2019-2020年中考数学总复习单元测试三函数试题
2020年中考数学总复习《方程(组)与不等式(组)》单元测试卷(Word版含答案)
2020年中考数学总复习《方程(组)与不等式(组)》单元测试卷(总分:120分)一、选择题(每小题3分,共30分)1.已知实数a ,b.若a >b ,则下列结论正确的是( )A .a -5<b -5B .2+a <2+b C.a 3<b3 D .3a>3b2.方程x +5=3x +1的解是( )A .x =2B .x =-2C .x =4D .x =-4 3.用配方法解方程x 2-2x -1=0时,配方后所得的方程为( )A .(x +1)2=2 B .(x -1)2=2 C .(x +1)2=0 D .(x -1)2=0 4.方程x -2=x(x -2)的解是( )A .x =1B .x 1=0,x 2=2C .x =2D .x 1=1,x 2=2 5.分式方程1x =2x +3的解是( )A .x =3B .x =2C .x =1D .x =-2 6.关于x 的一元二次方程kx 2+2x -1=0有两个不相等的实数根,则k 的取值范围是( )A .k >-1B .k ≥-1C .k ≠0D .k >-1且k ≠0 7.一元二次方程3x 2-1=2x +5两个实数根的和与积分别是( )A.32,-2 B .-23,2 C.23,-2 D .-32,2 8.不等式组⎩⎪⎨⎪⎧12x +1≥-3,x -2(x -3)>0的最大整数解为( )A .x =8B .x =6C .x =5D .x =4 9.某班为奖励在校运动会上取得较好成绩的运动员,花了400元钱购买了甲、乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲、乙两种奖品各购买了多少件?若购买甲种奖品x 件,乙种奖品y 件,则列方程正确的是( )A.⎩⎪⎨⎪⎧x +y =3012x +16y =400B⎩⎪⎨⎪⎧x +y =3016x +12y =400 C.⎩⎪⎨⎪⎧12x +16y =400x +y =400 D.⎩⎪⎨⎪⎧16x +12y =300x +y =400 10.用一条长40 cm 的绳子围成一个面积为64 cm 2的长方形.设长方形的长为x cm ,则可列方程为( )A .x(20-x)=64B .x(20+x)=64C .x(40-x)=64D .x(40+x)=64 二、填空题(每小题3分,共18分)11.已知关于x 的方程2x +a -5=0的解是x =2,则a 的值为 . 12.不等式2-2x <x -4的解集为 .13.关于x 的一元二次方程(a +1)x 2-ax +a 2-1=0的一个根为0,则另一个根为 . 14.如果⎩⎪⎨⎪⎧x =12,y =-1是方程组⎩⎪⎨⎪⎧ax -3y =5,2x +by =2的解,那么a -b 的值为 .15.若关于x 的一元二次方程ax 2+bx +5=0(a ≠0)的解是x =1,则 2 020-a -b 的值是 .16.暑假期间,几名同学共同租一辆面包车去某地旅游,面包车的租价为120元,出发时又有2名同学参加进来,结果每位同学少分摊3元,则原来旅游同学的人数为 . 三、解答题(共52分)17.(6分)解方程组:⎩⎪⎨⎪⎧2x -3y =3,①x +2y =-2.②18.(6分)解方程:x 2+1=2(x +1).19.(8分)解不等式组⎩⎪⎨⎪⎧5x -1>3x -4,23-x ≥-13,并把不等式组的解集在数轴上表示出来.20.(10分)为顺利通过“国家文明城市”验收,某市政府拟对城区部分路段的人行道路地砖、绿化带、排水管道等公用设施全面更新改造,根据市政建设的需要,需在40天内完成工程,现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程的时间的2倍.若甲、乙两个工程队合作只需10天完成.(1)甲、乙两个工程队单独完成此项工程各需多少天?(2)若甲工程队每天的工程费用是4.5万元,乙工程队每天的工程费用是2.5万元.请你设计一种方案,既能使工程按时完工,又能使工程费用最少.21.(10分)某特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售量可增加20千克.若该专卖店销售这种核桃想要平均每天获利2 240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为了尽可能让利于顾客,赢利市场,该店应按原售价的几折出售?22.(12分)小明所在的学校为了加强学生体育锻炼,准备从某体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个篮球和3个足球共需310元;购买5个篮球和2个足球共需500元.(1)每个篮球和足球各需多少元?(2)根据学校的实际情况,需从该商店一次性购买篮球和足球共60个,要求购买篮球和足球费用不超过4 000元,那么最多可以购买多少个篮球?23.(10分)李宁准备完成题目:解二元一次方程组⎩⎪⎨⎪⎧x -y =4,□x +y =-8,发现系数“□”印刷不清楚.(1)他把“□”猜成3,请你解二元一次方程组⎩⎪⎨⎪⎧x -y =4,3x +y =-8;(2)张老师说:“你猜错了,我看到该题标准答案的结果x ,y 是一对相反数.”通过计算说明原题中“□”是几?24.(10分)HW 公司2018年使用自主研发生产的“QL ”系列甲、乙、丙三类芯片共2 800万块,生产了2 800万部手机,其中乙类芯片的产量是甲类芯片的2倍,丙类芯片的产量比甲、乙两类芯片产量的和还多400万块.这些“QL ”芯片解决了该公司2018年生产的全部手机所需芯片的10%.(1)求2018年甲类芯片的产量;(2)HW公司计划2020年生产的手机全部使用自主研发的“QL”系列芯片.从2019年起逐年扩大“QL”芯片的产量,2019年、2020年这两年,甲类芯片每年的产量都比前一年增长一个相同的百分数m%,乙类芯片的产量平均每年增长的百分数比m%小1,丙类芯片的产量每年按相同的数量递增.2018年到2020年,丙类芯片三年的总产量达到1.44亿块.这样,2020年的HW公司的手机产量比2018年全年的手机产量多10%,求丙类芯片2020年的产量及m的值.答案解析一、选择题(每小题3分,共30分)1.已知实数a ,b.若a >b ,则下列结论正确的是(D)A .a -5<b -5B .2+a <2+b C.a 3<b3 D .3a>3b2.方程x +5=3x +1的解是(A)A .x =2B .x =-2C .x =4D .x =-4 3.用配方法解方程x 2-2x -1=0时,配方后所得的方程为(B)A .(x +1)2=2 B .(x -1)2=2 C .(x +1)2=0 D .(x -1)2=0 4.方程x -2=x(x -2)的解是(D)A .x =1B .x 1=0,x 2=2C .x =2D .x 1=1,x 2=2 5.分式方程1x =2x +3的解是(A)A .x =3B .x =2C .x =1D .x =-2 6.关于x 的一元二次方程kx 2+2x -1=0有两个不相等的实数根,则k 的取值范围是(D)A .k >-1B .k ≥-1C .k ≠0D .k >-1且k ≠07.一元二次方程3x 2-1=2x +5两个实数根的和与积分别是(C)A.32,-2 B .-23,2 C.23,-2 D .-32,2 8.不等式组⎩⎪⎨⎪⎧12x +1≥-3,x -2(x -3)>0的最大整数解为(C)A .x =8B .x =6C .x =5D .x =4 9.某班为奖励在校运动会上取得较好成绩的运动员,花了400元钱购买了甲、乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲、乙两种奖品各购买了多少件?若购买甲种奖品x 件,乙种奖品y 件,则列方程正确的是(B)A.⎩⎪⎨⎪⎧x +y =3012x +16y =400B.⎩⎪⎨⎪⎧x +y =3016x +12y =400C.⎩⎪⎨⎪⎧12x +16y =400x +y =400D.⎩⎪⎨⎪⎧16x +12y =300x +y =400 10.用一条长40 cm 的绳子围成一个面积为64 cm 2的长方形.设长方形的长为x cm ,则可列方程为(A)A .x(20-x)=64B .x(20+x)=64C .x(40-x)=64D .x(40+x)=64二、填空题(每小题3分,共18分)11.已知关于x 的方程2x +a -5=0的解是x =2,则a 的值为1. 12.不等式2-2x <x -4的解集为x >2.13.关于x 的一元二次方程(a +1)x 2-ax +a 2-1=0的一个根为0,则另一个根为12.14.如果⎩⎪⎨⎪⎧x =12,y =-1是方程组⎩⎪⎨⎪⎧ax -3y =5,2x +by =2的解,那么a -b 的值为5.15.若关于x 的一元二次方程ax 2+bx +5=0(a ≠0)的解是x =1,则2 020-a -b 的值是2__025.16.暑假期间,几名同学共同租一辆面包车去某地旅游,面包车的租价为120元,出发时又有2名同学参加进来,结果每位同学少分摊3元,则原来旅游同学的人数为8. 三、解答题(共52分)17.(6分)解方程组:⎩⎪⎨⎪⎧2x -3y =3,①x +2y =-2.②解:①-②×2,得 -7y =7,∴y =-1.③ 将③代入②,得x =0.∴原方程组的解为⎩⎪⎨⎪⎧x =0,y =-1.18.(6分)解方程:x 2+1=2(x +1).解:x 2-2x -1=0. (x -1)2=2.∴x 1=1+2,x 2=1- 2.19.(8分)解不等式组⎩⎪⎨⎪⎧5x -1>3x -4,23-x ≥-13,并把不等式组的解集在数轴上表示出来. 解:不等式组的解集为-32<x ≤1.在数轴上表示不等式组的解集如图所示.20.(10分)为顺利通过“国家文明城市”验收,某市政府拟对城区部分路段的人行道路地砖、绿化带、排水管道等公用设施全面更新改造,根据市政建设的需要,需在40天内完成工程,现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程的时间的2倍.若甲、乙两个工程队合作只需10天完成.(1)甲、乙两个工程队单独完成此项工程各需多少天?(2)若甲工程队每天的工程费用是4.5万元,乙工程队每天的工程费用是2.5万元.请你设计一种方案,既能使工程按时完工,又能使工程费用最少.解:(1)设甲、乙工程队单独完成此项工程各需x 天,2x 天,根据题意,得 1x +12x =110. 解得x =15,2x =30.答:甲、乙工程队单独完成此项工程各需15天,30天. (2)分三种情况讨论:①甲单独做费用:4.5×15=67.5(万元); ②乙单独做费用:2.5×30=75(万元);③甲、乙合作完成费用:(4.5+2.5)×10=70(万元). ∵75>70>67.5,∴甲工程队单独做既能使工程按时完工,又能使工程费用最小,为67.5万元.21.(10分)某特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售量可增加20千克.若该专卖店销售这种核桃想要平均每天获利2 240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为了尽可能让利于顾客,赢利市场,该店应按原售价的几折出售?解:(1)设每千克核桃应降价x 元,依题意,得 (60-40-x)(100+x2·20)=2 240,解得x =4或x =6.答:每千克核桃应降价4元或6元.(2)由(1)可知,每千克核桃应降价4元或6元, 为了尽可能让利于顾客,每千克核桃应降价6元, 此时售价为60-6=54(元),5460×100%=90%.答:该店应按原售价的九折出售.22.(12分)小明所在的学校为了加强学生体育锻炼,准备从某体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个篮球和3个足球共需310元;购买5个篮球和2个足球共需500元.(1)每个篮球和足球各需多少元?(2)根据学校的实际情况,需从该商店一次性购买篮球和足球共60个,要求购买篮球和足球费用不超过4 000元,那么最多可以购买多少个篮球?解:(1)设每个篮球x 元,每个足球y 元,由题意,得⎩⎪⎨⎪⎧2x +3y =310,5x +2y =500,解得⎩⎪⎨⎪⎧x =80,y =50. 答:每个篮球80元,每个足球50元. (2)设购买z 个篮球,由题意,得 80z +50(60-z)≤4 000,解得z ≤3313.∵z 为整数, ∴z 最大取33.答:最多可以购买33个篮球.23.(10分)李宁准备完成题目:解二元一次方程组⎩⎪⎨⎪⎧x -y =4,□x +y =-8,发现系数“□”印刷不清楚.(1)他把“□”猜成3,请你解二元一次方程组⎩⎪⎨⎪⎧x -y =4,3x +y =-8;(2)张老师说:“你猜错了,我看到该题标准答案的结果x ,y 是一对相反数.”通过计算说明原题中“□”是几?解:(1)⎩⎪⎨⎪⎧x -y =4,①3x +y =-8,②②+①,得4x =-4.解得x =-1.把x =-1代入①,得-1-y =4.解得y =-5. ∴方程组的解是⎩⎪⎨⎪⎧x =-1,y =-5.(2)设“□”为a ,∵x ,y 是一对相反数,∴把x =-y 代入x -y =4,得-y -y =4. 解得y =-2.∴x =2. ∴方程组的解是⎩⎪⎨⎪⎧x =2,y =-2.代入ax +y =-8,得2a -2=-8.解得a =-3.∴原题中“□”是-3.24.(10分)HW 公司2018年使用自主研发生产的“QL ”系列甲、乙、丙三类芯片共2 800万块,生产了2 800万部手机,其中乙类芯片的产量是甲类芯片的2倍,丙类芯片的产量比甲、乙两类芯片产量的和还多400万块.这些“QL ”芯片解决了该公司2018年生产的全部手机所需芯片的10%.(1)求2018年甲类芯片的产量;(2)HW 公司计划2020年生产的手机全部使用自主研发的“QL ”系列芯片.从2019年起逐年扩大“QL ”芯片的产量,2019年、2020年这两年,甲类芯片每年的产量都比前一年增长一个相同的百分数m%,乙类芯片的产量平均每年增长的百分数比m%小1,丙类芯片的产量每年按相同的数量递增.2018年到2020年,丙类芯片三年的总产量达到1.44亿块.这样,2020年的HW 公司的手机产量比2018年全年的手机产量多10%,求丙类芯片2020年的产量及m 的值.解:(1)设2018年甲类芯片的产量为x 万块,由题意,得 x +2x +(x +2x)+400=2 800. 解得x =400.答:2018年甲类芯片的产量为400万块.(2)2018年丙类芯片的产量为3x +400=1 600(万块),设丙类芯片的产量每年增加的数量为y 万块,则1 600+1 600+y +1 600+2y =14 400. 解得y =3 200.∴丙类芯片2020年的产量为1 600+2×3 200=8 000(万块).2018年HW 公司手机产量为2 800÷10%=28 000(万部).根据题意,得400(1+m%)2+2×400(1+m%-1)2+8 000=28 000×(1+10%),设m%=t ,化简,得3t 2+2t -56=0.解得t =4或t =-143(舍去). ∴m%=4.∴m =400.答:丙类芯片2020年的产量为8 000万块,m =400.。
2019-2020年黑龙江省哈尔滨市中考数学测试试卷(三) 解析版
2020年黑龙江省哈尔滨市中考数学测试试卷(三)一.选择题(共10小题)1.﹣3的相反数是()A.﹣3 B.3 C.D.2.下列运算中,不正确的是()A.a3+a3=2a3B.a2•a3=a5C.(﹣a3)2=a9D.2a3÷a2=2a3.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.4.在每一象限内的双曲线y=上,y都随x的增大而增大,则m的取值范围是()A.m>﹣2 B.m<﹣2 C.m≥﹣2 D.m≤﹣25.如图所示几何体的左视图是()A.B.C.D.6.如图,点P在点A的北偏东60°方向上,点B在点A正东方向,点P在点B的北偏东30°方向上,若AB=50米,则点P到直线AB的距离为()A.50米B.25米C.50米D.25米7.将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为()A.y=2(x+2)2+3 B.y=2(x﹣2)2+3C.y=2(x﹣2)2﹣3 D.y=2(x+2)2﹣38.某种服装的成本在两年内从300元降到243元,那么平均每年降低成本的百分率为()A.5% B.10% C.15% D.20%9.已知在△ABC中,点D为AB上一点,过点D作BC的平行线交AC于点E,过点E作AB 的平行线交BC于点F.则下列说法不正确的是()A.=B.=C.=D.=10.如图,矩形ABCD中,AB=8,把矩形沿直线AC折叠,点B落在点E处,AE交CD于点F,若AF=,则AD的长为()A.3 B.4 C.5 D.6二.填空题(共10小题)11.将9420000用科学记数法表示为.12.在函数y=中,自变量x的取值范围是.13.计算:=.14.把多项式9m2﹣36n2分解因式的结果是.15.以O为圆心,4cm为半径的圆周上,依次有A、B、C三个点,若四边形OABC为菱形,则弦AC所对的劣弧长等于cm.16.不等式组的整数解是.17.如图,在等边△ABC中,D是边AC上一点,连接BD.将△BCD绕点B逆时针旋转60°得到△BAE,连接ED.若BC=5,BD=4,则△AED的周长是.18.从甲、乙、丙、丁4名三好学生中随机抽取2名学生担任升旗手,则抽取的2名学生是甲和乙的概率为.19.等腰△ABC中,AB=AC,AD⊥BC于D,点E在直线AC上,CE=AC,AD=18,BE=15,则△ABC的面积是.20.如图,已知平行四边形ABCD,DE⊥CD,CE⊥BC,CE=AD,F为BC上一点,连接DF,且点A在BF的垂直平分线上,若DE=1,DF=5,则AD的长为.三.解答题(共7小题)21.先化简,再求值:,其中x=4cos30°﹣2tan45°.22.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A、B、C均在小正方形的顶点上.(1)请用两种不同的方法分别在图1中和图2中画出△ABD和△ACD,使得两个三角形都是轴对称图形;(2)请直接写出两个图形中线段BD的长度之和.23.为了解某学校学生的个性特长发展情况,学校决定围绕“音乐、体育、美术、书法、其它活动项目中,你参加哪一项活动(每人只限一项)的问题”,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制成如图所示的条形统计图,请根据图中提供的信息解答下列问题:(1)在这次调查中一共抽查了多少名学生?(2)求参加“音乐”活动项目的人数占抽查总人数的百分比.(3)若全校有2400名学生,请估计该校参加“美术”活动项目的人数.24.已知函数y=﹣x m﹣1+bx﹣3(m,b为常数)是二次函数其图象的对称轴为直线x=1 (I)求该二次函教的解析式;(Ⅱ)当﹣2≤x≤0时,求该二次函数的函数值y的取值范围.25.某水果商贩用了300元购进一批水果,上市后销售非常好,商贩又用了700元购进第二批这种水果,所购水果数量是第一批购进数量的2倍,但每箱进价多了5元.(1)求该商贩第一批购进水果每箱多少元;(2)由于储存不当,第二批购进的水果中有10%腐坏,不能卖售,该商贩将两批水果按同一价格全部销售完毕后获利不低于400元,求每箱水果的售价至少是多少元.26.已知△ABD内接于⊙O中,DP为⊙O的切线.(1)如图1,求证:∠BAD=∠BDP;(2)如图2,连接PB并延长交⊙O于点C,连接AC、CD,CD交AB于点E,若CD⊥AB,∠CAB=2∠BAD,求证:BD+DE=CE;(3)如图3,在(2)的条件下,延长AB至点F,使得BF=BD,连接CF,若AC=10,S=20,求DE的长.△BCF27.在平面直角坐标系中,O为坐标原点,直线AB:y=2x+4与x轴交于B点,与y轴交于A点,D为BA延长线上一点,C为x轴上一点,连接CD,且DB=DC,BC=8.(1)如图1,求直线CD的解析式;(2)如图2,P为BD上一点,过点P作CD的垂线,垂足为H,设PH的长为d,点P的横坐标为t,求d与t之间的函数关系式(直接写出自变量t的取值范围);(3)如图3,点E为CD上一点,连接PE,PE=PB,在PE上取一点K,在AB上取一点F,使得PK=BF,在EK上取点N,连接FN交BK于点M,若∠PFN=2∠KMN,MN=NE,求点P 的坐标.参考答案与试题解析一.选择题(共10小题)1.﹣3的相反数是()A.﹣3 B.3 C.D.【分析】依据相反数的定义解答即可.【解答】解:﹣3的相反数是3.故选:B.2.下列运算中,不正确的是()A.a3+a3=2a3B.a2•a3=a5C.(﹣a3)2=a9D.2a3÷a2=2a 【分析】根据合并同类项法则和幂的运算性质,计算后利用排除法求解.【解答】解:A、a3+a3=2a3,正确;B、a2•a3=a5,正确;C、应为(﹣a3)2=a6,故本选项错误;D、2a3÷a2=2a,正确.故选:C.3.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,不合题意;B、是轴对称图形,也是中心对称图形,不合题意;C、不是轴对称图形,是中心对称图形,符合题意;D、是轴对称图形,不是中心对称图形,不合题意.故选:C.4.在每一象限内的双曲线y=上,y都随x的增大而增大,则m的取值范围是()A.m>﹣2 B.m<﹣2 C.m≥﹣2 D.m≤﹣2【分析】根据反比例函数的性质得到关于m的不等式,解不等式可以得到m的取值范围.【解答】解:∵在每一象限内的双曲线y=上,y都随x的增大而增大,∴m+2<0,解得,m<﹣2,故选:B.5.如图所示几何体的左视图是()A.B.C.D.【分析】根据左视图是从物体的左面看得到的图形解答.【解答】解:从左边看到的现状是A中图形,故选:A.6.如图,点P在点A的北偏东60°方向上,点B在点A正东方向,点P在点B的北偏东30°方向上,若AB=50米,则点P到直线AB的距离为()A.50米B.25米C.50米D.25米【分析】作PC⊥AB,根据正切的定义用PC分别表示出AC、BC,根据题意列式计算,得到答案.【解答】解:作PC⊥AB交AB的延长线于点C,由题意得,∠PAC=30°,∠PBC=60°,在Rt△ACP中,tan∠PAC=,∴AC==PC,在Rt△BCP中,tan∠PBC=,∴BC==PC,由题意得,PC﹣PC=50,解得,PC=25,即点P到直线AB的距离为25米,故选:D.7.将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为()A.y=2(x+2)2+3 B.y=2(x﹣2)2+3C.y=2(x﹣2)2﹣3 D.y=2(x+2)2﹣3【分析】根据“上加下减、左加右减”的原则进行解答即可.【解答】解:将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度,得到的抛物线的解析式为y=2(x﹣2)2+3,故选:B.8.某种服装的成本在两年内从300元降到243元,那么平均每年降低成本的百分率为()A.5% B.10% C.15% D.20%【分析】要求每次降价的百分率,应先设每次降价的百分率为x,则第一次降价后每件300(1﹣x)元,第二次降价后每件300(1﹣x)2元,又知经两次降价后每件243元,由两次降价后每件价钱相等为等量关系列出方程求解.【解答】解:设平均每次降价的百分率为x,则第一次降价后每件300(1﹣x)元,第二次降价后每件300(1﹣x)2元,由题意得:300(1﹣x)2=243解得:x1=0.1,x2=1.9(不符合题意舍去)所以平均每次降价的百分率为:10%.故选:B.9.已知在△ABC中,点D为AB上一点,过点D作BC的平行线交AC于点E,过点E作AB 的平行线交BC于点F.则下列说法不正确的是()A.=B.=C.=D.=【分析】由平行线分线段成比例定理即可得出结论.【解答】解:∵DE∥BC,EF∥AB,∴=,A、B、D选项正确;∵四边形BDEF是平行四边形,∴DE=BF,∴,故C选项错误;故选:C.10.如图,矩形ABCD中,AB=8,把矩形沿直线AC折叠,点B落在点E处,AE交CD于点F,若AF=,则AD的长为()A.3 B.4 C.5 D.6【分析】根据平行线的性质和翻转变换的性质得到FD=FE,FA=FC,根据勾股定理计算即可.【解答】解:∵DC∥AB,∴∠FCA=∠CAB,又∠FAC=∠CAB,∴∠FAC=∠FCA,∴FA=FC=,∴FD=FE,∵DC=AB=8,AF=,∴FD=FE=8﹣=,∴AD=BC=EC==6,故选:D.二.填空题(共10小题)11.将9420000用科学记数法表示为9.42×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:9420000=9.42×106.故答案为:9.42×106.12.在函数y=中,自变量x的取值范围是x≠2 .【分析】根据分式有意义的条件是分母不为0;分析原函数式可得关系式x﹣2≠0,求解可得自变量x的取值范围.【解答】解:根据题意,有x﹣2≠0,解得x≠2;故自变量x的取值范围是x≠2.故答案为x≠2.13.计算:=2.【分析】首先化简各二次根式,进而合并同类项得出即可.【解答】解:=﹣=.故答案为:2.14.把多项式9m2﹣36n2分解因式的结果是9(m﹣2n)(m+2n),.【分析】首先提公因式9,再利用平方差进行二次分解即可.【解答】解:原式=9(m2﹣4n2)=9(m﹣2n)(m+2n),故答案为:9(m﹣2n)(m+2n).15.以O为圆心,4cm为半径的圆周上,依次有A、B、C三个点,若四边形OABC为菱形,则弦AC所对的劣弧长等于πcm.【分析】连接OB,如图,先利用菱形的性质可判断△OAB和△OBC都是等边三角形,则∠AOB=∠BOC=60°,于是可根据弧长公式计算出弦AC所对的劣弧的长.【解答】解:连接OB,如图,∵四边形OABC为菱形,∴OA=AB=BC=OC,∴△OAB和△OBC都是等边三角形,∴∠AOB=∠BOC=60°,∴弦AC所对的劣弧的长==π,故答案为π.16.不等式组的整数解是 2 .【分析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.【解答】解:,由不等式①得x>1,由不等式②得x<3,其解集是1<x<3,所以整数解是2.故答案为:2.17.如图,在等边△ABC中,D是边AC上一点,连接BD.将△BCD绕点B逆时针旋转60°得到△BAE,连接ED.若BC=5,BD=4,则△AED的周长是9 .【分析】先根据旋转的性质得BE=BD,AE=CD,∠DBE=60°,于是可判断△BDE为等边三角形,则有DE=BD=4,所以△AED的周长=DE+AC,再利用等边三角形的性质得AC=BC=5,则易得△AED的周长为9.【解答】解:∵△BCD绕点B逆时针旋转60°得到△BAE,∴BE=BD,AE=CD,∠DBE=60°,∴△BDE为等边三角形,∴DE=BD=4,∴△AED的周长=DE+AE+AD=DE+CD+AD=DE+AC,∵△ABC为等边三角形,∴AC=BC=5,∴△AED的周长=DE+AC=4+5=9.故答案为9°.18.从甲、乙、丙、丁4名三好学生中随机抽取2名学生担任升旗手,则抽取的2名学生是甲和乙的概率为.【分析】根据题意画出树状图,然后求得全部情况的总数与符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:画树形图得:∴一共有12种情况,抽取到甲和乙的有2种,∴P(抽到甲和乙)==.故答案为:.19.等腰△ABC中,AB=AC,AD⊥BC于D,点E在直线AC上,CE=AC,AD=18,BE=15,则△ABC的面积是144 .【分析】根据等腰三角形三线合一的性质可得到AD是底边BC的中线,从而得到点G为△ABC的重心,从而不难求得DG,BG的长,再根据勾股定理求得BD的长,最后根据三角形面积公式求解即可.【解答】解:如图,∵在等腰△ABC中,AB=AC,AD⊥BC于D,∴AD是底边BC的中线,∵CE=AC,∴G为△ABC的重心,∵AD=18,BE=15,∴DG=AD=6,BG=BE=10,∴在直角△BDG中,由勾股定理得到:BD==8,∴S△ABC=BC×AD=144.故答案是:144.20.如图,已知平行四边形ABCD,DE⊥CD,CE⊥BC,CE=AD,F为BC上一点,连接DF,且点A在BF的垂直平分线上,若DE=1,DF=5,则AD的长为.【分析】连接AF,AC,过点A作AH⊥CD于H,AH交EC于O,设AD与CE交于G,根据全等三角形的性质得到DE=DH=1,AH=CD,根据线段垂直平分线的性质得到AB=AF,求得∠ABF=∠AFB,根据平行四边形的性质得到AB=CD,AB∥CD,求得∠BCD=∠AFC,根据全等三角形的性质得到DF=AC=5,根据勾股定理即可得到结论.【解答】解:连接AF,AC,过点A作AH⊥CD于H,AH交EC于O,设AD与CE交于G,∵∠AGC=∠AHC=90°,∠AOG=∠COH,∴∠DAH=∠ECD,∵∠AHD=∠EDC=90°,AD=CE,∴△ADH≌△CED(AAS),∴DE=DH=1,AH=CD,∵点A在BF的垂直平分线上,∴AB=AF,∴∠ABF=∠AFB,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABF+∠BCD=180°,∴∠BCD=∠AFC,∵CF=CF,∴△AFC≌△DCF(SAS),∴DF=AC=5,设CH=x,则AH=CD=x+1,∵AH2+CH2=AC2,∴(x+1)2+x2=52,解得:x=3(负值舍去),∴AH=4,∴AD==,故答案为:.三.解答题(共7小题)21.先化简,再求值:,其中x=4cos30°﹣2tan45°.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,再利用特殊角的三角函数值求出x的值,代入计算即可求出值.【解答】解:原式=[﹣]•,=•,=,当x=4×﹣2×1=2﹣2时,原式==.22.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A、B、C均在小正方形的顶点上.(1)请用两种不同的方法分别在图1中和图2中画出△ABD和△ACD,使得两个三角形都是轴对称图形;(2)请直接写出两个图形中线段BD的长度之和.【分析】(1)根据△ABD和△ACD都是轴对称图形,即可得到格点D的位置;(2)依据勾股定理进行计算,即可得到线段BD的长度之和.【解答】解:(1)如图所示,△ABD和△ACD即为所求;(2)两个图形中线段BD的长度之和为+2=.23.为了解某学校学生的个性特长发展情况,学校决定围绕“音乐、体育、美术、书法、其它活动项目中,你参加哪一项活动(每人只限一项)的问题”,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制成如图所示的条形统计图,请根据图中提供的信息解答下列问题:(1)在这次调查中一共抽查了多少名学生?(2)求参加“音乐”活动项目的人数占抽查总人数的百分比.(3)若全校有2400名学生,请估计该校参加“美术”活动项目的人数.【分析】(1)根据条形统计图求得各类的人数的和即可;(2)利用(1)中所求总人数,再利用参加“音乐”活动项目的人数,求出所占百分比即可;(3)根据样本中美术所占的百分比估计总体.【解答】解:(1)12+16+6+10+4=48(人);(2)参加“音乐”活动项目的人数占抽查总人数的百分比为:12÷48×100%=25%;(3)6÷48×2400=300(名),估计该校参加“美术”活动项目的人数约为300人.24.已知函数y=﹣x m﹣1+bx﹣3(m,b为常数)是二次函数其图象的对称轴为直线x=1 (I)求该二次函教的解析式;(Ⅱ)当﹣2≤x≤0时,求该二次函数的函数值y的取值范围.【分析】(Ⅰ)根据对称轴方程,列式求出b的值,从而求得二次函数的解析式;(Ⅱ)先由y=﹣x2+2x﹣3=﹣(x﹣1)2﹣2知函数有最大值﹣2,然后求出x=﹣2和x =0时y的值即可得答案.【解答】解:(Ⅰ)∵函数y=﹣x m﹣1+bx﹣3(m,b为常数)是二次函数其图象的对称轴为直线x=1,∴m﹣1=2,﹣=1,∴m=3,b=2.∴该二次函教的解析式为y=﹣x2+2x﹣3.(Ⅱ)∵y=﹣x2+2x﹣3=﹣(x﹣1)2﹣2,∴当x=1时,函数y有最大值﹣2,当x=﹣2时,y=﹣11;当x=0时,y=﹣3;∵﹣2<0<1,∴当﹣2≤x≤0时,求该二次函数的函数值y的取值范围为﹣11≤y≤﹣3.25.某水果商贩用了300元购进一批水果,上市后销售非常好,商贩又用了700元购进第二批这种水果,所购水果数量是第一批购进数量的2倍,但每箱进价多了5元.(1)求该商贩第一批购进水果每箱多少元;(2)由于储存不当,第二批购进的水果中有10%腐坏,不能卖售,该商贩将两批水果按同一价格全部销售完毕后获利不低于400元,求每箱水果的售价至少是多少元.【分析】(1)设该商场第一批购进了这种水果x,则第二批购进这种水果2x,根据关键语句“每个进价多了5元”可得方程,解方程即可;(2)设水果的售价为y元,根据题意可得不等关系:水果的总售价﹣成本﹣损耗≥利润,由不等关系列出不等式即可.【解答】解:(1)设该商场第一批购进了这种水果x,则第二批购进这种水果2x,可得:﹣=5,解得:x=10,经检验:x=10是原分式方程的解,=30,答:该商贩第一批购进水果每箱30元;(2)设水果的售价为y元,根据题意得:30y﹣(300+700)﹣20×10%y≥400,解得:y≥50,则水果的售价为50元.答:水果的售价至少为50元.26.已知△ABD内接于⊙O中,DP为⊙O的切线.(1)如图1,求证:∠BAD=∠BDP;(2)如图2,连接PB并延长交⊙O于点C,连接AC、CD,CD交AB于点E,若CD⊥AB,∠CAB=2∠BAD,求证:BD+DE=CE;(3)如图3,在(2)的条件下,延长AB至点F,使得BF=BD,连接CF,若AC=10,S=20,求DE的长.△BCF【分析】(1)如图1,连接OD,并延长DO交⊙O于H,由切线的性质和圆周角定理可得∠DBH=∠ODP=90°,可得∠ODB+∠BDP=90°,∠BDH+∠H=90°,可得∠H=∠BDP=∠BAD;(2)在CE上截取KE=DE,连接BK,由圆周角可得∠BAD=∠BDP=∠BCD,∠CAB=∠CDB =2∠BDP=2∠BCD,由线段垂直平分线的性质可得BK=BD,由等腰三角形的性质和外角的性质可得BK=CK=BD,即可得结论;(3)如图3,在CE上取点K,使DE=KE,连接BK,过点K作KR⊥BC于R,过点F作FH ⊥BP于点H,由“AAS”可知△CRK≌△FHB,可得FH=CR,由三角形面积公式可求BC的长,由角的数量关系可证AB=AC=10,由勾股定理可求AE,BE,CE的长,由锐角三角函数可求解.【解答】解:(1)如图1,连接OD,并延长DO交⊙O于H,∵DP为⊙O的切线.∴∠ODP=90°,∴∠ODB+∠BDP=90°,∵DH是直径,∴∠DBH=90°,∵∠BDH+∠H=90°,∴∠H=∠BDP,∵∠H=∠BAD,∴∠BAD=∠BDP;(2)如图2,在CE上截取KE=DE,连接BK,∵∠CAB=2∠BAD,∠BAD=∠BCD,∠BAD=∠BDP,∠CAB=∠CDB,∴∠BAD=∠BDP=∠BCD,∠CAB=∠CDB=2∠BDP=2∠BCD,∵KE=DE,AB⊥CD,∴BK=BD,∴∠BKD=∠BDK=2∠BCD,∵∠BKD=∠BCD+∠CBK,∴∠BCD=∠CBK,∴BK=CK,∴CE=KE+CK=DE+BK,∴CE=DE+BD(3)如图3,在CE上取点K,使DE=KE,连接BK,过点K作KR⊥BC于R,过点F作FH ⊥BP于点H,由(2)可知,CK=BK,∴CR=BR,∵BF=BD,CK=BK=BD,∴CK=BF=BD=BK,∵∠KRC=∠FPH=90°,∠CBE=∠FBH,∴∠BCE=∠BFH,且CK=BF,∠CRK=∠FHB,∴△CRK≌△FHB(AAS),∴FH=CR,设FH=CR=BR=x,∴BC=2x,∵S△BCF=20=×BC×FH,∴20=×2x×x∴x=2(负值舍去),∴FH=CR=BR=2,BC=4,∵∠BAD=∠BCD,∠BAC=2∠BAD,∴∠BAC=2∠BCD,∵∠CBA=90°﹣∠BCD,∠BAC+∠ACB+∠ABC=180°,∴∠ACB=90°﹣∠BCD,∴∠ACB=∠ABC,∴AC=AB=10,∵CE2=AC2﹣AE2,CE2=CB2﹣BE2,∴AC2﹣AE2=CB2﹣BE2,∴100﹣AE2=80﹣(10﹣AE)2,∴AE=6,∴BE=4,∴EC===8∵∠ECB=∠EAD,∴tan∠ECB=tan∠EAD,∴,∴,∴DE=3.27.在平面直角坐标系中,O为坐标原点,直线AB:y=2x+4与x轴交于B点,与y轴交于A点,D为BA延长线上一点,C为x轴上一点,连接CD,且DB=DC,BC=8.(1)如图1,求直线CD的解析式;(2)如图2,P为BD上一点,过点P作CD的垂线,垂足为H,设PH的长为d,点P的横坐标为t,求d与t之间的函数关系式(直接写出自变量t的取值范围);(3)如图3,点E为CD上一点,连接PE,PE=PB,在PE上取一点K,在AB上取一点F,使得PK=BF,在EK上取点N,连接FN交BK于点M,若∠PFN=2∠KMN,MN=NE,求点P 的坐标.【分析】(1)解方程得到OB=2,OA=﹣4,过D作DX⊥BC于X,根据平行线分线段成比例定理得到DX=8,求得D(2,8),解方程组即可得到结论;(2)过点P作PY∥BC交CD于Y,求得P(t,2t+4),Y(﹣t+4,2t+4)根据平行线的性质和解直角三角形即可得到结论;(3)如图3,延长FN到点T,使PN=NT,连接PT,于是得到MT=MN+NT=NE+PN=PE,过点T作TV⊥BK交BK的延长线于V,根据全等三角形的性质得到BQ=MV,PQ=YT,∴BM=VQ,设PT交MV于点R,∵∠由全等三角形的性质得到QR=VR=BM,过点F 作FL⊥BM于L,过点R作RZ∥FN交PQ于点Z,推出△FML≌△ZRQ(ASA),求得RZ=FM 根据全等三角形的性质得到∠PRQ=∠QPR,求得∠ZRQ=∠QPK,过点P作SW∥BC,过B 作BS⊥SB于S,过E作EW⊥SW于W根据余角的性质得到∠WPE=∠SBP,推出△SPB≌△WEP(AAS),得到BS=PW,SP=WE,设P(t,2t+4),求得E(3t+4,t+2),解方程即可得到结论.【解答】解:(1)在y=2x+4中,令y=0,则x=﹣2,令x=0,则y=4,∴B(﹣2,0),A(0,4),∴OB=2,OA=﹣4,过D作DX⊥BC于X,∵DB=DC,∴BX=XC=BC=4,∴OX=2,∵∠AOB=∠DXB=90°,∴OA∥DX,∴=,∴DX=8,∴D(2,8),∵OC=BC﹣OB=6,C(6,0),设直线CD的解析式为:y=kx+b,∴,解得:,∴直线CD的解析式为y=﹣2x+12;(2)过点P作PY∥BC交CD于Y,∵点P的横坐标为t,∴P(t,2t+4),∴Y(﹣t+4,2t+4),∴PY=﹣2t+4,∵PY∥BC,∴∠DCB=∠DYP,∵BD=CD,∴∠DBC=∠DCB,∴∠DCB=∠DYP,∴tan∠DBC=tan∠DYP,∵tan∠DBC==2,∴tan∠DYP=2,∴=2,∴PH=2HY,在Rt△PHY中,PY===HY,∴==,∴PH=(﹣2t+4)=﹣t+(﹣2≤t<2);(3)如图3,延长FN到点T,使PN=NT,连接PT,∴MT=MN+NT=NE+PN=PE,∵PE=PB,∴MT=PB,过点T作TV⊥BK交BK的延长线于V,∵∠PFN=2∠KMN=2∠FMB,∴∠FBM=∠FMB,∴∠PBM=∠VMT,∵∠PQB=∠V=90°,∴△PQB≌△TVM(AAS),∴BQ=MV,PQ=YT,∴BM=VQ,设PT交MV于点R,∵∠PRQ=∠TRV,∠PQR=∠V,PQ=VT,∴△PQR≌△TVR(AAS),∴QR=VR=BM,过点F作FL⊥BM于L,过点R作RZ∥FN交PQ于点Z,∵∠FBM=∠FMB,∴BF=FM,∴ML=BM,∴QR=ML,∵RZ∥FN,∴∠ZRQ=∠KMN,∴∠FML=∠ZRQ,∵∠FLM=∠ZQR=90°,∴△FML≌△ZRQ(ASA),∴RZ=FM,∴BF=RZ,∵BF=PK,∴RZ=PK,∵PN=NT,∴∠NPT=∠NTP,∵RZ∥FN,∴∠PRZ=∠NTP,∴∠NPT=∠PRZ,∵PR=PR,∴△PRK≌△RPZ(ASA),∴∠PRQ=∠QPR,∴∠ZRQ=∠QPK,∴∠PBM=∠ZRQ,∴∠PBM=∠QPK,∵∠PBM+∠BPM=90°,∴QPK+∠BPM=90°,∴∠BPE=90°,过点P作SW∥BC,过B作BS⊥SB于S,过E作EW⊥SW于W,∴∠SPB+∠WPE=90°,∵∠SPB+∠SBP=90°,∴∠WPE=∠SBP,∵∠S=∠W=90°,PB=PE,∴△SPB≌△WEP(AAS),∴BS=PW,SP=WE,设P(t,2t+4),∴E(3t+4,t+2),∵点E在直线CD上,∴t+2=﹣2(3t+4)+12,解得:t=,∴P(,).。
