2008年1月浙江省自考试卷近世代数试题

合集下载

浙江自考试题及解析近世代数

浙江自考试题及解析近世代数

⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯精选自学考料介绍⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯浙江省 2018 年 1 月高等教育自学考试近世代数试题课程代码: 10025一、单项选择题(在每题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在题干的括号内。

每题 3 分,共 15分 )1. 设会合 A 含有 n 个元素,那么 A 的子集共有多少个 ?()A. n!B. n2C. 2nn(n1) D.22. 以下法例,哪个是集 A 的代数运算 ()。

A. A=N a b=a-bB. A=Z aab b=2C. A=Q aaD. A=R a b=a+ πb=b3.设 S={a,b,c,d}, S 中规定一个代数运算以下表,0a b c da d a a db ac b dc a b c dd d d d a则 S 对于所给代数运算作成的代数系统中的可逆元素为()。

A. a 与 bB. b 与 cC. c 与 dD. d 与 a4. 以下命题中,正确的选项是()。

A.随意一个环 R,必含有单位元B.环 R 中至多有一个单位元C.环 R 有单位元,则它的子环也有单位元D.一个环与其子环都有单位元,则两个单位元必定同样5. p(素数 )阶有限群的子群个数为()。

A. 0B. 1C. 2D. p二、填空题 (每空 3 分,共 27 分 )1.设 A={a,b,c,d} ,则 A 到 A 的一一映照共有 ____________个。

2.设 G 是 6 阶循环群,则 G 的生成元有 ____________个。

3.非零复数乘群 C* 中由 -i 生成的子群是 ____________ 。

4.节余类环 Z7的零因子个数等于 ____________ 。

5.素数阶有限群 G 的非平庸子群个数等于 ____________ 。

6.节余类环 Z6的子环 S={ [ 0] ,[ 3]}, 则 S 的单位元是 ____________ 。

近世代数试题及答案

近世代数试题及答案

近世代数试题及答案一、选择题(每题4分,共20分)1. 下列哪个选项不是群的性质?A. 封闭性B. 存在单位元C. 存在逆元D. 交换律答案:D2. 有限群的阶数为n,那么它的子群的个数至少为:A. nB. 1C. n-1D. n+1答案:B3. 以下哪个命题是正确的?A. 任意两个子群的交集仍然是子群B. 任意两个子群的并集仍然是子群C. 子群的子群仍然是子群D. 子群的补集仍然是子群答案:A4. 群G的阶数为n,那么它的元素的阶数不可能是:A. 1B. nC. 2D. n+1答案:D5. 以下哪个不是环的性质?A. 封闭性B. 交换律C. 分配律D. 结合律答案:B二、填空题(每题4分,共20分)1. 如果集合S上的二元运算*满足结合律,那么称S为________。

答案:半群2. 一个群G的所有子群的集合构成一个________。

答案:格3. 一个环R中,如果对于任意的a,b∈R,都有a+b=b+a,则称R为________。

答案:交换环4. 一个环R中,如果对于任意的a,b∈R,都有ab=ba,则称R为________。

答案:交换环5. 一个群G中,如果存在一个元素a,使得对于任意的g∈G,都有ag=ga=e,则称a为G的________。

答案:单位元三、简答题(每题10分,共30分)1. 请简述子群和正规子群的区别。

答案:子群是群G的非空子集H,满足H中的任意两个元素的乘积仍然在H中,并且H对于G的运算是封闭的。

正规子群是子群N,满足对于任意的g∈G和n∈N,都有gng^-1∈N。

2. 请解释什么是群的同态和同构。

答案:群的同态是两个群G和H之间的函数f,满足对于任意的g1,g2∈G,都有f(g1g2)=f(g1)f(g2)。

群的同构是同态,并且是双射,即存在逆映射。

3. 请解释什么是环的零因子和非零因子。

答案:在环R中,如果存在非零元素a和b,使得ab=0,则称a和b 为零因子。

如果环R中不存在零因子,则称R为无零因子环。

近世代数练习题试题库

近世代数练习题试题库

§1 第一章 根底知识1 判断题:1.1 设A 与B 都是非空集合,那么{}B A x x B A ∈∈=⋃x 且。

〔 〕1.2 A ×B = B ×A 〔 〕1.3 只要f 是A 到A 的一一映射,那么必有唯一的逆映射1-f。

〔 〕 1.4 如果ϕ是A 到A 的一一映射,那么ϕ[ϕ(a)]=a 。

( )1.5 集合A 到B 的可逆映射一定是A 到B 的双射。

〔 〕1.6 设A 、B 、D 都是非空集合,那么B A ⨯到D 的每个映射都叫作二元运算。

〔 〕1.7 在整数集Z 上,定义“ 〞:a b=ab(a,b ∈Z),那么“ 〞是Z 的一个二元运算。

〔 〕1.8 整数的整除关系是Z 的一个等价关系。

( )2填空题:2.1 假设A={0,1} , 那么A ⨯A=__________________________________。

2.2 设A = {1,2},B = {a ,b},那么A ×B =_________________。

2.3 设={1,2,3} B={a,b},那么A ⨯B=_______。

2.4 设A={1,2}, 那么A ⨯A=_____________________。

2.5 设集合{}1,0,1-=A ;{}2,1=B ,那么有=⨯A B 。

2.6 如果f 是A 与A 间的一一映射,a 是A 的一个元,那么()[]=-a f f 1 。

2.7 设A ={a 1, a 2,…a 8},那么A 上不同的二元运算共有 个。

2.8 设A 、B 是集合,| A |=| B |=3,那么共可定义 个从A 到B 的映射,其中有 个单射,有 个满射,有 个双射。

2.9 设A 是n 元集,B 是m 元集,那么A 到B 的映射共有____________个.2.10 设A={a,b,c},那么A 到A 的一一映射共有__________个.2.11 设A={a,b,c,d,e},那么A 的一一变换共有______个.2.12 集合A 的元间的关系~叫做等价关系,如果~适合以下三个条件:_____________________________________________。

