;圆规用来作圆和圆弧.由此可知,尺规作图与一般的画图不同,一般画图可以动用一切画图工具,包括三角尺、量角器等,在操作过程中可以度量,但尺规作图在操作过程中是不允许度量成分的.2.基本作图:(1)用尺规作一条线段等于已知线段;(2)用尺规作一个角等于已知角. 利用这两个基本作图,可以作两条线段或两个角的和或差.二、熟练掌握尺规作图题的规范语言1.用直尺作图的几何语言:①过点×、点×作直线××;或作直线××;或作射线××;②连结两点××;或连结××;③延长××到点×;或延长(反向延长)××到点×,使××=××;或延长××交××于点×;2.用圆规作图的几何语言:①在××上截取××=××;②以点×为圆心,××的长为半径作圆(或弧);③以点×为圆心,××的长为半径作弧,交××于点×;④分别以点×、点×为圆心,以××、××的长为半径作弧,两弧相交于点×、×. 三、了解尺规作图题的一般步骤尺规作图题的步骤:1.已知:当作图是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件;2.求作:能根据题目写出要求作出的图形及此图形应满足的条件;3.作法:能根据作图的过程写出每一步的操作过程.当不要求写作法时,一般要保留作图痕迹.对于较复杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图寻找作法.在目前,我们只要能够写出已知,求作,作法三步(另外还有第四步证明)就可以了,而且在许多中考作图题中,又往往只要求保留作图痕迹,不需要写出作法,可见在解作图题时,保留作图痕迹很重要.尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。
初中尺规作图详细讲解(含图)
初中数学尺规作图讲解初等平面几何研究的对象,仅限于直线、圆以及由它们(或一部分)所组成的图形,因此作图的工具,习惯上使用没有刻度的直尺和圆规两种。
限用直尺和圆规来完成的作图方法,叫做尺规作图法.最简单的尺规作图有如下三条:⑴经过两已知点可以画一条直线;⑵已知圆心和半径可以作一圆;⑶两已知直线;一已知直线和一已知圆;或两已知圆,如果相交,可以求出交点;以上三条,叫做作图公法。
用直尺可以画出第一条公法所说的直线;用圆规可以作出第二条公法所说的圆;用直尺和圆规可以求得第三条公法所说的交点。
一个作图题,不管多么复杂,如果能反复应用上述三条作图公法,经过有限的次数,作出适合条件的图形,这样的作图题就叫做尺规作图可能问题;否则,就称为尺规作图不能问题.历史上,最著名的尺规作图不能问题是:⑴三等分角问题:三等分一个任意角;⑵倍立方问题:作一个立方体,使它的体积是已知立方体的体积的两倍;⑶化圆为方问题:作一个正方形,使它的面积等于已知圆的面积。
这三个问题后被称为“几何作图三大问题”。
直至1837年,万芝尔(Pierre Laurent Wantzel)首先证明三等分角问题和立方倍积问题属尺规作图不能问题;1882年,德国数学家林德曼(Ferdinand Lindemann)证明π是一个超越数(即π是一个不满足任何整系数代数方程的实数),由此即可推得根号π(即当圆半径1r=时所求正方形的边长)不可能用尺规作出,从而也就证明了化圆为方问题是一个尺规作图不能问题.若干著名的尺规作图已知是不可能的,而当中很多不可能证明是利用了由19世纪出现的伽罗华理论.尽管如此,仍有很多业余爱好者尝试这些不可能的题目,当中以化圆为方及三等分任意角最受注意。
数学家Underwood Dudley曾把一些宣告解决了这些不可能问题的错误作法结集成书。
还有另外两个著名问题:⑴正多边形作法·只使用直尺和圆规,作正五边形。
·只使用直尺和圆规,作正六边形.·只使用直尺和圆规,作正七边形—-这个看上去非常简单的题目,曾经使许多著名数学家都束手无策,因为正七边形是不能由尺规作出的.·只使用直尺和圆规,作正九边形,此图也不能作出来,因为单用直尺和圆规,是不足以把一个角分成三等份的.·问题的解决:高斯,大学二年级时得出正十七边形的尺规作图法,并给出了可用尺规作图的正多边形的条件:尺规作图正多边形的边数目必须是2的非负整数次方和不同的费马素数的积,解决了两千年来悬而未决的难题。
初中尺规作图详细讲解(含图)
初中数学尺规作图讲解初等平面几何研究的对象,仅限于直线、圆以及由它们(或一部分)所组成的图形,因此作图的工具,习惯上使用没有刻度的直尺和圆规两种。
限用直尺和圆规来完成的作图方法,叫做尺规作图法。
最简单的尺规作图有如下三条:⑴经过两已知点可以画一条直线;⑵已知圆心和半径可以作一圆;⑶两已知直线;一已知直线和一已知圆;或两已知圆,如果相交,可以求出交点;以上三条,叫做作图公法。
用直尺可以画出第一条公法所说的直线;用圆规可以作出第二条公法所说的圆;用直尺和圆规可以求得第三条公法所说的交点。
一个作图题,不管多么复杂,如果能反复应用上述三条作图公法,经过有限的次数,作出适合条件的图形,这样的作图题就叫做尺规作图可能问题;否则,就称为尺规作图不能问题。
