高一数学古典概型
3.2.1古典概型
析
本事件总数.
【解析】将三张卡片排成一行,共有BEE,BEE,EBE,EEB,EBE, EEB,6种可能的结果,恰好排成英文单词BEE的结果有两种,
2 1 所以所求概率为P== . 6 3 1 答案: 3
知
能 巩 固 提 升
目 录 典 课 程 目 标 设 置 主 题 探 究 导 学 型
5.(2010·浙江高一检测)从一个装有6个彩色球(3红,2黄,
目 录 典 课 程 目 标 设 置 主 题 探 究 导 学 型 例 题 精
析
知
能 巩 固 提 升
目 录 典 课 程 目 标 设 置 主 题 探 究 导 学 型 例 题 精
析
知
能 巩 固 提 升
目 录 典 课 程 目 标 设 置 主 题 探 究 导 学 型 例 题 精
析
知
能 巩 固 提 升
目 录 典 课 程 目 标 设 置 主 题 探 究 导 学 型 例 题 精
知
能 巩 固 提 升
目 录 课 程 目 标 设 置 主 题 探 究 导 学
【解析】(1)一共有8种不同的结果,列举如下: (红、红、红)、(红、红、黑)、(红、黑、红)、(红、黑、 黑)、(黑、红、红)、(黑、红、黑)、(黑、黑、红)、(黑、 黑、黑). (2)记“3次摸球所得总分为5”为事件A. 事件A包含的基本事件为:(红、红、黑)、(红、黑、红)、 (黑、红、红),事件A包含的基本事件数为3.
1.古典概型的概率计算公式与随机事件频率的计算公式有什么 区别? 提示:古典概型的概率公式P(A)=
m ,与随机事件A发生的频率 n
典 型 例 题 精
析
m m 有本质的区别,其中P(A)= 是一个定值,且对同一试验的 n n
7.2.2古典概型的应用教学设计-2024-2025学年高一上学期数学北师大版(2019)必修第一册
2.教学难点:
-事件独立性的理解:学生可能难以理解事件独立性的概念,以及如何应用于实际问题中。
-排列组合的计算:学生可能对排列组合的计算方法感到困惑,尤其是对于复杂问题的计算。
-实际问题的转化:学生可能难以将实际问题转化为数学问题,并运用古典概型的方法解决。
解答:这是一个古典概型问题。首先,计算取球的组合数,即从18个球中取出3个球的组合数,用组合公式C(18,3)计算得到816种组合。然后,计算取出的三个球颜色都不同的组合数,可以通过计算取出1个红球、1个蓝球和1个绿球的组合数C(6,1)C(7,1)C(5,1)来得到。计算得到取出三个球颜色都不同的组合数为210种。因此,取出的三个球颜色都不同的概率为210/816=25/96。
7.2.2古典概型的应用教学设计-2024-2025学年高一上学期数学北师大版(2019)必修第一册
科目
授课时间节次
--年—月—日(星期——)第—节
指导教师
授课班级、授课课时
授课题目
(包括教材及章节名称)
7.2.2古典概型的应用教学设计-2024-2025学年高一上学期数学北师大版(2019)必修第一册
教学资源准备
1.教材:确保每位学生都有北师大版(2019)必修第一册的教材,以便于学生跟随教学进度进行学习和复习。
2.辅助材料:准备与教学内容相关的图片、图表、视频等多媒体资源,以便于学生更直观地理解和掌握古典概型的应用。
3.实验器材:如果涉及实验,确保实验器材的完整性和安全性,例如硬币、卡片等,以便于学生通过实际操作来加深对古典概型的理解。
5.总结与反思(5分钟):
让学生回顾本节课所学的知识,总结古典概型的应用的方法和步骤。同时,鼓励学生反思自己在学习过程中的困惑和不足,并提出问题进行讨论。
古典概型 何亚宁
1.知识技能 理解古典概型的两个基本特征,掌握古典概型的概率 计算公式,会用列举法计算一些随机事件所含的基本事件
数及其发生的概率。
2.过程与方法 鼓励学生通过实观察、类比,归纳总结出古典概型的 特征及概率计算公式,提高学生利用数学知识解决实际 问题的能力。 3.情感、态度与价值观 通过本节的教学,进一步培养学生用随机的观点认识 世界,体会数学在实际生活中的广泛应用,激发学习兴 趣。
解:(1)第一个箱子的质量盘和第二个箱子的质量盘都可以 从4种不同的质量盘中任意选取.我们可以用一个“有序实数 对”来表示随机选取的结果.例如,我们用(10,20)来表 示:在一次随机的选取中,从第一个箱子取的质量盘是10 kg, 从第二个箱子取的质量盘是20 kg,表1列出了所有可 能的结果. 表1
从上表中可以看出,随机地从2个箱子中各取1个质量盘的 所有可能结果数有16种.由于选取质量盘是随机的,因此 这16种结果出现的可能性是相同的,这个试验属于古典概 型. (2)表2
总质量 第二个质量 2.5 第一个质量 2.5 5 10 20 5 7.5 12.5 22.5 7.5 10 15 25 12.5 15 20 30 22.5 25 30 40 5 10 20
教学重点:
古典概型及概率计算公式。
教学难点:
计算实验的所有可能结果数 及事件A包含的可能结果数。
二、教法分析
本节课的教学通过提出问题,引导学生发现问题,经历 思考、交流、概括归纳后得出古典概型的概念,由两个问
题的提出进一步加深对古典概型的两个特征的理解;再通
过学生观察类比推导出古典概型的概率计算公式。通过提 出问题引导学生分析问题,再通过学生观察类比推导出古 典概型的概率计算公式。在解决概率计算上,让学生学会 用列表、树状图列举基本事件,化解没有学习过排列组合
古典概型
【解题指南】(1)可以利用树状图写出所有不同的结 果.(2)找出恰好摸出1个黑球和1个红球的基本事件,利 用古典概型的概率计算公式求出.(3)找出至少摸出1个 黑球的基本事件,利用古典概型的概率计算公式求出.