近世代数考试试题题库

近世代数考试试题题库

近世代数考试试题题库近世代数是一门研究代数结构的数学分支,它主要研究群、环、域等代数结构的性质和它们之间的关系。

以下是一份近世代数考试试题题库的示例内容:一、选择题1. 以下哪个不是群的公理?A. 单位元存在性B. 可逆性C. 交换律D. 结合律2. 一个集合G,配合一个二元运算*,若满足以下条件,则G是一个群:A. 存在单位元B. 每个元素都有逆元C. 运算满足结合律D. 所有上述条件3. 在群G中,若a属于G,a的阶是最小的正整数n,使得a^n等于单位元,那么a的阶是:A. 1B. nC. 0D. G的阶4. 以下哪个是有限群的拉格朗日定理的表述?A. 群的子群的阶总是群的阶的因子B. 群的子群的阶等于群的阶C. 群的子群的阶总是群的阶的倍数D. 群的阶总是其子群的阶的倍数5. 环R中,若存在单位元1,并且对于任意的a, b属于R,都有a*b=b*a,则R是一个:A. 群B. 域C. 交换环D. 模二、填空题6. 群的______性质保证了每个元素都有逆元。

7. 一个有单位元的结合环,如果其每个非零元素都有逆元,则这个环称为一个______。

8. 一个环的加法群是阿贝尔群,如果它的加法运算满足______律。

9. 一个环R中,如果a^2 = a对于所有a属于R,则R被称为______环。

10. 一个域的特征是2,这意味着域中1+1=______。

三、简答题11. 解释什么是子群,并给出一个不是子群的例子。

12. 描述拉格朗日定理,并说明它在群论中的重要性。

13. 什么是环的雅各比恒等式,并解释它在交换环中的意义。

14. 举例说明什么是有限域,并讨论它的性质。

15. 解释什么是主理想环,并讨论它与环的整性之间的关系。

四、证明题16. 证明:如果H是群G的一个子群,那么G/H的阶等于[G:H]。

17. 证明:任何群的子群都是阿贝尔的当且仅当该群本身是阿贝尔的。

18. 证明:如果R是一个有单位元的交换环,并且对于任意的a, b属于R,都有a*b = b*a,则R是一个域。

自学考试线性代数2007-2012历年真题及答案

自学考试线性代数2007-2012历年真题及答案

全国2012年10月自学考试线性代数试题请考生按规定用笔将所有试题的答案涂、写在答题纸上。

说明:在本卷中,A T 表示矩阵A 的转置矩阵,A *表示矩阵A 的伴随矩阵,E 是单位矩阵,A表示方阵A 的行列式,r(A )表示矩阵A 的秩。

选择题部分一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题 纸”的相应代码涂黑。

错涂、多涂或未涂均无分。

1.设行列式1122=1a b a b ,11221a c a c -=--,则行列式111222=a b c a b c -- A .-1 B .0C .1D .22.设矩阵123456709⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,则*A 中位于第2行第3列的元素是A .-14B .-6C .6D .143.设A 是n 阶矩阵,O 是n 阶零矩阵,且2-=A E O ,则必有 A .1-=A A B .=-A E C .=A ED .1=A4.已知4×3矩阵A 的列向量组线性无关,则r (A T )= A .1 B .2 C .3 D .45.设向量组T T12(2,0,0),(0,0,-1)αα==,则下列向量中可以由12,αα线性表示的是A .(-1,-1,-1)TB .(0,-1,-1)TC .(-1,-1,0)TD .(-1,0,-1)T6.齐次线性方程组134234020x x x x x x ++=⎧⎨-+=⎩的基础解系所含解向量的个数为A.1B.2C.3D.47.设12,αα是非齐次线性方程组Ax =b 的两个解向量,则下列向量中为方程组解的是A .12αα-B .12αα+C .1212αα+D .121122αα+8.若矩阵A 与对角矩阵111-⎛⎫ ⎪=- ⎪ ⎪-⎝⎭D 相似,则A 2= A.EB.AC.-ED.2E9.设3阶矩阵A 的一个特征值为-3,则-A 2必有一个特征值为 A.-9 B.-3 C.3 D.910.二次型222123123121323(,,)222f x x x x x x x x x x x x =+++++的规范形为A .2212z z -B .2212z z + C .21zD .222123z z z ++二、填空题(本大题共10小题,每小题2分,共20分)11.行列式123111321的值为______. 12.设矩阵011001000⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,则A 2=______.13.若线性方程组12323323122(1)x x x x x x λλ++=⎧⎪-+=-⎨⎪+=-⎩无解,则数λ=______.14.设矩阵43012110⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,=A P ,则PAP 2=______.15.向量组T T 12,-2,2,(4,8,8)k αα==-()线性相关,则数k =______. 16.已知A 为3阶矩阵,12,ξξ为齐次线性方程组Ax =0的基础解系,则=A ______. 17.若A 为3阶矩阵,且19=A ,则-1(3)A =______. 18.设B 是3阶矩阵,O 是3阶零矩阵,r (B )=1,则分块矩阵⎛⎫⎪⎝⎭E O B B 的秩为______.19.已知矩阵211121322⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,向量11k ⎛⎫ ⎪= ⎪ ⎪⎝⎭α是A 的属于特征值1的特征向量,则数k =______.20.二次型1212(,)6f x x x x =的正惯性指数为______. 三、计算题(本大题共6小题,每小题9分,共54分)21.计算行列式a ba b D a a b b aba b+=++的值.22.设矩阵100112210,022222046A B ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,求满足方程AX =B T 的矩阵X .23.设向量组123411212142,,,30614431αααα-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭,求该向量组的秩和一个极大线性无关组.24.求解非齐次线性方程组123412341234124436x x x x x x x x x x x x +--=⎧⎪+++=⎨⎪+--=⎩.(要求用它的一个特解和导出组的基础解系表示).25.求矩阵200020002⎛⎫ ⎪= ⎪ ⎪⎝⎭A 的全部特征值和特征向量.26.确定a ,b 的值,使二次型22212312313(,,)222f x x x ax x x bx x =+-+的矩阵A 的特征值之和为1,特征值之积为-12. 四、证明题(本题6分)27.设矩阵A 可逆,证明:A *可逆,且*11*--=()()A A .全国2012年7月高等教育自学考试一、单项选择题(本大题共10小题,每小题2分,共20分)1.设A 为三阶矩阵,且13A -=,则 3A -( )A.-9B.-1C.1D.92.设[]123,,A a a a =,其中 (1,2,3)i a i = 是三维列向量,若1A =,则[]11234,23,a a a a - ( )A.-24B.-12C.12D.243.设A 、B 均为方阵,则下列结论中正确的是( ) A.若AB =0,则A=0或B=0 B. 若AB =0,则A =0或B =0 C .若AB=0,则A=0或B=0 D. 若AB ≠0,则A ≠0或B ≠04. 设A 、B 为n 阶可逆阵,则下列等式成立的是( ) A. 111()AB A B ---=B. 111()A B A B ---+=+ C .11()AB AB-= D. 111()A B A B ---+=+5. 设A 为m ×n 矩阵,且m <n ,则齐次方程AX=0必 ( ) A.无解B.只有唯一解 C .有无穷解 D.不能确定6. 设12311102103A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦则()r A = A.1 B.2 C.3 D.47. 若A 为正交矩阵,则下列矩阵中不是正交阵的是( ) A. 1A -B.2A C .A ²D. T A8.设三阶矩阵A有特征值0、1、2,其对应特征向量分别为123ξξξ、、,令[]312,,2P ξξξ= 则1P AP -=( ) A. 200010000⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ B. 200000001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦C .000010004⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ D. 200000002⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦9.设A 、B 为同阶方阵,且()()r A r B =,则( ) A.A 与B 等阶 B. A 与B 合同 C .A B =D. A 与B 相似10.设二次型22212312123(,,)22f x x x x x x x x =+-+则f 是( ) A.负定 B.正定 C .半正定 D.不定二、填空题(本大题共10小题,每小题2分,共20分) 11.设A 、B 为三阶方阵,A =4,B =5, 则2AB = 12.设121310A ⎡⎤=⎢⎥⎣⎦ , 120101B ⎡⎤=⎢⎥⎣⎦ ,则TA B 13.设120010002A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦则1A - =14.若22112414A t ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦且()2r A =,则t= 15.设1231120,2,2110a a a -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦则由 123,,a a a 生成的线性空间123(,,)L a a a的维数是16. 设A 为三阶方阵,其特征值分别为1、2、3,则1A E --=17.设111,21t a β-⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,且a 与β正交,则t = 18.方程1231x x x +-=的通解是19.二次型212341223344(,,,)5f x x x x x x x x x x x =+++所对应的对称矩阵是20.若00100A x =⎢⎥⎢⎥⎥⎥⎦是正交矩阵,则x =三、计算题 (本大题共6小题,每小题9分,共54分)21.计算行列式1112112112112111⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ 22.设010111101A ⎡⎤⎢⎥-⎢⎥⎢⎥--⎣⎦= 112053-⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦B = ,且X 满足X=AX+B,求X23.求线性方程组的123412345221.53223x x x x x x x x +=⎧⎪+++=⎨⎪+++=⎩12x x 的通解,24.求向量组 (2,4,2),(1,1,0),(2,3,1),(3,5,2)====1234a a a a 的一个极大线性无关组,并把其余向量用该极大线性无关组表示。

