中考数学模拟试卷(3)及答案
2024年上海中考数学模拟练习卷三及参考答案
上海2024年中考模拟练习试卷3数学(考试时间:100分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.将答案写在答题卡上.写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第I 卷(选择题)一、单选题(共24分)1.(本题4分)下列计算正确的是()A .448a a a +=B .4416a a a ⋅=C .()1446a a =D .842a a a ÷=2.(本题4分)用换元法解方程()22611711x x x x +++=++时,下列换元方法中最合适的换元方法是()A .设21y x =+B .设1y x =+C .211x y x +=+D .211y x =+3.(本题4分)下列函数中,在定义域内y 随x 的增大而增大的函数是()A .2y x =-;B .2y x =;C .2y x=D .2y x=-4.(本题4分)王大伯前几年承包了甲、乙两片荒山,各栽种了100棵杨梅树,成活98%,现已挂果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了四棵杨梅树上的杨梅,每棵的产量如图所示,由统计图提供的信息可知,杨梅产量较稳定的是()A .甲山B .乙山C .一样D .无法确定5.(本题4分)有一个内角是直角的四边形ABCD 的边长2AB =,3BC =,2CD =,3DA =,那么下列结论错误的是()A .四边形的对角线互相平分B .四边形的对角相等C .四边形的对角线互相垂直D .四边形的对角线相等6.(本题4分)在梯形ABCD 中,AD //BC ,那么下列条件中,不能判断它是等腰梯形的是()A .AB DC=B .DAB ABC∠=∠C .ABC DCB∠=∠D .AC DB=第II 卷(非选择题)二、填空题(共48分)7.(本题4分)分解因式:281m -=.8.(本题4分)计算:15a a+=.9.(本题43=的解是.10.(本题4分)函数11y x =-的定义域为.11.(本题4分)已知关于x 的方程210x kx -+=有两个相等的实数根,则k 的值是.12.(本题4分)一个不透明的盒子中装有5个红球和4个白球,它们除颜色外都相同.若从中任意摸出一个球,则摸到白球的概率是.13.(本题4分)一个正n 边形的中心角为36︒,则n 为.14.(本题4分)写出一个开口向上,顶点在y 轴的负半轴上的抛物线的解析式:.15.(本题4分)已知平行四边形ABCD 中,若AD a = ,AB b = ,则DB =.(用a 和b表示)16.(本题4分)某林木良种繁育试验基地为全面掌握“无絮杨”品种苗的生长规律,定期对培育的1000棵该品种苗进行抽测.如图是某次随机抽测该品种苗的高度x (cm )的统计图,则此时该基地高度不低于300cm 的“无絮杨”品种苗约有棵.17.(本题4分)如图,将ABC 绕点A 旋转逆时针旋转30︒后得到ADE V ,若点E 恰好落在BC 上,则BED ∠的大小为.18.(本题4分)已知O 的半径OA 长为3,点B 在线段OA 上,且2OB =,如果B 与O 有公共点,那么B 的半径r 的取值范围是三、解答题(共78分)19.(本题612282-.20.(本题8分)解不等式组:2832x x x <⎧⎨->⎩.21.(本题10分)如图,AB 是O 的直径,CD 是O 的弦,如果30ACD ∠=︒.(1)求BAD ∠的度数.(2)若2AD =,求DB 的长.22.(本题12分)我们知道,海拔高度每上升1千米,温度下降6℃,某时刻,上海地面温度为20℃,设高出地面x 千米处的温度为y ℃.(1)写出y 与x 之间的函数关系式,并写出函数定义域;(2)有一架飞机飞过浦东上空,如果机舱内仪表显示飞机外面的温度为16-℃,求此刻飞机离地面的高度为多少千米?23.(本题12分)如图,点E ,F 都在BAD ∠的平分线上,BF AD ∥交DE 于点C .CF BF =,14AB AD ==,,求ΔΔ:EFC EAD S S 的值.24.(本题14分)如图,在平面直角坐标系xOy中,抛物线2=++与x轴交于点y x bx c()1,0A和()B,与y轴交于点C.5,0(1)求此抛物线的表达式及点C的坐标;(2)将此抛物线沿x轴向左平移()0m m>个单位得到新抛物线,且新抛物线仍经过点C,求m的值.25.(本题16分)如图,在ABC 中,AB AC =,以AB 为直径的O 与BC 相交于点,D DE AC ⊥,垂足为E .(1)求证:DE 是O 的切线;(2)若弦MN 垂直于AB ,垂足为1,,4AG G MN AB ==O 的半径;(3)在(2)的条件下,当36BAC ∠=︒时,求线段CE 的长.2024年中考预测模拟考试一(上海卷)数学(考试时间:100分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.将答案写在答题卡上.写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第I 卷(选择题)一、单选题(共24分)1.(本题4分)下列计算正确的是()A .448a a a +=B .4416a a a ⋅=C .()1446a a =D .842a a a ÷=【答案】C 【分析】根据同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项,逐项分析判断即可求解.【详解】解:A.4442a a a +=,故该选项不正确,不符合题意;B.448a a a ⋅=,故该选项不正确,不符合题意;C.()1446a a =,故该选项正确,符合题意;D.844a a a ÷=,故该选项不正确,不符合题意;故选:C .【点评】本题考查了同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项,熟练掌握同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项的运算法则是解题的关键.2.(本题4分)用换元法解方程()22611711x x x x +++=++时,下列换元方法中最合适的换元方法是()A .设21y x =+B .设1y x =+C .211x y x +=D .211y x =【答案】C【分析】设211x y x +=+,则原方程化为2760y y -+=,从而可得答案.【详解】解:()22611711x x x x +++=++,设211x y x +=+,3.(本题4分)下列函数中,在定义域内y 随x 的增大而增大的函数是()A .2y x =-;B .2y x =;C .2y x=D .2y x=-4.(本题4分)王大伯前几年承包了甲、乙两片荒山,各栽种了100棵杨梅树,成活98%,现已挂果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了四棵杨梅树上的杨梅,每棵的产量如图所示,由统计图提供的信息可知,杨梅产量较稳定的是()A .甲山B .乙山C .一样D .无法确定【答案】B【分析】根据平均数的求法求出平均数,再求出两组数据的方差,再比较即可解答.5.(本题4分)有一个内角是直角的四边形ABCD 的边长2AB =,3BC =,2CD =,3DA =,那么下列结论错误的是()A .四边形的对角线互相平分B .四边形的对角相等C .四边形的对角线互相垂直D .四边形的对角线相等【答案】C【分析】根据已知条件判断出平行四边形,再根据有一个角是直角判断矩形,最后根据矩形的性质判断正确选项即可.【详解】解:∵2AB CD ==,3BC AD ==,∴四边形ABCD 是平行四边形,∵有一个内角是直角,∴四边形ABCD 是矩形,∴对角线互相平分,对角相等,对角线相等,故A ,B ,D 正确,不合题意;对角线不一定互相垂直,故C 错误,符合题意;故选C .【点评】本题考查了矩形的判定和性质,解题的关键是根据已知条件判断出该四边形是矩形.6.(本题4分)在梯形ABCD 中,AD //BC ,那么下列条件中,不能判断它是等腰梯形的是()A .AB DC =B .DAB ABC∠=∠C .ABC DCB∠=∠D .AC DB=【答案】B【分析】等腰梯形的判定定理有:①有两腰相等的梯形是等腰梯形;②对角线相等的梯形是等腰梯形;③在同一底上的两个角相等的梯形是等腰梯形,根据以上内容判断即可.【详解】解:A 、∵四边形ABCD 为梯形,且AD //BC ,AB DC =,∴四边形ABCD 是等腰梯形,故本选项不符合题意;B 、∠DAB =∠ABC ,不能推出四边形ABCD 是等腰梯形,故本选项符合题意;C 、∵四边形ABCD 为梯形,且AD //BC ,∠ABC =∠DCB ,∴四边形ABCD 是等腰梯形,故本选项不符合题意;D 、∵四边形ABCD 为梯形,且AD //BC ,AC DB =,∴四边形ABCD 是等腰梯形,故本选项不符合题意.故选:B .【点评】本题考查了等腰梯形的判定定理,等腰梯形的判定定理有:①有两腰相等的梯形是等腰梯形,②对角线相等的梯形是等腰梯形,③在同一底上的两个角相等的梯形是等腰梯形.第II 卷(非选择题)二、填空题(共48分)7.(本题4分)分解因式:281m -=.【答案】(9)(9)m m +-【分析】利用平方差公式22()()a b a b a b -=+-进行因式分解即可.【详解】解:281(9)(9)m m m -=+-,故答案为:(9)(9)m m +-.【点评】本题主要考查因式分解,掌握平方差公式是解题的关键.8.(本题4分)计算:15a a+=.9.(本题43=的解是.10.(本题4分)函数1y x =-的定义域为.【答案】1x ≠【分析】求函数的定义域就是找使函数有意义的自变量的取值范围.【详解】解:函数要有意义,则10x -≠,解得:1x ≠,故答案为:1x ≠.【点评】本题考查的知识点是函数的定义域,关键要知道函数有意义的自变量的取值范围.11.(本题4分)已知关于x 的方程210x kx -+=有两个相等的实数根,则k 的值是.【答案】±2【分析】一元二次方程有两个相等的实数根,则根的判别式△=b 2-4ac =0,建立关于k 的等式,求出k 的值.【详解】由题意知方程有两相等的实根,∴△=b 2-4ac =k 2-4=0,解得k =±2,故答案为:±2.【点评】本题考查了根的判别式:一元二次方程ax 2+bx +c =0(a ≠0)的根与△=b 2-4ac 有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.12.(本题4分)一个不透明的盒子中装有5个红球和4个白球,它们除颜色外都相同.若从中任意摸出一个球,则摸到白球的概率是.13.(本题4分)一个正n 边形的中心角为36︒,则n 为.14.(本题4分)写出一个开口向上,顶点在y 轴的负半轴上的抛物线的解析式:.【答案】21y x =-(答案不唯一)【分析】根据二次函数的性质,抛物线开口向下a >0,与y 轴负半轴由交点c <0,然后写出即可.【详解】解:开口向上,并且与y 轴交点在y 轴负半轴,∴抛物线的表达式可以是:y =x 2﹣1.故答案为y =x 2﹣1(答案不唯一).【点评】本题考查了二次函数的性质,开放型题目,主要利用了抛物线的开口方向与y 轴的交点得到解析式.15.(本题4分)已知平行四边形ABCD 中,若AD a = ,AB b = ,则DB = .(用a 和b 表示)【答案】b a-【分析】根据题意,作出图形,由向量减法运算的三角形法则即可得到答案.【详解】解:如图所示:根据向量减法运算的三角形法则可得DB AB AD b a =-=- ,故答案为:b a - .【点评】本题考查向量的加法运算,熟练掌握向量运算法则是解决问题的关键.16.(本题4分)某林木良种繁育试验基地为全面掌握“无絮杨”品种苗的生长规律,定期对培育的1000棵该品种苗进行抽测.如图是某次随机抽测该品种苗的高度x (cm )的统计图,则此时该基地高度不低于300cm 的“无絮杨”品种苗约有棵.【答案】280【分析】利用1000棵乘以样本中不低于300cm 的百分比即可求解.【详解】解:该基地高度不低于300cm 的“无絮杨”品种苗所占百分比为10%18%28%+=,则不低于300cm 的“无絮杨”品种苗约为:100028%280⨯=棵,故答案为:280.【点评】本题考查用样本估计总体,明确题意,结合扇形统计图中百分比是解决问题的关键.17.(本题4分)如图,将ABC 绕点A 旋转逆时针旋转30︒后得到ADE V ,若点E 恰好落在BC 上,则BED ∠的大小为.【答案】30︒/30度18.(本题4分)已知O 的半径OA 长为3,点B 在线段OA 上,且2OB =,如果B 与O 有公共点,那么B 的半径r 的取值范围是【答案】15r ≤≤【分析】求得B 在O 内部且有唯一公共点时B 的半径和⊙O 在B 内部且有唯一公共点时B 的半径,根据图形即可求得.【详解】解:如图,当B 在O 内部且有唯一公共点时,B 的半径为:321-=,当O 在B 内部且有唯一公共点时,B 的半径为325+=,∴如果B 与O 有公共点,那么B 的半径r 的取值范围是15r ≤≤,故答案为:15r ≤≤.【点评】本题考查了圆与圆的位置关系,注意掌握数形结合和分类讨论思想的应用.三、解答题(共78分)19.(本题612-.【答案】2【分析】根据二次根式的加减计算法则和负整数指数幂计算法则求解即可.20.(本题8分)解不等式组:2832x x x<⎧⎨->⎩.【答案】14x <<【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:由28x <得:4x <,由32x x ->得:1x >,则不等式组的解集为:14x <<.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(本题10分)如图,AB 是O 的直径,CD 是O 的弦,如果30ACD ∠=︒.(1)求BAD ∠的度数.(2)若2AD =,求DB 的长.22.(本题12分)我们知道,海拔高度每上升1千米,温度下降6℃,某时刻,上海地面温度为20℃,设高出地面x 千米处的温度为y ℃.(1)写出y 与x 之间的函数关系式,并写出函数定义域;(2)有一架飞机飞过浦东上空,如果机舱内仪表显示飞机外面的温度为16-℃,求此刻飞机离地面的高度为多少千米?【答案】(1)()6200y x x =-+>(2)6千米【分析】(1)根据高出的温度=地面温度-上升后降低的温度,列式即可得到答案;(2)把16y =-代入函数关系式进行计算即可得到答案.【详解】(1)解: 海拔高度每上升1千米,温度下降6℃,上海地面温度为20℃,()6200y x x ∴=-+>,∴y 与x 之间的函数关系式为:()6200y x x =-+>;(2)解:根据题意可得:当16y =-时,62016x -+=-,解得:6x =,∴此刻飞机离地面的高度为6千米.【点评】本题考查了一次函数的应用,读懂题目信息,根据高出的温度=地面温度-上升后降低的温度,得出函数关系式,是解题的关键.23.(本题12分)如图,点E ,F 都在BAD ∠的平分线上,BF AD ∥交DE 于点C .CF BF =,14AB AD ==,,求ΔΔ:EFC EAD S S 的值.【点评】本题考查了相似三角形的判定与性质,等腰三角形的判定等知识,相似三角形的判定与性质的运用是解题的关键.24.(本题14分)如图,在平面直角坐标系xOy中,抛物线2=++与x轴交于点y x bx c()1,0A和()B,与y轴交于点C.5,0(1)求此抛物线的表达式及点C的坐标;(2)将此抛物线沿x 轴向左平移()0m m >个单位得到新抛物线,且新抛物线仍经过点C ,求m 的值.【答案】(1)265y x x =-+,点C 的坐标是()0,5(2)6【分析】(1)用待定系数法求出二次函数的解析式,进而求出点C 的坐标;(2)把二次函数配方得到顶点式,根据题目进行平移解题即可.【详解】(1)解:把()1,0A 和()5,0B 代入2y x bx c =++010255b c b c=++⎧⎨=++⎩,解得65b c =-⎧⎨=⎩∴抛物线的表达式为265y x x =-+∴当0x =时,5y =∴点C 的坐标是()0,5(2)()226534y x x x =-+=--设平移后的抛物线表达式为()234y x m =-+-把()0,5C 代入得()25034m =-+-解得126,0m m ==∵0m >,∴6m =【点评】本题考查二次函数的解析式和抛物线的平移,掌握二次函数的图象和性质是解题的关键.25.(本题16分)如图,在ABC 中,AB AC =,以AB 为直径的O 与BC 相交于点,D DE AC ⊥,垂足为E .(1)求证:DE 是O 的切线;(2)若弦MN 垂直于AB ,垂足为1,,4AG G MN AB ==O 的半径;(3)在(2)的条件下,当36BAC ∠=︒时,求线段CE 的长.方法二:连接OD=OB OD∴∠=∠OBD ODBDE AC⊥∴∠+∠=︒EDC C90AB AC=∴∠=∠ABC C∴∠=∠ODB C∴∠+∠=︒90 EDC ODBODE∴∠=︒.90∴⊥OD DE的半径 是OOD的切线∴是ODE方法三:连接OD=OB OD∴∠=∠OBD ODBAB AC=∴∠=∠ABC ACB∴∠=∠ODB ACB∴∥OD AC⊥DE AC方法二:、连接AM MB的直径 是OAB∴∠=︒AMB90MN AB⊥。
2023年江苏省扬州市中考三模数学试题(含答案)
扬州九年级第三次模拟考试数学试卷一、选择题(每题3分,共24分)1.如图是理想、蔚来、小鹏、哪吒四款新能源汽车的标志,其中既是轴对称图形,又是中心对称图形的是()A .B .C .D .2的值等于( )A .0.3B .C .0.03D .3.据报道,2023年1月研究人员通过研究获得了XBB.1.5病毒毒株,该毒株体积很小,呈颗粒圆形或椭圆形,直径大概为,已知,则用科学记数法表示为()A .B .C .D .4.如图所示几何体是由一个球体和一个圆柱组成的,它从上面看到的形状图是()A .B .C .D .5.如图,,,,则的度数是()A .30°B .40°C .50°D .80°6.已知是整数,当的值是( )A .5B .6C .7D .87.如图,在菱形纸片中,,,分别剪出扇形和,恰好能作为一个锥圆的侧面和底面.若点在上,则的最大值是()0.3±0.03±85nm 91nm 10m -=85nm 60.8510m -⨯70.8510m-⨯88.510m-⨯98510m-⨯a b ∥380∠=︒1220∠-∠=︒1∠x x -x ABCD 6AB =60ABC ∠=︒ABC O O BD BDA .B .C .D .8.如图,点与点关于原点对称.,,,、是的三等分点.反比例函数()的图象经过点,.若的面积为3,则的值为()A .4B .5C .6D .7二、填空题(每题3分共30分)9.若式子在实数范围内有意义,则的取值范围是______.10.因式分解______.11.若一组数据2,3,4,5,7的方差是,另一组数据11,12,13,14,15的方差是,则______(填“>”“<”或“=”).12.一个圆锥的侧面展开图时一个圆心角为216°、半径为的扇形,这个圆锥的底面圆半径为______.13.如图,一副直角三角板(,)按如图所示的位置摆放,如果,那么的度数为______.14.规定一种新的运算:,求的解是______.15.如图,点、、在上,的半径为3,,则的长为______.1-2-1+2+A B 90ACB ∠=︒AC BC =45CAD ∠=︒A E DF ky x=0k >A E ACE △k 1x x-x 4a a 3-=21S 22S 21S 22S 15cm cm 30ACB ∠=︒45BED ∠=︒AC DE ∥EBC ∠*2a b a b =--211*132x x-+=A B C O O AOC ABC ∠=∠AC16.已知,点,,在反比例函数(为常数,)的图像上,则,,的大小关系是______.(用“>”连接)17.如图,点在双曲线()上,点在双曲线(),点在轴的正半轴上,若、、、构成的四边形为正方形,则对角线的长是______.18.如图,在中,,点是的外心,连接并延长交边于点,,,则的值为______.三、解答题(本大题共有10小题,共96分)19.(8分)计算:(1);(2).20.(8分)解不等式组,并写出该不等式组的整数解.21.(8分)树人学校想了解学生家长对“双减”政策的认知情况,随机抽取了部分学生家长进行调查,将抽查的数据结果进行统计,并绘制两幅不完整的统计图(:不太了解,0a b c >>>()1,A a b y -()2,B a c y -()3,C c a y -ky x=k 0k >1y 2y 3y ()5,D m -30y x =-0x <B 12y x=0x <A y A B C D AC ABC △ABC ACB ∠=∠O ABC △CO AB P 3AP =4BP =cos ABC ∠0112452-++︒--53222x x x x +⎛⎫+-÷⎪--⎝⎭()4132235x x x ->-⎧⎪⎨-≤⎪⎩A:基本了解,:比较了解,:非常了解).请根据图中提供的信息回答以下问题:(1)请直接写出这次被调查的学生家长共有______人;(2)请补全条形统计图;(3)试求出扇形统计图中“比较了解”部分所对的圆心角度数;(4)该学校共有6800名学生家长,估计对“双减”政策了解程度为“非常了解”的学生家长大约有多少?22.(8分)把算珠放在计数器的3根插棒上可以构成一个数,例如:如图摆放的算珠表示数210.(1)若将一颗算珠任意摆放在这3根插棒上,则构成的数是三位数的概率是______;(2)若一个数正读与反读都一样,我们就把这个数叫做回文数.现将两颗算珠任意摆放在这3根插棒上,先放一颗算珠,再放另一颗,请用列表或画树状图的方法,求构成的数是三位数且是回文数的概率.23.(10分)为落实节约用水的政策,某旅游景点进行设施改造,将手拧水龙头全部更换成感应水龙头.已知该景点在设施改造后,平均每天用水量是原来的一半,20吨水可以比原来多用5天.该景点在设施改造后平均每天用水多少吨?24.(10分)在中,,是的中点,是的中点,过点作交的延长线于点.(1)求证:;(2)证明四边形是菱形.25.(10分)已知:为的直径,为圆心,点为圆上一点,过点作的切线交的延长线于点,点为上一点,且,连接交于点.B C D Rt ABC △90BAC ∠=︒D BC E AD A AF BC ∥BE F AEF DEB ≌△△ADCF BD O O A B O DA F C O AB AC =BC AD E(1)如图1,求证:;(2)如图2,点为内部一点,连接,.若,的半径为10,,求的长.26.(10分)如图是边长为1的正方形网格,每个小正方形的顶点叫格点,的顶点都在格点上.仅用无刻度的直尺,按要求画出下列图形.(1)的周长为______;(2)如图,点、分别是与竖格线和横格线的交点,画出点关于过点竖格线的对称点;(3)请在图中画出的角平分线.27.(12分)(1)【基础巩固】如图1,内接于,若,弦______;(2)【问题探究】如图2,四边形内接于,若,,点为弧上一动点(不与点,点重合).求证:;(3)【解决问题】如图3,一块空地由三条直路(线段、、)和一条道路劣弧围成,已知千米,,的半径为1千米,市政府准备将这块空地规划为一个公园,主入口在点处,另外三个入口分别在点、、处,其中点在上,并在公园中修四条慢跑道,即图中的线段、、、,是否存在一种规划方案,使得四条慢跑道总长度(即四边形的周长)最大?求其最大值;若不存在,说明理由.ABF ABC ∠=∠H O OH CH 90OHC HCA ∠=∠=︒O 6OH =DA ABC △ABC △D P AB P D Q ABC △BE ABC △O 60C ∠=︒AB =r =ABCD O 60ADC ∠=︒AD DC =B AC A C AB BC BD +=AD AB BC CDCM DM ==60DMC ∠=︒ CD M C D PP CDDM MC CP PD DMCP28.(12分)在平面直角坐标系中,已知抛物线()与轴交于,两点(点在点的左侧),与轴交于点,顶点为点.(1)当时,直接写出点,,,的坐标:______,______,______;(2)如图1,直线交轴于点,若,求抛物线的解析式;(3)如图2,在(2)的条件下,若点为的中点,动点在第三象限的抛物线上,过点作轴的垂线,垂足为,交于点;过点作,垂足为.设点的横坐标为,记.①用含的代数式表示;②设(),请直接写出的最大值.2446y ax ax a =++-0a >x A B A B y C D 6a =A B C D A B D DC x E 4tan 3AED ∠=N OC P P x Q AN F F FH DE ⊥H P t f FP FH =+t f 5t m -<≤0m <f初三数学三模答案一、选择题1.C 2.A 3.C 4.C 5.C 6.A 7.B 8.A二.填空题9. 10. 11.> 12.9 13.15° 14. 15.16. 171819.(本题满分8分)(1)2 (2)20.(本题满分8分)解不等式①得:解不等式②得:不等式组的解集是:整数解是:3,421.(本题满分8分)(1)这次抽样调查的家长有(人);(2)表示“基本了解”的人数为:(人),表示“非常了解”的人数为:(人)图略(3)“比较了解”部分所对应的圆心角是:(4)(人)22.(本题满分8分)(1)(2)画树状图如下:共有9种等可能的结果,其中构成的数是三位数且是回文数的结果有2种,∴构成的数是三位数且是回文数的概率为.23.(本题满分10分)解:设该景点在设施改造后平均每天用水吨,则在改造前平均每天用水吨,根据题意,得.0x ≠()()2121a a a +-57x =123y y y >>3x -2x >4x ≤24x <≤510%50÷=5030%15⨯=505152010---=2036014450⨯=︒︒106800136050⨯=1329x 2x 202052x x-=解得.经检验:是原方程的解,且符合题意.答:该景点在设施改造后平均每天用水2吨.24.(本题满分10分)(1)∵,∴,∵是的中点,是边上的中线,∴,,在和中,,∴;(2)由(1)知,,则.∵,∴.∵,∴四边形是平行四边形,∵,是的中点,是的中点,∴,∴四边形是菱形.25.(本题满分10分)(1)证明:∵为的直径,∴,∴,∵是的切线,∴,∴,∴,∵,∴,∵,∴;(2)解:连接,∵,∴,∴,∵,∴,∴,即,∴,∵,∴,∴,∵,的半径为10,∴,,∴.26.(本题满分10分)(1)的周长(2)如图,点即为所求;(3)如图,线段即为所求.2x =2x =AF BC ∥AFE DBE ∠=∠E AD AD BC AE DE=BD CD =AFE △DBE △AFE DBEFEA BED AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS AFE DBE ≌△△AFE DBE ≌△△AF DB =DB DC =AFCD =AF BC ∥ADCF 90BAC ∠=︒D BC E AD 12AD DC BC ==ADCF BD O 90BAD ∠=︒90D ABD ︒∠+∠=FB O 90FBD ∠=︒90FBA ABD ︒∠+∠=FBA D ∠=∠AB AC =C ABC ∠=∠C D ∠=∠ABF ABC ∠=∠OC 90OHC HCA ∠=∠=︒AC OH ∥ACO COH ∠=∠OB OC =OBC OCB ∠=∠ABC CBO ACB OCB ∠+∠=∠+∠ABD ACO ∠=∠ABD COH ∠=∠90H BAD ︒∠=∠=ABD HOC ∽△△2AB BDOH OC==6OH=O 212AB OH ==20BD =16DA ==ABC △549=++=Q BE27.(本题满分12分)(1)2(2)证明:在上取点,使,连接,,∵,,∴为等边三角形,∴,,∵四边形为圆的内接四边形,∴,∴,∵,∴,∴,∴,∴为等边三角形,∴,,∴,∴,∴,∴;(3)解:存在.∵千米,∴当取得最大值时,四边形的周长最大,连接,过点作于点,设,∵,,,∴,∴,∴,∴,BD E BE BC =EC AC AD CD =60ADC ∠=︒ADC △DC AC =60DCA ∠=︒ABCD O 180ABC ADC ︒∠+∠=120ABC ︒∠=AD CD = AD CD=ABD CBD ∠=∠60CBD ∠=︒BEC △BC CE =60BCE ∠=︒BCA ECD ∠=∠()SAS ACB DCE ≌△△AB DE =DB DE BE AB BC =+=+CM DM ==DP CP +DMCP PM O OHDM ⊥H OH x =DM CM =OM OM =DO CO =()SSS DOM COM ≌△△1302DMO CMO DMC ︒∠=∠=∠=HM=DH =-∵,∴,∴或(舍去),∴,∴,∴、、、四点共圆,∴,由(2)可知,故当是直径时,最大值为2,∵四边形的周长,∴四边形的周长的最大值为:即四条慢跑道总长度(即四边形的周长)的最大值为.28.(本题满分12分)(1)、、的坐标分别为、、;(2),令,则,则点,函数的对称轴为,故点的坐标为,由点、的坐标得,直线的表达式为:,令,则,故点,则,,解得:,∴抛物线的表达式为:.(3)①如图,作与的延长线交于点,由(2)知,抛物线的表达式为:,故点、的坐标分别为、,则点,由点、的坐标得,直线的表达式为:;设点,则点;则,222DH OH OD +=)2221x +=12x =1x =12OH =1OM =D P C M 120DPC ︒∠=DP CP PM +=PM PD PC +DMCP DM CM PC PD PD PC =+++=++DMCP 2+DMCP 2+A B D ()3,0-()1,0-()2,6--2446y ax ax a =++-0x =46y a =-()0,46C a -2x =-D ()2,6--C D CD 246y ax a =+-0y =32x a =-32,0E a ⎛⎫- ⎪⎝⎭32OE a =-644332OC a tan AED OE a -∠===-23a =22810333y x x =+-PF ED J 22810333y x x =+-A C ()5,0-100,3⎛⎫- ⎪⎝⎭50,3N ⎛⎫- ⎪⎝⎭A N AN 1533y x =--22810,333P t t t ⎛⎫+- ⎪⎝⎭15,33F t t ⎛⎫-- ⎪⎝⎭225333PF t t =--+由点、的坐标得,直线的表达式为:,则点,故,∵,轴,故,,∴,故,则,;②(且);∴当时,;当时,. 5,02E ⎛⎫ ⎪⎝⎭C CE 41033y x =-410,33J t t ⎛⎫- ⎪⎝⎭5533FJ t =-+FH DE ⊥JF y ∥90FHJ EOC ︒∠=∠=FJH ECO ∠=∠FJH ECO ∽△△FH FJ OE CE =1OE FH FJ t CE=⨯=-+()2225283143333f PF FH t t t t t =+=--++-+=--+()2228226433333f t t t =--+=-++5t m -<≤0m <53m -<<-2max 28433f m m =--+30m -≤<max 263f =。
四川省广安市中考数学全真模拟试卷(三)含答案解析