【解析】(1)用树状图表示所有的结果为
所以所有不同的结果是 ab,ac,ad,ae,bc,bd,be,cd,ce,de.
共3个基本事件;事件A包含(1,2),(2,3),共2个基本事件,
则P(A)= 2 .
3
答案: 2
3
【知识探究】 探究点1 基本事件 1.掷一枚质地均匀的硬币两次,观察哪一面向上.基本 事件有哪些? 提示:基本事件有4个,即正正、正反、反正、反反. 2.事件A=“恰有一次正面向上”包含哪些试验结果? 提示:正反、反正.
3.从集合{1,2,3,4}中任取两个元素,可能的结果数
为( )
A.3
B.4
C.5
D.6
【解析】选D.从集合{1,2,3,4}中任取两个元素,则可
能的结果为:{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},
共6个.
4.若书架上放有中文书五本,英文书三本,日文书两本,
则抽出一本外文书的概率为 ( )
2.方法一(列举法): (1)用(x,y)表示结果,其中x表示骰子第1次出现的点数, y表示骰子第2次出现的点数,则试验的所有结果为: (1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2), (2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4), (3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),
高一数学古典概型试题答案及解析
高一数学古典概型试题答案及解析1.袋中有大小相同的三个白球和两个黑球,从中任取两个球,两球同色的概率为()A.B.C.D.【答案】B【解析】所有不同方法数有种,所求事件包含的不同方法数有种,因此概率,答案选B.【考点】古典概型的概率计算2.某车间将10名技工平均分成甲、乙两组加工某种零件,在单位时间内每个技工加工的合格零件数,按十位数字为茎,个位数字为叶得到的茎叶图如图所示.已知甲、乙两组数据的平均数都为10.(1)求的值;(2)分别求出甲、乙两组数据的方差和,并由此分析两组技工的加工水平;(3)质检部门从该车间甲、乙两组技工中各随机抽取一名技工,对其加工的零件进行检测,若两人加工的合格零件数之和大于17,则称该车间“质量合格”,求该车间“质量合格”的概率.(注:方差,为数据的平均数)【答案】(1);(2);(3).【解析】(1)由题意根据平均数的计算公式分别求出的值;(2)分别求出甲、乙两组技工在单位时间内加工的合格零件数的方差和,再根据它们的平均值相等,可得方差较小的发挥更稳定一些;(3)用列举法求得所有的基本事件的个数,找出其中满足该车间“质量合格”的基本事件的个数,即可求得该车间“质量合格”的概率.试题解析:解:(1)由题意得,解得,再由,解得;(2)分别求出甲、乙两组技工在单位时间内加工的合格零件数的方差:,,并由,可得两组技工水平基本相当,乙组更稳定些.(3)质检部门从该车间甲、乙两组技工中各随机抽取一名技工,对其加工的零件进行检查,设两人加工的合格零件数分别为,则所有的有(7,8)、(7,9)、(7,10)、(7,11)、(7,12)、(8,8)、(8,9)、(8,10)、(8,11)、(8,12)、(10,8)、(10,9)、(10,10)、(10,11)、(10,12)、(12,8)、(12,9)、(12,10)、(12,11)、(12,12)、(13,8)、(13,9)、(13,10)、(13,11)、(13,12),共计25个,而满足的基本事件有(7,8)、(7,9)、(7,10)、(8,8)、(8,9),共计5个基本事件,故满足的基本事件个数为,所以该车间“质量合格”的概率为.【考点】1、古典概型及其概率计算公式;2、平均数与方差.3.有一个奇数列1,3,5,7,9,…,现在进行如下分组,第一组有1个数为1,第二组有2个数为3、5,第三组有3个数为7、9、11,…,依次类推,则从第十组中随机抽取一个数恰为3的倍数的概率为 .【答案】【解析】由题可知前9组数据共有,第10组共有10数,且第一个为46,其中为3的倍数的数为:48,51,54,故概率为.【考点】古典概型.4.设函数是从1,2,3三个数中任取一个数,b是从2,3,4,5四个数中任取一个数, (1) 求的最小值;(2)求恒成立的概率.【答案】(1)则当时,;当时,;当时,; (2).【解析】(1)对于的最小值问题,对于不同的其结果不一样,故应分别讨论,且采用分离常数法;(2)由(1)小题,要使其恒成立必有,并由列举法计算出其中符合条件的.试题解析:由,因为,故有.则当时,;当时,;当时,;由(1)可知,要使恒成立,当时,;当时,;当时,;故满足条件的有对.共有,则概率.【考点】(1)函数最值问题(分离常数法);(2)古典概型.5.已知方程是关于的一元二次方程.(1)若是从集合四个数中任取的一个数,是从集合三个数中任取的一个数,求上述方程有实数根的概率;(2)若,,求上述方程有实数根的概率.【答案】(1)(2)【解析】(1)先将从集合四个数中任取的一个数作为,从集合三个数中任取的一个数作为的所有情况列出来,再将使上述方程由实数根的情况列出来,根据古典概型公式算出所求事件的概率;(2)先作出满足,表示的平面区域并计算出区域的面积S,再根据要使方程有实数根,则△≥0,求出a,b满足的不等式,作出该不等式与,表示区域并计算面积,根据几何概型公式,该面积与S的比值就是上述方程有实数根的概率.试题解析:设事件为“方程有实数根”.当,时,方程有实数根的充要条件为.(1)基本事件共12个:,,,.其中第一个数表示的取值,第二个数表示的取值.事件中包含9个基本事件.事件发生的概率为.(2)试验的全部结果所构成的区域为.构成事件的区域为.所以所求的概率.考点:古典概型;几何概型6.在两个袋内,分别写着装有、、、、、六个数字的张卡片,今从每个袋中各取一张卡片,则两数之和等于9的概率为()A.B.C.D.【答案】C【解析】任取一张卡片共种情况,两数之和为9包括共4种,所以两数之和为9的概率为,故选C.【考点】古典概型的概率问题7.某种饮料每箱装5听,其中有3听合格,2听不合格,现质检人员从中随机抽取2听进行检测,则检测出至少有一听不合格饮料的概率是_________.【答案】【解析】每箱中3听合格的饮料分别记为,不合格的2听分别记为。