历史上,最著名的尺规作图不能问题是:⑴三等分角问题:三等分一个任意角;⑵倍立方问题:作一个立方体,使它的体积是已知立方体的体积的两倍;⑶化圆为方问题:作一个正方形,使它的面积等于已知圆的面积.这三个问题后被称为“几何作图三大问题"。
直至1837年,万芝尔(Pierre Laurent Wantzel)首先证明三等分角问题和立方倍积问题属尺规作图不能问题;1882年,德国数学家林德曼(Ferdinand Lindemann)证明π是一个超越数(即π是一个不满足任何整系数代数方程的实数),由此即可推得根号π(即当圆半径1r=时所求正方形的边长)不可能用尺规作出,从而也就证明了化圆为方问题是一个尺规作图不能问题.若干著名的尺规作图已知是不可能的,而当中很多不可能证明是利用了由19世纪出现的伽罗华理论.尽管如此,仍有很多业余爱好者尝试这些不可能的题目,当中以化圆为方及三等分任意角最受注意。
数学家Underwood Dudley曾把一些宣告解决了这些不可能问题的错误作法结集成书.还有另外两个著名问题:⑴正多边形作法·只使用直尺和圆规,作正五边形.·只使用直尺和圆规,作正六边形。
初中数学专题尺规作图(含答案)
- 1 -第28课时 尺规作图◆考点聚焦1.掌握基本作图,尺规作图的要求与步骤..掌握基本作图,尺规作图的要求与步骤.2.利用基本作图工具画三角形、四边形、圆以及简单几何体的三视图,.利用基本作图工具画三角形、四边形、圆以及简单几何体的三视图,••对简单的作图能叙述作法.图能叙述作法.3.运用基本作图、结合相关的数学知识(平移、旋转、对称、.运用基本作图、结合相关的数学知识(平移、旋转、对称、••位似)等进行简单的图案设计.图案设计.4.运用基本作图解决实际问题..运用基本作图解决实际问题. ◆备考兵法1.熟练掌握基本作图..熟练掌握基本作图.2.在画几何体的三视图时,要注意其要求,.在画几何体的三视图时,要注意其要求,••即“长对正”“高平齐”“宽相等”. 3.认真分析题意,善于把实际问题转化为基本作图..认真分析题意,善于把实际问题转化为基本作图. ◆识记巩固1.尺规作图的定义:.尺规作图的定义:_______________________________________..2.基本作图包括:.基本作图包括:_____________________,,______________,,________________,,________________,,______________..3.三角形三边的垂直平分线的交点叫三角形的外心,.三角形三边的垂直平分线的交点叫三角形的外心,••三角形三内角平分线的交点叫三角形的内心,外心到三角形的三角形的内心,外心到三角形的_____________________的距离相等,内心到三角形的距离相等,内心到三角形的距离相等,内心到三角形_____________________的距离相等.的距离相等.的距离相等. 识记巩固参考答案:1.限定只能使用圆规和没有刻度的直尺作图.限定只能使用圆规和没有刻度的直尺作图2.作线段.作线段 作角作角作角 作线段的垂直平分线作线段的垂直平分线作线段的垂直平分线 过一点作已知直线的垂线过一点作已知直线的垂线过一点作已知直线的垂线 作角平分线作角平分线作角平分线 3.顶点.顶点 三边三边三边 ◆典例解析例1 (20082008,新疆建设兵团),新疆建设兵团),新疆建设兵团)(1)请用两种不同的方法,用尺规在所给的两个矩形中各作一个不为正方形的菱形,且菱形的四个顶点都在矩形的边上.(保留作图痕迹)(保留作图痕迹)(2)写出你的作法.)写出你的作法.解析解析 (1)所作菱形如图①,②所示.)所作菱形如图①,②所示.说明:作法相同的图形视为同一种,例如类似图③,说明:作法相同的图形视为同一种,例如类似图③,••图④的图形视图与图②是同一种.种.① ②③ ④ (2)图①的作法:作矩形A 1B 1C 1D 1四条边的中点E 1,F 1,G 1,H 1,连结H 1E 1,E 1F 1,G 1F 1,G 1H 1.四边形E 1F 1G 1H 1即为菱形.即为菱形.图②的作法:在B 2C 2上取一点E 2,使E 2C 2>A 2E 2且E 2不与B 2重合,连结A 2E 2. 以A 2为圆心,A 2E 2为半径画弧,交A 2D 2于H 2; 以E 2为圆心,A 2E 2为半径画弧,交B 2C 2于F 2; 连结H 2F 2,则四边形A 2E 2F 2H 2为菱形.为菱形.例2 如图,已知∠如图,已知∠AOB AOB AOB,,OA=OB OA=OB,点,点E 在OB 边上,四边形AEBF 是矩形.请你只用无刻度的直尺在图中画∠刻度的直尺在图中画∠AOB AOB 的平分线(请保留画图痕迹).解析解析 连结连结AB AB.因为.因为OA=OB OA=OB,因此△,因此△,因此△ABO ABO 为等腰三角形.要作出∠为等腰三角形.要作出∠AOB AOB 的平分线,的平分线,••只要确定出AB 的中点即可.因AEBF 为矩形,为矩形,因此连结因此连结AB AB,,EF EF,,相交于M .根据矩形的性质,M 即为AB 的中点.连结OM OM,射线,射线OM 即为所求的角平分线.即为所求的角平分线.例3 台球是一项高雅的体育运动,其中包含了许多物理学,几何学知识.