平面几何五种模型之欧阳家百创编
平面几何五种模型
② AO : OC S1 S2 : S4 S3
【上下比】
=
=
=
【上上比】
=
=
=
由上述比例可以按数学运算原则推出很多规则:如
面积交叉相乘的乘积相等
=
= S1 S3 S2 S4
梯形蝴蝶定理( 梯蝴蝶 )
① S1 : S3 a2 : b2 →上:下 = a2 : b2
② S1 : S3 : S2 : S4 a2 : b2 : ab : ab →上:下:左:右 = a2 : b2 : ab : ab
+
+
=1
2
③ S 的对应份数为 a b →a2+2ab+b2=a2+b2+ab+ab 有木有↑
4 相似三角形 形状相同,大小不同的三角形,只要形状不变,无论大小怎么改变,他们都相似。 1 相似三角形的一切对应线段的长度成比例,并且 =它们的相似比 2 相似三角形的面积比 =相似比的平方
3 连接三角形两边中点的线段叫做三角形的中位线 三角形中位线定理:三角形的中位线长 =它所对应的底边长的一半 就是三角形任 2 边中点连出来的中位线就是第三边长的一半! 出题几率:多产生于 2 条平行线造成的相似三角形
等于浅紫色三角形是“嵌入”在大三角形 ABC里面,注意,鸟头定理用的是乘积比!不是
单独的线段比 ~
记忆上用 夹角 2 边
最好记,这里等于
E
D
A 对顶角
D E
A
B
C
B
C
D 互补角 A
E
D
A
E
B
CB
C
鸟头定理的证明,写出来是因为很多题目的解题过程,都需要补这么一条辅助线来过度连
全等几何模型讲解之欧阳治创编
欧阳治创编 2021.03.10 欧阳治创编 2021.03.10常见的几何模型时间 2021.03.10创作:欧阳治一、旋转主要分四大类:绕点、空翻、弦图、半 角。
这四类旋转的分类似于平行四边形、矩形、菱形、 正方形的分类。
1.绕点型(手拉手模型)(1)自旋转:例题讲解:1. 如图所示,P 是等边三角形 ABC 内的一个点, PA=2,PB= ,PC=4,求△ABC 的边长。
2. 如图,O 是等边三角形 ABC 内一点,已知: ∠AOB=115°,∠BOC=125°,则以线段 OA、 OB、OC 为边构成三角形的各角度数是多少?欧阳治创编 2021.03.10 欧阳治创编 2021.03.10欧阳治创编 2021.03.10 欧阳治创编 2021.03.103.如图,P 是正方形 ABCD 内一点,且满足 PA: PD:PC=1:2:3,则∠APD=.4.如图(2-1):P 是正方形 ABCD 内一点,点 P 到 正方形的三个顶点 A、B、C 的距离分别为 PA=1, PB=2,PC=3。
求此正方形 ABCD 面积。
(2)共旋转(典型的手拉手模型)模型变形:例题讲解:1. 已知△ABC 为等边三角形,点 D 为直线 BC 上的 一动点(点 D 不与 B,C 重合),以 AD 为边作菱 形 ADEF( 按 A,D,E,F 逆 时 针 排 列 ) , 使 ∠DAF=60°,连接 CF.(1) 如图 1,当点 D 在边 BC 上时,求证: ① BD=CF ‚ ②AC=CF+CD.(2)如图 2,当点 D 在边 BC 的延长线上且其他条件 不变时,结论 AC=CF+CD 是否成立?若不成 立,请写出 AC、CF、CD 之间存在的数量关 系,并说明理由;欧阳治创编 2021.03.10 欧阳治创编 2021.03.10欧阳治创编 2021.03.10 欧阳治创编 2021.03.10(3)如图 3,当点 D 在边 BC 的延长线上且其他条件 不变时,补全图形,并直接写出 AC、CF、CD 之间存在的数量关系。
平面几何五种模型之欧阳法创编
平面几何五种模型等积,鸟头,蝶形,相似,共边1、等积模型等底等高的2个三角形面积相等2个三角形高相等,面积比=底之比2个三角形底相等,面积比=高之比夹在一组平行线之间的等积变形(方方模型)等积模型是基本应用应是烂熟于心的都是利用面积公式得到的推定比例如下:1等底等高的2个平行四边形面积相等2三角形面积等于它等底等高的平行四边形面积的一半3 2个平行四边形高相等,面积比=底之比;2个平行四边形底相等,面积比=高之比2、鸟头模型(共角定理)鸟头定理:2个三角形中,有一个角相等或互补,这2个三角形叫做共角三角形。
共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比(夹角2边) 鸟头定理的使用要火眼金睛,经常需要自己补一条辅助线同时经过2次以上转换对应才能得到结果。
AB C DE如图,浅紫色的三角形ADE 跟大三角形ABC 是公用A 角的,等于浅紫色三角形是“嵌入”在大三角形ABC 里面,注意,鸟头定理用的是乘积比!不是单独的线段比~记忆上用夹角2边最好记,这里等于 鸟头定理的证明,写出来是因为很多题目的解题过程,都需要补这么一条辅助线来过度连接2个看起来无关的图形。
证明的途径其实跟我们日常解题途径重合,所以写出来,仔细看。
经由媒介的∆ABE ,联系了∆ADE 和大三角形∆ABCBE 辅助线很重要!鸟头定理是用等高(等于是用等积推算而得)第二种的证明方式将对顶角压回来∆ABC 内,对顶角性质是相等的,所以压回来的新∆跟∆ADE 是全等∆,再做一条辅助线就能用共角的方式证明出对角的鸟头定理互补角的鸟头定理证明 S△ADE=S△AD'E,因为同底等高AD=AD',高相等,所以面积相等D'AB C DE 写了这几个证明,其实说的目的只有一个:连接小三角形和大三角形过度的那条辅助线,特别重要!3蝴蝶模型任意四边形中的比例关系(“蝴蝶定理”)任蝴蝶 ①或者②【上下比】===【上上比】 ===由上述比例可以按数学运算原则推出很多规则:如面积交叉相乘的乘积相等 = =梯形蝴蝶定理(梯蝴蝶)①→上:下=②→上:下:左:右=③的对应份数为→a2+2ab+b2=a2+b2+ab+ab 有木有↑4 相似三角形形状相同,大小不同的三角形,只要形状不变,无论大小怎么改变,他们都相似。
小学奥数平面几何五种面积模型之欧阳治创编
小学奥数平面几何五种模型(等积,鸟头,蝶形,相似,共边)目标:熟练掌握五大面积模型等积,鸟头,蝶形,相似(含金字塔模型和沙漏模型),共边(含燕尾模型和风筝模型), 掌握五大面积模型的各种变形 知识点拨一、等积模型①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如右图12::S S a b =③夹在一组平行线之间的等积变形,如右图ACD BCD S S =△△;反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD .④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形);⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比.二、鸟头定理b a S 2S 1DC B A两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形.共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.如图在ABC △中,,D E 分别是,AB AC 上的点如图 ⑴(或D 在BA 的延长线上,E 在AC 上),则:():()ABC ADE S S AB AC AD AE =⨯⨯△△图⑴ 图⑵三、蝶形定理任意四边形中的比例关系(“蝶形定理”):①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝶形定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系.梯形中比例关系(“梯形蝶形定理”):①2213::S S a b =②221324::::::S S S S a b ab ab =;③S 的对应份数为()2a b +.四、相似模型(一)金字塔模型 (二) 沙漏模型 ①AD AE DE AF AB AC BC AG===; ②22:ADE ABC S S AF AG =△△:.所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:A B C D O b a S 3S 2S 1S 4⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比;⑵相似三角形的面积比等于它们相似比的平方; ⑶连接三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半.相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具.在小学奥数里,出现最多的情况是因为两条平行线而出现的相似三角形.五、共边定理(燕尾模型和风筝模型)在三角形ABC 中,AD ,BE ,CF 相交于同一点O ,那么::ABO ACO S S BD DC ∆∆=.上述定理给出了一个新的转化面积比与线段比的手段,因为ABO ∆和ACO ∆的形状很象燕子的尾巴,所以这个定理被称为燕尾定理.该定理在许多几何题目中都有着广泛的运用,它的特殊性在于,它可以存在于任何一个三角形之中,为三角形中的三角形面积对应底边之间提供互相联系的途径.典型例题【例 1】 如图,正方形ABCD 的边长为6,AE =1.5,CF =2.长方形EFGH 的面积为.【解析】 连接DE ,DF ,则长方形EFGH 的面积是三_ H _ G _ F _E _ D _ C _ B _ A _ A _ B _ C _D _E _F _G _H O F E D CB A角形DEF 面积的二倍.三角形DEF 的面积等于正方形的面积减去三个三角形的面积,66 1.562262 4.54216.5DEF S =⨯-⨯÷-⨯÷-⨯÷=△,所以长方形EFGH 面积为33.【巩固】如图所示,正方形ABCD 的边长为8厘米,长方形EBGF 的长BG 为10厘米,那么长方形的宽为几厘米?【解析】 本题主要是让学生会运用等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形).三角形面积等于与它等底等高的平行四边形面积的一半.证明:连接AG .(我们通过ABG △把这两个长方形和正方形联系在一起).∵在正方形ABCD 中,G 12AB S AB AB =⨯⨯△边上的高, ∴12ABG ABCD S S =△(三角形面积等于与它等底等高的平行四边形面积的一半) 同理,12ABG EFGB S S =△. ∴正方形ABCD 与长方形EFGB 面积相等. 长方形的宽8810 6.4=⨯÷=(厘米).【例 2】 长方形ABCD 的面积为362cm ,E 、F 、G 为各_ A_ B _ G _ C _ E_ F_ D _ A _ B _ G _ C _ E _ F _ D边中点,H 为AD 边上任意一点,问阴影部分面积是多少?【解析】 解法一:寻找可利用的条件,连接BH 、HC ,如下图:可得:12EHB AHB S S ∆∆=、12FHB CHB S S ∆∆=、12DHG DHC S S ∆∆=,而36ABCD AHB CHB CHD S S S S ∆∆∆=++= 即11()361822EHB BHF DHG AHB CHB CHD S S S S S S ∆∆∆∆∆∆++=++=⨯=; 而EHB BHF DHG EBF S S S S S ∆∆∆∆++=+阴影,11111()()36 4.522228EBF S BE BF AB BC ∆=⨯⨯=⨯⨯⨯⨯=⨯=. 所以阴影部分的面积是:1818 4.513.5EBF S S ∆=-=-=阴影解法二:特殊点法.找H 的特殊点,把H 点与D 点重合,那么图形就可变成右图:这样阴影部分的面积就是DEF ∆的面积,根据鸟头定理,则有:11111113636363613.52222222ABCD AED BEF CFD S S S S S ∆∆∆=---=-⨯⨯-⨯⨯⨯-⨯⨯=阴影.【巩固】在边长为6厘米的正方形ABCD 内任取一点P ,将正方形的一组对边二等分,另一组对边三等分,分别与P 点连接,求阴影部分面积.【解析】 (法1)特殊点法.由于P 是正方形内部任意一点,可采用特殊点法,假设P 点与A 点重合,则阴影部分变为如上中图所示,图中的两个阴影三角形的面积分别占正方形面积的14和16,所以阴影部分的面积为2116()1546⨯+=平方厘米.(法2)连接PA 、PC .由于PAD ∆与PBC ∆的面积之和等于正方形ABCD 面积的一半,所以上、下两个阴影三角形的面积之和等于正方形ABCD 面积的14,同理可知左、右两个阴影三角形的面积之和等于正方形ABCD 面积的16,所以阴影部分的面积为2116()1546⨯+=平方厘米. 【例 3】 如图所示,长方形ABCD 内的阴影部分的面积之和为70,8AB =,15AD =,四边形EFGO 的面积为.【解析】 利用图形中的包含关系可以先求出三角形AOE 、DOG 和四边形EFGO 的面积之和,以及三角形AOE 和DOG 的面积之和,进而求出四边形EFGO 的面积.由于长方形ABCD 的面积为158120⨯=,所以三角形BOC 的面积为1120304⨯=,所以三角形AOE 和DOG 的面积之和为312070204⨯-=; 又三角形AOE 、DOG 和四边形EFGO 的面积之和为111203024⎛⎫⨯-= ⎪⎝⎭,所以四边形EFGO 的面积为302010-=.另解:从整体上来看,四边形EFGO 的面积=三角形AFC 面积+三角形BFD 面积-白色部分的面积,而三角形AFC 面积+三角形BFD 面积为长方形面积的一半,即60,白色部分的面积等于长方形面积减去阴影部分的面积,即1207050-=,所以四边形的面积为605010-=.【巩固】如图,长方形ABCD 的面积是36,E 是AD 的三等分点,2AE ED =,则阴影部分的面积为.【解析】 如图,连接OE .根据蝶形定理,1:::1:12COE CDE CAE CDE ON ND S S S S ∆∆∆∆===,所以12OEN OED S S ∆∆=; 1:::1:42BOE BAE BDE BAE OM MA S S S S ∆∆∆∆===,所以15OEM OEA S S ∆∆=. 又11334OED ABCD S S ∆=⨯=矩形,26OEA OED S S ∆∆==,所以阴影部分面积为:1136 2.725⨯+⨯=.【例 4】已知ABC 为等边三角形,面积为400,D 、E 、F 分别为三边的中点,已知甲、乙、丙面积和为143,求阴影五边形的面积.(丙是三角形HBC )【解析】 因为D 、E 、F 分别为三边的中点,所以DE 、DF 、EF 是三角形ABC 的中位线,也就与对应的边平行,根据面积比例模型,三角形ABN 和三角形AMC 的面积都等于三角形ABC 的一半,即为200.根据图形的容斥关系,有ABC ABN AMC AMHN S S S S S ∆∆∆-=+-丙, 即400 200200AMHN S S -=+-丙,所以AMHN S S =丙. 又ADF AMHN S S S S S ∆+=++乙甲阴影,所以1143400434ADF S S S S S ∆=++-=-⨯=乙甲丙阴影.【例 5】如图,已知5CD =,7DE =,15EF =,6FG =,线段AB 将图形分成两部分,左边部分面积是38,右边部分面积是65,那么三角形ADG 的面积是.【解析】 连接AF ,BD .根据题意可知,571527CF =++=;715628DG =++=; 所以,1527BE CBF F S S ∆∆=,1227BE CBF C S S ∆∆=,2128AEG ADG S S ∆∆=,728AED ADG S S ∆∆=, 于是:2115652827ADG CBF S S ∆∆+=;712382827ADG CBF S S ∆∆+=; 可得40ADG S ∆=.故三角形ADG 的面积是40.【例 6】 如图在ABC △中,,D E 分别是,AB AC 上的点,且:2:5AD AB =,:4:7AE AC =,16ADE S =△平方厘米,求ABC △的面积.