2023年中考数学总复习第三章《函数》第五节 二次函数的图象和性质
2023年中考数学总复习第三章《函数》第五节二次函数的图象和性质一、选择题1.[2020·秦皇岛一模]二次函数y=x2+2x+2的图象是一条抛物线,则下列说法不正确的是()A.抛物线开口向上B.抛物线的顶点坐标是(1,1)C.抛物线与x轴没有交点D.当x>-1时,y随x的增大而增大2.[2020·菏泽]一次函数y=acx+b与二次函数y=ax2+bx+c在同一平面直角坐标系中的图象可能是()3.[2020·河北一模]在平面直角坐标系中,有两条抛物线关于x轴对称,且它们的顶点相距6个单位长度,若其中一条抛物线的函数表达式为y=-x2+4x+2m,则m的值是()A.-B.C.1D.或-4.[人九上课本P47,T4改编]如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是x=1,下列结论正确的是()A.ac>0B.b2>4acC.a-b+c>0D.4a+2b+c<0(第4题图)(第5题图)5.[2020·邯郸模拟]如图,将函数y=(x-2)2+1的图象沿y轴向上平移得到一条新函数y=(x-2)2+4的图象,其中点A(1,m),B(4,n)平移的对应点分别为点A′,B′.则曲线段AB扫过的面积为()A.4B.6C.9D.126.[重点][2020·遵化一模]如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(-1,0),下列结论:①ab<0,②b2-4ac>0,③a-b+c<0,④c=1,⑤当x>-1时,y>0.其中正确的结论有()(第6题图)A.2个B.3个C.4个D.5个二、填空题7.[2020·哈尔滨]抛物线y=3(x-1)2+8的顶点坐标为_______.8.[2020·宁夏]若二次函数y=-x2+2x+k的图象与x轴有两个交点,则k的取值范围是_______.9.[2020·邯郸模拟]把抛物线y=-x2+1向右平移2个单位,再向上平移4个单位,得到的抛物线的解析式是_________.10.[2020·南京]下列关于二次函数y=-(x-m)2+m2+1(m为常数)的结论:①该函数的图象与函数y=-x2的图象形状相同;②该函数的图象一定经过点(0,1);③当x>0时,y随x的增大而减小;④该函数的图象的顶点在函数y=x2+1的图象上.其中所有正确结论的序号是_____.三、解答题11.[2020·邯郸模拟]如图,已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3),与x轴交于C,D两点.点P是抛物线上的一个动点.(1)求此抛物线的解析式;(2)求C,D两点坐标及△BCD的面积;(3)若点P在x轴下方的抛物线上,满足S△PCD=S△BCD,求点P的坐标.(第11题图)。
2020年中考数学一轮复习第3章函数及其图象(付)
第三章函数及其图象第一节平面直角坐标系姓名:________ 班级:________ 用时:______分钟1.(2019·易错题)点(3,2)关于x轴的对称点为( )A.(3,-2)B.(-3,2)C.(-3,-2)D.(2,-3)2.(2018·湖南岳阳中考)函数y=x-3中自变量x的取值范围是( )A.x>3 B.x≠3C.x≥3 D.x≥03.(2017·山东济宁中考)如图,A,B是半径为1的⊙O上两点,且OA⊥OB,点P从点A出发,在⊙O上以每秒一个单位长度的速度匀速运动,回到点A运动结束,设运动时间为x(单位:s),弦BP的长为y,那么下列图象中可能表示y与x函数关系的是( )A.① B.③C.②或④ D.①或③4.(2019·易错题)函数y=xx-2中自变量x的取值范围是__________.5.在平面直角坐标系中,点P(3,-x2-1)在第______象限.6.如图,△ABC的三个顶点都在方格纸的格点上,其中点A的坐标是(-1,0).现将△ABC 绕点A顺时针旋转90°,则旋转后点C的坐标是______________.7.(2019·改编题)如图,在平面直角坐标系中,已知点A(1,1),B(-1,1),C(-1,-2),D(1,-2),把一根长为2 019个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A处,并按A→B→C→D→A…的规律紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是________________.8.在如图所示的方格图中,我们称每个小正方形的顶点为“格点”,以格点为顶点的三角形叫做“格点三角形”,根据图形,回答下列问题.(1)图中格点△A′B′C′是由格点△ABC通过怎样的变换得到的?(2)如果以直线a,b为坐标轴建立平面直角坐标系后,点A的坐标为(-3,4),请写出格点△DEF各顶点的坐标,并求出△DEF的面积.9.定义:直线l 1与l 2交于点O ,对于平面内任意一点M ,点M 到直线l 1,l 2的距离分别为p ,q ,则称有序实数对(p ,q)是点M 的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是( ) A .2B .3C .4D .510.在平面直角坐标系中,点P(-3,2)关于直线y =x 对称的点的坐标是( ) A .(-3,-2) B .(3,2) C .(2,-3)D .(3,-2)11.(2019·改编题)如图,在平面直角坐标系xOy 中,已知点M 0的坐标为(1,0),将线段OM 0绕原点O 逆时针方向旋转45°,再将其延长到M 1,使得M 1M 0⊥OM 0,得到线段OM 1;又将线段OM 1绕原点O 逆时针方向旋转45°,再将其延长到M 2,使得M 2M 1⊥OM 1,得到线段OM 2;如此下去,得到线段OM 3,OM 4,OM 5,…,根据以上规律,那么 M 2 019的坐标为_________________________.12.(2019·创新题)【阅读】在平面直角坐标系中,以任意两点P(x 1,y 1),Q(x 2,y 2)为端点的线段中点坐标为(x 1+x 22,y 1+y 22).【运用】(1)如图,矩形ONEF的对角线交于点M,ON,OF分别在x轴和y轴上,O为坐标原点,点E 的坐标为(4,3),则点M的坐标为________;(2)在平面直角坐标系中,有A(-1,2),B(3,1),C(1,4)三点,另有一点D与点A,B,C 构成平行四边形的顶点,求点D的坐标.13.(2018·浙江台州中考)甲、乙两运动员在长为100 m的直道AB(A,B为直道两端点)上进行匀速往返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B点…若甲跑步的速度为5 m/s,乙跑步的速度为4 m/s,则起跑后100 s 内,两人相遇的次数为( )A.5 B.4C.3 D.2参考答案【基础训练】1.A 2.C 3.D 4.x≠2 5.四 6.(2,1) 7.(-1,1)8.解:(1)图中格点△A′B′C′是由格点△ABC 向右平移7个单位长度得到的. (2)如图,过点F 作FG∥直线a ,交DE 于点G.如果以直线a ,b 为坐标轴建立平面直角坐标系后,点A 的坐标为(-3,4),那么格点△DEF 各顶点的坐标分别为D(0,-2),E(-4,-4),F(3,-3),S △DEF =S △DGF +S △GEF =12×5×1+12×5×1=5.【拔高训练】 9.C 10.C 11.( -21 009,21 009)12.解:(1)(2,32)(2)设点D 的坐标为(x ,y),若以AB 为对角线,AC ,BC 为邻边构成平行四边形,则AB ,CD 的中点重合, ∴⎩⎪⎨⎪⎧1+x 2=-1+32,4+y 2=2+12,解得⎩⎪⎨⎪⎧x =1,y =-1.若以BC 为对角线,AB ,AC 为邻边构成平行四边形,则AD ,BC 的中点重合,∴⎩⎪⎨⎪⎧-1+x 2=1+32,2+y 2=4+12,解得⎩⎪⎨⎪⎧x =5,y =3.若以AC 为对角线,AB ,BC 为邻边构成平行四边形,则BD ,AC 的中点重合, ∴⎩⎪⎨⎪⎧3+x 2=-1+12,1+y 2=2+42,解得⎩⎪⎨⎪⎧x =-3,y =5.综上可知,点D 的坐标为(1,-1)或(5,3)或(-3,5). 【培优训练】 13.B第二节 一次函数的图象与性质姓名:________ 班级:________ 用时:______分钟1.下列y 关于x 的函数中,是正比例函数的为( ) A .y =x 2B .y =2xC .y =x2D .y =x +122.若一次函数y =3x +b 的图象经过点(-1,2),则b 的值为( ) A .-7B .-1C .2D .53.(2018·陕西中考)若直线l 1经过点(0,4),l 2经过点(3,2),且l 1与l 2关于x 轴对称,则l 1与l 2的交点坐标为( ) A .(-2,0) B .(2,0) C .(-6,0)D .(6,0)4.(2019·易错题)已知y 关于x 的函数y =(m -2)x +m 2-4,当m________时,该函数为一次函数;当m__________时,该函数为正比例函数.5. (2019·易错题)已知一次函数y =(1-m)x +m -2,当__________时,y 随x 的增大而增大.6.把直线y =-x -1沿y 轴向上平移2个单位,所得直线的函数表达式为________________. 7.如图,直线y 1=x +b 与y 2=kx -1相交于点P ,点P 的横坐标为-1,则关于x 的不等式x +b>kx -1的解集为____________.8. (2019·易错题)对于一次函数y =kx +b ,当1≤x≤4时,3≤y≤6,则kb 的值是____________.9.(2018·重庆中考B 卷)如图,在平面直角坐标系中,直线l 1:y =12x 与直线l 2交点A 的横坐标为2,将直线l 1沿y 轴向下平移4个单位长度,得到直线l 3,直线l 3与y 轴交于点B ,与直线l 2交于点C ,点C 的纵坐标为-2.直线l 2与y 轴交于点D. (1)求直线l 2的表达式; (2)求△BDC 的面积.10.如图,已知直线l1:y=-2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M,若直线l2与x轴的交点为A(-2,0),则k的取值范围为( )A.-2<k<2 B.-2<k<0C.0<k<4 D.0<k<211.如图,点A,B的坐标分别为(0,2),(3,4),点P为x轴上的一点,若点B关于直线AP的对称点B′恰好落在x轴上,则点P的坐标为____________.12.如图,在平面直角坐标系中,已知直线y=x上一点P(1,1),C为y轴上一点,连结PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B,直线AB 与直线y=x交于点A,且BD=2AD,连结CD,直线CD与直线y=x交于点Q,则点Q的坐标为__________.13.如图,直线l上有一点P1(2,1),将点P1先向右平移1个单位,再向上平移2个单位得到点P2,点P2恰好在直线l上.(1)写出点P2的坐标;(2)求直线l 所表示的一次函数的表达式;(3)若将点P 2先向右平移3个单位,再向上平移6个单位得到点P 3.请判断点P 3是否在直线l 上,并说明理由.参考答案【基础训练】1.C 2.D 3.B 4.≠2 =-2 5.m<1 6.y =-x +1 7.x>-1 8.2或-7 9.解:(1)把x =2代入y =12x 得y =1,∴点A 的坐标为(2,1).∵将直线l 1沿y 轴向下平移4个单位长度,得到直线l 3, ∴直线l 3的表达式为y =12x -4,∴x=0时,y =-4,∴B(0,-4). 将y =-2代入y =12x -4,得x =4,∴点C 的坐标为(4,-2).设直线l 2的表达式为y =kx +b(k≠0), ∵直线l 2过A(2,1),C(4,-2),∴⎩⎪⎨⎪⎧2k +b =1,4k +b =-2,解得⎩⎪⎨⎪⎧k =-32,b =4,∴直线l 2的表达式为y =-32x +4.(2)∵y=-32x +4,∴x=0时,y =4,∴D(0,4).∵B(0,-4),∴BD=8, ∴△BDC 的面积=12×8×4=16.【拔高训练】10.D 11.(43,0) 12.(94,94)【培优训练】13.解:(1)P 2(3,3).(2)设直线l 所表示的一次函数的表达式为y =kx +b(k≠0), ∵点P 1(2,1),P 2(3,3)在直线l 上,∴⎩⎪⎨⎪⎧2k +b =1,3k +b =3,解得⎩⎪⎨⎪⎧k =2,b =-3. ∴直线l 所表示的一次函数的表达式为y =2x -3. (3)点P 3在直线l 上.由题意知点P 3的坐标为(6,9), ∵2×6-3=9,∴点P 3在直线l 上.第三节 一次函数的实际应用姓名:________ 班级:________ 用时:______分钟1.(2018·江苏无锡中考)一水果店是A 酒店某种水果的唯一供货商,水果店根据该酒店以往每月的需求情况,本月初专门为他们准备了2 600 kg 的这种水果.已知水果店每售出1 kg 该水果可获利润10元,未售出的部分每1 kg 将亏损6元,以x(单位:kg ,2 000≤x≤3 000)表示A 酒店本月对这种水果的需求量,y(元)表示水果店销售这批水果所获得的利润. (1)求y 关于x 的函数表达式;(2)问:当A酒店本月对这种水果的需求量如何时,该水果店销售这批水果所获的利润不少于22 000元?2.某周日上午8:00小宇从家出发,乘车1小时到达某活动中心参加实践活动,11:00时他在活动中心接到爸爸的电话,因急事要求他在12:00前回到家.他即刻按照来活动中心时的路线,以5千米/小时的平均速度快步返回,同时,爸爸在家沿同一路线开车接他,在距家20千米处接上了小宇,立即保持原来的车速原路返回.设小宇离家x(小时)后,到达离家y(千米)的地方,图中折线OABCD表示y与x之间的函数关系.(1)活动中心与小宇家相距________千米,小宇在活动中心活动时间为________小时,他从活动中心返家时,步行用了________小时;(2)求线段BC所表示的y(千米)与x(小时)之间的函数关系式(不必写出x所表示的范围);(3)根据上述情况(不考虑其他因素),请判断小宇是否能在12:00前回到家,并说明理由.3.如图1表示同一时刻的韩国首尔时间和北京时间,两地时差为整数.(1)设北京时间为x(时),首尔时间为y(时),就0≤x≤12,求y关于x的函数表达式,并填写下表(同一时刻的两地时间).北京时间7:30 ________ 2:50首尔时间________ 12:15 ________(2)如图2表示同一时刻的英国伦敦时间(夏时制)和北京时间,两地时差为整数.如果现在伦敦时间(夏时制)为7:30,那么此时韩国首尔时间是多少?4. (2017·河北中考)如图,直角坐标系xOy 中,A(0,5),直线x =-5与x 轴交于点D ,直线y =-38x -398与x 轴及直线x =-5分别交于点C ,E ,点B ,E 关于x 轴对称,连结AB.(1)求点C ,E 的坐标及直线AB 的表达式; (2)设面积的和S =S △CDE +S 四边形ABDO ,求S 的值;(3)在求(2)中S 时,嘉琪有个想法:“将△CDE 沿x 轴翻折到△CDB 的位置,而△CDB 与四边形ABDO 拼接后可看成△AOC,这样求S 便转化为直接求△AOC 的面积不更快捷吗?”但大家经反复演算,发现S △AOC ≠S,请通过计算解释他的想法错在哪里.5.已知点P(x 0,y 0)和直线y =kx +b ,则点P 到直线y =kx +b 的距离d 可用公式d =|kx 0-y 0+b|1+k2计算. 例如:求点P(-2,1)到直线y =x +1的距离.解:因为直线y =x +1可变形为x -y +1=0,其中k =1,b =1,所以点P(-2,1)到直线y =x +1的距离为d =|kx 0-y 0+b|1+k 2=|1×(-2)-1+1|1+12=22=2.根据以上材料,求:(1)点P(1,1)到直线y=3x-2的距离,并说明点P与直线的位置关系;(2)点P(2,-1)到直线y=2x-1的距离;(3)已知直线y=-x+1与y=-x+3平行,求这两条直线的距离.参考答案1.解:(1)由题意得当2 000≤x≤2 600时,y=10x-6(2 600-x)=16x-15 600,当2 600<x≤3 000时,y=2 600×10=26 000.(2)由题意得16x-15 600≥22 000,解得x≥2 350.∴当A酒店本月对这种水果的需求量小于等于3 000 kg,不少于2 350 kg时,该水果店销售这批水果所获的利润不少于22 000元.2.解:(1)22 2 2 5(2)由题意知,点B 的坐标为(3,22),点C 的坐标为(175,20),设线段BC 的函数关系式为y =kx +b , 把点B 和点C 的坐标代入, 得⎩⎪⎨⎪⎧3k +b =22,175k +b =20,解得⎩⎪⎨⎪⎧k =-5,b =37,所以线段BC 所表示的y(千米)与x(小时)之间的函数关系式是y =-5x +37.(3)爸爸开车接上小宇前行驶路程为20千米,用时25小时,速度为20÷25=50(千米/小时),接上小宇后开车返回的速度是50千米/小时,路程为20千米,需要2050=25(小时),到家时间为8+3+25+25=1145时,即11时48分,所以小宇能在12:00前回到家.3.解:(1)从图1看出,同一时刻,首尔时间比北京时间多1小时, 故y 关于x 的函数表达式是y =x +1.填表如下:(2)从图2看出,设伦敦时间(夏时制)为t 时,则北京时间为(t +7)时, 由第(1)题,知韩国首尔时间为(t +8)时,所以,当伦敦时间(夏时制)为7:30时,韩国首尔时间为15:30. 4.解:(1)在直线y =-38x -398中,令y =0,则有0=-38x -398,∴x=-13,∴C(-13,0).令x =-5,则有y =-38×(-5)-398=-3,∴E(-5,-3).∵点B ,E 关于x 轴对称,∴B(-5,3). ∵A (0,5),∴设直线AB 的表达式为y =kx +5, ∴-5k +5=3,∴k=25,∴直线AB 的表达式为y =25x +5.(2)由(1)知,E(-5,-3),∴DE=3,∵C(-13,0),∴CD=-5-(-13)=8, ∴S △CDE =12CD·DE=12.由题意知,OA =5,OD =5,BD =3, ∴S 四边形ABDO =12(BD +OA)·OD=20,∴S=S △CDE +S 四边形ABDO =12+20=32. (3)由(2)知,S =32, 在△AOC 中,OA =5,OC =13, ∴S △AOC =12OA·OC=652=32.5,∴S≠S △AOC .理由:由(1)知,直线AB 的表达式为y =25x +5,令y =0,则0=25x +5,∴x=-252≠-13.∴点C 不在直线AB 上,即点A ,B ,C 不在同一条直线上, ∴S △AOC ≠S.5.解:(1)∵点P(1,1),∴点P 到直线y =3x -2的距离为d =|3×1-1-2|1+32=0, ∴点P 在直线y =3x -2上. (2)∵y=2x -1,∴k=2,b =-1. ∵P(2,-1),∴d=|2×2-(-1)-1|1+22=455. ∴点P(2,-1)到直线y =2x -1的距离为455.(3)在直线y =-x +1任意取一点P , 当x =0时,y =1,∴P(0,1). ∵直线y =-x +3,∴k=-1,b =3, ∴d=|-0-1+3|1+(-1)2=2,∴两平行线之间的距离为 2.第四节 反比例函数姓名:________ 班级:________ 用时:______分钟1.(2018·浙江宁波模拟)若y =(m +1)x m -2是反比例函数,则m 的取值为( )A .1B .-1C .±1D .任意实数2.以下各点中,与点(-2,6)在同一个反比例函数图象上的是( ) A .(6,2) B .(-2,-6) C .(3,4)D .(4,-3)3.(2019·易错题)已知点A(1,y 1),B(2,y 2),C(-3,y 3)都在反比例函数y =4x 的图象上,则y 1,y 2,y 3的大小关系是( ) A .y 3<y 1<y 2 B .y 1<y 2<y 3 C .y 2<y 1<y 3D .y 3<y 2<y 14.以正方形ABCD 两条对角线的交点O 为坐标原点,建立如图所示的平面直角坐标系,反比例函数y =3x的图象经过点D ,则正方形ABCD 的面积是( )A .10B .11C .12D .135.(2018·江西中考)在平面直角坐标系中,分别过点A(m ,0),B(m +2,0)作x 轴的垂线l 1和l 2,探究直线l 1,直线l 2与双曲线y =3x的关系,下列结论中错误的是( )A .两直线中总有一条与双曲线相交B .当m =1时,两直线与双曲线的交点到原点的距离相等C .当-2<m <0时,两直线与双曲线的交点在y 轴两侧D .当两直线与双曲线都有交点时,这两交点的最短距离是2 6. (2019·易错题)已知反比例函数y =-8x,下列结论:①图象必经过(-2,4);②图象在第二、四象限;③y 随x 的增大而增大;④当x>-1时,则y>8.其中错误的结论有( ) A .3个B .2个C .1个D .0个7.已知反比例函数y =6x 在第一象限的图象如图所示,点A 在其图象上,点B 为x 轴正半轴上一点,连结AO ,AB ,且AO =AB ,则S △AOB =______.8.如图,一次函数y =kx +b 与反比例函数y =ax 的图象在第一象限交于A ,B 两点,B 点的坐标为(3,2),连结OA ,OB ,过点B 作BD⊥y 轴,垂足为点D ,交OA 于点C ,若OC =CA.(1)求一次函数和反比例函数的表达式; (2)求△AOB 的面积.9.已知k 1<0<k 2,则函数y =k 1x -1和y =k 2x的图象大致是( )10.如图,点P 1(x 1,y 1),P 2(x 2,y 2),…,P n (x n ,y n )在函数y =1x (x>0)的图象上,△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,…,△P n A n -1A n 都是等腰直角三角形,斜边OA 1,A 1A 2,A 2A 3,…,A n -1A n 都在x 轴上(n 是大于或等于2的正整数),则点P 3的坐标是______________;点P n 的坐标是______________(用含n 的式子表示).11.如图,已知点A(4,0),B(0,43),把一个直角三角尺DEF 放在△OAB 内,使其斜边FD 在线段AB 上,三角尺可沿着线段AB 上下滑动.其中∠EFD=30°,ED =2,点G 为边FD 的中点.(1)求直线AB 的函数表达式;(2)如图1,当点D 与点A 重合时,求经过点G 的反比例函数y =kx (k≠0)的函数表达式;(3)在三角尺滑动的过程中,经过点G 的反比例函数的图象能否同时经过点F ?如果能,求出此时反比例函数的表达式;如果不能,说明理由.12.(2018·江苏泰州中考)平面直角坐标系xOy 中,横坐标为a 的点A 在反比例函数y 1=kx (x>0)的图象上,点A′与点A 关于点O 对称,一次函数y 2=mx +n 的图象经过点A′. (1)设a =2,点B(4,2)在函数y 1,y 2的图象上. ①分别求函数y 1,y 2的表达式;②直接写出使y 1>y 2>0成立的x 的范围;(2)如图1,设函数y 1,y 2的图象相交于点B ,点B 的横坐标为3a ,△AA′B 的面积为16,求k 的值;(3)设m =12,如图2,过点A 作AD⊥x 轴,与函数y 2的图象相交于点D ,以AD 为一边向右侧作正方形ADEF ,试说明函数y 2的图象与线段EF 的交点P 一定在函数y 1的图象上.参考答案【基础训练】1.A 2.D 3.D 4.C 5.D 6.B 7.68.解:(1)∵反比例函数的表达式为y =a x ,且反比例函数经过点B(3,2),∴2=a3,即a =6.∴反比例函数的表达式为y =6x .如图,过点A 作AE⊥y 轴于点E , ∵过点B 作BD⊥y 轴,OC =CA ,∴CD 是△AOE 的中位线,即OE =2OD =4. 又∵点A 在反比例函数y =6x 的图象上,∴点A 的坐标为(32,4).∵一次函数的表达式为y =kx +b ,且经过A ,B 两点,根据题意,得 ⎩⎪⎨⎪⎧3k +b =2,32k +b =4,解得⎩⎪⎨⎪⎧k =-43,b =6, ∴一次函数的表达式为y =-43x +6.(2)∵CD 是△AOE 的中位线,∴CD=12AE =34,∴BC=BD -CD =3-34=94.∴S △AOB =S △ABC +S △BOC =12BC·OE=12×94×4=92.【拔高训练】 9.A10.(3+2,3-2) (n +n -1,n -n -1) 11.解:(1)设直线AB 的函数表达式为y =k′x+b. ∵点A(4,0),B(0,43),∴⎩⎨⎧4k′+b =0,b =43,解得⎩⎨⎧k′=-3,b =43,∴直线AB 的函数表达式为y =-3x +4 3.(2)∵在Rt△DEF 中,∠EFD=30°,ED =2,∴EF=23,DF =4. ∵点D 与点A 重合,∴点D(4,0), ∴点F(2,23),∴点G(3,3). ∵反比例函数y =kx 经过点G ,∴k=33,∴反比例函数的表达式为y =33x.(3)经过点G 的反比例函数的图象能同时经过点F ,理由如下: ∵点F 在直线AB 上, ∴设点F(t ,-3t +43).又∵ED=2,∴点D(t +2,-3t +23). ∵点G 为边FD 的中点. ∴G(t+1,-3t +33).若过点G 的反比例函数的图象也经过点F , 设此时反比例函数表达式为y =mx,则⎩⎪⎨⎪⎧-3t +33=mt +1,-3t +43=mt,整理得(-3t +33)(t +1)=(-3t +43)t , 解得t =32,∴m=1534,∴经过点G 的反比例函数的图象能同时经过点F ,这个反比例函数的表达式为y =1534x .【培优训练】12.解:(1)①由已知,点B(4,2)在y 1=kx (x >0)的图象上,∴k=8,∴y 1=8x.∵a=2,∴点A 坐标为(2,4),A′坐标为(-2,-4). 把B(4,2),A′(-2,-4)代入y 2=mx +n ,⎩⎪⎨⎪⎧2=4m +n ,-4=-2m +n , 解得⎩⎪⎨⎪⎧m =1,n =-2.∴y 2=x -2.②当y 1>y 2>0时,y 1=8x 图象在y 2=x -2图象上方,且两函数图象在x 轴上方,∴由图象得2<x <4.(2)如图,分别过点A ,B 作AC⊥x 轴于点C ,BD⊥x 轴于点D ,连结BO.∵O 为AA′的中点, ∴S △AOB =12S △AA′B =8,∵点A ,B 在双曲线上, ∴S △AOC =S △BOD , ∴S △AOB =S 四边形ACDB =8.由已知得,点A ,B 坐标为(a ,k a ),(3a ,k3a ),∴12(k 3a +ka)·2a=8,解得k =6. (3)由已知A(a ,k a ),则A′为(-a ,-ka ).把A′代入到y 2=12x +n 中,则-k a =-12a +n ,∴n=12a -k a,∴A′D 的表达式为y 2=12x +12a -ka .当x =a 时,点D 纵坐标为a -ka ,∴AD=2ka-a.∵AD=AF ,∴点F 和点P 横坐标为a +2k a -a =2ka .∴点P 纵坐标为12·2k a +12a -k a =12a.∴点P 在y 1=kx (x >0)的图象上.第五节 二次函数的图象与性质姓名:________ 班级:________ 用时:______分钟1.(2019·易错题)将二次函数y =x 2-2x +3化为y =(x -h)2+k 的形式,结果为( ) A .y =(x +1)2+4 B .y =(x +1)2+2 C .y =(x -1)2+4D .y =(x -1)2+22.(2017·浙江丽水中考)将函数y =x 2的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是( )A .向左平移1个单位B .向右平移3个单位C .向上平移3个单位D .向下平移1个单位3.(2018·湖南益阳中考)已知二次函数y =ax 2+bx +c 的图象如图所示,则下列说法正确的是( )A .ac <0B .b <0C .b 2-4ac <0 D .a +b +c <04.如图是一座拱桥,当水面宽AB 为12 m 时,桥洞顶部离水面4 m ,已知桥洞的拱形是抛物线,以水平方向为x 轴,建立平面直角坐标系,若选取点A 为坐标原点时的抛物线表达式是y =-19(x -6)2+4,则选取点B 为坐标原点时的抛物线表达式是_________________________.5.(2019·改编题)矩形ABCD 的两条对称轴为坐标轴,点A 的坐标为(2,1),一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A 重合,此时抛物线的函数表达式为y =x 2,再次平移透明纸,使这个点与点C 重合,则该抛物线的函数表达式变为________________________.6.已知二次函数y =ax 2-bx -2(a≠0)的图象的顶点在第四象限,且过点(-1,0),当a -b 为整数时,ab 的值为( ) A.34或1 B.14或1 C.34或12D.14或347.如图,反比例函数y =k x 的图象经过二次函数y =ax 2+bx 图象的顶点(-12,m)(m>0),则有( )A.a=b+2kB.a=b-2kC.k<b<0D.a<k<08.(2018·山东德州中考)如图,函数y=ax2-2x+1和y=ax-a(a是常数,且a≠0)在同一平面直角坐标系的图象可能是( )9.(2018·浙江杭州中考)设二次函数y=ax2+bx-(a+b)(a,b是常数,a≠0).(1)判断该二次函数图象与x轴的交点的个数,说明理由;(2)若该二次函数图象经过A(-1,4),B(0,-1),C(1,1)三个点中的其中两个点,求该二次函数的表达式;(3)若a+b<0,点P(2,m)(m>0)在该二次函数图象上,求证:a>0.10.如图,抛物线y=x2+bx+c与x轴交于A,B两点,B点坐标为(3,0),与y轴交于点C(0,3).(1)求抛物线的表达式;(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值;(3)点D为抛物线对称轴上一点.①当△BCD是以BC为直角边的直角三角形时,求点D的坐标;②若△BCD是锐角三角形,求点D的纵坐标的取值范围.11.(2018·四川南充中考)如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)与x轴交于A,B两点,顶点P(m,n).给出下列结论:①2a+c <0;②若(-32,y 1),(-12,y 2),(12,y 3)在抛物线上,则y 1>y 2>y 3;③关于x 的方程ax 2+bx +k =0有实数解,则k >c -n ; ④当n =-1a 时,△ABP 为等腰直角三角形.其中正确结论是________(填写序号).参考答案【基础训练】 1.D 2.D 3.B4.y =-19(x +6)2+4 5.y =x 2+8x +14【拔高训练】 6.A 7.D 8.B9.解:(1)由题意知Δ=b 2-4a[-(a +b)]=b 2+4ab +4a 2=(2a +b)2≥0, ∴该二次函数图象与x 轴的交点的个数有2个或1个. (2)当x =1时,y =a +b -(a +b)=0 ∴该二次函数图象不经过点C. 把点A(-1,4),B(0,-1)分别代入得⎩⎪⎨⎪⎧4=a -b -(a +b ),-1=-(a +b ),解得⎩⎪⎨⎪⎧a =3,b =-2.∴该二次函数的表达式为y =3x 2-2x -1. (3)证明:当x =2时,m =4a +2b -(a +b)=3a +b >0,① ∵a+b <0,∴-a -b >0.② ①+②得2a >0,∴a>0.10.解:(1)由题意得⎩⎪⎨⎪⎧32+3b +c =0,c =3,解得⎩⎪⎨⎪⎧b =-4,c =3,∴抛物线的表达式为y =x 2-4x +3.(2)方法1:如图1,过点P 作PG∥CF 交CB 于点G ,由题意知∠BCO=∠CFE=45°,F(0,m),C(0,3),∴△CFE 和△GPE 均为等腰直角三角形, ∴EF=22CF =22(3-m),PE =22PG. 设x P =t(1<t<3),则PE =22PG =22(-t +3-t -m) =22(-m -2t +3),t 2-4t +3=t +m , ∴PE+EF =22(-m -2t +3)+22(3-m)=22(-2t -2m +6)=-2(t +m -3)=-2(t 2-4t)=-2(t -2)2+42,∴当t =2时,PE +EF 的最大值为4 2.方法2:(几何法)如图2,由题易知直线BC 的表达式为y =-x +3,OC =OB =3, ∴∠OCB=45°. 