如图是一台球是一项高雅的体育运动,其中包含了许多物理学,几何学知识.如图是一个台球桌,目标球F 与本球E 之间有一个G 球阻挡,现在击球者想通过击打E 球先撞击球台的AB 边,经过一次反弹后再撞击F 球,他应将E 球打到AB 边上的哪一点?边上的哪一点?••请在图中用尺规作图这一点H ,并作出E 球的运行路线(不写画法,保留作图痕迹).解析解析 作点作点E 关于直线AB 的对称点E 1,连结E 1F ,E 1F 与AB 相交于点H ,球E•E•的运动的运动路线是EH EH→→HF HF..点评点评 本例是把实际问题通过抽象,把求本例是把实际问题通过抽象,把求H 点的问题先转化为作E•E•点关于直线点关于直线AB 的对称点问题加以解决.数学课程标准对尺规作图提出了明确要求,是中考的重要内容之一,在复习时要掌握基本作图,要善于把具体问题的作图转化为基本作图.在复习时要掌握基本作图,要善于把具体问题的作图转化为基本作图.••学会对作图问题进行分析,归纳,掌握画法.进行分析,归纳,掌握画法. ◆中考热身1.(20082008,江苏镇江)如图,在△,江苏镇江)如图,在△,江苏镇江)如图,在△ABC ABC 中,作∠中,作∠ABC ABC 的平分线BD BD,交,交AC 于D ,作线段BD 的垂直平分线EF EF,分别交,分别交AB 于E ,BC 于F ,垂足为O ,连结DF DF,在所作图中,寻找一,在所作图中,寻找一对全等三角形,并加以证明.(不定作法,保留作图痕迹)(不定作法,保留作图痕迹)2.(20082008,山西太原)如图,在△,山西太原)如图,在△,山西太原)如图,在△ABC ABC 中,∠中,∠BAC=2BAC=2BAC=2∠∠C .(1)在图中作出△在图中作出△ABC ABC 的内角平分线AD AD;;(要求:(要求:尺规作图,尺规作图,尺规作图,保留作图痕迹,保留作图痕迹,保留作图痕迹,••不写证明) (2)在已作出的图形中,写出一对相似三角形,并说明理由.)在已作出的图形中,写出一对相似三角形,并说明理由.3.(20082008,四川成都)如图,已知点,四川成都)如图,已知点A 是锐角∠是锐角∠MON MON 内的一点,试分别在OM OM,,ON 上确定点B ,点C ,使ABC•ABC•的周长最小,的周长最小,写出你作图的主要步骤并标明你所确定的点写出你作图的主要步骤并标明你所确定的点___________________________..(要求画出草图,保留作图痕迹)求画出草图,保留作图痕迹)◆迎考精练 一、基础过关训练1.在Rt Rt△△ABC 中,已知∠中,已知∠C=90C=90C=90°,°,°,AD AD 是∠是∠BAC BAC 的平分线.以AB 上一点O 为圆心,为圆心,AD•AD•AD•为为弦作⊙弦作⊙O O (不写作法,保留作图痕迹).2.请你画出一个以BC 为底边的等腰△为底边的等腰△ABC ABC ABC,使底边上的高,使底边上的高AD=BC AD=BC.. (1)求tanB 和sinB 的值.的值.(2)在你所画的等腰△)在你所画的等腰△ABC ABC 中,假设底边BC=5米,求腰上的高BE BE..3.作一条直线,平分如图所示图形的面积:.作一条直线,平分如图所示图形的面积:4.现有m ,n 两堵墙,两个同学分别站在A 处和B 处,请问小明在哪个区域内活动才不会被任何一个同学发现?(画图,用阴影表示)被任何一个同学发现?(画图,用阴影表示)5.按下列要求作图,不写画法,要保留作图痕迹..按下列要求作图,不写画法,要保留作图痕迹.(1)在图1中,作出AB 的中点M ,作出∠,作出∠BCD BCD 的平分线CN CN,延长,延长CD 到点P ,使DP=2CD DP=2CD;; (2)如图2是一个破损的机器部件,它的残留边缘是圆弧,请作图找出圆弧所在的圆心.图1 图26.如图,.如图,Rt Rt Rt△△ABC 的斜边AB=5AB=5,,cosA=35. (1)用尺规作图作线段AC 的垂直平分线(保留作图痕迹,不要求写作法,证明); (2)若直线L 与AB AB,,AC 分别相交于D ,E 两点,求DE 的长.的长.7.成绵高速公路OA 和绵广高速公路OB 在绵阳市相交于点O ,在∠在∠AOB•AOB•AOB•内部有两个城镇内部有两个城镇C ,D ,若要修一个大型农贸市场P ,使P 到OA 与OB 的距离相等,且PC=PD PC=PD,用尺规作出,用尺规作出市场P 的位置.(不写作法,保留作图痕迹)(不写作法,保留作图痕迹)二、能力提升训练8.已知正方形ABCD 的面积为S .(1)求作:四边形A 1B 1C 1D 1,使得点A 1和点A 关于点B 对称,点B 1和点B 关于点C 对称,点C 1和点C 关于点D 对称,点D 1和点D 关于点A 对称;(只要求画出图形,不要求写作法)求写作法)(2)用S 1表示(1)中所作出的四边形A 1B 1C 1D 1的面积;的面积; (3)若将已知条件中的正方形改为任意四边形,面积仍为S ,并按(1)•的要求作出一个新的四边形,面积为S 2,则S 1与S 2是否相等?为什么?是否相等?为什么?参考答案: 中考热身中考热身1.解:(1)画角平分线,线段的垂直平分线.)