【解析】 连接BE ,::2:5(24):(54)ADE ABE S S AD AB ===⨯⨯△△,::4:7(45):(75)ABE ABC S S AE AC ===⨯⨯△△,所以:(24):(75)ADE ABC S S =⨯⨯△△,设8ADE S =△份,则35ABC S =△份,16ADE S =△平方厘米,所以1份是2平方厘米,35份就是70平方厘米,ABC △的面积是70平方厘米.由此我们得到一个重要的定理,共角定理:共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比 .【巩固】如图,三角形ABC 中,AB 是AD 的5倍,AC是AE 的3倍,如果三角形ADE 的面积等于1,那么三角形ABC 的面积是多少?【解析】 连接BE .∵3EC AE =∴3ABC ABE S S =又∵5AB AD =∴515ADE ABE ABC S S S =÷=÷,∴1515ABC ADE S S ==.【巩固】如图,三角形ABC 被分成了甲(阴影部分)、乙两部分,4BD DC ==,3BE =,6AE =,乙部分面积是甲部分面积的几倍?【解析】 连接AD .∵3BE =,6AE =∴3AB BE =,3ABD BDE S S =又∵4BD DC ==,∴2ABC ABD S S =,∴6ABC BDE S S =,5S S =乙甲.【例 7】 如图在ABC △中,D 在BA 的延长线上,E 在AC上,且:5:2AB AD =,:3:2AE EC =,12ADE S =△平方厘米,求ABC △的面积.【解析】 连接BE ,::2:5(23):(53)ADE ABE S S AD AB ===⨯⨯△△[]::3:(32)(35):(32)5ABE ABC S S AE AC ==+=⨯+⨯△△,所以[]:(32):5(32)6:25ADE ABC S S =⨯⨯+=△△,设6ADE S =△份,则25ABC S =△份,12ADE S =△平方厘米,所以1份是2平方厘米,25份就是50平方厘米,ABC △的面积是50平方厘米.由此我们得到一个重要的定理,共角定理:共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比【例 8】 如图,平行四边形ABCD ,BE AB =,2CF CB =,3GD DC=,4HA AD =,平行四边形ABCD 的面积是2, 求平行四边形ABCD 与四边形EFGH 的面积比.【解析】 连接AC 、BD .根据共角定理∵在ABC △和BFE △中,ABC ∠与FBE ∠互补, ∴111133ABCFBE S AB BC S BE BF ⋅⨯===⋅⨯△△. 又1ABC S =△,所以3FBE S =△.同理可得8GCF S =△,15DHG S =△,8AEH S =△.所以8815+3+236EFGH AEH CFG DHG BEF ABCD S S S S S S =++++=++=△△△△. 所以213618ABCDEFGH S S ==. 【例 9】如图所示的四边形的面积等于多少?【解析】 题目中要求的四边形既不是正方形也不是长方形,难以运用公式直接求面积.我们可以利用旋转的方法对图形实施变换:把三角形OAB 绕顶点O 逆时针旋转,使长为13的两条边重合,此时三角形OAB 将旋转到三角形OCD 的位置.这样,通过旋转后所得到的新图形是一个边长为12的正方形,且这个正方形的面积就是原来四边形的面积.因此,原来四边形的面积为1212144⨯=.(也可以用勾股定理)【例 10】 如图所示,ABC ∆中,90ABC ∠=︒,3AB =,5BC =,以AC 为一边向ABC ∆外作正方形ACDE ,中心为O ,求OBC ∆的面积.【解析】 如图,将OAB ∆沿着O 点顺时针旋转90︒,到达OCF ∆的位置.由于90ABC ∠=︒,90AOC ∠=︒,所以180OAB OCB ∠+∠=︒.而OCF OAB ∠=∠,所以180OCF OCB ∠+∠=︒,那么B 、C 、F 三点在一条直线上.由于OB OF =,90BOF AOC ∠=∠=︒,所以BOF ∆是等腰直角三角形,且斜边BF 为538+=,所以它的面积为218164⨯=. 根据面积比例模型,OBC ∆的面积为516108⨯=. 【例 11】 如图,以正方形的边AB 为斜边在正方形内作直角三角形ABE ,90AEB ∠=︒,AC 、BD 交于O .已知AE 、BE 的长分别为3cm 、5cm ,求三角形OBE 的面积.【解析】 如图,连接DE ,以A 点为中心,将ADE ∆顺时针旋转90︒到ABF ∆的位置.那么90EAF EAB BAF EAB DAE ∠=∠+∠=∠+∠=︒,而AEB ∠也是90︒,所以四边形AFBE 是直角梯形,且3AF AE ==,所以梯形AFBE 的面积为:()1353122+⨯⨯=(2cm ). 又因为ABE ∆是直角三角形,根据勾股定理,222223534AB AE BE =+=+=,所以21172ABD S AB ∆==(2cm ). 那么()17125BDE ABD ABE ADE ABD AFBE S S S S S S ∆∆∆∆∆=-+=-=-=(2cm ), 所以1 2.52OBE BDE S S ∆∆==(2cm ).【例 12】 如下图,六边形ABCDEF 中,AB ED =,AF CD =,BC EF =,且有AB 平行于ED ,AF 平行于CD ,BC 平行于EF ,对角线FD 垂直于BD ,已知24FD =厘米,18BD =厘米,请问六边形ABCDEF 的面积是多少平方厘米?【解析】 如图,我们将BCD ∆平移使得CD 与AF 重合,将DEF ∆平移使得ED 与AB 重合,这样EF 、BC 都重合到图中的AG 了.这样就组成了一个长方形BGFD ,它的面积与原六边形的面积相等,显然长方形BGFD 的面积为2418432⨯=平方厘米,所以六边形ABCDEF 的面积为432平方厘米.【例 13】 如图,三角形ABC 的面积是1,E 是AC 的中点,点D 在BC 上,且:1:2BD DC =,AD 与BE 交于点F .则四边形DFEC 的面积等于.【解析】 方法一:连接CF ,根据燕尾定理,12ABF ACF S BD S DC ==△△,1ABF CBF S AE S EC ==△△, 设1BDF S =△份,则2DCF S =△份,3ABF S =△份,3AEF EFC S S ==△△份,如图所标 所以551212DCEF ABC S S ==△ 方法二:连接DE ,由题目条件可得到1133ABD ABC S S ==△△, 11212233ADE ADC ABC S S S ==⨯=△△△,所以11ABD ADE S BF FE S ==△△, 111111122323212DEF DEB BEC ABC S S S S =⨯=⨯⨯=⨯⨯⨯=△△△△,而211323CDE ABC S S =⨯⨯=△△.所以则四边形DFEC 的面积等于512. 【巩固】如图,长方形ABCD 的面积是2平方厘米,2EC DE =,F 是DG 的中点.阴影部分的面积是多少平方厘米?【解析】 设1DEF S =△份,则根据燕尾定理其他面积如图所示551212BCD S S ==△阴影平方厘米. 【例 14】 四边形ABCD 的对角线AC 与BD 交于点O (如图所示).如果三角形ABD 的面积等于三角形BCD 的面积的13,且2AO =,3DO =,那么CO 的长度是DO 的长度的_________倍.【解析】 在本题中,四边形ABCD 为任意四边形,对于这种”不良四边形”,无外乎两种处理方法:⑴利用已知条件,向已有模型靠拢,从而快速解决;⑵通过画辅助线来改造不良四边形.看到题目中给出条件:1:3ABD BCD S S =,这可以向模型一蝶形定理靠拢,于是得出一种解法.又观察题目中给出的已知条件是面积的关系,转化为边的关系,可以得到第二种解法,但是第二种解法需要一个中介来改造这个”不良四边形”,于是可以作AH 垂直BD 于H ,CG 垂直BD 于G ,面积比转化为高之比.再应用结论:三角形高相同,则面积之比等于底边之比,得出结果.请老师注意比较两种解法,使学生体会到蝶形定理的优势,从而主观上愿意掌握并使用蝶形定理解决问题.解法一:∵::1:3ABD BDC AO OC S S ∆∆==,∴236OC =⨯=,∴:6:32:1OC OD ==.解法二:作AH BD ⊥于H ,CG BD ⊥于G . ∵13ABD BCD S S ∆∆=,∴13AH CG =,∴13AOD DOC S S ∆∆=, ∴13AO CO =,∴236OC =⨯=,∴:6:32:1OC OD ==.【巩固】如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知,求:⑴三角形BGC 的面积;⑵:AG GC =?【解析】 ⑴根据蝶形定理,123BGC S ⨯=⨯,那么6BGC S =;⑵根据蝶形定理,()():12:361:3AG GC =++=.【例 15】 如图,平行四边形ABCD 的对角线交于O 点,CEF △、OEF △、ODF △、BOE △的面积依次是2、4、4和6.求:⑴求OCF △的面积;⑵求GCE △的面积.【解析】 ⑴根据题意可知,BCD △的面积为244616+++=,那么BCO △和CDO ∆的面积都是1628÷=,所以OCF △的面积为844-=;⑵由于BCO △的面积为8,BOE △的面积为6,所以OCE △的面积为862-=,根据蝶形定理,::2:41:2COE COF EG FG S S ∆∆===,所以::1:2GCE GCF S S EG FG ∆∆==, 那么11221233GCE CEF S S ∆∆==⨯=+. 【例 16】 如图,长方形ABCD 中,:2:3BE EC =,:1:2DF FC =,三角形DFG 的面积为2平方厘米,求长方形ABCD 的面积.【解析】 连接AE ,FE .因为:2:3BE EC =,:1:2DF FC =,所以3111()53210DEF ABCD ABCD S S S =⨯⨯=长方形长方形. 因为12AED ABCD S S =长方形,11::5:1210AG GF ==,所以510AGD GDF S S ==平方厘米,所以12AFD S =平方厘米.因为16AFD ABCD S S =长方形,所以长方形ABCD 的面积是72平方厘米.【例 17】 如图,正方形ABCD 面积为3平方厘米,M 是AD 边上的中点.求图中阴影部分的面积.【解析】 因为M 是AD 边上的中点,所以:1:2AM BC =,根据梯形蝶形定理可以知道22:::1:12:12:21:2:2:4AMG ABG MCG BCG S S S S =⨯⨯=△△△△()(),设1AGM S =△份,则123MCD S =+=△ 份,所以正方形的面积为1224312++++=份,224S =+=阴影份,所以:1:3S S =阴影正方形,所以1S =阴影平方厘米.【巩固】在下图的正方形ABCD 中,E 是BC 边的中点,AE 与BD 相交于F 点,三角形BEF 的面积为1平方厘米,那么正方形ABCD 面积是平方厘米.【解析】 连接DE ,根据题意可知:1:2BE AD =,根据蝶形定理得2129S =+=梯形()(平方厘米),3ECD S =△(平方厘米),那么12ABCD S =(平方厘米).【例 18】 已知ABCD 是平行四边形,:3:2BC CE =,三角形ODE 的面积为6平方厘米.则阴影部分的面积是平方厘米.【解析】 连接AC .由于ABCD 是平行四边形,:3:2BC CE =,所以:2:3CE AD =,根据梯形蝶形定理,22:::2:23:23:34:6:6:9COE AOC DOE AOD S S S S =⨯⨯=,所以6AOC S =(平方厘米),9AOD S =(平方厘米),又6915ABC ACD S S ==+=(平方厘米),阴影部分面积为61521+=(平方厘米).【巩固】右图中ABCD 是梯形,ABED 是平行四边形,已知三角形面积如图所示(单位:平方厘米),阴影部分的面积是平方厘米.【分析】 连接AE .由于AD 与BC 是平行的,所以AECD 也是梯形,那么OCD OAE S S ∆∆=.根据蝶形定理,4936OCD OAE OCE OAD S S S S ∆∆∆∆⨯=⨯=⨯=,故236OCD S ∆=,所以6OCD S ∆=(平方厘米).【巩固】右图中ABCD 是梯形,ABED 是平行四边形,已知三角形面积如图所示(单位:平方厘米),阴影部分的面积是平方厘米.【解析】 连接AE .由于AD 与BC 是平行的,所以AECD 也是梯形,那么OCD OAE S S ∆∆=.根据蝶形定理,2816OCD OAE OCE OAD S S S S ∆∆∆∆⨯=⨯=⨯=,故216OCD S ∆=,所以4OCD S ∆=(平方厘米). 另解:在平行四边形ABED中,()111681222ADE ABED S S ∆==⨯+=(平方厘米), 所以1284AOE ADE AOD S S S ∆∆∆=-=-=(平方厘米),根据蝶形定理,阴影部分的面积为8244⨯÷=(平方厘米).【例 19】 如图,长方形ABCD 被CE 、DF 分成四块,已知其中3块的面积分别为2、5、8平方厘米,那么余下的四边形OFBC 的面积为___________平方厘米.【解析】 连接DE 、CF .四边形EDCF 为梯形,所以EOD FOC S S ∆=,又根据蝶形定理,EOD FOC EOF COD S S S S ∆∆∆∆⋅=⋅,所以2816EOD FOC EOF COD S S S S ∆∆∆∆⋅=⋅=⨯=,所以4EOD S ∆=(平方厘米),4812ECD S ∆=+=(平方厘米).那么长方形ABCD 的面积为12224⨯=平方厘米,四边形OFBC 的面积为245289---=(平方厘米).【例 20】 如图,ABC ∆是等腰直角三角形,DEFG 是正方形,线段AB 与CD 相交于K 点.已知正方形DEFG 的面积48,:1:3AK KB =,则BKD ∆的面积是多少?【解析】 由于DEFG 是正方形,所以DA 与BC 平行,那么四边形ADBC 是梯形.在梯形ADBC 中,BDK ∆和ACK ∆的面积是相等的.而:1:3AK KB =,所以ACK ∆的面积是ABC ∆面积的11134=+,那么BDK ∆的面积也是ABC ∆面积的14.由于ABC ∆是等腰直角三角形,如果过A 作BC 的垂线,M 为垂足,那么M 是BC 的中点,而且AM DE =,可见ABM ∆和ACM ∆的面积都等于正方形DEFG 面积的一半,所以ABC ∆的面积与正方形DEFG的面积相等,为48.那么BDK∆的面积为148124⨯=.【例 21】下图中,四边形ABCD都是边长为1的正方形,E、F、G、H分别是AB,BC,CD,DA的中点,如果左图中阴影部分与右图中阴影部分的面积之比是最简分数mn ,那么,()m n+的值等于.【解析】左、右两个图中的阴影部分都是不规则图形,不方便直接求面积,观察发现两个图中的空白部分面积都比较好求,所以可以先求出空白部分的面积,再求阴影部分的面积.如下图所示,在左图中连接EG.设AG与DE的交点为M.左图中AEGD为长方形,可知AMD∆的面积为长方形AEGD面积的14,所以三角形AMD的面积为21111248⨯⨯=.又左图中四个空白三角形的面积是相等的,所以左图中阴影部分的面积为111482-⨯=.如上图所示,在右图中连接AC、EF.设AF、EC的交点为N.可知EF∥AC且2AC EF=.那么三角形BEF的面积为三角形ABC面积的14,所以三角形BEF的面积为21111248⨯⨯=,梯形AEFC的面积为113288-=.在梯形AEFC中,由于:1:2EF AC=,根据梯形蝶形定理,其四部分的面积比为:221:12:12:21:2:2:4⨯⨯=,所以三角形EFN的面积为3118122424⨯=+++,那么四边形BENF 的面积为1118246+=.而右图中四个空白四边形的面积是相等的,所以右图中阴影部分的面积为111463-⨯=. 那么左图中阴影部分面积与右图中阴影部分面积之比为11:3:223=,即32m n =, 那么325m n +=+=.