基本不等式教材分析

合集下载

基本不等式说课稿

基本不等式说课稿

基本不等式说课稿学习必备欢迎下载一. 教材分析1、教材地位和作用本节是选自人教社普通高中课程实验标准数学(必修5)《不等式》一章的内容,是在学完不等式性质的基础上对不等式的进一步研究.同时也是为了以后学习(选修4―5)《不等式选讲》中的几种重要不等式,以及不等式的证明作铺垫,起着承上启下的作用。

本节内容具有变通灵活性、应用广泛性、条件约束性等特点,所以本节课可以培养学生应用数学知识灵活解决实际问题的能力,是学数学用数学的好素材。

同时本节知识又渗透了数形结合、化归等重要数学思想,所以有利于培养学生良好的思维品质。

“基本不等式”在不等式的证明和求最值过程中有着广泛的应用。

求最值是高考的热点。

它在科学研究、经济管理、工程设计上都有广泛的作用。

2、教学目标 A.知识目标:学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件.B.能力目标:通过实例探究基本不等式;C.情感目标:通过本节的学习,体会数学来源于生活,提高学习数学的兴趣3、教学重点、难点: a?b重点:应用数形结合的思想理解不等式,并从不同角度探索不等式ab?的证明过程;2a?b难点:用基本不等式求最大最小值,基本不等式ab?等号成立条件24、教材处理本节分为二个课时进行教学.第一课时讲解重要不等式a2?b2?2ab和基本不等式a?b(a?0,b?0)及它们的几何解释,掌握应用基本不等式解决某些数学问题.第二课时讲解2利用基本不等式:ab?a?b(a?0,b?0)来解决实际问题.2ab?二.教法分析 1、教学方法本节内容从实际问题出发,引导学生通过实验、观察、归纳、抽象、概括,数学地提出、分析和解决问题。

这样安排是为了体现数学知识的产生与发展过程,体现数学的应用价值。

新课标中对知识的发生的过程提出了较高的要求,多次使用了“经历”、“感受”、“探索”等情感,态度与价值观要求行为动词,重视学生对问题的探究能力。

高中数学基本不等式教案设计(优秀3篇)

高中数学基本不等式教案设计(优秀3篇)

基本不等式是主要应用于求某些函数的最值及证明的不等式。

其表述为:两个正实数的算术平均数大于或等于它们的几何平均数。

这次白话文为您整理了高中数学基本不等式教案设计(优秀3篇),如果能帮助到您,小编的一切努力都是值得的。

高中数学教学设计篇一教学目标1、明确等差数列的定义。

2、掌握等差数列的通项公式,会解决知道中的三个,求另外一个的问题3、培养学生观察、归纳能力。

教学重点1、等差数列的概念;2、等差数列的通项公式教学难点等差数列“等差”特点的理解、把握和应用教具准备投影片1张教学过程(I)复习回顾师:上两节课我们共同学习了数列的定义及给出数列的两种方法通项公式和递推公式。

这两个公式从不同的角度反映数列的特点,下面看一些例子。

(放投影片)(Ⅱ)讲授新课师:看这些数列有什么共同的特点?1,2,3,4,5,6;①10,8,6,4,2,…;②生:积极思考,找上述数列共同特点。

对于数列①(1≤n≤6);(2≤n≤6)对于数列②—2n(n≥1)(n≥2)对于数列③(n≥1)(n≥2)共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。

师:也就是说,这些数列均具有相邻两项之差“相等”的特点。

具有这种特点的数列,我们把它叫做等差数。

一、定义:等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。

如:上述3个数列都是等差数列,它们的公差依次是1,—2……二、等差数列的通项公式师:等差数列定义是由一数列相邻两项之间关系而得。

若一等差数列的首项是,公差是d,则据其定义可得:若将这n—1个等式相加,则可得:即:即:即:……由此可得:师:看来,若已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项。

如数列①(1≤n≤6)数列②:(n≥1)数列③:(n≥1)由上述关系还可得:即:则:=如:三、例题讲解例1:(1)求等差数列8,5,2…的第20项(2)—401是不是等差数列—5,—9,—13…的项?如果是,是第几项?解:(1)由n=20,得(2)由得数列通项公式为:由题意可知,本题是要回答是否存在正整数n,使得—401=—5—4(n—1)成立解之得n=100,即—401是这个数列的第100项。