画角平分线,线段的垂直平分线. (2)△)△BOE BOE BOE≌△≌△≌△BOF BOF BOF≌△≌△≌△DOF DOF DOF.. 证明(略)证明(略)证明(略) 2.解:(1)如图,)如图,AD AD 即为所求即为所求(2)△)△ABD ABD ABD∽△∽△∽△CBA CBA CBA,理由如下:,理由如下:,理由如下: ∵AD 平分∠平分∠BAC BAC BAC,∠,∠,∠BAC=2BAC=2BAC=2∠∠C , ∴∠∴∠BAD=BAD=BAD=∠∠BCA BCA..又∵∠又∵∠B=B=B=∠∠B ,∴△,∴△ABD ABD ABD∽△∽△∽△CBA CBA CBA..3.分别作点A 关于OM OM,,ON 的对称点A ′,′,A A ″;连结A ′A ″,分别交OM OM,,ON 于点B ,点C ,则点B ,点C 即为所求即为所求 作图略作图略作图略 迎考精练迎考精练 基础过关训练基础过关训练1.点拨:作AD 的垂直平分线与AB 的交点即为圆心,的交点即为圆心,OA OA 为半径.(作图略)(作图略) 2.解:①画线段BC BC::②作BC 的垂直平分线MN 与BC 相交于D ; ③在DM 上截取DA=BC DA=BC;;④连结AB AB,,AC AC,△,△,△ABC ABC 即为所求.即为所求.(1)tanB=2tanB=2,,sinB=255,(2)BE=25米.米.3.点拨:过几何体中心的任一条直线均可将该图形分成面积相等的两部分.(•如图)4.解:小明在图中的阴影部分区域就不会被两个同学发现..解:小明在图中的阴影部分区域就不会被两个同学发现.5.(1)作图略.(2)点拨:在残片的圆弧上任选两条弦,分别作它们的中垂线,其交点即为圆心.交点即为圆心.6.点拨:(1)①分别以A ,C 为圆心,以大于12AC 为半径画弧,两弧相交于M ,N ;•②连结MN MN,过,过MN 的直线即为所求的直线L . (2)DE=2DE=2.. 7.点拨:(1)作∠)作∠AOB AOB 的角平分线OE OE;; (2)作DC 的垂直平分线MN MN;;(3)MN 交OE 于P 点,点,P P 即为所求.即为所求. 能力提升训练能力提升训练8.解:(1)如图1.图1 图2 (2)设正方形ABCD 的边长为a ,∴S=a 22. 依题意A 1D 1=A 1B 1=B 1C 1=C 1D 1=5a . 易证A 1B 1C 1D 1是正方形,是正方形,∴S 1111A B C D =5a 2,∴S 1=5S . (3)S 1=S 2.证明如下:.证明如下:如图2,连结BD 1,BD .在△BDD 1中,AB 是中线,是中线, ∴S △ABD =S △ABD1.在△AA 1D 1中,BD 1是中线,是中线, ∴S △ABD1=S △A1BD1,S △AA1D1=2S △ABD1, 同理S △OC1B1=2S △CBD , ∴S △AA1D1+S △OC1B1=2S . 同理S △DD1C1+S △BA1B1=2S , ∴S 四边形1111A B C D =5S=S 2, ∴S 1=S 2.。
尺规作图 —初中数学课件PPT
广东中考
解:(1)如图,点A1的坐标为(﹣1,1). (2)如图.
数学
首页
末页
谢谢!
数学
首页
末页
4
数学
首页
末页
考点梳理
1.作一条线段等于已知线段
作法:①作射线AB;②在射线AB上截取AC=a,则 线段AC就是所求作的线段,如图所示.作一条线段
等于已知线段是作有关线段的基础,利用它可以作 出已知线段的和、差、倍等线段. 2.作一个角等于已知角
作法:①作射线O′A′;②以点O为圆心,以任意 长为半径画弧,交OA于点C,交OB于点D;③以O′ 为圆心,以OC的长为半径画弧,交O′A′于点C′ ;④以C′为圆心,以CD的长为半径画弧,交前弧 于点D′;⑤过点D′作射线O′B′,则 ∠数学A′O′B′就是所求作的角,如图所示首页. 末页
数学
首页
末页
广东中考
解:(1)如图所示: (2)DE∥AC
∵DE平分∠BDC,
∴∠BDE= ∠BDC,
∵∠ACD=∠A,∠ACD+∠A=∠BDC,
∴∠A= ∠BDC,
∴∠A=∠BDE,
∴DE∥AC.
数学
首页
末页
广东中考
14. (2013广州)已知四边形ABCD是平行四边 形(如图),把△ABD沿对角线BD翻折180°得到 △A′BD.利用尺规作出△A′BD.(要求保留作 图痕迹,不写作法).
数的学 面积.
首页
末页
课堂精讲
考点4平移作图、旋转作图和对称作图 解:(1)如图,△A1B1C1即为所求. (2)如图,△A2B1C2即为所求.
(3)扫过区域的面积为 .
90 32 9
360 4
中考数学专题训练:尺规作图技巧+典型题全汇总
初中数学尺规作图专题讲解
尺规作图是起源于古希腊的数学课题,是指用没有刻度的直尺和圆规作图。
其中直尺必须没有刻度,只能用来作直线、线段、射线或延长线段;圆规可以开至无限宽,但上面也不能有刻度,只能用来作圆和圆弧.因此,尺规作图与一般的画图不同,一般画图可以动用一切画图工具,包括三角尺、量角器等,在操作过程中可以度量,但尺规作图在操作过程中是不可以度量的.