【例 22】 如图, ABC △中,DE ,FG ,BC 互相平行,AD DF FB ==,则::ADE DEGF FGCB S S S =△四边形四边形.【解析】 设1ADE S =△份,根据面积比等于相似比的平方,所以22::1:4ADE AFG S S AD AF ==△△,22::1:9ADE ABC S S AD AB ==△△,因此4AFG S =△份,9ABC S =△份,进而有3DEGF S =四边形份,5FGCB S =四边形份,所以::1:3:5ADE DEGF FGCB S S S =△四边形四边形【巩固】如图,DE 平行BC ,且2AD =,5AB =,4AE =,求AC 的长.【解析】 由金字塔模型得:::2:5AD AB AE AC DE BC ===,所以42510AC =÷⨯=【巩固】如图, ABC △中,DE ,FG ,MN ,PQ ,BC 互相平行,AD DF FM MP PB ====,则::::ADE DEGF FGNM MNQP PQCB S S S S S =△四边形四边形四边形四边形.【解析】 设1ADE S =△份,22::1:4ADE AFG S S AD AF ==△△,因此QE G N M FP A D C B4AFG S =△份,进而有3DEGF S =四边形份,同理有5FGNM S =四边形份,7MNQP S =四边形份,9PQCB S =四边形份.所以有【例 23】 如图,已知正方形ABCD 的边长为4,F 是BC边的中点,E 是DC 边上的点,且:1:3DE EC =,AF 与BE 相交于点G ,求ABG S △【解析】 方法一:连接AE ,延长AF ,DC 两条线交于点M ,构造出两个沙漏,所以有::1:1AB CM BF FC ==,因此4CM =,根据题意有3CE =,再根据另一个沙漏有::4:7GB GE AB EM ==,所以4432(442)471111ABG ABE S S ==⨯⨯÷=+△△. 方法二:连接,AE EF ,分别求4224ABF S =⨯÷=△,4441232247AEF S =⨯-⨯÷-⨯÷-=△,根据蝶形定理::4:7ABF AEF S S BG GE ==△△,所以4432(442)471111ABG ABE S S ==⨯⨯÷=+△△.【例 24】 如图所示,已知平行四边形ABCD 的面积是1,E 、F 是AB 、AD 的中点, BF 交EC 于M ,求BMG ∆的面积.【解析】 解法一:由题意可得,E 、F 是AB 、AD 的中点,得//EF BD ,而::1:2FD BC FH HC ==,::1:2EB CD BG GD ==所以::2:3CH CF GH EF ==, 并得G 、H 是BD 的三等分点,所以BG GH =,所以::2:3BG EF BM MF ==,所以25BM BF =,11112224BFD ABD ABCDS S S∆∆==⨯=; 又因为13BG BD=,所以1212113535430BMG BFD S S ∆∆=⨯⨯=⨯⨯=.解法二:延长CE 交DA 于I ,如右图,可得,::1:1AI BC AE EB ==,从而可以确定M 的点的位置,::2:3BM MF BC IF ==,25BM BF =,13BG BD=(鸟头定理), 可得2121115353430BMG BDF ABCDS S S ∆∆=⨯=⨯⨯=【例 25】 如图,ABCD 为正方形,1cmAM NB DE FC ====且2cm MN =,请问四边形PQRS 的面积为多少?【解析】 (法1)由//AB CD ,有MP PCMN DC=,所以2PC PM =,又MQ MBQC EC=,所以12MQ QC MC==,所以111236PQ MC MC MC =-=,所以SPQRS占AMCF S 的16,所以121(112)63SPQR S =⨯⨯++=2(cm ).(法2)如图,连结AE ,则14482ABE S ∆=⨯⨯=(2cm ),而RB ERAB EF =,所以2RB AB EF EF ==,22168333ABR ABE S S ∆∆==⨯=(2cm ).而1134322MBQ ANS S S ∆∆==⨯⨯⨯=(2cm ),因为MN MP DC PC=,所以13MP MC =,则11424233MNP S ∆=⨯⨯⨯=(2cm ),阴影部分面积等于164233333ABR ANS MBQ MNP S S S S ∆∆∆∆--+=--+=(2cm ).【例 26】 如右图,三角形ABC 中,:4:9BD DC =,:4:3CE EA =,求:AF FB .【解析】 根据燕尾定理得::4:912:27AOB AOC S S BD CD ===△△(都有AOB △的面积要统一,所以找最小公倍数)所以:27:16:AOC BOC S S AF FB ==△△【点评】本题关键是把AOB △的面积统一,这种找最小公倍数的方法,在我们用比例解题中屡见不鲜,如果能掌握它的转化本质,我们就能达到解奥数题四两拨千斤的巨大力量!【巩固】如右图,三角形ABC 中,:3:4BD DC =,:5:6AE CE =,求:AF FB . 【解析】 根据燕尾定理得::3:415:20AOB AOC S S BD CD ===△△(都有AOB △的面积要统一,所以找最小公倍数)所以:20:1810:9:AOC BOC S S AF FB ===△△【巩固】如右图,三角形ABC 中,:2:3BD DC =,:5:4EA CE =,求:AF FB . 【解析】 根据燕尾定理得::2:310:15AOB AOC S S BD CD ===△△(都有AOB △的面积要统一,所以找最小公倍数)所以:15:8:AOC BOC S S AF FB ==△△【点评】本题关键是把AOB △的面积统一,这种找最小公倍数的方法,在我们用比例解题中屡见不鲜,如果能掌握它的转化本质,我们就能达到解奥数题四两拨千斤的巨大力量!【例 27】 如右图,三角形ABC中,:::3:2AF FB BD DC CE AE ===,且三角形ABC 的面积是1,则三角形ABE 的面积为______,三角形AGE 的面积为________,三角形GHI 的面积为______.【分析】 连接AH 、BI 、CG .由于:3:2CE AE =,所以25AE AC =,故2255ABE ABC S S ∆∆==;根据燕尾定理,::2:3ACG ABG S S CD BD ∆∆==,::3:2BCG ABG S S CE EA ∆∆==,所以::4:6:9ACG ABG BCG S S S ∆∆∆=,则419ACG S ∆=,919BCG S ∆=; 那么2248551995AGE AGC S S ∆∆==⨯=; 同样分析可得919ACH S ∆=,则::4:9ACG ACH EG EH S S ∆∆==,::4:19ACG ACB EG EB S S ∆∆==,所以::4:5:10EG GH HB =,同样分析可得::10:5:4AG GI ID =,所以5521101055BIE BAE S S ∆∆==⨯=,55111919519GHI BIE S S ∆∆==⨯=.【巩固】 如右图,三角形ABC 中,:::3:2AF FB BD DC CE AE ===,且三角形GHI 的面积是1,求三角形ABC 的面积.【解析】 连接BG ,AGC S △=6份根据燕尾定理,::3:26:4AGC BGC S S AF FB ===△△,::3:29:6ABG AGC S S BD DC ===△△得4BGC S =△(份),9ABG S =△(份),则19ABC S =△(份),因此619AGCABCS S =△△,同理连接AI 、CH 得619ABHABCS S =△△,619BIC ABC S S =△△,所以1966611919GHI ABC S S ---==△△三角形GHI 的面积是1,所以三角形ABC的面积是19【巩固】如图,ABC ∆中2BD DA =,2CE EB =,2AF FC =,那么ABC ∆的面积是阴影三角形面积的倍.【分析】 如图,连接AI .根据燕尾定理,::2:1BCI ACI S S BD AD ∆∆==,::1:2BCI ABI S S CF AF ∆∆==,所以,::1:2:4ACI BCI ABI S S S ∆∆∆=,那么,221247BCI ABC ABC S S S ∆∆∆==++. 同理可知ACG ∆和ABH ∆的面积也都等于ABC ∆面积的27,所以阴影三角形的面积等于ABC ∆面积的211377-⨯=,所以ABC ∆的面积是阴影三角形面积的7倍.【巩固】如图在ABC△中,12DC EA FB DB EC FA ===,求GHI ABC △的面积△的面积的值.【解析】 连接BG,设BGC S △=1份,根据燕尾定理::2:1AGC BGC S S AF FB ==△△,::2:1ABG AGC S S BD DC ==△△,得2AGC S =△(份),4ABG S =△(份),则7ABC S =△(份),因此27AGC ABC S S =△△,同理连接AI 、CH 得27ABHABCS S =△△,27BIC ABC S S =△△,所以7222177GHIABCS S ---==△△ 【点评】如果任意一个三角形各边被分成的比是相同的,那么在同样的位置上的图形,虽然形状千变万化,但面积是相等的,这在这讲里面很多题目都是用“同理得到”的,即再重复一次解题思路,因此我们有对称法作辅助线.【例 28】 如图,三角形ABC 的面积是1,BD DE EC ==,CF FG GA ==,三角形ABC 被分成9部分,请写出这9部分的面积各是多少?【解析】 设BG 与AD 交于点P ,BG 与AE 交于点Q ,BF 与AD 交于点M ,BF 与AE 交于点N .连接CP ,CQ ,CM ,CN .根据燕尾定理,::1:2ABP CBP S S AG GC ==△△,::1:2ABP ACP S S BD CD ==△△,设1ABP S =△(份),则1225ABC S =++=△(份),所以15ABP S =△ 同理可得,27ABQ S =△,12ABN S =△,而13ABG S =△,所以2137535APQ S =-=△,1213721AQG S =-=△.同理,335BPM S =△121BDM S =△,所以1239273570PQMN S =--=四边形,13953357042MNED S =--=四边形,1151321426NFCE S =--=四边形,1115321642GFNQ S =--=四边形【巩固】如图,ABC ∆的面积为1,点D 、E 是BC 边的三等分点,点F 、G 是AC 边的三等分点,那么四边形JKIH 的面积是多少?【解析】 连接CK 、CI 、CJ .根据燕尾定理,::1:2ACK ABK S S CD BD ∆∆==,::1:2ABK CBK S S AG CG ∆∆==,所以::1:2:4ACK ABK CBK S S S ∆∆∆=,那么111247ACK S ∆==++,11321AGK ACK S S ∆∆==. 类似分析可得215AGI S ∆=.又::2:1ABJ CBJ S S AF CF ∆∆==,::2:1ABJ ACJ S S BD CD ∆∆==,可得14ACJ S ∆=. 那么,111742184CGKJ S =-=. 根据对称性,可知四边形CEHJ 的面积也为1784,那么四边形JKIH 周围的图形的面积之和为172161228415370CGKJ AGI ABE S S S ∆∆⨯++=⨯++=,所以四边形JKIH 的面积为61917070-=.【例 29】 右图,ABC △中,G是AC 的中点,D 、E 、F是BC 边上的四等分点,AD 与BG 交于M ,AF 与BG 交于N ,已知ABM △的面积比四边形FCGN 的面积大7.2平方厘米,则ABC △的面积是多少平方厘米?【解析】 连接CM 、CN .根据燕尾定理,::1:1ABM CBM S S AG GC ==△△,::1:3ABM ACM S S BD CD ==△△,所以15ABM ABC S S =△△;再根据燕尾定理,::1:1ABN CBN S S AG GC ==△△,所以::4:3ABN FBN CBN FBN S S S S ==△△△△,所以:4:3AN NF =,那么1422437ANG AFC S S =⨯=+△△,所以2515177428FCGN AFC ABC ABC S S S S ⎛⎫=-=⨯= ⎪⎝⎭△△△.根据题意,有157.2528ABC ABC S S -=△△,可得336ABC S =△(平方厘米)【例 30】 如图,面积为l 的三角形ABC 中,D 、E 、F 、G 、H 、I 分别是AB 、BC 、CA 的三等分点,求阴影部分面积.【解析】 三角形在开会,那么就好好利用三角形中最好用的比例和燕尾定理吧!令BI 与CD 的交点为M ,AF 与CD 的交点为N ,BI 与AF 的交点为P,BI 与CE 的交点为Q,连接AM 、BN 、CP⑴求ADMI S 四边形:在ABC △中,根据燕尾定理,::1:2ABM CBM S S AI CI ==△△::1:2ACM CBM S S AD BD ==△△设1ABM S =△(份),则2CBM S =△(份),1ACMS =△(份),4ABC S =△(份),所以14ABM ACM ABCS S S ==△△△,所以11312ADM ABM ABC S S S ==△△△,112AIM ABC S S =△△,所以111()12126ABC ABC ADMI S S S =+=△△四边形,同理可得另外两个顶点的四边形面积也分别是ABC △面积的16⑵求DNPQES五边形:在ABC △中,根据燕尾定理::1:2ABN ACN S S BF CF ==△△::1:2ACN BCN S S AD BD ==△△,所以111133721ADN ABN ABC ABCS S S S ==⨯=△△△△,同理121BEQ ABC S S =△△ 在ABC△中,根据燕尾定理::1:2ABP ACP S S BF CF ==△△,::1:2ABP CBP S S AI CI ==△△所以15ABP ABCS S =△△,所以1111152121105ABP ADNBEP ABC ABC DNPQE S S S S S S ⎛⎫=--=--= ⎪⎝⎭△△△△△五边形同理另外两个五边形面积是ABC △面积的11105,所以11113133610570S =-⨯-⨯=阴影 【例 31】 如图,面积为l 的三角形ABC 中,D 、E 、F 、G 、H 、I 分别是AB 、BC 、CA 的三等分点,求中心六边形面积.【解析】 设深黑色六个三角形的顶点分别为N 、R 、P 、S 、M 、Q ,连接CR在ABC △中根据燕尾定理,::.2:1ABR ACR S S BG CG ==△△,所以27ABR ABC S S =△△,同理27ACS ABC S S =△△,27CQB ABC S S =△△所以222117777RQS S =---=△,同理17MNP S =△根据容斥原理,和上题结果11131777010S =+-=六边形 课后练习: 练习1. 已知DEF△的面积为7平方厘米,,2,3BE CE AD BD CF AF ===,求ABC △的面积.【解析】 :():()(11):(23)1:6BDE ABC S S BD BE BA BC =⨯⨯=⨯⨯=△△,:():()(13):(24)3:8CEF ABC S S CE CF CB CA =⨯⨯=⨯⨯=△△:():()(21):(34)1:6ADF ABC S S AD AF AB AC =⨯⨯=⨯⨯=△△设24ABC S =△份,则4BDE S =△份,4ADF S =△份,9CEF S =△份,244497DEF S =---=△份,恰好是7平方厘米,所以24ABC S =△平方厘米练习2. 如图,四边形EFGH 的面积是66平方米,EA AB =,CB BF =,DC CG =,HD DA =,求四边形ABCD 的面积.【解析】 连接BD .