四川省广安市中考数学全真模拟试卷(三)一.选择题(共10小题,满分24分)1.的相反数是()A.2 B.﹣2 C.4 D.﹣2.(3分)下面运算正确的是()A.=﹣B.(2a)2=2a2C.x2+x2=x4D.|a|=|﹣a|3.去年12月24日全国大约有1230000人参加研究生招生考试,1230000这个数用科学记数法表示为()A.1.23×106B.1.23×107C.0.123×107D.12.3×1054.(3分)对于数据:6,3,4,7,6,0,9,下列判断中正确的是()A.这组数据的平均数是6,中位数是6B.这组数据的平均数是5,中位数是6C.这组数据的平均数是6,中位数是7D.这组数据的平均数是5,中位数是75.(3分)若分式有意义,则a的取值范围是()A.a≠1 B.a≠0 C.a≠1且a≠0 D.一切实数6.(3分)有若干个完全相同的小正方体堆成一个如图所示几何体,若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加小正方体的个数为()A.2 B.3 C.4 D.57.(3分)已知一次函数y=(k﹣2)x+k不经过第三象限,则k的取值范围是()A.k≠2 B.k>2 C.0<k<2 D.0≤k<28.(3分)下列命题是假命题的是()A.有一个外角是120°的等腰三角形是等边三角形B.等边三角形有3条对称轴C.有两边和一角对应相等的两个三角形全等D.有一边对应相等的两个等边三角形全等9.(3分)如图,△ABC内接于⊙O,AD为⊙O的直径,交BC于点E,若DE=2,OE=3,则tanC•ta nB=()A.2 B.3 C.4 D.510.(3分)已知二次函数y=ax2+bx+c的图象与x轴交于点(﹣2,0)、(x1,0),且1<x1<2,与y轴的正半轴的交点在(0,2)的下方.下列结论:①4a﹣2b+c=0;②a﹣b+c<0;③2a+c>0;④2a﹣b+1>0.其中正确结论的个数是()个.A.4个 B.3个 C.2个 D.1个二.填空题(共6小题,满分18分,每小题3分)11.(3分)点A(a,b)与点B(﹣3,4)关于y轴对称,则a+b的值为.12.(3分)如图,直线m∥n,以直线m上的点A为圆心,适当长为半径画弧,分别交直线m,n于点B、C,连接AC、BC,若∠1=30°,则∠2=.13.(3分)不等式组有2个整数解,则m的取值范围是.14.(3分)如图,四边形ABCD是菱形,∠BAD=60°,AB=6,对角线AC与BD相较于点O,点E在AC上,若OE=2,则CE的长为15.(3分)若反比例函数的图象与一次函数y=ax+b的图象交于点A(﹣2,m)、B(5,n),则3a+b的值等于.16.(3分)如图,将矩形ABCD绕其右下角的顶点按顺时针方向旋转90°至图①位置,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,以此类推,这样连续旋转次.若AB=4,AD=3,则顶点A在整个旋转过程中所经过的路径总长为.三.解答题(共4小题,满分23分)17.(5分)计算:|﹣|+(π﹣)0﹣2sin30°+3﹣1.18.(6分)先化简,再求值:÷(﹣x+1),其中x满足x2+7x=0.19.(6分)如图1,在锐角△ABC中,∠ABC=45°,高线AD、BE相交于点F.(1)判断BF与AC的数量关系并说明理由;(2)如图2,将△ACD沿线段AD对折,点C落在BD上的点M,AM与BE相交于点N,当DE∥AM时,判断NE与AC的数量关系并说明理由.20.(6分)如图,已知直线y=x与双曲线y=交于A、B两点,且点A的横坐标为.(1)求k的值;(2)若双曲线y=上点C的纵坐标为3,求△AOC的面积;(3)在坐标轴上有一点M,在直线AB上有一点P,在双曲线y=上有一点N,若以O、M、P、N为顶点的四边形是有一组对角为60°的菱形,请写出所有满足条件的点P的坐标.四.解答题(共4小题,满分24分)21.(8分)某小学开展4种课外兴趣小组活动,分别为A;绘画:B;机器人:C;跳舞:D;吉他.每个学生都要选取一个兴趣小组参与活动,小明对同学们选取的活动形式进行了随机抽样调查,根据调查统计结果,绘制了如下的统计图:(1)本次调查学生共人,a=,并将条形图补充完整;(2)如果该校有学生500人,则选择“机器人”活动的学生估计有多少人?(3)学校让每班同学在A,B,C,D四种活动形式中,随机抽取两种开展活动,请用树状图或列表法的方法,求每班抽取的两种形式恰好是“绘画”和“机器人”的概率.22.(8分)某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.设每个定价增加x元.(1)写出售出一个可获得的利润是多少元(用含x的代数式表示)?(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?(3)商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?23.(8分)如图,海中有一小岛P,在距小岛P的海里范围内有暗礁,一轮船自西向东航行,它在A处时测得小岛P位于北偏东60°,且A、P之间的距离为32海里,若轮船继续向正东方向航行,轮船有无触礁危险?请通过计算加以说明.如果有危险,轮船自A处开始至少沿东偏南多少度方向航行,才能安全通过这一海域?24.将图1,将一张直角三角形纸片ABC折叠,使点A与点C重合,这时DE为折痕,△CBE为等腰三角形;再继续将纸片沿△CBE的对称轴EF折叠,这时得到了两个完全重合的矩形(其中一个是原直角三角形的内接矩形,另一个是拼合成的无缝隙、无重叠的矩形),我们称这样两个矩形为“叠加矩形”.(1)如图2,正方形网格中的△ABC能折叠成“叠加矩形”吗?如果能,请在图2中画出折痕;(2)如图3,在正方形网格中,以给定的BC为一边,画出一个斜三角形ABC,使其顶点A在格点上,且△ABC折成的“叠加矩形”为正方形;(3)如果一个三角形所折成的“叠加矩形”为正方形,那么它必须满足的条件是;(4)如果一个四边形一定能折成“叠加矩形”,那么它必须满足的条件是.五.解答题(共1小题)25.如图,⊙O中,点A为中点,BD为直径,过A作AP∥BC交DB的延长线于点P.(1)求证:PA是⊙O的切线;(2)若BC=8,AB=6,求sin∠ABD的值.六.解答题(共1小题)26.如图,平面直角坐标系中,点A、B、C在x轴上,点D、E在y轴上,OA=OD=2,OC=OE=4,B为线段OA的中点,直线AD与经过B、E、C三点的抛物线交于F、G两点,与其对称轴交于M,点P为线段FG上一个动点(与F、G不重合),PQ ∥y轴与抛物线交于点Q.(1)求经过B、E、C三点的抛物线的解析式;(2)判断△BDC的形状,并给出证明;当P在什么位置时,以P、O、C为顶点的三角形是等腰三角形,并求出此时点P的坐标;(3)若抛物线的顶点为N,连接QN,探究四边形PMNQ的形状:①能否成为菱形;②能否成为等腰梯形?若能,请直接写出点P的坐标;若不能,请说明理由.四川省广安市中考数学全真模拟试卷(三)参考答案与试题解析一.选择题(共10小题,满分24分)1.【解答】解:的相反数是(2,即2.故选:A.2.【解答】解:A、()﹣1=2,故此选项错误;B、(2a)2=4a2,故此选项错误;C、x2+x2=2x2,故此选项错误;D、|a|=|﹣a|,正确.故选:D.3.【解答】解:1230000这个数用科学记数法表示为1.23×106.故选:A.4.【解答】解:对于数据:6,3,4,7,6,0,9,这组数据按照从小到大排列是:0,3,4,6,6,7,9,这组数据的平均数是:,中位数是6,故选:B.5.【解答】解:若分式有意义,则a﹣1≠0,即a≠1,故选:A.6.【解答】解:若要保持俯视图和左视图不变,可以往第2排右侧正方体上添加1个,往第3排中间正方体上添加2个、右侧两个正方体上再添加1个,即一共添加4个小正方体,故选:C.7.【解答】解:由一次函数y=(k﹣2)x+k的图象不经过第三象限,则经过第二、四象限或第一、二、四象限,只经过第二、四象限,则k=0.又由k<0时,直线必经过二、四象限,故知k﹣2<0,即k<2.再由图象过一、二象限,即直线与y轴正半轴相交,所以k>0.当k﹣2=0,即k=2时,y=2,这时直线也不过第三象限,故0≤k<2.故选:D.8.【解答】解:A、正确;有一个外角是120°的等腰三角形是等边三角形B、正确.等边三角形有3条对称轴;C、错误SSA无法判断两个三角形全等;D、正确.有一边对应相等的两个等边三角形全等;故选:C.9.【解答】解:连接BD、CD,由圆周角定理可知∠B=∠ADC,∠C=∠ADB,∴△ABE∽△CDE,△ACE∽△BDE,∴=,=,由AD为直径可知∠DBA=∠DCA=90°,∵DE=2,OE=3,∴AO=OD=OE+ED=5,AE=8,tanC•tanB=tan∠ADB•tan∠ADC======4.故选:C.10.【解答】解:根据二次函数y=ax2+bx+c的图象与x轴交于点(﹣2,0)、(x1,0),且1<x1<2,与y轴的正半轴的交点在(0,2)的下方,画出图象为:如图把x=﹣2代入得:4a﹣2b+c=0,∴①正确;把x=﹣1代入得:y=a﹣b+c>0,如图A点,∴②错误;∵(﹣2,0)、(x1,0),且1<x1,∴取符合条件1<x1<2的任何一个x1,﹣2•x1<﹣2,∴由一元二次方程根与系数的关系知x1•x2=<﹣2,∴不等式的两边都乘以a(a<0)得:c>﹣2a,∴2a+c>0,∴③正确;④由4a﹣2b+c=0得2a﹣b=﹣,而0<c<2,∴﹣1<﹣<0∴﹣1<2a﹣b<0∴2a﹣b+1>0,∴④正确.所以①③④三项正确.故选:B.二.填空题(共6小题,满分18分,每小题3分)11.【解答】解:∵点A(a,b)与点B(﹣3,4)关于y轴对称,∴a=3,b=4,∴a+b=3+4=7,故答案为:7.12.【解答】解:∵直线m∥n,∴∠BAC=∠1=30°,∵AB=AC,∴∠ABC=(180°﹣∠BAC)=75°,∴∠2=∠ABC=75°,故答案为:75°.13.【解答】解:∵不等式组有2个整数解,∴其整数解有0、1这2个,∴1<m≤2,故答案为:1<m≤2.14.【解答】解:∵四边形ABCD是菱形,∴AB=AD=6,AC⊥BD,OB=OD,OA=OC,∵∠BAD=60°,∴△ABD是等边三角形,∴BD=AB=6,∴OB=BD=3,∴OC=OA=,∴AC=2OA=6,∵点E在AC上,OE=2,∴当E在点O左边时CE=OC+2=5,当点E在点O右边时CE=OC﹣2=,∴CE=5或;故答案为:5或.15.【解答】解:分别把A(﹣2,m)、B(5,n),代入反比例函数的图象与一次函数y=ax+b得﹣2m=5n,﹣2a+b=m,5a+b=n,综合可知5(5a+b)=﹣2(﹣2a+b),25a+5b=4a﹣2b,21a+7b=0,即3a+b=0.故答案为:0.16.【解答】解:∵AB=4,BC=3,∴AC=BD=5,转动第一次A的路线长是:=2π,转动第二次的路线长是:=π,转动第三次的路线长是:=π,转动第四次的路线长是:0,以此类推,每四次循环,故顶点A转动四次经过的路线长为:π+π+2π=6π,∵÷4=504…1,∴顶点A在整个旋转过程中所经过的路径总长为:6π×504+2π=3026π,故答案为3026π.三.解答题(共4小题,满分23分)17.【解答】解:原式=+1﹣2×+=.18.【解答】解:原式=÷(﹣)==×=﹣∵x2+7x=0x(x+7)=0∴x1=0,x2=﹣7当x=0时,除式(﹣x+1)=0,所以x不能为0,所以x=﹣7.当x=﹣7时,原式=﹣=﹣=19.【解答】解:(1)BF=AC,理由是:如图1,∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEF=90°,∵∠ABC=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵∠AFE=∠BFD,∴∠DAC=∠EBC,在△ADC和△BDF中,∵,∴△ADC≌△BDF(AAS),∴BF=AC;(2)NE=AC,理由是:如图2,由折叠得:MD=DC,∵DE∥AM,∴AE=EC,∵BE⊥AC,∴AB=BC,∴∠ABE=∠CBE,由(1)得:△ADC≌△BDF,∵△ADC≌△ADM,∴△BDF≌△ADM,∴∠DBF=∠MAD,∵∠DBA=∠BAD=45°,∴∠DBA﹣∠DBF=∠BAD﹣∠MAD,即∠ABE=∠BAN,∵∠ANE=∠ABE+∠BAN=2∠ABE,∠NAE=2∠NAD=2∠CBE,∴∠ANE=∠NAE=45°,∴AE=EN,∴EN=AC.20.【解答】解:(1)把点A的横坐标为代入y=x,∴其纵坐标为1,把点(,1)代入y=,解得:k=.(2)∵双曲线y=上点C的纵坐标为3,∴横坐标为,∴过A,C两点的直线方程为:y=kx+b,把点(,1),(,3),代入得:,解得:,∴y=﹣x+4,设y=﹣x+4与x轴交点为D,则D点坐标为(,0),∴△AOC的面积=S△COD ﹣S△AOD=××3﹣××1=.(3)设P点坐标(a,a),由直线AB解析式可知,直线AB与y轴正半轴夹角为60°,∵以O、M、P、N为顶点的四边形是有一组对角为60°的菱形,P在直线y=x 上,当点M只能在x轴上时,∴N点的横坐标为a,代入y=,解得纵坐标为:,根据OP=NP,即得:||=|﹣|,解得:a=±1.故P点坐标为:(1,)或(﹣1,﹣).当点M在y轴上时,同法可得p(3,)或(﹣3,﹣).四.解答题(共4小题,满分24分)21.【解答】解:(1)本次调查的学生人数为120÷40%=300(人),a%=1﹣40%﹣30%﹣20%=10%,∴a=10,B类别人数为300×10%=30,补全图形如下:(2)500×10=50(人),答:选择“机器人”活动的学生估计有50人;(3)画树状图为:共有12种等可能的结果数,其中某班所抽到的两项方式恰好是“绘画”和“机器人”的结果数为2,所以某班所抽到的两项方式恰好是“绘画”和“机器人”的概率==.22.【解答】解:由题意得:(1)50+x﹣40=x+10(元)(3分)(2)设每个定价增加x元.列出方程为:(x+10)(400﹣10x)=6000解得:x1=10 x2=20要使进货量较少,则每个定价为70元,应进货200个.(3分)(3)设每个定价增加x元,获得利润为y元.y=(x+10)(400﹣10x)=﹣10x2+300x+4000=﹣10(x﹣15)2+6250当x=15时,y有最大值为6250.所以每个定价为65元时得最大利润,可获得的最大利润是6250元.(4分)23.【解答】解:过P作PB⊥AM于B,在Rt△APB中,∵∠PAB=30°,∴PB=AP=×32=16海里,∵16<16,故轮船有触礁危险.为了安全,应该变航行方向,并且保证点P到航线的距离不小于暗礁的半径16海里,即这个距离至少为16海里,设安全航向为AC,作PD⊥AC于点D,由题意得,AP=32海里,PD=16海里,∵sin∠PAC===,∴在Rt△PAD中,∠PAC=45°,∴∠BAC=∠PAC﹣∠PAB=45°﹣30°=15°.答:轮船自A处开始至少沿南偏东75°度方向航行,才能安全通过这一海域.24.【解答】解:(1)(2)(3)三角形的一边长与该边上的高相等的直角三角形或锐角三角形;(3分)(4)对角线互相垂直.(注:回答菱形、正方形不给分)(5分)五.解答题(共1小题)25.【解答】解:(1)连接AO,交BC于点E,∵点A为的中点,∴AO⊥BC,∵BC∥AP,∴AP⊥AO,∴AP是圆O的切线;(2)∵AO⊥BC,BC=8,∴BE=BC=4,∵AB=6,∴sin∠BAO==,∵OA=OB,∴∠ABD=∠BAO,∴sin∠ABD=sin∠BAO=.六.解答题(共1小题)26.【解答】解:(1)B(﹣1,0)E(0,4)C(4,0)设解析式是y=ax2+bx+c,可得,解得,∴y=﹣x2+3x+4;(2)△BDC是直角三角形,∵BD2=BO2+DO2=5,DC2=DO2+CO2=20,BC2=(BO+CO)2=25∴BD2+DC2=BC2,∴△BDC是直角三角形.点A坐标是(﹣2,0),点D坐标是(0,2),设直线AD的解析式是y=kx+b,则,解得:,则直线AD的解析式是y=x+2,设点P坐标是(x,x+2)当OP=OC时x2+(x+2)2=16,解得:x=﹣1±(不符合,舍去)此时点P(﹣1+,1+)当PC=OC时(x+2)2+(4﹣x)2=16,方程无解;当PO=PC时,点P在OC的中垂线上,∴点P横坐标是2,得点P坐标是(2,4);∴当△POC是等腰三角形时,点P坐标是(﹣1+,1+)或(2,4);(3)点M坐标是(,点N坐标是(),∴MN=,设点P为(x,x+2),Q(x,﹣x2+3x+4),则PQ=﹣x2+2x+2①若PQNM是菱形,则PQ=MN,可得x1=0.5,x2=1.5当x2=1.5时,点P与点M重合;当x1=0.5时,可求得PM=,所以菱形不存在.②能成为等腰梯形,作QH⊥MN于点H,作PJ⊥MN于点J,则NH=MJ,则﹣(﹣x2+3x+4)=x+2﹣,解得:x=2.5,此时点P的坐标是(2.5,4.5).。
河南省中考模拟数学考试试卷(三)
河南省中考模拟数学考试试卷(三)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)设a是有理数,则下列各式的值一定为正数的是()A . a2B . |a|C . a+1D . a2+12. (2分)(2017·河北) 把0.0813写成a×10n(1≤a<10,n为整数)的形式,则a为()A . 1B . ﹣2C . 0.813D . 8.133. (2分) (2016七上·仙游期末) 从不同方向观察如图所示的几何体,不可能看到的是()A .B .C .D .4. (2分) (2019八下·孝南月考) 下列计算:①()2=2;② =2;③(–2 )2=12;④( + )(–)=–1.其中正确的有()A . 1个B . 2个C . 3个D . 4个5. (2分)(2017·宜兴模拟) 函数y= 中,自变量x的取值范围是()A . x≥﹣5B . x≤﹣5C . x≥5D . x≤56. (2分) (2016九下·吉安期中) 如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG 的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A . a2B . a2C . a2D . a27. (2分) (2020八下·武城期末) 如果P(2,m),A(1,1),B(4,0)三点在同一直线上,则m的值为()A . 2B .C .D . 18. (2分)在盒子里放有三张分别写有整式a﹣3、a+1、2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是()A .B .C .D .9. (2分) (2021七上·肇源期末) 如图,在边长为a的正方形中挖掉一个边长为b的小正方形,把余下的部分拼成一个长方形(无重叠部分),通过计算两个图形中阴影部分的面积,可以验证的一个等式是()A . a2﹣b2=(a+b)(a﹣b)B . a(a﹣b)=a2﹣abC . (a﹣b)2=a2﹣2ab+b2D . a(a+b)=a2+ab10. (2分)如图,在△ABC中,AC=BC,CD是AB边上的高线,且有2CD=3AB,又E,F为CD的三等分点,则∠ACB和∠AEB之和为()A . 45°B . 90°C . 60°D . 75°11. (2分) (2018九上·秦淮月考) 如图,AC⊥BC,AC=BC=4,以AC为直径作半圆,圆心为点O;以点C为圆心,BC为半径作弧AB.过点O作BC的平行线交两弧于点D、E,则阴影部分的面积是()A .B .C .D .12. (2分) (2016九上·端州期末) 关于抛物线y=(x-1)2-2,下列说法中错误的是()A . 顶点坐标为(1,-2)B . 对称轴是直线x=1C . 当x>1时,y随x的增大而减小D . 开口方向向上二、填空题 (共4题;共4分)13. (1分)分解因式:2a2-8b2=________.14. (1分) (2019八上·垣曲期中) 若a,b为两个连续的正整数,且,则 ________.15. (1分)观察下列各等式:1=12 , 1+3=22 , 1+3+5=32 , 1+3+5+7=42 ,则1+3+5+7+…+2017=________.16. (1分) (2016九上·南岗期中) 小伟欲用撬棍撬动一块大石头,已知阻力和阻力臂分别为1200N和0.5m,当撬动石头的动力F至少需要400N时,则动力臂l的最大值为________ m.三、解答题 (共6题;共60分)17. (5分)(2020·陕西模拟) 计算: .18. (5分)不等式组的解集是2<x<m+7,求m的最大负整数解.19. (10分) (2017八上·金堂期末) 2014年1月,国家发改委出台指导意见,要求2015年底前,所有城市原则上全面实行居民阶梯水价制度. 小军为了解市政府调整水价方案的社会反响,随机访问了自己居住在小区的部分居民,就“每月每户的用水量”和“调价对用水行为改变”两个问题进行调查,并把调查结果整理成下面的图1,图2.小军发现每月每户的用水量在5m3-35m3之间,有7户居民对用水价格调价涨幅抱无所谓,不用考虑用水方式的改变. 根据小军绘制的图表和发现的信息,完成下列问题:(1) n =________,小明调查了________户居民,并补全图1________;(2)每月每户用水量的中位数落在________之间,众数落在________之间;(3)如果小明所在的小区有1200户居民,请你估计“视调价涨幅采取相应的用水方式改变”的居民户数有多少?20. (10分) (2019九上·偃师期中) 如图,小明为了测量小河对岸大树BC的高度,他在点A测得大树顶端B的仰角为45°,沿斜坡走3 米到达斜坡上点D,在此处测得树顶端点B的仰角为31°,且斜坡AF的坡比为1:2.(1)求小明从点A到点D的过程中,他上升的高度;(2)大树BC的高度约为多少米?(参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)21. (10分) (2020八上·红桥期末) 某茶店用4000元购进了A种茶叶若干盒,用8400元购进了B种茶叶若干盒,所购B种茶叶比A种茶叶多10盒,且B种茶叶每盒进价是A种茶叶每盒进价的1.4倍.(1) A,B两种茶叶每盒进价分别为多少元?(2)若第一次所购茶叶全部售完后,第二次购进A,B两种茶叶共100盒(进价不变),A种茶叶的售价是每盒300元,B种茶叶的售价是每盒400元,两种茶叶各售出一半后,为庆祝元旦,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进A,B两种茶叶各多少盒?22. (20分)(2020·松滋模拟) 如图(1)已知矩形AOCD在平面直角坐标系xOy中,∠CAO=60°,OA=2,B点的坐标为(2,0),动点M以每秒2个单位长度的速度沿A→C→B运动(M点不与点A、点B重合),设运动时间为t秒.(1)求经过B、C、D三点的抛物线解析式;(2)点P在(1)中的抛物线上,当M为AC中点时,若△PAM≌△PDM,求点P的坐标;(3)当点M在CB上运动时,如图(2)过点M作ME⊥AD,MF⊥x轴,垂足分别为E、F,设矩形AEMF与△ABC 重叠部分面积为S,求S与t的函数关系式,并求出S的最大值;(4)如图(3)点P在(1)中的抛物线上,Q是CA延长线上的一点,且P、Q两点均在第三象限内,Q、A是位于直线BP同侧的不同两点,若点P到x轴的距离为d,△QPB的面积为2d,求点P的坐标.参考答案一、选择题 (共12题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题 (共4题;共4分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共6题;共60分)答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、答案:19-2、答案:19-3、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、答案:22-3、答案:22-4、考点:解析:。
四川省绵阳市 中考数学模拟试卷(三)(解析版)
四川省绵阳市中考数学模拟试卷(三)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个符合题目要求)1.在体育课的跳远比赛中,以4.00米为标准,若小东跳出了4.22米,可记做+0.22,那么小东跳出了3.85米,记作()A.﹣0.15 B.+0.22 C.+0.15 D.﹣0.222.”造林见林,见林见效”这是退耕还林、造林的基本要求,更是农民的朴实愿望,四川省林业厅副厅长包建华说,退耕还林直补给退耕农户带来实惠,累计兑现政策性补助资金331.92亿元,户均5500元.将331.92亿用科学记数法表示为()A.3.3192×108B.3.3192×109C.3.3192×1010D.3.3192×10113.下列事件中是随机事件的是()A.一星期有7天B.袋中有三个红球,摸出一个球是红球C.字母M、N都轴对称图形D.任意买一张车票,座位刚好靠窗口4.在函数y=中,自变量x的取值范围是()A.x≥﹣2且x≠0 B.x≤2且x≠0 C.x≠0 D.x≤﹣25.如图是一个由5个相同的正方体组成的立体图形,它的三视图是()A. B.C.D.6.已知四边形ABCD,则下列说法中正确的是()A.若AB∥CD,AB=CD,则四边形ABCD是平行四边形B.若AC⊥BD,AC=BD,则四边形ABCD是矩形C.若AC⊥BD,AB=AD,CB=CD则四边形ABCD是菱形D.若AB=BC=CD=AD,则四边形ABCD是正方形7.学校文艺部组织部分文艺积极分子看演出,共购得8张甲票,4张乙票,总计用了112元.已知每张甲票比乙票贵2元,则每张甲票、每张乙票的价格分别是()A.10元和8元B.8元和10元C.12元和10元D.10元和12元8.为了调查某班的学生每天使用零花钱的使用情况,张华随机调查了20名同学,结果如下表:每天使用零花钱(单位:元) 1 2 3 4 5人数 1 3 6 5 5则这20名同学每天使用的零花钱的平均数和中位数分别是()A.3,3 B.3,3.5 C.3.5,3.5 D.3.5,39.如图是一个长方形的铝合金窗框,其长为a(m),高为b(m),装有同样大的塑钢玻璃,当第②块向右拉到与第③块重叠,再把第①块向右拉到与第②块重叠时,用含a与b的式子表示这时窗子的通风面积是()m2.A.B.C.D.10.如图,已知AD∥BC,AC与BD相交于点O,点G是BD的中点,过G作GE∥BC交AC于点E,如果AD=1,BC=3,GE:BC等于()A.1:2 B.1:3 C.1:4 D.2:311.已知二次函数y=x2﹣5x+6,当自变量x取m时,对应的函数值小于0,当自变量x取m﹣1、m+1时,对应的函数值为y1、y2,则y1、y2满足()A.y1>0,y2>0 B.y1<0,y2>0 C.y1<0,y2<0 D.y1>0,y2<012.已知,如图,∠ACB=90°,以AC为直径的⊙O交AB于点D,过点D作⊙O的切线交BC于点E,EF⊥AB于F,连接OE交DC于点P,则下列结论不正确的是()A.OE∥AB B.BC=2DE C.AC•DF=DE•CD D.DE=PD二.填空题(本大题共6小题,每小题3分,共18分)13.小明身高为140cm,比他高20cm的哥哥的身高为cm.14.如图,把一块直角三角板直角顶点放在直尺的一边上,若∠1=25°,则∠2=.15.三角形的两边长分别为8和6,第三边长是一元一次不等式2x﹣1<9的正整数解,则三角形的第三边长是.16.如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形.则展开后三角形的周长是.17.如图,在△ABC中,∠ACB=90°,AC=BC,点P在△ABC内,△AP′C是由△BPC绕着点C旋转得到的,PA=,PB=1,∠BPC=135°.则PC=.18.有依次排列的3个数:3,9,8.对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,﹣1,8,这称为第一次操作,做第二次同样的操作后也可产生一个新数串:3,3,6,3,9,﹣10,﹣1,9,8.继续依次操作下去,问:从数串3,9,8开始操作第一百次以后所产生的那个新数串的所有数之和是.三.解答题(本大题共7小题,共86分)19.(1)计算:3tan45°+|1﹣|﹣(3.14﹣π)0﹣(2)化简:÷(﹣a﹣2)20.中学生骑电动车上学的现象越来越受到社会的关注.为此某媒体记者小李随机调查了市区若干名中学生家长对这种现象的态度(态度分为:A:无所谓;B:反对;C:赞成)并将调査结果绘制成图①和图②的统计图(不完整)请根据图中提供的信息,解答下列问题:(1)此次抽样调査中.共调査了名中学生家长;(2)将图①补充完整;(3)根据抽样调查结果,请你估计市区80000名中学生家长中有多少名家长持反对态度?21.如图,直角三角形ABC,点A的坐标为(0,2),点B的坐标为(0,﹣2),BC的长为3,反比例函数y=的图象经过点C.(1)求反比例函数与直线AC的解析式;(2)点P是反比例函数图象上的点,若使△OAP的面积恰好等于△ABC的面积,求P点的坐标.22.某商店以每件16元的价格购进一批商品,物价局限定每件商品的利润不得超过20%,则该商家经过两次连续降价(两次降价百分率相等)后,使该商品的利润为20%;(1)若已知该商家商品原来定价为30元,求每次降价的百分率;(2)若每件商品定价为x(x为整数)元,将剩余170件商品全部卖出,商店预期至少盈利340元,则有哪几种定价方案?23.如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.(1)求证:CD为⊙O的切线;(2)求证:∠C=2∠DBE;(3)若EA=AO=2,求图中阴影部分的面积.(结果保留π)24.如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点(A在B点左侧),与y轴交于点C,对称轴为直线x=,OA=2,OD平分∠BOC交抛物线于点D(点D在第一象限);(1)求抛物线的解析式和点D的坐标;(2)点M是抛物线上的动点,在x轴上存在一点N,使得A、D、M、N四个点为顶点的四边形是平行四边形,求出点M的坐标;(3)在抛物线的对称轴上,是否存在一点P,使得△BPD的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由.25.已知△ABC,AC=BC,CD⊥AB于点D,点F在BD上,连接CF,AM⊥CF于点M,AM交CD于点E.(1)如图1,当∠ACB=90°时,求证:DE=DF;(2)如图2,当∠ACB=60°时,DE与DF的数量关系是(3)在2的条件若tan∠EAF=,EM=,连接EF,将∠DEF绕点E逆时针旋转,旋转后角的两边交线段CF于N、G两点,交线段BC于P、T两点(如图3),若CN=3FN,求线段GT的长.四川省绵阳市中考数学模拟试卷(三)参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个符合题目要求)1.在体育课的跳远比赛中,以4.00米为标准,若小东跳出了4.22米,可记做+0.22,那么小东跳出了3.85米,记作()A.﹣0.15 B.+0.22 C.+0.15 D.﹣0.22【考点】正数和负数.【分析】根据高于标准记为正,可得低于标准记为负.【解答】解:∵以4.00米为标准,若小东跳出了4.22米,可记做+0.22,∴小东跳出了3.85米,记作﹣0.15米,故选:A.【点评】本题考查了正数和负数,注意高于标准用正数表示,低于标准用负数表示.2.”造林见林,见林见效”这是退耕还林、造林的基本要求,更是农民的朴实愿望,四川省林业厅副厅长包建华说,退耕还林直补给退耕农户带来实惠,累计兑现政策性补助资金331.92亿元,户均5500元.将331.92亿用科学记数法表示为()A.3.3192×108B.3.3192×109C.3.3192×1010D.3.3192×1011【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:331.92亿=331 9200 0000=3.3192×1010.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.下列事件中是随机事件的是()A.一星期有7天B.袋中有三个红球,摸出一个球是红球C.字母M、N都轴对称图形D.任意买一张车票,座位刚好靠窗口【考点】随机事件.【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【解答】解:A、一星期有7天是必然事件,故A错误;B、袋中有三个红球,摸出一个球是红球是必然事件,故B错误;C、字母M是轴对称图形,字母N不是轴对称图形,故C错误;D、任意买一张车票,座位刚好靠窗口是随机事件,故D正确;故选:D.【点评】解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.在函数y=中,自变量x的取值范围是()A.x≥﹣2且x≠0 B.x≤2且x≠0 C.x≠0 D.x≤﹣2【考点】函数自变量的取值范围.【专题】函数思想.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:x+2≥0且3x≠0,解得:x≥﹣2且x≠0.故选A.【点评】考查了函数自变量的范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.5.如图是一个由5个相同的正方体组成的立体图形,它的三视图是()A. B.C.D.【考点】简单组合体的三视图.【分析】找到从正面、左面、上看所得到的图形即可,注意所有的看到的棱都应表现在视图中.【解答】解:此几何体的主视图有两排,从上往下分别有1,3个正方形;左视图有二列,从左往右分别有2,1个正方形;俯视图有三列,从上往下分别有3,1个正方形,故选:A.【点评】本题考查了三视图的知识,关键是掌握三视图所看的位置.6.已知四边形ABCD,则下列说法中正确的是()A.若AB∥CD,AB=CD,则四边形ABCD是平行四边形B.若AC⊥BD,AC=BD,则四边形ABCD是矩形C.若AC⊥BD,AB=AD,CB=CD则四边形ABCD是菱形D.若AB=BC=CD=AD,则四边形ABCD是正方形【考点】正方形的判定;平行四边形的判定;菱形的判定;矩形的判定.【分析】分别利用平行四边形以及矩形、菱形和正方形的判定方法分别判断得出即可.【解答】解;A、若AB∥CD,AB=CD,则四边形ABCD是平行四边形,故此选项正确;B、若AC⊥BD,AC=BD,无法得到四边形ABCD是矩形,故此选项错误;C、若AC⊥BD,AB=AD,CB=CD,无法得到四边形ABCD是菱形,故此选项错误;D、若AB=BC=CD=AD,无法得到四边形ABCD是正方形,故此选项错误.故选:A.【点评】此题主要考查了平行四边形以及矩形、菱形和正方形的判定方法,正确掌握相关判定定理是解题关键.7.学校文艺部组织部分文艺积极分子看演出,共购得8张甲票,4张乙票,总计用了112元.已知每张甲票比乙票贵2元,则每张甲票、每张乙票的价格分别是()A.10元和8元B.8元和10元C.12元和10元D.10元和12元【考点】二元一次方程组的应用.【专题】计算题.【分析】设每张甲票、每张乙票的价格分别是x元,y元,列方程组得,求解即可.【解答】解:设每张甲票、每张乙票的价格分别是x元,y元,则,解得,答:每张甲票、每张乙票的价格分别是10元,8元.故选A.【点评】本题考查了二元一次方程组的应用,找出等量关系,列出方程组,是解此题的关键.8.为了调查某班的学生每天使用零花钱的使用情况,张华随机调查了20名同学,结果如下表:每天使用零花钱(单位:元) 1 2 3 4 5人数 1 3 6 5 5则这20名同学每天使用的零花钱的平均数和中位数分别是()A.3,3 B.3,3.5 C.3.5,3.5 D.3.5,3【考点】中位数;加权平均数.【分析】根据平均数和中位数的概念求解.【解答】解:这组数据按照从小到大的顺序排列为:1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,则平均数为:=3.5,中位数为:=3.5.故选C.【点评】本题考查了平均数和中位数的知识:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.9.如图是一个长方形的铝合金窗框,其长为a(m),高为b(m),装有同样大的塑钢玻璃,当第②块向右拉到与第③块重叠,再把第①块向右拉到与第②块重叠时,用含a与b的式子表示这时窗子的通风面积是()m2.A.B.C.D.【考点】列代数式.【分析】第②块向右拉到与第③块重叠,再把第①块向右拉到与第②块重叠时,第一块和第二块玻璃之间的距离是(﹣)×.窗子的通风面积为①中剩下的部分.【解答】解:[a﹣﹣﹣×(﹣)]×b=ab.故选B.【点评】此题有一定的难度,主要是不能准确的找到窗子的通风部位.应该根据图示找到窗子通风的部位在那里,是那个长方形,其长和宽式多少,都需要求出来,再进行面积计算.10.如图,已知AD∥BC,AC与BD相交于点O,点G是BD的中点,过G作GE∥BC交AC于点E,如果AD=1,BC=3,GE:BC等于()A.1:2 B.1:3 C.1:4 D.2:3【考点】相似三角形的判定与性质.【分析】由AD∥BC,GE∥BC,易证得△AOD∽△COB,△OGE∽△OBC,又由AD=1,BC=3,点G是BD 的中点,根据相似三角形的对应边成比例,易得OG=OD,继而求得答案.【解答】解:∵AD∥BC,∴△AOD∽△COB,∵AD=1,BC=3,∴OD:OB=AD:BC=1:3,∴OD=BD,∵点G是BD的中点,∴DG=BD,∴OD=OG,∵GE∥BC,∴△OGE∽△OBC,∴GE:BC=OG:OB=OD:OB=1:3.故选:B.【点评】此题考查了相似三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.11.已知二次函数y=x2﹣5x+6,当自变量x取m时,对应的函数值小于0,当自变量x取m﹣1、m+1时,对应的函数值为y1、y2,则y1、y2满足()A.y1>0,y2>0 B.y1<0,y2>0 C.y1<0,y2<0 D.y1>0,y2<0【考点】二次函数图象上点的坐标特征.【分析】根据函数的解析式求得函数与x轴的交点坐标,利用自变量x取m时对应的值小于0,确定m ﹣1、m+1的位置,进而确定函数值为y1、y2.【解答】解:令y=x2﹣5x+6=0,解得:x=2或x=3.∵当自变量x取m时对应的值小于0,∴2<m<3,∴m﹣1<2,m+1>3,∴y1>0,y2>0.故选:A.【点评】此题考查了抛物线与x轴的交点和二次函数图象上的点的特征,解题的关键是求得抛物线与横轴的交点坐标.12.已知,如图,∠ACB=90°,以AC为直径的⊙O交AB于点D,过点D作⊙O的切线交BC于点E,EF⊥AB于F,连接OE交DC于点P,则下列结论不正确的是()A.OE∥AB B.BC=2DE C.AC•DF=DE•CD D.DE=PD【考点】切线的性质.【分析】证明BC是⊙O的切线,进而得到P是CD的中点,利用中位线定理求出OE∥AB,据此判断A 正确;证明E是BC的中点,利用∠CDB是直角,据此得到BC=2DE,判断B选项正确;证明△ACD∽△EDF,即可得到AC•DF=DE•CD,判断C选项正确;只有当PE=PD时DE才等于PD,据此判断D选项错误.【解答】解:∵∠ACB=90°,∴BC是⊙O的切线,∵BC是⊙O的切线,∴OE垂直平分CD,∠OEC=∠OED,∴P是CD的中点,∴OP∥AB,∴OE∥AB,A选项正确,∵OE∥AB,O是AC的中点,∴E是BC的中点,∵AC是直径,∴∠ADC=90°,∴CD⊥AB,∴∠CDB=90°,∴BC=2DE,B选项正确;∵EF⊥AB,∴∠DFE=∠ADC=90°,∵DE=CD,BC是⊙O的切线,∴DE是⊙O的切线,∴∠EDF=∠CAD,∴△ACD∽△EDF∴,∴AC•DF=DE•CD,C选项正确.在四边形PDFE中,我们可以证明它是矩形,而不具备证明它是正方形的条件, ∴DE=,只有PE=PD时DE才等于PD,D选项错误,故选D.【点评】本题考查了圆的切线的性质、圆周角定理,相似三角形的判定与性质,切线长性质及三角形的中位线的运用,解答本题的关键是熟练掌握切线的判定定理以及切线的性质,此题有一定的难度.二.填空题(本大题共6小题,每小题3分,共18分)13.小明身高为140cm,比他高20cm的哥哥的身高为160cm.【考点】有理数的加法.【专题】应用题.【分析】根据有理数的加法,即可解答.【解答】解:140+20=160(cm).故答案为:160.【点评】本题考查了有理数的加法,解决本题的关键是熟记有理数加法法则.14.如图,把一块直角三角板直角顶点放在直尺的一边上,若∠1=25°,则∠2=65°.【考点】平行线的性质.【分析】由题意知,∠1+∠3=90°;然后根据“两直线平行,内错角相等”推知∠2=∠3.【解答】解:如图,根据题意,知∠1+∠3=90°.∵∠1=25°,∠3=65°.又∵AB∥CD,∴∠2=∠3=65°;故答案是“65°.【点评】本题考查了平行线的性质.解题时,要注意挖掘出隐含在题中的已知条件∠1+∠3=90°.15.三角形的两边长分别为8和6,第三边长是一元一次不等式2x﹣1<9的正整数解,则三角形的第三边长是3或4.【考点】三角形三边关系;一元一次不等式的整数解.【分析】先求出不等式的解集,再根据x是符合条件的正整数判断出x的可能值,再由三角形的三边关系求出x的值即可.【解答】解:2x﹣1<9,解得:x<5,∵x是它的正整数解,∴x可取1,2,3,4,根据三角形第三边的取值范围,得2<x<14,∴x=3,4.故答案为:3或4.【点评】本题综合考查了求不等式特殊解的方法及三角形的三边关系,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.16.如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形.