自学考试:近世代数试题及答案(10)

自学考试:近世代数试题及答案(10)

⾃学考试:近世代数试题及答案(10).浙江省2008年10⽉⾃学考试近世代数试题课程代码:10025⼀、单项选择题(本⼤题共5⼩题,每⼩题3分,共15分)在每⼩题列出的四个备选项中只有⼀个是符合题⽬要求的,请将其代码填写在题后的括号内。

错选、多选或未选均⽆分。

1.设集合A中含有4个元素,那么积集合A×A中含有______个元素.( )A.4B.8C.12D.162.设R是整数集,A=R×R,σ∶(x,y)→(x,-y),则σ是A的( )A.满变换B.单变换C.⼀⼀变换D.不是A的变换3.在有理数集Q中的代数运算a b=b2( )A.适合结合律但不适合交换律B.不适合结合律但适合交换律C.既适合结合律⼜适合交换律D.既不适合结合律⼜不适合交换律4.在4次对称群S4中,阶为2的元有( )A.6个B.7个C.8个D.9个5.除环的理想有( )A.1个B.2个C.3个D.4个⼆、填空题(本⼤题共10⼩题,每⼩题3分,共30分)请在每⼩题的空格中填上正确答案。

错填、不填均⽆分。

6.剩余类加群Z4有______个⽣成元.7.在4次对称群S4中,(123)(1423)-1=______.8.阶为n的有限循环群同构于______.9.剩余类环Z11的零因⼦个数等于______.第 1 页第 2 页 10.剩余类环Z13的可逆元有______个.11.如果G 是⼀个含有16个元素的群,那么,根据Lagrange 定理知,对于?a ∈G ,元素a 的阶只可能是______.12.整环I ={所有复数a+b7-(a,b 是整数)},则I 的单位是______. 13.在3,i+2,π2中,______是有理数域Q 上的代数元.14.设Q 是有理数域,则Q(2+5)=______. 15.12-+i i 在实数域R 上的极⼩多项式是______.三、解答题(本⼤题共3⼩题,第16⼩题7分,第17,18⼩题各12分,共31分)16.假定下表是⼀个群的乘法表,试填出未列出的元.17.找出模15的剩余类环Z15的所有⼦环,这些⼦环是否都是Z15的理想?为什么?18.设Z 是整数环,(2)∩(5)、(2,5)是Z 的怎样的理想?(2)∪(5)是Z 的理想吗?为什么?四、证明题(本⼤题共3⼩题,每⼩题8分,共24分)19.证明:循环群是交换群.20.在⾼斯整环Z [i ]={a+bi |a,b ∈Z}中,证明:3是素元.21.证明:整数加群与偶数加群同构,但整数环与偶数环不同构.百度⽂库:专注、专⼼、专⼀为您服务!。