同理可知∠OFE=45°, ∴△CEF 为等腰直角三角形,以BC 为对称轴将△FCE 对称得到△F′CE,作PH⊥CF′于点H ,则PE +EF =PF′=2PH. 又PH =y C -y P =3-y P ,∴当y P 最小时,PE +EF 取最大值, ∵抛物线的顶点坐标为(2,-1),∴当y P =-1时,(PE +EF)max =2×(3+1)=4 2. (3)①由(1)知对称轴x =2,设D(2,n),如图3.当△BCD 是以BC 为直角边的直角三角形时,D 在BC 上方D 1位置时,由勾股定理得CD 2+BC 2=BD 2,即(2-0)2+(n -3)2+(32)2=(3-2)2+(0-n)2,解得n =5;当△BCD 是以BC 为直角边的直角三角形时,D 在BC 下方D 2位置时,由勾股定理得BD 2+BC 2=CD 2,即(2-3)2+(n -0)2+(32)2=(2-0)2+(n -3)2,解得n =-1. ∴当△BCD 是以BC 为直角边的直角三角形时,D 为(2,5)或(2,-1).②如图4,以BC 的中点T(32,32),12BC 为半径作⊙T,与对称轴x =2交于D 3和D 4,由直径所对的圆周角是直角,得∠CD 3B =∠CD 4B =90°. 设D(2,m),由DT =12BC =322得(32-2)2+(32-m)2=(322)2, 解得m =32±172,∴D 3(2,32+172),D 4(2,32-172).又由①得D 1为(2,5),D 2(2,-1),∴若△BCD 是锐角三角形,D 点在线段D 1D 3或D 2D 4上时(不与端点重合),则点D 的纵坐标的取值范围是-1<y D <32-172或32+172<y D <5.【培优训练】 11.②④第六节 二次函数的综合应用姓名:________ 班级:________ 用时:______分钟1.(2018·湖北孝感中考)如图,抛物线y =ax 2与直线y =bx +c 的两个交点坐标分别为A(-2,4),B(1,1),则方程ax 2=bx +c 的解是________________________.2.(2018·浙江湖州中考)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx(a>0)的顶点为C,与x轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a>0)交于点B.若四边形ABOC是正方形,则b的值是________.3.(2019·易错题)某校在基地参加社会实践活动中,带队老师考问学生:基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长69 m的不锈钢栅栏围成,与墙平行的一边留一个宽为3 m的出入口,如图所示,如何设计才能使园地的面积最大?下面是两位学生争议的情境:请根据上面的信息,解决问题:(1)设AB=x m(x>0),试用含x的代数式表示BC的长;(2)请你判断谁的说法正确,为什么?4. (2018·湖北襄阳中考)襄阳市精准扶贫工作已进入攻坚阶段.贫困户张大爷在某单位的帮扶下,把一片坡地改造后种植了优质水果蓝莓,今年正式上市销售.在销售的30天中,第一天卖出20千克,为了扩大销量,采取了降价措施,以后每天比前一天多卖出4千克.第x 天的售价为y 元/千克,y 关于x 的函数表达式为y =⎩⎪⎨⎪⎧mx -76m (1≤x<20,x 为正整数),n (20≤x≤30,x 为正整数),且第12天的售价为32元/千克,第26天的售价为25元/千克.已知种植销售蓝莓的成本是18元/千克,每天的利润是W 元(利润=销售收入-成本). (1)m =________,n =________;(2)求销售蓝莓第几天时,当天的利润最大?最大利润是多少? (3)在销售蓝莓的30天中,当天利润不低于870元的共有多少天?5.(2018·山东泰安中考)一元二次方程(x +1)(x -3)=2x -5根的情况是( ) A .无实数根B .有一个正根,一个负根C .有两个正根,且都小于3D .有两个正根,且有一根大于36.如图,已知直线y =-34x +3分别交x 轴、y 轴于点A ,B ,P 是抛物线y =-12x 2+2x +5上的一个动点,其横坐标为a ,过点P 且平行于y 轴的直线交直线y =-34x +3于点Q ,则当PQ =BQ 时,a 的值是__________________________.7.如图,抛物线y =a(x -1)2+c 与x 轴交于点A(1-3,0)和点B ,将抛物线沿x 轴向上翻折,顶点P 落在点P′(1,3)处. (1)求原抛物线的函数表达式;(2)学校举行班徽设计比赛,九年级(5)班的小明在解答此题时顿生灵感:过点P′作x 轴的平行线交抛物线于C ,D 两点,将翻折后得到的新图象在直线CD 以上的部分去掉,设计成一个“W”型的班徽,“5”的拼音开头字母为W ,“W”图案似大鹏展翅,寓意深远;而且小明通过计算惊奇的发现这个“W”图案的高与宽(CD)的比非常接近黄金分割比5-12(约等于0.618).请你计算这个“W”图案的高与宽的比到底是多少(参考数据:5≈2.236,6≈2.449,结果可保留根号).8.(2017·湖南邵阳中考)如图所示,顶点为(12,-94)的抛物线y =ax 2+bx +c 过点M(2,0).(1)求抛物线的表达式;(2)点A 是抛物线与x 轴的交点(不与点M 重合),点B 是抛物线与y 轴的交点,点C 是直线y =x +1上一点(处于x 轴下方),点D 是反比例函数y =kx (k >0)图象上一点,若以点A ,B ,C ,D 为顶点的四边形是菱形,求k 的值.参考答案【基础训练】1.x 1=-2,x 2=1 2.-23.解:(1)AB =x m ,可得BC =69+3-2x =(72-2x)m. (2)小英说法正确,理由如下:矩形面积S =x(72-2x)=-2(x -18)2+648, ∵72-2x>0, ∴x<36,∴0<x<36.∴当x =18时,S 取最大值, 此时x≠72-2x ,∴面积最大的不是正方形.4.解:(1)第12天的售价为32元/千克,代入y =mx -76m ,得32=12m -76m , 解得m =-12.第26天的售价为25元/千克,代入y =n , 则n =25,故答案为m =-12,n =25.(2)由题意知,第x 天的销售量为20+4(x -1)=4x +16, 当1≤x<20时,W =(4x +16)(-12x +38-18)=-2x 2+72x +320=-2(x -18)2+968,∴当x =18时,W 最大=968元.当20≤x≤30时,W =(4x +16)(25-18)=28x +112. ∵28>0,∴W 随x 的增大而增大, ∴当x =30时,W 最大=952元. ∵968>952,∴当x =18时,W 最大=968元.(3)当1≤x<20时,令-2x 2+72x +320=870, 解得x 1=25,x 2=11.∵抛物线W =-2x 2+72x +320的开口向下, ∴11≤x≤25时,W≥870. 又∵11≤x<20,x 为正整数, ∴有9天利润不低于870元,当20≤x≤30时,令28x +112≥870, 解得x≥27114.∴27114≤x≤30.∵x 为正整数,∴有3天利润不低于870元.∴综上所述,当天利润不低于870元的天数共有12天. 【拔高训练】5.D 6.-1,4,4+25,4-2 57.解:(1)∵点P 与点P′(1,3)关于x 轴对称, ∴点P 的坐标为(1,-3).设原抛物线的表达式为y =a(x -1)2-3,∵其过点A(1-3,0), ∴0=a(1-3-1)2-3,解得a =1.∴原抛物线的函数表达式为y =(x -1)2-3,即y =x 2-2x -2. (2)∵CD∥x 轴,P′(1,3)在CD 上, ∴C,D 两点纵坐标均为3.由(x -1)2-3=3,解得x 1=1-6,x 2=1+6,∴C,D 两点的坐标分别为(1-6,3),(1+6,3),∴CD=2 6. ∴“W”图案的高与宽(CD)的比为326=64(或约等于0.612).【培优训练】8.解:(1)依题意可设抛物线的表达式为 y =a(x -12)2-94(a≠0),将点M(2,0)代入可得a(2-12)2-94=0,解得a =1.故抛物线的表达式为y =(x -12)2-94.(2)由(1)知,抛物线的表达式为y =(x -12)2-94,其对称轴为x =12,∴点A 与点M(2,0)关于直线x =12对称,∴A(-1,0).令x =0,则y =-2, ∴B (0,-2).在Rt△OAB 中,OA =1,OB =2,则AB = 5. 设直线y =x +1与y 轴交于点G , 易求G(0,1).∴△AOG 是等腰直角三角形, ∴∠AGO=45°.∵点C 是直线y =x +1上一点(处于x 轴下方),而k >0,∴反比例函数y =kx (k >0)的图象位于第一、三象限.故点D 只能在第一、三象限,因此符合条件的菱形只能有如下2种情况: ①此菱形以AB 为边且AC 也为边,如图1所示,过点D 作DN⊥y 轴于点N , 在Rt△BDN 中,∵∠DBN =∠AGO=45°, ∴DN=BN =52=102,∴D(-102,-102-2). ∵点D 在反比例函数y =kx (k >0)图象上,∴k=-102×(-102-2)=52+10. ②此菱形以AB 为对角线,如图2,作AB 的垂直平分线CD 交直线y =x +1于点C ,交反比例函数y =kx (k >0)的图象于点D.再分别过点D ,B 作DE⊥x 轴于点F ,BE⊥y 轴,DE 与BE 相交于点E. 在Rt△BDE 中,同①可证∠AGO=∠DB O =∠BDE=45°, ∴BE=DE.可设点D 的坐标为(x ,x -2). ∵BE 2+DE 2=BD 2, ∴BD=2BE =2x. ∵四边形ABCD 是菱形, ∴AD=BD =2x.∴在Rt△ADF 中,AD 2=AF 2+DF 2,即(2x)=(x +1)2+(x -2)2, 解得x =52,∴点D 的坐标是(52,12).∵点D 在反比例函数y =kx (k >0)的图象上,∴k=52×12=54,综上所述,k 的值是52+10或54.。
2019年中考数学总复习 第三章 函数 第三节 反比例函数
图象上的两点,过点A,B分别作AC⊥x轴于点C,BD⊥x轴于
点D,连接OA,BC,Ev已a知lu点aCt(i2,on0),onBlD=y.2,S△BCD=3,则 ith SA△sCAOpoC=opsy_5er_..iSglhitde2s00f4o-r20.1N1ETAs3p.o5seClPiteyntLtPdr.ofile
Pty
Ltd.
21
Evaluation only. ith Aspose.Slides for .NET 3.5 Client Profile
Copyright 2004-2011 Aspose Pty Ltd.
第三节 反比例函数
1
考点一 反比例函数Ev的a图lu象a与ti性o质n only. ith例A1s(2p0o1s8·e.天S津li)d若e点sA(fxo1,r -.6N)E,TB(3x.2,5 -C2l)i,eCn(tx3,P2r)ofile
在反C比op例y函ri数gyh=t 1x220的0图4-象2上01,1则Axs1,pxo2,sex3的Pt大y小L关t系d.是
()
A.x1<x2<x3
B.x2<x1<x3
C.x2比例函数图象在各象限内的增减性判断
或直接代入值即可E.valuation only. ith【A自s主po解s答e.】S对li于dye=s 1f2 o,r∵.1N2>ET0,3∴.5在每Cl个i象en限t内,Profile
B,得到直线l.则直线l对应的函数表达式是 .
15
【分析】 由点A在反比例函数的图象上求出点A坐标,再根
ith据A点sAp在os正e比.S例l函id数Eev图sa象lfu上oar,ti求.oN出nE正To比n3l例.y5函.数Cl表i达en式t,P进r而ofile 根据C点opBy坐r标ig求h出tl的20表0达4-式2.011 Aspose Pty Ltd.
2019-2020年中考数学总复习三 代数式精练精析2
2019-2020年中考数学总复习三代数式精练精析2一.选择题(共8小题)1.观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,…按此规律第5个图中共有点的个数是()A.31 B.46 C.51 D.662.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为()A.20 B.27 C.35 D.403.某粮食公司2013年生产大米总量为a万吨,比2012年大米生产总量增加了10%,那么2012年大米生产总量为()A.a(1+10%)万吨B.万吨C.a(1﹣10%)万吨D.万吨4.若m﹣n=﹣1,则(m﹣n)2﹣2m+2n的值为()A.﹣1 B.1 C.2 D.35.当x=﹣2时,代数式x2﹣2x+1的值是()A.1 B.﹣1 C.6 D.96.若(x﹣1)2=2,则代数式2x2﹣4x+5的值为()A.11 B.6 C.7 D.87.下列计算正确的是()A.2a2+a2=3a4B.+=C.﹣2(a﹣1)=2﹣2a D.5a+3b=8ab8.观察下列数表:1 2 3 4…第一行2 3 4 5…第二行3 4 5 6…第三行4 5 6 7…第四行根据数表所反映的规律,第n行第n列交叉点上的数应为()A.2n﹣1 B.2n+1 C.n2﹣1 D.n2二.填空题(共7小题)9.观察下列一组数:,,,,,…,它们是按一定规律排列的,那么这一组数的第n个数是_________ .10.化简:2x﹣x= _________ .11.观察下列各式:13=1213+23=3213+23+33=6213+23+33+43=102…猜想13+23+33+…+103= _________ .12.将自然数按以下规律排列:表中数2在第二行第一列,与有序数对(2,1)对应,数5与(1,3)对应,数14与(3,4)对应,根据这一规律,数2014对应的有序数对为_________ .13.已知一列数2,8,26,80.…,按此规律,则第n个数是_________ .(用含n的代数式表示)14.甲、乙、丙三位同学进行报数游戏,游戏规则为:甲报1,乙报2,丙报3,再甲报4,乙报5,丙报6,…依次循环反复下去,当报出的数为2014时游戏结束,若报出的数是偶数,则该同学得1分.当报数结束时甲同学的得分是_________ 分.15.观察下列一组数:、1、、、…,它们是按一定规律排列的那么这组数的第n个数是_________ .(n为正整数)三.解答题(共6小题)16.用同样大小的黑色棋子按如图所示的规律摆放:(1)第5个图形有多少黑色棋子?(2)第几个图形有2013颗黑色棋子?请说明理由.17.已知:x2﹣5x=6,请你求出代数式10x﹣2x2+5的值.18.观察下面的变形规律:=1﹣;=﹣;=﹣;…解答下面的问题:(1)若n为正整数,请你猜想= _________ ;(2)证明你猜想的结论;(3)求和:+++…+.19.任意给定一个非零数m,按下列程序计算.(1)请用含m的代数式表示该计算程序,并给予化简;(2)当输入的数m=﹣2009时,求输出结果.20.已知代数式3x2﹣4x+6值为9,则x2﹣+6的值.21.用同样大小的灰、白两种正方形地砖铺设地面,方法是:第一层只有2块白色地砖,第二层是在第一层外面围一圈灰色地砖,第三层是在第二层外面围一圈白色地砖,…,如图所示.(1)第7层共有几块地砖,是白色的还是灰色的?(2)第n层共有几块地砖?(结果必须化简)如果这些地砖是白色的,那么正整数n有什么特点?数与式——代数式2参考答案与试题解析一.选择题(共8小题)1.观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,…按此规律第5个图中共有点的个数是()A.31 B.46 C.51 D.66考点:规律型:图形的变化类.专题:规律型.分析:由图可知:其中第1个图中共有1+1×3=4个点,第2个图中共有1+1×3+2×3=10个点,第3个图中共有1+1×3+2×3+3×3=19个点,…由此规律得出第n 个图有1+1×3+2×3+3×3+…+3n个点.解答:解:第1个图中共有1+1×3=4个点,第2个图中共有1+1×3+2×3=10个点,第3个图中共有1+1×3+2×3+3×3=19个点,…第n个图有1+1×3+2×3+3×3+…+3n个点.所以第5个图中共有点的个数是1+1×3+2×3+3×3+4×3+5×3=46.故选:B.点评:此题考查图形的变化规律,找出图形之间的数字运算规律,利用规律解决问题.2.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为()A.20 B.27 C.35 D.40考点:规律型:图形的变化类.专题:规律型.分析:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+n=,进一步求得第(6)个图形中面积为1的正方形的个数即可.解答:解:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+(n+1)=个,则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个.故选:B.点评:此题考查图形的变化规律,找出图形与数字之间的运算规律,利用规律解决问题.3.某粮食公司2013年生产大米总量为a万吨,比2012年大米生产总量增加了10%,那么2012年大米生产总量为()A.a(1+10%)万吨B.万吨C.a(1﹣10%)万吨D.万吨考点:列代数式.分析:根据2013年生产大米比2012年大米生产总量增加了10%,可知2012年大米生产总量×(1+10%)=2013年大米生产总量,由此列式即可.解答:解:a÷(1+10%)=(万吨).故选:B.点评:此题考查列代数式,关键是找出题目蕴含的数量关系:2012年大米生产总量×(1+10%)=2013年大米生产总量.4.若m﹣n=﹣1,则(m﹣n)2﹣2m+2n的值为()A.﹣1 B.1 C.2 D.3考点:代数式求值.专题:整体思想.分析:把(m﹣n)看作一个整体并直接代入代数式进行计算即可得解.解答:解:∵m﹣n=﹣1,∴(m﹣n)2﹣2m+2n=(m﹣n)2﹣2(m﹣n),=(﹣1)2﹣2×(﹣1),=1+2,=3.故选D.点评:本题考查了代数式求值,整体思想的利用是解题的关键.5.当x=﹣2时,代数式x2﹣2x+1的值是()A. 1 B.﹣1 C6 D.9考点:代数式求值.专题:计算题.分析:将x=﹣2代入计算即可求出代数式的值.解答:解:当x=﹣2时,原式=4+4+1=9,故选D点评:此题考查了代数式求值,熟练掌握运算法则是解本题的关键.6.若(x﹣1)2=2,则代数式2x2﹣4x+5的值为()A.11 B.6 C.7 D.8考点:代数式求值.专题:计算题.分析:已知等式左边利用完全平方公式展开求出x2﹣2x的值,原式变形后将x2﹣2x的值代入计算即可求出值.解答:解:∵(x﹣1)2=x2﹣2x+1=2,即x2﹣2x=1,∴原式=2(x2﹣2x)+5=2+5=7.故选C点评:此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.7.下列计算正确的是()A.2a2+a2=3a4B.+=C.﹣2(a﹣1)=2﹣2a D. 5a+3b=8ab考点:合并同类项;实数的运算;去括号与添括号.分析:根据同类项的定义,合并同类项的法则以及去括号法则对各选项分析判断后利用排除法求解.解答:解:A、应为2a2+a2=3a2,故本选项错误;B、与不能合并,故本选项错误;C、﹣2(a﹣1)=﹣2a+2,本项正确;D、5a与3b不能合并,故本项错误,故选:C.点评:本题考查了合并同类项的法则以及去括号法则,熟练掌握运算法则是解题的关键.8.观察下列数表:1 2 3 4…第一行2 3 4 5…第二行3 4 5 6…第三行4 5 6 7…第四行根据数表所反映的规律,第n行第n列交叉点上的数应为()A.2n﹣1 B.2n+1 C.n2﹣1 D.n2考点:规律型:数字的变化类.分析:由数表中数据排列规律可知第n行第n列交叉点上的数正好是对角线上的数,它们分别是连续的奇数.解答:解:根据分析可知第n行第n列交叉点上的数应为2n﹣1.故选:A.点评:此题考查了数字的排列规律,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.二.填空题(共7小题)9.观察下列一组数:,,,,,…,它们是按一定规律排列的,那么这一组数的第n个数是.考点:规律型:数字的变化类.专题:规律型.分析:观察已知一组数发现:分子为从1开始的连续奇数,分母为从2开始的连续正整数的平方,写出第n个数即可.解答:解:根据题意得:这一组数的第n个数是.故答案为:.点评:此题考查了规律型:数字的变化类,弄清题中的规律是解本题的关键.10.化简:2x﹣x= x .考点:合并同类项.专题:计算题.分析:利用合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,直接得出答案.解答:解:2x﹣x=x.故答案为:x.点评:此题主要考查了合并同类项,正确掌握合并同类项法则是解题关键.11.观察下列各式:13=1213+23=3213+23+33=6213+23+33+43=102…猜想13+23+33+…+103= 552.考点:规律型:数字的变化类.专题:规律型.分析:13=1213+23=(1+2)2=3213+23+33=(1+2+3)2=6213+23+33+43=(1+2+3+4)2=10213+23+33+…+103=(1+2+3…+10)2=552.解答:解:根据数据可分析出规律为从1开始,连续n个数的立方和=(1+2+…+n)2所以13+23+33+…+103=(1+2+3…+10)2=552.点评:本题的规律为:从1开始,连续n个数的立方和=(1+2+…+n)2.12.将自然数按以下规律排列:表中数2在第二行第一列,与有序数对(2,1)对应,数5与(1,3)对应,数14与(3,4)对应,根据这一规律,数2014对应的有序数对为(45,12).考点:规律型:数字的变化类.专题:压轴题;规律型.分析:根据已知数据可得出第一列的奇数行的数的规律是第几行就是那个数平方,同理可得出第一行的偶数列的数的规律,从而得出2014所在的位置.解答:解:由已知可得:根据第一列的奇数行的数的规律是第几行就是那个数平方,第一行的偶数列的数的规律,与奇数行规律相同;∵45×45=2025,2014在第45行,向右依次减小,∴2014所在的位置是第45行,第12列,其坐标为(45,12).故答案为:(45,12).点评:此题主要考查了数字的规律知识,得出第一列的奇数行的数的规律与第一行的偶数列的数的规律是解决问题的关键.13.已知一列数2,8,26,80.…,按此规律,则第n个数是3n﹣1 .(用含n的代数式表示)考点:规律型:数字的变化类.专题:规律型.分析:根据观察等式,可发现规律,根据规律,可得答案.解答:解;已知一列数2,8,26,80.…,按此规律,则第n个数是 3n﹣1,故答案为:3n﹣1.点评:本题考查了数字的变化类,规律是第几个数就是3的几次方减1.14.甲、乙、丙三位同学进行报数游戏,游戏规则为:甲报1,乙报2,丙报3,再甲报4,乙报5,丙报6,…依次循环反复下去,当报出的数为2014时游戏结束,若报出的数是偶数,则该同学得1分.当报数结束时甲同学的得分是336 分.考点:规律型:数字的变化类.专题:规律型.分析:根据题意可得甲报出的数中第一个数为1,第2个数为1+3=4,第3个数为1+3×2=7,第4个数为1+3×3=10,…,第n个数为1+3(n﹣1),由于1+3(n﹣1)=2014,解得n=672,则甲报出了672个数,再观察甲报出的数总是一奇一偶,所以偶数有672÷2=336个,由此得出答案即可.解答:解:甲报的数中第一个数为1,第2个数为1+3=4,第3个数为1+3×2=7,第4个数为1+3×3=10,…,第n个数为1+3(n﹣1)=3n﹣2,3n﹣2=2014,则n=672,甲报出了672个数,一奇一偶,所以偶数有672÷2=336个,得336分.故答案为:336.点评:本题考查数字的变化规律:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.15.观察下列一组数:、1、、、…,它们是按一定规律排列的那么这组数的第n个数是.(n为正整数)考点:规律型:数字的变化类.专题:规律型.分析:根据题中所给出的数据找出规律,根据此规律即可得出结论.解答:解:∵第一个数=;第一个数1=;第三个数=;第四个数=;第五个数=;…,∴第n个数为:.故答案为:.点评:本题考查的是数字的变化类,根据题意找出规律是解答此题的关键.三.解答题(共6小题)16.用同样大小的黑色棋子按如图所示的规律摆放:(1)第5个图形有多少黑色棋子?(2)第几个图形有2013颗黑色棋子?请说明理由.考点:规律型:图形的变化类.分析:(1)根据图中所给的黑色棋子的颗数,找出其中的规律,即可得出答案;(2)根据(1)所找出的规律,列出式子,即可求出答案.解答:解:(1)第一个图需棋子6,第二个图需棋子9,第三个图需棋子12,第四个图需棋子15,第五个图需棋子18,…第n个图需棋子3(n+1)枚.答:第5个图形有18颗黑色棋子.(2)设第n个图形有2013颗黑色棋子,根据(1)得3(n+1)=2013解得n=670,所以第670个图形有2013颗黑色棋子.点评:此题考查了图形的变化类,是一道关于数字猜想的问题,关键是通过归纳与总结,得到其中的规律.17.已知:x2﹣5x=6,请你求出代数式10x﹣2x2+5的值.考点:代数式求值.专题:整体思想.分析:先把10x﹣2x2+5变形为﹣2(x2﹣5x)+5,然后把x2﹣5x=6整体代入进行计算即可.解答:解:10x﹣2x2+5=﹣2(x2﹣5x)+5,∵x2﹣5x=6,∴原式=﹣2×6+5=﹣12+5=﹣7.点评:本题考查了代数式求值:先根据已知条件把代数式进行变形,然后利用整体代入进行求值.18.观察下面的变形规律:=1﹣;=﹣;=﹣;…解答下面的问题:(1)若n为正整数,请你猜想= ;(2)证明你猜想的结论;(3)求和:+++…+.考点:规律型:数字的变化类.专题:规律型;探究型.分析:(1)根据所给的等式,进行推而广之即可;(2)根据分式的加减运算法则进行证明;(3)根据(2)中证明的结论,进行计算.解答:(1)解:;(2)证明:右边=﹣=﹣===左边,所以猜想成立.(3)原式=1﹣+﹣+﹣+…+﹣=1﹣=.点评:此题考查了异分母的分式相减的运算法则.19.任意给定一个非零数m,按下列程序计算.(1)请用含m的代数式表示该计算程序,并给予化简;(2)当输入的数m=﹣2009时,求输出结果.考点:列代数式;代数式求值.分析:(1)÷m以前的式子应带小括号;(2)把m=﹣2009代入(1)中化简后的式子即可.解答:解:(1)依题意得(m2﹣m)÷m﹣2m=m﹣1﹣2m=﹣m﹣1;(2)当输入的数m=﹣2009时,输出结果为﹣m﹣1=﹣(﹣2009)﹣1=2008.点评:本题需注意÷m以前的式子应看成一个整体,带小括号.20.已知代数式3x2﹣4x+6值为9,则x2﹣+6的值.考点:代数式求值.专题:整体思想.分析:先根据题意列出等式3x2﹣4x+6=9,求得3x2﹣4x的值,然后求得x2﹣+6的值.解答:解:∵代数式3x2﹣4x+6值为9,∴3x2﹣4x+6=9,∴3x2﹣4x=3,∴x2﹣=1,∴x2﹣+6=1+6=7.点评:本题考查了求代数式的值,找出未知与已知的关系,然后运用整体代入的思想.21.用同样大小的灰、白两种正方形地砖铺设地面,方法是:第一层只有2块白色地砖,第二层是在第一层外面围一圈灰色地砖,第三层是在第二层外面围一圈白色地砖,…,如图所示.(1)第7层共有几块地砖,是白色的还是灰色的?(2)第n层共有几块地砖?(结果必须化简)如果这些地砖是白色的,那么正整数n有什么特点?考点:规律型:图形的变化类.专题:规律型.分析:(1)由图形可知单数层是白色瓷块,双数层是灰色地砖;第一层中白色瓷块有1×2块,第二层中灰色地砖有3×4﹣1×2块,第三层中白色瓷块有5×6﹣3×4块,…,可知第7层的地砖的块数;(2)由(1)可知第n层的地砖有2n(2n﹣1)﹣(2n﹣2)(2n﹣3)=8n﹣6,从这些地砖是白色的,可知正整数n是奇数.解答:解:(1)第7层是奇数层,地砖是白色的,地砖的块数是2×7×(2×7﹣1)﹣(2×7﹣2)(2×7﹣3)=182﹣132=50块;(2)第n层的地砖有2n(2n﹣1)﹣(2n﹣2)(2n﹣3)=8n﹣6,∵这些地砖是白色的,∴正整数n是奇数.点评:考查了规律型:图形的变化,解决这类问题首先要从简单图形入手,抓住随着“层数”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.2019-2020年中考数学总复习三十投影与视图精练精析2 一.选择题(共9小题)1.如图,在一水平面上摆放两个几何体,它的主视图是()A.B. C.D.2.如图是由三个小正方体叠成的一个几何体,它的左视图是()A.B.C.D.3.如图,从左面观察这个立体图形,能得到的平面图形是()A. B.C.D.4.如图,由4个相同的小立方块组成一个立体图形,它的主视图是()A. B.C.D.5.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列关于这个几何体的说法正确的是()A.主视图的面积为5 B.左视图的面积为3 C.俯视图的面积为3 D.三种视图的面积都是46.某运动器材的形状如图所示,以箭头所指的方向为左视方向,则它的主视图可以是()A.B.C.D.7.如图的几何体的俯视图是()A.B.C.D.8.如图是由几个小立方体快所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,这个几何体的主视图是()A.B.C.D.9.某几何体的主视图、左视图和俯视图分别如图所示,则该几何体的体积为()A.3πB.2πC.πD.12二.填空题(共7小题)10.由一些完全相同的小正方体组成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数可能是_________ .11.如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是_________ .12.由一些完全相同的小正方体搭成的几何体的主视图和左视图如图所示,则组成这个几何体的小正方体的个数可能是_________ .13.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的底面边长是_________ .14.一张桌子摆放若干碟子,从三个方向上看,三种视图如下图所示,则这张桌子上共有_________ 个碟子.15.若干桶方便面摆放在桌子上.实物图片左边所给的是它的三视图.则这一堆方便面共有_________ 桶.16.如图的三视图表示的物体的形状是_________ .三.解答题(共7小题)17.某物体的三视图如图:(1)此物体是什么体;(2)求此物体的全面积.18.如图假设一座大楼高30米,观众坐在距大楼500米处,魔术师只需做一个屏障,屏障上的图画和没有大楼以后的景物一样,将屏障立在大楼前100米处,这样观众看上去好像大楼突然消失了.若要完全挡住大楼,请你找到一个方法计算出屏障至少要多高?(人身高忽略不计)19.如图是某几何体的展开图.(1)这个几何体的名称是_________ ;(2)画出这个几何体的三视图;(3)求这个几何体的体积.(π取3.14)20.如图,晚上,小亮在广场上乘凉.图中线段AB表示站在广场上的小亮,线段PO表示直立在广场上的灯杆,点P表示照明灯.(1)请你在图中画出小亮在照明灯(P)照射下的影子;(2)如果灯杆高PO=12m,小亮的身高AB=1.6m,小亮与灯杆的距离BO=13m,请求出小亮影子的长度.21.如图,是住宅区内的两幢楼,它们的高AB=CD=30m,两楼间的距离AC=30m,现需了解甲楼对乙楼的采光的影响情况.(1)当太阳光与水平线的夹角为30°角时,求甲楼的影子在乙楼上有多高(精确到0.1m,=1.73);(2)若要甲楼的影子刚好不落在乙楼的墙上,此时太阳与水平线的夹角为多少度?22.如图是由几个棱长为1cm的小立方块搭成的几何体从上往下看的平面图形,小立方块中的数字表示该位置上小立方块的个数,求出这个几何体的体积.23.如图,左边的楼高AB=60m,右边的楼高CD=24m,且BC=30m,地面上的目标P位于距C 点15m处.(1)请画出从A处看地面上距点C最近的点,这个点与点C之间的距离是多少?(2)从A处能看见目标P吗,为什么?图形的变化——投影与视图2参考答案与试题解析一.选择题(共9小题)1.如图,在一水平面上摆放两个几何体,它的主视图是()A.B.C.D.考点:简单组合体的三视图.专题:几何图形问题.分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:从正面看易得左边是一个竖着的长方形,右边是一个横着的长方形,故选:B.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.2.如图是由三个小正方体叠成的一个几何体,它的左视图是()A.B.C.D.考点:简单组合体的三视图.专题:常规题型.分析:根据从左边看得到的图形是左视图,可得答案.解答:解:从左边看第一层一个正方形,第二层一个正方形,故选:C.点评:本题考查了简单组合体的三视图,从左边看得到的图形是左视图.3.如图,从左面观察这个立体图形,能得到的平面图形是()A.B.C.D.考点:简单组合体的三视图.分析:根据从左面看得到的图形是左视图,可得答案.解答:解;从左面看下面一个正方形,上面一个正方形,故选:A.点评:本题考查了简单组合体的三视图,从左面看得到的图形是左视图.4.如图,由4个相同的小立方块组成一个立体图形,它的主视图是()A.B.C.D.考点:简单组合体的三视图.专题:几何图形问题.分析:根据从左边看得到的图形是左视图,可得答案.解答:解:从正面看,下面是三个正方形,上面是一个正方形,故选:C.点评:本题考查了简单组合体的三视图,注意能看到的棱用实线画出.5.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列关于这个几何体的说法正确的是()A.主视图的面积为5 B.左视图的面积为3 C.俯视图的面积为3 D.三种视图的面积都是4考点:简单组合体的三视图.专题:几何图形问题.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,看分别得到几个面,比较即可.解答:解:A、从正面看,可以看到4个正方形,面积为4,故A选项错误;B、从左面看,可以看到3个正方形,面积为3,故B选项正确;C、从上面看,可以看到4个正方形,面积为4,故C选项错误;D、三种视图的面积不相同,故D选项错误.故选:B.点评:本题主要考查了几何体的三种视图面积的求法及比较,关键是掌握三视图的画法.6.某运动器材的形状如图所示,以箭头所指的方向为左视方向,则它的主视图可以是()A.B.C.D.考点:简单组合体的三视图.分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:从几何体的正面看可得,故选:B.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.7.如图的几何体的俯视图是()A.B.C.D.考点:简单组合体的三视图.专题:常规题型.分析:找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:从上面看得到右下角少了一部分的正方形,并且右边的边少的与剩下的差不多.故选:D.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.8.如图是由几个小立方体快所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,这个几何体的主视图是()A.B.C.D.考点:由三视图判断几何体;简单组合体的三视图.分析:根据俯视图可确定主视图的列数和小正方体的个数,即可解答.解答:解:由俯视图可得主视图有2列组成,左边一列由4个小正方体组成,右边一列由2个小正方体组成.故选:B.点评:本题考查了由三视图判断几何体的知识,由几何体的俯视图可确定该几何体的主视图和左视图,要熟练掌握.9.某几何体的主视图、左视图和俯视图分别如图所示,则该几何体的体积为()A.3πB.2πC.πD.12考点:由三视图判断几何体.分析:根据三视图可以判断该几何体为倒放的圆柱,圆柱的底面半径为1,高为3,据此求得其体积即可.解答:解:根据三视图可以判断该几何体为圆柱,圆柱的底面半径为1,高为3,故体积为:πr2h=π×1×3=3π,故选:A.点评:本题考查了由三视图判断几何体的知识,解题的关键是了解圆柱的三视图并清楚其体积的计算方法.二.填空题(共7小题)10.由一些完全相同的小正方体组成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数可能是4或5 .考点:由三视图判断几何体.分析:易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.解答:解:由题中所给出的主视图知物体共三列,且左侧一列高两层,右侧一列最高一层;由左视图可知左侧两行,右侧一行,于是,可确定左侧只有一个小正方体,而右侧可能是一行单层一行两层,出可能两行都是两层.所以图中的小正方体最少4块,最多5块.故答案为:4或5.点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.11.如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是72 .考点:由三视图判断几何体.分析:根据主视图与左视图得出长方体的边长,再利用图形的体积得出它的高,进而得出表面积.解答:解:∵由主视图得出长方体的长是6,宽是2,这个几何体的体积是36,∴设高为h,则6×2×h=36,解得:h=3,∴它的表面积是:2×3×2+2×6×2+3×6×2=72.故答案为:72.点评:此题主要考查了利用三视图判断几何体的边长,得出图形的高是解题关键.12.由一些完全相同的小正方体搭成的几何体的主视图和左视图如图所示,则组成这个几何体的小正方体的个数可能是4或5或6或7 .考点:由三视图判断几何体.分析:易得这个几何体共有2层,由左视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.解答:解:由题中所给出的主视图知物体共三列,且左侧一列高两层,右侧一列最高一层;由左视图可知左侧两行,右侧一行,于是,可确定左侧只有一个小正方体,而右侧可能是一行单层一行两层,出可能两行都是两层.所以图中的小正方体最少4块,最多7块.故答案为:4或5或6或7.点评:本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.13.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的底面边长是 2 .考点:简单几何体的三视图;勾股定理.分析:由俯视图和主视图知道棱柱顶的正方形对角线长是2,根据勾股定理列出方程求解.解答:解:设底面边长为x,则x2+x2=(2)2,解得x=2,即底面边长为2.故答案为:2.点评:此题主要考查了三视图的基本知识以及长方体有关计算公式.用到的知识点为:主视图反映几何体的长与高,注意物体摆放位置的不同得到主视图的形状也不同.14.一张桌子摆放若干碟子,从三个方向上看,三种视图如下图所示,则这张桌子上共有12 个碟子.。