1、尺规作图规范用语
2、尺规作图基本步骤
3、五种基础的尺规作图题型(掌握基础才能挑战复杂题型)
基本作图一:作一条线段等于已知线段。
基本作图二:作一个角等于已知角。
基本作图三:作已知线段的垂直平分线。
基本作图四:作已知角的角平分线
基本作图五:过一点作已知直线的垂线。
4、典型例题分析
5、题目练习。
初中数学五种作图基本概念及技巧
初中数学五种作图基本概念及技巧一、基本概念1.尺规作图:在几何里,用没有刻度的直尺和圆规来画图,叫做尺规作图.2.基本作图:最基本、最常用的尺规作图,通常称基本作图.3.五种常用的基本作图:(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)平分已知角;(4)作线段的垂直平分线.(5)经过一点作已知直线的垂线4.掌握以下几何作图语句:(1)过点×、点×作直线××;或作直线××,或作射线××;(2)连结两点×、×;或连结××;(3)在××上截取××=××;(4)以点×为圆心,××为半径作圆(或弧);(5)以点×为圆心,××为半径作弧,交××于点×;(6)分别以点×、点×为圆心,以××、××为半径作弧,两弧相交于点××;(7)延长××到点×,或延长××到点×,使××=××.5.学过基本作图后,在以后的作图中,遇到属于基本作图的地方,只须用一句话概括叙述就可以了.如:(1)作线段××=××;(2)作∠×××=∠×××;(3)作××(射线)平分∠×××;(4)过点×作××⊥××,垂足为×;(5)作线段××的垂直平分线××.二、尺规作图基本步骤和作图语言1、作线段等于已知线段已知:线段a 求作:线段AB,使AB=a 作法:(1)作射线AC (2)在射线AC上截取AB=a ,则线段AB就是所要求作的线段2、作角等于已知角已知:∠AOB求作:∠A′O′B′,使∠A′O′B′=∠AOB。
尺规作图资料(完整)
1:尺规作出正三角形2尺规作出正方形3:尺规作出正六边形4:尺规作出正十边形5:尺规作出正十六边形6:尺规作出正十七边形7:尺规作出正十五边形8:尺规作出正五边形9:单尺作出正八边形10:单尺作出正方形11:单尺作出正六边形12:单尺作出正五边形13:单规找出两点间的三等分点14:单规找出两点间的中点15:单规作出等边三角形16:单规作出正八边形17:单规作出正方形18:单规作出正六边形19:单规作出正十边形20:单规作出正十二边形21:单规作出正十六边形22:单规作出正十五边形23单规作出正五边形24:只有两个刻度的直尺作出正三角形25:只有两个刻度的直尺作出正方形初中数学尺规作图专题讲解张远波尺规作图是起源于古希腊的数学课题.只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题。
平面几何作图,限制只能用直尺、圆规.在历史上最先明确提出尺规限制的是伊诺皮迪斯.他发现以下作图法:在已知直线的已知点上作一角与已知角相等。
这件事的重要性并不在于这个角的实际作出,而是在尺规的限制下从理论上去解决这个问题.在这以前,许多作图题是不限工具的.伊诺皮迪斯以后,尺规的限制逐渐成为一种公约,最后总结在《几何原本》之中。
初等平面几何研究的对象,仅限于直线、圆以及由它们(或一部分)所组成的图形,因此作图的工具,习惯上使用没有刻度的直尺和圆规两种。
限用直尺和圆规来完成的作图方法,叫做尺规作图法。
最简单的尺规作图有如下三条:⑴经过两已知点可以画一条直线;⑵已知圆心和半径可以作一圆;⑶两已知直线;一已知直线和一已知圆;或两已知圆,如果相交,可以求出交点;以上三条,叫做作图公法.用直尺可以画出第一条公法所说的直线;用圆规可以作出第二条公法所说的圆;用直尺和圆规可以求得第三条公法所说的交点.一个作图题,不管多么复杂,如果能反复应用上述三条作图公法,经过有限的次数,作出适合条件的图形,这样的作图题就叫做尺规作图可能问题;否则,就称为尺规作图不能问题.历史上,最著名的尺规作图不能问题是:⑴三等分角问题:三等分一个任意角;⑵倍立方问题:作一个立方体,使它的体积是已知立方体的体积的两倍;⑶化圆为方问题:作一个正方形,使它的面积等于已知圆的面积。
初中数学中考复习:尺规作图及命题、证明
14
考点三:与圆有关的尺规作图 • 与圆有关的尺规作图:
• (1)过不在同一条直线上的三点作圆(即三角形的外接圆); • (2)作三角形的内切圆; • (3)作圆的内接正方形及正六边形.
• 有关中心对称或轴对称的作图以及设计图案是中考常见的类型.
15
考点三:与圆有关的尺规作图
• 【例 如图,已知△ABC,∠B=40°.
题;
•
若甲错,即x≤14,则y≥6,则乙错,故D不是真命题.
•
根据以上分析,故选B.
• 【答案】 B
30
考点五:命题、定理、证明 • 基本事实与定理:
• (1)经过长期实践后公认为正确的命题,作为判断其他命题的依据,这些命题称为 基本事实.例如,“两点之间线段最短”,“两点确定一条直线”.
• (2)用推理的方法判断为正确的命题叫做定理.例如,“对顶角相等”,“三角形任何 两边的和大于第三边”.
1 2
AC的长为半径画弧,两弧相交于M,N两点,作直线MN交AD于点E,则△CDE的周长是(
B
)
•
A.7
B.10
C.11
D.12
22
考点四:尺规作图的综合应用
• 【例】(2018·湖州)尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作 图考他的大臣:
• ①将半径为r的⊙O六等分,依次得到A,B,C,D,E,F六个分点; • ②分别以点A、D为圆心,AC长为半径画弧,G是两弧的一个交点; • ③连结OG. • 问:OG的长是多少? • 大臣给出的正确答案应是( )
1 2
AC的长为半径画弧,两弧相交于M,N两点,作直线MN交AD于点E,则△CDE的周长是(
)
•
【中考数学考点复习】第一节 尺规作图 课件(23张PPT)
直平分
线(已 知线段 结论:AB⊥l
, AB)
AO=OB
到线段两
1.分别以点A,B为圆心,大于
个端点距
1
__2_A__B___的长为半径,在AB两侧 离相等的
作弧,两弧交于两点;
点在这条
2.连接两弧交点所成直线l即为所求 线段的垂
作的垂直平分线
直平分线
上
第一节 尺规作图
类型
步骤
五种基本 尺规作图
第一节 尺规作图
返回目录
成都10年真题及拓展
尺规作图的相关计算
1. 如图,在△ABC 中,按以下步骤作图:①分别以点 B 和点 C 为圆心,
以大于 12BC 的长为半径作弧,两弧相交于点 M 和 N;②作直线 MN 交
AC 于点 D,连接 BD.若 AC=6,AD=2,则 BD 的长为( C )
A.2
的两侧;
到线段两 2.以点P为圆心,PM的长为半径作弧
个端点距 ,交直线l于点A和点B,可得到PA=
PB;
离相等的
1
3大.分于别2以AB点A、点B为圆心,以
点在这条 线段的垂
________长为半径作弧,交点M的
直平分线
同侧于点N,可得到AN=BN;
上
4连接PN,则直线PN即为所求作的垂
线
第一节 尺规作图
长为( C )
A.252 3 C.20
B.12 3 D.15
第9题图
第一节 尺规作图
返回目录
10.人教版初中数学教科书八年级上册第 35-36 页告诉我们作一个三角 形与已知三角形全等的方法: 已知:△ABC. 求作:△A′B′C′,使得△A′B′C′≌△ABC. 作法:如图.