1月浙江自考近世代数试题及答案解析

1月浙江自考近世代数试题及答案解析

1浙江省2018年1月自学考试近世代数试题课程代码:10025一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.以下关系中,哪个不是所给集合元间的等价关系?( )A.在有理数集Q 中关系~:a ~b ⇔a -b ∈ZB.在复数集C 中关系~:a ~b ⇔|a |=|b |C.在实数集R 中关系~:a ~b ⇔a ≤bD.在实数集R 中关系~:a ~b ⇔a =b2.设A =Z ,D =Z +,σ∶n |→⎩⎨⎧<--≥+0,120),1(2n n n n 则σ是Z 到Z +的( )A.单射B.满射C.一一映射D.不是映射3.在实数集R 中定义代数运算aob =a +b +ab ,则这个代数运算( )A.既适合结合律又适合交换律B.适合结合律但不适合交换律C.不适合结合律但适合交换律D.既不适合结合律又不适合交换律4.下列集合对所给运算作成群的是( )A.非零有理数的全体Q *对普通数的加法B.非零有理数的全体Q *对普通数的减法C.非零有理数的全体Q *对普通数的乘法D.非零有理数的全体Q *对普通数的除法 5.设R =⎭⎬⎫⎩⎨⎧∈⎪⎪⎭⎫ ⎝⎛Z d c b a d c b a ,,,,那么R 关于矩阵的加法和乘法构成环,则这个矩阵环是 ( )A.有单位元的可换环B.无单位元的可换环C.无单位元的非可换环D.有单位元的非可换环二、填空题(本大题共10小题,每小题3分,共30分)请在每小题的空格中填上正确答案。

错填、不填均无分。

2 6.设A ={a ,b ,c ,d ,e },则A 的子集共有________个.7.在4次对称群S 4中,(143)2(132)-1=________.8.模12的剩余类加群Z 12的生成元有________个.9.设Z 6是模6的剩余类环,则Z 6中的零因子是________.10.模p (素数)的剩余类环Z p 的特征为________.11.剩余类环Z 17的可逆元有________个.12.在高斯整环Z [i ]={a +bi |a ,b ∈Z }中,主理想(1+i )=________.13.在整环I ={所有复数a +b 3-(a ,b 是整数)}中,1+3-的相伴元是________.14.设R 是实数域,则)1()2(-+i i R =________. 15.51+在有理数域Q 上的极小多项式是________.三、解答题(本大题共3小题,第16小题9分,第17、18小题各10分,共29分)16.找出3次对称群S 3的所有子群,这些子群中哪些是S 3的不变子群?17.设群G =Z 18子群H =([6]),(1)商群G /H =?(2)商群G /H 与怎样的一个群同构?18.设R =⎭⎬⎫⎩⎨⎧∈⎪⎪⎭⎫ ⎝⎛Z b a b a ,00关于矩阵的加法和乘法构成一个环,I=⎭⎬⎫⎩⎨⎧∈⎪⎪⎭⎫ ⎝⎛Z x x 000, 证明:I 是R 的理想,问商环R /I 由哪些元素组成?四、证明题(本大题共3小题,第19、21小题每小题8分,第20小题10分,共26分)19.设R 为全体实数组成的加法群,R +表示全体正实数组成的乘法群,则R +与R 同构.20.设M 2(Q )是有理数域Q 上的二阶矩阵环,证明:M 2(Q )只有零理想与单位理想,但不是除环.21.证明:3-2i 是高斯整环Z [i ]={a +bi |a ,b ∈Z }的素元.。

线性代数自考试题及答案

线性代数自考试题及答案

线性代数自考试题及答案一、单项选择题(每题2分,共20分)1. 矩阵A的行列式为0,则矩阵A()A. 可逆B. 不可逆C. 行等价于零矩阵D. 列等价于零矩阵答案:B2. 若矩阵A的秩为r,则矩阵A的齐次线性方程组的解空间的维数为()A. rB. r-1C. n-rD. n+r答案:C3. 向量组α1,α2,…,αs线性无关,则()A. 向量组α1+α2,α2+α3,…,αs-1+αs线性无关B. 向量组kα1,kα2,…,kαs线性无关,其中k为非零常数C. 向量组α1+α2,α2+α3,…,αs-1+αs,αs线性无关D. 向量组kα1,kα2,…,kαs线性相关,其中k为非零常数答案:B4. 设A为n阶方阵,且|A|≠0,则下列命题中正确的是()A. A与A*的秩相等B. A*与A^(-1)的秩相等C. A与A^(-1)的秩相等D. A与A*的秩不相等答案:C5. 矩阵A=()A. 行最简形矩阵B. 行阶梯形矩阵C. 行等价于单位矩阵的矩阵D. 行等价于零矩阵的矩阵答案:C6. 设A为3×3矩阵,且|A|=2,则|2A|=()A. 4B. 8C. 16D. 32答案:C7. 设A为n阶方阵,且A^2=0,则()A. A=0B. |A|=0C. A可逆D. A不可逆答案:D8. 设A为n阶方阵,且A^2=E,则()A. A=0B. |A|=0C. A可逆D. A不可逆答案:C9. 设A为n阶方阵,且A^T=A,则()A. A为对称矩阵B. A为反对称矩阵C. A为正交矩阵D. A为斜对称矩阵答案:A10. 设A为n阶方阵,且|A|=1,则|A^(-1)|=()A. 0B. 1C. -1D. 2答案:B二、填空题(每题2分,共20分)11. 若A为n阶方阵,且|A|=-3,则|-2A|=______。

答案:1212. 设A为n阶方阵,且A^2=0,则矩阵A的秩r(A)满足______。

最新-2008年-自考-线性代数-经管类-真题详细答案

最新-2008年-自考-线性代数-经管类-真题详细答案

全国2007年4月高等教育自学考试线性代数(经管类)参考答案课程代码:-、单项选择题(本大题共 10小题,每小题2分,共20分) 1.设A 为3阶方阵,且|A| = 2,则|2A 」卜(D ) A . -4B . -11311|2A| = 23|A| =84 .Ax=0有非零解:二r (A ) :: A 的列向量组线性相关.8 .设3元非齐次线性方程组 Ax=b 的两个解为。