2019年中考数学总复习第三单元函数及其图象课时训练16二次函数的实际应用练习
课时训练16 二次函数的实际应用限时:30分钟夯实基础1.一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下列函数关系式:h=-5(t-1)2+6,则小球距离地面的最大高度是()A.1米B.5米C.6米D.7米2.把一个小球以20米/秒的速度竖直向上弹出,它在空中的高度h(米)与时间t(秒)满足关系式h=20t-5t2,当小球达到最高点时,小球的运动时间为()A.1秒B.2秒C.4秒D.20秒3.用60 m长的篱笆围成矩形场地,矩形的面积S随着矩形的一边长l的变化而变化,要使矩形的面积最大,l 的值应为()A.6 mB.15 mC.20 mD.10 m4.某种正方形合金板材的成本y(元)与它的面积成正比,设边长为x cm.当x=3时,y=18,那么当成本为72元时,边长为()A.6 cmB.12 cmC.24 cmD.36 cm5.用长6 m的铝合金条制成“日”字形矩形窗户,使窗户的透光面积最大(如图K16-1),那么这个窗户的最大透光面积是()图K16-1A. m2B.1 m2C. m2D.3 m26.[2017·天门]飞机着陆后滑行的距离s(单位:米)关于滑行的时间t(单位:秒)的函数解析式是s=60t-t2,则飞机着陆后滑行的最长时间为秒.7.[2017·沈阳]某商场购进一批单价为20元的日用商品,如果以单价30元销售,那么半月内可销售出400件,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件,当销售单价是元时,才能在半月内获得最大利润.8.如图K16-2,在△ABC中,∠B=90°,AB=6 cm,BC=12 cm,点P从点A开始,沿AB边向点B以1 cm/s的速度移动,点Q从点B开始,沿BC边向点C以2 cm/s的速度移动,设P,Q同时出发,问:(1)经过几秒后P,Q之间的距离最短?(2)经过几秒后△PBQ的面积最大?最大面积是多少?图K16-2能力提升9.用一条长为40 cm的绳子围成一个面积为a cm2的长方形,a的值不可能为()A.20B.40C.100D.12010.[2018·北京]跳台滑雪是冬季奥运会比赛项目之一.运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a≠0).图K16-3记录了某运动员起跳后的x和y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为()图K16-3A.10 mB.15 mC.20 mD.22.5 m11.如图K16-4是一个横断面为抛物线形状的拱桥,当水面宽4 m时,拱顶(拱桥洞的最高点)离水面2 m,当水面下降1 m时,水面的宽度为()图K16-4A.3 mB.2 mC.3 mD.2 m12.[2017·金华]在一空旷场地上设计一落地为矩形ABCD的小屋,AB+BC=10 m,拴住小狗的10 m长的绳子一端固定在B点处,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为S(m2).(1)如图K16-5①,若BC=4 m,则S=m2.(2)如图②,现考虑在(1)中矩形ABCD小屋的右侧以CD为边拓展一正三角形CDE区域,使之变成落地为五边形ABCED 的小屋,其他条件不变,则在BC的变化过程中,当S取得最小值时,边BC的长为m.图K16-513.[2018·黔三州]某种蔬菜的销售单价y1与销售月份x之间的关系如图K16-6①所示,成本y2与销售月份x之间的关系如图②所示(图①的图象是线段,图②的图象是抛物线).(1)已知6月份这种蔬菜的成本最低,此时出售每千克的收益是多少?(收益=售价-成本)(2)哪个月出售这种蔬菜,每千克的收益最大?简单说明理由.(3)已知市场部销售该种蔬菜4,5两个月的总收益为22万元,且5月份的销售量比4月份的销售量多2万千克,求4,5两个月的销售量分别是多少万千克?图K16-6拓展练习14.设计师以y=2x2-4x+8的图形为灵感设计杯子,如图K16-7所示,若AB=4,DE=3,则杯子的高CE=()图K16-7A.17B.11C.8D.715.[2018·福建A卷]如图K16-8,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;(2)求矩形菜园ABCD面积的最大值.图K16-8参考答案1.C2.B3.B4.A5.C6.20[解析] 滑行的最长时间实际上求s取最大值时t的值,当t=20时,s的最大值为600.7.35[解析] 设销售单价为x元,销售利润为y元.根据题意,得y=(x-20)[400-20(x-30)]=(x-20)(1000-20x)=-20x2+1400x-20000=-20(x-35)2+4500,∵-20<0,∴当x=35时,y有最大值,故答案为35.8.解:(1)设经过t秒后P,Q之间的距离最短,则AP=t,BQ=2t,∴BP=6-t,∵∠B=90°,∴PQ=,∴经过 s后,P,Q之间的距离最短.(2)设△PBQ的面积为S,则S=BP·BQ=(6-t)·2t=6t-t2=-(t-3)2+9,∴当t=3时,S取得最大值,最大值为9.即经过3 s后,△PBQ的面积最大,最大面积为9 cm2.9.D10.B[解析] 由题意得解得从而对称轴为直线x==15.故选B.11.B12.(1)88π(2)[解析] (1)如图①,拴住小狗的10 m长的绳子一端固定在B点处,小狗可以活动的区域如图所示.由图可知,小狗活动的区域面积为以B为圆心、10为半径长的圆,以C为圆心、6为半径长的圆和以A为圆心、4为半径长的圆的面积和,∴S=·π·102+·π·62+·π·42=88π.(2)如图②,设BC=x,则AB=10-x,∴S=·π·102+·π·x2+·π·(10-x)2=(x2-5x+250),∴当x=时,S取得最小值,∴BC=.故答案为.13.解:(1)当x=6时,y1=3,y2=1,∵y1-y2=3-1=2,∴6月份出售这种蔬菜每千克的收益是2元.(2)设y1=mx+n,y2=a(x-6)2+1.将(3,5),(6,3)代入y1=mx+n,得解得:∴y1=x+7.将(3,4)代入y2=a(x-6)2+1,得4=a(3-6)2+1,解得:a=,∴y2=(x-6)2+1=x2-4x+13.∴y1-y2=x+7-x2-4x+13=x2+x-6=(x-5)2+.∵<0,∴当x=5时,y1-y2取最大值,最大值为,即5月份出售这种蔬菜,每千克的收益最大.(3)当x=4时,y1-y2=x2+x-6=2.设4月份的销售量为t万千克,则5月份的销售量为(t+2)万千克,根据题意得:2t+(t+2)=22,解得:t=4,∴t+2=6.答:4月份的销售量为4万千克,5月份的销售量为6万千克.14.B15.解:(1)设AD=m米,则AB=米,依题意,得·m=450,解得m1=10,m2=90.因为a=20且m≤a,所以m2=90不合题意,应舍去.故所利用旧墙AD的长为10米.(2)设AD=x米,矩形ABCD的面积为S平方米,则0<x≤a,S=·x=(x2-100x)=(x-50)2+1250,①若a≥50,则当x=50时,S最大=1250;②若0<a<50,则当0<x≤a时,S随x的增大而增大,故当x=a时,S最大=50aa2.综上,当a≥50时,矩形菜园ABCD的面积的最大值是1250平方米;当0<a<50时,矩形菜园ABCD的面积的最大值是平方米.。
苏科版2019-2020九年级数学第一学期期中综合复习基础训练3(附答案)
苏科版2019-2020九年级数学第一学期期中综合复习基础训练3(附答案)1.下列说法:①如果a 2>b 2,那么a>b ;4;③过一点有且只有一条直线与已知直线平行;④关于x 的方程2210mx x ++=没有实数根,那么m 的取值范围是m>1且m≠0;正确的有( )A .0个B .1个C .2个D .3个2.如图,如果从半径为9cm 的圆形纸片剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面半径为( )A .6cmB .3cmC .5cm D .3cm 3.如图,AB 是O 的直径,120BOD =∠,点C 为BD 的中点,AC 交OD 于点E ,1DE =,则AE 的长为( )A B C .D .4.若关于x 的一元二次方程mx 2﹣2x +1=0有两个实数根,则实数m 的取值范围是( )A .m ≤1B .m ≤﹣1C .m ≤1且m ≠0D .m ≥1且m ≠0 5.下列说法正确的是( )A .一个游戏中奖的概率是1100,则做100次这样的游戏一定会中奖 B .为了了解全国中学生的心理健康状况,应采用普查的方式C .一组数据0,1,2,1,1的众数和中位数都是1D .若甲组数据的方差为2s 甲,乙组数据的方差为2s 乙,则乙组数据比甲组数据稳定6.某型号的手机连续两次降阶,每台手机售价由原来的1185元降到580元,设平均每次降价的百分率为,则列出方程正确的是( )A .580(1+x)2=1185B .1185(1-x)2=580C.580(1-x)2=1185 D.1185(1+x)2=5807.如图,将半径为2的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长度为()A B.2 C.D.(1+8.一组数据2,3,5,4,5的众数是()A.2 B.3 C.4 D.59.如图,已知⊙O的半径为5,点A到圆心O的距离为3,则过点A的所有弦中,最短弦的长为( )A.4 B.6 C.8 D.1010.通过测试从9位书法兴趣小组的同学中,择优挑选5位去参加中学生书法表演,若测试结果每位同学的成绩各不相同.则被选中同学的成绩,肯定不少于这9位同学测试成绩统计量中的()A.平均数B.众数C.中位数D.方差11.在如图所示的电路图中,在开关全部断开的情况下,闭合其中任意一个开关,灯泡发亮的概率是______.12.如图,AC⊥BC,AC=BC=4,以BC为直径作半圆,圆心为O.以点C为圆心,BC为半径作弧AB,过点O作AC的平行线交两弧于点D、E,则阴影部分的面积是_____.13.一组数据2,4,5,,1的平均数为,那么这组数据的方差是___.14.关于x 的方程x 2+2(m ﹣1)x ﹣4m =0的两个实数根分别是x 1,x 2,且x 1﹣x 2=2,则m 的值是_____.15.已知圆锥的母线长为5cm ,侧面积为15π2cm ,则这个圆锥的底面圆半径为_____cm.16.已知a ,b 是方程x 2+2017x +2=0的两个根,则(2+2019a +a 2)(2+2019b +b 2)的值为______.17.如图,四边形ABCD 为⊙O 的内接四边形,点E 在DA 的延长线上,已知∠BCD=110°,则∠BAE =_______°.18.已知O 的半径为4cm ,点P 在直线l 上,且点P 到圆心O 的距离为4cm ,则直线l 与O ______.19.如图,△ABC 中,AB =8,BC =10,AC =7,∠ABC 和∠ACB 的平分线交于点 I ,IE ⊥BC 于E ,则 BE 的长为________.20.一元二次方程290x x +=的解是______.21.如图,已知Rt △ABC 中,∠ACB=90°,以AC 为直径的圆O 交斜边AB 于D .过D 作DE ⊥AC 于E ,将△ADE 沿直线AB 翻折得到△ADF .(1)求证:DF 是⊙O 的切线;(2)若⊙O 的半径为10,sin ∠FAD=35,延长FD 交BC 于G ,求BG 的长.22.已知:关于x 的方程()222120x m x m -+++=. ()1若方程总有两个实数根,求m 的取值范围;()2在(1)的条件下,若两实数根1x 、2x 满足1212x x x x +=,求m 的值.23.每年夏季全国各地总有未成年人因溺水而丧失生命,令人痛心疾首.今年某校为确保学生安全,开展了“远离溺水·珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x表示,共分成四组:A.80≤x≤85,B.85≤x≤90,C.90≤x≤95,D.95≤x≤100),下面给出了部分信息:七年级10名学生的竞赛成绩是:90,80,90,86,99,96,96,100,89,82八年级10名学生的竞赛成绩在C组中的数据是:94,90,94根据以上信息,解答下列问题:(1)直接写出上述图表中a,b,c的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);(3)该校七、八年级共730人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(x≧90)的学生人数是多少?24.已知ABC,()1用无刻度的直尺和圆规作ABD,使A D B A C B.∠∠=且ABD的面积为ABC 面积的一半,只需要画出一个ABD即可(作图不必写作法,但要保留作图痕迹) ()2在ABC中,若ACB45∠=,AB4=,则ABC面积的最大值是______25.足球训练场上,教练在球门前画了一个圆圈进行无人防守的射门训练.如图,甲、乙两名运动员分别在C,D两处,他们争论不休,都说自己所在的位置对球门AB的张角大,如果你是教练,请评一评他们两个人谁的位置对球门AB的张角大?为什么?26.如图①,四边形ABCD 与四边形CEFG 都是矩形,点E ,G 分别在边CD ,CB 上,点F 在AC 上,AB =3,BC =4(1)求AF BG的值; (2)把矩形CEFG 绕点C 顺时针旋转到图②的位置,P 为AF ,BG 的交点,连接CP (Ⅰ)求AF BG 的值; (Ⅱ)判断CP 与AF 的位置关系,并说明理由.27.解下列方程(1)x 2+12x +27=0(2)3x 2-2=5x28.如图1,四边形ADBC 内接于O ,AB 为O 的直径,对角线AB 、CD 相交于点E .图1 图2图3(1)求证:90BCD ABD ∠+∠=︒;(2)如图2,点G 在AC 的延长线上,连接BG ,交O 于点Q ,CA CB =,ABD ABG ∠=∠,作GH CD ⊥,交DC 的延长线于点H ,求证:GQ = (3)如图3,在(2)的条件下,过点B 作//BF AD ,交CD 于点F ,3GH CH =,若CF =O 的半径.参考答案1.A【解析】【分析】①当a是负数且绝对值大于b(正数)时,不成立;②4,再求其算术平方根即可;③当点在直线上时,没有与已知直线平等的直线;④根据一元二次方程根的判别式进行判断.【详解】①当a=-5时,b=2时,a2>b2,a<b,故①错误;=4,故其算术平方根为2,故②错误;③当点在直线上时,没有与已知直线平行的直线,正确说法是:过直线外一点有且只有一条直线与已知直线平行,故③错误;④关于x的方程mx2+2x+1=0没有实数根,那么m的取值范围是m>1,故此选项错误.所以正确的有0个.故选:A.【点睛】考查了算术平方根的定义、一元二次方程根的判别式等知识,正确把握相关性质是解题关键.2.A【解析】【分析】设圆锥的底面圆半径为r,先利用圆的周长公式计算出剩下的扇形的弧长,然后把它作为圆锥的底面圆的周长进行计算即可.【详解】设圆锥的底面圆半径为r,∵半径为9cm的圆形纸片剪去一个圆周的扇形,∴剩下的扇形的弧长=×2π×9=12π,∴2πr=12π,∴r=6.【点睛】本题考查了圆锥的有关计算:圆锥的侧面展开图为扇形,圆锥的底面圆的周长等于扇形的弧长.也考查了圆的周长公式.3.A【解析】【分析】连接OC ,证明OD ⊥AC 即可解决问题.【详解】解:连接OC ,∵弧CD=弧BC ,∴60DOC BOC ∠=∠=︒,60AOD ∠=︒,∴AOD DOC ∠=∠,∴弧AD=弧CD ,∴OD AC ⊥,90AEO ∠=︒,设AO r =,则1OE r =-,∵·cos60OE AO =︒, ∴112r r -=,2r =,∴AE =故选:A.【点睛】本题考查圆周角定理,垂径定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考常考题型.4.C【解析】利用一元二次方程的定义和判别式的意义得到m≠0且△=(﹣2)2﹣4m≥0,然后求出两不等式的公共部分即可.【详解】根据题意得m≠0且△=(﹣2)2﹣4m≥0,解得m≤1且m≠0.故选:C.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.5.C【解析】【分析】根据调查方式,可判断A,根据概率的意义一,可判断B根据中位数、众数,可判断c,根据方差的性质,可判断D.【详解】A、一个游戏中奖的概率是1100,做100次这样的游戏有可能中奖,而不是一定中奖,故A错误;B、为了了解全国中学生的心理健康状况,应采用抽查方式,故B错误;C、一组数据0,1,2,1,1的众数和中位数都是1,故C正确;D. 若甲组数据的方差为2s甲,乙组数据的方差为2s乙,无法比较甲乙两组的方差,故无法确定那组数据更加稳定,故D错误.故选:C.【点睛】本题考查了概率、抽样调查及普查、中位数及众数、方差等,熟练的掌握各知识点的概念及计算方法是关键.6.B【解析】根据降价后的价格=原价(1-降低的百分率),本题可先用x表示第一次降价后商品的售价,再根据题意表示第二次降价后的售价,即可列出方程.【详解】设平均每次降价的百分率为x,由题意得出方程为:1185(1−x)2=580.故选:B.【点睛】本题考查的是由实际问题列出一元二次方程,正确列出方程是解题的关键.7.C【解析】【分析】过O作OC⊥AB,交圆O于点D,连接OA,由垂径定理得到C为AB的中点,再由折叠得到CD=OC,求出OC的长,在直角三角形AOC中,利用勾股定理求出AC的长,即可确定出AB的长.【详解】过O作OC⊥AB,交圆O于点D,连接OA,由折叠得到CD=OC=12OD=1cm,在Rt△AOC中,根据勾股定理得:AC2+OC2=OA2,即AC2+1=4,解得:,则.故选C.【点睛】此题考查了垂径定理,勾股定理,以及翻折的性质,熟练掌握垂径定理是解本题的关键.8.D【解析】【分析】根据众数的定义:一组数据中出现次数最多的数据即可得出答案.【详解】解:这组数据中出现次数最多的数据为:5.故众数为5,故选:D.【点睛】本题考查了众数的知识,属于基础题,解答本题的关键是熟练掌握一组数据中出现次数最多的数据叫做众数.9.C【解析】【分析】最短弦是过A点垂直于OA的弦.根据垂径定理和勾股定理求解.【详解】由垂径定理得,该弦应该是以OA为中垂线的弦BC.连接OB.已知OB=5,OA=3,由勾股定理得AB=4.所以弦BC=8.故选C.【点睛】此题主要考查了学生对垂径定理及勾股定理的理解运用.10.C【解析】【分析】由于从9个人中挑选5位,则应根据中位数的意义进行解答.【详解】∵从9位书法兴趣小组的同学中,择优挑选5位去参加中学生书法表演,∴则被选中同学的成绩,肯定不少于这9位同学测试成绩统计量中的中位数,故选C .【点睛】本题考查了统计的相关知识,涉及了平均数、中位数、众数、方差等,要结合具体的问题对统计量进行合理的选择和恰当的运用.11.13【解析】【分析】根据概率公式知,共有3个开关,只闭一个开关时,只有闭合S 3时才发光,所以小灯泡发光的概率等于1.3【详解】根据题意,三个开关,只有闭合3S 小灯泡才发光,所以小灯泡发光的概率等于13. 故答案为:13【点睛】考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.12.53π﹣ 【解析】【分析】如图,图中S 阴影=S 扇形BCE ﹣S 扇形BOD ﹣S △OCE .根据已知条件易求得OB =OC =OD =2,BC=CE =4.∠ECB=60°,∠OEC=30°,所以由扇形面积公式、三角形面积公式进行解答即可 【详解】解:如图,连接CE .∵AC ⊥BC ,AC =BC =4,以BC 为直径作半圆,圆心为点O ;以点C 为圆心,BC 为半径作弧AB ,∴∠ACB =90°,OB =OC =OD =2,BC =CE =4.又∵OE ∥AC ,∴∠ACB =∠COE =90°.∴在直角△OEC 中,OC =2,CE =4,∴∠CEO =30°,∠ECB =60°,OE =∴S 阴影=S 扇形BCE ﹣S 扇形BOD ﹣S △OCE =2604360 π ﹣14 π×22﹣12×2×=53π﹣,故答案为:53π﹣【点睛】此题考查扇形面积的计算,掌握运算法则是解题关键13.2【解析】【分析】根据平均数的计算方法求得a 的值,再利用方差公式计算这组数据的方差即可.【详解】∵数据2,4,5,a ,1的平均数为a , ∴(2 +4+5+a+1)=a ,∴a=3,∴s 2=[(2-3)2+(4-3)2+(5-3)2+(3-3)2+(1-3)2]=2.故答案为:2.【点睛】本题考查了平均数及方差的计算公式,熟知平均数及方差的计算公式是解决问题的关键. 14.m =0或m =﹣2.【解析】【分析】由韦达定理得出x 1+x 2=﹣2(m ﹣1),x 1x 2=﹣4m ,结合x 1﹣x 2=2知122x m x m =-+⎧⎨=-⎩,代入x 1x 2=﹣4m 可得关于m 的方程,解之可得答案.【详解】解:∵关于x 的方程x 2+2(m ﹣1)x ﹣4m =0的两个实数根分别是x 1,x 2,∴x 1+x 2=﹣2(m ﹣1),x 1x 2=﹣4m ,又∵x 1﹣x 2=2,∴1212222x x m x x +=-+⎧⎨-=⎩, 解得:122x m x m =-+⎧⎨=-⎩, 代入x 1x 2=﹣4m 得﹣m (﹣m+2)=﹣4m ,解得:m =0或m =﹣2,故答案为:m =0或m =﹣2.【点睛】本题主要考查一元二次方程根与系数的关系,根据韦达定理及x 1﹣x 2=2得出关于m 的方程是解题的关键.15.3【解析】【分析】根据圆锥的侧面积和圆锥的母线长求得圆锥的弧长,利用圆锥的侧面展开扇形的弧长等于圆锥的底面周长求得圆锥的底面半径即可.【详解】∵圆锥的母线长是5cm ,侧面积是15πcm2,∴圆锥的侧面展开扇形的弧长为:215=65ππ⨯, ∵锥的侧面展开扇形的弧长等于圆锥的底面周长,∴r=62ππ=3cm , 故答案为:3.【点睛】本题考查了圆锥的计算,解题的关键是正确地进行圆锥与扇形的转化.16.8.【解析】【分析】根据已知条件得到2+2017a+a2=0,2+2017b+b2=0,ab=2,代入代数式即可得到结论.【详解】∵a,b是方程x2+2017x+2=0的两个根,∴2+2017a+a2=0,2+2017b+b2=0,ab=2,∴(2+2019a+a2)(2+2019b+b2)=(2+2017a+2a+a2)(2+2017b+2b+b2)=4ab=8,故答案为:8.【点睛】本题考查了一元二次方程根与系数的关系,熟练掌握根与系数的关系是解题的关键.17.110【解析】【分析】根据圆内接四边形的任意一个外角等于它的内对角解答.【详解】∵四边形ABCD是⊙O的内接四边形,∴∠BAE=∠BCD=110°,故答案为:110.【点睛】本题考查了圆内接四边形的性质,掌握圆内接四边形的任意一个外角等于它的内对角是解题的关键.18.相交或相切【解析】【分析】根据直线与圆的位置关系即可得出结论.【详解】解:∵点P在直线l上,且点P到圆心O的距离为4cm,等于直径,∴点P在⊙O上∴直线l与⊙O相交或相切故答案为:相交或相切【点睛】本题考查直线与圆的位置关系,解题的关键是熟知直线与圆的三种位置关系.19.【解析】【分析】如图作△ABC 的内切圆,切点分别为 E ,F ,G ,根据切线长定理即可解决问题;【详解】解:如图作△ABC 的内切圆,切点分别为 E ,F ,G ,∵BE =BF ,AF =AG ,CE =CG ,∴BE ==, 故答案为. 【点睛】本题考查角平分线的性质,三角形的内切圆,切线长定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20.0x =或9x =-【解析】【分析】因式分解法求解可得.【详解】解:()90x x +=,0x ∴=或90x +=,解得:0x =或9x =-,故答案为:0x =或9x =-.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.21.(1)见解析(2)15 4【解析】【分析】(1)由△ADE沿直线AB翻折得到△ADF,得到∠DAE=∠DAF,∠AED=∠F=90°,由于OA=OD,于是得到∠DAE=∠ODA,根据平行线的判定定理得到OD∥AF,根据平行线的性质得到OD⊥DF,于是得到结论;(2)连接DC,由于AC是O的直径,即CD⊥AB;又FD与BC均是O的切线且相交于点G由切线长定理可得:GD=GC,于是得到∠GDC=∠GCD,由于GD是Rt△BDC斜边上的中线,即GD=12BC,由于△ADE沿直线AB翻折得到△ADF,得到sin∠DAE=sin∠DAF=35,解直角三角形得到sin∠DAC=DCAC=10DC=35,得DC=6,由勾股定理得AD=8;根据三角形相似即可得到结论.【详解】(1)证明:∵△ADE沿直线AB翻折得到△ADF,∴∠DAE=∠DAF,∠AED=∠F=90°,又∵OA=OD,∴∠DAE=∠ODA,∴∠DAF=∠ODA,∴OD∥AF,∴∠ODF+∠F=180°,∴∠ODF=90°,∴OD⊥DF,∴DF是O的切线;(2)连接DC,∵AC是圆O的直径,∴∠ADC=90°,即CD⊥AB;又∵FD与BC均是圆O的切线且相交于点G,由切线长定理可得:GD=GC,∴∠GDC=∠GCD,又∵Rt△BDC中,∠GCD+∠B=90°,∠GDC+∠GDB=90°,∴∠B=∠GDB,∴GD=GB,∴GD是Rt△BDC斜边上的中线,即GD=12 BC,∵△ADE沿直线AB翻折得到△ADF,∴∠DAE=∠DAF,∴sin∠DAE=sin∠DAF=35,又∵圆O的半径为5,∴AC=10,Rt△DAC中,∠ADC=90°,∴sin∠DAC=DCAC=DC10=35,得DC=6,由勾股定理得AD=8;在Rt △ADC 与Rt △ACB 中,∠ADC=∠ACB=90°,∠DAC=∠BAC ,∴Rt △ADC ∽Rt △ACB , ∴CD AD BC AC =,即6810BC =,解得BC=152; ∴GB=GD=12BC=154. 【点睛】本题考查的知识点是切线的判定, 翻折变换(折叠问题), 相似三角形的判定与性质,解题的关键是熟练的掌握切线的判定, 翻折变换(折叠问题), 相似三角形的判定与性质. 22.(1)12m >;(2)2m =. 【解析】【分析】 ()1由0>得840m ->,解之可得;()2由()1221x x m +=+,2122x x m =+,结合1212x x x x +=得()2212m m +=+,解之可得m 的值,依据()1中的结果取舍即可得.【详解】解:()()()221[21]412m m =-+-⨯⨯+ 2248448m m m =++--840m =->,12m ∴>; ()()12221x x m +=+,2122x x m =+,∴由1212x x x x +=得()2212m m +=+,解得:10m =,22m =, 12m >, 2m ∴=.【点睛】本题主要考查根的判别式、根与系数的关系,关键是掌握1x ,2x 是方程20x px q ++=的两根时,12x x p +=-,12x x q =.23.(1)a=40,b=94,c=99;(2)八年级,见解析;(3)参加此次竞赛活动成绩优秀的人数是468人.【解析】【分析】(1)根据中位数和众数的定义即可得到结论;(2)根据八年级的中位数和众数均高于七年级于是得到八年级学生掌握防溺水安全知识较好;(3)利用样本估计总体思想求解可得.【详解】解:(1)3120%10%1004010a ⎛⎫=---⨯= ⎪⎝⎭, ∵八年级10名学生的竟赛成绩的中位数是第5和第6个数据的平方数,∴ 9494942b +== ∵在七年级10名学生的竟赛成绩中99出现的次数最多,∴c=99;(2)八年级学生掌握防溺水安全知识较好,理由:虽然七、八年级的平均分均为92分,但八年级的中位数和众数均高于七年级.(3)参加此次竞赛活动成绩优秀(x≥90)的学生人数=720×1320=468人, 答:参加此次竞赛活动成绩优秀(x≥90)的学生人数是468人.【点睛】本题考查读扇形统计图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问24.(1)详见解析;(2)4+【解析】【分析】(1)先作出ABC 的外接圆,再作AB 边上的高,继而作出此高的中垂线,与外接圆的交点即为所求;(2)作以AB 为弦且AB 所对圆心角为90°的O ,则垂直于弦AB 的直径与优弧的交点即为使三角形面积最大的点C ,根据作图得出AB 边上的高可得答案.【详解】∠即为所求.解:()1如图1所示,ABD()2如图2所示,作以AB为弦,且AB所对圆心角为90的O,C点轨迹为圆上不与AB重合的任一点,∴当C在位置上时,高最长,故面积最大,=,AB4AP BP OP2∴===,则OC OA==∴=+PC2ABC ∴的面积为(11AB PC 42422⋅⋅=⨯⨯+=+故答案为:4+.【点睛】 本题主要考查作图复杂作图,解题的关键判断出点C 是以AB 为弦的圆上、圆的确定及线段的中垂线的尺规作图等知识点.25.一样大,理由见解析.【解析】【分析】根据圆周角定理,即可确定两角的大小.【详解】解:甲、乙两个人所在的位置对球门AB 的张角一样大.根据圆周角定理的推论可得∠ADB=∠ACB.【点睛】本题的解答关键是对圆周角定理的灵活运用.圆周角定理指的是一条弧所对圆周角等于它所对圆心角的一半;即同弦或等弦所对的圆周角相等.26.(1)54AF BG =;(2)(Ⅰ)54AF BG =;(Ⅱ)CP ⊥AF ,理由:见解析. 【解析】【分析】(1)根据矩形的性质得到∠B =90°,根据勾股定理得到AC =5,根据相似三角形的性质即可得到结论;(2)(Ⅰ)连接CF ,根据旋转的性质得到∠BCG =∠ACF ,根据相似三角形的判定和性质定理得到结论;(Ⅱ)根据相似三角形的性质得到∠BGC =∠AFC ,推出点C ,F ,G ,P 四点共圆,根据圆周角定理得到∠CPF =∠CGF =90°,于是得到结论.【详解】(1)∵四边形ABCD 是矩形,∴∠B =90°,∵AB =3,BC =4,∴AC=5,∴54 ACBC=,∵四边形CEFG是矩形,∴∠FGC=90°,∴GF∥AB,∴△CGF∽△CBA,∴54 CF CACG CB==,∵FG∥AB,∴54 AF CFBG CG==;(2)(Ⅰ)连接CF,∵把矩形CEFG绕点C顺时针旋转到图②的位置,∴∠BCG=∠ACF,∵54 AC CFBC CG==,∴△BCG∽△ACF,∴54 AF ACBG BC==;(Ⅱ)CP⊥AF,理由:∵△BCG∽△ACF,∴∠BGC=∠AFC,∴点C,F,G,P四点共圆,∴∠CPF=∠CGF=90°,∴CP⊥AF.【点睛】本题考查了相似三角形的判定和性质,矩形的性质,平行线分线段成比例定理,旋转的性质,熟练掌握相似三角形的判定定理是解题的关键.27.(1)x 1=-3,x 2=-9;(2)x 1=2,x 2=-13. 【解析】【分析】 (1)直接把等号左边进行因式分解,然后可得x+3=0,x+9=0,再解即可;(2)先整理成一般形式,然后用公式法解答即可.【详解】(1)(x+3)(x+9)=0,x+3=0,x+9=0,解得:x 1=-3,x 2=-9;(2) 3x 2-2=5x整理为:3x 2-5x-2=0,这里,a=3,b=-5,c=-2,b 2-4ac=(-5)2-4×3×(-2)=49>0,∴ ∴x 1=2,x 2=13-.【点睛】本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程.28.(1)证明见解析;(2)证明见解析;(3).【解析】【分析】(1)根据圆周角定理即可证明;(2)作AM AD ⊥交DC 延长线于点M ,连接MG ,AQ ,证明AMG QAG ∆≅∆,得到45GMH AMD ∠=∠=︒,易求得GQ =;(3)延长MG 交DB 于N ,延长BF 交6030m n =⎧⎨=-⎩于W ,则四边形AMND 是正方形,求出13EF ED =,设EF x =,则3ED x =,列式求出EF ,易得AB ,问题得解. 【详解】解:(1)证明:AB Q 是直径90BCD ABD ∴∠+∠=︒BCD DAB ∠=∠90DAB DBA ∴∠+∠=︒(2)证明:作AM AD ⊥交DC 延长线于点M ,连接MG ,AQ,AB Q 是直径,90AQB ∴∠=︒,90ACB ∠=︒ABD ABG ∠=∠AQ AD ∴=CA CB =45CBA CAB ∴∠=∠=︒45ADM ∴∠=︒AM AD ∴=AM AQ ∴=BAD BAQ ∠=∠,45BAQ QAG ∠+∠=︒45BAD GAM ∴∠+∠=︒GAQ GAM ∴∠=∠AMG QAG ∴∆≅∆90AMG ∴∠=︒45GMH AMD ∴∠=∠=︒MG ∴=GQ ∴=(3)延长MG 交DB 于N ,∴四边形AMND 是正方形延长BF 交6030m n =⎧⎨=-⎩于W //BW MN BWG MGA ∴∠=∠BWG BGW ∴∠=∠BG BW ∴=MG BD BW +=WF MG ∴=FC MC ∴=BAD BCD HGC ∠=∠=∠,3HG CH =1tan 3BAD ∴∠=13BD BF AD AD ∴== 13EF ED ∴= 设EF x =,则3ED x =222EC CM DE =+222((3)x x ∴+=+x ∴=DF =4BD =,12AD =AB ∴=r =【点睛】本题是圆和四边形的综合问题,考查了圆周角定理、三角形全等的判定和性质以及三角函数等知识点,涉及知识点较多,图形较为复杂,能够作出辅助线是解题关键.。
中考数学专卷2020届中考数学总复习(29)锐角三角函数-精练精析(1)及答案解析