1.3古典概型 一等奖创新教学设计-高一下学期数学人教A版(2019)必修第二册
1.3古典概型一等奖创新教学设计-高一下学期数学人教A版(2019)必修第二册古典概型教学设计一教学内容分析1.本节内容在高中教材中的地位和作用《古典概型》是高中数学人教A版必修2第十章第一大节的第三课时的内容,教学安排是2课时,本节课是第一课时。
古典概型是在学生初中阶段学习了概率初步,在高中阶段学习了随机事件的概率(随着试验次数的增加,频率稳定于概率),初步了解了概率的意义之后学习的内容。
古典概型是一种特殊的数学模型,它承接着前面学过的随机事件的概率及其性质,它的引入能使概率值的存在性易于被学生理解,也能使学生认识到重复实验在有些时候并不是获取概率值的唯一方法。
同时古典概型也是后面学习条件概率的基础,起到承前启后的作用,在概率论中占有相当重要的地位。
教学目标分析1.知识与技能目标:会判断古典概型,会用列举法计算一些随机事件所含的样本点个数和试验中样本空间;能够利用概率公式求解一些简单的古典概型的概率。
2.过程与方法目标:教学生掌握列举法,学会处理概率计算类问题。
通过从实际问题中抽象出数学模型的过程,提升从具体到抽象,从特殊到一般的分析问题的方法,理解、掌握古典概型的基本特点。
3.情感态度与价值观目标:通过各种有趣的、贴近学生生活的素材(生活中的猜拳游戏、掷骰子游戏等),激发学生学习数学的热情和兴趣,培育学生的探索精神,促使学生自觉培养创新意识。
在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是的科学态度和锲而不舍的求学精神。
三、教学重难点1.重点:古典概型定义的理解与掌握,能以古典概型为基础展开随机事件的概率计算。
2.难点:如何判断一个试验是否是古典概型;分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。
四、教法与学法分析1.教法分析:教学方法为引导发现、归纳概括,基于提出问题、分析问题、解决问题的思路,对古典概型的定义与概率公式进行归纳概括、观察比较,而后通过实际问题的提出与处理,激发学生的学习兴趣,提升学生的学习主动性。
北师大版高中数学高一必修3学案古典概型的特征和概率计算公式
2.1古典概型的特征和概率计算公式预习课本P130~133,思考并完成以下问题(1)古典概型的定义是什么?(2)古典概型的概率公式是什么?[新知初探]1.古典概型的定义如果一个试验满足:(1)试验的所有可能结果只有有限个,每次试验只出现其中的一个结果;(2)每一个试验结果出现的可能性相同.我们把具有这样两个特征的随机试验的数学模型称为古典概型(古典的概率模型).2.古典概型的概率公式对于古典概型,如果试验的所有可能结果(基本事件数)为n,随机事件A包含的基本事件数为m,那么事件A的概率规定为P(A)=m n.[点睛]在一次试验中可能出现的每一个结果称为基本事件,它们是试验中不能再分的最简单的随机事件.例如,掷一枚骰子,出现“1点”“2点”“3点”“4点”“5点”“6点”共6个结果,就是该随机试验的6个基本事件.[小试身手]1.一个家庭有两个小孩,则所有的基本事件是()A.(男,女),(男,男),(女,女)B.(男,女),(女,男)C.(男,男),(男,女),(女,男),(女,女)D.(男,男),(女,女)解析:选C用坐标法表示:将第一个小孩的性别放在横坐标位置,第二个小孩的性别放在纵坐标位置,可得4个基本事件(男,男),(男,女),(女,男),(女,女).2.下列试验是古典概型的为()①从6名同学中选出4人参加数学竞赛,每人被选中的可能性大小;②同时掷两颗骰子,点数和为7的概率; ③近三天中有一天降雨的概率;④10人站成一排,其中甲、乙相邻的概率; A .①② B .②④ C .①②④D .③④解析:选C ①②④是古典概型,因为符合古典概型的定义和特点.③不是古典概型,因为不符合等可能性,受多方面因素影响.3.从100台电脑中任抽5台进行质量检测,每台电脑被抽到的概率是( ) A.1100 B.15 C.16D.120解析:选D 每台电脑被抽到的概率为5100=120.4.从1,2,3,4中随机取出两个数,则其和为奇数的概率为________.解析:不同的取法包括(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6个基本事件,每个基本事件发生的可能性相同,因此是古典概型.和为奇数包括(1,2),(1,4),(2,3),(3,4),共4个基本事件,故所求概率为46=23.答案:23古典概型的判定[典例] (1)从区间[1,10]内任意取出一个实数,求取到实数2的概率; (2)向上抛掷一枚不均匀的旧硬币,求正面朝上的概率;(3)从1,2,3,…,100这100个整数中任意取出一个整数,求取到偶数的概率. [解] (1)不是古典概型,因为区间[1,10]中有无限多个实数,取出的那个实数有无限多种结果,与古典概型定义中“所有可能结果只有有限个”矛盾.(2)不是古典概型,因为硬币不均匀导致“正面向上”与“反面向上”的概率不相等,与古典概型定义中“每一个试验结果出现的可能性相同”矛盾.(3)是古典概型,因为在试验中所有可能出现的结果是有限的,而且每个整数被抽到的可能性相等.只有同时满足有限性和等可能性这两个条件的试验才是古典概型,两个条件只要有一个不满足就不是古典概型.