初中尺规作图技巧+数学尺规典型案例复习+历年中考尺规例题
初中尺规作图+数学尺规典型案例复习+历年中考尺规例题基本作图示范:1、作一条线段,等于已知线段;已知线段MN。
求作:一条线段等于已知线段.作法:图先画射线AB,然后用圆规在射线AB上截取AC= MN.线段AC就是所要作的线段.2、作一个角等于已知角。
(其理论依据为“SSS”理);作法:①作射线0'A‘;②以点0为圆心,以任意长为半径作弧,交OA于C,交OB于D;③以点0'为圆心,以OC长为半径作弧,交0'A'于C‘;④以点C'为圆心,以CD为半径作弧,交前弧于D‘;⑤经过点D'作射线0'B',∠A' 0'B'就是所求的角. 连结CD、C'D',由作法可知△C'O'D≌△COD(SSS)∴∠C'O'D'=∠COD(全等三角形对应角相等).即∠A'O'B'=∠AOB.3、作已知角的平分线(其理论依据为“SSS”公理);已知∠AOB,求作:射线OC,使∠AOC= ∠BOC.作法:①在OA和OB上,分别截取OD. OE.②分别以D.E为圆心,大于DE 的长为半径作弧,在∠AOB内,两弧交于点C;③作射线OC.OC就是所求的射线.连结CD、CE,由作法可知△ODC≌△OEC(SSS)∴∠COD=∠COE(全等三角形的对应角相等).即∠AOC=∠BOC.4、经过一点(点在直线上或点在直线外)作已知直线的垂线;a.经过已知直线上的一点作这条直线的垂线.已知:直线AB和AB上一点C,求作:AB的垂线,使它经过点C.第一步:作平角ACB的平分线CD;第二步:反向延长射线CD.作法:作平角ACB的平分线CF,直线CF就是所求的垂线.b.经过已知直线外一点作这条直线的垂线.作法:①任意取一点K,使K和C在AB的两旁;②以C为圆心,CK长为半径作弧,交AB于点D和E;③分别以D和E为圆心,大于DE的长为半径作弧,两弧交于点F.④作直线CF.直线CF就是所求的垂线,注意:经过已知直线上的一点,作这条直线的垂线转化成画线段垂直平分线的方法解决.典型例题分析历年中考好题精选题目练习。
初中数学知识点精讲精析 三角形的尺规作图
4 三角形的尺规作图学习目标1. 经历尺规作图实践操作过程,训练和提高学生的尺规作图的技能,能根据条件作出三角形。
2. 能依据规范作图语言,作出相应的图形,在实践操作过程中,逐步规范作图语言。
知识详解1. 已知:线段a,c,∠α.求作:△ABC,使BC=a,AB=c,∠ABC=∠α.从图中可知,是两边夹角,所以可先作一条线段等于已知线段中的任一条,然后以所作的线段为角的一边,它的一端点为角的顶点作角.使这个角等于已知角,再在角的另一边截取已知线段的另一条,最后连结,组成三角形。
2. 学习作图要注意以下几点:(1)要学会正确使用作图工具(这里主要是指直尺、圆规),作出合乎要求的几何图形;(2)要学会用几何作图语言来准确表达作图问题;(3)要勤动手画,多动口说3. 在几何作图中,通常先画出所要求作的图形的草图,然后根据草图把已知事项具体化。
【典型例题】例1:如图,锐角三角形ABC中,BC>AB>AC,小靖依下列方法作图:(1)作∠A的角平分线交BC于D点.(2)作AD的中垂线交AC于E点.(3)连接DE.根据他画的图形,判断下列关系何者正确?()A、DE⊥ACB、DE∥ABC、CD=DED、CD=BD【答案】B【解析】解:依据题意画出右图可得知∠1=∠2,AE=DE,∴∠2=∠3,∴∠1=∠3,即DE ∥AB.例2:用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC=∠BOC的依据是()A.SSSB.ASAC.AASD.角平分线上的点到角两边距离相等【答案】A【解析】连接NC,MC,根据SSS证△ONC≌△OMC,即可推出答案:在△ONC和△OMC中,ON=OM,NC=MC,OC=OC,∴△ONC≌△OMC(SSS)。
∴∠AOC=∠BOC。
故选A。
例3:如图,在△ABC中,∠C=900,∠CAB=500,按以下步骤作图:①以点A为圆心,小于AC的长为半径,画弧,分别交AB,AC于点E、F;②分别以点E,F为圆心,大于12EF的长为半径画弧,两弧相交于点G;③作射线AG,交BC边与点D,则∠ADC的度数为【答案】65°【解析】根据已知条件中的作图步骤知,AG是∠CAB的平分线,根据角平分线的性质有∠GAB=25°。
专题12尺规作图题型总结-2024年中考数学答题技巧与模板构建(解析版)
专题12尺规作图题型总结题型解读|模型构建|通关试练本专题主要对初中阶段的一般考查学生对基本作图的掌握情况和实践操作能力,并且在作图的基础上进一步推理计算(或证明)。
尺规作图是指用没有刻度的直尺和圆规作图。
尺规作图是中考必考知识点之一,复习该版块时要动手多画图,熟能生巧!本专题主要总结了五个常考的基本作图题型,(1)作相等角;(2)作角平分线;(3)作线段垂直平分线;(4)作垂直(过一点作垂线或圆切线);(5)用无刻度的直尺作图。