图形的变化——锐角三角函数1一.选择题(共9小题)1.如图,在Rt△ABC中,∠C=90°,∠A=30°,E为AB上一点且AE:EB=4:1,EF⊥AC于F,连接FB,则tan∠CFB的值等于()A.B.C.D.2.如图,在下列网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠AOB的正弦值是()A.B. C. D.3.如图,已知Rt△ABC中,∠C=90°,AC=4,tanA=,则BC的长是()A.2 B.8 C.2 D.44.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tanA=()A. B. C. D.5.在Rt△ABC中,∠C=90°,sinA=,则tanB的值为()A.B.C.D.6.计算sin245°+cos30°•tan60°,其结果是()A.2 B.1 C. D.7.在△ABC中,若|cosA﹣|+(1﹣tanB)2=0,则∠C的度数是()A.45° B.60° C.75° D.105°8.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是()A.1,2,3 B.1,1,C.1,1,D.1,2,9在直角三角形ABC中,已知∠C=90°,∠A=40°,BC=3,则AC=()A.3sin40° B.3sin50° C.3tan40° D.3tan50°二.填空题(共8小题)10.在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,CD=4,AC=6,则sinB的值是_________ .11.如图,在△ABC中,∠C=90°,AC=2,BC=1,则tanA的值是_________ .12.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点.△ABC的顶点都在方格的格点上,则cosA= _________ .13.如图,在△ABC中,AB=AC=5,BC=8.若∠BPC=∠BAC,则tan∠BPC=_________ .14.网格中的每个小正方形的边长都是1,△ABC每个顶点都在网格的交点处,则sinA= _________ .15.cos60°=_________ .16.△ABC中,∠A、∠B都是锐角,若sinA=,cosB=,则∠C=_________ .17.在△ABC中,如果∠A、∠B满足|tanA﹣1|+(cosB﹣)2=0,那么∠C=_________ .三.解答题(共7小题)18.甲、乙两条轮船同时从港口A出发,甲轮船以每小时30海里的速度沿着北偏东60°的方向航行,乙轮船以每小时15海里的速度沿着正东方向行进,1小时后,甲船接到命令要与乙船会合,于是甲船改变了行进的速度,沿着东南方向航行,结果在小岛C处与乙船相遇.假设乙船的速度和航向保持不变,求:(1)港口A与小岛C之间的距离;(2)甲轮船后来的速度.19.如图,△ABC中,AD⊥BC,垂足是D,若BC=14,AD=12,tan∠BAD=,求sinC的值.20.如图,在△ABC中,∠ABC=90°,∠A=30°,D是边AB上一点,∠BDC=45°,AD=4,求BC的长.(结果保留根号)21.如图,在△ABC中,CD⊥AB,垂足为D.若AB=12,CD=6,tanA=,求sinB+cosB的值.22.在△ABC中,AD是BC边上的高,∠C=45°,sinB=,AD=1.求BC的长.23.如图,在△ABC中,BD⊥AC,AB=6,AC=5,∠A=30°.①求BD和AD的长;②求tan∠C的值.24.如图,梯子斜靠在与地面垂直(垂足为O)的墙上,当梯子位于AB位置时,它与地面所成的角∠ABO=60°;当梯子底端向右滑动1m(即BD=1m)到达CD位置时,它与地面所成的角∠CDO=51°18′,求梯子的长.(参考数据:sin51°18′≈0.780,cos51°18′≈0.625,tan51°18′≈1.248)图形的变化——锐角三角函数1参考答案与试题解析一.选择题(共9小题)1.如图,在Rt△ABC中,∠C=90°,∠A=30°,E为AB上一点且AE:EB=4:1,EF⊥AC于F,连接FB,则tan∠CFB的值等于()A.B.C.D.考点:锐角三角函数的定义.分析:tan∠CFB的值就是直角△BCF中,BC与CF的比值,设BC=x,则BC与CF就可以用x表示出来.就可以求解.解答:解:根据题意:在Rt△ABC中,∠C=90°,∠A=30°,∵EF⊥AC,∴EF∥BC,∴∵AE:EB=4:1,∴=5,∴=,设AB=2x,则BC=x,AC=x.∴在Rt△CFB中有CF=x,BC=x.则tan∠CFB==.故选:C.点评:本题考查锐角三角函数的概念:在直角三角形中,正弦等于对比斜;余弦等于邻边比斜边;正切等于对边比邻边.2.如图,在下列网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠AOB的正弦值是()A.B.C.D.考点:锐角三角函数的定义;三角形的面积;勾股定理.专题:网格型.分析:作AC⊥OB于点C,利用勾股定理求得AC和AO的长,根据正弦的定义即可求解.解答:解:作AC⊥OB于点C.则AC=,AO===2,则sin∠AOB===.故选:D.点评:本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.3.如图,已知Rt△ABC中,∠C=90°,AC=4,tanA=,则BC的长是()A. 2 B.8 C.2D.4考点:锐角三角函数的定义.专题:计算题.分析:根据锐角三角函数定义得出tanA=,代入求出即可.解答:解:∵tanA==,AC=4,∴BC=2,故选:A.点评:本题考查了锐角三角函数定义的应用,注意:在Rt△ACB中,∠C=90°,sinA=,cosA=,tanA=.4.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tanA=()A.B.C.D.考点:锐角三角函数的定义.专题:网格型.分析:在直角△ABC中利用正切的定义即可求解.解答:解:在直角△ABC中,∵∠ABC=90°,∴tanA==.故选:D.点评:本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.5.在Rt△ABC中,∠C=90°,sinA=,则tanB的值为()A.B.C.D.考点:互余两角三角函数的关系.专题:计算题.分析:根据题意作出直角△ABC,然后根据sinA=,设一条直角边BC为5x,斜边AB为13x,根据勾股定理求出另一条直角边AC的长度,然后根据三角函数的定义可求出t an∠B.解答:解:∵sinA=,∴设BC=5x,AB=13x,则AC==12x,故tan∠B==.故选:D.点评:本题考查了互余两角三角函数的关系,属于基础题,解题的关键是掌握三角函数的定义和勾股定理的运用.6.计算sin245°+cos30°•tan60°,其结果是()A. 2 B.1 C.D.考点:特殊角的三角函数值.专题:计算题.分析:根据特殊角的三角函数值计算即可.解答:解:原式=()2+×=+=2.故选:A.点评:此题比较简单,解答此题的关键是熟记特殊角的三角函数值.7.在△ABC中,若|cosA﹣|+(1﹣tanB)2=0,则∠C的度数是()A.45°B.60°C.75°D.105°考点:特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:偶次方;三角形内角和定理.专题:计算题.分析:根据非负数的性质可得出cosA及tanB的值,继而可得出A和B的度数,根据三角形的内角和定理可得出∠C的度数.解答:解:由题意,得 cosA=,tanB=1,∴∠A=60°,∠B=45°,∴∠C=180°﹣∠A﹣∠B=180°﹣60°﹣45°=75°.故选:C.点评:此题考查了特殊角的三角形函数值及绝对值、偶次方的非负性,属于基础题,关键是熟记一些特殊角的三角形函数值,也要注意运用三角形的内角和定理.8.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是()A.1,2,3 B.1,1,C.1,1,D.1,2,考点:解直角三角形.专题:新定义.分析:A、根据三角形三边关系可知,不能构成三角形,依此即可作出判定;B、根据勾股定理的逆定理可知是等腰直角三角形,依此即可作出判定;C、解直角三角形可知是顶角120°,底角30°的等腰三角形,依此即可作出判定;D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,依此即可作出判定.解答:解:A、∵1+2=3,不能构成三角形,故选项错误;B、∵12+12=()2,是等腰直角三角形,故选项错误;C、底边上的高是=,可知是顶角120°,底角30°的等腰三角形,故选项错误;D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”的定义,故选项正确.故选:D.点评:考查了解直角三角形,涉及三角形三边关系,勾股定理的逆定理,等腰直角三角形的判定,“智慧三角形”的概念.9.在直角三角形ABC中,已知∠C=90°,∠A=40°,BC=3,则AC=()A.3sin40°B.3sin50°C.3tan40°D.3tan50°考点:解直角三角形.分析:利用直角三角形两锐角互余求得∠B的度数,然后根据正切函数的定义即可求解.解答:解:∠B=90°﹣∠A=90°﹣40°=50°,又∵tanB=,∴AC=BC•tanB=3tan50°.故选:D.点评:本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系.二.填空题(共8小题)10.在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,CD=4,AC=6,则sinB的值是.考点:锐角三角函数的定义;直角三角形斜边上的中线.专题:计算题.分析:首先根据直角三角形斜边中线等于斜边一半求出AB的长度,然后根据锐角三角函数的定义求出sinB即可.解答:解:∵Rt△ABC中,CD是斜边AB上的中线,CD=4,∴AB=2CD=8,则sinB===.故答案为:.点评:本题考查了锐角三角函数的定义,属于基础题,解答本题的关键是掌握直角三角形斜边上的中线定理和锐角三角函数的定义.11.如图,在△ABC中,∠C=90°,AC=2,BC=1,则tanA的值是.考点:锐角三角函数的定义.分析:根据锐角三角函数的定义(tanA=)求出即可.解答:解:tanA==,故答案为:.点评:本题考查了锐角三角函数定义的应用,注意:在Rt△ACB中,∠C=90°,sinA=,cosA=,tanA=.12.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点.△ABC的顶点都在方格的格点上,则cosA= .考点:锐角三角函数的定义;勾股定理.专题:网格型.分析:根据勾股定理,可得AC的长,根据邻边比斜边,可得角的余弦值.解答:解:如图,由勾股定理得AC=2,AD=4,cosA=,故答案为:.点评:本题考查了锐角三角函数的定义,角的余弦是角邻边比斜边.13.如图,在△ABC中,AB=AC=5,BC=8.若∠BPC=∠BAC,则tan∠BPC=.考点:锐角三角函数的定义;等腰三角形的性质;勾股定理.专题:计算题.分析:先过点A作AE⊥BC于点E,求得∠BAE=∠BAC,故∠BPC=∠BAE.再在Rt△BAE 中,由勾股定理得AE的长,利用锐角三角函数的定义,求得tan∠BPC=tan∠BAE=.解答:解:过点A作AE⊥BC于点E,∵AB=AC=5,∴BE=BC=×8=4,∠BAE=∠BAC,∵∠BPC=∠BAC,∴∠BPC=∠BAE.在Rt△BAE中,由勾股定理得AE=,∴tan∠BPC=tan∠BAE=.故答案为:.点评:求锐角的三角函数值的方法:利用锐角三角函数的定义,通过设参数的方法求三角函数值,或者利用同角(或余角)的三角函数关系式求三角函数值.14.网格中的每个小正方形的边长都是1,△ABC每个顶点都在网格的交点处,则sinA= .考点:锐角三角函数的定义;三角形的面积;勾股定理.分析:根据各边长得知△ABC为等腰三角形,作出BC、AB边的高AD及CE,根据面积相等求出CE,根据正弦是角的对边比斜边,可得答案.解答:解:如图,作AD⊥BC于D,CE⊥AB于E,由勾股定理得AB=AC=2,BC=2,AD=3,可以得知△ABC是等腰三角形,由面积相等可得,BC•AD=AB•CE,即CE==,sinA===,故答案为:.点评:本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.15.cos60°=.考点:特殊角的三角函数值.分析:根据特殊角的三角函数值计算.解答:解:cos60°=.故答案为:点评:本题考查特殊角三角函数值的计算,特殊角三角函数值计算在中考中经常出现,要掌握特殊角度的三角函数值.16.△ABC中,∠A、∠B都是锐角,若sinA=,cosB=,则∠C=60°.考点:特殊角的三角函数值;三角形内角和定理.专题:计算题.分析:先根据特殊角的三角函数值求出∠A、∠B的度数,再根据三角形内角和定理求出∠C即可作出判断.解答:解:∵△ABC中,∠A、∠B都是锐角sinA=,cosB=,∴∠A=∠B=60°.∴∠C=180°﹣∠A﹣∠B=180°﹣60°﹣60°=60°.故答案为:60°.点评:本题考查的是特殊角的三角函数值及三角形内角和定理,比较简单.17.在△ABC中,如果∠A、∠B满足|tanA﹣1|+(cosB﹣)2=0,那么∠C=75°.考点:特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:偶次方.专题:计算题.分析:先根据△ABC中,tanA=1,cosB=,求出∠A及∠B的度数,进而可得出结论.解答:解:∵△ABC中,|tanA﹣1|+(cosB﹣)2=0∴tanA=1,cosB=∴∠A=45°,∠B=60°,∴∠C=75°.故答案为:75°.点评:本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.三.解答题(共7小题)18.甲、乙两条轮船同时从港口A出发,甲轮船以每小时30海里的速度沿着北偏东60°的方向航行,乙轮船以每小时15海里的速度沿着正东方向行进,1小时后,甲船接到命令要与乙船会合,于是甲船改变了行进的速度,沿着东南方向航行,结果在小岛C处与乙船相遇.假设乙船的速度和航向保持不变,求:(1)港口A与小岛C之间的距离;(2)甲轮船后来的速度.考点:解直角三角形的应用-方向角问题.专题:应用题;压轴题.分析:(1)根据题意画出图形,再根据平行线的性质及直角三角形的性质解答即可.(2)根据甲乙两轮船从港口A至港口C所用的时间相同,可以求出甲轮船从B到C所用的时间,又知BC间的距离,继而求出甲轮船后来的速度.解答:解:(1)作BD⊥AC于点D,如图所示:由题意可知:AB=30×1=30海里,∠BAC=30°,∠BCA=45°,在Rt△ABD中,∵AB=30海里,∠BAC=30°,∴BD=15海里,AD=ABcos30°=15海里,在Rt△BCD中,∵BD=15海里,∠BCD=45°,∴CD=15海里,BC=15海里,∴AC=AD+CD=15+15海里,即A、C间的距离为(15+15)海里.(2)∵AC=15+15(海里),轮船乙从A到C的时间为=+1,由B到C的时间为+1﹣1=,∵BC=15海里,∴轮船甲从B到C的速度为=5(海里/小时).点评:本题考查了解直角三角形的应用中的方向角问题,解答此题的关键是过B作BD⊥AC,构造出直角三角形,利用特殊角的三角函数值及直角三角形的性质解答.19.如图,△ABC中,AD⊥BC,垂足是D,若BC=14,AD=12,tan∠BAD=,求sinC的值.考点:解直角三角形.专题:计算题.分析:根据tan∠BAD=,求得BD的长,在直角△ACD中由勾股定理得AC,然后利用正弦的定义求解.解答:解:∵在直角△ABD中,tan∠BAD==,∴BD=AD•tan∠BAD=12×=9,∴CD=BC﹣BD=14﹣9=5,∴AC===13,∴sin C==.点评:本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系.20.如图,在△ABC中,∠ABC=90°,∠A=30°,D是边AB上一点,∠BDC=45°,AD=4,求BC的长.(结果保留根号)考点:解直角三角形.专题:几何图形问题.分析:由题意得到三角形BCD为等腰直角三角形,得到BD=BC,在直角三角形ABC 中,利用锐角三角函数定义求出BC的长即可.解答:解:∵∠B=90°,∠BDC=45°,∴△BCD为等腰直角三角形,∴BD=BC,在Rt△A BC中,tan∠A=tan30°=,即=,解得:BC=2(+1).点评:此题考查了解直角三角形,涉及的知识有:等腰直角三角形的性质,锐角三角函数定义,熟练掌握直角三角形的性质是解本题的关键.21.如图,在△ABC中,CD⊥AB,垂足为D.若AB=12,CD=6,tanA=,求sinB+cosB的值.考点:解直角三角形;勾股定理.专题:计算题.分析:先在Rt△ACD中,由正切函数的定义得tanA==,求出AD=4,则BD=AB﹣AD=8,再解Rt△BCD,由勾股定理得BC==10,sinB==,cosB==,由此求出sinB+cosB=.解答:解:在Rt△ACD中,∵∠ADC=90°,∴tanA===,∴AD=4,∴BD=AB﹣AD=12﹣4=8.在Rt△BCD中,∵∠BDC=90°,BD=8,CD=6,∴BC==10,∴sinB==,cosB==,∴sinB+cosB=+=.故答案为:点评:本题考查了解直角三角形,锐角三角函数的定义,勾股定理,难度适中.22.在△ABC中,AD是BC边上的高,∠C=45°,sinB=,AD=1.求BC的长.考点:解直角三角形;勾股定理.专题:计算题.分析:先由三角形的高的定义得出∠ADB=∠ADC=90°,再解Rt△ADB,得出AB=3,根据勾股定理求出BD=2,解Rt△ADC,得出DC=1;然后根据BC=BD+DC即可求解解答:解:在Rt△ABD中,∵,又∵AD=1,∴AB=3,∵BD2=AB2﹣AD2,∴.在Rt△ADC中,∵∠C=45°,∴CD=AD=1.∴BC=BD+DC=+1.点评:本题考查了三角形的高的定义,勾股定理,解直角三角形,难度中等,分别解Rt△ADB与Rt△ADC,得出BD=2,DC=1是解题的关键.23.如图,在△ABC中,BD⊥AC,AB=6,AC=5,∠A=30°.①求BD和AD的长;②求tan∠C的值.考点:解直角三角形;勾股定理.专题:几何图形问题.分析:(1)由BD⊥AC得到∠ADB=90°,在Rt△ADB中,根据含30度的直角三角形三边的关系先得到BD=AB=3,再得到AD=BD=3;(2)先计算出CD=2,然后在Rt△BCD中,利用正切的定义求解.解答:解:(1)∵BD⊥AC,∴∠ADB=90°,在Rt△ADB中,AB=6,∠A=30°,∴BD=AB=3,∴AD=BD=3;(2)CD=AC﹣AD=5﹣3=2,在Rt△BCD中,tan∠C===.点评:本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了含30度的直角三角形三边的关系.24.如图,梯子斜靠在与地面垂直(垂足为O)的墙上,当梯子位于AB位置时,它与地面所成的角∠ABO=60°;当梯子底端向右滑动1m(即BD=1m)到达CD位置时,它与地面所成的角∠CDO=51°18′,求梯子的长.(参考数据:sin51°18′≈0.780,cos51°18′≈0.625,tan51°18′≈1.248)考点:解直角三角形的应用.专题:几何图形问题.分析:设梯子的长为xm.在Rt△ABO中,根据三角函数得到OB,在Rt△CDO中,根据三角函数得到OD,再根据BD=OD﹣OB,得到关于x的方程,解方程即可求解.解答:解:设梯子的长为xm.在Rt△ABO中,cos∠ABO=,∴OB=AB•cos∠ABO=x•cos60°=x.在Rt△CDO中,cos∠CDO=,∴OD=CD•cos∠CDO=x•cos51°18′≈0.625x.∵BD=OD﹣OB,∴0.625x﹣x=1,解得x=8.故梯子的长是8米.点评:此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键把实际问题转化为数学问题加以计算.。
2023年中考数学总复习第三章《函数》综合测试卷及答案
2023年中考数学总复习第三章《函数》综合测试卷一、选择题(每小题3分,共48分)1.已知a+b>0,ab>0,则在如图所示的平面直角坐标系中,小手盖住的点的坐标可能是()A.(a,b)B.(-a,b)C.(-a,-b)D.(a,-b)(第1题图)(第7题图)2.函数y=的自变量x的取值范围是()A.x≥2且x≠3B.x≥2C.x≠3D.x>2且x≠33.已知一个正比例函数的图象经过A(-2,m)和B (n,4)两点,则m,n间的关系一定是()A.mn=-8B.mn=8C.m=-2n D.m=-n4.一名老师带领x名学生到动物园参观,已知成人票每张30元,学生票每张10元.设门票的总费用为y元,则y与x的函数关系为()A.y=10x+30B.y=40xC.y=10+30x D.y=20x5.已知二次函数y=x2-x+m-1的图象与x轴有交点,则m的取值范围是()A.m≤5B.m≥2C.m<5D.m>2 6.在同一直角坐标系中,一次函数y=ax+2与二次函数y=x2+a的图象可能是()7.如图,直线y=-x+m与y=nx+4n(n≠0)的交点横坐标为-2,则关于x的不等式-x+m>nx+4n>0的整数解为()A.-1B.-5C.-4D.-38.二次函数y=x2-(12-k)x+12,当x>1时,y随着x的增大而增大,当x<1时,y随着x的增大而减小,则k的值应取()A.12B.11C.10D.99.定义一个新的运算:a b=则运算x2的最小值为()A.-3B.-2C.2D.310.如图,Rt△ABC的直角边BC在x轴正半轴上,斜边AC上的中线BD反向延长线交y轴负半轴于E,双曲线y=(x>0)的图象经过点A,若△BCE的面积为6,则k等于()A.3B.6C.12D.24(第10题图)(第11题图)11.二次函数y=x2-2x-3的图象如图所示,下列说法中错误的是()A.函数图象与y轴的交点坐标是(0,-3)B.顶点坐标是(1,-3)C.函数图象与x轴的交点坐标是(3,0),(-1,0)D.当x<0时,y随x的增大而减小12.如图中的图①、②、③所示,阴影部分面积的大小关系正确的是()A.①>②>③B.③>②>①C.②>③>①D.①=②=③(第12题图)13.已知点A是直线y=2x与双曲线y=(m为常数)一支的交点,过点A作x轴的垂线垂足为B,且OB=2,则m的值为()A.-7B.-8C.8D.714.如图,在平面直角坐标系中,直线y=-x+2与反比例函数y=的图象有唯一公共点,若直线y=-x+b 与反比例函数y=的图象有2个公共点,则b的取值范围是()A.b>2B.-2<b<2C.b>2或b<-2D.b<-2。
2023年中考数学总复习第三章《函数》第六节 二次函数的实际应用
2023年中考数学总复习第三章《函数》第六节二次函数的实际应用一、选择题1.[2020·邢台模拟]把一个足球垂直于水平地面向上踢,该足球距离地面的高度h(米)与所经过的时间t (秒)之间的关系为h=10t-t 2(0≤t≤14).若存在两个不同的t 的值,使足球离地面的高度均为a (米),则a 的取值范围是()A.0≤a≤42B.0≤a<50C.42≤a<50D.42≤a≤502.[2020·长沙]“闻起来臭,吃起来香”的臭豆腐是长沙特色小吃,臭豆腐虽小,但制作流程却比较复杂,其中在进行加工煎炸臭豆腐时,我们把“焦脆而不糊”的豆腐块数的百分比称为“可食用率”.在特定条件下,“可食用率”p 与加工煎炸时间(t 单位:分钟)近似满足的函数关系为:p=at 2+bt+c (a≠0,a,b,c 是常数),如图记录了三次实验的数据.根据上述函数关系和实验数据,可以得到加工煎炸臭豆腐的最佳时间为()A. 3.50分钟B. 4.05分钟C. 3.75分钟D. 4.25分钟(第2题图)(第3题图)3.[2020·石家庄裕华区一模]从地面竖直向上抛出一小球,小球的高度h(单位:m )与小球运动时间t (单位:s )之间的函数关系如图所示.下列结论:①小球在空中经过的路程是40m;②小球运动的时间为6s;③小球抛出3s 时,速度为0;④当t=1.5s 时,小球的高度h=30m.其中正确的是()A.①④B.①②C.②③④D.②④二、填空题4.[人九上课本P52,T8改编]某商店销售一批头盔,售价为每顶80元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶50元,则该商店每月获得最大利润时,每顶头盔的售价为_______元.三、解答题5.[人九上课本P52,T5高仿]如图,西游乐园景区内有一块矩形油菜花田地(单位:m ),现在其中修建一条观花道(阴影所示),供游人赏花,设改造后观花道的面积为y m 2.(1)求y 与x 的函数关系式;(2)若改造后观花道的面积为13m 2,求x 的值;(3)若要求0.6≤x≤1,求改造后油菜花地所占面积的最大值.(第5题图)6.[2020·遵化二模]随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择.李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E 中的某一站出地铁,再骑共享单车回家.设他出地铁的站点与文化宫站的距离为x(单位:km ),乘坐地铁的时间y 1(单位:min )是关于x 的一次函数,其关系如下表:(1)求y1关于x 的函数解析式;(2)李华骑单车的时间y 2(单位:min)也受x 的影响,其关系可以用y 2=x 2-11x+78来描述.求李华应选择在哪一站出地铁,才能使他从文化宫站回到家所需的时间最短,并求出最短时间.地铁站A B C D E x/km 79111213y 1/min1620242628。
中考数学总复习《函数》专项测试卷-附参考答案
中考数学总复习《函数》专项测试卷-附参考答案一、单选题(共12题;共24分)1.如图所示,抛物线L:y=ax2+bx+c(a<0)的对称轴为x=5,且与x轴的左交点为(1,0)则下列说法正确的有()①C(9,0);②b+c>-10;③y的最大值为-16a;④若该抛物线与直线y=8有公共交点,则a的取值范围是a≤ 1 2.A.①②③④B.①②③C.①③④D.①④2.若y+3与x-2成正比例,则y是x的()A.正比例函数B.不存在函数关系C.一次函数D.以上都有可能3.关于函数y=2x﹣1,下列结论成立的是()A.当x<0时,则y<0B.当x>0时,则y>0C.图象必经过点(0,1)D.图象不经过第三象限4.关于一次函数y=x+2,下列说法正确的是()A.y随x的增大而减小B.经过第一、三、四象限C.与y轴交于(0,2)D.与x轴交于(2,0)5.点P(3,y1)、Q (4,y2)是二次函数y=x2−4x+5的图象上两点,则y1与y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.无法确定6.快、慢两车分别从甲、乙两地同时出发,相向匀速行驶,两车在途中相遇时都停留了一段时间,然后分别按原速度原方向匀速行驶,快车到达乙地后休息半小时后,再以另一速度原路匀速返回甲地(掉头的时间忽略不计),慢车到达甲地以后即停在甲地等待快车.如图所示为快、慢两车间的距离y (千米)与快车的行驶时间x(小时)之间的函数图象.则下列说法:①两车在途中相遇时都停留了1小时;②快车从甲地去乙地时每小时比慢车多行驶40km;③快车从乙地返回甲地的速度为120km/h;④当慢车到达甲地的时候,快车与甲地的距离为400km.其中正确的有()A.4B.3C.2D.17.如图,动点A在抛物线y=−x2+2x+3(0≤x≤3)上运动,直线l经过点(0,6),且与y轴垂直,过点A做AC⊥ l于点C,以AC为对角线作矩形ABCD,则另一对角线BD的取值范围正确的是()A.2≤BD≤3B.3≤BD≤6C.1≤BD≤6D.2≤BD≤68.如图,在平面直角坐标系中,函数y=kx,y=−2x的图像交于A,B两点,过A作y轴的垂线,交函数y=3x的图像于点C,连接BC,则ΔABC的面积为()A.2B.3C.5D.69.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点是A,对称轴是直线x=1,且抛物线与x轴的一个交点为B(4,0);直线AB的解析式为y2=mx+n(m≠0).下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=mx+n有两个不相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,则则y1>y2,其中正确的是()A.①②B.①③⑤C.①④D.①④⑤10.如图,矩形ABCD中,AB=3,BC=4,点P从A点出发,按A→B→C的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数大致图象是()A.B.C.D.11.如图,在平面直角坐标系中,ΔA1A2A3,ΔA3A4A5,ΔA5A6A7,…都是等边三角形,其边长依次为2,4,6,…,其中点A1的坐标为(2,0),点A2的坐标为(1,−√3),点A3的坐标为(0,0),点A4的坐标为(2,2√3),…,按此规律排下去,则点A2020的坐标为()A.(1,−1009√3)B.(1,−1010√3)C.(2,1009√3)D.(2,1010√3)12.如图,二次函数y=-x2+bx+c 图象上有三点A(-1,y1 )、B(1,y2) 、C(2,y3),则y1,y2,y3大小关系为()A.y1<y3<y2B.y3<y1<y2C.y1<y2<y3D.y2<y1<y3二、填空题(共6题;共6分)13.点P(1,1)向左平移两个单位后恰好位于双曲线y=k x上,则k=.14.将二次函数y=−x2+3的图像向下平移5个单位长度,所得图像对应的函数表达式为.15.如图,已知A1(1,0),A2(1,1),A3(﹣1,1),A4(﹣1,﹣1),A5(2,﹣1)…,则点A2021的坐标为.16.请写出一个二次函数,使它的图象同时满足下列两个条件:①开口向下,②与y轴的交点是(0,1),你写出的函数表达式是.17.若点P(n,1),Q(n+6,3)在正比例函数图象上,请写出正比例函数的表达式. 18.在−3,−2,−1,4,5五个数中随机选一个数作为一次函数y=kx−3中k的值,则一次函数y=kx−3中y随x的增大而减小的概率是.三、综合题(共6题;共67分)19.3−√(−3)2+|√3−2|(1)计算:(−1)2021+√16+√−27(2)如图所示的是某学校的平面示意图,已知旗杆的位置是(−1,2),实验室的位置是(2,3).①根据所给条件建立适当的平面直角坐标系,并用坐标表示食堂,宿舍楼和大门的位置.②已知办公楼的位置是(−2,1),教学楼的位置是(3,1),在①中所画的图中标出办公楼和教学楼的位置.20.汽车出发1小时后油箱里有油40L,继续行驶若干小时后,在加油站加油若干升(加油时间忽略不计).图象表示出发1小时后,油箱中剩余测量(y)与行驶时间t(h)之间的关系.(1)汽车行驶h后加油,中途加油L;(2)求加油前油箱剩余量y与行驶时间t的函数关系式;(3)若加油前后汽车都以80km/h匀速行驶,则汽车加油后最多能行驶多远?21.凤凰单丛(枞)茶,是潮汕的名茶,已有九百余年的历史.潮汕人将单丛茶按香型分为黄枝香、芝兰香、桃仁香、玉桂香、通天香、鸭屎香等多种.清明采茶季后,某茶叶店准备购买通天香和鸭屎香两种单丛茶进行销售,已知若购买4千克通天香单丛和3千克鸭屎香单丛需要2500元,购买2千克通天香单丛和5千克鸭屎香单丛需要2300元.(1)求通天香、鸭屎香两种茶叶的单价分别为多少元?(2)茶叶专卖店计划购买通天香、鸭屎香两种单丛茶共80千克,总费用不多于26000元,并且要求通天香茶叶数量不能低于10千克,那么应如何安排购买方案才能使总费用最少,最少费用应为多少元?22.为落实“双减”政策,丰富课后服务的内容,某学校计划到甲、乙两个体育专卖店购买一批新的体育用品,两个商店的优惠活动如下:甲:所有商品按原价8.5折出售;乙:一次购买商品总额不超过300元的按原价付费,超过300元的部分打7折.设需要购买体育用品的原价总额为x元,去甲商店购买实付y甲元,去乙商店购买实付y乙元,其函数图象如图所示.(1)分别求y甲,y乙关于x的函数关系式;(2)两图象交于点A,求点A坐标;(3)请根据函数图象,直接写出选择去哪个体育专卖店购买体育用品更合算.23.直线y=kx+b经过A(0,-3))和B(-3,0)两点.(1)求这个一次函数的解析式;(2)画出图象,并根据图象说明不等式kx+b<0的解集.24.“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场,下面的函数图象表示“龟兔再次赛跑”时,则乌龟所走路程y1(米)和兔子所走的路程y2(米)分别与乌龟从起点出发所用的时间x(分)之间的函数图象,根据图象解答下列问题:(1)“龟兔再次赛跑”的路程是米,兔子比乌龟晚走了分钟,乌龟在途中休息了分钟,“龟兔再次赛跑”获胜的是.(2)分别求出乌龟在途中休息前和休息后所走的路程y1关于时间x的函数解析式,并写出自变量x的取值范围.(3)乌龟和兔子在距离起点米处相遇.参考答案1.【答案】B 2.【答案】C 3.【答案】A 4.【答案】C 5.【答案】B 6.【答案】B 7.【答案】D 8.【答案】C 9.【答案】B 10.【答案】C 11.【答案】D 12.【答案】A 13.【答案】-114.【答案】y =−x 2−2 15.【答案】(506,﹣505)16.【答案】y =−x 2+x +1 (不唯一) 17.【答案】y =13x 18.【答案】3519.【答案】(1)解:原式=−1+4−3−3+2−√3=−1−√3(2)解:①根据题意,建立如图所示的平面直角坐标系,如下:∴食堂(−4,4),宿舍楼(-5,1),大门(1,−1) ②办公楼和教学楼的位置如图所示.20.【答案】(1)4;35(2)解:设y 与x 的函数关系式为y =kt+b 把(1,40)和(4,10)代入得{k +b =404k +b =10解得 {k =−10b =50∴加油前油箱剩余油量y 与行驶时间t 的函数关系式y =﹣10t+50(3)解:由图象知,汽车加油前行驶了3小时,则用油40﹣10=30(L ) ∴汽车行驶1小时耗油量为 303=10(L/h )加油后邮箱中剩余油量45L ,可以行驶 4510 ×80=360(km ).∴汽车加油后最多能行驶360km .21.【答案】(1)解:设通天香茶叶每千克为x 元,鸭屎香茶叶每千克为y 元,根据题意,得{4x +3y =25002x +5y =2300解得{x =400y =300∴通天香茶叶每千克为400元,鸭屎香茶叶每千克为300元.(2)解:设购买通天香茶叶m 千克,鸭屎香茶叶(80-m )千克,总费用w 元 根据题意,得400m +300(80−m)≤26000 解得m ≤20 ∵m ≥10∴m 的取值范围是:10≤m ≤20总费用w =400m +300(80−m)=100m +24000 ∵100>0∴w 随着m 的增大而增大∴当m =10时,则w 最少,w 最少=1000+24000=25000(元)∴通天香茶叶购进10千克,鸭屎香茶叶购进70千克,总费用最少为25000元.22.【答案】(1)解:由题意可得,y 甲=0.85x ;乙商店:当0≤x≤300时,则y 乙与x 的函数关系式为y 乙=x ; 当x >300时,则y 乙=300+(x-300)×0.7=0.7x+90 由上可得,y 乙与x 的函数关系式为y 乙={x(0≤x ≤300)0.7x +90(x >300)(2)解:由{y 甲=0.85xy 乙=0.7x +90,解得{x =600y 乙=510点A 的坐标为(600,510);(3)解:由点A 的意义,当买的体育商品标价为600元时,则甲、乙商店优惠后所需费用相同,都是510元 结合图象可知当x <600时,则选择甲商店更合算; 当x=600时,则两家商店所需费用相同; 当x >600时,则选择乙商店更合算.23.【答案】(1)解:将A(0,−3),B(−3,0)代入y =kx +b 得{b =−3−3k +b =0解得:k =−1,b =−3∴y =−x −3一次函数的解析式为:y =−x −3. (2)解:作图如下:由图象可知:直线从左往右逐渐下降,即y 随x 的增大而减小 当x =−3时∴kx +b <0的解集为:x >−3.24.【答案】(1)1000;40;10;兔子(2)解:设乌龟在途中休息前所走的路程y 1关于时间x 的函数解析式为y 1=kx ∴600=30k ,解得k =20∴乌龟在途中休息前所走的路程y 1关于时间x 的函数解析式为y 1=20x (0≤x≤30) 设乌龟在途中休息后所走的路程y 1关于时间x 的函数解析式为y 1=k′x+b∴{40k ′+b =60060k ′+b =1000,解得{k ′=20b =−200∴乌龟在途中休息后所走的路程y1关于时间x的函数解析式为y1=20x﹣200(40≤x≤60);(3)750第11页共11。
2020年浙江数学中考复习第三单元函数之第14课时 二次函数综合题
∴mn=x1x2(1-x1)(1-x2) ∵0<x1<x2<1,
=(x
1-x
21)(x
2-x
22)
=[-(x
1-12)2+14]·[-(x
2-12)2+14]
,
∴∵0x<1≠x-2,(x∴1-012<)2m+n14<≤11614
,0<-(x2-12 .