=(1,0,2)T , P =(1,一1,3)T ,且系数矩阵A 的秩r (A )=2 ,意常数k, k 1, k 2,方程组的通解可表为( C ) A . k 1(1,0,2)T +k 2(1,-1,3)TB . (1,0,2)T +k (1,-1,3)T041842 .设矩阵 A= (1, 2), B=A . ACBB . ABC(1 I 42323,则下列矩阵运算中有意义的是(5 6C . BACCBA3.设A 为任意n 阶矩阵,下列矩阵中为反对称矩阵的是(TTTA . A + AB . A - AC . AA■a b )*设2阶矩阵A= I ,则 A = ( A)l c d丿(d—b \f-d c 、(-d b 、(d —c \iB .C .D .i<_c a丿b~aJ< c~a)(—ba丿3 -10 -n i-3"i巾-1 'A''1、1 - A .B .C .14 D .33丿I 13丿G 1丿I-1 0 丿设矩阵A=-2A .所有2阶子式都不为零B .所有 2阶子式都为零C .所有3阶子式都不为零D .存在一个3阶子式不为零7 .设A 为mxn 矩阵,齐次线性方程组Ax=0有非零解的充分必要条件是A . A 的列向量组线性相关B . A 的列向量组线性无关C . A 的行向量组线性相关D . A 的行向量组线性无关则对于任(A-A T )T 二A T -(A T )T 二 A T — A = -(A-A T ),所以 A - A T 为反对称矩阵.A.)矩阵4 .3的逆矩阵是(1 -1精品文档C . (1,0,2)T +k (0,1,-1)TD . (1,0,2)T +k (2,-1,5)T为鳥 k(: - 一)=(1,0,2)T +k (0,1,-1)T .行成比例值为零.:-(1,0,2)T 是 Ax=b 的特解,:•---(0,1,-1)T 是 Ax=0 的基础解系,所以 Ax=b 的通解可表A . 4B . 3C . 2D . 1人-1-1 -1 3 九一3九一31 1 1| ZE — A|=-1 Z-1 -1=-1 九-1 -1 =仏—3) —1^—1 -1-1-1人—1-1-1 K-1-1 -1 丸—1I 1 11 1 11 1 1 1、■0 1 1 1、1 0 0 0、1 0 0 0 T 1 0 0 0T 0 1 1 1 1 0 0 00 0 0 00 0 0 00 0 0丿e 0 0 °」<00 0丿 C . B . 3 2,秩为2. A 二10小题,每小题(本大题共1、1的非零特征值为(19 .矩阵A= =(九一3)-3),非零特征值为 ■ =3 .10. 4元二次型 f (X 1,X 2,X 3,X 4)-2x 1x 2 - 2x 1x 3 - 2x 1x 4 的秩为共20分)二、填空题 11 .若 a i b i -0,i =1,2,3,则行列式a 1b 1 a 2b 1a 3b 1 a 1b 2 a 2b 2&3匕ag a 2b 3 &3匕12•设矩阵A=则行列式 |AT A|=__4__. |A TA 円 A T ||A 冃 A| 2*2)2 =4 .13.若齐次线性方程组811X 1 ' 812X 2 ' 813X 3 — 072^+822X2+823X 3=0有非零解,则其系数行列式的值为 031x 1+a 32x 2 +a 33x3 =°14.设矩阵A=10,矩阵B=A —E ,则矩阵B 的秩r (B )= 1」15 .向量空间 V={ X=(X 1,X 2,0)|X 1,X 2为实数}的维数为__2__ .16•设向量 a =(1,2,3) , P =(3,2,1),则向量 J B 的内积(a ,B )= _10_ 17 •设A 是4X 3矩阵,若齐次线性方程组 Ax=0只有零解,则矩阵 A 的秩18 .已知某个3元非齐次线性方程组 Ax=b 的增广矩阵A 经初等行变换化为:广0 B=A —E = 0 <0 0 1 ?1 0 , r(B)=2.0 0』r(A)= __3_-2-1,若a(a -1) 方程组无解,则 a 的取值为_0_.a =0时,r(A) =2 ,r(A) =3 .19 .设3元实二次型 f (X 1 , X 2 , X 3 )的秩为3,正惯性指数为2,则此二次型的规范形是 2-y 3.秩r =3,正惯性指数k =2,则负惯性指数r -k =3-2 =1 '1120.设矩阵A= 12 —a e 00、0为正定矩阵,则a 的取值范围是 .3丿 —-1 =1 0,-212 —a1 02 — a 0 =3(1 -a)>0 二 av1 .3三、计算题(本大题共 6小题,每小题9分,共54 分)123 23 321 .计算3阶行列式 249 49 9367 677123 23 3解: 249 49 9 =367 67 7「1 0 1 1 0 0『11 1 00 '「10 1 1 0 0210 0 1 0 T 01 -2 -2 1 0 T 0 1 -2 -2 1 0 L3 2 -5 0 0 h<0 2 -2 3 0 h27-2 b'20 2 2 00、'2 0 0-5 2 -1、 1 0 0 —5/2 1-1/2"T 0 1-2 -2 1 0 T 0 1 0 5 -1 1 T 0 1 0 5 -1 127-2 1」Q 0 27-21」0 1 7/2 -1 1/2丿100 20 3 200 40 9 =0 .300 60 71 022. 设A=-3 2 -5求A ,解:解: ■ -1I 入E — A|=-2-2咒T -(咒_^1) ―'4= ■ $ - 2咒―3 = '_1)^ ―3),特征值,1 = -1 ,对于‘1 =「1,解齐次线性方程组(E - A )x =0 :足一A =「2 一2}]1* ,1—2 -2丿 e 0 丿,X"| =_X 2X 2 =X2'基础解系为单位化为二k 1(-1,1,0,0,0)T k 2(-1,0,-1,0,1)T •25•设矩阵A 」1 2求正交矩阵P ,使P’AP 为对角矩阵.€ 1丿广_5/2 1 —1/2 A 」= 5 -1 1 7/2-11/223•设向量组:1(1,一1,2,1)丁 , :- 2(2,一2,4,一2)丁 , : 3(1)求向量组的一个极大线性无关组;(2)将其余向量表为该极大线性无关组的线性组合.<12 3 0、「1 23 0、 -1 -2 03T0 0 332460 0 0 0 0-2 -1 -4>e-4-4 一4丿1 2 3 0、巾 2 3 0、广1 2 0 -3"1广10 0 -3"0 -4 -4 -4T11 1T0 1 0 0 T0 1 00 0 0 3 30 0 1 1 0 0 110 0 1 1e 0丿1° 0 0 0丿1° 0 0」<0 0 0丿24 •求齐次线性方程组X 1 x 2X 1 X 2 - X 3X 3 X 5 =0=0的基础解系及通解.=01 1 0 0 1、1 10 0 1、1 10 0 1、 解:A = 1 1 -1 0 0 T0 0 -1 0 -1 T 0 0 -1 0 -1e 011 b<0 0 1 11>1。