由共角定理得:():()1:2BCD CGF S S CD CB CG CF =⨯⨯=△△,即2CGF CDB S S =△△同理:1:2ABD AHE S S =△△,即2AHE ABD S S =△△ 所以2()2AHE CGF CBD ADB ABCD S S S S S +=+=△△△△四边形连接AC ,同理可以得到2DHG BEF ABCD S S S +=△△四边形所以66513.2ABCD S =÷=四边形平方米练习3. 正方形ABCD 的面积是120平方厘米,E 是AB的中点,F 是BC 的中点,四边形BGHF 的面积是平方厘米.【解析】 欲求四边形BGHF 的面积须求出EBG ∆和CHF ∆的面积.由题意可得到:::1:2EG GC EB CD ==,所以可得:13EBG BCE S S ∆∆=将AB 、DF 延长交于M 点,可得: :::1:1BM DC MF FD BF FC ===,而1::():3:22EH HC EM CD AB AB CD ==+=,得25CH CE =,而12CF BC =,所以121255CHF BCE BCE S S S ∆∆∆=⨯=11773014351515EBC EBC EBC EBCBGHF S S S S S ∆∆∆∆=--==⨯=四边形. 本题也可以用蝶形定理来做,连接EF ,确定H 的位置(也就是:FH HD ),同样也能解出.练习4. 如图,已知4cm AB AE ==,BC DC =,90BAE BCD ∠=∠=︒,10cmAC =,则S ABC ACE CDE S S ∆∆∆++=2cm .【解析】 将三角形ABC 绕A 点和C 点分别顺时针和逆时针旋转90,构成三角形'AEC 和'A DC ,再连接''A C ,显然'AC AC ⊥,'AC A C ⊥,''AC A C AC ==,所以''ACA C 是正方形.三角形'AEC 和三角形'A DC 关于正方形的中心O 中心对称,在中心对称图形''ACA C 中有如下等量关系: ''AEC A DC S S ∆∆=;''AEC A DC S S ∆∆=;'CED C DE S S ∆∆=. 所以2'''11101050cm 22ABC ACE CDE AEC ACE CDE ACA C S S S S S S S∆∆∆∆∆∆++=++==⨯⨯=.练习5. 如图,正方形ABCD 的面积是120平方厘米,E是AB 的中点,F 是BC 的中点,四边形BGHF 的面积是_____平方厘米.【解析】 连接BH,根据沙漏模型得:1:2BG GD =,设1BHC S =△份,根据燕尾定理2CHD S =△份,2BHD S =△份,因此122)210S =++⨯=正方形(份,127236BFHG S =+=,所以712010146BFHG S =÷⨯=(平方厘米). 练习6. 如图,ABC ∆中,点D 是边AC 的中点,点E 、F是边BC 的三等分点,若ABC ∆的面积为1,那么四边形CDMF 的面积是_________.【解析】 由于点D 是边AC 的中点,点E 、F 是边BC 的三等分点,如果能求出BN 、NM 、MD 三段的比,那么所分成的六小块的面积都可以求出来,其中当然也包括四边形CDMF 的面积. 连接CM 、CN .根据燕尾定理,::2:1ABM ACM S S BF CF ∆∆==,而2ACM ADM S S ∆∆=,所以24ABM ACM ADM S S S ∆∆∆==,那么4BM DM =,即45BM BD =.那么421453215BMF BCD BM BF S S BD BC ∆∆=⨯⨯=⨯⨯=,14721530CDMF S =-=四边形. 另解:得出24ABM ACM ADMS S S ∆∆∆==后,可得111155210ADM ABD S S ∆∆==⨯=,则11731030ACF ADM CDMF S S S ∆∆=-=-=四边形. 练习7. 如右图,三角形ABC 中,:::4:3AF FB BD DC CE AE ===,且三角形ABC 的面积是74,求角形GHI 的面积.【解析】 连接BG ,AGC S △=12份根据燕尾定理,::4:312:9AGC BGC S S AF FB ===△△,::4:316:12ABG AGC S S BD DC ===△△。
盘点平面几何常考五大模型之欧阳语创编
盘点平面几何常考五大模型(一)等积变换模型性质与应用简介导读:平面几何问题,是历年小升初的必考题目,也在各大杯赛中占有很大比例,这些题目都是以等积变形为主导思想,结合五大模型的变化应用交织而成的,这一期我们讲解了解一下五大模型第一块——等积变换模型。
等积变换模型例题讲解与课后练习题(一)例题讲解与分析•【例1】:如右图,在△ABC中,BE=3AE,CD=2AD.若△ADE的面积是1平方厘米,那么三角形ABC的面积是多少?【解答】连接BD,S△ABD和S△ AED同高,面积比等于底边比,所以三角形ABD的面积是4,S△ABD和S△ABC同高面积比等于底边比,三角形ABC的面积是ABD的3倍,是12.【总结】要找准那两个三角形的高相同。
【例2】:如图,四边形ABCD中,AC和BD 相交于O点,三角形ADO的面积=5,三角形DOC 的面积=4,三角形AOB的面积=15,求三角形BOC 的面积是多少?【解答】S△ADO=5,S△DOC=4根据结论2,△ADO与△DOC同高所以面积比等于底的比,即AO/OC=5:4同理S△AOB/S△BOC=AO/OC=5:4,因为S △AOB=15所以S△BOC=12。
【总结】从这个题目我们可以发现,题目的条件和结论都是三角形的面积比,我们在解题过程中借助结论2,先把面积比转化成线段比,再把线段比用结论2转化成面积比,解决了问题。
事实上,这2次转化的过程就相当于在条件和结论中搭了一座“桥梁”,请同学们体会一下。
(二)课后练习题讲解与分析(二)鸟头定理(共角定理)模型导语:平面几何问题,是历年小升初的必考题目,也在各大杯赛中占有很大比例,这些题目都是以等积变形为主导思想,结合五大模型的变化应用交织而成的,第二期我们讲解了解一下五大模型第二块——鸟头定理(共角定理)模型。
o(三)蝴蝶定理模型导读:平面几何问题,是历年小升初的必考题目,也在各大杯赛中占有很大比例,这些题目都是以等积变形为主导思想,结合五大模型的变化应用交织而成的,这一期我们讲解了解一下五大模型第三块——蝴蝶定理模型。
几何五大模型之欧阳术创编
欧阳术创编 2021.02.02 欧阳美创编 2021.02.02 欧阳术创编 2021.02.02 欧阳美创编 2021.02.02一、等积变换模型 ⑴⑵两个三角形高相等,面积比即是它们的底之比;两个三角形底相等,面积比即是它们的高之比。
如上图12::S S a b =⑶夹在一组平行线之间的等积变形,如下图ACD BCD S S =△△; 反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD 。
⑷正方形的面积即是对角线长度平方的一半;⑸三角形面积即是与它等底等高的平行四边形面积的一半;二、鸟头定理(共角定理)模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。
共角三角形的面积比即是对应角(相等角或互补角)两夹边的乘积之比。
如图,在ABC △中,,D E 辨别是,AB AC 上的点(如图1)或D 在BA 的延长线上,E 在AC 上(如图2),则:():()ABC ADE S S AB AC AD AE =⨯⨯△△图1图2三、蝴蝶定理模型任意四边形中的比例关系(“蝴蝶定理”):①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++ 蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以获得与面积对应的对角线的比例关系。
梯形中比例关系(“梯形蝴蝶定理”)①2213::S S a b =②221324::::::S S S S a b ab ab =;③梯形S 的对应份数为()2a b +。
四、相似模型相似三角形性质:金字塔模型沙漏模型 ①AD AE DE AF AB AC BC AG===; ②22::ADE ABC S S AF AG =△△。
所谓的相似三角形,就是形状相同,年夜小不合的三角形(只要其形状不修改,不管年夜小怎样修改它们都相似),与相似三角形相关的经常使用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例即是它们的相似比;⑵相似三角形的面积比即是它们相似比的平方。
几何五大模型一之欧阳数创编
几何五大模型一、等积变换模型1、等底等高的两个三角形面积相等。
2、两个三角形高相等,面积比等于它们的底之比。
3、两个三角形底相等,面积比等于它的的高之比。
二、共角定理模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。
共角三角形的面积比等到于对应角(相等角或互补角)两夹边的乘积之比。
三、蝴蝶定理模型(说明:任意四边形与四边形、长方形、梯形,连接对角线所成四部的比例关系是一样的。
)四、相似三角形模型相似三角形:是形状相同,但大小不同的三角形叫相似三角形。
相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比。
相似三角形的面积比等于它们相似比的平方。
五、燕尾定理模等积变形: 等积变形是小学几何里面一个非常重要的思想,小学所以的几何题,或多或少的都会用到等积变形的思想,几何五大模型也都是依托等积变形思想变化而成的。
一半模型平行四边形、梯形、任意四边形中的一些一半模型。
一、 模型归纳总结1、等面积变换模型(1)直线AB 平行于CD ,可知BCD ACD S S ∆∆=;反之,如果BCD ACD S S ∆∆=,则可知直线AB 平行于CD .如图A(2)两个三角形高相等,面积比等于它们的底之比;两个三角形底相等,面积比等于它们的高之比;::ABD ACD S S BD CD =△△如图B图A 图B(3)一半面积关系【例1】、如图,每一个正方形四边中点的连线构成另一内接小正方形,则阴影部分面积为原正方形面积的几分之几?【例2】、如右图,过平行四边形ABCD 内的一点P 作边的平行线EF 、GH ,若PBD ∆的面积为8平方分米,求平行四边形PHCF 的面积比平行四边形PGAE 的面积大多少平方分米?【例4】、如图1,一个长方形被切成8块,其中三块的面积分别为12,23,32,则图中阴影部分的面积为_____ 二、 不规则图形求面积的常用方法【例5】、右图中两个半径为1的14圆扇形'A O B ''与AOB 叠放在一起,POQO '是正方形,则整个阴影图形的面积是。
高中数学竞赛平面几何讲座(非常详细)之欧阳家百创编
第一讲注意添加平行线证题欧阳家百(2021.03.07)在同一平面内,不相交的两条直线叫平行线.平行线是初中平面几何最基本的,也是非常重要的图形.在证明某些平面几何问题时,若能依据证题的需要,添加恰当的平行线,则能使证明顺畅、简洁.添加平行线证题,一般有如下四种情况.1、为了改变角的位置大家知道,两条平行直线被第三条直线所截,同位角相等,内错角相等,同旁内角互补.利用这些性质,常可通过添加平行线,将某些角的位置改变,以满足求解的需要.例1、设P、Q为线段BC上两点,且BP=CQ,A为BC 外一动点(如图1).当点A运动到使∠BAP=∠CAQ时,△ABC是什么三角形?试证明你的结论.答:当点A运动到使∠BAP=∠CAQ时,△ABC为等腰三角形.证明:如图1,分别过点P、B作AC、AQ的平行线得交点D.连结DA.在△DBP=∠AQC中,显然∠DBP=∠AQC,∠DPB=∠C.由BP=CQ,可知△DBP≌△AQC.有DP=AC,∠BDP =∠QAC.于是,DA∥BP,∠BAP=∠BDP.则A、D、B、P四点共圆,且四边形ADBP为等腰梯形.故AB=DP.所以AB=AC.这里,通过作平行线,将∠QAC“平推”到∠BDP的位置.由于A、D、B、P四点共圆,使证明很顺畅.ADB P Q C图1例2、如图2,四边形ABCD 为平行四边形,∠BAF =∠BCE.求证:∠EBA =∠ADE.证明:如图2,分别过点A 、B 作ED 、EC 的平行线,得交点P,连PE. 由ABCD,易知△PBA ≌△ECD.有PA =ED,PB =EC. 显然,四边形PBCE 、PADE 均为平行四边形.有∠BCE =∠BPE,∠APE =∠ADE.由∠BAF =∠BCE,可知∠BAF =∠BPE.有P 、B 、A 、E 四点共圆.于是,∠EBA =∠APE.所以,∠EBA =∠ADE.这里,通过添加平行线,使已知与未知中的四个角通过P 、B 、A 、E 四点共圆,紧密联系起来.∠APE 成为∠EBA 与∠ADE 相等的媒介,证法很巧妙.2、欲“送”线段到当处利用“平行线间距离相等”、“夹在平行线间的平行线段相等”这两条,常可通过添加平行线,将某些线段“送”到恰当位置,以证题.例3、在△ABC 中,BD 、CE 为角平分线,P 为ED 上任意一点.过P 分别作AC 、AB 、BC 的垂线,M 、N 、Q 为垂足.求证:PM +PN =PQ.证明:如图3,过点P 作AB 的平行线交BD 于F,过点F 作BC 的平行线分别交PQ 、AC 于K 、G,连PG.由BD 平行∠ABC,可知点F 到AB 、BC两边距离相等.有KQ =PN. 显然,PD EP =FD EF =GD CG ,可知PG ∥EC.由CE 平分∠BCA,知GP 平分∠FGA.有PK =PM.于是,PM +PN =PK +KQ =PQ.这里,通过添加平行线,将PQ“掐开”成两段,证得PM =PK,就有PM +PN =PQ.证法非常简捷.3 、为了线段比的转化∥=P E D G A B F C 图2A N E B Q K G C D M F P 图3由于“平行于三角形一边的直线截其它两边,所得对应线段成比例”,在一些问题中,可以通过添加平行线,实现某些线段比的良性转化.这在平面几何证题中是会经常遇到的.例4设M1、M2是△ABC 的BC 边上的点,且BM1=CM2.任作一直线分别交AB 、AC 、AM1、AM2于P 、Q 、N1、N2.试证:AP AB +AQ AC =11AN AM +22AN AM . 证明:如图4,若PQ ∥BC,易证结论成立. 若PQ 与BC 不平行,设PQ 交直线BC 于D.过点A 作PQ 的平行线交直线BC 于E.由BM1=CM2,可知BE +CE =M1E +M2E,易知 AP AB =DE BE ,AQ AC =DE CE ,11AN AM =DE E M 1,22AN AM =DEE M 2. 则AP AB +AQ AC =DECE BE +=DE E M E M 21+=11AN AM +22AN AM . 所以,AP AB +AQ AC =11AN AM +22AN AM . 这里,仅仅添加了一条平行线,将求证式中的四个线段比“通分”,使公分母为DE,于是问题迎刃而解.例5、AD 是△ABC 的高线,K 为AD 上一点,BK 交AC 于E,CK 交AB 于F.求证:∠FDA =∠EDA.证明:如图5,过点A 作BC 的平行线,分别交直线DE 、DF 、BE 、CF 于Q 、P 、N 、M.显然,AN BD =KA KD =AMDC .有BD·AM =DC·AN. (1) 由BD AP =FB AF =BC AM ,有AP =BCAM BD ·. (2) 由DC AQ =EC AE =BC AN ,有AQ =BC AN DC ·. (3) 对比(1)、(2)、(3)有AP =AQ.A P E M 2M 1B Q N 1N 2图4图5M P A Q N F B D CE K显然AD 为PQ 的中垂线,故AD 平分∠PDQ.所以,∠FDA =∠EDA.这里,原题并未涉及线段比,添加BC 的平行线,就有大量的比例式产生,恰当地运用这些比例式,就使AP 与AQ 的相等关系显现出来.4、为了线段相等的传递当题目给出或求证某点为线段中点时,应注意到平行线等分线段定理,用平行线将线段相等的关系传递开去. 例6在△ABC 中,AD 是BC 边上的中线,点M 在AB 边上,点N 在AC 边上,并且∠MDN =90°.