[活学活用]下列随机事件:①某射手射击一次,可能命中0环,1环,2环,…,10环;②一个小组有男生5人,女生3人,从中任选1人进行活动汇报;③一只使用中的灯泡寿命长短;④抛出一枚质地均匀的硬币,观察其出现正面或反面的情况;⑤中秋节前夕,某市工商部门调查辖区内某品牌的月饼质量,给该品牌月饼评“优”或“差”.这些事件中,属于古典概型的有________.解析:题号判断原因分析①不属于命中0环,1环,2环,…,10环的概率不一定相同②属于任选1人与学生的性别无关,仍是等可能的③不属于灯泡的寿命是任何一个非负实数,有无限多种可能④属于该试验结果只有“正”“反”两种,且机会均等⑤不属于该品牌月饼评“优”与“差”的概率不一定相同古典概型的概率计算[典例](1)点数之和为5的概率;(2)点数之和为7的概率;(3)出现两个4点的概率.[解]在抛掷两粒均匀的骰子的试验中,每粒骰子均可出现1点,2点,…,6点,共6种结果.两粒骰子出现的点数可以用有序实数对(x,y)来表示,它与直角坐标系内的一个点对应,则所有的基本事件包括:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共36个.(1)记“点数之和为5”为事件A,从图中可以看到事件A包含的基本事件数共有4个:(1,4),(2,3),(3,2),(4,1),所以P(A)=436=19.(2)记“点数之和为7”为事件B,从图中可以看到事件B包含的基本事件数共有6个:(6,1),(5,2),(4,3),(3,4),(2,5),(1,6),所以P(B)=636=16.(3)记“出现两个4点”为事件C,则从图中可以看到事件C包含的基本事件数只有1个:(4,4),所以P(C)=1 36.求解古典概型的概率“四步”法[活学活用]先后抛掷均匀的壹分、贰分、伍分硬币各一次.(1)一共可能出现多少种结果?(2)出现“2枚正面朝上,1枚反面朝上”的结果有多少种?(3)出现“2枚正面朝上,1枚反面朝上”的概率是多少?解:(1)先后抛掷壹分、贰分、伍分硬币时,可能出现的结果共有8种,即(正,正,正),(正,正,反),(正,反,正),(反,正,正),(正,反,反),(反,正,反),(反,反,正),(反,反,反).(2)用A 表示事件“2枚正面朝上,1枚反面朝上”,所有结果有3种,即(正,正,反),(正,反,正),(反,正,正).(3)因为每种结果出现的可能性相等,所以事件A 的概率P (A )=38.[层级一 学业水平达标]1.某部三册的小说,任意排放在书架的同一层上,则各册从左到右或从右到左恰好为第1,2,3册的概率为( )A.16 B.13 C.12D.23解析:选B 所有基本事件为:123,132,213,231,312,321.其中从左到右或从右到左恰好为第1,2,3册包含2个基本事件,∴P =26=13.故选B.2.从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是( ) A.49 B.13 C.29D.19解析:选D 个位数与十位数之和为奇数的两位数一共有45个,其中个位数为0的有5个,概率为19.3.从1,2,3,4这四个数字中,任取两个不同的数字构成一个两位数,则这个两位数大于30的概率为( )A.12B.13C.14D.15解析:选A 从1,2,3,4这四个数字中,任取两个不同的数字,可构成12个两位数:12,13,14,21,23,24,31,32,34,41,42,43,其中大于30的有:31,32,34,41,42,43共6个,所以所得两位数大于30的概率为P =612=12. 4.从3男3女共6名同学中任选2名(每名同学被选中的机会均等),这2名都是女同学的概率等于________.解析:从3男3女中选出2名同学,共有以下15种情况:(男1,男2),(男1,男3),(男2,男3),(男1,女1),(男1,女2),(男1,女3),(男2,女1),(男2,女2),(男2,女3),(男3,女1),(男3,女2),(男3,女3),(女1,女2),(女1,女3),(女2,女3),其中2名都是女同学的有3种情况,故所求的概率P =15.答案:15[层级二 应试能力达标]1.两个骰子的点数分别为b ,c ,则方程x 2+bx +c =0有两个实根的概率为( ) A.12 B.1536 C.1936D.56解析:选C (b ,c )共有36个结果,方程有解,则Δ=b 2-4c ≥0,∴b 2≥4c ,满足条件的数记为(b 2,4c ),共有(4,4),(9,4),(9,8),(16,4),(16,8),(16,12),(16,16),(25,4),(25,8),(25,12),(25,16),(25,20),(25,24),(36,4),(36,8),(36,12),(36,16),(36,20),(36,24),19个结果,P =1936.2.将一个各个面上涂有颜色的正方体锯成27个同样大小的小正方体,从中任取一个小正方体,其中恰有3面涂有颜色的概率为( )A.427B.827C.18D.14解析:选B 在这27个小正方体中,只有原正方体的8个顶点所对应的小正方体的3面是涂色的,故概率P =827.3.古代“五行”学说认为:“物质分金、木、水、火、土五种属性,金克木,木克土,土克水,水克火,火克金”,从五种不同属性的物质中随机抽取两种,则抽取的两种物质不相克的概率为( )A.310B.25C.12D.35解析:选C 从五种不同属性的物质中随机抽取两种,出现的情况有:(金,木),(金,水),(金,火),(金,土),(木,水),(木,火),(木,土),(水,火),(水,土),(火,土)共10种等可能情况,其中金克木,木克土,土克水,水克火,火克金,即相克的有5种,则不相克的也是5种,所以抽取的两种物质不相克的概率为12.4.