则展开后三角形的周长是2+2.【考点】剪纸问题.【专题】压轴题.【分析】严格按照图的示意对折,裁剪后得到的是直角三角形,虚线①为矩形的对称轴,依据对称轴的性质虚线①平分矩形的长,即可得到沿虚线②裁下的直角三角形的短直角边为10÷2﹣4=1,虚线②为斜边,据勾股定理可得虚线②为,据等腰三角形底边的高平分底边的性质可以得到,展开后的等腰三角形的底边为2,故得到等腰三角形的周长.【解答】解:根据题意,三角形的底边为2(10÷2﹣4)=2,腰的平方为32+12=10,因此等腰三角形的腰为,因此等腰三角形的周长为:2+2.答:展开后等腰三角形的周长为2+2.【点评】本题主要考查学生的动手能力和对相关性质的运用能力,只要亲自动手操作,答案就会很容易得出来.17.如图,在△ABC中,∠ACB=90°,AC=BC,点P在△ABC内,△AP′C是由△BPC绕着点C旋转得到的,PA=,PB=1,∠BPC=135°.则PC=.【考点】旋转的性质;勾股定理.【专题】计算题.【分析】根据旋转的性质可以得到∠P′CA=∠PCB,进而可以得到∠P′CP=∠ACB=90°,进而得到等腰直角三角形,求解即可.【解答】解:∵△AP′C是由△BPC绕着点C旋转得到的,∴∠P′CA=∠PCB,CP′=CP,∴∠P′CP=∠ACB=90°,∴△P′CP为等腰直角三角形,可得出∠AP′B=90°,∵PA=,PB=1,∴AP′=1,∴PP′==2,∴PC=,故答案为.【点评】本题考查了旋转的性质及勾股定理的知识,解题的关键是正确的利用旋转的性质得到相等的量.18.有依次排列的3个数:3,9,8.对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,﹣1,8,这称为第一次操作,做第二次同样的操作后也可产生一个新数串:3,3,6,3,9,﹣10,﹣1,9,8.继续依次操作下去,问:从数串3,9,8开始操作第一百次以后所产生的那个新数串的所有数之和是520.【考点】规律型:数字的变化类.【分析】首先具体地算出每一次操作以后所产生的那个新数串的所有数之和,从中发现规律,进而得出操作第100次以后所产生的那个新数串的所有数之和.【解答】解:设A=3,B=9,C=8,操作第n次以后所产生的那个新数串的所有数之和为S n.n=1时,S1=A+(B﹣A)+B+(C﹣B)+C=B+2C=(A+B+C)+1×(C﹣A);n=2时,S2=A+(B﹣2A)+(B﹣A)+A+B+(C﹣2B)+(C﹣B)+B+C=﹣A+B+3C=(A+B+C)+2×(C﹣A);…故n=100时,S100=(A+B+C)+100×(C﹣A)=﹣99A+B+101C=﹣99×3+9+101×8=520.故答案为:520.【点评】此题主要考查了数字变化类,本题中理解每一次操作的方法是前提,得出每一次操作以后所产生的那个新数串的所有数之和的规律是关键.三.解答题(本大题共7小题,共86分)19.(1)计算:3tan45°+|1﹣|﹣(3.14﹣π)0﹣(2)化简:÷(﹣a﹣2)【考点】分式的混合运算;零指数幂;二次根式的混合运算;特殊角的三角函数值.【分析】(1)根据特殊角的三角函数值,绝对值,零指数次幂以及分母有理化进行计算即可;(2)根据运算顺序,先算括号里面的,再算除法即可.【解答】解:(1)原式=3×1+﹣1﹣1﹣=3﹣2=1;(2)原式=÷=•=﹣=﹣.【点评】本题考查了特殊角的三角函数值,二次根式的混合运算以及分式的混合运算,通分、因式分解和约分是解答分式混合运算的关键.20.中学生骑电动车上学的现象越来越受到社会的关注.为此某媒体记者小李随机调查了市区若干名中学生家长对这种现象的态度(态度分为:A:无所谓;B:反对;C:赞成)并将调査结果绘制成图①和图②的统计图(不完整)请根据图中提供的信息,解答下列问题:(1)此次抽样调査中.共调査了200名中学生家长;(2)将图①补充完整;(3)根据抽样调查结果,请你估计市区80000名中学生家长中有多少名家长持反对态度?【考点】条形统计图;用样本估计总体;扇形统计图.【专题】计算题.【分析】(1)由无所谓的人数除以所占的百分比即可求出学生家长的总数;(2)求出赞成的人数,补全统计图即可;(3)求出反对的人数占得百分比,乘以80000即可得到结果.【解答】解:(1)根据题意得:40÷20%=200(人),则共调查了200名中学生的家长;(2)赞成家长数为200﹣(40+120)=40(人),补全统计图,如图所示:(3)根据题意得:80000×=48000(人),则市区80000名中学生家长中有48000名家长持反对态度.【点评】此题考查了条形统计图,扇形统计图,用样本估计总体,弄清题意是解本题的关键.21.如图,直角三角形ABC,点A的坐标为(0,2),点B的坐标为(0,﹣2),BC的长为3,反比例函数y=的图象经过点C.(1)求反比例函数与直线AC的解析式;(2)点P是反比例函数图象上的点,若使△OAP的面积恰好等于△ABC的面积,求P点的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)求出C的坐标,代入反比例函数的解析式,即可求出反比例函数的解析式,设直线AC的解析式是y=ax+b,把A、C的坐标代入即可求出直线AC的解析式;(2)设P的坐标是(x,y),根据三角形面积求出x的值,代入反比例函数的解析式,求出y即可.【解答】解:(1)∵点A的坐标为(0,2),点B的坐标为(0,﹣2),∴AB=4,∵BC的长是3,∴C点的坐标是(3,﹣2),∵反比例函数y=的图象经过点C,∴k=3×(﹣2)=﹣6,∴反比例函数的解析式是y=﹣;设直线AC的解析式是y=ax+b,把A(0,2),C(3,﹣2)代入得:,解得:b=2,k=﹣,即直线AC的解析式是y=﹣x+2;(2)设P的坐标是(x,y),∵△OAP的面积恰好等于△ABC的面积,∴×OA•|x|=×3×4,解得:x=±6,∵P点在反比例函数y=﹣上,∴当x=6时,y=﹣1;当x=﹣6时,y=1;即P点的坐标为(6,﹣1)或(﹣6,1).【点评】本题考查了三角形的面积,用待定系数法求一次函数、反比例函数的解析式的应用,主要考查学生的推理和计算能力,题目比较好,难度适中.22.某商店以每件16元的价格购进一批商品,物价局限定每件商品的利润不得超过20%,则该商家经过两次连续降价(两次降价百分率相等)后,使该商品的利润为20%;(1)若已知该商家商品原来定价为30元,求每次降价的百分率;(2)若每件商品定价为x(x为整数)元,将剩余170件商品全部卖出,商店预期至少盈利340元,则有哪几种定价方案?【考点】一元二次方程的应用.【专题】增长率问题.【分析】(1)设每次降价的百分率为x,根据商家经过两次连续降价(两次降价百分率相等)后,该商品的利润为20%,列出方程,求解即可;(2)若每件商品定价为x(x为整数)元,根据物价局限定每件商品的利润不得超过20%和剩余170件商品全部卖出,商店预期至少盈利340元,列出不等式组,求解即可.【解答】解:(1)设每次降价的百分率为x,根据题意得:30(1﹣x)2=16(1+20%),解得:x1=0.2=20%,x2=1.8(不合题意,舍去),答:每次降价的百分率为20%.(2)若每件商品定价为x(x为整数)元,根据题意得:,解得:18≤x≤,∵x为整数,∴x=18,19,∴共有2种方案,方案①:每件商品定价为18元,方案②:每件商品定价为19元.【点评】此题考查了一元二次方程和一元一次不等式组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程和不等式组,再求解;注意把不合题意的解舍去.23.如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.(1)求证:CD为⊙O的切线;(2)求证:∠C=2∠DBE;(3)若EA=AO=2,求图中阴影部分的面积.(结果保留π)【考点】切线的判定与性质;扇形面积的计算.【专题】综合题.【分析】(1)连接OD,由BC为圆O的切线,利用切线的性质得到∠ABC为直角,由CD=CB,利用等边对等角得到一对角相等,再由OB=OD,利用等边对等角得到一对角相等,进而得到∠ODC=∠ABC,确定出∠ODC为直角,即可得证;(2)根据图形,利用外角性质及等边对等角得到∠DOE=∠ODB+∠OBD=2∠DBE,由(1)得:OD⊥EC 于点D,可得∠E+∠C=∠E+∠DOE=90°,等量代换即可得证;(3)作OF⊥DB于点F,利用垂径定理得到F为BD中点,连接AD,由EA=AO可得:AD是Rt△ODE 斜边的中线,利用直角三角形斜边上的中线等于斜边的一半得到AD=AE=AO,即三角形AOD为等边三角形,确定出∠DAB=60°,即∠OBD=30°,在直角三角形BOF中,利用30°所对的直角边等于斜边的一半求出OF的长,利用勾股定理求出BFO的长,得到BD的长,得出∠DOB为120°,由扇形BDO面积减去三角形BOD面积求出阴影部分面积即可.【解答】(1)证明:连接OD,∵BC是⊙O的切线,∴∠ABC=90°,∵CD=CB,∴∠CBD=∠CDB,∵OB=OD,∴∠OBD=∠ODB,∴∠ODC=∠ABC=90°,即OD⊥CD,∵点D在⊙O上,∴CD为⊙O的切线;(2)证明:如图,∠DOE=∠ODB+∠OBD=2∠DBE,由(1)得:OD ⊥EC 于点D,∴∠E+∠C=∠E+∠DOE=90°,∴∠C=∠DOE=2∠DBE ;(3)解:作OF ⊥DB 于点F,连接AD,由EA=AO 可得:AD 是Rt △ODE 斜边的中线,∴AD=AO=OD,∴∠DOA=60°,∴∠OBD=30°,又∵OB=AO=2,OF ⊥BD,∴OF=1,BF=, ∴BD=2BF=2,∠BOD=180°﹣∠DOA=120°,∴S 阴影=S 扇形OBD ﹣S △BOD =﹣×2×1=﹣.【点评】此题考查了切线的判定与性质,以及扇形面积的计算,熟练掌握切线的判定与性质是解本题的关键.24.如图,抛物线y=﹣x 2+bx+c 与x 轴交于A 、B 两点(A 在B 点左侧),与y 轴交于点C,对称轴为直线x=,OA=2,OD 平分∠BOC 交抛物线于点D (点D 在第一象限);(1)求抛物线的解析式和点D 的坐标;(2)点M 是抛物线上的动点,在x 轴上存在一点N,使得A 、D 、M 、N 四个点为顶点的四边形是平行四边形,求出点M 的坐标;(3)在抛物线的对称轴上,是否存在一点P,使得△BPD 的周长最小?若存在,请求出点P 的坐标;若不存在,请说明理由.。
2023年山东省泰安市中考数学模拟试卷(三)及答案解析
2023年山东省泰安市中考数学模拟试卷(三)一.选择题(每题4分,本大题共12小题,共48分,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个,均记零分)1.(4分)下列实数中,最大的数是()A.﹣|﹣4|B.0C.1D.﹣(﹣3)2.(4分)2018年国庆小长假,泰安市旅游再次交出漂亮“成绩单”,全市纳入重点监测的21个旅游景区、旅游大项目、乡村旅游点实现旅游收入近132000000元,将132000000用科学记数法表示为()A.1.32×109B.1.32×108C.1.32×107D.1.32×106 3.(4分)下列运算正确的是()A.a3•a4=a12B.a5÷a﹣3=a2C.(3a4)2=6a8D.(﹣a)5•a=﹣a64.(4分)下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.5.(4分)如图,直线a∥b,直线c分别交a、b于点A、C,∠BAC的平分线交直线b于点D,若∠2=50°,则∠1的度数是()A.50°B.60°C.80°D.100°6.(4分)某校对部分参加研学旅行社会实践活动的中学生的年龄(单位:岁)进行统计,结果如表:年龄1212141516人数12231则这些学生年龄的众数和中位数分别是()A.15,14B.15,13C.14,14D.13,147.(4分)如图,点B、C、D在⊙O上,若∠BCD=140°,则∠BOD的度数是()A.40°B.50°C.80°D.90°8.(4分)已知关于x的一元二次方程x2﹣2kx+6=0有两个相等的实数根,则k的值为()A.±2B.±C.2或3D.或9.(4分)函数y=和一次函数y=﹣ax+1(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.10.(4分)如图,⊙O中,AB=AC,∠ACB=75°,BC=1,则阴影部分的面积是()A.1+πB.+πC.+πD.1+π11.(4分)如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与边长是6的正方形OABC的两边AB,BC分别相交于M,N两点.△OMN的面积为10.若动点P在x轴上,则PM+PN的最小值是()A.6B.10C.2D.212.(4分)如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD 于点E、F,连接BD、DP,BD与CF相交于点H.给出下列结论:①BE=2AE;②△DFP∽△BPH;③;④DP2=PH•PC;其中正确的是()A.①②③④B.①③④C.②③D.①②④二、填空题(每题4分,本大题共6小题,满分24分只要求填写最后结果,每小题填对得4分)13.(4分)不等式组的解集是.14.(4分)关于x的一元二次方程(m﹣1)x2﹣2x﹣1=0有两个实数根,则实数m的取值范围是.15.(4分)如图是某圆锥的主视图和左视图,则该圆锥的表面积是.16.(4分)如图,一艘海轮位于灯塔P的南偏东45°方向,距离灯塔400海里的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东30°方向上的B处,这时B处与灯塔P的距离为海里.17.(4分)如图,在矩形ABCD中,对角线AC,BD交于点O,过点A作EA⊥CA交DB 的延长线于点E,若AB=3,BC=4,则的值为.18.(4分)在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1,作第1个正方形A1B1C1C;延长C1B1交x轴于点A2,作第2个正方形A2B2C2C1,…,按这样的规律进行下去,第2016个正方形的面积是.三、解答题(本大题共7小题,满分78分,解答应写出文字说明、证明过程或演算步骤)19.(8分)先化简,再求值:,其中a=2+.20.(10分)民俗村的开发和建设带动了旅游业的发展,某市有A、B、C、D、E五个民俗旅游村及“其它”景点,该市旅游部门绘制了2018年“五•一”长假期间民俗村旅游情况统计图如下:根据以上信息解答:(1)2018年“五•一”期间,该市五个旅游村及“其它”景点共接待游客万人,扇形统计图中D民俗村所对应的圆心角的度数是,并补全条形统计图;(2)根据近几年到该市旅游人数增长趋势,预计2019年“五•一”节将有70万游客选择该市旅游,请估计有多少万人会选择去E民俗村旅游?(3)甲、乙两个旅行团在A、C、D三个民俗村中,同时选择去同一个民俗村的概率是多少?请用画树状图或列表法加以说明.21.(11分)如图,一次函数y=kx+b与反比例函数y=的图象交于A(2,3),B(﹣3,n)两点.(1)求一次函数与反比例函数的解析式;(2)过点B作BC⊥x轴,垂足为C,连接AC,求△ABC的面积.22.(11分)如图,四边形ABCD中,AC⊥BD交BD于点E,点F,M分别是AB,BC的中点,BN平分∠ABE交AM于点N,AB=AC=BD.连接MF,NF.(1)判断△BMN的形状,并证明你的结论;(2)判断△MFN与△BDC之间的关系,并说明理由.23.(12分)红灯笼,象征着阖家团圆,红红火火,挂灯笼成为我国的一种传统文化.小明在春节前购进甲、乙两种红灯笼,用3120元购进甲灯笼与用4200元购进乙灯笼的数量相同,已知乙灯笼每对进价比甲灯笼每对进价多9元.(1)求甲、乙两种灯笼每对的进价;(2)经市场调查发现,乙灯笼每对售价50元时,每天可售出98对,售价每提高1元,则每天少售出2对:物价部门规定其销售单价不高于每对65元,设乙灯笼每对涨价x元,小明一天通过乙灯笼获得利润y元.①求出y与x之间的函数解析式;②乙种灯笼的销售单价为多少元时,一天获得利润最大?最大利润是多少元?24.(12分)如图1,在平面直角坐标系中,已知抛物线y=ax2+bx﹣5与x轴交于A(﹣1,0),B(5,0)两点,与y轴交于点C.(1)求抛物线的函数表达式;(2)如图2,CE∥x轴与抛物线相交于点E,点H是直线CE下方抛物线上的动点,过点H且与y轴平行的直线与BC,CE分别相交于点F,G,试探究当点H运动到何处时,四边形CHEF的面积最大,求点H的坐标;(3)若点K为抛物线的顶点,点M(4,m)是该抛物线上的一点,在x轴,y轴上分别找点P,Q,使四边形PQKM的周长最小,求出点P,Q的坐标.25.(14分)如图①,在△ABC中,∠BAC=90°,AB=AC,点E在AC上(且不与点A,C重合),在△ABC的外部作△CED,使∠CED=90°,DE=CE,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.(1)请直接写出线段AF,AE的数量关系;(2)将△CED绕点C逆时针旋转,当点E在线段BC上时,如图②,连接AE,请判断线段AF,AE的数量关系,并证明你的结论;(3)在图②的基础上,将△CED绕点C继续逆时针旋转,请判断(2)问中的结论是否发生变化?若不变,结合图③写出证明过程;若变化,请说明理由.2023年山东省泰安市中考数学模拟试卷(三)参考答案与试题解析一.选择题(每题4分,本大题共12小题,共48分,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个,均记零分)1.【分析】根据任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小可得答案.【解答】解:﹣|﹣4|=﹣4,﹣(﹣3)=3,3>1>0>﹣4,故选:D.【点评】此题主要考查了实数的比较大小,关键是掌握比较大小的法则.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:132000000=1.32×108;故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】根据同底数幂的乘法、同底数幂的除法、积的乘方和幂的乘方进行计算即可.【解答】解:A、a3•a4=a7,故A错误;B、a5÷a﹣3=a8,故B错误;C、(3a4)2=9a8,故C错误;D、(﹣a)5•a=﹣a6,故D正确;故选:D.【点评】本题考查了同底数幂的乘法,同底数幂的除法,积的乘方和幂的乘方,掌握运算法则是解题的关键.4.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项正确;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误.故选:B.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.【分析】利用平行线的性质求出∠BAD,再根据角平分线的定义,求出∠DAC即可解决问题.【解答】解:∵AB∥CD,∴∠BAD=∠2=50°,∵AD平分∠BAC,∴∠DAC=50°,∴∠1=180°﹣∠BDA﹣∠DAC=80°,故选:C.【点评】本题考查平行线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.6.【分析】出现次数最多的那个数,称为这组数据的众数;中位数一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.【解答】解:15出现的次数最多,15是众数.一共9个学生,按照顺序排列第5个学生年龄是14,所以中位数为14.故选:A.【点评】本题考查了众数及中位数的知识,掌握各部分的概念是解题关键.7.【分析】首先圆上取一点A,连接AB,AD,根据圆的内接四边形的性质,即可得∠BAD+∠BCD=180°,即可求得∠BAD的度数,再根据圆周角的性质,即可求得答案.【解答】解:圆上取一点A,连接AB,AD,∵点A、B,C,D在⊙O上,∠BCD=140°,∴∠BAD=40°,∴∠BOD=80°,故选:C.【点评】此题考查了圆周角的性质与圆的内接四边形的性质.此题比较简单,解题的关键是注意数形结合思想的应用,注意辅助线的作法.8.【分析】利用判别式的意义得到Δ=(﹣2k)2﹣4×6=0,然后解关于k的方程即可.【解答】解:根据题意得Δ=(﹣2k)2﹣4×6=0,解得k=±.故选:B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac 有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.9.【分析】根据题目中的函数解析式,利用分类讨论的方法可以判断各个选项中的函数图象是否正确,从而可以解答本题.【解答】解:∵函数y=和一次函数y=﹣ax+1(a≠0),∴当a>0时,函数y=在第一、三象限,一次函数y=﹣ax+1经过一、二、四象限,故选项A、B错误,选项C正确;当a<0时,函数y=在第二、四象限,一次函数y=﹣ax+1经过一、二、三象限,故选项D错误;故选:C.【点评】本题考查反比例函数的图象、一次函数的图象,解答本题的关键是明确题意,利用分类讨论的方法解答.10.【分析】连接OB、OC,先利用同弧所对的圆周角等于所对的圆心角的一半,求出扇形的圆心角为60度,即可求出半径的长1,利用三角形和扇形的面积公式即可求解;【解答】解:作OD⊥BC,则BD=CD,连接OA,OB,OC,∴OD是BC的垂直平分线∴,∴AB=AC,∴A在BC的垂直平分线上,∴A、O、D共线,∵∠ACB=75°,AB=AC,∴∠ABC=∠ACB=75°,∴∠BAC =30°,∴∠BOC =60°,∵OB =OC ,∴△BOC 是等边三角形,∴OA =OB =OC =BC =1,∵AD ⊥BC ,AB =AC ,∴BD =CD ,∴OD =OB =,∴AD =1+,∴S △ABC =BC •AD =,S △BOC =BC •OD =,∴S 阴影=S △ABC +S 扇形BOC ﹣S △BOC =+﹣=,故选:B .【点评】本题主要考查了扇形的面积公式,圆周角定理,垂径定理等,明确S 阴影=S △ABC +S 扇形BOC ﹣S △BOC 是解题的关键.11.【分析】由正方形OABC 的边长是6,得到点M 的横坐标和点N 的纵坐标为6,求得M (6,),N (,6),根据三角形的面积列方程得到M (6,4),N (4,6),作M 关于x 轴的对称点M ′,连接NM ′交x 轴于P ,则NM ′的长=PM +PN 的最小值,根据勾股定理即可得到结论.【解答】解:∵正方形OABC 的边长是6,∴点M 的横坐标和点N 的纵坐标为6,∴M (6,),N (,6),∴BN =6﹣,BM =6﹣,∵△OMN 的面积为10,∴6×6﹣×6×﹣6×﹣×(6﹣)2=10,∴k =24或﹣24(舍去),∴M (6,4),N (4,6),作M关于x轴的对称点M′,连接NM′交x轴于P,则NM′的长=PM+PN的最小值,∵AM=AM′=4,∴BM′=10,BN=2,∴NM′===2,故选:C.【点评】本题考查了反比例函数的系数k的几何意义,轴对称﹣最小距离问题,勾股定理,正方形的性质,正确的作出图形是解题的关键.12.【分析】由正方形的性质和相似三角形的判定与性质,即可得出结论.【解答】解:∵△BPC是等边三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°∴∠ABE=∠DCF=30°,∴BE=2AE;故①正确;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH;故②正确;∵∠DCF=90°﹣60°=30°,∴tan∠DCF==,∵△DFP∽△BPH,∴==,∵BP=CP=CD,∴==;故③错误;∵∠PDH=∠PCD=30°,∠DPH=∠DPC,∴△DPH∽△CPD,∴=,∴DP2=PH•PC,故④正确;故选:D.【点评】本题考查的正方形的性质,等边三角形的性质以及相似三角形的判定和性质,解答此题的关键是熟练掌握性质和定理.二、填空题(每题4分,本大题共6小题,满分24分只要求填写最后结果,每小题填对得4分)13.【分析】先求出两个不等式的解集,再求其公共解.【解答】解:,由①得,x<3,由②得,x≥1,所以不等式组的解集为1≤x<3,故答案为:1≤x<3.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).14.【分析】利用一元二次方程的定义和判别式的意义得到m﹣1≠0且Δ=(﹣2)2﹣4(m ﹣1)×(﹣1)≥0,然后解不等式求出它们的公共部分即可.【解答】解:根据题意得m﹣1≠0且Δ=(﹣2)2﹣4(m﹣1)×(﹣1)≥0.解得m≥0且m≠1.故答案为m≥0且m≠1.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac 有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.15.【分析】求得圆锥的底面周长以及母线长,即可得到圆锥的侧面积和底面积,从而求得表面积.【解答】解:由题可得,圆锥的底面直径为8,高为3,∴圆锥的底面周长为8π,圆锥的母线长为=5,∴圆锥的侧面积=×8π×5=20π,底面积为42π=16π,∴表面积为20π+16π=36π故答案为:36π.【点评】本题主要考查了由三视图判断几何体以及圆锥的计算,圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.16.【分析】如图作PE⊥AB于E.在Rt△PAE中,求出PE,在Rt△PBE中,根据PB=2PE 即可解决问题.【解答】解:如图作PE⊥AB于E.在Rt△PAE中,∵∠PAE=45°,PA=400海里,∴PE=AE=×400=200海里,在Rt△PBE中,∵∠B=30°,∴PB=2PE=400海里,故答案为:400.【点评】本题考查的是解直角三角形﹣方向角问题,掌握锐角三角函数的定义、方向角的概念是解题的关键.17.【分析】分析题目,作BH⊥OA于H,如图,利用矩形的性质得OA=OC=OB,∠ABC =90°,则根据勾股定理可计算出AC=5,AO=OB=;接下来利用三角形的等面积法,可计算出BH的值,进而利用勾股定理可计算出OH的值;接下来根据相似三角形的判定定理可证明△OBH∽△OEA,最后利用相似三角形的性质可求出的值.【解答】解:作BH⊥OA于H,如图,∵四边形ABCD为矩形,∴∠ABC=90°,OA=OC=OB,在Rt△ABC中,AC===5,∴OB=AO=.∵AB•BC=BH•AC,∴BH==,在Rt△OBH中,OH===.∵EA⊥CA,∴BH∥AE,∴△OBH∽△OEA,∴=,∴===.故答案为:.【点评】此题考查的是相似三角形的判定与性质、矩形的性质、线段垂直平分线的性质,正确作出辅助线是解决此题的关键.18.【分析】先利用勾股定理求出AB=BC=AD,再用三角形相似得出A1B=,A2B2=()2,找出规律A2016B2016=()2016,即可.【解答】解:∵点A的坐标为(1,0),点D的坐标为(0,2),∴OA=1,OD=2,BC=AB=AD=∵正方形ABCD,正方形A1B1C1C,∴∠OAD+∠A1AB=90°,∠ADO+∠OAD=90°,∴∠A1AB=∠ADO,∵∠AOD=∠A1BA=90°,∴△AOD∽△A1BA,∴,∴,∴A1B=,∴A1B1=A1C=A1B+BC=,同理可得,A2B2==()2,同理可得,A3B3=()3,同理可得,A2016B2016=()2016,==[()2016]2=5×()4032,∴S第2016个正方形的面积故答案为5×()4032【点评】此题是正方形的性质题,主要考查正方形的性质,勾股定理,相似三角形的性质和判定,解本题的关键是求出几个正方形的边长,找出规律.三、解答题(本大题共7小题,满分78分,解答应写出文字说明、证明过程或演算步骤)19.【分析】先化简分式,然后将a的值代入即可.【解答】解:原式=[]•=•==,当a=2+时,原式===.【点评】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.20.【分析】(1)根据A景点的人数以及百分比进行计算即可得到该市景点共接待游客数,用360°乘以D对应的百分比可得其圆心角度数,总人数乘以B对应百分比求得其人数即可补全条形图;(2)根据样本估计总体的思想解决问题即可;(3)根据甲、乙两个旅行团在A、C、D三个景点中各选择一个景点,画出树状图,根据概率公式进行计算,即可得到同时选择去同一景点的概率.【解答】解:(1)该市五个旅游村及“其它”景点共接待游客15÷30%=50(万人),扇形统计图中D民俗村所对应的圆心角的度数是18%×360°=64.8°,B景点接待游客数为:50×24%=12(万人),补全条形统计图如下:故答案为:50,64.8°;(2)估计选择去E民俗村旅游的人数约为70×=8.4(万人);(3)画树状图可得:∵共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种,∴同时选择去同一个民俗村的概率是.【点评】本题考查的是条形统计图、扇形统计图、用样本估计总体以及概率的计算的综合应用,读懂统计图、从中获取正确的信息是解题的关键.当有两个元素时,可用树形图列举,也可以列表列举.解题时注意:概率=所求情况数与总情况数之比.21.【分析】(1)把A的坐标代入反比例函数的解析式,求出其解析式,把B的坐标代入反比例函数的解析式,求出B的坐标,把A、B的坐标代入一次函数的解析式,得出方程组,求出方程组的解即可;(2)求出BC=|﹣2|=2,BC边上的高是|﹣3|+2,代入三角形的面积公式求出即可.【解答】解:(1)∵点A(2,3)在y=的图象上,∴m=6,∴反比例函数的解析式为y=,∴n==﹣2,∵点A(2,3),B(﹣3,﹣2)在y=kx+b的图象上,∴∴∴一次函数的解析式为y=x+1.(2)以BC为底,则BC边上的高为3+2=5,S△ABC=×2×5=5,答:△ABC的面积是5.【点评】本题考查了一次函数与反比例函数的交点问题,用待定系数法求一次函数、反比例函数的解析式,三角形的面积的应用,主要培养学生分析问题和解决问题的能力,题型较好,难度适中.22.【分析】(1)根据等腰三角形的性质,可得AM是高线、顶角的角平分线,根据直角三角形的性质,可得∠EAB+∠EBA=90°,根据三角形外角的性质,可得答案;(2)根据三角形中位线的性质,可得MF与AC的关系,根据等量代换,可得MF与BD 的关系,根据等腰直角三角形,可得BM与NM的关系,根据等量代换,可得NM与BC 的关系,根据同角的余角相等,可得∠CBD与∠NMF的关系,根据两边对应成比例且夹角相等的两个三角形相似,可得答案.【解答】(1)答:△BMN是等腰直角三角形.证明:∵AB=AC,点M是BC的中点,∴AM⊥BC,AM平分∠BAC.∵BN平分∠ABE,∠EBN=∠ABN.∵AC⊥BD,∴∠AEB=90°,∴∠EAB+∠EBA=90°,∴∠MNB=∠NAB+∠ABN=(∠BAE+∠ABE)=45°.∴△BMN是等腰直角三角形;(2)答:△MFN∽△BDC.证明:∵点F,M分别是AB,BC的中点,∴FM∥AC,FM=AC.∵AC=BD,∴FM=BD,即.∵△BMN是等腰直角三角形,∴NM=BM=BC,即,∴.∵AM⊥BC,∴∠NMF+∠FMB=90°.∵FM∥AC,∴∠ACB=∠FMB.∵∠CEB=90°,∴∠ACB+∠CBD=90°.∴∠CBD+∠FMB=90°,∴∠NMF=∠CBD.∴△MFN∽△BDC.【点评】本题考查了相似三角形的判定与性质,利用了锐角是45°的直角三角形是等腰直角三角形,两边对应成比例且夹角相等的两个三角形相似.23.【分析】(1)设甲种灯笼单价为x元/对,则乙种灯笼的单价为(x+9)元/对,根据用3120元购进甲灯笼与用4200元购进乙灯笼的数量相同,列分式方程可解;(2)①利用总利润等于每对灯笼的利润乘以卖出的灯笼的实际数量,可以列出函数的解析式;②由函数为开口向下的二次函数,可知有最大值,结合问题的实际意义,可得答案.【解答】解:(1)设甲种灯笼单价为x元/对,则乙种灯笼的单价为(x+9)元/对,由题意得:=,解得x=26,经检验,x=26是原方程的解,且符合题意,∴x+9=26+9=35,答:甲种灯笼单价为26元/对,乙种灯笼的单价为35元/对.(2)①y=(50+x﹣35)(98﹣2x)=﹣2x2+68x+1470,答:y与x之间的函数解析式为:y=﹣2x2+68x+1470.②∵a=﹣2<0,∴函数y有最大值,该二次函数的对称轴为:x=﹣=17,物价部门规定其销售单价不高于每对65元,∴x+50≤65,∴x≤15,∵x<17时,y随x的增大而增大,=2040.∴当x=15时,y最大15+50=65.答:乙种灯笼的销售单价为每对65元时,一天获得利润最大,最大利润是2040元.【点评】本题属于分式方程和二次函数的应用题综合.由于前后步骤有联系,第一问解对,后面才能做对.本题还需要根据问题的实际意义来确定销售单价的取值,本题中等难度.24.【分析】(1)根据待定系数法直接确定出抛物线解析式;(2)先求出直线BC的解析式,进而求出四边形CHEF的面积的函数关系式,即可求出;(3)利用对称性找出点P,Q的位置,进而求出P,Q的坐标.【解答】解:(1)∵点A(﹣1,0),B(5,0)在抛物线y=ax2+bx﹣5上,∴,解得,∴抛物线的表达式为y=x2﹣4x﹣5,(2)设H(t,t2﹣4t﹣5),∵CE∥x轴,∴点E的纵坐标为﹣5,∵E在抛物线上,∴x2﹣4x﹣5=﹣5,∴x=0(舍)或x=4,∴E(4,﹣5),∴CE=4,∵B(5,0),C(0,﹣5),∴直线BC的解析式为y=x﹣5,∴F(t,t﹣5),∴HF=t﹣5﹣(t2﹣4t﹣5)=﹣(t﹣)2+,∵CE∥x轴,HF∥y轴,∴CE⊥HF,=CE•HF=﹣2(t﹣)2+,∴S四边形CHEF∴H(,﹣);(3)如图2,∵K为抛物线的顶点,∴K(2,﹣9),∴K关于y轴的对称点K'(﹣2,﹣9),∵M(4,m)在抛物线上,∴M(4,﹣5),∴点M关于x轴的对称点M'(4,5),∴直线K'M'的解析式为y=x﹣,∴P(,0),Q(0,﹣).【点评】此题是二次函数综合题,主要考查了待定系数法,四边形的面积的计算方法,对称性,解的关键是利用对称性找出点P,Q的位置,是一道中等难度的题目.25.【分析】(1)如图①中,结论:AF=AE,只要证明△AEF是等腰直角三角形即可.(2)如图②中,结论:AF=AE,连接EF,DF交BC于K,先证明△EKF≌△EDA 再证明△AEF是等腰直角三角形即可.(3)如图③中,结论不变,AF=AE,连接EF,延长FD交AC于K,先证明△EDF ≌△ECA,再证明△AEF是等腰直角三角形即可.【解答】解:(1)如图①中,结论:AF=AE.理由:∵四边形ABFD是平行四边形,∴AB=DF,∵AB=AC,∴AC=DF,∵DE=EC,∴AE=EF,∵∠DEC=∠AEF=90°,∴△AEF是等腰直角三角形,∴AF=AE.故答案为AF=AE.(2)如图②中,结论:AF=AE.理由:连接EF,DF交BC于K.∵四边形ABFD是平行四边形,∴AB∥DF,∴∠DKE=∠ABC=45°,∴∠EKF=180°﹣∠DKE=135°,EK=ED,∵∠ADE=180°﹣∠EDC=180°﹣45°=135°,∴∠EKF=∠ADE,∵∠DKC=∠C,∴DK=DC,∵DF=AB=AC,∴KF=AD,在△EKF和△EDA中,,∴△EKF≌△EDA,∴EF=EA,∠KEF=∠AED,∴∠FEA=∠BED=90°,∴△AEF是等腰直角三角形,∴AF=AE.(3)如图③中,结论不变,AF=AE.理由:连接EF,延长FD交AC于K.∵∠EDF=180°﹣∠KDC﹣∠EDC=135°﹣∠KDC,∠ACE=(90°﹣∠KDC)+∠DCE=135°﹣∠KDC,∴∠EDF=∠ACE,∵DF=AB,AB=AC,∴DF=AC在△EDF和△ECA中,,∴△EDF≌△ECA,∴EF=EA,∠FED=∠AEC,∴∠FEA=∠DEC=90°,∴△AEF是等腰直角三角形,∴AF=AE.【点评】本题考查四边形综合题、全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质等知识,解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点,属于中考常考题型。
2024年中考数学模拟测试试卷(带有答案)
【答案】A
【解析】
【分析】设大巴车的平均速度为x千米/时则老师自驾小车的平均速度为 千米/时根据时间的等量关系列出方程即可.