(2008—2013)自考全国卷高等数学(一)试题及部分答案大全(1)

(2008—2013)自考全国卷高等数学(一)试题及部分答案大全(1)

全国2008年1月高等教育自学考试高等数学(一)试题课程代码:00020一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.下列区间中,函数f (x)= ln (5x+1)为有界的区间是( C )A.(-1,51)B.(-51,5)C.(0,51) D.(51,+∞) 2.设函数g (x)在x = a 连续而f (x) = (x-a)g(x),则'f (a) =( D ) A.0 B.g '(a) C.f (a)D.g (a)3.设函数f (x)定义在开区间I上,∈0x I ,且点(x 0, f (x 0) )是曲线y= f (x)的拐点,则必有( B ) A.在点(x 0,f (x 0))两侧,曲线y=f (x)均为凹弧或均为凸弧. B.当x<x 0时,曲线y=f (x)是凹弧(或凸弧), 则x>x 0时,曲线y=f (x)是凸弧(或凹弧). C.x<x 0时,f (x)<f(x 0) 而x>x 0时,f(x)>f(x 0). D.x<x 0时,f (x)>f(x 0) 而x>x 0时,f(x)<f(x 0).4.设某商品的需求函数为D(P)=475-10P-P 2,则当P = 5时的需求价格弹性为( A ) A. B. C.100 D.-1005.无穷限积分⎰+∞xe -x dx =( B )21 D.21 二、填空题(本大题共10小题,每小题3分,共30分) 请在每小题的空格中填上正确答案。

错填、不填均无分。

y =x1x1-+的定义域是___________. 0lim→h h3x )h x (33-+=___________. 0x lim →2xx2cos 1-=___________. 9.已知某商品的成本函数为C(q )=20 -10q+q 2(万元),则q =15 时的边际成本为___________.10.抛物线y = x 2上点(2,4)处的切线方程是___________.⎰=+)x 1(x dx___________.331xx dx +⎰=___________.xydx+2x 1-dy = 0的通解是___________. 14.设z = arctan (xy),则xz∂∂=___________. 15.dx⎰1⎰+122x xxydy=___________.三、计算题(一)(本大题共5小题,每小题5分,共25分) 16.设y = xarctanx-ln 2x 1+,求y ''(1) 17.求极限x cos 1120x )x 1(lim -→+⎰dx xx ln19.计算定积分I=⎰π20( sin x -sin 3x )dx20.设z = z (x,y)是由方程x 2-z 2+lnzy=0确定的函数,求dz 四、计算题(二)(本大题共3小题,每小题7分,共21分) y = x 2x ,求y '' I=dx x21x21210⎰+- 23.计算二重积分I =⎰⎰σD22d y x ,其中D 是由直线x = 2,y = x 和双曲线xy = 1围城的区域 . 五、应用题(本大题共9分)24.求内接于半径为R 的半圆而周长最大的矩形的各边边长. 六、证明题(本大题共5分)25.证明:当函数y = f (x)在点 x 0 可微,则f ( x )一定在点x 0可导.全国2008年7月高等教育自学考试高等数学(一)试题课程代码:00020一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

2008年1月浙江自学考试试题微分几何试卷

2008年1月浙江自学考试试题微分几何试卷

1 浙江省2008年1月高等教育自学考试微分几何试题课程代码:10022一、判断题(本大题共6小题,每小题2分,共12分)判断下列各题,正确的在题后括号内打“√”,错的打“×”。

1.空间曲线的曲率与挠率完全确定了空间曲线的位置.( )2.曲线r =r (s)为一般螺线的充要条件为(r r ,r,)=0.( ) 3.曲面在任一点有且仅有二个主方向.( )4.曲面上的曲纹坐标网为曲率线网的充要条件为F =M =0.( )5.曲面上抛物点对应的杜邦指标线是一对平行直线.( )6.曲面上的曲线为曲率线的充要条件为沿此曲线的法线组成一可展曲面.( )二、填空题(本大题共6小题,每小题3分,共18分)请在每小题的空格中填上正确答案。

错填、不填均无分。

1.向量函数r (t)具有固定方向的充要条件是___________.2.与主法线垂直的平面称为___________.3.曲面上的直线一定是测地线,也是___________.4.可展曲面的高斯曲率___________.5.曲面三个基本形式之间有关系式___________.6.曲面上圆点的第一、第二类基本量满足关系___________(L 、M 、N 不全为零).三、完成下列各题(本大题共6小题,每小题5分,共30分)1.求曲线r ={t t t 2,,323}的弧长. 2.证明曲线r {a sin 2t ,2a sin 2t ,a cos t }=的法平面过坐标原点. 3.证明曲面r ={u,v ,sin u +cos(u +v )}上任意点都是正则点.4.求椭圆柱面r ={a cos u , b sin u , v }的切平面方程.5.判断I =(u 2+1)du 2-2(u +v )dudv +(v 2+1)dv 2能不能作为曲面的第一基本形式,给出理由.6.证明直纹面r ={u cos v ,u sin v ,au +bv }(b ≠0)不是可展曲面.四、完成下列各题(本大题共4小题,每小题10分,共40分)1.求圆柱螺线r (t)={a cos t , a sin t ,bt }的曲率与挠率.2 2.设曲线(C):r =r (s),k ≠0,求向量w (s),使得w w w ⨯=⨯=⨯=γγββαα,,.3.求曲面r ={u cos v ,u sin v , u 2}的第二基本形式.4.求环面r ={(b +a sin u )cos v ,(b +a sin u )sin v , a cos u }(0≤u ≤2π,0≤v ≤2π)的第一基本量及其曲面面积.。