)2+ 1 4
≤1 4
,∴0<mn≤
1, 16
第14课时 二次函数综合题
①当-4≤- b ≤-2,即4≤b≤8时,
2 如解图①所示,x=1时,函数取最大值y=1+3b;
当x=- b时,函数取最小值y= 8b-b2,∴(1+3b)- 8b-b2=16,
2
4
4
即b2+4b-60=0.∴b1=6,b2=-10(舍去).
②当-2<- b ≤0,即0≤b<4时,如解图②所示,
2 x=-5时,函数取最大值y=25-3b;x=-
当a<0时,a(x-2)(x-1)>0,即y1>y2.
第14课时 二次函数综合题
返回目录
4. (2018杭州22题12分)设二次函数y=ax2+bx-(a+b)(a,b是常数,a≠0). (1)判断该二次函数图象与x轴交点的个数,说明理由; (1)解:该二次函数图象与x轴有1个或2个交点. 理由如下:∵a≠0,Δ=b2+4a(a+b)=(b+2a)2≥0, ∴该二次函数图象与x轴有1个或2个交点;
第14课时 二次函数综合题
返回目录
(6)已知二次函数y=mx2-2mx+3,若P(-1,y1),Q(4,y2)两点在此函数图象上, 试比较y1,y2的大小. 【思维教练】要比较函数图象上两点纵坐标的大小,只需求出抛物线的对称轴,分 m>0和m<0两种情况,根据两点到抛物线对称轴的距离即可判断.
最新中考数学初三总复习第三单元函数第14课时 二次函数的实际应用达标训练及答案(word版)
第三单元函数第十四课时二次函数的实际应用1. (8分)(2017眉山)东坡某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元.(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件,若生产的某档次产品一天的总利润为1080元,该烘焙店生产的是第几档次的产品?2. (8分)(2017济宁)某商店经销一种双肩包,已知这种双肩包的成本价为每个30元,市场调查发现,这种双肩包每天的销售量y(单位:个)与销售单价x(单位:元)有如下关系:y=-x+60(30≤x≤60).设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数解析式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?3. (8分)(2017成都)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择.李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家.设他出地铁的站点与文化宫的距离为x(单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x的一次函数,其关系如下表:地铁站 A B C D Ex(千米) 8 9 10 11.5 13y1(分钟) 18 20 22 25 28(1)求y1关于x的函数表达式;(2)李华骑单车的时间y2(单位:分钟)也受x的影响,其关系可以用y2=12x2-11x+78来描述.请问:李华应选择在哪一站出地铁,才能使他从文化宫站回到家所需要的时间最短?并求出最短时间.4. (8分)(2017青岛)青岛市某大酒店豪华间实行淡季、旺季两种价格标准,旺季每间价格比淡季上涨13.下表是去年该酒店豪华间某两天的相关记录:淡季旺季未入住房间数10 0日总收入(元) 24000 40000(1)该酒店豪华间有多少间?旺季每间价格为多少元?(2)今年旺季来临,豪华间的间数不变.经市场调查发现,如果豪华间仍旧实行去年旺季价格,那么每天都客满;如果价格继续上涨,那么每增加25元,每天未入住房间数增加1间.不考虑其他因素,该酒店将豪华间的价格上涨多少元时,豪华间的日总收入最高?最高日总收入是多少元?5. (9分)(2017河北)某厂按用户的月需求量x(件)完成一件产品的生产,其中x>0.每件的售价为18万元,每件的成本y(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需要量x(件)成反比.经市场调研发现,月需求量x与月份n(n为整数,1≤n≤12)符合关系式x=2n2-2kn+9(k+3)(k为常数),且得到了表中的数据.月份n(月) 1 2成本y(万元/件) 11 12需求量x(件/月) 120 100(1)求y与x满足的关系式,请说明一件产品的利润能否是12万元;(2)求k,并推断是否存在某个月既无盈利也不亏损;(3)在这一年12个月中,若第m个月和第(m+1)个月的利润相差最大,求m.6. (9分)(2017南雅中学一模)九年级(3)班数学兴趣小组经过市场调查整理出某种商品在第x天(1≤x≤90,且x为整数)的售价与销售量的相关信息如下,已知商品的进价为30元/件,设该商品的售价为y(单位:元/件),每天的销售量为p(单位:件),每天的销售利润为w(单位:元).时间x(天) 1 30 60 90每天销售量p(件) 198 140 80 20(1)求出w与x的函数关系式;(2)问销售该商品第几天时,当天的销售利润最大?并求出最大利润;(3)该商品在销售过程中,共有多少天每天的销售利润不低于5600元?请直接写出结果.第6题图答案1. 解:(1)当每件蛋糕利润是14元时,提高了(14-10)÷2=2个档次,∵提高2个档次,∴此批次蛋糕属第3档次产品;(2)设烘焙店生产的是第x档次的产品,则每件的利润为10+2(x-1),每天的产量为76-4(x-1),由题意可得[10+2(x-1)][76-4(x-1)]=1080,整理得8x2-128x+440=0,解得x1=5,x2=11(∵11>6,不符合题意,舍去),答:该烘焙店生产的是第5档次的产品.2. 解:(1)w=(x-30)·y=(x-30)·(-x+60)=-x2+90x-1800,∴w与x的函数关系式为w=-x2+90x-1800(30≤x≤60);(2)w=-x2+90x-1800=-(x-45)2+225,∴当x =45时,w 有最大值,w 最大值为225,答:销售单价定为45元时,每天销售利润最大,最大销售利润225元; (3)当w =200时,可列方程-(x -45)2+225=200, 解得x 1=40,x 2=50, ∵50>48,∴x 2=50(不符合题意,应舍去),答:该商店销售这种双肩包每天想要获得200元的销售利润,销售单价应定为40元.3. 解:(1)设一次函数为y 1=kx +b (k ≠0), 将x =8,y =18和x =9,y =20代入, 得⎩⎪⎨⎪⎧8k +b =189k +b =20,解得⎩⎪⎨⎪⎧k =2b =2, ∴y 1与x 的函数关系式为y 1=2x +2;(2)设李华从文化宫乘地铁和骑单车回家共需y 分钟,∵y 2=12x 2-11x +78,∴y =y 1+y 2=12x 2-9x +80=12(x -9)2+792,∵12>0, ∴当x =9时,y 最小=792(分钟),答:李华应选择在B 站出地铁,才能使他从文化宫回到家的时间最短,最短时间为792分钟.4. 解:(1)设该酒店有豪华间a 间,则:40000a =24000a -10(1+13), 解得a =50,经检验a =50是原方程的解,符合题意, ∴旺季每间=40000÷50=800(元),答:该酒店豪华间有50间,旺季每间价格为800元; (2)设该酒店豪华间上涨x 元,日总收入为w 元,则w =(x +800)(50-x 25)=-125x 2+18x +40000=-125(x -225)2+42025,∵-125<0,∴当x =225时,w 有最大值,此时w max =42025,答:当每间价格上涨225元时,日总收入最高,最高总收入为42025元.5. 解:(1)由题意,设y =a +bx,由表中数据,得⎩⎨⎧11=a +b 12012=a +b 100,解得⎩⎪⎨⎪⎧a =6b =600,∴y =6+600x,由题意,若12=18-(6+600x ),则600x =0,∵x >0,∴600x >0, ∴一件产品的利润不可能是12万元;(2)将n =1,x =120代入x =2n 2-2kn +9(k +3),得120=2-2k +9k +27, 解得k =13,将n =2,x =100代入x =2n 2-2kn +9(k +3),得100=8-4k +9(k +3), 解得k =13,由题意,得18=6+600x ,解得x =50,∴50=2n 2-26n +144,即n 2-13n +47=0, ∵b 2-4ac =(-13)2-4×1×47<0,∴方程无实根,∴不存在某个月既无盈利也不亏损;(3)∵第m 个月的利润为W m =x(18-y )=18x -x(6+600x )=12(x -50)=12(2m 2-26m +144-50)=24(m 2-13m +47),∴第(m +1)个月的利润为W m +1=24[(m +1)2-13(m +1)+47]=24(m 2-11m +35),若W m ≥W m +1,W m -W m +1=48(6-m ),m 取1时,W m -W m +1=240,利润相差最大;若W m <W m +1,W m +1-W m =48(m -6),m +1≤12,m 取11时,W m +1-W m =240,利润相差最大, ∴m =1或m =11.6. 解:(1)当1≤x ≤50时,设商品的售价y 与时间x 的函数关系式为y =kx +b (k 、b 为常数且k ≠0),∵y =kx +b 经过点(0,40)、(50,90),代入得 ∴⎩⎪⎨⎪⎧b =4050k +b =90,解得⎩⎪⎨⎪⎧k =1b =40, ∴售价y 与时间x 的函数关系式为y =x +40;当50<x ≤90时,y =90, ∴售价y 与时间x 的函数关系式为 y =⎩⎪⎨⎪⎧x +40(1≤x≤50,且x 为整数)90 (50<x≤90,且x 为整数),由数据可知每天的销售量p 与时间x 成一次函数关系,设每天的销售量p 与时间x 的函数关系式为p =mx +n (m 、n 为常数,且m ≠0), ∵p =mx +n 经过点(60,80)、(30,140),代入得, ∴⎩⎪⎨⎪⎧60m +n =8030m +n =140,解得⎩⎪⎨⎪⎧m =-2n =200, ∴p =-2x +200(1≤x ≤90,且x 为整数),当1≤x ≤50时,w =(y -30)·p=(x +40-30)(-2x +200)=-2x 2+180x +2000; 当50<x ≤90时,w =(90-30)(-2x +200)=-120x +12000, 综上所述,每天的销售利润w 与时间x 的函数关系式是w = ⎩⎪⎨⎪⎧-2x2+180x +2000(1≤x≤50,且x 为整数)-120x +12000(50<x≤90,且x 为整数); (2)当1≤x ≤50时,w =-2x 2+180x +2000=-2(x -45)2+6050, ∵a =-2<0且1≤x ≤50,∴当x =45时,w 取最大值,最大值为6050元,当50<x≤90时,w=-120x+12000,∵k=-120<0,w随x增大而减小,∴当x=50时,w取最大值,最大值为6000元,∵6050>6000,∴当x=45时,w最大,最大值为6050元,答:销售第45天时,当天获得的销售利润最大,最大利润是6050元;(3)24天.【解法提示】当1≤x≤50时,令w=-2x2+180x+2000≥5600,即-2x2+180x -3600≥0,解得30≤x≤60,∵1≤x≤50,∴30≤x≤50,∴50-30+1=21(天),当50<x≤90时,令w=-120x+12000≥5600,即-120x+6400≥0,解得x≤531 3,∵50<x≤90,x为整数,∴50<x≤53,53-50=3(天),综上可知:21+3=24(天),答:该商品在销售过程中,共有24天每天的销售利润不低于5600元.。
2020年中考数学总复习初中三年全部必考重点题库(精华版)
2020年中考数学总复习初中三年全部必考重点题库(精华版)目录第一部分数与代数第一章数与式第1讲实数83第2讲代数式84第3讲整式与分式85第1课时整式85第2课时因式分解86第3课时分式87第4讲二次根式89第二章方程与不等式第1讲方程与方程组90第1课时一元一次方程与二元一次方程组90第2课时分式方程91第3课时一元二次方程93第2讲不等式与不等式组94第三章函数第1讲函数与平面直角坐标系97第2讲一次函数99第3讲反比例函数101第4讲二次函数103第二部分空间与图形第四章三角形与四边形第1讲相交线和平行线106第2讲三角形108第1课时三角形108第2课时等腰三角形与直角三角形110第3讲四边形与多边形112第1课时多边形与平行四边形112第2课时特殊的平行四边形114第3课时梯形116第五章圆第1讲圆的基本性质118第2讲与圆有关的位置关系120第3讲与圆有关的计算122第六章图形与变换第1讲图形的轴对称、平移与旋转124第2讲视图与投影126第3讲尺规作图127第4讲图形的相似130第5讲解直角三角形132第三部分统计与概率第七章统计与概率第1讲统计135第2讲概率137第四部分中考专题突破专题一归纳与猜想140专题二方案与设计141专题三阅读理解型问题143专题四开放探究题145专题五数形结合思想147基础题强化提高测试中考数学基础题强化提高测试1149中考数学基础题强化提高测试2151中考数学基础题强化提高测试3153中考数学基础题强化提高测试4155中考数学基础题强化提高测试5157中考数学基础题强化提高测试61592020年中考数学模拟试题(一)1612020年中考数学模拟试题(二)165第一部分 数与代数第一章 数与式 第1讲 实数A 级 基础题1.在-1,0,1,2这四个数中,既不是正数也不是负数的是( )A .-1B .0C .1D .22.(2012年浙江湖州)-2的绝对值等于( )A .2B .-2 C.12 D .±23.(2011年贵州安顺)-4的倒数的相反数是( )A .-4B .4C .-14 D.144.(2012年广东深圳)-3的倒数是( )A .3B .-3 C.13 D .-135.无理数-3的相反数是( )A .- 3 B. 3 C.13 D .-136.下列各式,运算结果为负数的是( )A .-(-2)-(-3)B .(-2)×(-3)C .(-2)2D .(-3)-37.某天最低气温是-5 ℃,最高气温比最低气温高8 ℃,则这天的最高气温是________℃.8.如果x -y <0,那么x 与y 的大小关系是x ____y (填“<”或“>”).9.(2012年山东泰安)已知一粒米的质量是0.000 021千克,这个数字用科学记数法表示为( )A .21×10-4千克B .2.1×10-6千克C .2.1×10-5千克D .2.1×10-4千克10.(2012年河北)计算:|-5|-(2-3)0+6×1132⎛⎫- ⎪⎝⎭+(-1)2.B 级 中等题11.(2012年贵州毕节)实数a ,b 在数轴上的位置如图X1-1-1所示,下列式子错误的是( )图X1-1-1 A.a<b B.|a|>|b|C.-a<-b D.b-a>012.北京时间2011年3月11日,日本近海发生9.0级强烈地震.本次地震导致地球当天自转快了0.000 001 6秒.这里的0.000 001 6秒请你用科学记数法表示________________________秒.13.(2011年江苏盐城)将1,2,3,6按下列方式排列.若规定(m,n)表示第m排从左向右第n个数,则(5,4)与(14,5)表示的两数之积是________.14.计算:|-3 3|-2cos30°-2-2+(3-π)0.15.(2012年浙江绍兴)计算:-22+-113⎛⎫⎪⎝⎭-2cos60°+|-3|.C 级 拔尖题16.如图X1-1-2,矩形ABCD 的顶点A ,B 在数轴上,CD =6,点A 对应的数为-1,则点B 所对应的数为__________.图X1-1-217.(2012年广东)观察下列等式:第1个等式:a 1=11×3=12×113⎛⎫- ⎪⎝⎭; 第2个等式:a 2=13×5=12×1135⎛⎫- ⎪⎝⎭; 第3个等式:a 3=15×7=12×1157⎛⎫- ⎪⎝⎭; 第4个等式:a 4=17×9=12×1179⎛⎫- ⎪⎝⎭; …请解答下列问题:(1)按以上规律列出第5个等式:a 5=______________=______________;(2)用含有n 的代数式表示第n 个等式:a n =______________=______________(n 为正整数);(3)求a 1+a 2+a 3+a 4+…+a 100的值.选做题18.(2012年浙江台州)请你规定一种适合任意非零实数a ,b 的新运算“a ⊕b ”,使得下列算式成立:1⊕2=2⊕1=3,(-3)⊕(-4)=(-4)⊕(-3)=-76,(-3)⊕5=5⊕(-3)=-415,…你规定的新运算a ⊕b =________(用a ,b 的一个代数式表示).第2讲 代数式A 级 基础题1.某省初中毕业学业考试的同学约有15万人,其中男生约有a 万人,则女生约有( )A .(15+a )万人B .(15-a )万人C .15a 万人 D.15a 万人2.若x =m -n ,y =m +n ,则xy 的值是( )A .2 mB .2 nC .m +nD .m -n3.若x =1,y =12,则x 2+4xy +4y 2的值是( )A .2B .4 C.32 D.124.(2011年江苏盐城)已知a -b =1,则代数式2a -2b -3的值是( )A .-1B .1C .-5D .55.(2012年浙江宁波)已知实数x ,y 满足x -2+(y +1)2=0,则x -y 等于( )A .3B .-3C .1D .-16.(2011年河北)若|x -3|+|y +2|=0,则x +y 的值为__________.7.(2010年湖北黄冈)通信市场竞争日益激烈,某通信公司的手机市话费标准按原标准每分钟降低a 元后,再次下调了20%,现在收费标准是每分钟b 元,则原收费标准每分钟是____________元.8.已知代数式2a 3b n +1与-3a m +2b 2是同类项,2m +3n =________.9.如图X1-2-1,点A ,B 在数轴上对应的实数分别为m ,n ,则A ,B 间的距离是________(用含m ,n 的式子表示).图X1-2-110.(2011年浙江丽水)已知2x -1=3,求代数式(x -3)2+2x (3+x )-7的值.B 级 中等题11.(2012年云南)若a 2-b 2=14,a -b =12,则a +b 的值为( )A .-12 B.12 C .1 D .212.(2012年浙江杭州)化简m 2-163m -12得____________;当m =-1时,原式的值为________.13.(2011年浙江宁波)把四张形状大小完全相同的小长方形卡片[如图X1-2-1(1)]不重叠的放在一个底面为长方形(长为m cm ,宽为n cm)的盒子底部[如图X1-2-1(2)],盒子底面未被卡片覆盖的部分用阴影表示,则图X1-2-1(2)中两块阴影部分的周长和是( )图X1-2-1A .4m cmB .4n cmC .2(m +n ) cmD .4(m -n ) cm14.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a +b +c 就是完全对称式.下列三个代数式:①(a -b )2;②ab +bc +ca ;③a 2b +b 2c +c 2a .其中是完全对称式的是( )A .①②B .①③C .②③D .①②③15.(2012年浙江丽水)已知A =2x +y ,B =2x -y ,计算A 2-B 2.C 级 拔尖题16.(2012年山东东营)若3x =4,9y =7,则3x -2y 的值为( ) A.47 B.74 C .-3 D.2717.一组按一定规律排列的式子(a ≠0):-a 2,a 52,-a 83,a 114,…,则第n 个式子是________(n 为正整数).选做题18.(2010年广东深圳)已知,x =2 009,y =2 010,求代数式x -y x ÷22xy y x x ⎛⎫-- ⎪⎝⎭的值.19.(2012年贵州遵义)如图X1-2-3,从边长为(a +1)cm 的正方形纸片中剪去一个边长为(a -1)cm 的正方形(a >1),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则该矩形的面积是( )图X1-2-3A .2 cm 2B .2a cm 2C .4a cm 2D .(a 2-1)cm 2第3讲 整式与分式第1课时 整式A 级 基础题1.(2012年江苏南通)计算(-x )2·x 3的结果是( )A .x 5B .-x 5C .x 6D .-x 62.(2012年四川广安)下列运算正确的是( )A .3a -a =3B .a 2·a 3=a 5C .a 15÷a 3=a 5(a ≠0)D .(a 3)3=a 63.(2012年广东汕头)下列运算正确的是( )A .a +a =a 2B .(-a 3)2=a 5C .3a ·a 2=a 3D .(2a )2=2a 24.(2012年上海)在下列代数式中,系数为3的单项式是( )A .xy 2B .x 3+y 3C .x 3yD .3xy5.(2012年江苏杭州)下列计算正确的是( )A .(-p 2q )3=-p 5q 3B .(12a 2b 3c )÷(6ab 2)=2abC .3m 2÷(3m -1)=m -3m 2D .(x 2-4x )x -1=x -46.(2011年山东日照)下列等式一定成立的是( )A .a 2+a 3=a 5B .(a +b )2=a 2+b 2C .(2ab 2)3=6a 3b 6D .(x -a )(x -b )=x 2-(a +b )x +ab7.(2012年陕西)计算(-5a 3)2的结果是( )A .-10a 5B .10a 6C .-25a 5D .25a 68.(2011年湖北荆州)将代数式x 2+4x -1化成(x +p )2+q 的形式为( )A .(x -2)2+3B .(x +2)2-4C .(x +2)2-5D .(x +2)2+49.计算: (1)(3+1)(3-1)=____________;(2)(2012年山东德州)化简:6a 6÷3a 3=________.(3)(-2a )·3114a ⎛⎫- ⎪⎝⎭=________. 10.化简:(a +b )2+a (a -2b ).B 级 中等题11.已知一个多项式与3x2+9x的和等于3x2+4x-1,则这个多项式是()A.-5x-1 B.5x+1C.13x-1 D.13x+112.(2011年安徽芜湖)如图X1-3-1,从边长为(a+4) cm的正方形纸片中剪去一个边长为(a+1) cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为().图X1-3-1 A.(2a2+5a) cm2B.(3a+15) cm2C.(6a+9) cm2D.(6a+15) cm213.(2012年湖南株洲)先化简,再求值:(2a-b)2-b2,其中a=-2,b=3.14.(2012年吉林)先化简,再求值:(a+b)(a-b)+2a2,其中a =1,b= 2.15.(2012年山西)先化简,再求值:(2x+3)(2x-3)-4x(x-1)+(x-2)2,其中x=- 3.C级拔尖题16.(2012年四川宜宾)将代数式x2+6x+2化成(x+p)2+q的形式为()A.(x-3)2+11 B.(x+3)2-7C.(x+3)2-11 D.(x+2)2+417.若2x-y+|y+2|=0,求代数式[(x-y)2+(x+y)(x-y)]÷2x 的值.选做题18.观察下列算式:①1×3-22=3-4=-1;②2×4-32=8-9=-1;③3×5-42=15-16=-1;④__________________________.……(1)请你按以上规律写出第4个算式;(2)把这个规律用含字母的式子表示出来;(3)你认为(2)中所写出的式子一定成立吗?并说明理由.19.(2012年江苏苏州)若3×9m×27m=311,则m的值为____________.第2课时因式分解A级基础题1.(2012年四川凉山州)下列多项式能分解因式的是()A.x2+y2B.-x2-y2C.-x2+2xy-y2D.x2-xy+y22.(2012年山东济宁)下列式子变形是因式分解的是()A.x2-5x+6=x(x-5)+6B.x2-5x+6=(x-2)(x-3)C.(x-2)(x-3)=x2-5x+6D.x2-5x+6=(x+2)(x+3)3.(2012年内蒙古呼和浩特)下列各因式分解正确的是()A.-x2+(-2)2=(x-2)(x+2)B.x2+2x-1=(x-1)C.4x2-4x+1=(2x-1)2D.x2-4x=x(x+2)(x-2)4.(2011年湖南邵阳)因式分解:a2-b2=______.5.(2012年辽宁沈阳)分解因式:m2-6m+9=______.6.(2012年广西桂林)分解因式:4x2-2x=________.7.(2012年浙江丽水)分解因式:2x2-8=________.8.(2012年贵州六盘水)分解因式:2x2+4x+2=________.9.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)[如图X1-3-2(1)],把余下的部分拼成一个矩形[如图X1-3-2(2)],根据两个图形中阴影部分的面积相等,可以验证()图X1-3-2A .(a +b )2=a 2+2ab +b 2B .(a -b )2=a 2-2ab +b 2C .a 2-b 2=(a +b )(a -b )D .(a +2b )(a -b )=a 2+ab -2b 210.若m 2-n 2=6且m -n =3,则m +n =________.B 级 中等题11.对于任意自然数n ,(n +11)2-n 2是否能被11整除,为什么?12.(2012年山东临沂)分解因式:a -6ab +9ab 2=____________. 13.(2012年四川内江)分解因式:ab 3-4ab =______________. 14.(2012年山东潍坊)分解因式:x 3-4x 2-12x =______________. 15.(2012年江苏无锡)分解因式(x -1)2-2(x -1)+1的结果是( )A .(x -1)(x -2)B .x 2C .(x +1)2D .(x -2)216.(2012年山东德州)已知:x =3+1,y =3-1,求x 2-2xy +y 2x 2-y 2的值.C 级 拔尖题17.(2012年江苏苏州)若a =2,a +b =3,则a 2+ab =________.18.(2012年湖北随州)设a 2+2a -1=0,b 4-2b 2-1=0,且1-ab 2≠0,则52231ab b a a ⎛⎫+-+ ⎪⎝⎭=________.选做题19.分解因式:x 2-y 2-3x -3y =______________.20.已知a ,b ,c 为△ABC 的三边长,且满足a 2c 2-b 2c 2=a 4-b 4,试判断△ABC 的形状.21.(2012年贵州黔东南州)分解因式x 3-4x =______________________.第3课时 分式A 级 基础题1.(2012年浙江湖州)要使分式1x 有意义,x 的取值范围满足( ) A .x =0 B .x ≠0 C .x >0 D .x <02.(2012年四川德阳)使代数式x2x -1有意义的x 的取值范围是( )A .x ≥0B .x ≠12C .x ≥0且x ≠12 D .一切实数3.在括号内填入适当的代数式,是下列等式成立: (1)2ab =( )2xa 2b 2(2)a 3-ab 2(a -b )2=a ( )a -b4.约分:56x 3yz 448x 5y 2z =____________; x 2-9x 2-2x -3=____________.5.已知a -b a +b=15,则ab =__________.6.当x =______时,分式x 2-2x -3x -3的值为零.7.(2012年福建漳州)化简:x 2-1x +1÷x 2-2x +1x 2-x.8.(2012年浙江衢州)先化简x 2x -1+11-x,再选取一个你喜欢的数代入求值.9.先化简,再求值:x -2x 2-4-xx +2,其中x =2.10.(2012年山东泰安)化简:222mm m m ⎛⎫- ⎪+-⎝⎭÷m m 2-4=____________________.B 级 中等题11.若分式x -1(x -1)(x -2)有意义,则x 应满足的条件是( )A .x ≠1B .x ≠2C .x ≠1且x ≠2D .以上结果都不对12.先化简,再求值:234211x x x +⎛⎫- ⎪--⎝⎭÷x +2x 2-2x +1.13.(2011年湖南常德)先化简,再求值. 2212111x x x x ⎛⎫-++ ⎪+-⎝⎭÷x -1x +1,其中x =2.14.(2012年四川资阳)先化简,再求值:a -2a 2-1÷2111a a a -⎛⎫-- ⎪+⎝⎭,其中a 是方程x 2-x =6的根.C 级 拔尖题 15.先化简再求值:ab +a b 2-1+b -1b 2-2b +1,其中b -2+36a 2+b 2-12ab =0.选做题16.已知x 2-3x -1=0,求x 2+1x 2的值.17.(2012年四川内江)已知三个数x ,y ,z 满足xy x +y =-2,yzz +y=34,zx z +x =-34,则xyzxy +yz +zx 的值为____________.第4讲 二次根式A 级 基础题1.下列二次根式是最简二次根式的是( )A.12 B. 4 C.3 D.8 2.下列计算正确的是( ) A.20=2 10 B.2·3= 6 C.4-2= 2 D.(-3)2=-33.若a <1,化简(a -1)2-1=( ) A .a -2 B .2-a C .a D .-a4.(2012年广西玉林)计算:3 2-2=( ) A .3 B. 2 C .2 2 D .4 25.如图X1-3-3,数轴上A 、B 两点表示的数分别为-1和3,点B 关于点A 的对称点为C ,则点C 所表示的数为( )图X1-3-3A.-2- 3 B.-1- 3C.-2+ 3 D.1+ 36.(2011年湖南衡阳)计算:12+3=__________.7.(2011年辽宁营口)计算18-2 12=________.8.已知一个正数的平方根是3x-2和5x+6,则这个数是__________.9.若将三个数-3,7,11表示在数轴上,其中能被如图X1-3-4所示的墨迹覆盖的数是__________.图X1-3-4 10.(2011年四川内江)计算:3tan30°-(π-2 011)0+8-|1-2|.B 级 中等题11.(2011年安徽)设a =19-1,a 在两个相邻整数之间,则这两个整数是( )A .1和2B .2和3C .3和4D .4和512.(2011年山东烟台)如果(2a -1)2=1-2a ,则( )A .a <12B .a ≤12C .a >12D .a ≥1213.(2011年浙江)已知m =1+2,n =1-2,则代数式m 2+n 2-3mn 的值为( ) A .9 B .±3 C .3 D .514.(2012年福建福州)若20n 是整数,则正整数n 的最小值为________.15.(2011年贵州贵阳)如图X1-3-5,矩形OABC 的边OA 长为2,边AB 长为1,OA 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )图X1-3-5A .2.5B .2 2 C. 3 D. 5 16.(2011年四川凉山州)计算:(sin30°)-2+0352⎛⎫ ⎪-⎝⎭-|3-18|+83×(-0.125)3.C 级 拔尖题17.(2012年湖北荆州)若x -2y +9与|x -y -3|互为相反数,则x +y 的值为( )A .3B .9C .12D .2718.(2011年山东日照)已知x ,y 为实数,且满足1+x -(y -1)1-y =0,那么x 2 011-y 2 011=______.选做题19.(2011年四川凉山州)已知y =2x -5+5-2x -3,则2xy 的值为( )A .-15B .15C .-152 D.152第二章 方程与不等式 第1讲 方程与方程组第1课时 一元一次方程与二元一次方程组A 级 基础题1.(2012年山东枣庄)“五一”节期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2 080元.设该电器的成本价为x 元,根据题意,下面所列方程正确的是( )A .x (1+30%)×80%=2 080B .x ×30%×80%=2 080C .2 080×30%×80%=xD .x ×30%=2 080×80%2.(2012年广西桂林)二元一次方程组 3.24x y x +=⎧⎨=⎩的解是( )A. 3,0x y =⎧⎨=⎩B.1,2x y =⎧⎨=⎩ C.5,2x y =⎧⎨=-⎩ D.2,1x y =⎧⎨=⎩3.(2012年湖南衡阳)为了丰富同学们的课余生活,体育委员小强到体育用品商店购羽毛球拍和乒乓球拍,若购1副羽毛球拍和1副乒乓球拍共需50元,小强一共用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍.若设每副羽毛球拍为x 元,每副乒乓球拍为y 元,列二元一次方程组得( )A.50,6()320x y x y +=⎧⎨+=⎩ B.50,610320x y x y +=⎧⎨+=⎩ C.50,6320x y x y +=⎧⎨+=⎩ D.50,106320x y x y +=⎧⎨+=⎩4.(2012年贵州铜仁)铜仁市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵,则根据题意列出方程正确的是( )A .5(x +21-1)=6(x -1)B .5(x +21)=6(x -1)C .5(x +21-1)=6xD .5(x +21)=6x5.已知关于x 的方程3x -2m =4的解是x =m ,则m 的值是________.6.方程组2,21x y x y -=⎧⎨+=⎩的解是__________.7.(2012年湖南湘潭)湖南省2011年赴台旅游人数达7.6万人.我市某九年级一学生家长准备中考后全家3人去台湾旅游,计划花费20 000元.设每人向旅行社缴纳x 元费用后,共剩5 000元用于购物和品尝台湾美食.根据题意,列出方程为__________________.8.(2012年江苏苏州)我国是一个淡水资源严重缺乏的国家.有关数据显示,中国人均淡水资源占有量仅为美国人均淡水资源占有量的15,中、美两国人均淡水资源占有量之和为13 800 m 3.问中、美两国人均淡水资源占有量各为多少(单位:m 3)?B 级 中等题9.(2012年贵州黔西南)已知-2x m -1y 3与12x n y m +n 是同类项,那么(n -m )2 012=______.10.(2012年山东菏泽)已知2,1x y =⎧⎨=⎩是二元一次方程组的解8,1,mx ny nx my +=⎧⎨-=⎩则2m -n 的算术平方根为( )A .± 2 B.2 C .2 D .411.(2012年湖北咸宁)某宾馆有单人间和双人间两种房间,入住3个单人间和6个双人间共需1 020元,入住1个单人间和5个双人间共需700元,则入住单人间和双人间各5个共需____________元.12.(2011年内蒙古呼和浩特)解方程组:4(1)3(1)2,2.23x y y x y--=--⎧⎪⎨+=⎪⎩C 级 拔尖题13.如图X2-1-1,直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1,b ).(1)求b 的值.(2)不解关于x ,y 的方程组1,,y x y mx n =+⎧⎨=+⎩请你直接写出它的解.(3)直线l 3:y =nx +m 是否也经过点P ?请说明理由.图X2-1-114.(2012年江西南昌)小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤.妈妈说:“今天买这两样菜共花了45元,上月买同重量的这两样菜只要36元”;爸爸说:“报纸上说了萝卜的单价上涨50%,排骨的单价上涨20%”;小明说:“爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少?”请你通过列方程(组)求解这天萝卜、排骨的单价(单位:元/斤).选做题15.(2011年上海)解方程组:222,230.x y x xy y -=⎧⎨--=⎩16.若关于x ,y 的二元一次方程组5,9x y k x y k +=⎧⎨-=⎩的解也是二元一次方程2x +3y =6的解,则k 的值为( )A .-34 B.34 C.43 D .-43第2课时 分式方程A 级 基础题1.(2012年广西北海)分式方程7x -8=1的解是( )A .