如果BM2+CN2=DM2+DN2,求证:AD2=41(AB2+AC2). 证明:如图6,过点B 作AC 的平行线交ND 延长线于E.连ME. 由BD =DC,可知ED =DN.有△BED ≌△CND. 于是,BE =NC.显然,MD 为EN 的中垂线.有 EM =MN.由BM2+BE2=BM2+NC2=MD2+DN2=MN2=EM2,可知△BEM 为直角三角形,∠MBE =90°.有∠ABC +∠ACB =∠ABC +∠EBC =90°.于是,∠BAC =90°. 所以,AD2=221⎪⎭⎫ ⎝⎛BC =41(AB2+AC2). 这里,添加AC 的平行线,将BC 的以D 为中点的性质传递给EN,使解题找到出路.例7、如图7,AB 为半圆直径,D 为AB 上一点,分别在半圆上取点E 、F,使EA =DA,FB =DB.过D 作AB 的垂线,交半圆于C.求证:CD 平分EF.证明:如图7,分别过点E 、F 作AB 的垂线,G 、H 为垂足,连FA 、EB.易知DB2=FB2=AB·HB,AD2=AE2=AG·AB. 图6A N CDEB MA G D O H BF C E 图7二式相减,得DB2-AD2=AB·(HB -AG),或 (DB -AD)·AB =AB·(HB -AG).于是,DB -AD =HB -AG,或DB -HB =AD -AG. 就是DH =GD.显然,EG ∥CD ∥FH.故CD 平分EF. 这里,为证明CD 平分EF,想到可先证CD 平分GH.为此添加CD 的两条平行线EG 、FH,从而得到G 、H 两点.证明很精彩.经过一点的若干直线称为一组直线束.一组直线束在一条直线上截得的线段相等,在该直线的平行直线上截得的线段也相等.如图8,三直线AB 、AN 、AC 构成一组直线束,DE 是与BC 平行的直线.于是,有BN DM =AN AM =NC ME ,即BN DM =NC ME 或ME DM =NC BN . 此式表明,DM =ME 的充要条件是BN =NC.利用平行线的这一性质,解决某些线段相等的问题会很漂亮.例8如图9,ABCD 为四边形,两组对边延长后得交点E 、F,对角线BD ∥EF,AC 的延长线交EF 于G.求证:EG =GF.证明:如图9,过C 作EF 的平行线分别交AE 、AF 于M 、N.由BD ∥EF, 可知MN ∥BD.易知 S △BEF =S △DEF.有S △BEC =S △ⅡKG - *5ⅡDFC.可得MC =CN.所以,EG =GF.例9如图10,⊙O 是△ABC 的边BC 外的旁切圆,D 、E 、F 分别为⊙O 与BC 、CA 、AB的切点.若OD 与EF 相交于K,求证:AK 平分BC.证明:如图10,过点K 作BC 的行平线分别交直线AB 、AC 于Q 、P 两点,连OP 、OQ 、OE 、OF.由OD ⊥BC,可知OK ⊥PQ.图8AD B N C EM 图9A BM E F N D C GO 图10由OF ⊥AB,可知O 、K 、F 、Q 四点共圆,有∠FOQ =∠FKQ.由OE ⊥AC,可知O 、K 、P 、E 四点共圆.有∠EOP =∠EKP.显然,∠FKQ =∠EKP,可知∠FOQ =∠EOP.由OF =OE,可知Rt △OFQ ≌Rt △OEP.则OQ =OP.于是,OK 为PQ 的中垂线,故 QK =KP.所以,AK 平分BC.综上,我们介绍了平行线在平面几何问题中的应用.同学们在实践中应注意适时添加平行线,让平行线在平面几何证题中发挥应有的作用.练习题1. 四边形ABCD 中,AB =CD,M 、N 分别为AD 、BC 的中点,延长BA 交直线NM 于E,延长CD 交直线NM 于F.求证:∠BEN =∠CFN.(提示:设P 为AC 的中点,易证PM =PN.)2. 设P 为△ABC 边BC 上一点,且PC =2PB.已知∠ABC =45°,∠APC =60°.求∠ACB.(提示:过点C 作PA 的平行线交BA 延长线于点D.易证△ACD ∽△PBA.答:75°)3. 六边形ABCDEF 的各角相等,FA =AB =BC,∠EBD =60°,S △EBD =60cm2.求六边形ABCDEF 的面积. (提示:设EF 、DC 分别交直线AB 于P 、Q,过点E 作DC 的平行线交AB 于点M.所求面积与EMQD 面积相等.答:120cm2)4. AD 为Rt △ABC 的斜边BC 上的高,P 是AD 的中点,连BP 并延长交AC 于E.已知AC:AB =k.求AE:EC. (提示:过点A 作BC 的平行线交BE 延长线于点F.设BC =1,有AD =k,DC =k2.答:211k ) 5. AB 为半圆直径,C 为半圆上一点,CD ⊥AB 于D,E 为DB 上一点,过D 作CE 的垂线交CB 于F.求证:DE AD =FB CF.(提示:过点F 作AB 的平行线交CE 于点H.H 为△CDF 的垂心.)6. 在△ABC 中,∠A:∠B:∠C =4:2:1,∠A 、∠B 、∠C 的对边分别为a 、b 、c.求证:a 1+b 1=c 1.(提示:在BC 上取一点D,使AD =AB.分别过点B 、C 作AD 的平行线交直线CA 、BA 于点E 、F.)7. △ABC 的内切圆分别切BC 、CA 、AB 于点D 、E 、F,过点F 作BC 的平行线分别交直线DA 、DE 于点H 、G.求证:FH =HG.(提示:过点A 作BC 的平行线分别交直线DE 、DF 于点M 、N.)8. AD 为⊙O 的直径,PD 为⊙O 的切线,PCB 为⊙O 的割线,PO 分别交AB 、AC 于点M 、N.求证:OM =ON. (提示:过点C 作PM 的平行线分别交AB 、AD 于点E 、F.过O 作BP 的垂线,G 为垂足.AB ∥GF.)第二讲 巧添辅助 妙解竞赛题在某些数学竞赛问题中,巧妙添置辅助圆常可以沟通直线形和圆的内在联系,通过圆的有关性质找到解题途径.下面举例说明添置辅助圆解初中数学竞赛题的若干思路.1、挖掘隐含的辅助圆解题有些问题的题设或图形本身隐含着“点共圆”,此时若能把握问题提供的信息,恰当补出辅助圆,并合理挖掘图形隐含的性质,就会使题设和结论的逻辑关系明朗化.1.1 作出三角形的外接圆例1 如图1,在△ABC 中,AB =AC,D 是底边BC 上一点,E 是线段AD 上一点且∠BED =2∠CED =∠A.求证:BD =2CD.分析:关键是寻求∠BED =2∠CED 与结论的联系.容易想到作∠BED 的平分线,但因BE≠ED,故不能直接证A B G C D F E 图1出BD=2CD.若延长AD交△ABC的外接圆于F,则可得EB=EF,从而获取.证明:如图1,延长AD与△ABC的外接圆相交于点F,连结CF与BF,则∠BFA=∠BCA=∠ABC=∠AFC,即∠BFD=∠CFD.故BF:CF=BD:DC.又∠BEF=∠BAC,∠BFE=∠BCA,从而∠FBE=∠ABC=∠ACB=∠BFE.故EB=EF. 作∠BEF的平分线交BF于G,则BG =GF.因∠GEF=21∠BEF=∠CEF,∠GFE=∠CFE,故△FEG≌△FEC.从而GF=FC.于是,BF=2CF.故BD=2CD.1.2 利用四点共圆例2 凸四边形ABCD中,∠ABC=60°,∠BAD=∠BCD=90°,AB=2,CD=1,对角线AC、BD交于点O,如图2.则sin∠AOB=____.分析:由∠BAD=∠BCD=90°可知A、B、C、D四点共圆,欲求sin∠AOB,联想到托勒密定理,只须求出BC、AD即可.解:因∠BAD=∠BCD=90°,故A、B、C、D四点共圆.延长BA、CD交于P,则∠ADP=∠ABC=60°.设AD=x,有AP=3x,DP=2x.由割线定理得(2+3x)3x=2x(1+2x).解得AD=x=23-2,BC=21BP =4-3.由托勒密定理有 BD·CA=(4-3)(23-2)+2×1=103-12.又SABCD=S△ABD+S△BCD=233. 故sin∠AOB=263615 .AB CDPO图2例3 已知:如图3,AB =BC =CA =AD,AH ⊥CD 于H,CP ⊥BC,CP 交AH 于P.求证:△ABC 的面积S =43AP·BD. 分析:因S △ABC =43BC2=43AC·BC,只须证AC·BC =AP·BD,转化为证△APC ∽△BCD.这由A 、B 、C 、Q 四点共圆易证(Q 为BD 与AH 交点).证明:记BD 与AH 交于点Q,则由AC =AD,AH ⊥CD 得∠ACQ =∠ADQ.又AB =AD,故∠ADQ =∠ABQ. 从而,∠ABQ =∠ACQ.可知A 、B 、C 、Q 四点共圆. ∵∠APC =90°+∠PCH =∠BCD,∠CBQ =∠CAQ, ∴△APC ∽△BCD.∴AC·BC =AP·BD.于是,S =43AC·BC =43AP·BD.2 、构造相关的辅助圆解题有些问题貌似与圆无关,但问题的题设或结论或图形提供了某些与圆的性质相似的信息,此时可大胆联想构造出与题目相关的辅助圆,将原问题转化为与圆有关的问题加以解决.2.1 联想圆的定义构造辅助圆例4 如图4,四边形ABCD 中,AB ∥CD,AD =DC =DB =p,BC =q.求对角线AC 的长.分析:由“AD =DC =DB =p”可知A 、B 、C 在半径为p 的⊙D 上.利用圆的性质即可找到AC 与p 、q 的关系.解:延长CD 交半径为p 的⊙D 于E 点,连结AE.显然A 、B 、C 在⊙D 上.∵AB ∥CD,∴BC =AE.从而,BC =AE =q.在△ACE 中,∠CAE =90°,CE =2p,AE =q,故A 图3B PQDH C A E D C B 图4AC =22AE CE -=224q p -.2.2 联想直径的性质构造辅助圆例5 已知抛物线y =-x2+2x +8与x 轴交于B 、C 两点,点D 平分BC.若在x 轴上侧的A 点为抛物线上的动点,且∠BAC 为锐角,则AD 的取值范围是____.分析:由“∠BAC 为锐角”可知点A 在以定线段BC 为直径的圆外,又点A 在x 轴上侧,从而可确定动点A范围,进而确定AD 的取值范围.解:如图5,所给抛物线的顶点为A0(1,9),对称轴为x 1,与x 轴交于两点B(-2,0)、C(4,0). 分别以BC 、DA 为直径作⊙D 、⊙E,均交于两点 P(1-22,1)、Q(1+22,1).可知,点A 在不含端点的抛物线PA0Q 内时,∠BAC <90°.且有3=DP =DQ <AD≤DA0=9,即AD 的取值范围是3<AD≤9.2.3 联想圆幂定理构造辅助圆例6AD 是Rt △ABC 斜边BC 上的高,∠B 的平行线交AD 于M,交AC 于N.求证:AB2-AN2=BM·BN.分析:因AB2-AN2=(AB +AN)(AB -AN)=BM·BN,而由题设易知AM =AN,联想割线定理,构造辅助圆即可证得结论.证明:如图6,∵∠2+∠3=∠4+∠5=90°, 又∠3=∠4,∠1=∠5,∴∠1=∠2.从而,AM =AN. 以AM 长为半径作⊙A,交AB 于F,交BA 的延长线于E.则AE =AF =AN.由割线定理有BM·BN =BF·BE =(AB +AE)(AB -AF)=(AB +AN)(AB -AN)=AB2-AN2,即 AB2-AN2=BM·BN. 图5E A N CD B F M 12345图6例7 如图7,ABCD 是⊙O 的内接四边形,延长AB 和DC 相交于E,延长AB 和DC 相交于E,延长AD 和BC 相交于F,EP 和FQ 分别切⊙O 于P 、Q.求证:EP2+FQ2=EF2.分析:因EP 和FQ 是⊙O 的切线,由结论联想到切割线定理,构造辅助圆使EP 、FQ 向EF 转化.证明:如图7,作△BCE 的外接圆交EF 于G,连结CG.因∠FDC =∠ABC =∠CGE,故F 、D 、C 、G 四点共圆. 由切割线定理,有EF2=(EG +GF)·EF =EG·EF +GF·EF =EC·ED +FC·FB =EC·ED +FC·FB =EP2+FQ2,即 EP2+FQ2=EF2.2.4 联想托勒密定理构造辅助圆例8 如图8,△ABC 与△A 'B 'C '的三边分别为a 、b 、c 与a '、b '、c ',且∠B =∠B ',∠A +∠A '=180°.试证:aa '=bb '+cc '. 分析:因∠B =∠B ',∠A +∠A '=180°,由结论联想到托勒密定理,构造圆内接四边形加以证明.证明:作△ABC 的外接圆,过C 作CD ∥AB 交圆于D,连结AD 和BD,如图9所示.∵∠A +∠A '=180°=∠A +∠D,∠BCD =∠B =∠B ',∴∠A '=∠D,∠B '=∠BCD. ∴△A 'B 'C '∽△DCB. 有DC B A ''=CB C B ''=DB C A '', 即DCc '=aa '=DBb '. 故DC =''a ac ,DB =''a ab .又AB ∥DC,可知BD =AC =b,BC =AD =a.从而,由托勒密定理,得(1)(2)图8AB C A'B'C'c a b a'c'b'A BCD ab b c图9AD·BC =AB·DC +AC·BD,即 a2=c·''a ac +b·''a ab . 故aa '=bb '+cc '.练习题1. 作一个辅助圆证明:△ABC 中,若AD 平分∠A,则AC AB =DCBD. (提示:不妨设AB≥AC,作△ADC 的外接圆交AB 于E,证△ABC ∽△DBE,从而AC AB =DE BD =DCBD.)2. 已知凸五边形ABCDE 中,∠BAE =3a,BC =CD =DE,∠BCD =∠CDE =180°-2a.求证:∠BAC =∠CAD =∠DAE.(提示:由已知证明∠BCE =∠BDE =180°-3a,从而A 、B 、C 、D 、E 共圆,得∠BAC =∠CAD =∠DAE.) 3. 在△ABC 中AB =BC,∠ABC =20°,在AB 边上取一点M,使BM =AC.求∠AMC 的度数.(提示:以BC 为边在△ABC 外作正△KBC,连结KM,证B 、M 、C 共圆,从而∠BCM =21∠BKM =10°,得∠AMC =30°.)4.如图10,AC 是ABCD 较长的对角线,过C 作CF ⊥AF,CE ⊥AE.求证:AB·AE +AD·AF =AC2.(提示:分别以BC 和CD 为直径作圆交AC 于点G 、H.则CG =AH,由割线定理可证得结论.)5. 如图11.已知⊙O1和⊙O2相交于A 、B,直线CD 过A 交⊙O1和⊙O2于C 、D,且AC =AD,EC 、ED 分别切两圆于C 、D.求证:AC2=AB·AE.(提示:作△BCD 的外接圆⊙O3,延长BA 交⊙O3于F,证E 在⊙O3上,得△ACE ≌△ADF,从而AE =AF,由相交弦定理即得结论.)FD A B EC图10图116.已知E 是△ABC 的外接圆之劣弧BC 的中点.求证:AB·AC =AE2-BE2.(提示:以BE 为半径作辅助圆⊙E,交AE 及其延长线于N 、M,由△ANC ∽△ABM 证AB·AC =AN·AM.) 7. 若正五边形ABCDE 的边长为a,对角线长为b,试证:ab -ba =1.(提示:证b2=a2+ab,联想托勒密定理作出五边形的外接圆即可证得.)第三讲 点共线、线共点在本小节中包括点共线、线共点的一般证明方法及梅涅劳斯定理、塞瓦定理的应用。
初中数学几何经典模型之欧阳术创编
【例5】如图,正方形
】如图,在边长为
CD边上的点,
【例18】如图所示,在矩形ABCD中,4,42
==,E是线段
AB AD
AB的中点,F是线段BC上的动点,BEF
∆,
∆沿直线EF翻折到'B EF 连接'DB,'DB最短为.
《三垂直模型》
课后练习题
【练习1】
问题1:如图1,在等腰梯形ABCD中,AD∥BC,AB=BC=CD,点M,N分别在AD,CD上,∠MBN=1
∠ABC,试探究线段
2
MN,AM,CN有怎样的数量关系?请直接写出你的猜想;
问题2:如图2,在四边形ABCD中,AB=BC,∠ABC+∠ADC=180°,点M,N分别在DA,CD的延长线上,若∠MBN=1
∠ABC仍然成立,请你进一步探究线段MN,AM,
2
CN又有怎样的数量关系?写出你的猜想,并给予证明.
【练习2】已知:如图1,正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.