袋中共有6个除了颜色外完全相同的球,其中有1个红球、2个白球和3个黑球.从袋中任取两球,两球颜色为一白一黑的概率等于( )A.15B.25C.35D.45解析:选B 袋中的1个红球、2个白球和3个黑球分别记为a ,b 1,b 2,c 1,c 2,c 3. 从袋中任取两球有{a ,b 1},{a ,b 2},{a ,c 1},{a ,c 2},{a ,c 3},{b 1,b 2},{b 1,c 1},{b 1,c 2},{b 1,c 3},{b 2,c 1},{b 2,c 2},{b 2,c 3},{c 1,c 2},{c 1,c 3},{c 2,c 3},共15个基本事件.其中满足两球颜色为一白一黑的有{b 1,c 1},{b 1,c 2},{b 1,c 3},{b 2,c 1},{b 2,c 2},{b 2,c 3},共6个基本事件.所以所求事件的概率为615=25.5.设a ,b 随机取自集合{1,2,3},则直线ax +by +3=0与圆x 2+y 2=1有公共点的概率是________.解析:将a ,b 的取值记为(a ,b ),则有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),共9种可能.当直线与圆有公共点时,可得3a 2+b 2≤1,从而符合条件的有(1,3),(2,3),(3,1),(3,2),(3,3),共5种可能,故所求概率为59.答案:596.在5瓶饮料中,有2瓶已过了保质期,从中任取2瓶,取到的全是已过保质期的饮料的概率为________.解析:设过保质期的2瓶记为a ,b ,没过保质期的3瓶用1,2,3表示,试验的结果为: (1,2),(1,3),(1,a ),(1,b ),(2,3),(2,a ),(2,b ),(3,a ),(3,b ),(a ,b )共10种结果,2瓶都过保质期的结果只有1个,∴P =110.答案:1107.从长度分别为2,3,4,5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是________.解析:从四条线段中任取三条有4种取法:(2,3,4),(2,3,5),(2,4,5),(3,4,5).其中能构成三角形的取法有3种:(2,3,4),(2,4,5),(3,4,5),故所求概率为34.答案:348.为迎接2016奥运会,某班开展了一次“体育知识竞赛”,竞赛分初赛和决赛两个阶段进行,在初赛后,把成绩(满分为100分,分数均为整数)进行统计,制成如下的频率分布表:(1)求a ,b (2)若得分在[90,100]之间的有机会进入决赛,已知其中男女比例为2∶3,如果一等奖只有两名,求获得一等奖的全部为女生的概率.解:(1)a =50×0.1=5,b =2550=0.5,c =50-5-15-25=5,d =1-0.1-0.3-0.5=0.1. (2)把得分在[90,100]之间的五名学生分别记为男1,男2,女1,女2,女3.事件“一等奖只有两名”包含的所有事件为(男1,男2),(男1,女1),(男1,女2),(男1,女3),(男2,女1),(男2,女2),(男2,女3),(女1,女2),(女1,女3),(女2,女3),共10个基本事件;事件“获得一等奖的全部为女生”包含(女1,女2),(女1,女3),(女2,女3),共3个基本事件.所以,获得一等奖的全部为女生的概率为P =310.9.甲、乙两人玩一种游戏,每次由甲、乙各出1到5根手指头,若和为偶数则甲赢,否则乙赢.(1)若以A 表示事件“和为6”,求P (A );(2)若以B 表示事件“和大于4而小于9”,求P (B ); (3)这种游戏公平吗?试说明理由. 解:将所有可能情况列表如下:甲乙 123451 (1,1) (1,2) (1,3) (1,4) (1,5)2 (2,1) (2,2) (2,3) (2,4) (2,5)3 (3,1) (3,2) (3,3) (3,4) (3,5)4 (4,1) (4,2) (4,3) (4,4) (4,5) 5(5,1)(5,2)(5,3)(5,4)(5,5)由上表可知,该试验共包括25个等可能发生的基本事件,属于古典概型.(1)“和为6”的结果有:(1,5),(2,4),(3,3),(4,2),(5,1),共5种结果,故所求的概率为525=15. (2)“和大于4而小于9”包含了(1,4),(1,5),(2,3),(2,4),(2,5),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(5,1),(5,2),(5,3),共16个基本事件,所以P (B )=1625.(3)这种游戏不公平.因为“和为偶数”包括13个基本事件,即甲赢的概率为1325,乙赢的概率为25-1325=1225,所以它不公平.。
高一数学古典概型
A a, c, b, c, c, a , c, b 4 2 m 4 ,所以 PA 6 3
记“恰有一件次品”为事件 A
从含有两件正品 a , b和一件次品 的3件产品中 (1)任取两件;(2)每次取1件,取后不放回,连续 取两次;(3)每次取1件,取后放回,连续取两次,分 别求取出的两件产品中恰有一件次品的概率.
1.互斥事件: 2.事件的并:
3、如果事件A与事件B互斥,则 P(A∪B)= P(A)+P(B) 4、若件A与事件B互为对立事件,则 P(A)= 1- P(B)
思考:
用实验的方法来求某一随机事件的概率好不好? 为什么?
答:不好,因为需要大量的试验才能得出 较准确的概率,在现实生活中操作起来不 方便。
取法是否有序,有放回还是无放回.
A 记“恰有一件次品”为事件
,
例4(掷骰子问题):将一个骰子先后抛掷2次,观察向上的点数. 问:⑴两数之和是3的倍数的结果有多少种?
两数之和是3的倍数的概率是多少? ⑵两数之和不低于10的结果有多少种? 两数之和不低于10的的概率是多少?