-1B .1C .8D .152.(2012年浙江丽水)把分式方程2x +4=1x化为一元一次方程时,方程两边需同乘以( )A .xB .2xC .x +4D .x (x +4)3.(2012年湖北随州)分式方程10020+v =6020-v的解是( )A .v =-20B .v =5C .v =-5D .v =204.(2012年四川成都)分式方程32x =1x -1的解为( )A .x =1B .x =2C .x =3D .x =4 5.(2012年四川内江)甲车行驶30千米与乙车行驶40千米所用的时间相同.已知乙车每小时比甲车多行驶15千米,设甲车的速度为x 千米/时,依题意列方程正确的是( )A.30x =40x -15B.30x -15=40xC.30x =40x +15D.30x +15=40x6.方程 x 2-1x +1=0的解是________.7.(2012年江苏连云港)今年6月1日起,国家实施了《中央财政补贴条例》,支持高效节能电器的推广使用.某款定速空调在条列实施后,每购买一台,客户可获财政补贴200元,若同样用1万元所购买的此款空调台数,条例实施后比条例实施前多10%,则条例实施前此款空调的售价为 __________元.8.(2012年山东德州)解方程:2x 2-1+1x +1=1.9.(2012年江苏泰州)当x 为何值时,分式3-x 2-x 的值比分式1x -2的值大3?10.(2012年北京)据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1 000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同.求一片国槐树叶一年的平均滞尘量.B 级 中等题11.(2012年山东莱芜)对于非零实数a ,b ,规定a ⊕b =1b -1a .若2⊕(2x -1)=1,则x 的 值为( )A.56B.54C.32 D .-1612.(2012年四川巴中)若关于x 的方程2x -2+x +m 2-x=2有增根,则m 的值是________.13.(2012年山东菏泽改编)我市某校为了创建书香校园,去年购进一批图书.经了解,科普书的单价比文学书的单价多4元,用12 000元购进的科普书与用8 000元购进的文学书的本数相等.C 级 拔尖题15.(2012年江苏无锡)某开发商进行商铺促销,广告上写着如下条款:投资者购买商铺后,必须由开发商代为租赁5年,5年期满后由开发商以比原商铺标价高20%的价格进行回购.投资者可在以下两种购铺方案中做出选择:方案一:投资者按商铺标价一次性付清铺款,每年可以获得的租金为商铺标价的10%;方案二:投资者按商铺标价的八五折一次性付清铺款,2年后每年可以获得的租金为商铺标价的10%,但要缴纳租金的10%作为管理费用.(1)请问:投资者选择哪种购铺方案,5年后所获得的投资收益率更高?为什么(注:投资收益率=投资收益实际投资额×100%)?(2)对同一标价的商铺,甲选择了购铺方案一,乙选择了购铺方案二,那么5年后两人获得的收益将相差5万元.问:甲、乙两人各投资了多少万元?选做题14.(2012年山东日照)某学校后勤人员到一家文具店给九年级的同学购买考试用文具包,文具店规定一次购买400个以上,可享受8折优惠.若给九年级学生每人购买一个,不能享受8折优惠,需付款1 936元;若多买88个,就可享受8折优惠,同样只需付款1 936元.请问该学校九年级学生有多少人?15.(2012年湖北黄冈)某服装厂设计了一款新式夏装,想尽快制作8 800 件投入市场,服装厂有A,B两个制衣车间,A车间每天加工的数量是B车间的1.2 倍,A,B两车间共同完成一半后,A车间出现故障停产,剩下全部由B车间单独完成,结果前后共用20 天完成,求A,B两车间每天分别能加工多少件.第3课时一元二次方程A级基础题1.(2011年江苏泰州)一元二次方程x2=2x的根是()A.x=2B.x=0C.x1=0,x2=2 D.x1=0,x2=-22.方程x2-4=0的根是()A.x=2B.x=-2C.x1=2,x2=-2D.x=43.(2011年安徽)一元二次方程x(x-2)=2-x的根是()A.-1B.2C.1和2D.-1和24.(2012年贵州安顺)已知1是关于x的一元二次方程(m-1)x2+x+1=0的一个根,则m的值是()A.1 B.-1C.0 D.无法确定5.(2012年湖北武汉)若x1,x2是一元二次方程x2-3x+2=0的两根,则x1+x2的值是()A.-2 B.2C.3 D.16.(2012年湖南常德)若一元二次方程x 2+2x +m =0有实数解,则m 的取值范围是( )A .m ≤-1B .m ≤1C .m ≤4D .m ≤127.(2012年江西南昌)已知关于x 的一元二次方程x 2+2x -a =0有两个相等的实数根,则a 的值是( )A .1B .-1 C.14 D .-14 8.(2012年上海)如果关于x 的一元二次方程x 2-6x +c =0(c 是常数)没有实根,那么c 的取值范围是__________.9.(2011年山东滨州)某商品原售价为289元,经过连续两次降价后售价为256元,设平均每次降价的百分率为x, 可列方程为________________________________________________________________________.10.解方程: (x -3)2+4x (x -3)=0.B 级 中等题11.(2012年内蒙古呼和浩特)已知:x 1,x 2是一元二次方程x 2+2ax +b =0的两个根,且x 1+x 2=3,x 1x 2=1,则a ,b 的值分别是( )A .a =-3,b =1B .a =3,b =1C .a =-32,b =-1D .a =-32,b =112.(2011年山东潍坊)关于x 的方程x 2+2kx +k -1=0的根的情况描述正确的是( )A .k 为任何实数,方程都没有实数根B .k 为任何实数,方程都有两个不相等的实数根C .k 为任何实数,方程都有两个相等的实数根D.根据k的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种13.(2011年山东德州)若x1,x2是方程x2+x-1=0的两个实数根,则x21+x22=__________.14.(2011年江苏苏州)已知a,b是一元二次方程x2-2x-1=0的两个实数根,则代数式(a-b)(a+b-2)+ab的值等于________.15.(2012年山西)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克.后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克.若该专卖店销售这种核桃要想平均每天获利2 240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?16.(2012年湖南湘潭)如图X2-1-2,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用25 m),现在已备足可以砌50 m长的墙的材料,试设计一种砌法,使矩形花园的面积为300 m2.X2-1-2C 级 拔尖题17.(2012年湖北襄阳)如果关于x 的一元二次方程kx 2-2k +1x +1=0有两个不相等的实数根,那么k 的取值范围是( )A .k <12B .k <12且k ≠0C .-12≤k <12D .-12≤k <12且k ≠0选做题18.(2012年江苏南通)设α,β是一元二次方程x 2+3x -7=0的两个根,则α2+4α+β=________.19.三角形的每条边的长都是方程x 2-6x +8=0的根,则三角形的周长是________.第2讲 不等式与不等式组A 级 基础题1.不等式3x -6≥0的解集为( )A .x >2B .x ≥2C .x <2D .x ≤22.(2012年湖南长沙)一个不等式组的解集在数轴上表示出来如图X2-2-1,则下列符合条件的不等式组为( )图X2-2-1A.2,1x x >⎧⎨≤-⎩ B.2,1x x <⎧⎨>-⎩ C.2,1x x <⎧⎨≥-⎩ D.2,1x x <⎧⎨≤-⎩ 3.函数y =kx +b 的图象如图X2-2-2,则当y <0时,x 的取值范围是( )A .x <-2B .x >-2C .x <-1D .x >-1图X2-2-2图X2-3-34.直线l 1:y =k 1x +b 与直线l 2:y =k 2x +c 在同一平面直角坐标系中的图象如图X2-2-3,则关于x 的不等式k 1x +b <k 2x +c 的解集为( )A .x >1B .x <1C .x >-2D .x <-25.(2012年湖南湘潭)不等式组11,3x x ->⎧⎨<⎩的解集为__________. 6.若关于x 的不等式组2,x x m ⎧⎨⎩>>的解集是x >2,则m 的取值范围是________.7.(2012年江苏扬州)在平面直角坐标系中,点P (m ,m -2)在第一象限内,则m 的取值范围是________.8.不等式组14,2124x x +⎧≤⎪⎨⎪-<⎩的整数解是____________. 9.(2012年江苏苏州)解不等式组:322,813(1).x x x x -<+⎧⎨-≥--⎩10.某校志愿者团队在重阳节购买了一批牛奶到“夕阳红”敬老院慰问孤寡老人.如果给每个老人分5盒,则剩下38盒,如果给每个老人分6盒,则最后一个老人不足5盒,但至少分得1盒.(1)设敬老院有x名老人,则这批牛奶共有多少盒(用含x的代数式表示)?(2)该敬老院至少有多少名老人?最多有多少名老人?B级中等题11.(2012年湖北荆门)已知点M(1-2m,m-1)关于x轴的对称点在第一象限,则m的取值范围在数轴上表示正确的是()12.(2012年湖北恩施)某大型超市从生产基地购进一批水果,运输过程中损失10%,假设不计超市其他费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高( )A .40%B .33.4%C .33.3%D .30%13.(2012年湖北黄石)若关于x 的不等式组233,35x x x a >-⎧⎨->⎩有实数解,则实数a 的取值范围是____________.14.为了对学生进行爱国主义教育,某校组织学生去看演出,有甲、乙两种票,已知甲、乙两种票的单价比为4∶3,单价和为42元.(1)甲乙两种票的单价分别是多少元?(2)学校计划拿出不超过750元的资金,让七年级一班的36名学生首先观看,且规定购买甲种票必须多于15张,有哪几种购买方案?C 级 拔尖题15.试确定实数a 的取值范围,使不等式组1023544(1)33x x a x x a +⎧+>⎪⎪⎨+⎪+>++⎪⎩恰有两个整数解.16.(2012年四川德阳)今年南方某地发生特大洪灾,政府为了尽快搭建板房安置灾民,给某厂下达了生产A 种板材48 000 m 2和B 种板材24 000 m 2的任务.(1)如果该厂安排210人生产这两种板材,每人每天能生产A 种板材60 m 2或B 种板材40 m 2.请问:应分别安排多少人生产A 种板材和B 种板材,才能确保同时完成各自的生产任务?(2)某灾民安置点计划用该厂生产的两种板材搭建甲、乙两种规格的板房共400间,已知建设一间甲型板房和一间乙型板房所需板材及安置人数如下表所示:板房 A 种板材/m 2 B 种板材/m 2 安置人数/人甲型 108 61 12乙型 156 51 10问这400间板房最多能安置多少灾民?选做题17.若关于x ,y 的二元一次方程组31,33x y a x y +=+⎧⎨+=⎩的解满足x +y <2,则实数a 的取值范围为______.18.(2011年福建泉州)某电器商城“家电下乡”指定型号冰箱、彩电的进价和售价如下表所示:类别 冰箱 彩电 进价(元/台) 2 320 1 900售价(元/台) 2 420 1 980(1)按国家政策,农民购买“家电下乡”产品享受售价13%的政府补贴.农民田大伯到该商场购买了冰箱、彩电各一台,可以享受多少元的补贴?(2)为满足农民需求,商场决定用不超过85 000元采购冰箱、彩电共40台,且冰箱的数量不少于彩电数量的56.若使商场获利最大,请你帮助商场计算应该购进冰箱、彩电各多少台?最大获利是多少?第三章函数第1讲函数与平面直角坐标系A级基础题1.(2012年山东荷泽)点(-2,1)在平面直角坐标系中所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.(2012年四川成都)在平面直角坐标系xOy中,点P(-3,5)关于y轴的对称点的坐标为()A.(-3,-5) B.(3,5)C.(3,-5) D.(5,-3)3.已知y轴上的点P到x轴的距离为3,则点P的坐标为() A.(3,0) B.(0,3)C.(0,3)或(0,-3) D.(3,0)或(-3,0)4.(2012年浙江绍兴)在如图X3-1-1所示的平面直角坐标系内,画在透明胶片上的▱ABCD,点A的坐标是(0,2).现将这张胶片平移,使点A落在点A′(5,-1)处,则此平移可以是()图X3-1-1 A.先向右平移5个单位,再向下平移1个单位B.先向右平移5个单位,再向下平移3个单位C.先向右平移4个单位,再向下平移1个单位D.先向右平移4个单位,再向下平移3个单位5.(2011年山东枣庄)在平面直角坐标系中,点P(-2,x2+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.(2012年湖北孝感)如图X3-1-2,△ABC在平面直角坐标系中第二象限内,顶点A的坐标是(-2,3),先把△ABC向右平移4个单位得到△A1B1C1,再作△A1B1C1关于x轴的对称图形△A2B2C2,则顶点A2的坐标是()图X3-1-2 A.(-3,2) B.(2,-3)C.(1,-2) D.(3,-1)7.(2012年贵州毕节)如图X3-1-3,在平面直角坐标系中,以原点O为中心,将△ABO扩大到原来的2倍,得到△A′B′O.若点A 的坐标是(1,2),则点A′的坐标是()图X3-1-3 A.(2,4) B.(-1,-2)C.(-2,-4) D.(-2,-1)8.(2011年浙江衢州)小亮同学骑车上学,路上要经过平路、下坡、上坡和平路(如图X3-1-4).若小亮上坡、平路、下坡的速度分别为v1、v2、v3,且v1<v2<v3,则小亮同学骑车上学时,离家的路程s与所用时间t的函数关系图象可能是()图X3-1-49.(2012年山东潍坊)甲、乙两位同学用围棋子做游戏,如图X3-1-5,现轮到黑棋下子,黑棋下一子后白棋下一子,使黑棋的5个棋子组成轴对称图形,白棋的5个棋子也成轴对称图形.则下列下子方法不正确的是()[说明:棋子的位置用数对表示,如A点在(6,3)]图X3-1-5 A.黑(3,7);白(5,3) B.黑(4,7);白(6,2)C.黑(2,7);白(5,3) D.黑(3,7);白(2,6)10.(2011年山东德州)点P(1,2)关于原点的对称点P′的坐标为__________.B级中等题11.(2012年四川泸州)将点P(-1,3)向右平移2个单位长度得到点P′,则点P′的坐标为________.12.(2012年四川内江)已知点A(1,5),B(3,-1),点M在x轴上,当AM-BM最大时,点M的坐标为____________.13.(2012年四川达州)将边长分别为1,2,3,4,…,19,20的正方形置于直角坐标系第一象限,如图X3-1-6中的方式叠放,则按图示规律排列的所有阴影部分的面积之和为__________.图X3-1-6图X3-1-7 14.(2012年江苏南京)在平面直角坐标系中,规定把一个三角形先沿着x轴翻折,再向右平移两个单位称为一次变换.如图X3-1-7,已知等边三角形ABC的顶点B、C的坐标分别是(-1,-1),(-3,-1),把△ABC经过连续九次这样的变换得到△A′B′C′,则点A 的对应点A′的坐标是__________.15.(2012年吉林)在平面直角坐标系中,点A关于y轴的对称点为点B,点A关于原点O的对称点为点C.。
中考数学复习第三单元函数及其图象 课时训练一次函数的图象与性质
课时训练(十)一次函数的图象与性质(限时:40分钟)|夯实基础|1.对于正比例函数y=-2x,当自变量x的值增加1时,函数y的值增加()A.-2B.2C.-D.2.[2019·扬州]若点P在一次函数y=-x+4的图象上,则点P一定不在()A.第一象限B.第二象限C.第三象限D.第四象限3.关于直线l:y=kx+k(k≠0),下列说法不正确的是()A.点(0,k)在l上B.l经过定点(-1,0)C.当k>0时,y随x的增大而增大D.l经过第一、二、三象限4.[2019·梧州]直线y=3x+1向下平移2个单位,所得直线的解析式是()A.y=3x+3B.y=3x-2C.y=3x+2D.y=3x-15.[2019·大庆]正比例函数y=kx(k≠0)的函数值y随着x的增大而减小,则一次函数y=x+k的图象大致是()图K10-16.[2019·荆门]如果函数y=kx+b(k,b是常数)的图象不经过第二象限,那么k,b应满足的条件是 ()A.k≥0且b≤0B.k>0且b≤0C.k≥0且b<0D.k>0且b<07.[2019·苏州]若一次函数y=kx+b(k,b为常数,且k≠0)的图象过点A(0,-1),B(1,1),则不等式kx+b>1的解集为()A.x<0B.x>0C.x<1D.x>18.在同一平面直角坐标系中,直线y=4x+1与直线y=-x+b的交点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限9.[2018·贵阳] 一次函数y=kx-1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标为()A.(-5,3)B.(1,-3)C.(2,2)D.(5,-1)10.[2019·聊城]如图K10-2,在Rt△ABO中,∠OBA=90°,A(4,4),点C在边AB上,且=,点D为OB的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形PDBC周长最小的点P的坐标为 ()图K10-2A.(2,2)B.,C.,D.(3,3)11.[2019·天津]直线y=2x-1与x轴的交点坐标为.12.[2018·眉山] 已知点A(x1,y1)、B(x2,y2)在直线y=kx+b上,且直线经过第一、二、四象限,当x1<x2时,y1与y2的大小关系为.13.[2018·邵阳] 如图K10-3所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是x= .图K10-314.[2019·鄂州]在平面直角坐标系中,点P(x0,y0)到直线Ax+By+C=0的距离公式为:d=,则点P(3,-3)到直线y=-x+的距离为.15.[2019·滨州]如图K10-4,直线y=kx+b(k<0)经过点A(3,1),当kx+b<x时,x的取值范围为.图K10-416.[2017·杭州] 在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1,0)和(0,2).(1)当-2<x≤3时,求y的取值范围;(2)已知点P(m,n)在该函数的图象上,且m-n=4,求点P的坐标.17.[2017·连云港] 如图K10-5,在平面直角坐标系xOy中,过点A(-2,0)的直线交y轴正半轴于点B,将直线AB绕着点O顺时针旋转90°后,分别与x轴、y轴交于点D,C.(1)若OB=4,求直线AB的函数关系式;(2)连接BD,若△ABD的面积是5,求点B的运动路径长.图K10-5|拓展提升|18.[2019·江西] 如图K10-6,在平面直角坐标系中,点A,B的坐标分别为-,0,,1,连接AB,以AB为边向上作等边三角形ABC.(1)求点C的坐标;(2)求线段BC所在直线的解析式.图K10-619.[2019·北京节选] 在平面直角坐标系xOy中,直线l:y=kx+1(k≠0)与直线x=k,直线y=-k分别交于点A,B,直线x=k与直线y=-k交于点C.(1)求直线l与y轴的交点坐标.(2)横、纵坐标都是整数的点叫做整点.记线段AB,BC,CA围成的区域(不含边界)为W.当k=2时,结合函数图象,求区域W内的整点个数.【参考答案】1.A2.C[解析]∵-1<0,4>0,∴一次函数y=-x+4的图象经过第一、二、四象限,即不经过第三象限.∵点P在一次函数y=-x+4的图象上,∴点P一定不在第三象限.故选C.3.D4.D[解析]直线y=3x+1向下平移2个单位,所得直线的解析式是:y=3x+1-2=3x-1.故选D.5.A[解析]因为正比例函数y=kx(k≠0)的函数值y随着x的增大而减小,所以k<0,所以一次函数y=x+k的函数值y随着x增大而增大,图象与y轴交于负半轴,故选A.6.A[解析]y=kx+b(k,b是常数)的图象不经过第二象限,当k=0,b≤0时成立;当k>0,b≤0时成立.综上所述,k≥0,b≤0.故选A.7.D[解析]如图所示:不等式kx+b>1的解集为x>1.故选D.8.D[解析]因为直线y=4x+1只经过第一、二、三象限,所以其与直线y=-x+b的交点不可能在第四象限.故选D.9.C[解析]∵一次函数y=kx-1的图象经过点P,且y的值随x值的增大而增大,∴k>0.由y=kx-1得k=.分别将选项中坐标代入该式,只有当(2,2)时k==>0.10.C[解析]由题可知:A(4,4),D(2,0),C(4,3),点D关于AO的对称点D'坐标为(0,2),设l D'C:y=kx+b,将D'(0,2),C(4,3)代入,可得y=x+2,解方程组得∴P,.故选C.11.,012.y1>y2[解析]∵一次函数图象经过第二、四象限,∴k<0,y随x的增大而减小,∴当x1<x2时,y1>y2.13.2[解析]考查一元一次方程与一次函数的关系,即关于x的方程ax+b=0的解就是一次函数y=ax+b的图象与x轴交点(2,0)的横坐标2.14.[解析]∵y=-x+,∴2x+3y-5=0,∴点P(3,-3)到直线y=-x+的距离为:=.故答案为.15.x>3[解析]当x=3时,x=×3=1,∴点A在一次函数y=x的图象上,且一次函数y=x的图象经过第一、三象限,∴当x>3时,一次函数y=x的图象在y=kx+b的图象上方,即kx+b<x.16.解:(1)由题意知y=kx+2,∵图象过点(1,0),∴0=k+2,解得k=-2,∴y=-2x+2.当x=-2时,y=6.当x=3时,y=-4.∵k=-2<0,∴函数值y随x的增大而减小,∴-4≤y<6.(2)根据题意知--解得-∴点P的坐标为(2,-2).17.解:(1)因为OB=4,且点B在y轴正半轴上, 所以点B的坐标为(0,4).设直线AB的函数关系式为y=kx+b,将点A(-2,0),B(0,4)的坐标分别代入,得-解得所以直线AB的函数关系式为y=2x+4.(2)设OB=m,因为△ABD的面积是5,所以AD·OB=5.所以(m+2)m=5,即m2+2m-10=0.解得m=-1+或-1-(舍去).因为∠BOD=90°,所以点B的运动路径长为×2π×(-1+)=-π.18.解:(1)如图所示,作BD⊥x轴于点D,∵点A,B的坐标分别为-,0,,1,∴AD=--=,BD=1,∴AB===2,tan∠BAD===, ∴∠BAD=30°.∵△ABC是等边三角形,∴∠BAC=60°,AC=AB=2,∴∠CAD=∠BAD+∠BAC=30°+60°=90°,∴点C的坐标为-,2.(2)设线段BC所在直线的解析式为y=kx+b,∵点C,B的坐标分别为-,2,,1,∴-解得-∴线段BC所在直线的解析式为y=-x+.19.解:(1)令x=0,则y=1,∴直线l与y轴交点坐标为(0,1).(2)当k=2时,直线l:y=2x+1,把x=2代入直线l,则y=5,∴A(2,5).把y=-2代入直线l得:-2=2x+1,∴x=-,∴B-,-2,C(2,-2),∴区域W内的整点有(0,-1),(0,0),(1,-1),(1,0),(1,1),(1,2)共6个点.。
2019年中考数学总复习第三单元函数及其图像课时训练11一次函数的图像与性质练习
课时训练(十一)一次函数的图像与性质(限时:30分钟)|夯实基础|1.一次函数y=-2x+1的图像不经过()A.第一象限B.第二象限C.第三象限D.第四象限2.[2018·深圳]把函数y=x的图像向上平移3个单位,下列在该平移后的直线上的点是()A.(2,2)B.(2,3)C.(2,4)D.(2,5)3.[2018·遵义]如图K11-1,直线y=kx+3经过点(2,0),则关于x的不等式kx+3>0的解集是()图K11-1A.x>2B.x<2C.x≥2D.x≤24.[2018·陕西]如图K11-2,在矩形AOBC中,A(-2,0),B(0,1).若正比例函数y=kx的图像经过点C,则k的值为()图K11-2A.-B.C.-2D.25.[2018·宜宾]已知点A是直线y=x+1上一点,其横坐标为-,若点B与点A关于y轴对称,则点B的坐标为.6.[2018·连云港]如图K11-3,一次函数y=kx+b的图像与x轴,y轴分别相交于A,B两点,☉O经过A,B两点,已知AB=2,则的值为.图K11-37.[2017·十堰]如图K11-4,直线y=kx和y=ax+4交于A(1,k),则不等式组kx-6<ax+4<kx的解集为.图K11-48.[2018·扬州]如图K11-5,在等腰直角三角形ABO中,∠A=90°,点B的坐标为(0,2),若直线l:y=mx+m(m≠0)把△ABO分成面积相等的两部分,则m的值为.9.如图K11-6,直线l上有一点P1(2,1),将点P1先向右平移1个单位,再向上平移2个单位得到点P2,点P2恰好在直线l上.(1)写出点P2的坐标;(2)求直线l所表示的一次函数的表达式;(3)若将点P2先向右平移3个单位,再向上平移6个单位得到像点P3.请判断点P3是否在直线l上,并说明理由.图K11-610.如图K11-7,在平面直角坐标系xOy中,过点A(-6,0)的直线l1与直线l2:y=2x相交于点B(m,4).(1)求直线l1的表达式;(2)过动点P(n,0)且垂直于x轴的直线与l1,l2的交点分别为C,D,当点C位于点D上方时,写出n的取值范围.11.[2017·泰州]平面直角坐标系xOy中,点P的坐标为(m+1,m-1).(1)试判断点P是否在一次函数y=x-2的图像上,并说明理由;(2)如图K11-8,一次函数y=-x+3的图像与x轴、y轴分别相交于点A,B,若点P在△AOB的内部,求m的取值范围.图K11-8|拓展提升|12.[2018·陕西]若直线l1经过点(0,4),l2经过点(3,2),且l1与l2关于x轴对称,则l1与l2的交点坐标为()A.(-2,0)B.(2,0)C.(-6,0)D.(6,0)13.[2018·滨州]如果规定[x]表示不大于x的最大整数,例如[2.3]=2,那么函数y=x-[x]的图像为()图K11-914.[2018·河北]如图K11-10,直角坐标系xOy中,一次函数y=-x+5的图像l1分别与x,y轴交于A,B两点,正比例函数的图像l2与l1交于点C(m,4).(1)求m的值及l2的解析式;(2)求S△AOC-S△BOC的值;(3)一次函数y=kx+1的图像为l3,且l1,l2,l3不能围成三角形,直接写出k的值.图K11-1015.[2018·张家界]阅读理解题.在平面直角坐标系xOy 中,点P (x 0,y 0)到直线Ax+By+C=0(A 2+B 2≠0)的距离公式为:d=.例如,求点P (1,3)到直线4x+3y-3=0的距离. 解:由直线4x+3y-3=0知:A=4,B=3,C=-3.所以P (1,3)到直线4x+3y-3=0的距离为:d==2.根据以上材料,解决下列问题:(1)求点P 1(0,0)到直线3x-4y-5=0的距离; (2)若点P 2(1,0)到直线x+y+C=0的距离为,求实数C 的值.参考答案1.C2.D3.B4.A5.,[解析]把x=-代入y=x+1得:y=,∴点A 的坐标为-,,∵点B 和点A 关于y 轴对称,∴B ,,故答案为,.6.-[解析] ∵OA=OB ,∴∠OBA=45°,在Rt △OAB 中,OA=AB ·sin45°=2×=,即点A (,0),同理可得点B(0,),∵一次函数y=kx+b的图像经过点A,B,∴解得:=-.7.1<x<[解析]将A(1,k)代入y=ax+4得a+4=k,将a+4=k代入不等式组kx-6<ax+4<kx中得(a+4)x-6<ax+4<(a+4)x,解不等式(a+4)x-6<ax+4,得x<,解不等式ax+4<(a+4)x,得x>1,所以不等式组的解集是1<x<.8.[解析]如图:∵y=mx+m=m(x+1),∴函数y=mx+m的图像一定过点(-1,0),当x=0时,y=m,∴点C的坐标为(0,m),由题意可得,直线AB的解析式为y=-x+2,解得∵直线l:y=mx+m(m≠0)把△ABO分成面积相等的两部分,∴=×,解得:m=或m=(舍去),故答案为.9.解:(1)P2(3,3).(2)设直线l所表示的一次函数的表达式为y=kx+b(k≠0),∵点P1(2,1),P2(3,3)在直线l上,∴解得∴直线l所表示的一次函数的表达式为y=2x-3.(3)点P3在直线l上.由题意知点P3的坐标为(6,9),∵当x=6时,y=2×6-3=9,∴点P3在直线l上.10.解:(1)∵点B在直线l2上,∴4=2m,∴m=2.设l1的表达式为y=kx+b,由A,B两点均在直线l1上得到解得∴直线l1的表达式为y=x+3.(2)由图可知,C,D(n,2n),因为点C在点D的上方,所以+3>2n,解得n<2.11.解:(1)把x=m+1代入y=x-2,得y=m-1,故点P在一次函数y=x-2的图像上.(2)解方程组得易知直线y=x-2与x轴的交点为(2,0),因为点P在△AOB的内部,所以2<m+1<,解得1<m<.12.B[解析]设直线l1的解析式为y1=kx+4,∵l1与l2关于x轴对称,∴直线l2的解析式为y2=-kx-4,∵l2经过点(3,2),∴-3k-4=2.∴k=-2.∴两条直线的解析式分别为y1=-2x+4,y2=2x-4,联立可解得:∴交点坐标为(2,0),故选择B.13.A14.解:(1)将点C的坐标代入l1的解析式,得-m+5=4,解得m=2.∴C的坐标为(2,4).设l2的解析式为y=ax.将点C的坐标代入得4=2a,解得a=2, ∴l2的解析式为y=2x.(2)对于y=-x+5,当x=0时,y=5,∴B(0,5).当y=0时,x=10,∴A(10,0).∴S△AOC=×10×4=20,S△BOC=×5×2=5,∴S△AOC-S△BOC=20-5=15.(3)∵l1,l2,l3不能围成三角形,∴l1∥l3或l2∥l3或l3过点C.当l3过点C时,4=2k+1,∴k=,∴k的值为-或2或.15.解:(1)根据题意,得d==1.(2)根据题意,得=,即|C+1|=2.∴C+1=±2.解得C1=1,C2=-3.。
中考数学总复习第三单元函数课时训练二次函数的图象和性质二
课时训练(十五)二次函数的图象和性质(二)(限时:50分钟)|夯实基础|1.[2018·毕节]将抛物线y=x2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为()A.y=(x+2)2-5B.y=(x+2)2+5C.y=(x-2)2-5D.y=(x-2)2+52.已知抛物线y=x2-x-1与x轴的一个交点为(m,0),则代数式m2-m+2018的值为()A.2015B.2016C.2017D.20193.[2017·枣庄]已知函数y=ax2-2ax-1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象经过点(-1,1)B.当a=-2时,函数图象与x轴没有交点C.若a<0,函数图象的顶点始终在x轴的下方D.若a>0,则当x≥1时,y随x的增大而增大4.若抛物线y=x2+2x+m-1与x轴有交点,则m的取值范围是()A.m≤2B.m<-2C.m>2D.0<m≤25.若二次函数y=x2+mx图象的对称轴是直线x=2,则关于x的方程x2+mx=5的解为()A.x1=1,x2=5B.x1=1,x2=3C.x1=1,x2=-5D.x1=-1,x2=56.二次函数y=ax2+bx的图象如图K15-1,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为()图K15-1A.-3B.3C.-6D.97.已知二次函数y=ax2+bx+c的图象如图K15-2所示,则|a-b+c|+|2a+b|=()图K15-2A.a+bB.a-2bC.a-bD.3a8.若二次函数y=x2+2x+m的图象与x轴没有公共点,则m的取值范围是.9.[2018·淮安]将二次函数y=x2-1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是.10.[2017·株洲]如图K15-3,二次函数y=ax2+bx+c图象的对称轴在y轴的右侧,其图象与x轴交于点A(-1,0),点C(x2,0),且与y轴交于点B(0,-2),小强得到以下结论:①0<a<2;②-1<b<0;③c=-1;④当|a|=|b|时,x2>√5-1.以上结论中,正确的结论序号是.图K15-311.已知抛物线y=(x-m)2-(x-m),其中m是常数.(1)求证:不论m为何值,该抛物线与x轴一定有两个公共点..(2)若该抛物线的对称轴为直线x=52①求该抛物线所对应的函数表达式;②把该抛物线沿y轴向上平移多少个单位后,得到的抛物线与x轴只有一个公共点?|拓展提升|12.[2018·永州]如图K15-4①,抛物线的顶点A的坐标为(1,4),抛物线与x轴相交于B,C两点,与y轴交于点E(0,3).(1)求抛物线的表达式.(2)已知点F(0,-3),在抛物线的对称轴上是否存在一点G,使得EG+FG最小?如果存在,求出点G的坐标;如果不存在,请说明理由.(3)如图K15-4②,连接AB,若点P是线段OE上的一动点,过点P作线段AB的垂线,分别与线段AB、抛物线相交于点M,N(点M,N都在抛物线对称轴的右侧),当MN最大时,求△PON的面积.图K15-413.[2018·怀化]如图K15-5,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的表达式和直线AC的表达式.(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标.(3)试探究:在抛物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.图K15-5参考答案1.A2.D[解析] ∵抛物线y=x2-x-1与x轴的一个交点为(m,0),∴m2-m-1=0,∴m2-m=1,∴m2-m+2018=1+2018=2019.3.D[解析] 将a=1代入原函数表达式,令x=-1,求出y=2,由此得出A选项不符合题意;将a=-2代入原函数表达式,得y=-2x2+4x-1,令y=0,根据根的判别式Δ=8>0,可得出当a=-2时,函数图象与x轴有两个不同的交点,即B选项不符合题意;利用公式法找出二次函数图象的顶点坐标,令其纵坐标小于零,可得出a的取值范围,由此可得出C选项不符合题意;利用公式法找出二次函数图象的对称轴,结合二次函数的性质,即可得出D选项符合题意.4.A[解析] 由题意可知Δ=4-4(m-1)≥0,∴m≤2,故选A.=2,解得m=-4,∴关于x的方程x2+mx=5可化为5.D[解析] ∵二次函数y=x2+mx图象的对称轴是直线x=2,∴-m2x2-4x-5=0,即(x+1)(x-5)=0,解得x1=-1,x2=5.6.B[解析] ∵抛物线的开口向上,顶点的纵坐标为-3,=-3,即b2=12a.∴a>0,-m24m∵关于x的一元二次方程ax2+bx+m=0有实数根,∴Δ=b2-4am≥0,即12a-4am≥0,即12-4m≥0,解得m≤3,∴m的最大值为3., 7.D[解析] 根据二次函数y=ax2+bx+c的图象可知,a>0,又抛物线过坐标原点,∴c=0.∵抛物线的对称轴为直线x=-m2m <1,解得-2a<b<0,∴|a-b+c|=a-b,|2a+b|=2a+b,∴|a-b+c|+|2a+b|=a-b+2a+b=3a.∴0<-m2m8.m>1[解析] 根据抛物线y=x2+2x+m与x轴没有公共点可知,方程x2+2x+m=0没有实数根,∴判别式Δ=22-4×1×m<0,∴m>1. 9.y=x 2+210.①④ [解析] 由图象可知抛物线开口向上,∴a>0,由抛物线经过A (-1,0),B (0,-2),对称轴在y 轴的右侧可得{m -m +m =0,m =−2,-m 2m >0,由此可得a-b=2,b<0,故a=2+b<2,综合可知0<a<2.将a=b+2代入0<a<2中,得0<b+2<2,可得-2<b<0. 当|a|=|b|时,因为a>0,b<0,故有a=-b.又a-b=2,可得a=1,b=-1,故原函数为y=x 2-x-2,当y=0时,即有x 2-x-2=0,解得x 1=-1,x 2=2,x 2=2>√5-1. 故答案为①④.11.解:(1)证明:y=(x-m )2-(x-m )=x 2-(2m+1)x+m 2+m , ∵Δ=(2m+1)2-4(m 2+m )=1>0,∴不论m 为何值,该抛物线与x 轴一定有两个公共点.(2)①∵x=--(2m +1)2=52,∴m=2,∴抛物线所对应的函数表达式为y=x 2-5x+6.②设抛物线沿y 轴向上平移k 个单位后,得到的抛物线与x 轴只有一个公共点,则平移后抛物线所对应的函数表达式为y=x 2-5x+6+k.∵抛物线y=x 2-5x+6+k 与x 轴只有一个公共点, ∴Δ=25-4(6+k )=0,∴k=14,即把该抛物线沿y 轴向上平移14个单位后,得到的抛物线与x 轴只有一个公共点.12.解:(1)设所求二次函数的表达式为y=a (x-1)2+4,∵抛物线与y 轴交于点E (0,3),∴a (0-1)2+4=3,解得a=-1,∴所求二次函数的表达式为y=-(x-1)2+4,即y=-x 2+2x+3.(2)存在一点G ,使得EG+FG 最小. ∵抛物线的顶点A 的坐标为(1,4),∴与点E (0,3)关于抛物线对称轴x=1成轴对称的点为E'(2,3).如图①,连接E'F ,设直线E'F 的函数表达式为y=kx+b , ∴{2m +m =3,m =−3,解得{m =3,m =−3,即y=3x-3, 当x=1时,y=0,即点G (1,0),使得EG+FG 最小.(3)如图②,连接AN ,BN ,过点N 作NT ∥y 轴交AB ,x 轴分别于点S ,T. 在y=-x 2+2x+3中,当y=0时,x 1=-1,x 2=3, 则B (3,0).∵A (1,4),B (3,0),∴AB=2√5. 设直线AB 的函数表达式为y=mx+t ,∴{m +m =4,3m +m =0,解得{m =−2,m =6,即y=-2x+6. 设N (n ,-n 2+2n+3),则S (n ,-2n+6),∴NS=-n 2+4n-3. ∵S △ABN =S △ANS +S △BNS ,∴12AB ·MN=12NS ·(3-1),∴MN=√55(-n 2+4n-3)=-√55(n 2-4n+3)=-√55(n-2)2+√55,∴当n=2,即N (2,3)时,MN 最大,为√55.∵PN ⊥AB ,∴设直线PN 的函数表达式为y=12x+c ,且N (2,3),∴c=2,则y=12x+2, ∴点P (0,2),∴S △OPN =12OP ·x N =12×2×2=2.13.[解析] (1)利用待定系数法求抛物线和直线的表达式.(2)根据轴对称确定最短路线问题,作点D 关于y 轴的对称点D 1,连接BD 1,BD 1与y 轴的交点即为所求的点M ,然后求出直线BD 1的表达式,再求解即可.(3)可分两种情况(①以C 为直角顶点,②以A 为直角顶点)讨论,然后根据两直线垂直的关系求出P 点所在直线的表达式,将直线和抛物线的表达式联立求出点P 的坐标.解:(1)将点A (-1,0)和B (3,0)的坐标代入抛物线y=ax 2+2x+c 中,可得{m -2+m =0,9m +6+m =0,解得{m =−1,m =3,∴抛物线的表达式为y=-x 2+2x+3. 令x=0,则y=3,∴点C 的坐标为(0,3). 设直线AC 的表达式为y=kx+b , 则{-m +m =0,m =3,解得{m =3,m =3.∴直线AC 的表达式为y=3x+3.(2)如图,作点D 关于y 轴的对称点D 1,连接BD 1交y 轴于点M ,则点M 即为所求.由抛物线表达式可得D 点的坐标为(1,4),则D 1的坐标为(-1,4). 设直线BD 1的表达式为y=k 1x+b 1,则{3m 1+m 1=0,-m 1+m 1=4,解得{m 1=−1,m 1=3,则直线BD 1的表达式为y=-x+3,令x=0可得y=3,则点M 的坐标为(0,3). (3)存在.如图①,当△ACP 以点C 为直角顶点时,易得直线CP 的表达式为y=-13x+3. 由{m =−13m +3,m =−m 2+2m +3,得{m 1=0,m 1=3(舍去){m 2=73,m 2=209, ∴P 点坐标为73,209.如图②,当△ACP 是以点A 为直角顶点时,易得直线AP 的表达式为y=-13x-13.由{m =−13m -13,m =−m 2+2m +3,得{m 1=−1,m 1=0(舍去){m 2=103,m 2=−139, ∴P 点坐标为103,-139. 综上,符合条件的点P 的坐标为73,209或103,-139.。