⑴求证:EG=CG且EG⊥CG;
⑵将图1中△BEF绕B点逆时针旋转45º,如图2所示,取DF 中点G,连接EG,CG.问⑴中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
⑶将图1中△BEF绕B点旋转任意角度,如图3所示,再连接相应的线段,问(1)中的结论是否仍然成立?。
蒙氏感官展示页之欧阳家百创编
欧阳家百(2021.03.07)材料:圆柱体插座第一组直接目的:能将圆柱体放进对应的凹槽里间接目的:1:训练幼儿视觉对物体尺寸的辨别力2:锻炼幼儿手指的灵活度,为书写做准备3:训练幼儿从左至右的方向感4:为数学中一一对应做铺垫5:发展幼儿的秩序感、专注力、协调性和独立性工作步骤:变化与延伸:1:圆柱体插座第二组配对2:圆柱体插座第三组配对3:圆柱体插座第四组配对4:能将生活中常见的物体配对5:能将实物与平面图片进行配对错误控制:与圆柱体一一对应的凹槽兴趣点:指导用语:圆柱体插座、手柄注意事项:1:这组圆柱体插座的工作是幼儿第一次接触感官教具,教师在进行展示后要充分观察幼儿的接受和使用情况,并为幼儿提供足够的自由操作的机会;2:圆柱体插座第三组触摸圆柱体时要借助一根木棒或者一支铅笔;3:此次展示要分成四课时来完成工作前经验:已有三指捏木插座操作经验或者2岁半以上的幼儿工作名称:圆柱体插座第二次展示排序工作前经验:已在自由工作中操作过圆柱体插座的幼儿材料:圆柱体插座第一组直接目的:能将散放的圆柱体排序,并放进对应的凹槽里间接目的:1:训练幼儿视觉对物体尺寸的辨别力2:锻炼幼儿手指的灵活度,为书写做准备3:训练幼儿从左至右的方向感4:为数学中的一一对应做准备5:发展幼儿的秩序感、专注力、协调性和独立性工作步骤:变化与延伸:1:圆柱体插座第二组排序2:圆柱体插座第三组排序3:圆柱体插座第四组排序4:能将生活中的实物进行排序,如套娃、石头、贝壳等(最少三个以上)错误控制:圆柱体本身所具有的序列,与圆柱体一一对应的凹槽兴趣点:指导用语:圆柱体、排序注意事项:此次展示活动要与第一次展示相隔一段时间,如三天或者一个星期工作名称:圆柱体插座第三次展示名称练习工作前经验:已能将圆柱体正确排序的幼儿材料:圆柱体插座第一组直接目的:能区分出物体的大小,并能较正确地说出“大的”“小的”间接目的:1:训练幼儿视觉对物体尺寸的辨别力2:锻炼幼儿手指的灵活性、专注力、协调性和独立性3:训练幼儿从左至右的方向感4:为数学中的一一对应作铺垫5:发展幼儿的秩序感、专注力、协调性和独立性工作步骤:变化与延伸:1:圆柱体插座第二组名称练习“粗的”、“细的”2:圆柱体插座第三组名称练习“高的”、“矮的”3:圆柱体插座第四组名称练习“又粗又矮的”、“又高又细的”4:对生活中常见的物体能辨认出特征,并说出相应的名称错误控制:圆柱体本身兴趣点:指导用语:这是大的/小的/粗的/细的/高的/矮的/又粗又矮的/又高又细的,哪个是大的/小的1:如果幼儿的语言表达能力较好,教师可教给幼儿以下的词汇:最大的、最小的、比较大的、比较小的等。
高中平面几何定理之欧阳法创编
(高中)平面几何基础知识(基本定理、基本性质)2.勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边的平方,等于其他两边之平方和,减去这两边中的一边和另一边在这边上的射影乘积的两倍.(2)钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍.3.射影定理(欧几里得定理)4.中线定理(巴布斯定理)设△ABC的边BC的中点为P,则有)(22222BP AP AC AB +=+; 中线长:222222a c b m a -+=. 5. 垂线定理:2222BD BC AD AC CD AB -=-⇔⊥.高线长:C b B c A abc c p b p a p p a h a sin sin sin ))()((2===---=.6. 角平分线定理:三角形一个角的平分线分对边所成的两条线段与这个角的两边对应成比例.如△ABC 中,AD 平分∠BAC ,则AC AB DC BD =;(外角平分线定理). 角平分线长:2cos 2)(2A c b bc a p bcp c b t a +=-+=(其中p 为周长一半).7. 正弦定理:R C c B b A a 2sin sin sin ===,(其中R 为三角形外接圆半径).8. 余弦定理:C ab b a c cos 2222-+=.9. 张角定理:AB DAC AC BAD AD BAC ∠+∠=∠sin sin sin . 10. 斯特瓦尔特(Stewart )定理:设已知△ABC 及其底边上B 、C 两点间的一点D ,则有AB 2·DC +AC 2·BD -AD 2·BC =BC ·DC ·BD .11. 圆周角定理:同弧所对的圆周角相等,等于圆心角的一半.(圆外角如何转化?)12. 弦切角定理:弦切角等于夹弧所对的圆周角.13. 圆幂定理:(相交弦定理:垂径定理:切割线定理(割线定理):切线长定理:)14. 布拉美古塔(Brahmagupta )定理:在圆内接四边形ABCD 中,AC ⊥BD,自对角线的交点P向一边作垂线,其延长线必平分对边.15.点到圆的幂:设P为⊙O所在平面上任意一点,PO=d,⊙O的半径为r,则d2-r2就是点P对于⊙O的幂.过P任作一直线与⊙O交于点A、B,则PA·PB= |d2-r2|.“到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线,如果此二圆相交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴”.三个圆两两的根轴如果不互相平行,则它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点.16.托勒密(Ptolemy)定理:圆内接四边形对角线之积等于两组对边乘积之和,即AC·BD=AB·CD+AD·BC,(逆命题成立) .(广义托勒密定理)AB·CD+AD·BC≥AC·BD.17.蝴蝶定理:AB是⊙O的弦,M是其中点,弦CD、EF经过点M,CF、DE交AB于P、Q,求证:MP=QM.18.费马点:定理1等边三角形外接圆上一点,到该三角形较近两顶点距离之和等于到另一顶点的距离;不在等边三角形外接圆上的点,到该三角形两顶点距离之和大于到另一点的距离.定理2三角形每一内角都小于120°时,在三角形内必存在一点,它对三条边所张的角都是120°,该点到三顶点距离和达到最小,称为“费马点”,当三角形有一内角不小于120°时,此角的顶点即为费马点.19.拿破仑三角形:在任意△ABC的外侧,分别作等边△ABD、△BCE、△CAF,则AE、AB、CD三线共点,并且AE=BF=CD,这个命题称为拿破仑定理.以△ABC的三条边分别向外作等边△ABD、△BCE、△CAF,它们的外接圆⊙C1、⊙A1、⊙B1的圆心构成的△——外拿破仑的三角形,⊙C1、⊙A1、⊙B1三圆共点,外拿破仑三角形是一个等边三角形;△ABC 的三条边分别向△ABC的内侧作等边△ABD、△BCE、△CAF,它们的外接圆⊙C2、⊙A2、⊙B2的圆心构成的△——内拿破仑三角形,⊙C2、⊙A、⊙B2三圆共点,内拿破仑三角形2也是一个等边三角形.这两个拿破仑三角形还具有相同的中心.20.九点圆(Ninepointround或欧拉圆或费尔巴赫圆):三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,九点圆具有许多有趣的性质,例如:(1)三角形的九点圆的半径是三角形的外接圆半径之半;(2)九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点;(3)三角形的九点圆与三角形的内切圆,三个旁切圆均相切〔费尔巴哈定理〕.21.欧拉(Euler)线:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上.22. 欧拉(Euler )公式:设三角形的外接圆半径为R ,内切圆半径为r ,外心与内心的距离为d ,则d 2=R 2-2Rr .23. 锐角三角形的外接圆半径与内切圆半径的和等于外心到各边距离的和.24. 重心:三角形的三条中线交于一点,并且各中线被这个点分成2:1的两部分;)3,3(C B A C B A y y y x x x G ++++重心性质:(1)设G 为△ABC 的重心,连结AG 并延长交BC 于D ,则D 为BC 的中点,则1:2:=GD AG ;(2)设G 为△ABC 的重心,则ABC ACG BCG ABG S S S S ∆∆∆∆===31;(3)设G 为△ABC 的重心,过G 作DE ∥BC 交AB 于D ,交AC 于E ,过G 作PF ∥AC 交AB 于P ,交BC 于F ,过G 作HK ∥AB 交AC于K ,交BC 于H ,则2;32=++===ABKH CA FP BC DE AB KH CA FP BC DE ;(4)设G 为△ABC 的重心,则①222222333GC AB GB CA GA BC +=+=+; ②)(31222222CA BC AB GC GB GA ++=++;③22222223PG GC GB GA PC PB PA +++=++(P 为△ABC 内任意一点);④到三角形三顶点距离的平方和最小的点是重心,即222GC GB GA ++最小;⑤三角形内到三边距离之积最大的点是重心;反之亦然(即满足上述条件之一,则G 为△ABC的重心).25. 垂心:三角形的三条高线的交点;)cos cos cos cos cos cos ,cos cos cos cos cos cos (C c B b A a y C c y B b y A a C c B b A a x C c x B b x A a H C B A C B A ++++++++垂心性质:(1)三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍;(2)垂心H 关于△ABC 的三边的对称点,均在△ABC 的外接圆上;(3)△ABC 的垂心为H ,则△ABC ,△ABH ,△BCH ,△ACH 的外接圆是等圆;(4)设O ,H 分别为△ABC 的外心和垂心,则HCA BCO ABH CBO HAC BAO ∠=∠∠=∠∠=∠,,. 26. 内心:三角形的三条角分线的交点—内接圆圆心,即内心到三角形各边距离相等;内心性质:(1)设I 为△ABC 的内心,则I 到△ABC 三边的距离相等,反之亦然;(2)设I 为△ABC 的内心,则C AIB B AIC A BIC ∠+︒=∠∠+︒=∠∠+︒=∠2190,2190,2190;(3)三角形一内角平分线与其外接圆的交点到另两顶点的距离与到内心的距离相等;反之,若A∠平分线交△ABC 外接圆于点K ,I 为线段AK 上的点且满足KI=KB ,则I 为△ABC 的内心;(4)设I 为△ABC 的内心,,,,c AB b AC a BC ===A ∠平分线交BC于D ,交△ABC 外接圆于点K ,则a cb KD IK KI AK ID AI +===; (5)设I 为△ABC 的内心,,,,c AB b AC a BC ===I 在AB AC BC ,,上的射影分别为F E D ,,,内切圆半径为r ,令)(21c b a p ++=,则①pr S ABC =∆;②cp CD CE b p BF BD a p AF AE -==-==-==;;;③CI BI AI p abcr ⋅⋅⋅=.27. 外心:三角形的三条中垂线的交点——外接圆圆心,即外心到三角形各顶点距离相等;外心性质:(1)外心到三角形各顶点距离相等;(2)设O 为△ABC 的外心,则A BOC ∠=∠2或A BOC ∠-︒=∠2360;(3)∆=S abcR 4;(4)锐角三角形的外心到三边的距离之和等于其内切圆与外接圆半径之和.28. 旁心:一内角平分线与两外角平分线交点——旁切圆圆心;设△ABC 的三边,,,c AB b AC a BC ===令)(21c b a p ++=,分别与AB AC BC ,,外侧相切的旁切圆圆心记为C B A I I I ,,,其半径分别记为C B A r r r ,,.旁心性质:(1),21,2190A C BI C BI A C BI C B A ∠=∠=∠∠-︒=∠(对于顶角B ,C 也有类似的式子);(2))(21C A I I I C B A ∠+∠=∠;(3)设AAI 的连线交△ABC 的外接圆于D ,则DC DB DI A ==(对于C B CI BI ,有同样的结论);(4)△ABC 是△I A I B I C 的垂足三角形,且△I A I B I C 的外接圆半径'R 等于△ABC 的直径为2R .29. 三角形面积公式:C B A R Rabc C ab ah S a ABC sin sin sin 24sin 21212====∆)cot cot (cot 4222C B A c b a ++++=))()((c p b p a p p pr ---==,其中a h 表示BC边上的高,R 为外接圆半径,r 为内切圆半径,)(21c b a p ++=.30. 三角形中内切圆,旁切圆和外接圆半径的相互关系:31. 梅涅劳斯(Menelaus )定理:设△ABC 的三边BC 、CA 、AB 或其延长线和一条不经过它们任一顶点的直线的交点分别为P 、Q 、R 则有 1=⋅⋅RB AR QA CQ PC BP .(逆定理也成立)32. 梅涅劳斯定理的应用定理1:设△ABC 的∠A 的外角平分线交边CA 于Q ,∠C 的平分线交边AB 于R ,∠B 的平分线交边CA 于Q ,则P 、Q 、R 三点共线.33. 梅涅劳斯定理的应用定理2:过任意△ABC 的三个顶点A 、B 、C 作它的外接圆的切线,分别和BC 、CA 、AB 的延长线交于点P 、Q 、R ,则P 、Q 、R 三点共线.34. 塞瓦(Ceva )定理:设X 、Y 、Z 分别为△ABC的边BC、CA、AB上的一点,则AX、BY、CZ所在直线交于一点的充要条件是AZZB·BXXC·CYYA=1.35.塞瓦定理的应用定理:设平行于△ABC的边BC的直线与两边AB、AC的交点分别是D、E,又设BE和CD交于S,则AS一定过边BC的中点M.36.塞瓦定理的逆定理:(略)37.塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一点,三角形的三条高线交于一点,三角形的三条角分线交于一点.38.塞瓦定理的逆定理的应用定理2:设△ABC的内切圆和边BC、CA、AB 分别相切于点R、S、T,则AR、BS、CT交于一点.39.西摩松(Simson)定理:从△ABC 的外接圆上任意一点P向三边BC、CA、AB或其延长线作垂线,设其垂足分别是D、E、R,则D、E、R共线,(这条直线叫西摩松线Simson line).40.西摩松定理的逆定理:(略)41.关于西摩松线的定理1:△ABC的外接圆的两个端点P、Q关于该三角形的西摩松线互相垂直,其交点在九点圆上.42.关于西摩松线的定理2(安宁定理):在一个圆周上有4点,以其中任三点作三角形,再作其余一点的关于该三角形的西摩松线,这些西摩松线交于一点.43.史坦纳定理:设△ABC的垂心为H,其外接圆的任意点P,这时关于△ABC的点P的西摩松线通过线段PH的中心.44.史坦纳定理的应用定理:△ABC的外接圆上的一点P的关于边BC、CA、AB的对称点和△ABC的垂心H 同在一条(与西摩松线平行的)直线上.这条直线被叫做点P关于△ABC 的镜象线.45.牛顿定理1:四边形两条对边的延长线的交点所连线段的中点和两条对角线的中点,三点共线.这条直线叫做这个四边形的牛顿线.46.牛顿定理2:圆外切四边形的两条对角线的中点,及该圆的圆心,三点共线.47.笛沙格定理1:平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线.48.笛沙格定理2:相异平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线.49.波朗杰、腾下定理:设△ABC的外接圆上的三点为P、Q、R,则P、Q、R关于△ABC交于一点的充要条件是:弧AP+弧BQ+弧CR=0(mod2 ) .50.波朗杰、腾下定理推论1:设P、Q、R为△ABC的外接圆上的三点,若P、Q、R关于△ABC的西摩松线交于一点,则A、B、C三点关于△PQR的的西摩松线交于与前相同的一点.51.波朗杰、腾下定理推论2:在推论1中,三条西摩松线的交点是A、B、C、P、Q、R六点任取三点所作的三角形的垂心和其余三点所作的三角形的垂心的连线段的中点.52.波朗杰、腾下定理推论3:考查△ABC的外接圆上的一点P的关于△ABC的西摩松线,如设QR为垂直于这条西摩松线该外接圆的弦,则三点P、Q、R的关于△ABC的西摩松线交于一点.53.波朗杰、腾下定理推论4:从△ABC的顶点向边BC、CA、AB引垂线,设垂足分别是D、E、F,且设边BC、CA、AB的中点分别是L、M、N,则D、E、F、L、M、N六点在同一个圆上,这时L、M、N点关于关于△ABC的西摩松线交于一点.54.卡诺定理:通过△ABC的外接圆的一点P,引与△ABC的三边BC、CA、AB分别成同向的等角的直线PD、PE、PF,与三边的交点分别是D、E、F,则D、E、F三点共线.55.奥倍尔定理:通过△ABC的三个顶点引互相平行的三条直线,设它们与△ABC的外接圆的交点分别是L、M、N,在△ABC的外接圆上取一点P,则PL、PM、PN与△ABC的三边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线.56.清宫定理:设P、Q为△ABC的外接圆的异于A、B、C的两点,P点的关于三边BC、CA、AB的对称点分别是U、V、W,这时,QU、QV、QW 和边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线.57.他拿定理:设P、Q为关于△ABC 的外接圆的一对反点,点P的关于三边BC、CA、AB的对称点分别是U、V、W,这时,如果QU、QV、QW 和边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线.