【详解】解:设大巴车 平均速度为x千米/时则老师自驾小车的平均速度为 千米/时
根据题意列方程为:
故答案为:A.
【点睛】本题考查了分式方程的应用,找到等量关系是解题的关键.
21.教育部正式印发《义务教育劳动课程标准(2022年版)》,劳动课成为中小学的一门独立课程,湘潭市中小学已经将劳动教育融入学生的日常学习和生活中某校倡导同学们从帮助父母做一些力所能及的家务做起,培养劳动意识,提高劳动技能.小明随机调查了该校10名学生某周在家做家务的总时间,并对数据进行统计分析,过程如下:
∴
∴ ,故D选项正确
∵ 是直角三角形, 是斜边,则 ,故C选项错误
故选:C.
【点睛】本题考查了等腰三角形的性质,直角三角形斜边上的中线等于斜边的一半,直径所对的圆周角是直角,切线的性质,熟练掌握以上知识是解题的关键.
12.如图,抛物线 与x轴交于点 ,则下列结论中正确的是()
A. B. C. D.
【答案】BD
【答案】2(答案不唯一)
【解析】
【分析】根据实数与数轴的对应关系,得出所求数的绝对值小于 ,且为整数,再利用无理数的估算即可求解.
【详解】解:设所求数为a,由于在数轴上到原点的距离小于 ,则 ,且为整数
则
∵ ,即
∴a可以是 或 或0.
故答案为:2(答案不唯一).
【点睛】本题考查了实数与数轴,无理数的估算,掌握数轴上的点到原点距离的意义是解题的关键.
15.如图,在 中 ,按以下步骤作图:①以点 为圆心,以小于 长为半径作弧,分别交 于点 ,N;②分别以 ,N为圆心,以大于 的长为半径作弧,在 内两弧交于点 ;③作射线 ,交 于点 .若点 到 的距离为 ,则 的长为__________.
2023年中考数学第三次模拟考试卷及答案解析(吉林卷)
2023年中考数学第三次模拟考试卷及答案解析(吉林卷)一、选择题(每小题2分,计12分.)1.2 5-的相反数是()A .25B .52-C .52D .25-2.5月29日腾讯新闻报道,2022年第一季度,湖南全省地区生产总值约为11000亿元,11000亿用科学记数法可表示为1210a ⨯,则a 的值是()A .0.11B .1.1C .11D .110003.如图是由6个相同的小正方体组成的几何体,其俯视图是()A .B .C .D .4.下列运算正确的是()A .248x x x ⋅=B .1025a a a ÷=C .0(2)1x -=D .236()a a -=-5.将一副直角三角尺,按如图所示位置摆放,使60︒角所对的直角边和含45︒角的三角尺的直角边放在同一条直线上,则1∠的度数是()A .45︒B .60°C .105︒D .120°6.如图,已知点A,B,C,D在⊙O上,AC平分BAD∠,35ACD∠=︒,则ADB=∠=︒,50CAD∠()A.50︒B.60︒C.70︒D.80︒二、填空题(每小题3分,共24分)7.因式分解:2ab a-=___________.8.不等式543->-的最大整数解是_______________.x x9.已知关于x的方程230-+=无实数根,那么k的取值范围是________.x x k10.一家商店将某种商品按成本价加价40%作为标价,又以九折销售,如果实际售价为126元,那么该种商品的进价为___元.11.如图,要从村庄P修一条连接公路l的最短的小道,应选择沿线段________修建,理由是________.12.如图,直线a b c∥∥,直线m、n与a、b、c分别交于点A、C、E、B、D、F,已知3AC=,6CE=,2BD=,则BF等于__.13.如图,在ABC 中,点D 、E 分别是BA 、BC 的中点,则BDE 与四边形EDAC 的面积比为______.14.如图①,在ABC 中,90ACB ∠=︒,30A ∠=︒,点C 沿BE 折叠与AB 上的点D 重合,连接DE ,可以探究得到:12BC AB =;请在这一结论的基础上继续思考:如图②,在OPM 中,90OPM ∠=︒,30M ∠=︒,若2OM =,点G 是OM 边上的动点,则12PG MG +的最小值为_____.三、解答题(每小题5分,共20分)15.(本题满分5分)先化简,再求值:x (x +1)+(x +1)(x ﹣1)﹣x ,其中x16.(本题满分5分)桌面上有4张正面分别标有数字3,5,9,10的不透明卡片,它们除数字外其余均相同,现将它们背面朝上,洗匀后平铺开.(1)随机翻开一张卡片,正面数字是奇数的概率是______.(2)先随机翻开一张卡片并记录上面的数字,再从余下的3张卡片中随机翻开一张卡片并记录上面的数字,请用列表或画树状图的方法,求翻到的两个数字之和为偶数的概率.17.(本题满分5分)2023年是中国农历癸卯兔年.春节前,某商场进货员预测一种“吉祥兔”布偶能畅销市场,就用4000元购进一批这种“吉祥兔”,面市后果然供不应求,商场又用8800元购进了第二批这种“吉祥兔”,所购数量是第一批购进量的2倍,但每件的进价贵了4元.该商场购进第一批、第二批“吉祥兔”每件的进价分别是多少元?18.(本题满分5分)如图,在ABC中,点D在AC上,延长DB至点E,使得DE AB∠=∠,=,连接AE,若DAE ABD AE AC=.求证:AD BC=.四、解答题(每小题7分,共28分)19.(本题满分7分)如图,在正方形网格中,点A、B、Q在格点上,请用无刻度的直尺用连线的方法画出如下图形(保留画图痕迹).(1)在图1中,找一个格点P,连接,PA PB,使PAB为直角三角形;(2)在图2中,找一个格点H,连接QH,使HQB ABQ∠=∠.20.(本题满分7分)虎年岁末,台州进入轻轨时代,极大地方便了市民的出行,如图1是台州市城铁路1S线恩泽医院站出入口的自动扶梯,图2是其截面示意图,已知扶梯BC与购票厅地面的夹角130∠=︒,BCD扶梯的长度为12m,求扶梯的底端C距离入口平台AB的高度.(结果精确到0.1m,参考数据:︒≈)︒≈,tan50 1.19︒≈,cos500.64sin500.7721.(本题满分7分)如图,在平面直角坐标系xOy 中,一次函数2y x b =+的图象与x 轴交于点()10A -,,与y 轴交于点B ,与反比例函数()0ky x x =>的图象交于点C ,且AB BC =.点D 是x 轴正半轴上一点,连接CD ,45ODC ∠=︒.(1)求b 和k 的值;(2)求ACD 的面积.22.(本题满分7分)小明调查了2018世界杯和2022世界杯每个参赛国的进球数,设每个参赛国的进球数为T 个.按照进球数分成五组:A 组“04T ≤<”,B 组“48T ≤<”,C 组“812T ≤<”,D 组“1216T ≤<”,E 组“1620T ≤<”.将收集的数据整理后,绘制成如下两幅统计图表.2022世界杯每个参赛国进球数统计表组别国家数A 12B 12C4D 3E 1(1)2022世界杯每个参赛国进球数的中位数落在哪一组?(2)根据组中值分别求2018世界杯和2022世界杯每个参赛国进球的平均数.(3)请选择适合的统计量,从多角度对2018世界杯与2022世界杯的进球数进行分析,踢球技术是进步了还是退步了?五、解答题(每小题8分,共16分)23.(本题满分8分)在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知小亮所在学校的教学楼、图书馆、食堂依次在同一条直线上,图书馆离教学楼700m ,食堂离教学楼1000m .某日中午,小亮从教学楼出发,匀速走了7min (分钟)到图书馆;在图书馆停留16min 借书后,匀速走了5min 到食堂;在食堂停留30min 吃完饭后,匀速走了10min 返回教学楼.给出的图象反映了这个过程中小亮离教学楼的距离()m y 与离开教学楼的时间()min x 之间的对应关系.请根据相关信息,解答下列问题:(1)图中自变量是________,因变量是________;小亮从教学楼到图书馆的速度为________m /min ,小亮从图书馆到食堂的速度为________m /min ;(2)填表:离开教学楼的时间/min2202530离教学楼的距离/m ________700________________(3)当小亮离开教学楼的时间为________min 时,他离教学楼的距离为600m .24.(本题满分8分)【操作】如图①,在矩形ABCD 中,E 为对角线AC 上的一点(不与点A 重合).将ADE V 沿射线AB 方向平移到BCF △的位置,点E 的对应点为点F ,易证:ADE BCF ≌(不需要证明);【探究】过图①的点E 作EG BC ∥,交FB 的延长线于点G ,连接AG ,其他条件不变,如图②.求证:EGA BCF △≌△;【拓展】将图②中的BCF △沿BC 翻折得到BCF '△,连接GF ',其他条件不变,如图③.当GF '最短时,若4AB =,2BC =,直接写出四边形BFCF '的周长.六、解答题(每小题10分,共20分)25.(本题满分10分)在平面直角坐标系中,O 为原点,DOE 是等腰直角三角形,90ODE ∠=︒,3DO DE ==,点D 在x 轴的负半轴上,点E 在第二象限,矩形ABCO 的顶点()4,2B ,点C 在x 轴的正半轴上,点A 在y 轴的正半轴上.将DOE 沿x 轴向右平移,得到D O E '''△,点D ,O ,E 的对应点分别为D ¢,O ',E '.(1)如图1,当E O ''经过点A 时,求点E '的坐标;(2)设OO t '=,D O E '''△与矩形ABCO 重叠部分的面积为S ;①如图②,当D O E '''△与矩形ABCO 重叠部分为五边形时,D E ''与AB 相交于点M ,E O ''分别与AB ,BC 交于点N ,P ,试用含有t 的式子表示S ,并直接写出t 的取值范围;②请直接写出满足72S =的所有t 的值.26.(本题满分10分)如图,二次函数()211142y x m x m =-+-+(m 是常数,且0m >)的图象与x 轴相交于点A 、B (点A 在点B 的左侧),与y 轴相交于点C ,动点P 在对称轴l 上,连接AC 、BC 、PA 、PC .(1)求点A 、B 、C 的坐标(用数字或含m 的式子表示);(2)当PA PC+的最小值等于m的值及此时点P的坐标;(3)当m取(2)中的值时,若2∠=∠,请直接写出点P的坐标.APC ABC答案及解析一、选择题(共6小题,每小题2分,计12分.每小题只有一个选项是符合题意的)1.A【分析】相反数,只有符号不同的两个数互为相反数,由此即可求解.【详解】解:25 的相反数是25,故选:A.【点睛】本题主要考查相反数的定义,掌握相反数的定义,求一个数的相反数的方法是解题的关键.2.B【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,整数位数减1即可.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:因为1亿=108,所以11000亿用科学记数法表示为1.1×104×108=1.1×1012.故选:B.【点睛】此题考查了科学记数法表示绝对值大于1的数.解题的关键是关键知道1亿=108,要正确确定a的值以及n的值.3.D【分析】根据从上面看得到的视图是俯视图,可得答案.【详解】解:从上面看最下一层左边一个小正方形,第二层最右边两个小正方形,故D正确.故选:D .【点睛】本题考查了简单组合体的三视图,从正面看得到的视图是主视图.4.D【分析】根据同底数幂的乘法、除法,零指数幂,积的乘方的运算法则,分别计算即可得到答案.【详解】解:A.246x x x ⋅=,故A 选项错误,不符合题意;B.1028a a a ÷=,故B 选项错误,不符合题意;C.当20x -≠时,0(2)1x -=才成立,故C 选项错误,不符合题意;D .236()a a -=-,故D 选项正确,符合题意;故选:D .【点睛】本题主要考查了同底数幂的乘法、除法,零指数幂,积的乘方,熟练掌握同底数幂的乘法、除法,零指数幂,积的乘方的运算法则,是解题的关键.5.C【分析】利用三角形的内角和为180︒建立式子运算即可.【详解】解:如图,由题意可得:45A ∠=︒,30B ∠=︒根据三角形的内角和为180︒可得:1180A B ∠+∠+∠=︒∴11801804530105A B =︒--=︒-︒-︒=︒∠∠∠故选:C【点睛】本题主要考查了角的度量与运算,灵活寻找角与角之间的数量关系是解题的关键.6.B【分析】有角平分线定义可得70BAD ∠=︒,由圆周角定理可得50ABD ACD ∠=∠=︒,最后根据三角形内角和定理即可解答.【详解】解:∵AC 平分BAD ∠,35CAD ∠=︒∴70BAD ∠=︒∵50ABD ACD ∠=∠=︒180ABD ADB DAB ∠+∠+∠=︒,∴5070180ADB ︒+∠+︒=︒∴ADB ∠=60︒.故选B .【点睛】本题主要考查了角平分线的定义、圆周角定理、三角形内角和等知识点,掌握同弧所对的圆周角相等是解答本题的关键.二、填空题(共8小题,每小题3分,计24分)7.()2a b -【分析】利用提公因式法进行因式分解,即可求解.【详解】解:()22a b b a a --=.故答案为:()2a b -【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解方法——提公因式法、公式法、十字相乘法、分组分解法,并会结合多项式的特征,灵活选用合适的方法是解题的关键.8.1-【分析】先求出不等式的解集,再进行判断即可.【详解】解:543x x ->-,∴435x x ->-+,∴32x ->,∴23x <-;∴不等式543x x ->-的最大整数解是1-;故答案为:1-.【点睛】本题考查解一元一次不等式.熟练掌握解一元一次不等式的步骤,是解题的关键.9.94k >【分析】利用一元二次方程根的判别式进行计算即可.【详解】230x x k -+=为关于x 的一元二次方程,无实根则24<0b ac ∆=-2(3)40k --<94k ∴>故答案为:9>4k 【点睛】本题考查一元二次方程根的判别式,须注意确保方程的二次项系数不为0,才能保证是一元二次方程,才能使用根的判别式.熟悉一元二次方程根的判别式的公式和正确的计算是解题的关键.10.100【分析】首先设该种商品的进价是x 元,根据题意可得等量关系:()140%+⨯进价⨯打折=实际销售价,根据等量关系代入相应数据可得方程,再解方程即可.【详解】解:设该种商品的进价是x 元,由题意得:()140%90x +⨯%126=,解得:100x =,即:该种商品的进价是100元.故答案是:100.【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.11.PC 垂线段最短【分析】根据垂线段的性质:垂线段最短,进行判断即可.【详解】解:∵从直线外一点到这条直线上各点所连线段中,垂线段最短,∴过点P 作PC ⊥l 于点C ,这样做的理由是垂线段最短.故答案为:PC 【点睛】本题主要考查了垂线段的性质,从直线外一点引一条直线的垂线,这点和垂足之间的线段叫做垂线段.12.6【分析】由平行线分线段成比例可得AC BD CE DF=,求DF 的值,然后根据BF BD DF =+求BF 的值即可.【详解】解:∵a b c ∥∥,∴AC BD CE DF =,即326DF=,解得4DF =,∴246BF BD DF =+=+=.故答案为:6.【点睛】本题考查的是平行线分线段成比例定理的应用.灵活运用定理、找准对应关系是解题的关键.13.1:3【分析】由题可知BDE △∽BAC ,且相似比是1:2,再根据相似三角形的面积的比等于相似比的平方解答即可.【详解】解:D ,E 分别是BA ,BC 的中点,DE AC ∴∥,12DE AC =,BDE ∴ ∽BAC ,214BDE BAC S DE S BC ⎛⎫∴== ⎪⎝⎭ ,则BDE 与四边形EDAC 的面积比为1:3.故答案为:1:3.【点睛】本题考查了相似三角形的判定与性质以及三角形的中位线,解题的关键是熟练掌握相似三角形的判定与性质.14.32【分析】由折叠的性质和等腰三角形的性质可得AD BD =,有2AB BC =,即12BC AB =;作P 点关于OM 的对称点P ',作P N PM '⊥交于N 点,交OM 于G '点,连接PG ',得出12PG MG P G G N P N ''''+=+≥,得出此时12PG MG +的最小值为P N '的长,求出P N '的长即为解答.【详解】解:如图:关于OM 的对称点P ',作P N PM '⊥交于N 点,交OM 于G '点,连接PG ',∴PG P G '''=,∵30M ∠=︒,∴12NG G M ''=,∴12PG MG P G G N P N ''''+=+≥,此时12PG MG +的最小值为P N '的长,∵2OM =,在Rt OPM 中,112OP OM ==,∴由勾股定理得:PM =在Rt PDM 中,12PD PM ==,∴2PP PD '==∵30M ∠=︒,90PDM ∠=︒,∴60MPD ∠=︒,∵90PNP '∠=︒,∴30P '∠=︒,∴12PN PP '==,在Rt PP N'△中,由勾股定理得:32P N'=,∴12PG MG+的最小值为32.故答案为:3 2.【点睛】本题主要考查了折叠变换、勾股定理、含30°角的直角三角形、轴对称−路线最短问题等知识点,正确作出辅助线构造轴对称−路线最短问题的基本图形求最短距离是解题的关键.三、解答题(每小题5分,共20分)15.2x2﹣1;5【分析】先去括号,再合并同类项,然后把x的值代入化简后的式子进行计算即可解答.【详解】解:x(x+1)+(x+1)(x﹣1)﹣x=x2+x+x2﹣1﹣x=2x2﹣1,当x2×2﹣1=2×3﹣1=5.【点睛】本题考查了整式的混合运算﹣化简求值,准确熟练地进行计算是解题的关键.16.(1)34(2)12【分析】(1)根据概率计算公式求解即可;(2)先画出树状图得到所有等可能性的结果数,再找到符合题意的结果数,最后根据概率计算公式求解即可.【详解】(1)解:∵一共有4张卡片,其中正面数字是奇数的卡片有3张,每张卡片被翻开的概率相同,∴随机翻开一张卡片,正面数字是奇数的概率是34,故答案为:34;(2)解:画树状图如下:由树状图可知一共有12种等可能性的结果数,其中翻到的两个数字之和为偶数的结果数有6种,∴翻到的两个数字之和为偶数的概率为61122=.【点睛】本题主要考查了简单的概率计算,树状图法或列表法求解概率,正确画出树状图或列出表格是解题的关键.17.购进第一批、第二批“吉祥兔”每件的进价分别是40元、44元【分析】设购进第一批“吉祥兔”每件的进价为x 元,则第二批“吉祥兔”每件的进价为()4x +元,根据第二批所购数量是第一批购进量的2倍列方程求解即可.【详解】解:设购进第一批“吉祥兔”每件的进价为x 元,则第二批“吉祥兔”每件的进价为()4x +元,根据题意,得8800400024x x=⨯+,解得40x =,经检验,40x =是所列方程的解,444x +=(元),答:购进第一批、第二批“吉祥兔”每件的进价分别是40元、44元.【点睛】本题考查分式方程的应用,理解题意,正确列出方程是解答的关键.18.证明见解析【分析】先根据已知条件和三角形外角的性质证明E BAC ∠=∠,进而可用SAS 证明ABC EDA △△≌,从而可证明AD BC =.【详解】证明:∵DAE ABD ∠=∠,DAE BAE BAC ABD BAE E ∠=+∠=+∠∠,∠∠,∴E BAC ∠=∠,在ABC 和EDA 中,AB ED BAC E AC EA =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABC EDA △≌△,∴AD BC =.【点睛】本题主要考查了全等三角形的性质与判定,三角形外角的性质,熟知全等三角形的性质与判定条件是解题的关键,全等三角形的判定定理有SSS SAS AAS ASA HL ,,,,等等.四、解答题(每小题7分,共28分)19.(1)见解析(2)见解析【分析】(1)根据网格的特点和直角三角形的概念求解即可;(2)根据网格的特点求解即可.【详解】(1)如图1所示,PAB即为所要求作的直角三角形,(2)如图2所示,点H即为所要求作的点,【点睛】此题主要考查了应用设计与作图,直角三角形的概念,正确借助网格分析是解题关键.20.扶梯的底端C距离入口平台AB的高度约为9.2m.【分析】过点B作BE CD∠=︒,再BCE⊥,交DC的延长线于点E.由题意可求50结合锐角三角函数即可求出BE的长,即扶梯的底端C距离入口平台AB的高度.【详解】解:如图,过点B作BE CD⊥,交DC的延长线于点E.∵130∠=︒,BCD∴18050BCE BCD ∠=︒-∠=︒.由题意可得12m BC =,在Rt BCE 中,sin 12sin 509.2m BE BC BCE =⋅∠=︒≈.∴扶梯的底端C 距离入口平台AB 的高度约为9.2m .【点睛】本题考查解直角三角形的实际应用.正确作出辅助线构造直角三角形是解题关键.21.(1)2,4b k ==(2)12【分析】把点()10A -,代入一次函数2y x b =+,可求出2b =,从而得到一次函数解析式,进而求出()0,2B ,然后过点C 作CH x ⊥轴于点H ,则CH OB ∥,可得AOB AHC ∽ ,从而得到2,4AH CH ==,进而得到()1,4C ,即可求解;(2)根据45ODC ∠=︒,可得DCH 是等腰直角三角形,从而得到4DH CH ==,进而得到1146AD =++=,即可求解.【详解】(1)解:将点()10A -,代入一次函数2y x b =+,得:20b -+=,解得:2b =,∴一次函数解析式为22y x =+,当0x =时,2y =,∴()0,2B ,∴2OB =,∵()10A -,,∴1OA =,过点C 作CH x ⊥轴于点H ,则CH OB ∥,∴AOB AHC ∽ ,∴OA OB AB AH CH AC==,∵AB BC =,∴1212AH CH ==,∴2,4AH CH ==,∴1OH OA ==,∴()1,4C ,∵反比例函数()0k y x x =>的图象过点C ,∴144k =⨯=;(2)解:∵45ODC ∠=︒,CH x ⊥,∴45DCH ∠=︒,∴DCH 是等腰直角三角形,∴4DH CH ==,∴1146AD =++=,∴ACD 的面积为:11641222AD CH ⋅=⨯⨯=.【点睛】本题主要考查了一次函数与反比例函数的交点问题,利用数形结合思想解答是解题的关键.22.(1)B 组(2)2022168x =,2018158x =(3)2022世界杯踢球技术是进步了,理由见解析【分析】(1)根据中位数的计算方法即可求解;(2)根据加权平均数的计算方法即可求解;(3)根据众数、中位数、平均数进行分析即可求解.【详解】(1)解:2022世界杯参赛国有121243132++++=(个),中位数是第16,17两个数的一半,∴第16,17两个数在B 组,∴中位数落在B 组.(2)解:根据加权平均数的计算方法得,A 组“04T ≤<”,组中数为4022+=,B 组“48T ≤<”,组中数为4862+=,C 组“812T ≤<”,组中数为812102+=,D 组“1216T ≤<”,组中数为1216142+=,E 组“1620T ≤<”,组中数为1620182+=,∴2018年的加权平均数为:20181250%631.25%1012.5%14 3.125%18 3.125%58x =⨯+⨯+⨯+⨯+⨯=;2022年的加权平均数为:20222126121041431811612124318x ⨯+⨯+⨯+⨯+⨯==++++.(3)解:众数:2018世界杯是A 组,2022世界杯是A 组和B 组,中位数:2018世界杯在A 组,2022世界杯在B 组,∴2022世界中位数高于2018世界杯中位数,平均数:由(2)得20222018x x >,综上所述2022世界杯踢球技术是进步了.【点睛】本题主要考查调查与统计中相关概念,理解频数平布直方表的信息,掌握中位数的计算方法,加权平均数的计算方法等知识是解题的关键.五、解答题(每小题8分,共16分)23.(1)小亮离开教学楼的时间,小亮离教学楼的距离,100,60(2)200,820,1000(3)6min 或62min【分析】(1)根据函数的定义,以及速度、路程、时间的关系即可求解;(2)根据题意和函数图象,可以将表格补充完整;(3)分两种情况,根据函数图象中的数据,求出当07x ≤≤时,当5868x ≤≤时,小亮离教学楼的距离为600m 时,求他离开教学楼的时间即可.【详解】(1)解:图中自变量是小亮离开教学楼的时间,因变量是小亮离教学楼的距离;小亮从教学楼到图书馆的速度为()7007100m /min ÷=,小亮从图书馆到食堂的速度为()()()10007002823=60m /min -÷-;(2)解:当2x =时,离教学楼的距离为()1002200m ⨯=,当25x =时,离教学楼的距离为()()700602523820m +⨯-=,在2858x ≤≤时,距离不变,都是1000m ,故当30x =时,离教学楼的距离为1000m ,(3)解:小亮离教学楼的距离为600m 时,有两种情况,①当07x ≤≤时,∵在前7分钟的速度为100m /min ,∴当小亮离教学楼的距离为600m 时,他离开教学楼的时间为()6001006min ÷=,当5868x ≤≤时,小亮离教学楼的距离为600m 时,他离开教学楼的时间为()()()10006001000105862min -÷÷+=,∴当小亮离教学楼的距离为600m 时,求他离开教学楼的时间6min 或62min .【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.24.【探究】见解析;【拓展】【分析】探究:先证明BF AE ∥,BF AE =,可得AEG EGB ∠=∠,再证明BC EG =,AEG FBC ∠=∠,从而可得结论;拓展:如图,连接,BD 交AC 于,O 先求解AC BD OB OC =====证明四边形GECB 是平行四边形,可得2,GE CB AD ===由F G '==当GF '的值最小,此时0,EF '=点E ,点F '与O 重合,从而可得结论.【详解】探究:证明:由平移,得BF AE ∥,BF AE =,∴AEG EGB ∠=∠.∵EG BC ∥,∴四边形BCEG 是平行四边形,且FBC EGB ∠=∠,∴BC EG =,AEG FBC ∠=∠,∴EGA BCF △≌△.拓展:解:如图,∵矩形,ABCD 4AB =,2BC =,连接,BD 交AC 于,O ∴222425,5,AC BD OB OC ==+===∵,BF AE ∥,EG BC ∥∴四边形GECB 是平行四边形,∴2,GE CB AD ===由对折可得:,,CF CF BF BF ''==∴,,CB FF GE FF ''⊥⊥∴2224F G GE EF EF '''=+=+当GF '的值最小,此时0,EF '=点E ,点F '与O 重合,此时5,5,BF BF BO CF CF CO ''======∴四边形BFCF '的周长为45【点睛】本题考查了全等三角形的判定与性质,矩形的性质,翻折变换,平行四边形的判定和性质,勾股定理的应用,解题的关键是得到点E ,点F '与O 重合时,GF '的值最小.六、解答题(每小题10分,共20分)25.(1)()1,3E '-(2)①()2144462S t t t =-+-<<②114t =【分析】(1)先求出直线OE 的解析式,利用平移后O E ''过点A ,求出O E ''的解析式,进而求出O '的坐标,得到平移距离,即可求解;(2)①用BPN OABC OD MA S S S S '=-- 矩形矩形进行求解即可,当O '与点C 重合,再移动直至直线O E ''过点B 之前时,重叠部分为五边形,求出t 的范围即可;②分02t <≤,23t <≤,34t <≤,46t <<,67t <<,五种情况分类讨论求解即可.【详解】(1)解:∵DOE 是等腰直角三角形,90ODE ∠=︒,3DO DE ==,∴()3,0D -,()3,3E -,矩形ABCO 的顶点()4,2B ,点C 在x 轴的正半轴上,点A 在y 轴的正半轴上,∴()()0,2,4,0A C ,设直线OE 的解析式为:y kx =,则:33k =-,∴1k =-,∴y x =-,设平移后O E ''的解析式为:y x b =-+,∵直线O E ''过点A ,∴2b =,∴2y x =-+,当0x =时,2y =,∴()2,0O ',∴2OO '=,∴DOE 沿x 轴向右平移了2个单位,∴()1,3E '-;(2)解:①由题意,得:DD OO t ''==,3O D OD ''==,4AB OC ==,2AO BC ==,45D O E '''∠=︒∴3OD t '=-,4,CP CO OO OC t ''==-=-45BPN ∠=︒,()246BP BN BC CP t t ==-=--=-,∴BPN OABC OD MA S S S S '=-- 矩形矩形()()21422362t t =⨯----21442t t =-+-;如图,当O '与点C 重合,再移动直至直线O E ''过点B 之前时,重叠部分为五边形,∴当O '与点C 重合时,4t =,∵直线O E ''的解析式为:y x b =-+,当直线O E ''过点()4,2B 时,∴24b =-+,∴6b =,∴6y x =-+,当0y =时,6x =,此时()6,0O ',∴6t OO '==,∴46t <<时,重叠部分为五边形;②当02t <≤时,此时重叠部分为等腰直角三角形,如图所示:∴221122S O O t '==,当72S =时,21722t =,解得:t =,∵02t <≤,此种情况不存在;当23t <≤时,重叠部分为直角梯形,如图,∵45OO H '∠=︒,90HOO '∠=︒,∴OH OO t '==,∵AG OO '∥,∴45AGH OO H '∠=∠=︒,∴2AG AH OH OA t ==-=-,∴()221122222OO H AGH S S S t t t '=-=--=- ,当72S =时,7222t -=,解得:114t =;当34t <≤时,如图:此时:321HE HG D E D H ''''==-=-=,∴11733114222DO E E GH S S S '''=-=⨯⨯-⨯⨯=≠ ;当46t <<时:由①知:21442S t t =-+-,当72S =时,2174422t t -+-=,解得:4t =±;当67t ≤<时,重叠部分为矩形D CBH ',如图:()()437D C OC O D OC OO O D t t '''''=-=--=--=-,∴()27142S t t =-=-,当72S =时,71422t -=,解得:214t =(不合题意,舍掉);综上,114t =.【点睛】本题考查坐标与平移,一次函数的综合应用,等腰三角形性质,矩形的性质.属于中考压轴题,确定动点的位置,利用数形结合和分类讨论的思想进行求解,是解题的关键.26.(1)()20A -,,()20B m ,,()0C ,m (2)4m =,532P ⎛⎫ ⎪⎝⎭,(3)P 点坐标为()30,或532⎛⎫ ⎪⎝⎭,【分析】(1)将0x =,0y =,分别代入()211142y x m x m =-+-+,计算求解即可;(2)如图1,连接PB ,由题意知,PA PB =,则PA PC PB PC +=+,可知当C P B ,,三点共线时,PA PC +值最小,在Rt BOC 中,由勾股定理得BC =,由PA PC +的最小值等于=m 的值,然后得出B C ,的点坐标,待定系数法求直线BC 的解析式,根据P 是直线BC 与直线l 的交点,计算求解即可;(3)由(2)知4m =,则()80B ,,()04C ,,抛物线的对称轴为直线3x =,勾股定理逆定理判断ABC 是直角三角形,且90ACB ∠=︒,记D 为直线l 与x 轴的交点,如图2,连接CD ,由直角三角形斜边的中线等于斜边的一半可得CD BD AD ==,由等边对等角可得DCB ABC ∠=∠,由三角形外角的性质可得2ADC DCB ABC ABC ∠=∠+∠=∠,进而可得ADC APC ∠=∠,即P 与D 重合,求此时的P 点坐标;过A C D ,,三点作O ' ,如图2,由同弧所对的圆周角相等可知O ' 与直线3l =交点即为P ,设()3P a ,,由题意知,圆心O '在直线12x =上,设圆心坐标为12n ⎛⎫ ⎪⎝⎭,则222AO CO PO '''==,根据22AO CO ''=,可求n 值,根据22AO PO ''=,可求a 值,进而可得此时的P 点坐标.【详解】(1)解:当0x =时,y m =,当0y =时,()2111042x m x m -+-+=,整理得()22140m x m x ---=,即()()220x m x -+=,解得12x m =,22x =-,∴()20A -,,()20B m ,,()0C ,m ,(2)解:如图1,连接PB,由题意知,PA PB =,∴PA PC PB PC +=+,∴当C P B ,,三点共线时,PA PC +值最小,在Rt BOC中,由勾股定理得BC =,∵PA PC +的最小值等于=解得4m =,∴()80B ,,()04C ,,∴抛物线的对称轴为直线3x =,设直线BC 的解析式为y kx b =+,将()80B ,,()04C ,代入得,084k b b=+⎧⎨=⎩,解得124k b ⎧=-⎪⎨⎪=⎩,∴直线BC 的解析式为142y x =-+,当3x =时,153422y =-⨯+=,∴532P ⎛⎫ ⎪⎝⎭,,∴4m =,532P ⎛⎫ ⎪⎝⎭,;(3)解:∵4m =,∴()80B ,,()04C ,,抛物线的对称轴为直线3x =,∵2222420AC =+=,(2280BC ==,2210100AB ==,∴222AC BC AB +=,∴ABC 是直角三角形,且90ACB ∠=︒,记D 为直线l 与x 轴的交点,如图2,连接CD ,∴CD BD AD ==,∴DCB ABC ∠=∠,∵2ADC DCB ABC ABC ∠=∠+∠=∠,∴ADC APC ∠=∠,∴P 与D 重合,即()30P ,;过A C D ,,三点作O ' ,如图2,由同弧所对的圆周角相等可知O ' 与直线3l =交点即为P ,设()3P a ,,由题意知,圆心O '在直线12x =上,设圆心坐标为12n ⎛⎫ ⎪⎝⎭,则222AO CO PO '''==,∵22AO CO ''=,即()()222211200422n n ⎛⎫⎛⎫--+-=-+- ⎪ ⎪⎝⎭⎝⎭,解得54n =,∵22AO PO ''=,即222215152032424a ⎛⎫⎛⎫⎛⎫⎛⎫--+-=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,解得10a =,252a =,∴532P ⎛⎫ ⎪⎝⎭,,综上,P 点坐标为()30,或532⎛⎫ ⎪⎝⎭,.【点睛】本题考查了二次函数与线段、角度综合,二次函数的图象与性质,勾股定理的逆定理,直角三角形斜边的中线等于斜边的一半,同弧所对的圆周角相等,等边对等角,三角形外角的性质等知识.解题的关键在于对知识的熟练掌握与灵活运用.。