2023年中考数学总复习第三章《函数》第四节 反比例函数及其应用
2023年中考数学总复习第三章《函数》第四节反比例函数及其应用一、选择题1.[易错][2020·河南]若点A(-1,y1),B(2,y2),C(3,y3)在反比例函数y=-的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y2>y3>y1C.y1>y3>y2D.y3>y2>y12.[2020·德州]函数y=和y=-kx+2(k≠0)在同一平面直角坐标系中的大致图象可能是()3.[2020·石家庄模拟]已知反比例函数y=的图象如图所示,下列说法正确的是()A.k>0B.y随x的增大而减小C.若矩形OABC面积为2,则k=-2D.若图象上两个点的坐标分别是M(-2,y1),N(-1,y2),则y1>y2(第3题图)(第7题图)4.[2020·河北模拟]已知点A(2,3)在反比例函数y=(k≠0)的图象上,当x>-2时,则y的取值范围是()A.y>-3B.y<-3或y>0C.y<-3D.y>-3或y>05.[2020·保定一模]点(a,b)是反比例函数y=-的图象上一点,若a<2,则b的值不可能是()A.-2B.-C.2D.36.[2020·石家庄模拟]已知甲、乙两地相距30千米,汽车从甲地匀速行驶到乙地,则汽车行驶时间t(单位:小时)关于行驶速度v(单位:千米/时)的函数图象为()7.[2020·河北模拟]如图,在平面直角坐标系中,反比例函数y=kx的图象经过ABCO的顶点A,点A在第一象限,点B,C的坐标分别为(0,3),(-4.5,0).若点P是该反比例函数图象上的一点,且OA=OP,点P的坐标不可能是()A.(3,4.5)B.(-3,-4.5)C.(-4.5,-3)D.(2.7,5)8.[重点][2020·唐山二模]如图,反比例函数y=的图象经过点A(-1,4),直线y=-x+b(b≠0)与双曲线y=在第二、四象限分别相交于P,Q两点,与x轴、y轴分别相交于C,D两点,连接OQ,(第8题图)当S△ODQ=S△OCD时,b的值是()A.-1B.-C.D.-二、填空题9.[2020·益阳]反比例函数y=的图象经过点P(-2,3),则k=____.10.[2020·河北模拟]直线y=5-x与双曲线y=(x>0)的图象交于A,B两点,设A点的坐标为(m,n),则边长分别为m,n的矩形的面积为______,周长为______.11.[2020·陕西]在平面直角坐标系中,点A(-2,1),B(3,2),C(-6,m)分别在三个不同的象限.若反比例函数y=(k≠0)的图象经过其中两点,则m的值为______.。
2020年中考数学 考前大专题复习:函数(解析版)
2020中考数学考前大专题复习:函数(含答案)一、选择题(本大题共6道小题)1. 二次函数y=x2-ax+b的图象如图所示,对称轴为直线x=2,下列结论不正确的是()A.a=4B.当b=-4时,顶点的坐标为(2,-8)C.当x=-1时,b>-5D.当x>3时,y随x的增大而增大2. 正比例函数y=kx(k≠0)的函数值y随着x的增大而减小,则一次函数y=x+k的图象大致是 ()3. 如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3,…,组成一条平滑的曲线,点P从原点O出发沿这条曲线向右运动,速度为每秒π2个单位长度,则第2019秒时,点P的坐标是()A.(2018,0)B.(2019,1)C.(2019,-1)D.(2020,0)4. 如图,☉O的半径为2,双曲线的解析式分别为y=1x和y=-1x,则阴影部分的面积为()A.4πB.3πC.2πD.π5. 如图,在Rt△ABO中,∠OBA=90°,A(4,4),点C在边AB上,且ACCB=13,点D为OB的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形PDBC 周长最小的点P的坐标为()A.(2,2)B.52,52C.83,83D.(3,3)6. 如图,函数y={1x(x>0),-1x(x<0)的图象所在坐标系的原点是()A.点MB.点NC.点PD.点Q二、填空题(本大题共6道小题)7. 元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之”,如图K11-3是两匹马行走路程s关于行走时间t的函数图象,则两图象交点P的坐标是.图K11-38. 如图,已知直线y=kx+b过A(-1,2),B(-2,0)两点,则0≤kx+b≤-2x的解集为.9. 已知抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=1,其部分图象如图所示,下列说法中:①b>0;②a-b+c<0;③b+2c>0;④当-1<x<0时,y>0,正确的是(填写序号).10. 如图,矩形OABC的顶点A,C分别在y轴、x轴的正半轴上,D为AB的中点,反比例函数y=kx(k>0)的图象经过点D,且与BC交于点E,连接OD,OE,DE,若△ODE的面积为3,则k的值为.11. 如图,平行于x轴的直线与函数y=k1x(k1>0,x>0),y=k2x(k2>0,x>0)的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点.若△ABC的面积为4,则k1-k2的值为.12. 如图,抛物线y=-14x2+12x+2与x轴相交于A,B两点,与y轴相交于点C,点D在抛物线上,且CD∥AB.AD与y轴相交于点E,过点E的直线PQ平行于x 轴,与拋物线相交于P,Q两点,则线段PQ的长为.三、解答题(本大题共5道小题)13. 已知二次函数y=2x2+bx+1的图象过点(2,3).(1)求该二次函数的表达式;(2)若点P(m,m2+1)也在该二次函数的图象上,求点P的坐标.14. 某商店销售一种商品,经市场调查发现,该商品的周销售量y(件)是售价x(元/件)的一次函数,其售价、周销售量、周销售利润w(元)的三组对应值如下表: 售价x(元/件) 50 60 80周销售量y(件) 100 80 40周销售利润w(元)1000 1600 1600注:周销售利润=周销售量×(售价-进价)(1)①求y关于x的函数解析式(不要求写出自变量的取值范围);②该商品进价是元/件;当售价是元/件时,周销售利润最大,最大利润是元;(2)由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求m的值.15. 如图①,在平面直角坐标系xOy中,已知抛物线y=ax2-2ax-8a与x轴相交于A,B两点(点A在点B的左侧),与y轴交于点C(0,-4).(1)点A的坐标为,点B的坐标为,线段AC的长为,抛物线的解析式为.(2)点P是线段BC下方抛物线上的一个动点.如果在x轴上存在点Q,使得以点B,C,P,Q为顶点的四边形是平行四边形,求点Q的坐标.①16. 如图,已知抛物线y=ax2+bx+4(a≠0)的对称轴为直线x=3,抛物线与x轴相交于A,B两点,与y轴相交于点C,已知B点的坐标为(8,0).(1)求抛物线的解析式;(2)点M为线段BC上方抛物线上的一点,点N为线段BC上的一点,若MN∥y 轴,求MN的最大值;(3)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.17. 如图,在直角坐标系中,抛物线经过点A(0,4)、B(1,0)、C(5,0),其对称轴与x轴相交于点M.(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点P,使△P AB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)连接AC,在直线AC下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.2020中考数学考前大专题复习:函数-答案一、选择题(本大题共6道小题)1. 【答案】C[解析]选项A,由对称轴为直线x=2可得--a2=2,∴a=4,正确;选项B,∵a=4,b=-4,∴代入解析式可得,y=x2-4x-4,当x=2时,y=-8,∴顶点的坐标为(2,-8),正确;选项C,由图象可知,x=-1时,y<0,即1+4+b<0,∴b<-5,∴错误;选项D,由图象可以看出当x>3时,在对称轴的右侧,y随x的增大而增大,正确,故选C.2. 【答案】A[解析]因为正比例函数y=kx(k≠0)的函数值y随着x的增大而减小,所以k<0,所以一次函数y=x+k的函数值y随着x增大而增大,图象与y轴交于负半轴,故选A.3. 【答案】C[解析]点P运动一个半圆用时为2π2÷π2=2(秒).∵2019=1009×2+1,∴2019秒时,P在第1010个半圆的中点处,∴此时点P坐标为(2019,-1).故选C.4. 【答案】C[解析]根据反比例函数y=1x,y=-1x及圆的中心对称性和轴对称性知,将二、四象限的阴影部分旋转到一、三象限对应部分,显然所有阴影部分的面积之和等于一、三象限内两个扇形的面积之和,也就相当于一个半径为2的半圆的面积.∴S阴影=12π×22=2π.故选C.5. 【答案】C[解析]由题可知:A(4,4),D(2,0),C(4,3),点D关于AO的对称点D'坐标为(0,2),设l D'C:y=kx+b,将D'(0,2),C(4,3)代入,可得y=14x+2,解方程组{y=14x+2,y=x,得{x=83,y=83.∴P83,83.故选C.6. 【答案】A[解析]∵函数y=1x(x>0)与y=-1x(x<0)的图象关于y轴对称,∴直线MP是y轴所在直线,∵两支曲线分别位于一、二象限,∴直线MN是x轴所在直线,∴坐标原点为M.二、填空题(本大题共6道小题)7. 【答案】(32,4800)[解析]根据题意,得{s=240(t-12),s=150t,解得{t=32,s=4800.故答案为(32,4800).8. 【答案】-2≤x≤-1[解析]如图,直线OA的解析式为y=-2x,当-2≤x≤-1时,0≤kx+b≤-2x.9. 【答案】①③④[解析]根据图象可得:a<0,c>0,对称轴:直线x=-b2a=1,∴b=-2a.∵a<0,∴b>0,故①正确;把x=-1代入y=ax 2+bx +c ,得y=a -b +c.由抛物线的对称轴是直线x=1,且过点(3,0),可得当x=-1时,y=0,∴a -b +c=0,故②错误;当x=1时,y=a +b +c>0.∵b=-2a ,∴-b2+b +c>0,即b +2c>0,故③正确; 由图象可以直接看出④正确.故答案为:①③④.10. 【答案】4[解析]过点D 作DH ⊥x 轴于H 点,交OE 于M ,∵反比例函数y=kx (k>0)的图象经过点D ,E ,∴S △ODH =S △ODA =S △OEC =k2,∴S △ODH -S △OMH =S △OEC -S △OMH ,即S △OMD =S 四边形EMHC , ∴S △ODE =S 梯形DHCE =3,设D (m ,n ),∵D 为AB 的中点,∴B (2m ,n ).∵反比例函数y=kx (k>0)的图象经过点D ,E ,∴E 2m ,n2,∴S 梯形DHCE =12n 2+nm=3, ∴k=mn=4.11. 【答案】8[解析]过点B 作BE ⊥x 轴,垂足为点E ,过点A 作AF ⊥x 轴,垂足为点F ,直线AB 交y 轴于点D ,因为△ABC 与△ABE 同底等高, 所以S △ABE =S △ABC =4, 因为四边形ABEF 为矩形, 所以S 矩形ABEF =2S △ABE =8, 因为k 1=S 矩形OF AD ,k 2=S 矩形OEBD , 所以k 1-k 2=S 矩形OF AD -S 矩形OEBD =S 矩形ABEF =8.12. 【答案】2√5 [解析]当y=0时,-14x 2+12x +2=0,解得x 1=-2,x 2=4,∴点A 的坐标为(-2,0).当x=0时,y=-14x 2+12x +2=2,∴点C 的坐标为(0,2). 当y=2时,-14x 2+12x +2=2,解得x 1=0,x 2=2, ∴点D 的坐标为(2,2).设直线AD 的解析式为y=kx +b (k ≠0), 将A (-2,0),D (2,2)代入y=kx +b ,得{-2k +b =0,2k +b =2,解得{k =12,b =1,∴直线AD 的解析式为y=12x +1.当x=0时,y=12x +1=1,∴点E 的坐标为(0,1). 当y=1时,-14x 2+12x +2=1,解得x 1=1-√5,x 2=1+√5, ∴点P 的坐标为(1-√5,1),点Q 的坐标为(1+√5,1), ∴PQ=1+√5-(1-√5)=2√5.三、解答题(本大题共5道小题)13. 【答案】解:(1)∵二次函数y=2x 2+bx +1的图象过点(2,3), ∴3=8+2b +1,∴b=-3,∴该二次函数的表达式为y=2x 2-3x +1. (2)∵点P (m ,m 2+1)在该二次函数的图象上, ∴m 2+1=2m 2-3m +1,解得m 1=0,m 2=3, ∴点P 的坐标为(0,1)或(3,10).14. 【答案】解:(1)①设y 与x 的函数关系式为y=kx +b ,依题意,有{50k +b =100,60k +b =80,解得{k =-2,b =200,∴y 与x 的函数关系式是y=-2x +200..②设进价为t 元/件,由题意,1000=100×(50-t ),解得t=40,∴进价为40元/件; 周销售利润w=(x -40)y=(x -40)(-2x +200)=-2(x -70)2+1800,故当售价是70元/件时,周销售利润最大,最大利润是1800元.故答案为40,70,1800.(2)依题意有,w=(-2x +200)(x -40-m )=-2x 2+(2m +280)x -8000-200m=-2x -m+14022+12m 2-60m +1800.∵m>0,∴对称轴x=m+1402>70,∵-2<0,∴抛物线开口向下, ∵x ≤65,∴w 随x 的增大而增大,∴当x=65时,w 有最大值(-2×65+200)(65-40-m ), ∴(-2×65+200)(65-40-m )=1400, ∴m=5.15. 【答案】[解析](1)令y=0求得点A ,B 坐标,再由点C 坐标求得抛物线的解析式及线段AC 的长;(2)过点C 作x 轴的平行线交抛物线于点P ,通过分类讨论确定点Q 坐标. 解:(1)点A 的坐标为(-2,0),点B 的坐标为(4,0); 线段AC 的长为2√5, 抛物线的解析式为:y=12x 2-x -4. (2)过点C 作x 轴的平行线交抛物线于点P .∵点C (0,-4),∴-4=12x 2-x -4,解得x 1=2,x 2=0,∴P (2,-4).∴PC=2,若四边形BCPQ 为平行四边形,则 BQ=CP=2,∴OQ=OB +BQ=6,∴Q (6,0).若四边形BPCQ 为平行四边形,则BQ=CP=2, ∴OQ=OB -BQ=2,∴Q (2,0).故以点B ,C ,P ,Q 为顶点的四边形是平行四边形时,Q 点的坐标为(6,0),(2,0).16. 【答案】(1)根据题意得,ab 2 =3,即b =-6a ,则抛物线的解析式为y =ax 2-6ax +4,将B (8,0)代入得,0=64a -48a +4,解得a =-14,b =32,∴抛物线的解析式为y =-14x 2+32x +4;(2)设直线BC 的解析式为y =kx +d ,由抛物线解析式可知:当x =0时,y =4,即点C (0,4),将B (8,0),C (0,4)代入得:804k d d +=⎧⎨=⎩,解得⎩⎪⎨⎪⎧k =-12d =4,∴直线BC 的解析式为y =-12x +4,设点M 的横坐标为x (0<x <8),则点M 的纵坐标为-14x 2+32x +4,点N 的纵坐标为-12x +4,∵点M 在抛物线上,点N 在线段BC 上,MN ∥y 轴,∴MN =-14x 2+32x +4-(-12x +4)=-14x 2+32x +4+12x -4=-14x 2+2x=-14(x -4)2+4,∴当x =4时,MN 的值最大,最大值为4;(3)存在.理由如下:令-14x 2+32x +4=0,解得x 1=-2,x 2=8,∴A (-2,0),又∵C (0,4),由勾股定理得,AC =22+42=25,如解图,过点C 作CD ⊥对称轴于点D ,连接AC .解图∵抛物线对称轴为直线x =3,则CD =3,D (3,4).①当AC =CQ 时,DQ =CQ 2-CD 2=(25)2-32=11,当点Q 在点D 的上方时,点Q 到x 轴的距离为4+11,此时,点Q 1(3,4+11),当点Q 在点D 的下方时,点Q 到x 轴的距离为4-11,此时点Q 2(3,4-11);②当AQ =CQ 时,点Q 为对称轴与x 轴的交点,AQ =5,CQ =32+42=5, 此时,点Q 3(3,0);③当AC =AQ 时,∵AC =25,点A 到对称轴的距离为5,25<5,∴不可能在对称轴上存在Q 点使AC =AQ ,综上所述,当点Q 的坐标为(3,4+11)或(3,4-11)或(3,0)时,△ACQ 为等腰三角形.17. 【答案】(1)设抛物线的解析式为y =a (x -1)(x -5)(a ≠0),把点A (0,4)代入上式,解得a =45,∴y =45(x -1)(x -5)=45x 2-245x +4=45(x -3)2-165,∴抛物线的对称轴是直线x =3;(2)存在,P 点坐标为(3,85).理由如下:如解图①,连接AC 交对称轴于点P ,连接BP ,BA ,解图①∵点B 与点C 关于对称轴对称,∴PB =PC ,∴C △P AB =AB +AP +PB =AB +AP +PC =AB +AC ,∴此时△P AB 的周长最小,设直线AC 的解析式为y =kx +b (k ≠0),把A (0,4),C (5,0)代入y =kx +b 中,得⎩⎨⎧=+=054b k b ,解得,454⎪⎩⎪⎨⎧=-=b k ∴直线AC 的解析式为y =-45x +4,∵点P 的横坐标为3,∴y =-45×3+4=85,∴P 点坐标为(3,85);(3)在直线AC 下方的抛物线上存在点N ,使△NAC 面积最大.如解图②,设N 点的横坐标为t ,此时点N (t ,45t 2-245t +4)(0<t <5). 过点N 作y 轴的平行线,分别交x 轴、AC 于点F 、G ,过点A 作AD ⊥NG ,垂足为点D .解图②由(2)可知直线AC 的解析式为y =-45x +4,把x =t 代入y =-45x +4得y =-45t +4,则G (t ,-45t +4).此时NG =-45t +4-(45t 2-245t +4)=-45t 2+4t ,∵AD +CF =OC =5,∴S △NAC =S △ANG +S △CNG=12NG ·AD +12NG ·CF=12NG ·OC=12×(-45t 2+4t )×5=-2t 2+10t=-2(t -52)2+252,∴当t =52时,△NAC 的面积最大,最大值为252,由t =52,得y =45t 2-245t +4=-3,∴N 点坐标为(52,-3).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年中考数学总复习单元测试三函数试题一、选择题(每小题4分,共32分)1.(2016·娄底)函数y =xx -2的自变量x 的取值范围是( A )A .x ≥0且x≠2B .x ≥0C .x ≠2D .x >22.已知函数y =⎩⎪⎨⎪⎧2x +1(x≥0),4x (x <0),当x =2时,函数值y 为( A )A .5B .6C .7D .83.(2016·苏州)已知点A(2,y 1)、B(4,y 2)都在反比例函数y =kx (k<0)的图象上,则y 1、y 2的大小关系为( B )A .y 1>y 2B .y 1<y 2C .y 1=y 2D .无法比较4.对于函数y =k 2x(k 是常数,k ≠0)的图象,下列说法不正确的是( C ) A .是一条直线 B .过点(1k,k)C .经过一、三象限或二、四象限D .y 随着x 增大而增大5.(2016·新疆)小明的父亲从家走了20分钟到一个离家900米的书店,在书店看了10分钟书后,用15分钟返回家,下列图中表示小明的父亲离家的距离与时间的函数图象是( B )6.如图,已知二次函数y 1=23x 2-43x 的图象与正比例函数y 2=23x 的图象交于点A(3,2),与x 轴交于点B(2,0),若0<y 1<y 2,则x 的取值范围是( C )A .0<x <2B .0<x <3C .2<x <3D .x <0或x >37.(2016·威海)已知二次函数y =-(x -a)2-b 的图象如图所示,则反比例函数y =ab x 与一次函数y =ax +b 的图象可能是( B )8.如图是抛物线y 1=ax 2+bx +c(a≠0)图象的一部分,抛物线的顶点坐标是A(1,3),与x 轴的一个交点是B(4,0),直线y 2=mx +n(m≠0)与抛物线交于A ,B 两点,下列结论:①2a+b =0;②abc>0;③方程ax 2+bx +c =3有两个相等的实数根;④抛物线与x 轴的另一个交点是(-1,0);⑤当1<x <4时,有y 2<y 1.其中正确的是( C )A .①②③B .①③④C .①③⑤D .②④⑤ 二、填空题(每小题4分,共16分)9.(2016·淮安)点A(3,-2)关于x 轴对称的点的坐标是(3,2).10.(2016·广安)若反比例函数y =kx (k≠0)的图象经过点(1,-3),则一次函数y =kx -k(k≠0)的图象经过一、二、四象限.11.以正方形ABCD 两条对角线的交点O 为坐标原点,建立如图所示的平面直角坐标系,双曲线y =3x 经过点D ,则正方形ABCD 的面积是12.12.如图是一座拱桥,当水面宽AB 为12 m 时,桥洞顶部离水面4 m ,已知桥洞的拱形是抛物线,以水平方向为x 轴,建立平面直角坐标系,若选取点A 为坐标原点时的抛物线解析式是y =-19(x -6)2+4,则选取点B 为坐标原点时的抛物线解析式是y =-19(x +6)2+4.三、解答题(共52分)13.(12分)如图,已知反比例函数y =mx 的图象与一次函数y =ax +b 的图象相交于点A(1,4)和点B(n ,-2).(1)求反比例函数和一次函数的解析式;(2)当一次函数的值小于反比例函数的值时,直接写出x 的取值范围.解:(1)∵反比例函数y =mx 的图象过点A(1,4),∴m =4.∴反比例函数解析式为y =4x .∵反比例函数y =4x 过点B(n ,-2),∴4n=-2,即n =-2. ∴B 点坐标为(-2,-2).∵直线y =ax +b 经过点A(1,4)和点B(-2,-2),∴⎩⎪⎨⎪⎧a +b =4,-2a +b =-2.解得⎩⎪⎨⎪⎧a =2,b =2.∴一次函数解析式为y =2x +2. (2)x<-2或0<x<1.14.(12分)小敏上午8:00从家里出发,骑车去一家超市购物,然后从超市返回家中.小敏离家的路程y(米)和所经过的时间x(分)之间的函数图象如图所示.请根据图象回答下列问题: (1)小敏去超市途中的速度是多少?在超市逗留了多长时间? (2)小敏几点几分返回到家?解:(1)小敏去超市途中的速度是3 000÷10=300(米/分), 在超市逗留的时间为40-10=30(分).(2)设返回家时,y 与x 的函数表达式为y =kx +b ,把(40,3 000),(45,2 000)代入,得⎩⎪⎨⎪⎧40k +b =3 000,45k +b =2 000.解得⎩⎪⎨⎪⎧k =-200,b =11 000. ∴y 与x 的函数表达式为y =-200x +11 000. 令y =0,得-200x +11 000=0,解得x =55. ∴小敏8点55分返回到家.15.(14分)某批发商以40元/千克的价格购入了某种水果500千克.据市场预测,该种水果的售价y(元/千克)与保存时间x(天)的函数关系为y =60+2x ,但保存这批水果平均每天将损耗10千克,且最多能保存8天.另外,批发商保存该批水果每天还需40元的费用.(1)若批发商保存1天后将该批水果一次性卖出,则卖出时水果的售价为62元/千克,获得的总利润为10_340元; (2)设批发商将这批水果保存x 天后一次性卖出,试求批发商所获得的总利润w(元)与保存时间x(天)之间的函数关系式;(3)求批发商经营这批水果所能获得的最大利润.解:(2)由题意,得w =(60+2x)(500-10x)-40x -500×40=-20x 2+360x +10 000(0≤x≤8,且x 为整数).(3)w =-20x 2+360x +10 000=-20(x -9)2+11 620.∵0≤x ≤8,x 为整数,当x<9时,w 随x 的增大而增大, ∴当x =8时,w 取最大值,w 最大=11 600. 答:批发商所获利润最大为11 600元.16.(14分)(2015·临沂改编)在平面直角坐标系中,O 为原点,直线y =-2x -1与y 轴交于点A ,与直线y =-x 交于点B ,点B 关于原点的对称点为点C. (1)求过点A 、B 、C 三点的抛物线的解析式;(2)P 为抛物线上一点,它关于原点的对称点为Q.当四边形PBQC 为菱形时,求点P 的坐标.解:(1)由题意,得⎩⎪⎨⎪⎧y =-2x -1,y =-x.解得⎩⎪⎨⎪⎧x =-1,y =1.∴B(-1,1).∵点B 关于原点的对称点为点C ,∴C(1,-1).∵直线y =-2x -1与y 轴交于点A ,∴A(0,-1).设抛物线解析式为y =ax 2+bx +c , ∵抛物线过A ,B ,C ,∴⎩⎪⎨⎪⎧c =-1,a -b +c =1,a +b +c =-1.解得⎩⎪⎨⎪⎧a =1,b =-1,c =-1.∴抛物线解析式为y =x 2-x -1.(2)∵对角线互相垂直平分的四边形为菱形,已知点B 关于原点的对称点为点C ,点P 关于原点的对称点为点Q ,且与BC 垂直的直线为y =x ,∴P(x ,y)需满足⎩⎪⎨⎪⎧y =x ,y =x 2-x -1. 解得⎩⎨⎧x 1=1+2,y 1=1+2,⎩⎨⎧x 2=1-2,y 2=1- 2.∴P 点坐标为(1+2,1+2)或(1-2,1-2).2019-2020年中考数学总复习单元测试二方程与不等式试题一、选择题(每小题4分,共32分) 1.方程3x +2(1-x)=4的解是( C )A .x =25B .x =65C .x =2D .x =12.二元一次方程组⎩⎪⎨⎪⎧x -y =-3,2x +y =0的解是( A )A.⎩⎪⎨⎪⎧x =-1y =2B.⎩⎪⎨⎪⎧x =1y =-2C.⎩⎪⎨⎪⎧x =-1y =-2D.⎩⎪⎨⎪⎧x =-2y =1 3.一元一次不等式2(x +2)≥6的解在数轴上表示为( A )4.下列方程有两个相等的实数根的是( C ) A .x 2+x +1=0 B .4x 2+x +1=0C .x 2+12x +36=0D .x 2+x -2=05.已知等腰三角形的腰和底的长分别是一元二次方程x 2-4x +3=0的根,则该三角形的周长可以是( B ) A .5 B .7 C .5或7 D .10 6.若关于x 的一元一次不等式组⎩⎪⎨⎪⎧x -2m <0,x +m >2有解,则m 的取值范围为( C )A .m >-23B .m ≤23C .m >23D .m ≤-237.某校为了丰富学生的校园生活,准备购买一批陶笛,已知A 型陶笛比B 型陶笛的单价低20元,用2 700元购买A 型陶笛与用4 500元购买B 型陶笛的数量相同,设A 型陶笛的单价为x 元,依题意,下面所列方程正确的是( D ) A.2 700x -20=4 500x B.2 700x =4 500x -20 C.2 700x +20=4 500x D.2 700x =4 500x +208.今年我市计划扩大城区绿地面积,现有一块长方形绿地,它的短边长为60 m ,若将短边增大到与长边相等(长边不变),使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原来增加1 600时.设扩大后的正方形绿地边长为x m ,下面所列方程正确的是( A )A .x(x -60)=1 600B .x(x +60)=1 600C .60(x +60)=1 600D .60(x -60)=1 600 二、填空题(每小题3分,共18分)9.满足不等式2(x +1)>1-x 的最小整数解是0.10.若方程x 2-2x -1=0的两根分别为x 1,x 2,则x 1+x 2-x 1x 2的值为3. 11.分式方程2x =5x +3的解是x =2.12.一元二次方程2x 2-3x +k =0有两个不相等的实数根,则k 的取值范围是k <98.13.某公司成立3年以来,积极向国家上缴利税,由第一年的200万元增长到800万元,则平均每年增长的百分数是100%.14.如果实数x ,y 满足方程组⎩⎪⎨⎪⎧x -y =-12,2x +2y =5,那么x 2-y 2的值为-54. 三、解答题(共50分)15.(6分)解方程组:⎩⎪⎨⎪⎧2x +y =3,①3x -5y =11.②解:由①,得y =3-2x.③把③代入②,得3x -5(3-2x)=11.解得x =2. 将x =2代入③,得y =-1.∴原方程组的解为⎩⎪⎨⎪⎧x =2,y =-1.16.(6分)解方程:1x -3=1-x3-x -2.解:方程两边同乘(x -3),得 1=x -1-2(x -3). 解得x =4.检验:当x =4时,x -3≠0, ∴x =4是原分式方程的解.17.(8分)解不等式组⎩⎪⎨⎪⎧1+x >-2,2x -13≤1,并把解在数轴上表示出来.解:由1+x >-2,得x >-3. 由2x -13≤1,得x≤2. ∴不等式组的解集为-3<x≤2. 解集在数轴上表示如下:18.(8分)先化简,再求值:(x 2-2x +4x -1+2-x)÷x 2+4x +41-x ,其中x 满足x 2-4x +3=0.解:原式=x 2-2x +4+(2-x )(x -1)x -1÷(x +2)21-x=x +2x -1·1-x(x +2)2=-1x +2.解方程x 2-4x +3=0,得(x -1)(x -3)=0, ∴x 1=1,x 2=3.当x =1时,原分式无意义; 当x =3时,原式=-13+2=-15.19.(10分)2016年5月,某县突降暴雨,造成山体滑坡,桥梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,已知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1 000件帐篷所用车辆与乙种货车装运800件帐篷所用车辆相等. (1)求甲、乙两种货车每辆车可装多少件帐篷; (2)如果这批帐篷有1 490件,用甲、乙两种汽车共16辆来装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其他装满,求甲、乙两种货车各有多少辆?解:(1)设乙种货车每辆车可装x 件帐篷,由题意,得 1 000x +20=800x.解得x =80. 经检验,x =80是原方程的解,且符合实际情况.答:甲种货车每辆车可装100件帐篷,乙种货车每辆车可装80件帐篷.(2)设甲、乙两种货车分别有a 辆、b 辆,由题意,得⎩⎪⎨⎪⎧a +b =16,100a +(b -1)80+50=1 490.解得⎩⎪⎨⎪⎧a =12,b =4.答:甲、乙两种货车分别有12辆,4辆.20.(12分)某物流公司承接A 、B 两种货物的运输业务,已知5月份A 货物运费单价为50元/吨,B 货物运费单价为30元/吨,共收运费9 500元;6月份由于油价上涨,运费单价上涨为:A 货物70元/吨,B 货物40元/吨.该物流公司6月份承接的A 种货物和B 种货物数量与5月份相同,6月份共收取运费13 000元.问: (1)该物流公司5月份运输两种货物各多少吨?(2)该物流公司预计7月份运输这两种货物共330吨,且A 货物的数量不大于B 货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收取多少运输费?解:(1)设该物流公司5月份运输A 、B 两种货物各x 吨、y 吨,依题意,得⎩⎪⎨⎪⎧50x +30y =9 500,70x +40y =13 000.解得⎩⎪⎨⎪⎧x =100,y =150. 答:该物流公司5月份运输A 种货物100吨,运输B 种货物150吨.(2)设物流公司7月份运输A 种货物a 吨,收取w 元运输费,则依题意,有 a ≤2(330-a).则a≤220.∴a 最大为220. w =70a +40(330-a)=30a +13 200. ∵k =30>0,w 随a 的增大而增大.∴当a =220时,w 最大=30×220+13 200=19 800(元). 答:该物流公司7月份最多将收取运输费19 800元.。