(反点:P、Q分别为圆O的半径OC和其延长线的两点,如果OC2=OQ×OP则称P、Q两点关于圆O互为反点)58.朗古来定理:在同一圆周上有A1、B、C1、D1四点,以其中任三点作三1角形,在圆周取一点P,作P点的关于这4个三角形的西摩松线,再从P 向这4条西摩松线引垂线,则四个垂足在同一条直线上.59.从三角形各边的中点,向这条边所对的顶点处的外接圆的切线引垂线,这些垂线交于该三角形的九点圆的圆心.60.一个圆周上有n个点,从其中任意n-1个点的重心,向该圆周的在其余一点处的切线所引的垂线都交于一点.61.康托尔定理1:一个圆周上有n个点,从其中任意n-2个点的重心向余下两点的连线所引的垂线共点.62.康托尔定理2:一个圆周上有A、B、C、D四点及M、N两点,则M 和N点关于四个三角形△BCD、△CDA、△DAB、△ABC中的每一个的两条西摩松线的交点在同一直线上.这条直线叫做M、N两点关于四边形ABCD的康托尔线.63.康托尔定理3:一个圆周上有A、B、C、D四点及M、N、L三点,则M、N两点的关于四边形ABCD的康托尔线、L、N两点的关于四边形ABCD的康托尔线、M、L两点的关于四边形ABCD的康托尔线交于一点.这个点叫做M、N、L三点关于四边形ABCD的康托尔点.64.康托尔定理4:一个圆周上有A、B、C、D、E五点及M、N、L三点,则M、N、L三点关于四边形BCDE、CDEA、DEAB、EABC中的每一个康托尔点在一条直线上.这条直线叫做M、N、L三点关于五边形A、B、C、D、E的康托尔线.65.费尔巴赫定理:三角形的九点圆与内切圆和旁切圆相切.66.莫利定理:将三角形的三个内角三等分,靠近某边的两条三分角线相得到一个交点,则这样的三个交点可以构成一个正三角形.这个三角形常被称作莫利正三角形.67.布利安松定理:连结外切于圆的六边形ABCDEF相对的顶点A和D、B 和E、C和F,则这三线共点.68.帕斯卡(Paskal)定理:圆内接六边形ABCDEF相对的边AB和DE、BC和EF、CD和FA的(或延长线的)交点共线.69.阿波罗尼斯(Apollonius)定理:到两定点A、B的距离之比为定比m:n (值不为1)的点P,位于将线段AB 分成m:n的内分点C和外分点D为直径两端点的定圆周上.这个圆称为阿波罗尼斯圆.70.库立奇*大上定理:(圆内接四边形的九点圆)圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆.71.密格尔(Miquel)点:若AE、AF、ED、FB四条直线相交于A、B 、C 、D 、E 、F 六点,构成四个三角形,它们是△ABF 、△AED 、△BCE 、△DCF ,则这四个三角形的外接圆共点,这个点称为密格尔点.72. 葛尔刚(Gergonne )点:△ABC 的内切圆分别切边AB 、BC 、CA 于点D 、E 、F ,则AE 、BF 、CD 三线共点,这个点称为葛尔刚点.73. 欧拉关于垂足三角形的面积公式:O 是三角形的外心,M 是三角形中的任意一点,过M 向三边作垂线,三个垂足形成的三角形的面积,其公式:222ABC D 4||R d R S S EF -=∆∆.。
几何体的结构特征之欧阳体创编
§1.1.1 棱柱、棱锥、棱台的结构特征一、核心知识点探究1:多面体的相关概念 由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面AB由一个平面图形绕它所在平定直线叫的旋转体:探究3:1.概念:形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱(prism ).棱柱中,两个互相平行的面叫做棱柱的底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧面与底面的公共顶点叫做棱柱的顶点.(两底面之间的距离叫棱柱的高) 关键点:侧棱平行且相等 注意点:有两个面互相平行,其余各面都是平行四边形的几何体不一定是棱柱。
2.分类:新知4:①按底面多边形的边数来分,底面是三角形、四边形、五边形…的棱柱分别叫做三棱柱、四棱柱、五棱柱… ②按照侧棱是否和底面垂直,棱柱可分为斜棱柱(不垂直)和直棱柱(垂直).拓展:正棱柱与直棱柱 常见四棱柱的关系3.表示:我们用表示底面各顶点的字母表示棱柱,如图(1)中这个棱柱表示为棱柱ABCD —A B C D ''''.例1.关于棱柱,下列说法正确的是 ( D )A .只有两个面平行B .所有的棱都相等C .所有的面都是平行四边形D .两底面平行,侧棱也互相平行探究4:棱锥的结构特征1.概念:有一个面是多边形,其余各个面都是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥(pyramid).面这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱.顶点到底面的距离叫做棱锥的高;关键点:侧棱交于一点2.分类:棱锥也可以按照底面的边数分为三棱锥(四面体)、四棱锥…等等。
3.表示:棱锥可以用顶点和底面各顶点的字母表示,如下图中的棱锥S ABCDE-.拓展:1.正棱锥2.四面体、正四面体与正三棱锥探究5:棱台的结构特征1.概念:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分形成的几何体叫做棱台(frustum of a pyramid).原棱锥的底面和截面分别叫做棱台的下底面和上底面.其余各面是棱台的侧面,相邻侧面的公共边叫侧棱,侧面与两底面的公共点叫顶点.两底面间的距离叫棱台的高.关键特征:各侧棱延长后交于一点,也是判断棱台的方法2.分类:类似于棱锥.3.表示:棱台可以用上、下底面的字母表示拓展:正多面体二、典型题型三、当堂检测(时量:5分钟满分:10分)1. 一个多边形沿不平行于矩形所在平面的方向平移一段距离可以形成().A.棱锥B.棱柱C.平面D.长方体2.棱台不具有的性质是().A.两底面相似B.侧面都是梯形C.侧棱都相等D.侧棱延长后都交于一点3.已知集合A={正方体},B={长方体},C={正四棱柱},D={直四棱柱},E={棱柱},F={直平行六面体},则().A.EFDCBA⊆⊆⊆⊆⊆B.EDFBCA⊆⊆⊆⊆⊆C.EFDBAC⊆⊆⊆⊆⊆D.它们之间不都存在包含关系4.长方体三条棱长分别是AA'=1AB=2,4AD=,则从A点出发,沿长方体的表面到C′的最短矩离是_____________.5. 若棱台的上、下底面积分别是25和81,高为4,则截得这棱台的原棱锥的高为___________.四、课后作业1. 已知正三棱锥S-ABC的高SO=h,斜高(侧面三角形的高)SM=n,求经过SO的中点且平行于底面的截面△A1B1C1的面积.2. 在边长a为正方形ABCD 中,E、F分别为AB、BC的中点,现在沿DE、DF及EF把△ADE、△折起,使A、B§1.1.2台、球及简单组合体的结构特1. 感受空间实物及模型,增强学生的直观感知;2. 能根据几何结构特征对空间物体进行分类;3. 能概述圆柱、圆锥、圆台台体、球的结构特征;4. 能描述一些简单组合体的结5~P7,找出疑惑之处)复习:①__________________________ ____叫多面体,_______________________ __________________________ __叫旋转体.②棱柱的几何性质:_______是对应边平行的全等多边形,侧面都是________,侧棱____且____,平行于底面的截面是与_____全等的多边形;棱锥的几何性质:侧面都是______,平行于底面的截面与其相似比等于.※探索新知探究1:圆柱的结构特征问题:观察下面的旋转体,你能说出它们是什么平面图形通过怎样的旋转得到的吗?新知1;以矩形的一边所在直线为旋转轴,其余三边旋转形成的曲面所围成的几何体,叫做圆柱(circular cylinder),旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线,如图所示:圆柱用表示它的轴的字母表示,图中的圆柱可表示为OO .圆柱和棱柱统称为柱体.探究2:圆锥的结构特征问题:下图的实物是一个圆锥,与圆柱一样也是平面图形旋转而成的. 仿照圆柱的有关定义,你能定义什么是圆锥以及圆锥的轴、底面、侧面、母线吗?试在旁边的图中标出来.新知2:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫圆锥.圆锥也用表示它的轴的字母表示.棱锥与圆锥统称为锥体.探究3:圆台的结构特征问题:下图中的物体叫做圆台,也是旋转体.它是什么图形通过怎样的旋转得到的呢?除了旋转得到以外,对比棱台,圆台还可以怎样得到呢?新知3;直角梯形以垂直于底边的腰所在的直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫圆台(frustum of a cone).用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分也是圆台. 圆台和圆柱、圆锥一样,也有轴、底面、侧面、母线,请你在上图中标出它们,并把圆台用字母表示出来. 棱台与圆台统称为台体.反思:结合结构特征,从变化的角度思考,圆台、圆柱、圆锥三者之间有什么关系?探究4:球的结构特征问题:球也是旋转体,怎么得到的?新知4:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体叫做球体(solid sphere),简称球;半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径;球通常用表示球心的字母O表示,如球O.探究5:简单组合体的结构特征问题:矿泉水塑料瓶由哪些几何体构成?灯管呢?新知5:由具有柱、锥、台、球等简单几何体组合而成的几何体叫简单组合体.现实生活中的物体大多是简单组合体.简单组合体的构成有两种方式:由简单几何体拼接而成;由简单几何体截去或挖去一部分而成.※典型例题例将下列几何体按结构特征分类填空:⑴集装箱⑵运油车的油罐⑶排球⑷羽毛球⑸魔方⑹金字塔⑺三棱镜⑻滤纸卷成的漏斗⑼量筒⑽量杯⑾地球⑿一桶方便面⒀一个四棱锥形的建筑物被飓风挂走了一个顶,剩下的上底面与地面平行;①棱柱结构特征的有________________________;②棱锥结构特征的有________________________;③圆柱结构特征的有________________________;④圆锥结构特征的有________________________;⑤棱台结构特征的有________________________;⑥圆台结构特征的有________________________;⑦球的结构特征的有________________________;⑧简单组合体__________________________ ____.※动手试试练. 如图,长方体被截去一部分,其中EH‖A D'',剩下的几何体是什么?截去的几何体是什么?三、总结提升※学习小结1. 圆柱、圆锥、圆台、球的几何特征及有关概念;2. 简单组合体的结构特征.※知识拓展圆柱、圆锥的轴截面:过圆柱或圆锥轴的平面与圆柱或圆锥相交得到的平面形状,通常圆柱的轴截面是矩形,圆锥的轴截面是三角形.※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:1. Rt ABC∆三边长分别为3、4、5,绕着其中一边旋转得到圆锥,对所有可能描述不对的是().A.是底面半径3的圆锥B.是底面半径为4的圆锥C.是底面半径5的圆锥D.是母线长为5的圆锥2. 下列命题中正确的是().A.直角三角形绕一边旋转得到的旋转体是圆锥B.夹在圆柱的两个平行截面间的几何体是旋转体C.圆锥截去一个小圆锥后剩余部分是圆台D.通过圆台侧面上一点,有无数条母线3. 一个球内有一内接长方体,其长、宽、高分别为5、4、3,则球的直径为().A.D.24. 已知,ABCD为等腰梯形,两底边为AB,CD.且AB>CD,绕AB所在的直线旋转一周所得的几何体中是由、、的几何体构成的组合体.5. 圆锥母线长为R,侧面展开图圆心角的正弦值为,则1.如图,是由等腰梯形、矩形、半圆、倒形三角对接形成的轴对称平面图形,若将它绕轴旋转0180后形成一个组合体,下面说法不正确的是___________ A.该组合体可以分割成圆台、圆柱、圆锥和两个球体B.该组合体仍然关于轴l对称C.该组合体中的圆锥和球只有一个公共点D.该组合体中的球和半球只有一个公共点2. 用一个平面截半径为25cm的球,截面面积是2,则球心到49cm。
高中数学立体几何专题之欧阳法创编
高中课程复习专题——数学立体几何时间:2021.03.09 创作:欧阳法一空间几何体㈠空间几何体的类型1 多面体:由若干个平面多边形围成的几何体。
围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。
2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。
其中,这条直线称为旋转体的轴。
㈡几种空间几何体的结构特征1 棱柱的结构特征1.1 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
1.2棱柱的分类1.3 棱柱的性质⑴ 侧棱都相等,侧面是平行四边形;⑵ 两个底面与平行于底面的截面是全等的多边形; ⑶ 过不相邻的两条侧棱的截面是平行四边形;⑷ 直棱柱的侧棱长与高相等,侧面的对角面是矩形。
1.4 长方体的性质⑴ 长方体的一条对角线的长的平方等于一个顶点上三 条棱的平方和:AC 12 = AB 2 + AC 2 + AA 12 ⑵ 长方体的一条对角线AC 1与过定点A 的三条棱所成的角分别是α、β、γ,那么:cos 2α + cos 2β + cos 2γ=1 sin 2α + sin 2β + sin 2γ =2 ⑶长方体的一条对角线AC 1与过定点A 的相邻三个面所组成的角分别为α、β、γ,则:cos 2α + cos 2β + cos 2γ= 2sin 2α + sin 2β + sin 2γ = 11.5 棱柱的侧面展开图:正n 棱柱的侧面展开图是由n 个全等矩形组成的以底面周长和侧棱为邻边的矩图1-2 长方体形。
1.6 棱柱的面积和体积公式S直棱柱侧面= c·h (c为底面周长,h为棱柱的高)S直棱柱全 = c·h+ 2S底V棱柱 = S底·h2 圆柱的结构特征2-1 圆柱的定义:以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱。
必修二空间几何体之欧阳术创编
高中数学必修二第一章空间几何体【知识点归纳】(一)、空间几何体的结构特征1、几何体的分类:多面体和旋转体。
2、多面体的定义:由若干个平面多边形围成的几何体。
3、旋转体的定义:由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体。
4、相关概念:面:围成多面体的各个多边形。
棱:相邻两个面的公共边。
顶点:棱与棱的公共点。
轴:形成旋转体所绕的定直线。
5、柱体、锥体、球体、台体的结构特征棱柱:一个多面体有两个面互相平行,其余各面都是四边形,每相邻两个四边形的公共边都互相平行。
圆柱:以矩形的一边所在直线为旋转轴,其余边旋转形成的曲面所围成的几何体叫做圆柱。
棱锥:如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形。
圆锥:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫做圆锥。
棱台:棱锥的底面和平行于底面的一个截面间的部分。
圆台:圆锥的底面和平行于底面的一个截面间的部分。
球:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体。
棱柱和圆柱统称为柱体。
棱锥和圆锥统称为锥体。
棱台和圆台统称为台体。
6、简单组合体的两种基本形式①由简单几何体拼接而成②由简单几何体截去或挖去一部分而成7、空间几何体的侧面积、表面积、体积(一)棱柱、棱锥、棱台的侧面积1、直棱柱:侧棱和底面垂直的棱柱叫做直棱柱。
其侧面展开图是一个矩形。
正棱柱:底面为正多边形的直棱柱叫做正棱柱。
S直棱柱侧=ch(其中c为棱柱的底面周长,h直棱柱的高)2、正棱锥:如果一个棱锥的底面是正多边形,并且顶点在底面的正投影是底面中心,这样的棱锥叫做正棱锥。
棱锥的侧面展开图是由各个侧面组成的。
S正棱锥侧=12ch´(其中c为棱锥底面周长,h’为侧面等腰三角形底边上的高,即斜高)3、正棱台:正棱锥被平行于底面的平面所截,截面与底面之间的部分叫做正棱台。
侧面展开图是由各个侧面组成的。
S正棱台侧=12(c +c’)h’(其中c,c’为棱台上下底面的周长,h’为各个等腰梯形的高,即棱台的斜高)。
大学解析几何之欧阳体创编
空间解析几何基本知识 一、向量1、已知空间中任意两点),,(1111z y x M 和),,(2222z y x M ,则向量2、已知向量),,(321a a a a =→、),,(321b b b b =→,则 (1)向量→a 的模为232221||a a a a ++=→(2)),,(332211b a b a b a b a ±±±=±→→(3)),,(321a a a a λλλλ=→3、向量的内积→→⋅b a(1)><⋅⋅=⋅→→→→→→b a b a b a ,cos |||| (2)332211b a b a b a b a ++=⋅→→其中><→→b a ,为向量→→b a ,的夹角,且π>≤≤<→→b a ,0注意:利用向量的内积可求直线与直线的夹角、直线与平面的夹角、平面与平面的夹角。