2023年山东省潍坊市中考数学三模试卷及参考答案
2023年山东省潍坊市中考数学三模试卷一、单项选择题(本题共6小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得4分,多选、不选、错选均记0分.)1.下列计算结果正确的是()A.7a﹣5a=2B.9a÷3a=3a C.a5÷a3=a2D.(3a2)3=9a62.星载原子钟是卫星导航系统的“心脏”,对系统定位和授时精度具有决定性作用.“北斗”三号卫星导航系统装载国产高精度星载原子钟,保证“北斗”优于20纳秒的授时精度1纳秒=1×10﹣9秒,那么20纳秒用科学记数法表示为()A.2×10﹣8秒B.2×10﹣9秒C.20×10﹣9秒D.2×10﹣10秒3.如图1是由6个相同的小正方块组成的几何体,移动其中一个小正方块,变成图2所示的几何体,则移动前后()A.主视图改变,俯视图改变B.主视图不变,俯视图改变C.主视图不变,俯视图不变D.主视图改变,俯视图不变4.把一块等腰直角三角板和一把直尺按如图所示的位置构成,若∠1=25°,则∠2的度数为()A.15°B.20°C.25°D.30°5.如图1是一个亮度可调节的台灯,其灯光亮度的改变,可以通过调节总电阻控制电流的变化来实现.如图2是该台灯的电流I(A)与电阻R(Ω)成反比例函数的图象,该图象经过点P(880,0.25).根据图象可知,下列说法正确的是()A.当R<0.25时,I<880B.I与R的函数关系式是I=(R>0)C.当R>1000时,I>0.22D.当880<R<1000时,I的取值范围是0.22<I<0.256.某函数的图象如图所示,当0≤x≤a时,在该函数图象上可找到n个不同的点(x1,y1),(x2,y2),…,(x n,y n),使得,则n的取值不可能为()A.3B.4C.5D.6二、多项选择题(本题共4小题,每小题4分,共16分,在每小题给出的选项中,有多项符合题目要求,全部选对的得4分,有选错的得0分,部分选对的得2分.)7.实数a在数轴上的对应点的位置如图所示,若实数b满足﹣a<b<a,则b的值可以是()A.2B.﹣1C.﹣2D.18.疾控中心每学期都对我校学生进行健康体检,小亮将领航班所有学生测量体温的结果制成如下统计图表.下列说法不正确的是()体温℃36.136.236.336.436.536.6人数/人48810m2A.这个班有40名学生B.m=8C.这些体温的众数是8D.这些体温的中位数是36.359.如图,抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=1,则下列结论正确的是()A.abc>0B.a+b+c>0C.3b<2c D.b>a+c(多选)10.如图,在正方形纸片ABCD中,对角线AC,BD交于点O,折叠正方形纸片ABCD,使AD落在BD 上,点A恰好与BD上的点F重合,展开后,折痕DE分别交AB,AC于点E,G,连接GF,下列结论正确的是()A.∠AGD=112.5°B.C.S△AGD=2S△OGD D.四边形AEFG是菱形三、填空题(本题共4小题,共16分,只要求填写最后结果,每小题填对得4分)11.分解因式:a3﹣2a2b+ab2=.12.疫情期间居民为了减少外出时间,大家更愿意使用APP在线上买菜,某买菜APP今年一月份新注册用户为200万,三月份新注册用户为338万,则二、三两个月新注册用户每月平均增长率是.13.如图,A、B、C、D为一个正多边形的顶点,O为正多边形的中心,若∠ADB=18°,则这个正多边形的边数为.14.如图,在△ABC中,AB=AC=10,BC=6,延长AB至D,使得BD=AB,点P为动点,且PB=PC,连接PD,则PD的最小值为.四、解答题(本题共8小题,共94分,解答应写出文字说明、证明过程或演算步骤)15.(1)计算:;(2)解不等式组:16.如图,小明练习册上的一个等腰三角形被墨迹污染了,只有它的底边AB和∠B还保留着.(1)小明要在练习册上画出原来的等腰△ABC,用到的基本作图可以是(填写正确答案的序号);①作一条线段等于已知线段;②作一个角等于已知角;③作已知角的平分线;④作已知线段的垂直平分线;⑤过一点作已知直线的垂线;(2)CE为△ABC边AB上的中线,若∠B的一个外角为110°,求∠BCD的度数.17.为了解市民对全市创卫工作的满意程度,某中学数学兴趣小组在全市甲、乙两个区内进行了调查统计,将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中信息,解决下列问题:(1)求此次调查中接受调查的人数,并补全条形统计图.(2)若本市人口300万人,估算该市对市创卫工作表示满意和非常满意的人数.(3)兴趣小组准备从调查结果为不满意的4位市民中随机选择2位进行回访,已知4位市民中有2位来自甲区,另2位来自乙区,请用列表或用画树状图的方法求出选择的市民均来自同区的概率.18.如图,光从空气斜射入水中,入射光线AB射到水池的水面B点后折射光线BD射到池底点D处,入射角∠ABM =30°,折射角∠DBN=22°;入射光线AC射到水池的水面C点后折射光线CE射到池底点E处,入射角∠ACM′=60°,折射角∠ECN′=40.5°.DE∥BC,MN、M′N′为法线.入射光线AB、AC和折射光线BD、CE及法线MN、M′N′都在同一平面内,点A到直线BC的距离为6米.(1)求BC的长;(结果保留根号)(2)如果DE=8.72米,求水池的深.(参考数据:取1.41,取1.73,sin22°取0.37,cos22°取0.93,tan22°取0.4,sin40.5°取0.65,cos40.5°取0.76,tan40.5°取0.85)19.在初中阶段的函数学习中,我们经历了“确定函数的表达式,利用函数图象研究其性质,运用函数解决问题”的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.学习了一次函数之后,现在来解决下面的问题:在y=a|x﹣1|+b中,如表是y与x的几组对应值.x…﹣3﹣2﹣10123…y…7m31n13…(1)m=,n=;(2)平面直角坐标系中,画出函数的图象;(3)根据图象,判断下列关于该函数性质的说法是否正确,正确的打√,错误的打×.①该函数图象是轴对称图形,对称轴为直线x=1.(判断对错)②当x<1时,y随x的增大而增大,当x≥1时,y随x的增大而减小.(判断对错)③该函数在自变量的取值范围内有最小值,当x=1时有最小值﹣1.(判断对错)(4)若方程组有且只有一个公共解,则t的取值范围是.20.振华公司对其办公楼大厅一块6×6米的正方形ABCD墙面进行了如图所示的设计装修(四周阴影部分是八个全等的矩形,用材料甲装修,中心区域是正方形EFGH,用材料乙装修).两种材料的成本如下:材料甲乙单价(元/米2)800600设矩形的较短边AM的长为x米,装修材料的总费用为y元.(1)求y与x之间的关系式;(2)当中心区域的边长EF不小于2米时,预备材料的购买资金28000元够用吗?请说明理由.21.【定义】从一个已知图形的外一点引两条射线分别经过该已知图形的两点,则这两条射线所成的最大角称为该点对已知图形的视角,如图①,∠APB是点P对线段AB的视角.【应用】(1)如图②,在直角坐标系中,已知点A(2,),B(2,2),C(3,),则原点O对三角形ABC 的视角为;(2)如图③,在直角坐标系中,以原点O,半径为2画圆O1,以原点O,半径为4画圆O2,证明:圆O2上任意一点P对圆O1的视角是定值;【拓展应用】(3)很多摄影爱好者喜欢在天桥上对城市的标志性建筑拍照,如图④.现在有一条笔直的天桥,标志性建筑外延呈正方形,摄影师想在天桥上找到对建筑视角为45°的位置拍摄.现以建筑的中心为原点建立如图⑤的坐标系,此时天桥所在的直线的表达式为x=﹣5,正方形建筑的边长为4,请直接写出直线上满足条件的位置坐标.22.如图1,将一个等腰直角三角尺ABC的顶点C放置在直线l上,∠ABC=90°,AB=BC,过点A作AD⊥l于点D,过点B作BE⊥l于点E.观察发现:(1)如图1,当A,B两点均在直线l的上方时①猜测线段AD,CE与BE的数量关系并说理由;②直接写出线段DC,AD与BE的数量关系;操作证明:(2)将等腰直角三角尺ABC绕着点C逆时针旋转至图2位置时,线段DC,AD与BE又有怎样的数量关系,请写出你的猜想,并写出证明过程;拓广探索:(3)将等腰直角三角尺ABC绕着点C继续旋转至图3位置时,AD与BC交于点H,若CD=3,AD=9,请直接写出DH的长度.参考答案一、单项选择题(本题共6小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得4分,多选、不选、错选均记0分.)1.下列计算结果正确的是()A.7a﹣5a=2B.9a÷3a=3a C.a5÷a3=a2D.(3a2)3=9a6【分析】根据合并同类项的方法可以判断A;根据单项式的除法可以判断B;根据同底数幂的除法可以判断C;根据积的乘方可以判断D.解:7a﹣5a=2a,故选项A错误,不符合题意;9a÷3a=3,故选项B错误,不符合题意;a5÷a3=a2,故选项C正确,符合题意;(3a2)3=27a6,故选项D错误,不符合题意;故选:C.【点评】本题考查整式的混合运算,熟练掌握运算法则是解答本题的关键.2.星载原子钟是卫星导航系统的“心脏”,对系统定位和授时精度具有决定性作用.“北斗”三号卫星导航系统装载国产高精度星载原子钟,保证“北斗”优于20纳秒的授时精度1纳秒=1×10﹣9秒,那么20纳秒用科学记数法表示为()A.2×10﹣8秒B.2×10﹣9秒C.20×10﹣9秒D.2×10﹣10秒【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:用科学记数法表示20纳秒为20×1×10﹣9秒=2×10﹣8秒.故选:A.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.如图1是由6个相同的小正方块组成的几何体,移动其中一个小正方块,变成图2所示的几何体,则移动前后()A.主视图改变,俯视图改变B.主视图不变,俯视图改变C.主视图不变,俯视图不变D.主视图改变,俯视图不变【分析】分别得到将正方体变化前后的三视图,依此即可作出判断.解:正方体移走前的主视图正方形的个数为1,2,1;正方体移走后的主视图正方形的个数为1,2,1;不发生改变.正方体移走前的左视图正方形的个数为2,1,1;正方体移走后的左视图正方形的个数为2,1;发生改变.正方体移走前的俯视图正方形的个数为3,1,1;正方体移走后的俯视图正方形的个数为:2,1,2;发生改变.故选:B.【点评】此题主要考查了三视图中的知识,得到从几何体的正面,左面,上面看的平面图形中正方形的列数及每列正方形的个数是解决本题的关键.4.把一块等腰直角三角板和一把直尺按如图所示的位置构成,若∠1=25°,则∠2的度数为()A.15°B.20°C.25°D.30°【分析】利用平行线的性质求出∠3可得结论.解:如图,∵a∥b,∴∠1=∠3=25°,∵∠2+∠3=45°,∴∠2=45°﹣∠3=20°,故选:B.【点评】本题考查平行线的性质,等腰直角三角形的性质等知识,解题的关键是利用平行线的性质求出∠3.5.如图1是一个亮度可调节的台灯,其灯光亮度的改变,可以通过调节总电阻控制电流的变化来实现.如图2是该台灯的电流I(A)与电阻R(Ω)成反比例函数的图象,该图象经过点P(880,0.25).根据图象可知,下列说法正确的是()A.当R<0.25时,I<880B.I与R的函数关系式是I=(R>0)C.当R>1000时,I>0.22D.当880<R<1000时,I的取值范围是0.22<I<0.25【分析】由待定系数法求出反比例函数的解析式,根据反比例函数的性质逐项分析即可得到结论.解:设I与R的函数关系式是I=(R>0),∵该图象经过点P(880,0.25),∴=0.25,∴U=220,∴I与R的函数关系式是I=(R>0),故选项B不符合题意;当R=0.25时,I=880,当R=1000时,I=0.22,∵反比例函数I=(R>0)I随R的增大而减小,当R<0.25时,I>880,当R>1000时,I<0.22,故选项A,C不符合题意;∵R=0.25时,I=880,当R=1000时,I=0.22,∴当880<R<1000时,I的取值范围是0.22<I<0.25,故D符合题意;故选:D.【点评】本题主要考查了反比例函数的应用,由待定系数法求出反比例函数的解析式是解决问题的关键.6.某函数的图象如图所示,当0≤x≤a时,在该函数图象上可找到n个不同的点(x1,y1),(x2,y2),…,(x n,y n),使得,则n的取值不可能为()A.3B.4C.5D.6【分析】设=k,则在该函数图象上n个不同的点(x1,y1),(x2,y2),…,(x n,y n)也都在函数y=kx的图象上,根据正比例函数y=kx的图象与如图所示的图象的交点的个数即可得出答案.解:设=k,则在该函数图象上n个不同的点(x1,y1),(x2,y2),…,(x n,y n)也都在函数y=kx的图象上,即:正比例函数y=kx的图象与如图所示的图象的交点,由图象可知,正比例函数y=kx的图象与如图所示的图象的交点可能有1个或2个或3个或4个或5个.故选:D.【点评】本题主要考查了函数图象,数形结合是解题的关键.二、多项选择题(本题共4小题,每小题4分,共16分,在每小题给出的选项中,有多项符合题目要求,全部选对的得4分,有选错的得0分,部分选对的得2分.)7.实数a在数轴上的对应点的位置如图所示,若实数b满足﹣a<b<a,则b的值可以是()A.2B.﹣1C.﹣2D.1【分析】先根据数轴得出a的取值范围,结合题意得出b的取值范围,从答案中筛选即可.解:﹣a<b<a,∴|b|<a,又∵1<a<2,所以b可以是﹣1.故选:B.【点评】本题考查实数与数轴,需要充分运用数形结合的思想方法.8.疾控中心每学期都对我校学生进行健康体检,小亮将领航班所有学生测量体温的结果制成如下统计图表.下列说法不正确的是()体温℃36.136.236.336.436.536.6人数/人48810m2A.这个班有40名学生B.m=8C.这些体温的众数是8D.这些体温的中位数是36.35【分析】根据扇形统计图可知:36.1℃所在扇形圆心角为36°,由此可得36.1℃在总体中所占的百分比;再结合36.1℃的频数,就可求出学生总数,进而可求出x的值;然后根据众数和中位数的定义就可解决问题.解:由扇形统计图可知,体温为36.1°C的学生人数所占百分比为=10%,故这个班有学生=40(名),所以m=40﹣4﹣8﹣8﹣10﹣2=8,故选项A、B不符合题意;这些体温的众数是36.4,故选项C符合题意;这些体温的中位数是=36.35,故选项D不符合题意.故选:C.【点评】本题考查表格与扇形统计图、众数及中位数的定义,解题的关键是利用圆心角度数与项目所占百分比的关系求总人数.9.如图,抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=1,则下列结论正确的是()A.abc>0B.a+b+c>0C.3b<2c D.b>a+c【分析】根据二次函数的图象与系数的关系求解.解:A、由图象得:﹣=1,a>0,c<0,∴b=﹣2a<0,∴abc>0,故A正确,符合题意;B、由图象可知,当x=1时,y<0,∴a+b+c<0,故B错误,不合题意;C、∵x=﹣1时,y=0,∴a﹣b+c=0,∵a=﹣,∴c=b,即3b=2c,故C错误,不合题意;D、∵x=﹣1时,y=0,∴a﹣b+c=0,即b=a+c,故D错误,不合题意;故选:A.【点评】本题考查了二次函数的性质,掌握二次函数的图象与系数的关系是解题的关键.(多选)10.如图,在正方形纸片ABCD中,对角线AC,BD交于点O,折叠正方形纸片ABCD,使AD落在BD 上,点A恰好与BD上的点F重合,展开后,折痕DE分别交AB,AC于点E,G,连接GF,下列结论正确的是()A.∠AGD=112.5°B.C.S△AGD=2S△OGD D.四边形AEFG是菱形【分析】根据矩形的性质可得∠OAD=∠ODA=45°,由折叠的性质得到∠ADE=∠FDE==22.5°,再利用三角形内角和定理即可求出∠AGD,以此判断A选项;由折叠的性质得到∠DFE=∠DAE=90°,AE=EF,AD=DF,易得△BEF为等腰直角三角形,则BF=EF=AE,设AD=AB=a,则DF=a,BD=a,AE=EF=BF=,在Rt△ADE中,利用正切函数的定义判断B选项;由折叠的性质可得,AE=EF,AG=FG,∠AEG=∠FEG,由∠DFE=∠AOB=90°可知EF∥AO,得到∠FEG=∠AGE,进而得到∠AEG=∠AGE,于是得到AE=AG=FG=EF,以此可判定四边形AEFG为菱形,即可判断D选项;由GF∥AB得到∠GFO=∠ABO=45°,则AG=FG=OG,再根据三角形的面积公式即可判断C选项.解:∵四边形ABCD为正方形,∴AB=BC=CD=AD,OA=DC=OB=OD,AC⊥BD,∴∠OAD=∠ODA=45°,根据折叠的性质可得,∠ADE=∠FDE==22.5°,∴∠AGD=180°﹣∠DAG﹣∠=180°﹣45°﹣22.5°=112.5°,故A选项正确,符合题意;根据折叠的性质可得,∠DFE=∠DAE=90°,AE=EF,AD=DF,∴∠BFE=90°,∵OA=OB,AO⊥OB,∴∠ABO=45°,∴△BEF为等腰直角三角形,∴BF=EF=AE,设AD=AB=a,则DF=a,∴BD=a,∴BF=BD﹣DF=,∴AE=EF=BF=,在Rt△ADE中,tan∠AED===,故B选项正确,符合题意;由折叠的性质可得,AE=EF,AG=FG,∠AEG=∠FEG,∵∠DFE=∠AOB=90°,∴EF∥AO,∴∠FEG=∠AGE,∴∠AEG=∠AGE,∴AE=AG=FG=EF,∴四边形AEFG为菱形,故D选项正确,符合题意;∵四边形AEFG为菱形,∴GF∥AB,∴∠GFO=∠ABO=45°,∴FG=OG,∴AG=FG=OG,==OG•OD,S△OGD=,∴S△AGD∴,故C选项错误,不符合题意.故选:ABD.【点评】本题主要考查正方形的性质、折叠的性质、三角形内角和定理、解直角三角形、等腰三角形的判定与性质、菱形的判定与性质,解题关键是熟知折叠的性质.折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.三、填空题(本题共4小题,共16分,只要求填写最后结果,每小题填对得4分)11.分解因式:a3﹣2a2b+ab2=a(a﹣b)2.【分析】先提取公因式a,再对余下的多项式利用完全平方公式继续分解.解:a3﹣2a2b+ab2,=a(a2﹣2ab+b2),=a(a﹣b)2.【点评】本题考查提公因式法分解因式和完全平方公式分解因式,熟记公式结构是解题的关键,分解因式一定要彻底.12.疫情期间居民为了减少外出时间,大家更愿意使用APP在线上买菜,某买菜APP今年一月份新注册用户为200万,三月份新注册用户为338万,则二、三两个月新注册用户每月平均增长率是30%.【分析】设二、三两个月新注册用户每月平均增长率是x,根据该买菜APP今年一月份及三月份新注册用户人数,即可得出关于x的一元二次方程,解之取其正值即可得出结论.解:设二、三两个月新注册用户每月平均增长率是x,依题意,得:200(1+x)2=338,解得:x1=0.3=30%,x2=﹣2.3(不合题意,舍去).故答案为:30%.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.13.如图,A、B、C、D为一个正多边形的顶点,O为正多边形的中心,若∠ADB=18°,则这个正多边形的边数为10.【分析】连接OA,OB,根据圆周角定理得到∠AOB=2∠ADB=36°,于是得到结论.解:连接OA,OB,∵A、B、C、D为一个正多边形的顶点,O为正多边形的中心,∴点A、B、C、D在以点O为圆心,OA为半径的同一个圆上,∵∠ADB=18°,∴∠AOB=2∠ADB=36°,∴这个正多边形的边数==10,故答案为:10.【点评】本题考查了正多边形与圆,圆周角定理,正确的理解题意是解题的关键.14.如图,在△ABC中,AB=AC=10,BC=6,延长AB至D,使得BD=AB,点P为动点,且PB=PC,连接PD,则PD的最小值为.【分析】根据已知易得直线AP是BC的垂直平分线,从而可得BE=BC=3,BC⊥AP,进而可得当DP⊥AP 时,DP最短,然后根据垂直定义可得∠APD=∠AEB=90°,再根据已知可得AD=15,最后证明A字模型相似三角形△AEB∽△APD,从而利用相似三角形的性质进行计算,即可解答.解:如图:∵AB=AC=10,PB=PC,∴直线AP是BC的垂直平分线,∴BE=BC=3,BC⊥AP,∴当DP⊥AP时,DP最短,∴∠APD=∠AEB=90°,∵BD=AB,∴AD=AB=15,∵∠EAB=∠PAD,∴△AEB∽△APD,∴=,∴=,∴DP=,∴PD的最小值为,故答案为:.【点评】本题考查了相似三角形的判定与性质,垂线段最短,熟练掌握相似三角形的判定与性质是解题的关键.四、解答题(本题共8小题,共94分,解答应写出文字说明、证明过程或演算步骤)15.(1)计算:;(2)解不等式组:【分析】(1)根据分式混合运算的法则进行计算即可;(2)分别求出各不等式的解集,再求出其公共解集即可.解:(1)原式=•=•=a﹣2;(2),由①得,x≤1,由②得,x<4,故不等式的解集为x≤1.【点评】本题考查的的是分式的混合运算及解一元一次不等式组,熟知运算法则是解题的关键.16.如图,小明练习册上的一个等腰三角形被墨迹污染了,只有它的底边AB和∠B还保留着.(1)小明要在练习册上画出原来的等腰△ABC,用到的基本作图可以是④(填写正确答案的序号);①作一条线段等于已知线段;②作一个角等于已知角;③作已知角的平分线;④作已知线段的垂直平分线;⑤过一点作已知直线的垂线;(2)CE为△ABC边AB上的中线,若∠B的一个外角为110°,求∠BCD的度数.【分析】(1)作线段AB的垂直平分线MN,C垂足为D,∠B的另一边交直线MN于点C,连接AC.△ABC 即为所求作.(2)利用钝角三角形的性质求解即可.解:(1)如图,△ABC即为所求作.作线段AB的垂直平分线MN,C垂足为D,∠B的另一边交直线MN于点C,连接AC.△ABC即为所求作,故答案为:④;(2)∵∠B的一个外角为110°,∴∠B=70°,∵CA=CB,∴∠A=∠B=70°,∴∠ACB=180°﹣2×70°=40°,∵CA=CB,CD⊥AB,∴∠BCD=∠ACB=20°.【点评】本题考查作图﹣应用与设计作图,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.为了解市民对全市创卫工作的满意程度,某中学数学兴趣小组在全市甲、乙两个区内进行了调查统计,将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中信息,解决下列问题:(1)求此次调查中接受调查的人数,并补全条形统计图.(2)若本市人口300万人,估算该市对市创卫工作表示满意和非常满意的人数.(3)兴趣小组准备从调查结果为不满意的4位市民中随机选择2位进行回访,已知4位市民中有2位来自甲区,另2位来自乙区,请用列表或用画树状图的方法求出选择的市民均来自同区的概率.【分析】(1)由非常满意的有20人,占40%,即可求得此次调查中接受调查的人数,用总人数减去其他几项的人数即为满意的人数,再补全统计图即可.(2)根据(1)求得的非常满意的人数和满意人数,用300×即可;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选择的市民均来自同区的情况,再利用概率公式即可求得答案.解:(1)∵非常满意的有20人,占40%,∴此次调查中接受调查的人数:20÷40%=50(人),∴此次调查中结果为满意的人数为:50﹣4﹣8﹣20=18(人),补全统计图如下:(2)该市对市创卫工作表示满意的人数==108(万),该市对市创卫工作表示非常满意的人数=300×=120(万),答:估算该市对市创卫工作表示满意和非常满意的人数分别为108万,120万;(3)画树状图得:∵共有12种等可能的结果,选择的市民均来自同区的有4种情况,∴选择的市民均来自甲区的概率为:=.【点评】本题考查了列表法或树状图法求概率以及条形与扇形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.18.如图,光从空气斜射入水中,入射光线AB射到水池的水面B点后折射光线BD射到池底点D处,入射角∠ABM =30°,折射角∠DBN=22°;入射光线AC射到水池的水面C点后折射光线CE射到池底点E处,入射角∠ACM′=60°,折射角∠ECN′=40.5°.DE∥BC,MN、M′N′为法线.入射光线AB、AC和折射光线BD、CE及法线MN、M′N′都在同一平面内,点A到直线BC的距离为6米.(1)求BC的长;(结果保留根号)(2)如果DE=8.72米,求水池的深.(参考数据:取1.41,取1.73,sin22°取0.37,cos22°取0.93,tan22°取0.4,sin40.5°取0.65,cos40.5°取0.76,tan40.5°取0.85)【分析】(1)根据题意和锐角三角函数,可以求得CF和BF的值,然后即可计算出BC的值;(2)根据(1)中的结果和锐角三角函数,可以求得水池的深.解:(1)作AF⊥BC,交CB的延长线于点F,则AF∥MN∥M′N′,∴∠ABM=∠BAF,∠ACM′=∠CAF,∵∠ABM=30°,∠ACM′=60°,∴∠BAF=30°,∠CAF=60°,∵AF=6米,∴BF=AF•tan30°=6×=2(米),CF=AF•tan60°=6×=6(米),∴BC=CF﹣BF=6﹣2=4(米),即BC的长为4米;(2)设水池的深为x米,则BN=CN′=x米,由题意可知:∠DBN=22°,∠ECN′=40.5°.DE=8.72米,∴DN=BN•tan22°≈0.4x(米),N′E=CN′•tan40.5°≈0.85x(米),∵DN+DE=BC+N′E,∴0.4x+8.72=4+0.85x,解得x≈4,即水池的深约为4米.【点评】本题考查解直角三角形的应用,解答本题的关键是明确题意,利用数形结合的思想解答.19.在初中阶段的函数学习中,我们经历了“确定函数的表达式,利用函数图象研究其性质,运用函数解决问题”的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.学习了一次函数之后,现在来解决下面的问题:在y=a|x﹣1|+b中,如表是y与x的几组对应值.x…﹣3﹣2﹣10123…y…7m31n13…(1)m=5,n=﹣1;(2)平面直角坐标系中,画出函数的图象;(3)根据图象,判断下列关于该函数性质的说法是否正确,正确的打√,错误的打×.①该函数图象是轴对称图形,对称轴为直线x=1.√(判断对错)②当x<1时,y随x的增大而增大,当x≥1时,y随x的增大而减小.×(判断对错)③该函数在自变量的取值范围内有最小值,当x=1时有最小值﹣1.√(判断对错)(4)若方程组有且只有一个公共解,则t的取值范围是t>﹣3.【分析】(1)观察表格,函数图象经过点(﹣1,3),(0,1),将这两点的坐标分别代入y=a|x|+b,利用待定系数法即可求出这个函数的表达式;把x=﹣2代入即可求出m,将x=1代入即可求出n;(2)根据表格数据,描点连线即可画出该函数的图象;(3)根据图象判断即可;(4)根据图象得出当t>﹣3时,直线y=2x+t与函数y=2|x﹣1|﹣1的图象只有一个交点,即可得出方程组有且只有一个公共解,则t的取值范围是t>﹣3.解:(1)∵函数y=a|x﹣1|+b的图象经过点(﹣1,3),(0,1),∴,解得,∴y=2|x﹣1|﹣1,∴当x=﹣2时,m=2×|﹣2﹣1|﹣1=5,当x=1时,n=2×|1﹣1|﹣1=﹣1.故答案为:5,﹣1;(2)函数y=2|x﹣1|﹣1的图象如图所示:(3)根据图象可知,①该函数图象是轴对称图形,对称轴为直线x=1.正确;②当x<1时,y随x的增大而增大,当x≥1时,y随x的增大而减小.错误;③该函数在自变量的取值范围内有最小值,当x=1时有最小值﹣1.正确;故答案为:√;×;√;(4)把(1,﹣1)代入y=2x+t得,t=﹣3,∴当t>﹣3时,直线y=2x+t与函数y=2|x﹣1|﹣1的图象只有一个交点,∴方程组有且只有一个公共解,则t的取值范围是t>﹣3.故答案为:t>﹣3.【点评】本题考查了两条直线的交点问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.也考查了用待定系数法求一次函数的解析式,一次函数图象上点的坐标特征,一次函数的图象与性质,综合性较强,难度适中.画出函数的图象利用数形结合是解题的关键.20.振华公司对其办公楼大厅一块6×6米的正方形ABCD墙面进行了如图所示的设计装修(四周阴影部分是八个全等的矩形,用材料甲装修,中心区域是正方形EFGH,用材料乙装修).两种材料的成本如下:材料甲乙单价(元/米2)800600。