模型01作相等角①以∠α的顶点O为圆心,以任意长为半径作弧,交∠α的两边于点P,Q;②作射线O'A';③以O'为圆心,OP长为半径作弧,交O'A'于点M;④以点M为圆心,PQ长为半径作弧,交③中所作的弧于点N;⑤过点N作射线O'B',∠A'O'B'即为所求作的角.原理:三边分别相等的两个三角形全等;全等三角形对应角相等延伸:作平行线模型02作角平分线①以O为圆心,任意长为半径作弧,分别交OA,OB于点M,N;②分别以点M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③过点O作射线OP,OP即为∠AOB的平分线.原理:三边分别相等的两个三角形全等;全等三角形对应角相等延伸:2到两边的距离相等的点②作三角形的内切圆模型03作线段垂直平分线①分别以点A,B为圆心,大于AB长为半径,在AB两侧作弧,分别交于点M和点N;②过点M,N作直线MN,直线MN即为线段AB的垂直平分线.原理:到线段两端距离相等的点在这条线段的垂直平分线上延伸:①到两点的距离相等的点②作三角形的外接圆3找对称轴(旋转中心)4找圆的圆心模型04作垂直(过一点作垂线或圆切线)(点P在直线上)①以点P为圆心,任意长为半径向点P两侧作弧,分别交直线l于A,B两点;②分别以点A,B为圆心,以大于AB的长为半径作弧,两弧交于点M;③过点M,P作直线MP,则直线MP即为所求垂线.原理:等腰三角形的“三线合一”,两点确定一条直线延伸:确定点到直线的距离(内切圆半径)(点P在直线外)①以点P为圆心,大于P到直线l的距离为半径作弧,分别交直线l于A,B两点;②分别以A,B为圆心,以大于AB的长为半径作弧交于点N;③过点P,N作直线PN,则直线PN即为所求垂线.原理:到线段两端距离相等的点在这条线段的垂直平分线上模型05仅用无刻度直尺作图无刻度直尺作图通常会与等腰三角形的判定,三角形中位线定理,矩形的性质和勾股定理等几何知识点结合,熟练掌握相关性质是解题关键.模型01作相等角考|向|预|测做相等角该题型近年主要以解答题形式出现,一般为解答题型的其中一问,难度系数较小,在各类考试中基本为送分题型。
初中数学尺规作图大汇总(原创绝对经典)
线段垂直平分线的作法 角平分线的作法 作一个角等于已知角 用尺规作一个三角形
太原维刚实验学校 2020年5月6日 一线数学教师何彦峰
尺规作图作线段的垂直平分线
尺规作图
已知:线段AB. 求作:线段AB的垂直平分线.
C
作法:(1)分别以点A,B 为圆心,以大于 1AB
A
的长为半径作弧,2 两
a
c
A
α
α
B
C
二 已知三角形的两角及其夹边作三角形
已知:∠α,∠β和线段c,如图所示.
求作:△ABC,使∠A=∠α,∠B=∠β,AB=c.
ED
α
C
β c
A
BF
用尺规作三角形
三 已知三角形的三条边,求作这个三角形
已知:线段a,b,c如图所示.
求作:△ABC,使AB=c,AC=b,BC=a.
a
b
A
B D
弧交于C,D两点.
(2)连接CD.直线CD即为所求.
如图,A,B是路边两个新建小区,要 在公路边增设一个公共汽车站.使两个 小区到车站的路程一样长,该公共汽 车站应建在什么地方?
B A
【提示】连接AB,作AB的垂直平分线,则与公路的 交点就是要建的公共汽车站.
2. 有A,B,C三个村庄,现准备要建一 所学校,要求学校到三个村庄的距离相 等,请你确定学校的位置.
3、作射线_O_E___;__O_E__即为所求。
如图,直线l1、l2、l3表示三条相 交叉的公路,现要建一个货物中
转站,要求它到三条公路的距离
相等,则可供选择的地址有__处。
l1
l3
l2
l1
D
l3
A
初中数学考点尺规作图
过直线外一点作已知直线的垂线
步骤:1.在直线另一侧取点M;2.以P为圆心,以PM为半径画弧,交直线于A、B两点;3.分别以A、B为圆心,以大于12AB长为半径画弧,交M同侧于点N;4.连接PN,则直线PN即为所求垂线
过直线上一点作已知直线的垂线
步骤:1.以点O为圆心,任意长为半径向点O两侧作弧,交直线于A、B两点;2.分别以点A、B为圆心,以大于 AB长为半径向直线两侧作弧,交点分别为M、N;3.连接MN,MN即为所求垂线
作线段的垂直平分线
步骤:1.分别以点A、B为圆心,以大于 AB的长为半径,在AB两侧作弧;2.连接两弧交点所成直线即为所求线段的垂直平分线
作一个角等于已知角
步骤:1.在∠α上以点O为圆心、以适当的长为半径作弧,交∠α的两边于点P、Q;2.作射线O′A;3.以O′为圆心、OP长为半径作弧,交O′A于点M;4.以点M为圆心,PQ长为半径作弧,交前弧于点N;5.过点N作射线O′B,∠BO′A即为所求角
第15章尺规作图
考点一、尺规作图的要求
只用不带刻度的直尺和圆规通过有限次操作,完成画图的一种作图方法.尺规作图不一定要写作图步骤,但必须保留作图痕迹.