4、向量的外积→→⨯b a (遵循右手原则,且→→→⊥⨯a b a 、→→→⊥⨯b b a )5、(1)332211//b a b a b a b a b a ==⇔=⇔→→→→λ (2)00332211=++⇔=⋅⇔⊥→→→→b a b a b a b a b a 二、平面1、平面的点法式方程已知平面过点),,(000z y x P ,且法向量为),,(C B A n =→,则平面方程为注意:法向量为),,(C B A n =→垂直于平面2、平面的一般方程0=+++D Cz By Ax ,其中法向量为),,(C B A n =→3、(1)平面过原点)0,0,0(⇔ 0=++Cz By Ax(2)平面与x 轴平行(与yoz 面垂直)⇔法向量→n 垂直于x 轴0=++⇔D Cz By(如果0=D ,则平面过x 轴)平面与y 轴平行(与xoz 面垂直)⇔法向量→n 垂直于y 轴0=++⇔D Cz Ax(如果0=D ,则平面过y轴)平面与z 轴平行(与xoy 面垂直)⇔法向量→n 垂直于z 轴0=++⇔D By Ax(如果0=D ,则平面过z 轴)(3)平面与xoy 面平行⇔法向量→n 垂直于xoy 面0=+⇔D Cz平面与xoz面平行⇔法向量→n 垂直于xoz面0=+⇔D By平面与yoz 面平行⇔法向量→n 垂直于yoz 面0=+⇔D Ax注意:法向量的表示 三、直线1、直线的对称式方程过点),,(000z y x P 且方向向量为),,(321v v v v =→直线方程32010v z z v y y v x x -=-=- 注意:方向向量),,(321v v v v =→和直线平行 2、直线的一般方程⎩⎨⎧=+++=+++022221111D z C y B x A D z C y B x A ,注意该直线为平面01111=+++D z C y B x A 和02222=+++D z C y B x A 的交线3、直线的参数方程⎪⎩⎪⎨⎧+=+=+=tv z z t v y y tv x x 3020104、(1)方向向量),,0(32v v v =→,直线垂直于x 轴 (2)方向向量),0,(31v v v =→,直线垂直于y 轴 (3)方向向量)0,,(21v v v =→,直线垂直于z 轴 5、(1)方向向量),0,0(3v v =→,直线垂直于xoy 面 (2)方向向量)0,,0(2v v =→,直线垂直于xoz 面 (3)方向向量)0,0,(1v v =→,直线垂直于yoz 面 应用 一、柱面1、设柱面的准线方程为⎩⎨⎧==0),,(0),,(21z y x f z y x f ,母线的方向向量),,(321v v v v =→,求柱面方程 方法:在准线上任取一点),,(111z y x M ,则过点),,(111z y x M 的母线为又因为),,(111z y x M 在准线上,故0),,(1111=z y x f (1) 0),,(1112=z y x f(2) 令t v z z v y y v x x =-=-=-312111 (3) 由(1)、(2)、(3)消去111,,z y x 求出t ,再把t 代入求出关于z y x ,,的方程0),,(=z y x F ,则该方程为所求柱面方程例1:柱面的准线为⎩⎨⎧=++=++2221222222z y x z y x ,而母线的方向为{}1,0,1-=v ,求这柱面方程。
十大高中平面几何几何定理汇总及证明之欧阳生创编
高中平面几何定理汇总及证明1.时间:2021.02.08 创作人:欧阳生2.共边比例定理有公共边AB的两个三角形的顶点分别是P、Q,AB与PQ的连线交于点M,则有以下比例式成立:△ PAB的面积:△ QAB的面积=PM:QM.证明:分如下四种情况,分别作三角形高,由相似三角形可证S△PAB=(S△PAM-S△PMB)=(S△PAM/S△PMB-1)×S△PMB=(AM/BM-1)×S△PMB(等高底共线,面积比=底长比)同理,S△QAB=(AM/BM-1)×S△QMB欧阳生创编所以,S△PAB/S△QAB=S△PMB/S△QMB=PM/QM(等高底共线,面积比=底长比)定理得证!特殊情况:当PB∥AQ时,易知△PAB与△QAB的高相等,从而S△PAB=S△QAB,反之,S△PAB=S△QAB,则PB∥AQ。
3.正弦定理在任意一个平面三角形中,各边和它所对角的正弦值的比相等且等于外接圆半径的2倍”,即a/sinA = b/sinB =c/sinC = 2r=R(r为外接圆半径,R为直径)证明:现将△ABC,做其外接圆,设圆心为O。
我们考虑∠C及其对边AB。
设AB长度为c。
若∠C为直角,则AB就是⊙O的直径,即c= 2r。
∵(特殊角正弦函数值)∴若∠C为锐角或钝角,过B作直径BC`交⊙O于C`,连接C'A,显然BC'= 2r=R。
欧阳生创编若∠C为锐角,则C'与C落于AB的同侧,此时∠C'=∠C(同弧所对的圆周角相等)∴在Rt△ABC'中有若∠C为钝角,则C'与C落于AB的异侧,BC的对边为a,此时∠C'=∠A,亦可推出。
考虑同一个三角形内的三个角及三条边,同理,分别列式可得。
4.分角定理在△ABC中,D是边BC上异于B,C或其延长线上的一点,连结AD,则有BD/CD=(sin∠BAD/sin∠CAD)*(AB/AC)。
高考常用24个物理模型之欧阳体创编
F m高考常用24个物理模型时间:2021.02.03创作:欧阳体物理复习和做题时需要注意思考、善于归纳整理,对于例题做到触类旁通,举一反三,把老师的知识和解题能力变成自己的知识和解题能力,下面是物理解题中常见的24个解题模型,从力学、运动、电磁学、振动和波、光学到原子物理,基本涵盖高中物理知识的各个方面。
主要模型归纳整理如下:模型一:超重和失重系统的重心在竖直方向上有向上或向下的加速度(或此方向的分量a y )向上超重(加速向上或减速向下)F =m (g +a ); 向下失重(加速向下或减速上升)F =m (g -a ) 难点:一个物体的运动导致系统重心的运动 绳剪断后台称示数 铁木球的运动 系统重心向下加速 用同体积的水去补充斜面对地面的压力?地面对斜面摩擦力? 导致系统重心如何运动? 模型二:斜面搞清物体对斜面压力为零的临界条件斜面固定:物体在斜面上情况由倾角和摩擦因素决定μ=tg θ物体沿斜面匀速下滑或静止 μ> tg θ物体静止于斜面 μ< tg θ物体沿斜面加速下滑a=g(sin θ一μcos θ)模型三:连接体是指运动中几个物体或叠放在一起、或并排挤放在一起、或用细绳、细杆联系在一起的物体组。
解决这类问题的基本方法是整体法和隔离法。
整体法:指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程。
a θ╰ α隔离法:指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。
连接体的圆周运动:两球有相同的角速度;两球构成的系统机械能守恒(单个球机械能不守恒)与运动方向和有无摩擦(μ相同)无关,及与两物体放置的方式都无关。
平面、斜面、竖直都一样。
只要两物体保持相对静止记住:N=211212m F m F m m ++(N 为两物体间相互作用力),一起加速运动的物体的分子m 1F 2和m 2F 1两项的规律并能应用⇒F 212m m m N+=讨论:①F 1≠0;F 2=0122F=(m +m )a N=m aN=212m F m m +② F 1≠0;F 2≠0 N=211212m F m m m F ++(20F =是上面的情况) F=211221m m g)(m m g)(m m ++F=122112m (m )m (m gsin )m mg θ++F=A B B 12m (m )m F m mg ++F 1>F 2 m 1>m 2 N 1<N 2例如:N 5对6=F Mm (m 为第6个以后的质量) 第12对13的作用力N 12对13=Fnm12)m -(n模型四:轻绳、轻杆绳只能受拉力,杆能沿杆方向的拉、压、横向及任意方向的力。
几何五大模型-汇总之欧阳术创编
小学平面几何五年夜模型一、共角定理两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形.共角三角形的面积比即是对应角(相等角或互补角)两夹边的乘积之比.如图在ABC △中,,D E 辨别是,AB AC 上的点如图 ⑴(或D 在BA 的延长线上,E 在AC 上),则:():()ABC ADE S S AB AC AD AE =⨯⨯△△证明:由三角形面积公式S=1/2*a*b*sinC 可推导出 若△ABC 和△ADE 中,①等底等高的两个三角形面积相等;②两个三角形高相等,面积比即是它们的底之比;两个三角形底相等,面积比即是它们的高之比;如下图12::S S a b =③夹在一组平行线之间的等积变形,如右图ACD BCD S S =△△; 反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD .④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形);⑤三角形面积即是与它等底等高的平行四边形面积的一半; ⑥两个平行四边形高相等,面积比即是它们的底之比;两个平行四边形底相等,面积比即是它们的高之比.三、蝶形定理1、任意四边形中的比例关系(“蝶形定理”):①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++速记:上×下=左×右蝶形定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以获得与面积对应的对角线的比例关系.2、梯形中比例关系(“梯形蝶形定理”):①2213::S S a b =②221324::::::S S S S a b ab ab =;③S 的对应份数为()2a b +. 四、相似模型(一)金字塔模型 (二) 沙漏模型 ①AD AE DE AF AB AC BC AG===; ②22:ADE ABC S S AF AG =△△:.相似三角形,就是形状相同,年夜小不合的三角形(只要其形状不修改,不管年夜小怎样修改它们都相似),与相似三角形相关的经常使用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例即是它们的相似比;⑵相似三角形的面积比即是它们相似比的平方;⑶连接三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线长即是它所对应的底边长的一半.相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具.在小学奥数里,呈现最多的情况是因为两条平行线而呈现的相似三角形.五、共边定理(燕尾模型和鹞子模型)在∆ABC 中,AD ,BE ,CF 相交于同一点O ,那么::ABO ACO S S BD DC ∆∆=.上述定理给出了一个新的转化面积比与线段比的手段,因为ABO ∆和ACO ∆的形状很象燕子的尾巴,所以这个定理被称为燕尾定理.该定理在许多几何题目中都有着广泛的运用,它的特殊性在于,它可以存在于任何一个三角形之中,为三角形中的三角形面积对应底边之间提供互相联系的途径.附件1:鸟头模型例题及习题: 例8:法1:无敌设高法。
平面几何五种模型
平面几何五种模型等积,鸟头,蝶形,相似,共边1、等积模型等底等高的2个三角形面积相等2个三角形高相等,面积比=底之比2个三角形底相等,面积比=高之比夹在一组平行线之间的等积变形(方方模型)等积模型是基本应用应是烂熟于心的都是利用面积公式得到的推定比例如下:1等底等高的2个平行四边形面积相等2三角形面积等于它等底等高的平行四边形面积的一半3 2个平行四边形高相等,面积比=底之比;2个平行四边形底相等,面积比=高之比)))))))2、鸟头模型(共角定理)鸟头定理:2个三角形中,有一个角相等或互补,这2个三角形叫做共角三角形。
共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比(夹角2边)鸟头定理的使用要火眼金睛,经常需要自己补一条辅助线同时经过2次以上转换对应才能得到结果。
ABCDE如图,浅紫色的三角形ADE 跟大三角形ABC 是公用A 角的,等于浅紫色三角形是“嵌入”在大三角形ABC 里面,注意,鸟头定理用的是乘积比!不是单独的线段比~ 记忆上用夹角2边最好记,这里等于对顶角ACEDAEDB鸟头定理的证明,写出来是因为很多题目的解题过程,都需要补这么一条辅助线来过度连接2个看起来无关的图形。
证明的途径其实跟我们日常解题途径重合,所以写出来,仔细看。
经由媒介的∆ABE,联系了∆ADE和大三角形∆ABCBE辅助线很重要!鸟头定理是用等高(等于是用等积推算而得)第二种的证明方式将对顶角压回来∆ABC内,对顶角性质是相等的,所以压回来的新∆跟∆ADE是全等∆,再做一条辅助线就能用共角的方式证明出对角的鸟头定理互补角的鸟头定理证明S△ADE=S△AD'E,因为同底等高AD=AD',高相等,所以面积相等D'A BD E写了这几个证明,其实说的目的只有一个:连接小三角形和大三角形过度的那条辅助线,特别重要!3蝴蝶模型任意四边形中的比例关系(“蝴蝶定理”)任蝴蝶①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++【上下比】 = = = 【上上比】= ==由上述比例可以按数学运算原则推出很多规则:如 面积交叉相乘的乘积相等== 1324S S S S ⨯=⨯梯形蝴蝶定理(梯蝴蝶)①2213::S S a b =→上:下=22:a b②221324::::::S S S S a b ab ab =→上:下:左:右=22:::a b ab ab③S 的对应份数为()2a b +→a 2+2ab+b 2=a 2+b 2+ab+ab 有木有↑4 相似三角形形状相同,大小不同的三角形,只要形状不变,无论大小怎么改变,他们都相似。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面几何五种模型
欧阳家百(2021.03.07)
等积,鸟头,蝶形,相似,共边
1、等积模型
等底等高的2个三角形面积相等
2个三角形高相等,面积比=底之比
2个三角形底相等,面积比=高之比
夹在一组平行线之间的等积变形(方方模型)
等积模型是基本应用应是烂熟于心的
都是利用面积公式得到的推定比例
如下:
1等底等高的2个平行四边形面积相等
2三角形面积等于它等底等高的平行四边形面积的一半
3 2个平行四边形高相等,面积比=底之比;2个平行四边形底相等,面积比=高之比
2、鸟头模型(共角定理)
鸟头定理:2个三角形中,有一个角相等或互补,这2个三角形叫做共角三角形。
共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比(夹角2边)
鸟头定理的使用要火眼金睛,经常需要自己补一条辅助线同时经过2次以上转换对应才能得到结果。
A B C D
E
如图,浅紫色的三角形ADE 跟大三角形ABC 是公用A 角的,等于浅紫色三角形是“嵌入”在大三角形ABC 里面,注意,鸟头定理用的是乘积比!不是单独的线段比~ 记忆上用夹角2边最好记,这里等于
鸟头定理的证明,写出来是因为很多题目的解题过程,都需要补这么一条辅助线来过度连接2个看起来无关的图形。
证明的途径其实跟我们日常解题途径重合,所以写出来,仔细看。
经由媒介的∆ABE ,联系了∆ADE 和大三角形∆ABC
BE 辅助线很重要!鸟头定理是用等高(等于是用等积推算而得) 第二种的证明方式将对顶角压回来∆ABC 内,对顶角性质是相等的,所以压回来的新∆跟∆ADE 是全等∆,再做一条辅助线就能用共角的方式证明出对角的鸟头定理
互补角的鸟头定理证明
S△ADE=S△AD'E,因为同底等高AD=AD',高相等,所以面积相等D'A B C D E 写了这几个证明,其实说的目的只有一个:连接小三角形和大三角形过度的那条辅助线,特别重要!
3蝴蝶模型
任意四边形中的比例关系(“蝴蝶定理”)任蝴蝶
①
或者 ②
【上下比】
=== 【上上比】 = == 由上述比例可以按数学运算原则推出很多规则:如
面积交叉相乘的乘积相等
= = 梯形蝴蝶定理(梯蝴蝶)
①
→上:下= ②
→上:下:左:右=
③的对应份数为→a2+2ab+b2=a2+b2+ab+ab 有木有↑
4 相似三角形
形状相同,大小不同的三角形,只要形状不变,无论大小怎么改
变,他们都相似。
1 相似三角形的一切对应线段的长度成比例,并且=它们的相似比
2 相似三角形的面积比=相似比的平方
3连接三角形两边中点的线段叫做三角形的中位线
三角形中位线定理:三角形的中位线长=它所对应的底边长的一半 就是三角形任2边中点连出来的中位线就是第三边长的一半! 出题几率:多产生于2条平行线造成的相似三角形
金字塔模型沙漏模型
S∆ADE :S∆ABC=AF2:AG2
特别注意!相似三角形的面积比是等于相似比的平方
5 共边定理
燕尾模型、风筝模型、塞瓦定理
共边定理说明
如图一想知道∆PAB 和∆QAB 的面积比?我们就如图二做个高,因为同底(就是共用一个边)所以面积比=髙之比,再想办法偷懒,延长PQ 、AB 的线相交于M ,那么刚学的相似三角形可以派上用
场,因为∆PDM ∆QEM 如图三 E D 图三
Q
P
A B M
所以=
共边定理:若直线AB和PQ相交于点M(4种情况)则有
=
图一
M
P
Q
A
B
图二
Q
M
P
A B
图三
燕尾定理
(共边定理图3)
M
Q
P
A B
图四
M Q P
A B
最常应用到的其实是图一,无论在三角形或四边形上我们喜欢用共边2方的不同三角形面积比来比出线段比。
(图形不重叠) 图二的比例图形有重叠,所以线段长度也是重叠比~
图三就是“燕尾定理”图形不重叠,所以线段比不重叠。
图四是四边形,做比的三角形有重叠,而比值是四边形的顶:延长线段QM(切记,唯一对比线段不在图形内的哈)
共边定理的证明
=
1,M 点是PQ 和AB 延长后的交点
2,取N ,使得MN 长度=AB
3、==
∆PNM 和∆QNM 是等高∆,
塞瓦定理(燕尾定理模型补充)三边比例互乘为1
在△ABC 内任取一点O ,直线AO 、BO 、CO 分别交对边于E 、F 、D ,则得出
×× = 1
特殊题:参考共边定理2图(重叠)可得
三角形一边上之点到三边线交点O的长度:同边线全长的比值,3边比值相加=1
+ + =1。