2023年河南省中考数学模拟试卷(经典三)及答案解析
2023年河南省中考数学模拟试卷(经典三)一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的。
1.(3分)﹣的绝对值是()A.﹣3B.3C.D.﹣2.(3分)如图是由4个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.3.(3分)下列运算正确的是()A.3a﹣a=2B.a2•a3=a6C.a6÷2a2=D.(2a2b)3=6a8b24.(3分)2022年11月2日,焦作市山阳区举办“学习二十大出彩组工人”主题演讲比赛.下表是5位评委对某参赛选手的打分情况,则该组数据的中位数是()评委甲乙丙丁戊打分9.59.69.6109.8 A.9.6B.9.7C.9.8D.105.(3分)如图为两直线m、n与△ABC相交的情形,其中m、n分别与BC、AB平行.根据图中标示的角度,∠A的度数为()A.75°B.60°C.55°D.50°6.(3分)若方程kx2﹣2x+1=0没有实数根,则k的值可以是()A.﹣1B.0C.1D.27.(3分)如图,在边长为5的菱形ABCD中,对角线BD=8,点O为菱形的中心,作OE ⊥BC,垂足为E,则sin∠COE的值为()A.B.C.D.8.(3分)在“河南美食简介”竞答活动中,第一题组共设置“河南烩面”“胡辣汤”“洛阳酸浆面条”“开封双麻火烧”四种美食,参赛的甲、乙二人从以上四种美食中随机选取一个进行简介,则两人恰好选中同一种美食的概率是()A.B.C.D.9.(3分)中国古代涌现包括“锝、钧、镒、铢”等在内的质量单位,而现代的质量单位有:吨(t)、千克(kg)、克(g)、毫克(mg)、微克(μg)等.其中1t=103kg,1kg=103g,1g=103mg,则1t等于()A.109mg B.1027mg C.3×103mg D.39mg10.(3分)血药浓度(PlasmaConcentration)指药物吸收后在血浆内的总浓度,已知药物在体内的浓度随着时间而变化.某成人患者在单次口服1单位某药后,体内血药浓度及相关信息如图所示,根据图中提供的信息,下列关于成人患者使用该药血药浓度(mg/L)5a最低中毒浓度(MTC)物的说法中正确的是()A.从t=0开始,随着时间逐渐延长,血药浓度逐渐增大B.当t=1时,血药浓度达到最大为5amg/LC.首次服用该药物1单位3.5小时后,立即再次服用该药物1单位,不会发生药物中毒D.每间隔4h服用该药物1单位,可以使药物持续发挥治疗作用二、填空题(每小题3分,共15分)11.(3分)请写出一个图象经过点(1,2)的函数的关系式.12.(3分)不等式组的解集是.13.(3分)如图,Rt△ABC中∠ACB=90°,线段CO为斜边AB的中线.分别以点A和点O为圆心,大于的长为半径作弧,两弧交于P,Q两点,作过P、Q两点的直线恰过点C,交AB于点D,若AD=1,则BC的长是.14.(3分)如图,在▱ABCD中,E为BC的中点,以E为圆心,CE长为半径画弧交对角线BD于点F,若∠BAD=116°,∠BDC=39°,BC=4,则扇形CEF的面积为.15.(3分)如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,AB=4,E为斜边AB 的中点,点P是射线BC上的一个动点,连接AP、PE,将△AEP沿着边PE折叠,折叠后得到△EPA′,当折叠后△EPA′与△BEP的重叠部分的面积恰好为△ABP面积的四分之一,则此时BP的长为.三、解答题(本大题共8个小题,共75分)16.(10分)(1)计算:;(2)化简:.17.(9分)中国是世界上最早使用铸币的国家.距今3000年前殷商晚期墓葬出土了不少“无文铜贝”,为最原始的金属货币.下列装在相同的透明密封盒内的古钱币材质相同,其密封盒上分别标有古钱币的尺寸及质量(例如:钱币“状元及第”密封盒上所标“48.1*2.4mm,24.0g”是指该枚古钱币的直径为48.1mm,厚度为2.4mm,质量为24.0g).根据图中信息,解决下列问题.(1)这5枚古钱币,所标直径数据的平均数是,所标厚度数据的众数是;(2)由于古钱币无法从密封盒内取出,为判断密封盒上所标古钱币的质量是否有错,桐桐用电子秤测得每枚古钱币与其密封盒的总质量如下:名称文星高照状元及第鹿鹤同春顺风大吉连中三元总质量/g58.758.155.254.355.8盒标质量24.424.013.020.021.7盒子质量34.334.142.234.334.1请你应用所学的统计知识,判断哪枚古钱币所标的质量与实际质量差异较大,并计算该枚古钱币的实际质量约为多少克.18.(9分)如图,直线y=kx+b与双曲线相交于A(﹣3,1),B两点,与x 轴相交于点C(﹣4,0).(1)分别求一次函数与反比例函数的解析式;(2)连接OA,OB,求△AOB的面积;(3)直接写出当x<0时,关于x的不等式的解集.19.(9分)宝轮寺塔,为供奉舍利由尼姑道秀主持建筑,始建于隋文帝仁寿元年(601年),故又称仁寿建塔,位于河南省三门峡市陕州风景区.数学活动小组欲测量宝轮寺塔DE的高度,如图,在A处测得宝轮寺塔塔基C的仰角为15°,沿水平地面前进23米到达B处,测得宝轮寺塔塔顶E的仰角∠EBD为53°,测得塔基C的仰角∠CBD 为30°(图中各点均在同一平面内).(1)求宝轮寺塔DE的高度;(2)实际测量时会存在误差,请提出一条减小误差的合理化建议.(结果精确到0.1米,参考数据:20.(9分)当前我国约有十分之一的教师因为种种原因患上嗓音疾病.针对于此,某校工会计划为超课时任务的教师配备音频放大器.已知购买2个A型音频放大器和3个B型音频放大器共需352元;购买3个A型音频放大器和4个B型音频放大器共需496元.(1)求A、B两种类型音频放大器的单价;(2)该校准备采购A、B两种类型的音频放大器共30个,且A型音频放大器的数量不少于B型音频放大器数量的2倍,请给出最省钱的购买方案,并说明理由.21.(9分)某跳台滑雪运动员进行比赛,起跳后飞行的路线是抛物线的一部分(如图中实线部分所示),落地点在着陆坡(如图中虚线部分所示)上,已知标准台的高度OA为66m,当运动员在距标准台水平距离25m处达到最高,最高点距地面76m,建立如图所示的平面直角坐标系,并设抛物线的表达式为y=a(x﹣h)2+k.其中x(m)是运动员距标准台的水平距离,y(m)是运动员距地面的高度.(2)已知着陆坡上有一基准点K,且K到标准台的水平距离为75m,高度为21m.判断该运动员的落地点能否超过K点,并说明理由.22.(10分)如图,△ABC为⊙O的内接三角形,其中AB为⊙O的直径,且AC=3,BC=4.(1)尺规作图:分别以B、C为圆心,大于长为半径画弧,在BC的两侧分别相交于P、Q两点,画直线PQ交BC于点D,交劣弧于点E,连接CE;(2)追根溯源:由所学知识可知,点O(填“在”或“在”)直线PQ上;(3)数据运算:在(1)所作的图形中,求点O到BC的距离及∠DCE的余弦值.23.(10分)在△ABC中,AB=AC,∠BAC=α,点P为线段CA延长线上一动点,连接PB,将线段PB绕点P逆时针旋转,旋转角为α,得到线段PD,连接DB,DC.(1)如图1,当α=60°时;PA与DC的数量关系为;∠DCP的度数为;(2)如图2,当α=120°时,请问(1)中PA与DC的数量关系还成立吗?∠DCP的度数呢?说明你的理由.(3)当α=120°时,若,请直接写出点D到CP的距离.2023年河南省中考数学模拟试卷(经典三)参考答案与试题解析一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的。
连云港市灌云县中考数学模拟试卷(三)含答案解析
江苏省连云港市灌云县中考数学模拟试卷(三)一、选择题1.下列各组数中,互为相反数的是()A.3与B.﹣4与(﹣2)2C.(﹣1)2与1 D.2与|﹣2|2.函数的自变量x的取值范围是()A.x≥2 B.x≥3 C.x≠3 D.x≥2且x≠33.下列计算正确的是()A.a+a2=2a2B.a5•a2=a10C.(﹣2a4)4=16a8D.(a﹣1)2=a﹣24.样本甲的方差是S2甲=0.005,样本乙的数据为2.20,2.30,2.20,2.10,2.20,则样本甲和样本乙波动大小为()A.甲、乙波动大小一样B.乙的波动比甲的波动大C.甲的波动比乙的波动大D.甲、乙的波动大小无法比较5.如图,P是直径AB上一点,且PA=2,PB=6,CD为经过点P的弦,那么下列PC与PD的长度中,符合题意的是()A.PC=1,PD=12 B.PC=3,PD=4 C.PC=3,PD=5 D.PC=8,PD=1.56.小明和爸爸妈妈三人玩跷跷板.三人的体重一共为150千克,爸爸坐在跷跷板的一端,体重只有妈妈一半的小明和妈妈一同坐在跷跷板的另一端,这时爸爸那端仍然着地.那么小明的体重应小于()A.49千克B.50千克C.24千克D.25千克7.已知方程,用换元法解此方程时,可设y=x2+x,则原方程化为()A.y2﹣y+2=0 B.y2﹣y﹣2=0 C.y2+y﹣2=0 D.y2+y+2=08.已知抛物线y=(x﹣4)2﹣3的部分图象(如图),图象再次与x轴相交时的坐标是()A.(5,0) B.(6,0) C.(7,0) D.(8,0)9.在银行存款准备金不变的情况下,银行的可贷款总量与存款准备金率成反比例关系.当存款准备金率为7.5%时,某银行可贷款总量为400亿元,如果存款准备金率上调到8%时,该银行可贷款总量将减少多少亿()A.20 B.25 C.30 D.3510.如图,AD∥BC,∠D=90°,DC=7,AD=2,BC=4.若在边DC上有点P使△PAD 和△PBC相似,则这样的点P存在的个数有()A.1 B.2 C.3 D.411.小明在一次登山活动中捡到一块矿石,回家后,他使用一把刻度尺,一只圆柱形的玻璃杯和足量的水,就测量出了这块矿石的体积.如果他量出玻璃杯的内直径是d,把矿石完全浸没在水中,测出杯中水面上升的高度为h,则小明的这块矿石体积是()A.d2h B.d2h C.πd2h D.4πd2h12.已知在正方形网格中,每个小方格都是边长为1的正方形,A,B两点在小方格的顶点上,位置如图所示,点C也在小方格的顶点上,且以A,B,C为顶点的三角形面积为1,则点C的个数为()A.3个 B.4个 C.5个 D.6个二、填空题(每题3分,共18分)13.年信息产业部的统计数据表明,截止到10月底,我国的电话用户总数达到5.62亿,居世界首位.其中5.62亿用科学记数法表示应为.14.若a、b都是无理数,且a+b=﹣1,则a、b的值为(填一组满足条件的值即可)15.如图,AB为半圆O的直径,C、D是半圆上的三等分点,若⊙O的半径为1,E为线段AB上任意一点,则图中阴影部分的面积为.16.已知x1和x2为一元二次方程2x2﹣2x+3m﹣1=0的两个实根,并且x1和x2满足不等式,则m的取值范围是.17.扑克牌游戏:小明背对小亮,让小亮按下列四个步骤操作:第一步分发左、中、右三堆牌,每堆牌不少于两张,且各堆牌的张数相同;第二步从左边一堆拿出两张,放入中间一堆;第三步从右边一堆拿出一张,放入中间一堆;第四步左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆.这时,小明准确说出了中间一堆牌现有的张数.你认为中间一堆牌的张数是.18.(规律探究题)某体育馆用大小相同的长方形木块镶嵌地面,第1次铺2块,如图,第2次把第1次铺的完全围起来,如图,第3次把第2次铺的完全围起来,如图;….依此方法,第n次铺完后,用字母n表示第n次镶嵌所使用的木块数.三、解答题19.(10分)计算:(1)(2)先化简,再求值.,其中.20.(6分)如图,在△ABC中,延长BC到D,延长AC到E,AD与BE相交于F,∠ABC=45°,试将下列设定中的两个作为题设,另一个作为结论组成一个正确命题,并证明这个命题.①AD⊥BD;②AE⊥BF;③AC=BF.21.(6分)如图是某汽车行驶的路程s(千米)与时间t(分钟)的函数关系图.观察图中所提供的信息,解答下列问题:(1)汽车在前9分钟的平均速度是千米/分钟.(2)汽车在途中停留的时间为分钟.(3)当16≤t≤30时,求s与t的函数解析式.22.(8分)教学楼二楼以上的层高为a米,位于二楼窗口C的小明和四楼窗口D 的小颖,测实验大楼AB高度(如图),小明测得大楼的仰角为α;小颖测得大楼的仰角为β,俯角为γ,求实验大楼AB的高度.23.(8分)旋转是一种常见的全等变换,图1中△ABC绕点O旋转后得到△A′B′C′,我们称点A和点A′、点B和点B′、点C和点C′分别是对应点,把点O称为旋转中心.(1)观察图1,想一想,旋转变换具有哪些特点呢?请写出其中三个特点;(2)图2中,△ABC顺时针旋转后,线段AB的对应线段为线段DE,请你利用圆规、直尺等工具,①作出旋转中心O;②作出△ABC绕点O旋转后的△DEF.(要求保留作图痕迹,并说明作法)24.(8分)在高尔夫球赛中,甲从山坡下点A打出一球向山洞B飞去,已知山坡与水平方向夹角为30度,AB相距18米,球飞行的水平距离为9米时达最大高度12米,球飞行为抛物线,问能否一杆进洞?25.(9分)在同一平面内,已知点O到直线l的距离为5,以点O为圆心,r为半径画圆.探究、归纳:(1)当r=时,⊙O上有且只有一个点到直线l的距离等于3;(2)当r=时,⊙O上有且只有三个点到直线l的距离等于3;(3)随着r的变化,⊙O上到直线l的距离等于3的点的个数有哪些变化并求出相对应的r的值或取值范围(不必写出计算过程).26.(9分)用水平线和竖直线将平面分成若干个边长为1的小正方形格子,小正方形的顶点,叫格点,以格点为顶点的多边形叫格点多边形.设格点多边形的面积为S,它各边上格点的个数和为x.(1)上图中的格点多边形,其内部都只有一个格点,它们的面积与各边上格点的个数和的对应关系如下表,请写出S与x之间的关系式;答:S=.多边形的序号①②③④…多边形的面积S2 2.534…各边上格点的个数和x4568…(2)请你再画出一些格点多边形,使这些多边形内部都有而且只有2格点.此时所画的各个多边形的面积S与它各边上格点的个数和x之间的关系式是:S=;(3)请你继续探索,当格点多边形内部有且只有n个格点时,猜想S与x有怎样的关系?答:S=.27.(12分)已知:如图,OA与oB外切于点C,DE是两圆的一条外公切线,切点分别为D、E.(1)判断△DCE的形状并证明;(2)过点C作CO⊥DE,垂足为点O,以直线DE为x轴、直线DC为y轴建立直角坐标系,且OE=2,OD=8,求经过D、C、E三点的抛物线的函数解析式,并求出抛物线的顶点坐标;(3)这条抛物线的顶点是否在连心线AB上?如果在,请你证明;如果不在,说明理由.参考答案与试题解析一、选择题1.下列各组数中,互为相反数的是()A.3与B.﹣4与(﹣2)2C.(﹣1)2与1 D.2与|﹣2|【解答】解:A、3+=3,故本选项错误;B、﹣4+(﹣2)2=0,正确;C、1+(﹣1)2=2,故本选项错误;D、2+|﹣2|=4,故本选项错误.故选B.2.函数的自变量x的取值范围是()A.x≥2 B.x≥3 C.x≠3 D.x≥2且x≠3【解答】解:根据题意得:x﹣2≥0且x﹣3≠0,解得:x≥2且x≠3.故选D.3.下列计算正确的是()A.a+a2=2a2B.a5•a2=a10C.(﹣2a4)4=16a8D.(a﹣1)2=a﹣2【解答】解:A、a+a2=2a2不是同类项不能合并,故本选项错误;B、根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,故本选项错误;C、根据幂的乘方法则:底数不变,指数相乘,故本选项错误;D、(a﹣1)2=a﹣2,根据幂的乘方法则,故本选项正确;故选D.4.样本甲的方差是S2甲=0.005,样本乙的数据为2.20,2.30,2.20,2.10,2.20,则样本甲和样本乙波动大小为()A.甲、乙波动大小一样B.乙的波动比甲的波动大C.甲的波动比乙的波动大D.甲、乙的波动大小无法比较【解答】解:=(2.2+2.3+2.2+2.1+2.2)÷5=2.2,S乙2=[(2.3﹣2.2)2+(2.1﹣2.2)2]÷5=0.004,∵S2甲>S2乙,∴甲的波动比乙的波动大.故选C.5.如图,P是直径AB上一点,且PA=2,PB=6,CD为经过点P的弦,那么下列PC与PD的长度中,符合题意的是()A.PC=1,PD=12 B.PC=3,PD=4 C.PC=3,PD=5 D.PC=8,PD=1.5【解答】解:∵PA=2,PB=6,AB=2+6=8,即圆O的直径是8,∵CD是圆O的弦,∴CD≤AB,A、CD=PC+PD=13,故本选项错误;B、符合CD≤AB,且PD×PC=PA×PB,故本选项正确;C、PA×PB≠PC×PD,故本选项错误;D、CD=PD+PC=9.5>AB,故本选项错误.故选B.6.小明和爸爸妈妈三人玩跷跷板.三人的体重一共为150千克,爸爸坐在跷跷板的一端,体重只有妈妈一半的小明和妈妈一同坐在跷跷板的另一端,这时爸爸那端仍然着地.那么小明的体重应小于()A.49千克B.50千克C.24千克D.25千克【解答】解:设小明的体重为x,则小明妈妈的体重为2x,爸爸的体重为150﹣3x.则有x+2x<150﹣3x即6x<150所以x<25因此小明的体重应小于25千克.故选D.7.已知方程,用换元法解此方程时,可设y=x2+x,则原方程化为()A.y2﹣y+2=0 B.y2﹣y﹣2=0 C.y2+y﹣2=0 D.y2+y+2=0【解答】解:把x2+x=y代入原方程得:y+1=2•,方程两边同乘以y整理得:y2+y﹣2=0.故选C.8.已知抛物线y=(x﹣4)2﹣3的部分图象(如图),图象再次与x轴相交时的坐标是()A.(5,0) B.(6,0) C.(7,0) D.(8,0)【解答】解:由解析式可知,抛物线的对称轴是x=4,一个交点是(1,0),根据抛物线的对称性,另一个与之对称的交点就是(7,0).故选C.9.在银行存款准备金不变的情况下,银行的可贷款总量与存款准备金率成反比例关系.当存款准备金率为7.5%时,某银行可贷款总量为400亿元,如果存款准备金率上调到8%时,该银行可贷款总量将减少多少亿()A.20 B.25 C.30 D.35【解答】解:设可贷款总量为y,存款准备金率x,则y=,把x=7.5%,y=400代入得k=30,即y=.当x=8%时,y=375,所以400﹣375=25亿.故选B.10.如图,AD∥BC,∠D=90°,DC=7,AD=2,BC=4.若在边DC上有点P使△PAD 和△PBC相似,则这样的点P存在的个数有()A.1 B.2 C.3 D.4【解答】解:∵AD∥BC,∠D=90°∴∠C=∠D=90°∵DC=7,AD=2,BC=4设PD=x,则PC=7﹣x;①若PD:PC=AD:BC,则△PAD∽△PBC∴,解得:PD=②若PD:BC=AD:PC,则△PAD∽△BPC∴,解得:PD=∴这样的点P存在的个数有3个.故选C.11.小明在一次登山活动中捡到一块矿石,回家后,他使用一把刻度尺,一只圆柱形的玻璃杯和足量的水,就测量出了这块矿石的体积.如果他量出玻璃杯的内直径是d,把矿石完全浸没在水中,测出杯中水面上升的高度为h,则小明的这块矿石体积是()A.d2h B.d2h C.πd2h D.4πd2h【解答】解:根据圆柱的体积公式可得这块矿石的体积为:.故选A.12.已知在正方形网格中,每个小方格都是边长为1的正方形,A,B两点在小方格的顶点上,位置如图所示,点C也在小方格的顶点上,且以A,B,C为顶点的三角形面积为1,则点C的个数为()A.3个 B.4个 C.5个 D.6个【解答】解:C点所有的情况如图所示:故选:D.二、填空题(每题3分,共18分)13.年信息产业部的统计数据表明,截止到10月底,我国的电话用户总数达到5.62亿,居世界首位.其中5.62亿用科学记数法表示应为 5.62×108.【解答】解:将5.62亿用科学记数法表示为5.62×108.故答案为:5.62×108.14.若a、b都是无理数,且a+b=﹣1,则a、b的值为,(填一组满足条件的值即可)【解答】解:令a=+1,将a=+1代入a+b=﹣1得,+1+b=﹣1,解得b=﹣2.故答案为a=+1,b=﹣2.15.如图,AB为半圆O的直径,C、D是半圆上的三等分点,若⊙O的半径为1,E为线段AB上任意一点,则图中阴影部分的面积为.【解答】解:阴影部分的面积为==.16.已知x1和x2为一元二次方程2x2﹣2x+3m﹣1=0的两个实根,并且x1和x2满足不等式,则m的取值范围是.【解答】解:∵x1和x2是一元二次方程2x2﹣2x+3m﹣1=0的两个实数根,△=4﹣4×2(3m﹣1)≥0,∴﹣24m≥﹣12,解得:m≤,①∴x1•x2=,②x1+x2=1,③将②③代入不等式,得<1,即<1,解得:m>﹣,④由①④,得﹣<m≤.故答案为:﹣<m≤.17.扑克牌游戏:小明背对小亮,让小亮按下列四个步骤操作:第一步分发左、中、右三堆牌,每堆牌不少于两张,且各堆牌的张数相同;第二步从左边一堆拿出两张,放入中间一堆;第三步从右边一堆拿出一张,放入中间一堆;第四步左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆.这时,小明准确说出了中间一堆牌现有的张数.你认为中间一堆牌的张数是5.【解答】解:设第一步时,每堆牌的数量都是x(x≥2);第二步时:左边x﹣2,中间x+2,右边x;第三步时:左边x﹣2,中级x+3,右边x﹣1;第四步开始时,左边有(x﹣2)张牌,则从中间拿走(x﹣2)张,则中间所剩牌数为(x+3)﹣(x﹣2)=x+3﹣x+2=5.故答案为:5.18.(规律探究题)某体育馆用大小相同的长方形木块镶嵌地面,第1次铺2块,如图,第2次把第1次铺的完全围起来,如图,第3次把第2次铺的完全围起来,如图;….依此方法,第n次铺完后,用字母n表示第n次镶嵌所使用的木块数8n﹣6.【解答】根据图形得到一列数2、10、18、26、…,这一个列数,从第二项起,每一项与它前面紧邻的一项的差,都等于一个常数8.第2个数=第一个数+(2﹣1)个8;第3个数=第一个数+(3﹣1)个8;第4个数=第一个数+(4﹣1)个8;…由此猜想:第n个数=第一个数+(n﹣1)个8;即第n个数=2+8×(n﹣1)=8n﹣6;一般规律:a n=a1+(n﹣1)d,其中a1为首项(第一个)、an为这一列数的第n 个,d为每相邻两个数的差.三、解答题19.(10分)计算:(1)(2)先化简,再求值.,其中.【解答】解:(1)原式=(2×﹣1)+1﹣=(﹣1)+1﹣﹣1=2﹣+1﹣﹣1=2﹣;(2)原式=×+=+=,∵x=+2,∴原式====.20.(6分)如图,在△ABC中,延长BC到D,延长AC到E,AD与BE相交于F,∠ABC=45°,试将下列设定中的两个作为题设,另一个作为结论组成一个正确命题,并证明这个命题.①AD⊥BD;②AE⊥BF;③AC=BF.【解答】当AD⊥BD;AE⊥BF,求证:AC=BF.解:∵∠ABC=45°,AD⊥BD,∴∠ABD=∠DAB=45°,∴AD=BD,∵AE⊥BF,∴∠DAC=∠DBF,∴△DAC≌△DBF,∴AC=BF.21.(6分)如图是某汽车行驶的路程s(千米)与时间t(分钟)的函数关系图.观察图中所提供的信息,解答下列问题:(1)汽车在前9分钟的平均速度是千米/分钟.(2)汽车在途中停留的时间为7分钟.(3)当16≤t≤30时,求s与t的函数解析式.【解答】解:(1)由图象得,平均速度=(千米/分钟);(2)由图象可知汽车在途中停留的时间=16﹣9=7(分钟);(3)设该一次函数的解析式为s=mt+n,由图可知,图象经过点(16,12)和(30,40),因此可列如下方程组,解得m=2,n=﹣20,∴所求的函数解析式为s=2t﹣20.答:(1);(2)7;(3)所求的函数解析式为s=2t﹣20.22.(8分)教学楼二楼以上的层高为a米,位于二楼窗口C的小明和四楼窗口D的小颖,测实验大楼AB高度(如图),小明测得大楼的仰角为α;小颖测得大楼的仰角为β,俯角为γ,求实验大楼AB的高度.【解答】解:过C、D两点作AB的垂线,垂足为E、F,设CE=DF=x,在Rt△ACF中,AF=x•tanβ,在Rt△BDF中,BF=x•tanγ,在Rt△ACE中,AE=x•tanα,∵AE﹣AF=EF=CD,∴x•tanα﹣x•tanβ=2a,解得x=,∴AB=AF+BF=x•tanβ+x•tanγ=.23.(8分)旋转是一种常见的全等变换,图1中△ABC绕点O旋转后得到△A′B′C′,我们称点A和点A′、点B和点B′、点C和点C′分别是对应点,把点O称为旋转中心.(1)观察图1,想一想,旋转变换具有哪些特点呢?请写出其中三个特点;(2)图2中,△ABC顺时针旋转后,线段AB的对应线段为线段DE,请你利用圆规、直尺等工具,①作出旋转中心O;②作出△ABC绕点O旋转后的△DEF.(要求保留作图痕迹,并说明作法)【解答】解:(1)三个特点:①对应点到旋转中心的距离相等;②任意一对对应点与旋转中心的连线所成的角相等;③两个三角形全等.(2)根据题意,A与D,B与E对应;连接AD,BE,分别作AD与BE的垂直平分线,作出其交点O,O就是旋转中心.连接OC,作∠COM=∠BOE,再在OM上截取OF=OA,连接EF,DF;即可得旋转后的△DEF.24.(8分)在高尔夫球赛中,甲从山坡下点A打出一球向山洞B飞去,已知山坡与水平方向夹角为30度,AB相距18米,球飞行的水平距离为9米时达最大高度12米,球飞行为抛物线,问能否一杆进洞?【解答】解:建立如图所示的直角坐标系:∵球飞行的水平距离为9米时达最大高度12米,∴抛物线的顶点坐标为(9,12),设抛物线的解析式为y=a(x﹣9)2+12,把A(0,0)代入得,0=81a+12,解得a=﹣,∴y=﹣(x﹣9)2+12,过B点作BC⊥x轴于C,∵AB=18,∠BAC=30°,∴BC=9,AC=BC=9,∴B点坐标为(9,9),∵y=9时,9=﹣(x﹣9)2+12,解得x=或,所以点B不在抛物线上,所以不能一杆进洞.25.(9分)在同一平面内,已知点O到直线l的距离为5,以点O为圆心,r为半径画圆.探究、归纳:(1)当r=时,⊙O上有且只有一个点到直线l的距离等于3;(2)当r=时,⊙O上有且只有三个点到直线l的距离等于3;(3)随着r的变化,⊙O上到直线l的距离等于3的点的个数有哪些变化并求出相对应的r的值或取值范围(不必写出计算过程).【解答】解:(1)r=5﹣3=2;(2)r=5+3=8;(3)当0<r<2时,⊙O上没有点到直线l的距离等于3,当r=2时,⊙O上有且只有1个点到直线l的距离等于3,当2<r<8时,⊙O上有且只有2个点到直线l的距离等于3,当r=8时,⊙O上有且只有3个点到直线l的距离等于3,当r>8时,⊙O上有且只有4个点到直线l的距离等于3.26.(9分)用水平线和竖直线将平面分成若干个边长为1的小正方形格子,小正方形的顶点,叫格点,以格点为顶点的多边形叫格点多边形.设格点多边形的面积为S,它各边上格点的个数和为x.(1)上图中的格点多边形,其内部都只有一个格点,它们的面积与各边上格点的个数和的对应关系如下表,请写出S与x之间的关系式;答:S=x.多边形的序号①②③④…多边形的面积S2 2.534…各边上格点的个数和x4568…(2)请你再画出一些格点多边形,使这些多边形内部都有而且只有2格点.此时所画的各个多边形的面积S与它各边上格点的个数和x之间的关系式是:S= x+1;(3)请你继续探索,当格点多边形内部有且只有n个格点时,猜想S与x有怎样的关系?答:S=+(n﹣1).【解答】解:(1)S=x;(2)S=x+1;(3)S=+n﹣1.27.(12分)已知:如图,OA与oB外切于点C,DE是两圆的一条外公切线,切点分别为D、E.(1)判断△DCE的形状并证明;(2)过点C作CO⊥DE,垂足为点O,以直线DE为x轴、直线DC为y轴建立直角坐标系,且OE=2,OD=8,求经过D、C、E三点的抛物线的函数解析式,并求出抛物线的顶点坐标;(3)这条抛物线的顶点是否在连心线AB上?如果在,请你证明;如果不在,说明理由.【解答】解:(1)△DCE是直角三角形,过C点作⊙A与⊙B的内公切线交DE于F,则FC=FD,FC=FE,∴FC是△CDE的中线,且FC=DE,∴△DCE是直角三角形,∠DCE=90°;(2)在Rt△DCE中,CO⊥DE于O点,△DOC∽△COE,∴OC2=OD•OF=16,OC=4,C点坐标(0,4),设经过D、C、E三点的抛物线的解析式为y=ax2+bx+c或者y=a(x﹣x1)(x﹣x2),把.D(﹣8,0),E(2,0),C(0,4)代入解析式,解得:y=﹣x2﹣1.5x+4,∴顶点坐标是(﹣3,);(3)答:抛物线的顶点在连心线AB上.证明如下:连接AD、BE,过B点作BG⊥AD于G,设⊙A半径为R,⊙B半径为r,∵AD∥C O∥BE,∴AC:CB=DO:OE=4:1在Rt△AGB中,AB2=AG2+BG2,∴r=,R=10,.∴A点坐标(﹣8,10),B点坐标(2,2.5),设直线AB的解析式为y=kx+b(k≠0),解得y=﹣x+4,把抛物线顶点坐标(﹣3,)代入直线的解析式,左边=右边=,∴抛物线y=﹣x2﹣1.5x+4的顶点P(﹣3,)在连心线AB上.。
2024年中考数学模拟考试试卷(含有答案)
解不等式①得:
解不等式②得:
∴原不等式组的解集为:
∵不等式组的解集是
∴
∴
∴
故选:B.