考点2、五种Βιβλιοθήκη 本尺规作图作一条线段等于已知线段
步骤:1.作射线OP;2.在OP上截取OA=a,OA即为所求线段
作角的平分线
步骤:1.以点O为圆心,任意长为半径画弧,分别交OA、OB于点N、M;2.分别以点M、N为圆心,大于 MN的长为半径作弧,相交于点P;3.画射线OP,OP即为所求角平分线
初中数学尺规作图重要知识点及典型题解析
初中数学尺规作图重要知识点及典型题解析1、尺规作图规范用语第一、、用直尺作图的几何语言有三种,分别为:1、过点x、点x作直线xx;或作直线xx;或作射线xx;2、过两点xx做线段xx;或连结xx:3、延长xx到点x;或延长(反向延长)xx到点x,使xx=xx;或延长xx交xx于点x;第二、用圆规作图的几何语言可总结为四种,分别为:1、在xx上截取xx=xx:2、以点x为圆心,xx的长为半径作圆(或弧);3、以点x为圆心,xx的长为半径作弧,交xx于点x:4、分别以点x、点x为圆心,以xxxx的长为半径作弧,两弧相交于点x、x.2、尺规作图基本步骤当发现作图是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件:2能根据题目可以画出要求作出的图形,以及可以列出该图形应满足的条件有哪些:3能根据作图的过程写出每一步的操作过程当不要求写作法时,一般会保留作图痕迹应该注意的是,对于较复杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图寻找作法。
3、尺规作图典型题分析典型题1:难度★如图(a),已知∠AOB和点C、D.求作一点M,使点M到∠AOB两边的距离相等,且与C、D组成以CD为底边的等腰三角形.【答案解析】因为到一个角两边距离相等的点在这个角的平分线上;而根据题意,点M应满足条件MC=MD,所以点M又在连结CD所得线段的垂直平分线上.(1)作∠AOB的平分线OG;(2)连结CD,作CD的垂直平分线,交OG于点M,如图(b),M就是所要求作的点.典型题2:难度★如图,桌面上有黑白两球P、Q,试用尺规在边AD上找出一点,使黑球射向这点后反弹,正好击中白球.【答案解析】(1)以P为圆心,适当长为半径作弧,交AD于两点E、F;(2)分别以E、F为圆心,以同样长(即PE)为半径作弧,在AD的另一侧交于点R(即P关于AD的对称点);(3)连结RQ,交AD于点M,M就是所求作的点.典型题3:难度★★如图(a),A、B、C三个城市准备共建一个飞机场,希望机场到B、C两市的距离相等,到较大城市A的距离最近,试确定飞机场的位置.【答案解析】机场到B、C两市的距离相等,则应在线段BC的垂直平分线上;而这条垂直平分线上的点到A的最短距离是点A到这条直线的垂线段的长.(1)连结BC,作线段BC的垂直平分线l;(2)过点A作直线⊥的垂线,垂足P,如图(b),点P就是飞机场的位置典型题4:难度★★如图(a),已知线段a、b和∠AOB,C是边OB上一点,求作点M,使M到OA的距离为a,到点C的距离为b.【答案解析】(1)在OA上任取一点D,过D作OA的垂线l;(2)在⊥上截取DE=DF=a,过E、F作l的垂线l1、l2;(3)以C为圆心,b为半径作弧,与直线l2相交于点M1、M2,如图(b),则点M1、M2都是所要求作的点.典型题5:难度★★如图(a),已知线段a、b,求作△ABC,使BC=a,AB=b,∠C=90°.【答案解析】(1)作线段BC=a;(2)过点C作CD⊥BC;(3)以B为圆心,b为半径作弧,交CD于点A;(4)连结BA,如图(b),△ABC就是所求作的三角形.典型题6:难度★★如图(a),已知线段a,∠a,求作△ABC,使∠C=90°,∠A=∠a,AB=a.【答案解析】(1)作∠DAE=∠a;(2)在AD上截取AB=a;(3)过点B作BC⊥AE于C,如图(b),△ABC即所求作的三角形.典型题7:难度★★已知等腰三角形的底角及底边上的中线,求作这个等腰三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十五章 尺规作图
考点一、尺规作图的要求
只用不带刻度的直尺和圆规通过有限次操作,完成画图的一种作图方法.尺规作图不一定要写作图步骤,但必须保留作图痕迹.
考点2、五种基本尺规作图
作一条线段等于已
知线段
步骤:1.作射线OP ; 2.在OP 上截取OA=a ,OA 即为所求线段 作角的平分线 步骤:1.以点O 为圆心,任意长为半径画弧,
分别交OA 、OB 于点N 、M ; 2.分别以点M 、N
为圆心,大于2
1MN 的长为半径作弧,相交于点P ;3.画射线OP,OP 即为所求角平分线 作线段的垂直平分
线
步骤:1.分别以点A 、B 为圆心,以大于21AB 的长为半径,在AB 两侧作弧;2.连接两弧交点所成直线即为所求线段的垂直平分线 作一个角等于已知
角
步骤:1.在∠α上以点O 为圆心、以适当的长为半径作弧,交∠α的两边于点P 、Q ; 2.作射
线O′A;3.以O′为圆心、OP 长为半径作弧,交O′A
于点M ;4.以点M 为圆心,PQ 长为半径作弧,交前
弧于点N ;5.过点N 作射线O′B,∠BO′A 即为所求角 过一点作已知直线的垂线
过直
线外一点
作已知直
线的垂线
步骤:1.在直线另一侧取点M ; 2.以P 为圆心,以PM 为半径画弧,交直线于A 、B 两点; 3.分别以A 、B 为圆心,以大于12AB 长为半径画弧,交M 同侧于点N ;4. 连接PN,则直线PN 即为所求垂线。