第 二 次 抛 掷 后 建立模 向 上 型 的 解:由表可 点 数 知,等可能基 本事件总数为 36种。
例:先后抛掷两颗骰子,求:(1)点数之 和为6的概率;(2)出现两个4点的概率
解:用有序数对 x , y 表示掷得的结果,
则基本事件总数
n 36
(1)记“点数之和为6 “为事件A 则 A 1,5, 2,4, 3,3, 4,2, 5,1, m 5
(2)记“出现两个4点”为事件 B
将具有这两个特点的概率模型称为
古典概率模型,简称古典概型.
问题:向一个圆面内随机地投射一个点,如果 该点落在圆内任意一点都是等可能的,你认为 这是古典概型吗?为什么?
古典概型
如果某个事件A包含了其中m个等可能基 m 本事件,那么事件A发生的概率为( A) P
n
思考:
• (1)在“剪刀、石头、布”游戏中, 甲赢的概率有多大? • (2)在“剪刀、石头、布”游戏中, 分不出胜负的概率多大?
例1 一只口袋内装有大小相同的5只球,其中3只白球, 2只红球,从中 一次 取出两只球(1)共有多少基本 事件(2)摸出的两只球都是白球的概率是多少?
表示1号骰子的结果,y表示2号骰子的结果。(可由列表法得到)
(1)(1,1)(1,2)(1,3)(1,4)(1,5)(1,6) (2,1)(2,2)(2,3)(2,4)(2,5)(2,6) …… (6,1)(6,2)(6,3)(6,4)(6,5)(6,6)
(2)(1,4)(2,3)(3,2)(4,1) (3) P(A)=4/36=1/9
(布,剪) (布,石)( 布,布)
问题:
分析上述两试验的共同特征
①对于每次实验,只可能出现有限个不同的实验结果
②所有不同的实验结果,它们出现的可能性是相等的
二、建构数学
1、概念
基本事件:在一次试验中可能出现的每 一个基本结果。 等可能基本事件:每一个基本事件发生的 可能性都相同。 2、古典概型
古典概型 (1)
高一数学 甄天文
导入:1、单选题是标准考试中常用 的题型,一般是从A,B,C,D四个 选项中选择一个正确答案。假设考生 不会做,他随机地选择一个答案,问 他答对的概率是多少? 2、小军和小民玩掷骰子游戏,他们约定 :两颗骰子掷出去,如果朝上的两个数 的和是5,那么小军获胜,如果朝上的两 个数的和是4,那么小民获胜。 • 这样的游戏公平吗?
试验一:
连续掷一枚质地均匀的硬币两次,有几种 可能的结果呢?
高一数学人教A版必修3课件:3.2.1 古典概型(1)
观察类比、推导公式
实验一中,出现正面朝上的概率与反面朝上的概率相等, P(“正面朝上”)=P(“反面朝上”) 由概率的加法公式,得 P(“正面朝上”)+P(“反面朝上”)=P(必然事件)= 因此
1 2 P(“正面朝上”)=P(“反面朝上”)=
1
即
1 “出现正面朝上”所包含的基本事件的个数 P (“出现正面朝上”)= = 2 基本事件的总数
1 2 3 4 5 6 1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) 2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) 3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) 4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
解:(1)把两个骰子标上记号1、2以便区分,可能结果有:
1 2 3 4 5 6 1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) 3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
6
进一步地,利用加法公式还可以计算这个试验 中任何一个事件的概率,例如, P(“出现偶数点”)=P(“2点”)+P(“4 点”) 3 1 +P(“6点”) 1 1 1 = 6 + 6 + 6 = 6 = 6
3 P (“出现偶数点”)= 即 6 “出现偶数点”所包含的基本事件的个数 = 基本事件的总数
基本事件的特点:
(1)任何两个基本事件是互斥的;
(2)任何事件(除不可能事件)都可以表 示成基本事件的和。
例1 从字母a、b、c、d任意取出两个不 同字母的试验中,有哪些基本事件? 解:所求的基本事件共有6个: A={a, b} B={a, c} C={a, d} D={b, c} E={b, d} F={c, d}
高一数学《古典概型》课件
四、课堂小结:
1、本节课你学到了什么?
1、正确理解基本事件
2、古典概型 3、古典概型的概率计算公式 2、思想和方法: 树状图 列举基本事件时应不重不漏
每次实验只出现其中的一个结果。
②每一个实验结果出现的可能性相等。 有限性 等可能性
上述试验和例1的共同特点是:
①试验中所有可能出现的基本事件的
个数
只有有限个
;
相等
②每个基本事件出现的可能性
。
我们将具有这两个特点的概率模型 称为古典概率模型,简称古典概型。
探究思考:
在古典概型下,基本事件出现的概率是 多少?随机事件出现的概率如何计算? P(基本事件)
例3:同时掷两个骰子,计算向上的点数之和是5的 概率是多少? 解:同时掷两个骰子的结果共有36种
向上的点数之和为5的结果有: (1,4)、(2,3)、(3,2)、(4,1)共4种 4 1 因此 P(点数之和为5) 9 36 (2)试计算向上的点数之积是24的概率是多少? 向上的点数之和为5的结果有: (2,6)、(3,4)、(4,3)、(6,2)共4种 4 1 因此 P(点数之积为12) 36 9
c
d
树状图
解:所求的基本事件共有6个:
A { a, b } B { a, c } C { a, d } D { b, c } E { b, d } F { c, d }
讨论交流:
请问:观察、比较掷硬币、骰子以及例1中 的这3个试验,发现有什么共同特点?
①实验中所有可能的结果只有有限个,
古典概型课件-2022-2023学年高一上学期数学北师大版(2019)必修第一册
(3)有人认为,抛掷两枚均匀的骰子,掷出的点数之和可能
为2,3,4,…,12,共有11种可能的情形,因此,“掷出的点数之
1
11
和是5”的可能性是 .这种说法对吗?