《近世代数》模拟试题1与答案

《近世代数》模拟试题1与答案

近世代数模拟试题一.单项选择题(每题5分,共25分)1、在整数加群(Z,+)中,下列那个是单位元().A. 0B. 1C.-1D. 1/n,n 是整数2、下列说法不正确的是().A . G 只包含一个元g,乘法是gg= g。

G 对这个乘法来说作成一个群;B . G 是全体整数的集合,G 对普通加法来说作成一个群;C . G 是全体有理数的集合,G 对普通加法来说作成一个群;D. G 是全体自然数的集合,G 对普通加法来说作成一个群.3. 如果集合M 的一个关系是等价关系,则不一定具备的是().A . 反身性 B.对称性 C.传递性 D. 封闭性4. 对整数加群Z 来说,下列不正确的是().A.Z 没有生成元 .B. 1 是其生成元 .C.-1 是其生成元 .D.Z 是无限循环群 .5.下列叙述正确的是()。

A.群 G 是指一个集合 .B.环 R 是指一个集合 .C.群 G 是指一个非空集合和一个代数运算,满足结合律,并且单位元,逆元存在 .D.环 R 是指一个非空集合和一个代数运算,满足结合律,并且单位元,逆元存在 .二. 计算题 (每题 10 分,共 30 分)1.设 G 是由有理数域上全体 2 阶满秩方阵对方阵普通乘法作成1213的群,试求中 G 中下列各个元素 c, d0,cd ,011的阶 .2.试求出三次对称群S3(1), (12), (13), (23),(123),(132)的所有子群 .3.若 e是环 R 的惟一左单位元,那么 e 是 R 的单位元吗?若是,请给予证明 .三. 证明题(第1小题 10分,第 2小题 15分,第 3小题 20分,共45 分).1.证明 : 在群中只有单位元满足方程x2x.2.设G是正有理数乘群,G是整数加群.证明:: 2n b na是群 G 到G的一个满同态,其中a, b 是整数,而 (ab,2) 1.3.设S是环R的一个子环.证明:如果R与S都有单位元,但不相等,则 S 的单位元必为R的一个零因子.近世代数模拟试题答案2008 年 11 月一、单项选择题 (每题 5分,共 25 分)1.A2. D3.D4.A 5 . C二.计算题(每题10分,共30分)1.解:易知 c 的阶无限,(3 分)d 的阶为 2.(3 分)但是1 1cd,01的阶有限,是 2.2.解: S3的以下六个子集(2 分)(2 分)H1(1) , H2(1),(12) ,H 3 (1),(13) ,H 4(1),(23) ,H 5 (1),(123),(132) , H 6 S3(7 分)对置换乘法都是封闭的,因此都是S3的子集.(3 分)3.解: e是R的单位元。

近世代数试题库

近世代数试题库

近世代数试题库近世代数一、单项选择题a、{1,2,3,4}b、{2,3,6,7}c、{2,3}d、{1,2,3,5,6,7}答案:c2、循环群与交换群关系正确的是()1、若a={1,2,3,5},b={2,3,6,7},则a?b=()a、循环群是交换群b、交换群是循环群c、循环群不一定是交换群d、以上都不对答案:a3、以下命题恰当的就是()a、n次对换群sn的阶为n!b、整环一定是域c、交换环一定是域d、以上都不对答案:a4、关于标架的命题中恰当的就是()设h就是g的子群,那么a、b、c、d、对于?ah,bh,有ah?bh??或ah?bhah?h?a?hah?bh?a?1b?h以上都对答案:d5、设a=r(实数域),b=r+(正实数域)f:a→10aa?a则f是从a到b的()a、单射b、单射c、一一映射d、既非单射也非满射答案:d16、有限群中的每一个元素的阶都()a、有限b、无限c、为零d、为1答案:a7、整环(域)的特征为()a、素数b、无限c、有限d、或素数或无限答案:d8、若s就是半群,则()a、任意a,b,c?s,都有a(bc)=(ab)cb、任意a,b?s,都有ab=bac、必有单位元d、任何元素必存在逆元答案:a9、在整环z中,6的真因子就是()a、?1,?6b、?2,?3c、?1,?2d、?3,?6答案:b10、偶数环的单位元个数为()a、0个b、1个c、2个d、无数个答案:a11、设a1,a2,?,an和d都不为空集合,而f就是a1?a2an至d的一个态射,那么()a、集合a1,a2,?,an,d中两两都不相同;b、a1,a2,?,an的次序不能调换;c、a1?a2an中相同的元对应的象必不相同;d、一个元?a1,a2,?,an?的象可以不唯一。

2答案:b12、指出下列那些运算是二元运算()a、在整数集z上,a?b?a?b;abb、在有理数集q上,a?b?ab;c、在也已实数集r?上,a?b?alnb;d、在子集?n?zn?0?上,a?b?a?b。