【点睛】本题考查了根据一元一次不等式组的解集求参数,准确熟练地进行计算是解题的关键.
7.象棋起源于中国,中国象棋文化历史悠久.如图所示是某次对弈的残图,如果建立平面直角坐标系,使棋子“帅”位于点 的位置,则在同一坐标系下,经过棋子“帅”和“马”所在的点的一次函数解析式为( )
3.中华鲟是地球上最古老的脊椎动物之一,距今约有140000000年的历史,是国家一级保护动物和长江珍稀特有鱼类保护的旗舰型物种,3月28日是中华鲟保护日,有关部门进行放流活动,实现鱼类物种的延续并对野生资源形成持续补充.将140000000用科学记数法表示应为( )
A. B. C. D.
【答案】B
8.如图,在 中 , 和 ,点 为 的中点,以 为圆心, 长为半径作半圆,交 于点 ,则图中阴影部分的面积是( )
A. B. C. D.
【答案】C
【解析】
【分析】连接 ,BD,作 交 于点 ,首先根据勾股定理求出 的长度,然后利用解直角三角形求出 、 的长度,进而得到 是等边三角形 ,然后根据 角直角三角形的性质求出 的长度,最后根据 进行计算即可.
【详解】解:如图所示,连接 ,BD,作 交 于点
∵在 中 ,AB=4
∴
∵点 为 的中点,以 为圆心, 长为半径作半圆
∴ 是半圆的直径
∴
∵
∴
又∵
∴
∴பைடு நூலகம்是等边三角形
∴
∵
∴
∴ .
故选:C.
【点睛】本题考查了 角直角三角形的性质,解直角三角形,等边三角形的性质和判定,扇形面积,勾股定理等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.
备战2023年北京市中考数学全真模拟试卷三(解析版)
备战2023年北京市中考数学全真模拟试卷三(满分100分,考试用时120分钟)一、选择题(本大题共8小题,每小题2分,共16分)1.用3个同样的小正方体摆出的几何体,从三个方向看到的图形分别如图,这个几何体是()A.B.C.D.【答案】B【详解】解:根据题意得,小正方体摆出的几何体为:,故选:B.2.北斗卫星导航系统是我国着眼于经济社会发展需要,自主建设、独立运行的卫星导航系统,属于国家重要空间基础设施.截至2022年3月,北斗高精度时空服务覆盖全球百余个国家和地区,累计服务超11亿人口,请将11亿用科学记数法表示为()A.1.1×108B.1.1×109C.1.1×1010D.1.1×1011【答案】B【详解】解:11亿9=.=⨯00110000000 1.11故选:B.3.如图,在△ABC中,∠1是它的一个外角,E为边AC上一点,延长BC到D,连接DE.则下列结论正确的是()A.∠1>∠D B.∠D>∠2C.∠1=∠2+∠3D.∠3=∠A【详解】解:A.∵∠1是△ABC的外角,∴∠1>∠2,∵∠2是△DEC的外角,∴∠2>∠D,∴∠1>∠D,故选项A正确;B.∵∠2是△DEC的外角,∴∠2>∠D,故选项B不正确;C.延长DE交AB于G,∴∠3=∠AEG,∵∠1=∠2+∠A=∠D+∠3+∠A,∠2+∠3=∠D+∠3+∠3=2∠3+∠D,当AG=EG时,∠A=∠AEG=∠3,此时∠1=∠2+∠3,当AG≠EG时,∠A≠∠AEG=∠3,∴∠1≠∠2+∠3∴∠1和∠2+∠3不一定相等,故选项C不不正确;D.由C可得∠3和∠A不一定相等,故选项D不不正确;故选:A.4.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【详解】解:A 、不是轴对称图形,是中心对称图形,故A 选项不合题意; B 、是轴对称图形,不是中心对称图形,故B 选项不符合题意; C 、既不是轴对称图形,也不是中心对称图形,故C 选项不合题意; D 、既是轴对称图形,又是中心对称图形,故D 选项合题意. 故选:D .5.一个多边形的内角和是它的外角和的2倍,那么这个多边形的边数是( ) A .3 B .4C .5D .6【答案】D【详解】解:设这个多边形是n 边形, 根据题意得,()21802360n −⋅︒=⨯︒, 解得6n =. 故选:D .6.实数a 在数轴上的对应点的位置如图所示,若实数b 满足0a b +>,则b 的值可以是( )A .-2B .-1C .1D .2【答案】D【详解】解∶根据题意得∶21a −<<−, ∴1a >, ∵0a b +>,∴0b >,且1b a >>, ∴1b a >−>, ∴b 的值可以是2. 故选:D7.不透明的袋子中有三个小球,上面分别写着数字“1”,“2”,“3”,除数字外三个小球无其他差别.从中随机摸出一个小球,记录其数字,放回并摇匀,再从中随机摸出一个小球,记录其数字,那么两次记录的数字之和为4的概率是( )A .14B .13C .12D .23【答案】B【详解】列树状图如下:共有9种等可能的情况,其中两次记录的数字之和为4的有3种,∴P (两次记录的数字之和为4)=3193=,故选:B .8.线段5AB =,动点P 以每秒1个单位长度的速度从点A 出发,沿线段AB 运动至点B .以点A 为圆心、线段AP 长为半径作圆心角为90︒的扇形PAC ,以线段PB 为边作等边PBD △.设点P 的运动时间为t ,扇形PAC 的弧CP 的长为y ,等边PBD △的面积为S ,则y 与t ,S 与t 满足的函数关系分别是( )A .正比例函数关系,一次函数关系B .正比例函数关系,二次函数关系C .一次函数关系,一次函数关系D .二次函数关系,正比例函数关系【答案】B【详解】解:设点P 的运动时间为t ,则AP t =,5BP t =−, 则901ππ1802y t t =⨯=,))22252510S t t t =−=−+=, ∴y 与t ,S 与t 满足的函数关系分别是正比例函数关系,二次函数关系, 故选:B .二、填空题(本大题共8小题,每小题2分,共16分) 9.如果分式31x +有意义,那么实数x 的取值范围是______. 【答案】x ≠-1【详解】解:∵x +1≠0, ∴x ≠-1. 故答案为:x ≠-1.10.设12,x x 分别是一元二次方程2230x x −−=的两个不相等的实数根,则12x x ⋅的值为___________. 【答案】3−【详解】解:1x Q ,2x 是一元二次方程2230x x −−=的两个不相等的实数根,∴123x x =−,故答案为:3−.11的整数:________. 【答案】2(或3)【详解】解:因为12,34<<<的整数有2,3. 故答案为:2(或3).12.方程组335x y x y −=⎧⎨+=⎩的解为______.【答案】21x y =⎧⎨=−⎩ 【详解】解:335x y x y −=⎧⎨+=⎩①②,①+②得:4x =8, 解得x =2.把x =2代入①得:2-y =3, 解得y =-1.∴方程组的解是21x y =⎧⎨=−⎩.故答案为:21x y =⎧⎨=−⎩.13.在平面直角坐标系xOy 中,直线y x =−与双曲线my x=交于A ,B 两点.若点A ,B 的纵坐标分别为1y ,2y ,则12y y +的值为______.【答案】0【详解】解:∵正比例函数和反比例函数均关于坐标原点O 对称, ∴正比例函数和反比例函数的交点亦关于坐标原点中心对称, ∵直线y x =−与双曲线my x=交于A 、B 两点, ∴A 、B 两点关于原点对称, ∴120y y +=, 故答案为:0.14.如图,点B 、F 、C 、E 在一条直线上,90A D ∠=∠=︒,AB DE =,若用“HL ”判定ABC DEF ≌△△,则添加的一个条件是___________.【答案】BC EF =(答案不唯一) 【详解】解:添加条件:BC EF =, 在Rt ABC △和Rt DEF △中,AB DEBC EF =⎧⎨=⎩, ∴()Rt Rt HL ABC DEF ≌△△, 故答案为:BC EF =(答案不唯一).15.如图所示的网格是正方形网格,A ,B ,C ,D ,E 是网格线的交点,那么ADE 的面积与ABC V 的面积的比是___________.【答案】14##1:4【详解】解:∵AE ==AC =1AD =,2AB =,∴12AE AC ==,12AD AB =, ∴AE ADAC AB=, ∵A A ∠=∠, ∴ADE ABC △△∽,∴221124ADE ABC S AD S AB ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭△△, 故答案为:1416. 我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”(如图)就是一例.这个三角形给出了(a+b )n (n=1,2,3,4,5,6)的展开式的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应(a+b )2=a 2+2ab+b 2展开式中各项的系数;第四行的四个数1,3,3,1,恰好对应着(a+b )3=a 3+3a 2b+3ab 2+b 3展开式中各项的系数,等等. 有如下四个结论:①(a+b )5=a 5+5a 4b+10a 3b 2+10a 2b 3+5ab 4+b 5;②当a=-2,b=1时,代数式a 3+3a 2b+3ab 2+b 3的值是-1;③当代数式a 4+4a 3b+6a 2b 2+4ab 3+b 4的值是0时,一定是a=-1,b=1; ④(a+b )n 的展开式中的各项系数之和为2n . 上述结论中,正确的有______(写出序号即可).【答案】①②【详解】解:∵在杨辉三角形中第三行的三个数1,2,1,恰好对应222()2a b a ab b +=++展开式中各项的系数;第四行的四个数1,3,3,1,恰好对应着+=+++33223()33a b a a b ab b 展开式中各项的系数,等等∴在杨辉三角形中第n 行的n 个数,对应1()n a b −+展开式中各项的系数,①∵5()a b +展开式中各项的系数,为杨辉三角形中第6行的6个数, ∴554322345()510105a b a a b a b a b ab b +=+++++;②∵322333a a b ab b +++各项系数对应杨辉三角中的第4行的4个数, ∴3223333()a a b ab b a b +++=+,当21a b =−=,时,代数式=3(21)1−+=−;③∵++++432234a 4a b 6a b 4ab b 各项系数对应杨辉三角中的第5行的5个数, ∴4322344464()a a b a b ab b a b ++++=+, 当代数式时,0a b +=,不一定是11a b =−=,; ④∵当11a b ==,时,展开式各项之和便是系数之和, ∴()n a b +的展开式中的各项系数之和为(11)=2n n +, 故答案为:①②.三、解答题(共68分,第17-20题,每题5分,第21题6分,第22题5分,第23-24题,每题6分,第25题5分,第26题6分,第27-28题,每题7分) 17.(5(2112tan 603−⎛⎫+︒+ ⎪⎝⎭【答案】8(2112tan 603−⎛⎫+︒+ ⎪⎝⎭19=+8=.18.(5分)解不等式组()21581252x x x x ⎧+≤+⎪⎨−−<⎪⎩.【答案】3x ≤<-2【详解】解:()21581252x x x x ⎧+≤+⎪⎨−−<⎪⎩①②, 解①得:2x ≥−, 解②得:3x <, ∴3x ≤<-2.19.(5分)已知m 是方程23250x x −−=的一个根,求代数式()()()221211m m m +−−+的值.【答案】3【详解】解:由m 是方程23250x x −−=的一个根可得23250m m −−=,即2325m m −=,()()()221211m m m +−−+()221421m m m −−++= 224121m m m −−−−=2322m m =−−将2325m m −=代入,可得原式523=−=20.(5分)下面是小元设计的“作已知角的角平分线”的尺规作图过程. 已知:如图,AOB ∠.求作:AOB ∠的角平分线OP . 作法:如图,①在射线OA 上任取点C ; ②作ACD AOB ∠=∠;③以点C 为圆心CO 长为半径画圆,交射线CD 于点P ; ④作射线OP ;所以射线OP 即为所求. 根据小元设计的尺规作图过程,完成以下任务. (1)补全图形; (2)完成下面的证明: 证明:∵ACD AOB ∠=∠,∴______(______)(填推理的依据). ∴BOP ∠=______. 又∵OC CP =,∴COP CPO ∠=∠(______)(填推理的依据). ∴COP BOP ∠=∠.∴OP 平分AOB ∠. 【答案】(1)见解析(2)CD OB ∥;同位角相等,两直线平行;OPC ∠;等边对等角 【详解】(1)解:如图,OP 为所作;(2)证明:∵ACD AOB ∠=∠,∴CD OB ∥(同位角相等,两直线平行). ∴BOP OPC ∠=∠(两直线平行,内错角相等). 又∵OC CP =,∴COP CPO ∠=∠(等边对等角). ∴COP BOP ∠=∠. ∴OP 平分AOB ∠.故答案为:CD OB ∥;同位角相等,两直线平行;OPC ∠;等边对等角. 21.(6分)如图,在△ABC 中,AB =AC ,D 为BC 中点,AE ∥BD ,且AE =BD . (1)求证:四边形AEBD 是矩形;(2)连接CE 交AB 于点F ,若∠ABE =30°,AE =2,求EF 的长.【答案】(1)证明见解析;(2. 【详解】(1)证明:∵AE ∥BD ,AE =BD , ∴四边形AEBD 是平行四边形, ∵AB =AC ,D 为BC 的中点, ∴AD ⊥BC , ∴∠ADB =90°,∴四边形AEBD 是矩形.(2)解:∵四边形AEBD 是矩形, ∴∠AEB =90°, ∵∠ABE =30°,AE =2,∴BE =BC =4,∴EC = ∵AE ∥BC , ∴△AEF ∽△BCF , ∴12EF AE CFBC ,∴EF 13=EC .22.(5分)在平面直角坐标系xOy 中,反比例函数()10my m x=≠的图象经过点()1,6A −−,一次函数()210y kx k =−≠的图象与y 轴交于点B . (1)求反比例函数的表达式并直接写出点B 的坐标;(2)当2x >时,对于x 的每一个值,都有12y y <,直接写出k 的取值范围. 【答案】(1)反比例函数的表达式为6y x=;()0,1B − (2)2k ≥【详解】(1)解:依题意,把点()1,6A −−,代入()10my m x=≠ 得()()166m =−⨯−=, ∴反比例函数的表达式为6y x=; 由()210y kx k =−≠的图象与y 轴交于点B , 令0x =,得1y =−,∴()0,1B −;(2)解:如图,令6y x=中,2x =,解得:3y =, 当直线()210y kx k =−≠经过点()2,3时,321k =−解得:2k =,根据函数图象可知,当2k ≥时,当2x >时,对于x 的每一个值,都有12y y <, ∴2k ≥23.(6分)如图,O e 是ABC V 的外接圆,直径BD 与AC 交于点E ,过点D 作O e 的切线,与BC 的延长线交于点F .(1)求证:F BAC ∠=∠;(2)若DF AC ∥,若8AB =,2CF =,求AC 的长. 【答案】(1)见解析(2)AC =【详解】(1)证明:∵DF 是O e 的切线, ∴OD DF ⊥, ∴90ODF ∠=︒,∴90F DBC ∠+∠=︒, ∵BD 是O e 的直径, ∴90BAD ∠=︒, ∴90BAC DAC ∠+∠=︒, ∵DBC DAC ∠=∠, ∴F BAC ∠=∠; (2)解:连接CD ,∵DF AC ∥,90ODF ∠=︒, ∴90BEC ODF ∠=∠=︒, ∴直径BD AC ⊥于E , ∴12AE CE AC ==, ∴8AB BC ==, ∵BD 是O e 的直径, ∴90BCD ∠=︒, ∴90DBC BDC ∠+∠=︒, ∵90DBC F ∠+∠=︒, ∴BDC F ∠=∠, ∵90BCD FCD ∠=∠=︒, ∴BCD DCF ∽V V , ∴BC DC DC CF =,即82DCDC =, ∴4DC =,∴BD == ∵在BCD △中,1122BCD S BC CD BD CE ∆=⋅=⋅,∴118422CE ⨯⨯=⨯,∴CE =∴2AC CE ==24.(6分)己知一个二次函数图象上部分点的横坐标x 与纵坐标y 的对应值如下表所示:(1)求m 的值和这个二次函数的表达式;(2)在给定的平面直角坐标系中画出这个二次函数的图象(无需再单独列表); (3)当14x <≤时,直接写出y 的取值范围. 【答案】(1)0m =,()221y x =−− (2)见解析 (3)13y −≤≤【详解】(1)解:∵当0x =和4x =时,3y =;∴抛物线的顶点为2,1,当1x =和3x =时,函数值都是0,即0m =, 设这个二次函数的表达式为:()()2210y a x a =−−≠, 将()0,3代入得413a −=, 解得1a =,∴这个二次函数的表达式为()221y x =−−; (2)解:如图:(3)解:由函数图象得:当14x <≤时,13y −≤≤.25.(5分)某年级共有300名学生,为了解该年级学生A ,B 两门课程的学习情况,从中随机抽取30名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析,相关信息如下: α.30名学生A ,B 两门课程成绩统计图:b .30名学生A ,B 两门课程成绩的平均数如下:根据以上信息,回答下列问题:(1)在这30名学生中,甲同学A 课程成绩接近满分,B 课程成绩没有达到平均分,请在图中用“○”圈出代表甲同学的点;(2)这30名学生A 课程成绩的方差为21s ,B 课程成绩的方差为22s ,直接写出21s ,22s 的大小关系; (3)若该年级学生都参加此次测试,估计A ,B 两门课程成绩都超过平均分的人数. 【答案】(1)见解析(2)2212s s <(3)90人【详解】(1)解:如图所示:(2)∵方差体现了某组数据的波动情况,波动越大,方差越大,由a 可知,B 课程成绩的波动大,A 课程成绩的波动小,∴2212s s <;(3)由统计图可知在这30名学生中,A ,B 两门课程成绩都超过平均分的有9人, 所以若该年级学生都参加此次测试,估计A ,B 两门课程成绩都超过平均分的人数为93009030⨯=(人). 26.(6分)在平面直角坐标系xOy 中,点()2,A m −在抛物线()20y ax c a =+>上,抛物线与x 轴有两个交点()1,0B x ,()2,0C x ,其中12x x <.(1)当1,3a m c ==−时,求抛物线的表达式及顶点坐标; (2)点()13,D x n +在抛物线上,若0m n >>,求1x 的取值范围. 【答案】(1)21y x =−,()0,1− (2)1312x −<<−【详解】(1)解:当1,3a m c ==−,将点()2,A m −代入得:34c c −=+,解得:1c =−,故抛物线的解析式为:21y x =−,顶点坐标为()0,1−;(2)解:∵()1,0B x ,()2,0C x 是抛物线()20y ax c a =+>与x 轴的两个交点,12x x <,∴21120,ax c x x +==−,∵点()2,A m −在抛物线上,∴()'2,A m 在抛物线上 ∵点()13,D x n +在抛物线上,∴21(3)a x c n ++=,∴21169ax ax a c n +++=,∴169n ax a =+, ∵0n >,∴1690,0ax a a +>>, ∴132x >−,又∵0x >时,y 随x 增大而增大,0m n >>, ∴132x +<, ∴11x <−, ∴1312x −<<−.27.(7分)在ABC ∆中,90ACB AC BC ∠=︒=,,D 是直线AB 上一点(点D 不与点A 、B 重合),连接DC 并延长到E ,使得CE CD =,过点E 作EF BC ⊥,交直线BC 于点F .(1)如图1,当点D 为线段AB 的上任意一点时,用等式表示线段EF CF AC 、、的数量关系,并证明; (2)如图2,当点D 为线段BA 的延长线上一点时,依题意补全图2,猜想线段EF CF AC 、、的数量关系是否发生改变,并证明.【答案】(1)AC EF FC =+,证明见解析; (2)改变,EF FC AC =+,补图和证明见解析. 【详解】(1)解:结论:AC EF FC =+. 理由如下:过D 作DH CB ⊥于H ,∵EF CF ⊥于F , ∴90EFC DHC ︒∠=∠=, ∵,FCE DCH EC DC ∠=∠=, ∴()FEC HDC AAS ≌V V , ∴,CH FC DH EF ==, ∵90,45DHB B ︒︒∠=∠=, ∴DH HB EF ==,∴AC BC CH BH FC EF ==+=+, 即AC EF FC =+(2)解:依题意补全图形.结论:EF FC AC =+.证明:过D 作DH CB ⊥交CB 的延长线于H ,∵EF CF ⊥于F , ∴90EFC DHC ︒∠=∠=, ∵,FCE DCH EC DC ∠=∠=, ∴()FEC HDC AAS ≌V V ,∴,CH FC DH EF ==,∵90,45DHB B ︒︒∠=∠=, ∴DH HB EF ==,∴EF CH BC FC AC =+=+, 即EF FC AC =+.28.(7分)对于平面内三个点P ,A ,B ,给出如下定义:将线段PA 与线段PB 长度的和叫做线段AB 关于点P 的折线距离,记为(,)d P AB .例如下图中,A ,B ,C 三点共线,2AB =,1BC =,则线段AC 关于点B 的折线距离(,)213d B AC BA BC =+=+=,线段AB 关于点C 的折线距离(,)314d C AB CA CB =+=+=.(1)如图,ABC V 中,AB AC ==90BAC ∠=︒,D 是AB 中点.①(,)d A DC =_______.②P 是线段BC 上动点,确定点P 的位置使得(,)d P AD 的值最小,并求出(,)d P AD 的最小值.(2)ABC V 中,2AB AC ==,过点C 作AC 的垂线l ,点Q 在直线l 上,直接写出(,)d Q AB 的最小值的取值范围.【答案】(1)①(,)d P AD (2)2(,)6d Q AB <<.【详解】(1)解:如图,连接CD ,∵AB AC ==90BAC ∠=︒,D 是AB 中点.∴12AD AB ==∴(,)d A DC AD AC =+==②如图,作A 关于BC 的对称点K ,连接AK 交BC 于T ,连接DK 交BC 于P ,过D 作DM AK ⊥于M ,则AT KT =,AK BC ⊥,AP KP =,∴DM BC ∥, (,)d P AD AP DP DP KP DK =+=+=,此时值最小,∵AB AC ==90BAC ∠=︒, ∴45B C ∠==︒∠,由DM BC ∥可得45ADM B ∠=∠=︒, ∴ADM △,ABT V 都为等腰直角三角形,∵AD =AB =∴22222AM DM DM +==,(222228AT BT AT +===,∴1AM DM ==,2AT BT ==,则2TK =, ∴3MK,∴DK =∴(,)d P AD(2)如图,延长AC 至F ,使2AC FC ==,连接FB 交l 于Q ,而l AC ⊥,则l 是AF 的垂直平分线, ∴AQ FQ =,∴(,)d Q AB QA QB QB QF BF =+=+=,此时(,)d Q AB 最小, ∵2AB AC ==, ∴4AF =,∴AF AB BF AF AB −<<+,即26BF <<, ∴2(,)6d Q AB <<.。
备考2023浙江省舟山市中考数学模拟试卷3含解析
【备考2023】浙江省舟山市中考数学模拟试卷3姓名:__________班级:__________考号:__________总分__________一、选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)﹣2的倒数是( )A.﹣B.C.2D.﹣2如图是由四个大小相同的正方体组成的几何体,那么它的主视图是( )A.B.C.D.株洲市展览馆某天四个时间段进出馆人数统计如下,则馆内人数变化最大时间段为( )9:00–10:0010:00–11:0014:00–15:0015:00–16:00进馆人数50245532出馆人数30652845A.9:00–10:00 B.10:00–11:00C.14:00–15:00 D.15:00–16:00已知关于的方程的根大于关于的方程的根,则应是( )A.不为0的数B.正数C.负数D.大于-1的数若代数式的值为,则的值为( )A.B.C.D.化简2a-2(a+1)的结果是 ( )A. -2B. 2C. -1D. 1如图,一圆柱高为8cm,底面周长为30cm,蚂蚁在圆柱表面爬行,从点A爬到点B的最短路程是()A.15cm B.17cm C.18cm D.30cm如图,∠ACB=90°,AC=BC.AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=3,BE=1,则DE的长是()A.B.2C.2D.如图,AB∥CD,点E为AB上方一点,FB,HG分别为∠EFG,∠EHD的角平分线,若∠E+2∠G=150°,则∠EFG的度数为( )A.90°B.95°C.100°D.150°如图,在▱ABCD中,对角线AC、BD相交于点O,AC=10,BD=6,AD=4,则▱ABCD的面积是( )A.12B.12C.24D.30二、填空题(本大题共6小题,每小题4分,共24分)适合关于x的不等式组的整数解是 .的值是整数,那么自然数n的值可以是___________因式分解:_________.一元二次方程x2﹣5x﹣6=0的解是_____.按如图所示的程序计算,若开始输入的x的值为48,我们发现第一次得到的结果为24,第二次得到的结果为12,…,则第2016次得到的结果为 .如图,矩形中,,,对角线的垂直平分线交于点、交于点,则线段的长为 __.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)先化简,再求值:( +)÷,其中x=﹣1.如图,是一个竖直放置的钉板,其中,黑色圆面表示钉板上的钉子,分别表示相邻两颗钉子之间的空隙,这些空隙大小均相等,从入口处投放一个直径略小于两颗钉子之间空隙的圆球,圆球下落过程中,总是碰到空隙正下方的钉子,且沿该钉子左右两个相邻空隙继续下落的机会相等,直至圆球落入下面的某个槽内.用画树状图的方法,求圆球落入③号槽内的概率.如图,已知AB=ED,BC=DF,AF=EC.求证:(1)△ABC ≌△EDF;(2)BC∥DF.如图所示,C城市在A城市正东方向,现计划在A.C两城市间修建一条高速公路(即线段AC),经测量,森林保护区的中心P在A城市的北偏东60°方向上,在线段AC上距A城市120k m的B处测得P在北偏东30°方向上,已知森林保护区是以点P为圆心,100k m为半径的圆形区域,请问计划修建的这条高速公路是否穿越保护区,为什么?(参考数据:≈1.73)如图,AB与⊙O相切于点C,OA,OB分别交⊙O于点D,E,=(1)求证:OA=OB;(2)已知AB=4,OA=4,求阴影部分的面积.已知:如图,在平面直角坐标系xO y中,正比例函数y=x的图像经过点A,点A的纵坐标为4,反比例函数y=的图像也经过点A,第一象限内的点B在这个反比例函数的图像上,过点B作BC∥x轴,交y轴于点C,且AC=AB.求:(1)这个反比例函数的解析式;(2)直线AB的表达式.问题背景:一次数学综合实践活动课上,小慧发现并证明了关于三角形角平分线的一个结论.如图1,已知AD是△ABC的角平分线,可证=.小慧的证明思路是:如图2,过点C作CE∥AB,交AD的延长线于点E,构造相似三角形来证明=.尝试证明:(1)请参照小慧提供的思路,利用图2证明:=;应用拓展:(2)如图3,在Rt△ABC中,∠BAC=90°,D是边BC上一点.连接AD,将△ACD沿AD所在直线折叠,点C恰好落在边AB上的E点处.①若AC=1,AB=2,求DE的长;②若BC=m,∠AED=α,求DE的长(用含m,α的式子表示).如图,在等腰直角三角形ABC中,∠BAC=90°,点A在x轴上,点B在y轴上,点C(3,1),二次函数y =x2+b x﹣的图象经过点C.(1)求二次函数的解析式,并把解析式化成y=a(x﹣h)2+k的形式;(2)把△ABC沿x轴正方向平移,当点B落在抛物线上时,求△ABC扫过区域的面积;(3)在抛物线上是否存在异于点C的点P,使△AB P是以AB为直角边的等腰直角三角形?如果存在,请求出所有符合条件的点P的坐标;如果不存在,请说明理由.答案解析一、选择题【考点】倒数【分析】根据乘积是1的两个数叫做互为倒数解答.解:∵(﹣2)×(﹣)=1,∴﹣2的倒数是﹣.故选:A.【点评】本题考查了倒数的定义,是基础题,熟记概念是解题的关键.【考点】简单组合体的三视图.【分析】从正面看几何体得到主视图即可.解:根据题意的主视图为:,故选B【点评】此题考查了简单组合体的三视图,主视图是从物体的正面看得到的视图.【考点】统计表【分析】根据表格数据得出10:00﹣11:00,进馆24人,出馆65人,从而求解.解:由统计表可得:10:00﹣11:00,进馆24人,出馆65人,差之最大,故选B.【点评】本题考查统计表,题目比较简单.【考点】方程的解,一元一次不等式的应用【分析】分别用a表示出两方程的根,根据题意可得到关于a的不等式,可求出a所满足的条件,可得出答案.解:解方程5(x-a)=-2a可得x=a,解方程3(x-a)=2(x+a)可得x=5a,∵方程5(x-a)=-2a的根大于关于x的方程3(x-a)=2(x+a)的根,∴a>5a,解得a<0,即a为负数,故选:C.【点评】本题考了方程的解和一元一次不等式的应用,解题的关键是得到关于a的不等式.【考点】解一元一次方程【分析】根据题意列出方程,求出方程的解即可得到x的值.解:根据题意得:2x+3=6,移项合并得:2x=3,解得:x=,故选:A.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.【考点】整式的加减【分析】先用乘法分配律将括号去掉,再合并同类项即可.解:原式=2a-2a-2=-2.故选A.【点评】用“乘法分配律”去掉括号时,需注意两点:(1)括号外的因数2要与括号里的两个项都要相乘;(2)去掉括号后,注意符号的变化.【考点】平面展开﹣最短路径问题.【分析】沿过A点和过B点的母线剪开,展成平面,连接AB,则AB的长是蚂蚁在圆柱表面从A点爬到B点的最短路程,求出AC和BC的长,根据勾股定理求出斜边AB即可.解:如图所示:沿过A点和过B点的母线剪开,展成平面,连接AB,则AB的长是蚂蚁在圆柱表面从A点爬到B点的最短路程,AC=×30=15(cm),∠C=90°,BC=8cm,由勾股定理得:AB==17(cm).