➢ 样本空间有36个样本点
➢ “点数和是5”包含4个样本点
试验的所有可能结果是
无限的
每种结果的可能性不相等
课堂练习
梳理小结
布置作业
试着再举出一些古典概型的例子吧.
单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答
案.如果考生掌握了考查的内容,他可以选择唯一正确的答案,假设考生不会做,他随
机地选择一个答案,所以他选择A,B,C,D哪一个选项都有可能.
因此样本点总数为4,设答对为随机事件A,由于正确答案是唯一的,所以事件A只包含
1
4
一个样本点,所以P(A)= .
某班级男生30人,女生20人,随机地抽取一位学生代表,会出现50个不同的结果.
因此样本空间共有50个样本点,设选中的代表是女生为随机事件B,则事件B包含20个样
本点,所以 =
20
50
2
5
= .
说明:在现实中不存在绝对均匀的硬币,也没有绝对均匀的骰
子,古典概率模型是从现实中抽象出来的一个数学模型,它有
8
2
共含有8个样本点,所以P(B)= = .
20
5
情境引入
新知探究
应用举例
课堂练习
梳理小结
布置作业
在试验E6“袋中有白球3个(编号为1,2,3)、黑球2个(编号为1,2),这5个球除颜色
外完全相同,从中不放回地依次摸取2个,每次摸1个,观察摸出球的情况”中,摸
高中数学 专题1.11 古典概型练习(含解析)新人教A版必修3-新人教A版高一必修3数学试题
古典概型1.下列试验中,属于古典概型的是( )A .种下一粒种子,观察它是否发芽B .从规格直径为250 mm ±0.6 mm 的一批合格产品中任意抽一根,测量其直径dC .抛一枚硬币,观察其出现正面或反面D .某人射击中靶或不中靶【答案】 C【解析】 依据古典概型的特点判断,只有C 项满足:①试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相同.2.一枚硬币连掷3次,有且仅有2次出现正面向上的概率为( )A.38B.23C.13D.143.四条线段的长度分别是1,3,5,7,从这四条线段中任取三条,则所取出的三条线段能构成一个三角形的概率是( )A .14B .13C .12D .25【答案】A 【解析】 从四条长度各异的线段中任取一条,每条被取出的可能性均相等,所以该问题属于古典概型.又所有基本事件包括(1,3,5),(1,3,7),(1,5,7),(3,5,7)四种,而能构成三角形的基本事件只有(3,5,7)一种,所以所取出的三条线段能构成一个三角形的概率是P =14. 4.集合A ={2,3},B ={1,2,3},从A 、B 中各任意取一个数,则这两数之和等于4的概率是( ) A.23 B.12 C.13 D.165.从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是________.6、现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9.若从中一次抽取2根竹竿,则它们的长度恰好相差0.3 m的概率为________.答案1 5解析基本事件共有(2.5,2.6),(2.5,2.7),(2.5,2.8),(2.5,2.9),(2.6,2.7),(2.6,2.8),(2.6,2.9),(2.7,2.8),(2.7,2.9),(2.8,2.9)10种情况.相差0.3 m的共有(2.5,2.8),(2.6,2.9)两种情况,所以P=210=1 5.7.有100X卡片(从1号到100号),从中任取1X,取到的卡号是7的倍数的概率为________.8.在不大于100的自然数中任取一个数.(1)求所取的数为偶数的概率;(2)求所取的数是3的倍数的概率;(3)求所取的数是被3除余1的数的概率.。
古典概型的概率计算公式 高一数学(北师大版2019必修第一册)
b
c
a
cb
c
d
d
d
树状图
解:所求的基本事件共有6个:
A {a,b} B {a,c} C {a, d} D {b,c} E {b, d} F {c, d}
我们一般用列举法列出所有 基本事件的结果,画树状图是 列举法的基本方法。
分布完成的结果(两步以上) 可以用树状图进行列举。
例:
同时抛掷两枚质地均匀的硬币的试验中,
有哪些基本事件?
A={正,正 }, B={正,反} 正 C={反,正} , D={反,反}
正
正
反
反
反
同时抛掷三枚质地均匀的硬币呢?
解:所有的基本事件共有8个:
A={正,正,正}, B={正,正,反},
C={正,反,正}, D={正,反,反},
成的结
5 6 7 8 9 10 11 果的列
6 7 8 9 10 11 12 举。
A表示事件“点数之和为7”, 则由表得n=36,m=6.
P( A)
m n
6 36
1 6
例2 . 同时掷两个骰子,计算: (1)一共有多少种不同的结果? (2)其中向上的点数之和是5的结果有 多少种? (3)向上的点数之和是5的概率是多少?
数的都有m=3个,并且每个结果的
2 出现机会是相等的,故
4 P(A) m 3 1 ; p(B) m 3 1
6
n 62
n 62
同时掷两粒均匀的骰子,落地时向上的点数 之和有几种可能?点数之和为7的概率是多少?
123456
1234567
2 3 4 5 6 7 8 列表法
10.1.3古典概型课件高一下学期数学人教A版2
1
(1,1) (1,2) (1,3)(1,4) (1,5) (1,6)
2
(2,1)(2,2)(2,3) (2,4)(2,5) (2,6)
3
(3,1)(3,2) (3,3) (3,4) (3,5) (3,6)
4
(4,1)(4,2) (4,3) (4,4)(4,5) (4,6)
5
(5,1)(5,2) (5,3) (5,4) (5,5) (5,6)
P( A) 2 1 12 6
③按性别等比例分层抽样(先抽1名男生,再抽1名女生)的样本空间:P( A) 0 Ω3= {(B1,G1),(B1,G2),(B2,G1),(B2,G2)}
END
(G1,B1),(G1,B2),(G1,G1),(G1,G2), (G2,B1),(G2,B2),(G2,G1),(G2,G2)}
16 4
②不放回简单随机抽样的样本空间:
Ω2= {(B1,B2),(B1,G1),(B1,G2),(B2,B1),(B2,G1),(B2,G2),(G1,B1),(G1,B2), (G1,G2), (G2,B1),(G2,B2),(G2,G1)}
(4) 抽到J或Q或K;
(5) 抽到的牌既是红心又是草花;
(6) 抽到的牌比6大比9小;
(7) 抽到的牌是红花色;
(8) 抽到的牌是红花色或黑花色.