08年真题

08年真题

2008年1、机构的自由度就是构件的自由度。

( )2、复合铰链与移动副无关。

( )3、曲柄摇杆机构的行程速比系数K 不可能等于1。

( )4、铰链四杆机构中,若存在曲柄,其曲柄一定是最短杆。

( )5、曲柄滑块机构一定具有急回运动性质。

( )6、平底直动从动件凸轮机构,其压力角为90°。

( )7、凸轮机构中,基圆半径越小,则压力角越大。

( )8、凡是有滚子的地方都存在局部自由度。

( )9、同一模数和同一压力角,但不同齿数的两个,可以使用一把齿轮刀具进行齿轮加工。

( ) 10、圆锥齿轮的当量齿数为δ3VCOS Z Z =。

( )11、设计V 带传动时,适当增大带轮直径是减少带根数的措施之一。

( ) 12、为了提高滚子链传动的平稳性,设计时通常将链条节数取为偶数,而将链轮齿数取为奇数。

( ) 13、设计圆柱齿轮传动时,通常使小齿轮的齿宽略大于大齿轮的齿宽,主要目的是为了提高小齿轮的强度。

( )14螺纹联接中,有时在一个螺栓上拧上两个螺母,目的是为了增加受载螺纹的圈数,有利于提高螺栓的强度。

( )15、工作面磨损不是普通平键联接的主要失效形式。

( ) 16、万向联轴器既能用于两轴线有较大角位移的场合,也能用于有较大径向位移的场合。

( ) 17、滚柱式定向离合器只能单方向传递转矩,且从动端的转速可超过主动端的转速。

( )18、现有A 、B 两个圆柱形螺旋弹簧,A 弹簧的中径D 2大于B 弹簧的,其他条件相同,则在相同的外载F 作用下B 弹簧的变形大一些。

( )1、试计算图示(注意:若有复合铰链、局部自由度或虚约束,必须明确指出;必须先列出自由度的计算公式,再代入数值进行计算)。

2、图示为凸轮机构从动件的速度线图,试画出加速度线图,并指出何处发生刚性冲击?又何处发生柔性冲击?3、如图所示的曲柄滑块机构,请画出C 处的压力角α和传动角γ。

注:① 作图过程可不作文字说明,但应保留作图线; ② α、γ只需标出,不必度量。

05级《近世代数》考试卷

05级《近世代数》考试卷

浙江师范大学05级《近世代数》考试卷(2007~2008学年第二学期)考试类别考试使用学生数理学院数学05级初阳综合理科05级考试时间150分钟出卷时间2008年6月10日说明:考生应将全部答案写在答题纸上,否则作无效处理......................。

一、选择题( 每小题2分,共20分)1.设A={a,b,c},在下列运算表所给出的A的代数运算中,不满足结合律的是( )。

A BD2.设A,B是两个集合,且|A |=4,|B |=3,那么,| 2A×B |=( )。

A.12 B.48 C.64 D.813.设S是一个半群,那么,在下列关于半群S的叙述中,正确的是( )。

A.S必定有左单位元e L或者有右单位元e RB.S中消去律必定成立C.如果S是一个交换半群,那么,S一定存在单位元D.如果S至少有两个不同的左单位元,那么,S必定没有右单位元4.设G1,G2是两个循环群,且G1=(a),G2=(b),那么,下列结论成立的是( )。

A.必存在G1到G2的同态映射f B.必存在G1到G2的同态满射f C.必存在G1到G2的同态单射f D.必存在G1到G2的同构映射f5.设G是一个群,H1,H2是G的两个子群,在下列各式中一定成立的是( )。

A.H1H2=H1B.H1H2=H1∪H2C.H1H2=H1∩H2D.H1H1=H16.设G是一个有限群,H是G的一个不变子群,在下列叙述中,正确的是( )。

A.∀a,b∈G,有aba-1∈HB.∀a∈H,∀b∈G,有aba-1∈HC.∀a∈G,∀b∈H,有aba-1∈HD.如果aH=bH,则ab-1=b-1a7.设R是一个环,a,b∈R,n∈Z,在下列等式恒成立的是( )。

A.n(ab)=(na)b=a(nb) B.(a+b)2=a2+2ab+b2C.(ab)2=a2b2D.(a+b)(a-b)=a2-b28.设Z15是以15为模的剩余类环,那么,Z15的子环共有( ) 个。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
浙江省2008年1月高等教育自学考试
近世代数试题
课程代码:10025
一、单项选择题(本大题共5小题,每小题3分,共15分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设m 是一个正整数,∀a ∈Z,作带余除法:
a=mq+r,0≤r<m,规定:f(a)=r.则f 是Z 的( ) A.满变换
B.单变换
C.一一变换
D.既不是满变换也不是单变换
2.有理数集Q 上的代数运算b a =b 3( )
A.既适合结合律又适合交换律
B.适合结合律但不适合交换律
C.不适合结合律但适合交换律
D.既不适合结合律又不适合交换律 3.剩余类加群Z 8的子群有( )
A.4个
B.5个
C.6个
D.7个 4.在3次对称群S 3中可以与(132)交换的所有元素为( )
A.(1),(132)
B.(12),(13),(23)
C.(1),(123),(132)
D.S 3中的所有元素
5.M 2(R)=⎪⎭
⎪⎬⎫⎪⎩⎪⎨⎧∈⎪⎪⎭⎫ ⎝⎛为实数域R ,R b ,a 0b 0a 按矩阵的加法和乘法构成R 上的二阶方阵环,这个方阵环是( )
A.有单位元的交换环
B.无单位元的非交换环
C.无单位元的交换环
D.有单位元的非交换环
二、填空题(本大题共10小题,每小题3分,共30分)
请在每小题的空格中填上正确答案。

错填、不填均无分。

6.设A={a,b,c,d,e,f},则A 的一一变换共有________个.
7.在非零实数乘法群R*中,阶为2的元有________个.
8.在4次对称群S 4中,(132)2(1234)-1=________.
9.模10的剩余类加群Z 10有________个生成元.
10.模P (素数)的剩余类环Zp 有________个可逆元.
2 11.模9的剩余类环Z 9的零因子为________.
12.设Z [x ]是整系数多项式环,则Z [x ]的理想(3,x)=________.
13.主理想环与欧氏环的关系是________.
14.在5,2i+1,π中,________是有理数域Q 上的代数元. 15.21+在有理数域Q 上的极小多项式是________.
三、解答题(本大题共3小题,第16小题10分,第17小题14分,第18小题6分,共30分)
16.设M 是一个非空集合,2M 是M 的幂集(M 的子集的全体称为M 的幂集),问2M 关于集合的交∩是否构成群?试说明理由.
17.找出模20的剩余类环Z 20的所有子环.并说明这些子环是否是Z 20的理想,为什么?
18.Z 3={[0],[1],[2]},找出加群Z 3的所有自同构,再找出域Z 3的所有自同构.
四、证明题(本大题共3小题,第19小题6分,第20小题9分,第21小题10分,共25分)
19.设A={平面上所有直线},给定关系~:l 1~l 2⇔l 1∥l 2或l 1=l 2.
证明:关系~是A 元间的等价关系.
20.假定G 是一个循环群,N 是G 的一个子群,证明:G/N 也是循环群.
21.设R=⎭⎬⎫⎩⎨⎧∈⎪⎪⎭⎫ ⎝⎛Z b ,a b 0a 0关于矩阵的加法和乘法构成一个环,I=⎭
⎬⎫⎩⎨⎧∈⎪⎪⎭⎫ ⎝⎛Z x 00x 0, 证明:I 是R 的理想,问商环R/I 由哪些元素组成?。

相关文档
最新文档