故选:B.【点评】本题考查了平面展开-最短路线问题和勾股定理的应用,关键是知道求出AB的长就是蚂蚁在圆柱表面从A点爬到B点的最短路程.【考点】全等三角形的判定和性质【分析】根据条件可以得出∠E=∠ADC=90°,进而得出△CEB≌△ADC,就可以得出BE=DC,就可以求出DE的值.解:∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°,∴∠EBC=∠DCA.在△CEB和△ADC中,,∴△CEB≌△ADC(AA S),∴BE=DC=1,CE=AD=3.∴DE=EC﹣CD=3﹣1=2故选:B.【点评】本题考查全等三角形的判定和性质、熟练掌握全等三角形的判定和性质是解决问题的关键,学会正确寻找全等三角形,属于中考常考题型.【考点】平行线的性质,三角形的外角性质,角平分线的定义【分析】如图(见解析),过G作,先根据平行线的性质、角的和差得出,再根据角平分线的定义得出,然后根据平行线的性质、三角形的外角性质得出,联立求解可得,最后根据角平分线的定义可得.解:如图,过G作∴∵∴∴∴∵FB、HG分别为、的角平分线∴,∵∴解得故选:C.【点评】本题考查了平行线的性质、三角形的外角性质、角平分线的定义等知识点,通过作辅助线,构造平行线是解题关键.【考点】平行四边形的性质,勾股定理的逆定理【分析】由▱ABCD的对角线AC和BD交于点O,若AC=10,BD=6,AD=4,易求得OA与OB的长,又由勾股定理的逆定理,证得AD⊥BD,继而求得答案.解:∵四边形ABCD是平行四边形,且AC=10,BD=6,∴OA=OC=AC=5,OB=OD=BD=3,∵AD=4,∴AD2+DO2=OA2,∴△ADO是直角三角形,且∠BDA=90°,即AD⊥BD,∴▱ABCD面积为:ADBD=4×6=24.故选C.【点评】此题考查了平行四边形的性质与勾股定理的逆定理.此题难度不大,注意掌握数形结合思想的应用.二、填空题【考点】一元一次不等式组的整数解.【分析】根据一元一次不等式组解出x的取值,根据x是整数解得出x的可能取值.【解答】解:解①得2x<﹣2,即x<﹣1,解②得2x>x﹣3,即x>﹣3,综上可得﹣3<x<﹣1,∵x为整数,故x=﹣2故答案为:﹣2.【点评】本题考查了一元一次不等式组的整数解,解答本题的关键在于根据x的取值范围,得出x的整数解.【考点】二次根式的定义【分析】因为是整数,则8-n是完全平方数,满足条件的自然数n为8,7,4.解:∵因为是整数,则8-n是完全平方数,满足条件的自然数n为8,7,4.故答案为:8,7,4.【点评】主要考查了二次根式的定义;解题的关键是分解成一个完全平方数.【考点】提公因式法与公式法的综合运用【分析】先提公因式,然后利用平方差公式进行因式分解,即可得到答案.解:;故答案为:.【点评】本题考查了因式分解,解题的关键是掌握因式分解的方法.【考点】解一元二次方程-因式分解法【分析】根据一元二次方程的解法法则进行求解即可.解:∵x2﹣5x﹣6=0则(x-6)(x+1)=0x-6=0;x+1=0解得x1=6,x2=﹣1.【点评】本题主要考查的是一元二次方程的解法法则,熟练掌握法则是本题的解题关键.【考点】代数式求值.【分析】根据图表可以计算出每次输出的结果,先算出前面几次的结果,通过观察数据,发现其中的规律,然后即可解答本题.解:由图表可得,第一次输出的结果为:48×;第二次输出的结果为:;第三次输出的结果为:;第四次输出的结果为:;第五次输出的结果为:3﹣5=﹣2;第六次输出的结果为:;第七次输出的结果为:﹣1﹣5=﹣6;第八次输出的结果为:;第九次输出的结果为:﹣3﹣5=﹣8;第十次输出的结果为:;第十一次输出的结果为:﹣4﹣5=﹣9;第十二次输出的结果为:﹣9﹣5=﹣14;第十三次输出的结果为:;第十四次输出的结果为:﹣7﹣5=﹣12;第十五次输出的结果为:;第十六次输出的结果为:;第十七次输出的结果为:﹣3﹣5=﹣8;由上可得,从第七次到第十四次为一个循环,即八次一循环,∵(2016﹣6)÷8=2010÷8=225,∴第2016次得到的结果为:﹣12,故答案为:﹣12.【点评】本题考查代数式求值,解题的关键是明确表格提供的信息,根据表格可以算出每次输出的数据,能发现其规律,注意计算一定要仔细认真.【考点】矩形的性质,线段垂直平分线的性质,勾股定理,相似三角形的判定与性质【分析】根据矩形的性质和勾股定理求出BD,证明△BOF∽△BCD,根据相似三角形的性质得到比例式,求出EF即可.解:如图:四边形是矩形,,又,,,是的垂直平分线,,,又,,,,解得,,四边形是矩形,,,,是的垂直平分线,,,在和中,,,,.故答案为:.【点评】本题考查的是矩形的性质、线段垂直平分线的性质以及勾股定理的应用,掌握矩形的四个角是直角、对边相等以及线段垂直平分线的定义是解题的关键.三、解答题【考点】分式的化简求值.【分析】根据分式的运算法则即可求出答案.解:当x=﹣1时,原式=×=3x+2=﹣1【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.【考点】列表法与树状图法【分析】根据题意画出树状图,共有8种等可能的路径,其中落入③号槽内的有3种路径,再由概率公式求解即可.解:画树状图得:所以圆球下落过程中共有8种路径,其中落入③号槽内的有3种,所以圆球落入③号槽内的概率为.【点评】树状图法求概率的关键在于列举出所有可能的结果,当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树状图法.【考点】平行线的判定,全等三角形的判定与性质【分析】(1)由AF=EC得到AC=EF,再根据SSS证明△ABC ≌△EDF;(2)由(1)中结论可得到∠ACB=∠EFD,再根据等角的补角相等可得:∠BCF=∠DFC,再根据内错角相等,两直线平行得到BC∥DF.解:(1).∵AF=EC∴AC=EF在△ABC 与△EDF中∵AB=ED,BC=DF,AC=EF∴△ABC ≌△EDF(2)∵△ABC≌△EDF∴∠ACB=∠EFD∴∠BCF=∠DFC∴BC∥DF【点评】主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、S A S、A S A.AA S 和H L)和性质(即对应边相等、对应角相等)是解题的关键.【考点】解直角三角形,等腰三角形的判定和性质,勾股定理【分析】作P H⊥AC于H.求出P H与100比较即可解决问题.解:结论;不会.理由如下:作P H⊥AC于H.由题意可知:∠EA P=60°,∠FB P=30°,∴∠P AB=30°,∠P BH=60°,∵∠P BH=∠P AB+∠A P B,∴∠BA P=∠B P A=30°,∴BA=B P=120,在Rt△P BH中,s i n∠P BH=,∴P H=P B s i n60°=120×≈103.80,∵103.80>100,∴这条高速公路不会穿越保护区.【点评】本题考查解直角三角形、等腰三角形的判定和性质、勾股定理的应用等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题.【考点】切线的性质;扇形面积的计算.【分析】(1)连接OC,由切线的性质可知∠ACO=90°,由于=,所以∠AOC=∠BOC,从而可证明∠A=∠B,从而可知OA=OB;(2)由(1)可知:△AOB是等腰三角形,所以AC=2,从可求出扇形OCE的面积以及△OCB 的面积解:(1)连接OC,∵AB与⊙O相切于点C∴∠ACO=90°,由于=,∴∠AOC=∠BOC,∴∠A=∠B∴OA=OB,(2)由(1)可知:△OAB是等腰三角形,∴BC=AB=2,∴s i n∠COB==,∴∠COB=60°,∴∠B=30°,∴OC=OB=2,∴扇形OCE的面积为:=,△OCB的面积为:×2×2=2∴S 阴影=2﹣π【点评】本题考查切线的性质,解题的关键是求证OA=OB,然后利用等腰三角形的三线合一定理求出BC与OC的长度,从而可知扇形OCE与△OCB的面积,本题属于中等题型. 【考点】反比例函数与一次函数的交点问题【分析】(1)根据正比例函数y=x的图象经过点A,点A的纵坐标为4,求出点A的坐标,根据反比例函数y=的图象经过点A,求出m的值;(2)根据点A的坐标和等腰三角形的性质求出点B的坐标,运用待定系数法求出直线AB的表达式.解:∵正比例函数y=x的图象经过点A,点A的纵坐标为4,∴点A的坐标为(3,4),∵反比例函数y=的图象经过点A,∴m=12,∴反比例函数的解析式为:y=;(2)如图,连接AC、AB,作AD⊥BC于D,∵AC=AB,AD⊥BC,∴BC=2CD=6,∴点B的坐标为:(6,2),设直线AB的表达式为:y=k x+b,由题意得,,解得,,∴直线AB的表达式为:y=﹣x+6.【点评】本题考查了用待定系数法求一次函数和反比例函数的解析式,三角形面积,一次函数与反比例函数的交点问题的应用,关键是求出两函数的解析式.【考点】相似形综合题.【分析】(1)证明△CED∽△BAD,由相似三角形的性质得出,证出CE=CA,则可得出结论;(2)①由折叠的性质可得出∠CAD=∠BAD,CD=DE,由(1)可知,,由勾股定理求出BC=,则可求出答案;②由折叠的性质得出∠C=∠AED=α,则t an∠C=t anα=,方法同①可求出CD=,则可得出答案.(1)证明:∵CE∥AB,∴∠E=∠EAB,∠B=∠ECB,∴△CED∽△BAD,∴,∵∠E=∠EAB,∠EAB=∠CAD,∴∠E=∠CAD,∴CE=CA,∴.(2)解:①∵将△ACD沿AD所在直线折叠,点C恰好落在边AB上的E点处,∴∠CAD=∠BAD,CD=DE,由(1)可知,,又∵AC=1,AB=2,∴,∴BD=2CD,∵∠BAC=90°,∴BC===,∴BD+CD=,∴3CD=,∴CD=;∴DE=;②∵将△ACD沿AD所在直线折叠,点C恰好落在边AB上的E点处,∴∠CAD=∠BAD,CD=DE,∠C=∠AED=α,∴t an∠C=t anα=,由(1)可知,,∴t anα=,∴BD=CD•t anα,又∵BC=BD+CD=m,∴CD•t anα+CD=m,∴CD=,∴DE=.【点评】本题是相似形综合题,考查了折叠的性质,角平分线的定义,等腰三角形的判定与性质,平行线的性质,相似三角形的判定与性质,勾股定理,锐角三角函数的定义,熟练掌握相似三角形的判定与性质是解题的关键.【考点】二次函数综合题【分析】(1)将点C的坐标代入抛物线的解析式可求得b的值,从而可得到抛物线的解析式,然后利用配方法可将抛物线的解析式变形为y=a(x﹣h)2+k的形式;(2)作C K⊥x轴,垂足为K.首先证明△BAO≌△AC K,从而可得到OA=C K,OB=A K,于是可得到点A.B的坐标,然后依据勾股定理求得AB的长,然后求得点D的坐标,从而可求得三角形平移的距离,最后,依据△ABC扫过区域的面积=S四边形ABDE+S△DEH求解即可;(3)当∠AB P=90°时,过点P作P G⊥y轴,垂足为G,先证明△B P G≌△ABO,从而可得到点P 的坐标,然后再判断点P是否在抛物线的解析式即可,当∠P AB=90°,过点P作P F⊥x轴,垂足为F,同理可得到点P的坐标,然后再判断点P是否在抛物线的解析式即可.解:(1)∵点C(3,1)在二次函数的图象上,∴x2+b x﹣=1,解得:b=﹣,∴二次函数的解析式为y=x2﹣x﹣y=x2﹣x﹣=(x2﹣x+﹣)﹣=(x﹣)2﹣(2)作C K⊥x轴,垂足为K.∵△ABC为等腰直角三角形,∴AB=AC.又∵∠BAC=90°,∴∠BAO+∠CA K=90°.又∵∠CA K+∠AC K=90°,∴∠BAO=∠AC K.在△BAO和△AC K中,∠BOA=∠A K C,∠BAO=∠AC K,AB=AC,∴△BAO≌△AC K.∴OA=C K=1,OB=A K=2.∴A(1,0),B(0,2).∴当点B平移到点D时,D(m,2),则2=m2﹣m﹣,解得m=﹣3(舍去)或m=.∴AB==.∴△ABC扫过区域的面积=S 四边形ABDE+S△DEH=×2+××=9.5(3)当∠AB P=90°时,过点P作P G⊥y轴,垂足为G.∵△A P B为等腰直角三角形,∴P B=AB,∠P BA=90°.∴∠P BG+∠BAO=90°.又∵∠P BG+∠B P G=90°,∴∠BAO=∠B P G.在△B P G和△ABO中,∠BOA=∠P GB,∠BAO=∠B P G,AB=P B,∴△B P G≌△ABO.∴P G=OB=2,AO=BG=1,∴P(﹣2,1).当x=﹣2时,y≠1,∴点P(﹣2,1)不在抛物线上.当∠P AB=90°,过点P作P F⊥x轴,垂足为F.同理可知:△P AF≌△ABO,∴F P=OA=1,AF=OB=2,∴P(﹣1,﹣1).当x=﹣1时,y=﹣1,∴点P(﹣1,﹣1)在抛物线上.【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、平移的性质、全等三角形的性质和判定,作辅助线构造全等三角形是解答本题的关键.。
2024年中考数学模拟考试试卷(有参考答案)
(满分150分;考试时间:120分钟)
学校:___________班级:___________姓名:___________考号:___________
(全卷共三个大题,满分150分,考试时间120分钟)
注意事项:
1.试题的答案书写在答题卡上,不得在试题卷上直接作答
故答案为: .
【点睛】本题考查了一元二次方程的应用增长率问题根据题意列出方程是解题的关键.
15.如图在 中 点D为 上一点连接 .过点B作 于点E过点C作 交 的延长线于点F.若 则 的长度为___________.
【答案】3
【解析】
【分析】证明 得到 即可得解.
【详解】解:∵
∴
∵
∴
∴
∴
在 和 中:
19.计算:
(1) ;
(2)
【答案】(1)
(2)
【解析】
【分析】(1)先计算单项式乘多项式平方差公式再合并同类项即可;
(2)先通分计算括号内再利用分式的除法法则进行计算.
【小问1详解】
解:原式
;
【小问2详解】
原式
.
【点睛】本题考查整式的混合运算分式的混合运算.熟练掌握相关运算法则正确的计算是解题的关键.
∴ 最大取 此时
∴这个最大的递减数为8165.
故答案为:8165.
【点睛】本题考查一元一次方程和二元一次方程的应用.理解并掌握递减数的定义是解题的关键.
三、解答题:(本大题8个小题第19题8分其余每题各10分共78分)解答时每小题必须给出必要的演算过程或推理步骤画出必要的图形(包括辅助线)请将解答过程书写在答题卡中对应的位置上.
A.39B.44C.49D.54
2024年中考数学模拟考试试卷(带有答案)
A. B. C. D.
【答案】C
【解析】
【分析】根据题意可得反比例函数 图象在一三象限,进而可得 ,解不等式即可求解.
【详解】解:∵当 时有
∴反比例函数 的图象在一三象限
∴
解得:
故选:C.
【点睛】本题考查了反比例函数图象 性质,根据题意得出反比例函数 的图象在一三象限是解题的关键.
故答案为①③④.
【点睛】本题主要考查全等三角形的性质与判定、等腰直角三角形的性质及平行四边形的性质与判定,熟练掌握全等三角形的性质与判定、等腰直角三角形的性质及平行四边形的性质与判定是解题的关键.
三、解答题(本大题共9个题,满分75分)
16.(1)计算: ;
(2)解分式方程: .
【答案】(1) ;(2)
【详解】解:如图:作 的垂直平分线 ,作 的垂直平分线 ,设 与 相交于点O,连接 ,则点O是 外接圆的圆心
由题意得:
∴
∴ 是直角三角形
∴
∵
∴
故选:D.
【点睛】本题考查了三角形的外接圆与外心,扇形面积的计算,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.
8.如图,在 中 ,点 在边 上,且 平分 的周长,则 的长是()
A. B. C. D.
【答案】B
【解析】
【分析】用科学记数法表示较大的数时一般形式为 ,其中 , 为整数,据此判断即可.
【详解】解:数12910000用科学记数法表示为 .
故选:B.
【点睛】本题考查了科学记数法,科学记数法的表示形式为 的形式,其中 , 为整数.确定 的值时要看把原来的数,变成 时小数点移动了多少位, 的绝对值与小数点移动的位数相同.
2024年山东省济南市中考数学模拟试卷(含答案)
2024年山东省济南市中考数学模拟试卷一、选择题:本题共10小题,每小题4分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.有理数a、b在数轴上的位置如图所示,化简:|a+2|―|2a|―|b―1|+|a+b|=( )A. ―3B. 2b―3C. 3―2bD. 2a+b2.如图是一个玻璃烧杯,图2是玻璃烧杯抽象的几何体,以箭头所指的方向为主视图方向,则它的俯视图为( )A.B.C.D.3.据报道,2024年春节假期河源万绿湖景区共接待游客约220000人次.数字220000用科学记数法表示是( )A. 2.2×106B. 2.2×105C. 22×106D. 0.22×1064.下列计算正确的是( )A. (a3)2=a9B. (xy2)3=xy6C. (―2b2)2=―4b4D. (a)2=a5.光线照射到平面镜镜面会产生反射现象,物理学中,我们知道反射光线与法线(垂直于平面镜的直线叫法线)的夹角等于入射光线与法线的夹角.如图一个平面镜斜着放在水平面上,形成∠AOB形状,∠AOB=36°,在OB上有一点E,从点E射出一束光线(入射光线),经平面镜点D处反射光线DC刚好与OB平行,则∠DEB的度数为( )A. 71°B. 72°C. 54°D. 53°6.若二次根式1―3x有意义,则x的取值范围是( )3A. x≠13B. x≥13C. x<13D. x≤137.下列计算正确的是( )A. (a―1)2=a2―1B. 4a⋅2a=8a2C. 2a―a=2D. a8÷a2=a48.若点A(―4,y1),B(―2,y2),C(5,y3)在反比例函数y=3x的图象上,则y1,y2,y3大小关系为( )A. y3>y1>y2B. y2>y3>y1C. y3>y2>y1D. y1>y2>y39.如图,AB为⊙O的直径,AD交⊙O于点F,点C是弧BF的中点,连接AC.若∠CAB=30°,AB=2,则阴影部分的面积是( )A. π3B. π6C. 2π3D. π210.如图,点A是反比例函数y=kx(k≠0)在第二象限图象上的一点,其纵坐标为1,分别作AB⊥x轴、AC⊥y轴,点D为线段OB的三等分点(BD=13OB),作DE⊥x轴,交双曲线于点E,连接CE.若CE=DE,则k的值为( )A. ―2B. ―322C. ―94D. ―22二、填空题:本题共6小题,每小题4分,共24分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考全真模拟数学精品试卷(3)(满分120分,时间120分钟)一、填空题(每小题2分,共20分) 1. 21-的值是__________ 2. 09年春季,我国北方小麦产区遭到50年一遇旱灾,据山西省防汛抗旱指挥部副主任王林旺介绍,目前全省受旱面积达3274万亩,省财政紧急下拨抗旱资金1000万元,用于当前抗旱保吃水、保春浇、保春播工作。
数据3274万亩用科学计数法表示为 亩。
3. 将3214x x x +-分解因式的结果是________. 4.如图,DE∥BC 交AB 、AC 于D 、E 两点,CF 为BC 的延长线,若∠ADE=50°,∠ACF=110°,则∠A= 度.5. 不等式组2752312x xx x -<-⎧⎪⎨++>⎪⎩的整数解是.6. 正方形ABCD 在坐标系中的位置如图所示,将正方形ABCD 绕D 点顺时针方向旋转90 后,B 点的坐标为 。
7.在6,48,24,12中能与3合并的根式有 。
8.心理学家发现:学生对概念的接受能力y 与提出概念的时间x (分)之间的关系式为y =-0.1 x 2+2.6x +43(0≤x ≤30),若要达到最强接受能力59.9,则需 __________分钟。
9.申沪为了美化家园、迎接上海世博会,她准备把自己家的一块三角形荒地种上芙蓉花和菊花,并在中间开出一条小路把两种花隔开(如图),同时也方便浇水和观赏。
小路的宽度忽略不计,且两种花的种植面积相等(即S △AED =S 四边形DCBE )。
若小路DE 和边BC 平行,边BC 的长为8米,则小路DE 的长为 米(结果精确到0.1m)。
10.如图,在平面直角坐标系上有个点P(1,0),点P 第1次向上跳动1个单位至点P 1(1,1),紧接着第2次向左跳动2个单位至点P 2(―1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,……,依此规律跳动下去,点P 第100次跳动至点P 100的坐标是 。
二、选择题(在下列各小题中,均给出四个备选答案,其中只有一个是正确答案,请将正题号 11 12 13 14 15 16 17 18 答案11.已知m ≠0,下列计算正确的是( ).A .m 2+m 3=m 5B .m 2·m 3=m 6C .m 3÷m 2=mD .(m 2)3=m 512.已知四个数:2,-3,-4,5,任取其中两个数相乘,所得积的最大值是( ).A .20B .12C .10D .-6 13.已知代数式2346x x -+的值为9,则2463x x -+的值为 A .18 B .12 C .9 D .714.已知,AB 是⊙O 的直径,且C 是圆上一点,小聪透过平举的放大镜从正上方看到水平桌面上的三角形图案的∠B (如图所示),那么下列关于∠A 与放大镜中的∠B 关系描述正确的是( )A 、∠A+∠B=900B 、∠A=∠BC 、∠A+∠B>900D 、∠A+∠B 的值无法确定15.如图,一个小球从A 点沿制定的轨道下落,在每个交叉口都有向左或向右两种机会均相等的结果,那么,小球最终到达H 点的概率是( ).A .21 B .41C .61D .8116.用“&”定义新运算: 对于任意实数a ,b 都有a &b=2a -b ,如果x &(1&3)=2,那么x 等于( ).A.1B.32 C. 12D.2 17. 右图是根据某班40名同学一周的体育锻炼情况绘制的条形统计图.那么关于该班40名同学一周参加体育锻炼时间的说法错误..的是() A .极差是3 B .中位数为8 C .众数是8 D .锻炼时间超过8小时的有21人18.图(1)、(2)、(3)、(4)四个几何体的三视图为以下四组平面图形,其中与图(3)对应的三视图是( )三、解答题(19题8分,20题6分,21题10分,22题10分,23题8分,24题8分,25题12分,26题14分,本题共76分)19.先化简,再求值:(212x x --2144x x -+)÷222x x-,其中x =1.20. 已知:如图,Rt △ABC 中,∠ACB =900,AC =BC ,点D 为AB 边上一点,且不与A 、B 两点重合,AE ⊥AB ,AE =BD ,连结DE 、DC . (1) 求证:△ACE ≌△BCD ;(2) 猜想:△DCE 是 三角形;并说明理由.CEBDA21.(1)如图,在锐角三角形ABC 中,BC=12,43sin =A ,求此三角形外接圆半径。
(2)若c AB b CA a BC ===、、,C B A sin sin sin 、、分别表示三个锐角的正弦值,三角形的外接圆的半径为R ,反思(1)的解题过程,请你猜想并写出一个结论。
(不需证明)22.为了抵御金融风暴,广东某出口企业为了减少出口产品下降,调整策略,加大产品研发,设计适合国内外大众的产品,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据: (1)把上表中x 、y 的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y 与x 的函数关系,并求出函数关系式;(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价-成本总价)(3)当地物价部门规定,该工艺品销售单价最高不能..超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?销售单价x (元∕件) …… 30 40 50 60 …… 每天销售量y (件)……500400300200……O C B A10 20 30 40 50 60 70 80100 200 300 400 500 600 700 800(第22题图)23.已知关于x 的一元二次方程2220x ax b ++=.(1)若a ≥0,b ≥0,方程有实数根,试确定a ,b 之间的大小关系;(2)若a 是从0,1,2,3四个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,请你用树状图或表格表示出所有可能出现的结果,并求出使上述方程有实数根的概率.24.如图,已知等腰AOB Rt ∆,其中090=∠AOB ,2==OB OA ,E 、F 为斜边AB 上的两个动点(E 比F 更靠近A ),满足045=∠EOF 。
(1)求证:BEO ∆∆∽AOF (2)求BE AF ⨯的值.(3)作OA EM ⊥于M ,OB FN ⊥于N ,求ON OM ⨯的值 .(4)求线段EF 长的最小值.(提示:必要时可以参考以下公式:当0>x ,0>y 时,()xy y x y x 22+-=+或2112+⎪⎭⎫⎝⎛-=+x x x x ).25.如图1是脚踩式家用垃圾桶,图2是它的内部结构示意图.EF 是一根固定的圆管,轴MN 两头是可以滑动的圆珠,且始终在圆管内上下滑动.点A 是横杆BN 转动的支点.当横杆BG 踩下时,N 移动到N /.已知点B 、A 、N 、G 的水平距离如图所示,支点的高度为3cm .(1)当横杆踩下至B /时,求N 上升的高度; (2)垃圾桶设计要求是:垃圾桶盖必须绕O 点旋转75°.试问此时的制作是否符合设计要求?请说明理由.(3)在制作的过程中,可以移动支点A (无论A 点如何移,踩下横杆BG 时,B 点始终落在B /点),试问:如何移动支点(向左或右移动,移动多少距离)才能符合设计要求?请说明理由.(本小题结果精确到0.01cm )26.已知抛物线42-+=bx ax y 的图象与x 相交与A 、B (点A 在B 的左边),与y 轴相交与C ,抛物线过点A (-1,0)且OB=OC .P 是线段BC 上的一个动点,过P 作直线PE ⊥x 轴于E ,交抛物线于F .(1)求抛物线的解析式;(2)若△BPE 与△BPF 的两面积之比为2∶3时,求E 点的坐标;(3)设OE=t ,△CPE 的面积为S ,试求出S 与t 的函数关系式;当t 为何值时,S 有最大值,并求出最大值;(4)在(3)中,当S 取得最大值时,在抛物线上求点Q ,使得△QEC 是以EC 为底边的等腰三角形,求Q 的坐标.垃圾存放处A B / N G OE F M /N / B M C O y x参考答案1.122.83.27410⨯ 3.21(21)4x x -或21()2x x - 4. 60 5. 2. 6.(4,0)7.48,12 8.13; 9. 5.710.(26,50)11.C 12.B 13.D 14.A 15.B 16.C 17. B 18.A19.解:原式=[1(2)x x -–21(2)x -]×(2)2x x -=1(2)x x -×(2)2x x -–21(2)x -×(2)2x x -=12–2(2)x x - =22(2)x x --–2(2)x x -=12x -当x =1时,原式=121- = 1。
20.(1)证明:∵ ∠ACB =900,AC =BC , ∴∠B =∠2=450.∵AE ⊥AB ,∴∠1+∠2=900. ∴∠1=450. ∴∠1=∠B . 又 AE =BD ,AC =BC , ∴△ACE ≌△BCD .(2)猜想:△DCE 是 等腰直角 三角形;理由说明:∵ △ACE ≌△BCD ,∴CE =CD ,∠3=∠4 . ∵∠4+∠5=900,∴∠3+∠5=900.即∠ECD =900. ∴△DCE 是等腰直角三角形.21.解:(1)连接CO 并延长交圆O 于点D ,连接BD.∵ ∠A 与∠D 均为弧BC 所对的圆周角∴ ∠A=∠D ,D A sin sin ==43∵ CD 为圆的直径 ∴ ∠DBC=90°CEBDA 1 23 4 5∵ 在Rt △DBC 中, CDBCD =sin ∴ D BC CD sin =164312== 所以,此三角形的外接圆的半径为8. (2)R CcB b A a 2sin sin sin ===22. 解:(1)画图如右图;由图可猜想y 与x 是一次函数关系, 设这个一次函数为y = k x +b (k≠0) ∵这个一次函数的图象经过(30,500) (40,400)这两点,∵5003040040k b k b =+⎧⎨=+⎩ 解得10800k b =-⎧⎨=⎩∵函数关系式是:y =-10x +800(2)设工艺厂试销该工艺品每天获得的利润是W 元,依题意得 W=(x -20)(-10x +800) =-10x2+1000x -16000=-10(x -50)2+9000 ∵当x =50时,W 有最大值9000.所以,当销售单价定为50元∕件时,工艺厂试销该工艺品每天获得的利润最大,最大利润是9000元.(3)对于函数 W=-10(x -50)2+9000,当x ≤45时, W 的值随着x 值的增大而增大,∵销售单价定为45元∕件时,工艺厂试销该工艺品每天获得的利润最大23.解:(1) 由于关于x 的一元二次方程2220x ax b ++=有实数根,所以 ,04)2(22≥-b a 有22b a ≥. 由于0,0>>b a ,所以b a ≥.-(2)列表:共有12种情况,其中b a ≥的有9种, 则上述方程有实数根的概率是4.24.(1)证明:∵AOB ∆是等腰直角三角形,∴ ︒=∠=∠90B A∵BOF BOF B AFO ∠+︒=∠+∠=∠45又∵BOF BOF EOF BOE ∠+︒=∠+∠=∠45 ∴BOE AFO ∠=∠ ∴B EO ∆∆∽AOF(2)∵BOE ∆∽AOF ∆∴AF OBOA BE =∴4=⋅BE AF(3)作斜边AB 上的高OD ,并记a OM =、b ON =,则易得a ME -=2,2=OD ,BN BD BF BD DF 2-=-=()()12222-=--=b b ,由已知条件易得:MOE ∆∽DOF ∆⇒OD OM DF ME =⇒()2122a b a =--⇒2=ab , 即2=⋅ON OM ;(4)解:()()()222222222-+=----=--=b a b a BF AE AB EF()()22422222222-+-=-+-=b a ab b a ,所以,当b a =,2==b a 时,EF 取得最小值224-。