解:(1) 1 ; 13
(2) 12 ; 13
(3) 1 ; 4
(4) 3 ; 13
(5) 0;
(6) 2 ; 13
(7) 1 ; 2
(8)1.
3. 从0~9这10个数中随机选择一个数,求下列事件的概率:
分层抽样的样本空间.
设事件A= “抽到两名男生”
古典概型(一)
五、课后作业
课本 130 页:1,2,3
六、自助餐
1.一个口袋内装有大小相等的 1 个白球和已有不同编号的三个黑球,从中任意摸出 2 个球. (1)共有多少个不同的基本事件,这样的基本事件是否为等可能的?该试验是古典概型吗? (2)摸出的两个球ห้องสมุดไป่ตู้是黑球记为事件 A,问事件 A 包含几个基本事件? (3)计算事件 A 的概率. 2.一个口袋中有大小相等的 5 个白球和 3 个黑球,从中有放回地取出一球,共取两次,试用随机模 拟法求取出的球都是白球的概率估计.
夏邑高中导学案
高一数学必修 3 第
章
编写:
校审:
日期
2012 年
月
日
班级:
姓名:
课题
一、学习目标
古典概型(一)
理解并掌握古典概型的特征和古典概型的定义,能根据已有知识列举基本事件, 计算简单的古典概型的概率. 重点:古典概型的特征和简单的古典概型的概率计算. 难点:根据古典概型的特征对古典概型的判断..
练 2. 2.盒中有 10 个铁钉,其中 8 个是合格的,2 个是不合格的,从中任取一个恰为合格铁钉的概 率是 A.
1 5
B.
1 4
C.
4 5
D.
1 10
三、总结提升 (1) 学习小结 1.古典概型的定义. 2.古典概型计算事件的概率计算公式. 四、学习评价 (1) 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 (2) 当堂检测(时量:5 分钟 满分:10 分)计分: 1. 下列对古典概型的说法中正确的是( ) ①试验中所有可能出现的基本事件只有有限个;②每个事件出现的可能性相等;③每个基本事 k 件出现的可能性相等;④若基本事件总数为 n,随机事件 A 包含 k 个基本事件,则 P(A)= . n A.②④ B.①③④
古典概型(一)
古典概型(一)姜灶中学李欣荣【教学目的】(1)理解基本事件、等可能事件等概念;(2)会用枚举法计算一些随机事件所含的基本事件数及事件发生的概率.【教学重点】理解古典概型及其概率计算公式【教学难点】古典概型的特征【情感目标】以学生为主体,引导学生积极参与探究古典概率模型及计算,形成实事求是的科学态度,增强锲而不舍求学精神.教学过程:一、设置情境有红心A,2,3和黑桃4,5这5张扑克牌,将其牌点向下置于桌上,现从中任意抽取一张,那么抽到红心A 的概率有多大?抽到的牌为红心的概率有多大?二、探究活动活动一抽一张牌,有多少种不同的结果?活动二从字母,,,a b c d中任意取出两个不同字母的试验中,有哪些不同结果?活动三一枚硬币连续抛掷2次,分别记录“正面朝上”和“反面朝上”,有哪些不同结果?三、基本概念(1)基本事件活动四掷一枚质地均匀的骰子(其中四个面分别标有1,2,3,4,另两个面标有5)一次的试验中有哪些不同的结果?反思:能否说明一下以上基本事件的共同点是什么?不同点是什么?(2)等可能事件判断下列试验中,哪些试验给出的随机事件是等可能的?(1)投掷一枚质地均匀的硬币,“出现正面”与“出现反面”(2)一只口袋中有三个大小完全相同的小球,其中红、黄、黑球各一个,从中任取一个球,“取出的是红球”、“取出的是黄球”、“取出的是黑球”(3)一只口袋中有四个大小完全相同的小球,其中红球、黄球各一个,黑球两个,从中任取一个球,“取出的是红球”、“取出的是黄球”、“取出的是黑球”(3)古典概型问题:(1)向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的,你认为这是古典概型吗?为什么?(2)如图,某同学随机地向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环……命中5环和不中环.你认为这是古典概型吗?为什么?四、公式推导古典概型的概率五、数学运用例1 一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出2只球.(1)共有多少个基本事件?(2)摸出的2只球都是白球的概率是多少?(3)摸出的两只球“一白一黑”的概率是多少?六、随堂练习:1.一枚硬币连掷三次,只有一次出现“正面朝上”的概率为.2.某拍卖行拍卖的20幅名画中,有两幅是赝品.某人在这次拍卖中随机买入了1幅画,则买入的这幅画是赝品的概率为.3.某班准备到郊外野营,为此向商店订购了帐篷.如果下雨与不下雨是等可能的,能否准时收到帐篷也是等可能的,只要帐篷如期运到,他们就不会淋雨,则淋雨的概率为.4.从1,2,3,…,6这6个数字中任取两个数字.(1)2个数字都是奇数的概率为;(2)2个数字之和为偶数的概率为.5.从含有两件正品a1,a2和一件次品b1的3件产品中每次任取1件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率.如果将“每次取出后不放回”这一条件换成“每次取出后放回”呢?七、布置作业八、课后反思。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。