高中数学_基本不等式(第一课时)教学设计学情分析教材分析课后反思

高中数学_基本不等式(第一课时)教学设计学情分析教材分析课后反思

《基本不等式》教学设计一、教学目标1.知识与技能:了解基本不等式的几何背景,探索基本不等式的证明过程,会用基本不等式解决简单最大(小)值问题。

2.过程与方法:进一步让学生探究不等式的代数证明,加深对基本不等式的理解和认识,提高学生逻辑推理的能力和严谨的思维方式。

3.情感态度与价值观:培养学生观察问题、分析问题和解决问题的能力,培养学生形成数形结合的思想意识。

二、教学重难点1.教学重点:应用数形结合的思想理解基本不等式,并从不同角度探索基本不等式的证明过程,基本不等式在实际问题中的应用。

2.教学难点:用基本不等式求最大值和最小值。

三、教材分析最新版教材之所以把“基本不等式”前置是经过了学习的重要性与可能性两方面的综合考量。

相比旧教材,“基本不等式”的教材地位与教学要求都发生的变化,由于“基本不等式”本身内涵非常丰富,其学习过程不可能一蹴而就,“反复认知,螺旋上升”才是课堂教学的有效策略。

四、学情分析本节课针对的是高一年级学生,知识上,刚系统学完了不等式性质,一元二次不等式,在初中阶段,也了解了数学家赵爽“弦图”推出勾股定理,圆的垂径定理,算数平均数、几何平均数。

方法上,能够运用数形结合和化归的思想提炼基本不等式,阐述基本不等式的几何意义。

能力上,运用作差法,综合法能从数量关系上进行逻辑推理验证基本不等式。

五、教学方法1、借助“折纸游戏”,从特殊到一般的猜想,发现基本不等式(数学抽象、直观想象)。

2、探索基本不等式的证明过程,会用作差比较法、综合法,分析法,证明基本不等式(逻辑推理、数学运算、直观想象)。

3、从不同角度理解基本不等式(直观想象)。

4、感知与基本不等式相近一些不等式的证明(逻辑推理、数学运算)。

学生:消去了教师:得到定值学生:2教师:当且仅当学生:x x 1=时等号成立 教师:这时我们得到的是学生:最小值2教师:好的,我们类比这道例题完成三个变式,这里请三位同学上来板书变式1:已知0>x ,求x x 12+的最小值. 变式2:已知0<x ,求x x 1+的最大值. 变式3:已知1>x ,求11-+x x 的最小值. 教师:我们看变式3,如果4>x 时,最值还是这个答案吗 学生:不是教师:原因是什么学生:当且仅当的相等教师:所以我们运用基本不等式求最值的条件可以总结为 学生:一正、二定、三相等教师:观察我们例1和变式,我们发现在利用基本不等式后两正数之积为定值,这时我们能求出两正数之和的最小值,那么我们是否可以得到结论:能力,灵活运用已学知识,体会证明的答题过程《基本不等式》学情分析本节课针对的是高一年级学生,知识上,刚系统学完了不等式性质,一元二次不等式,在初中阶段,也了解了数学家赵爽“弦图”推出勾股定理,圆的垂径定理,算数平均数、几何平均数。

高中数学_基本不等式教学设计学情分析教材分析课后反思

高中数学_基本不等式教学设计学情分析教材分析课后反思

⾼中数学_基本不等式教学设计学情分析教材分析课后反思教学设计本节课⾸先运⽤2002年国际数学家⼤会会标引⼊,让学⽣动⼿拼图,能让学⽣进⼀步体会中国优秀的数学传统⽂化,感受数学与⽣活的联系,激发学⽣的学习兴趣.运⽤此图标能较容易的观察出⾯积之间的关系,引⼊基本不等式很直观.随后设置⼀系列的问题.学⽣⽴⾜问题,围绕⽬标,借助教材先独⽴思考,归纳概括,尝试知识建构.这些问题,让学⽣直接回答和⿊板板演,提⾼学⽣的数学表达和交流能⼒.通过⼏何图形中⾯积关系获得基本不等式后,让学⽣及时记录,强化记忆.基本不等式的证明过程以填空形式出现,学⽣能够独⽴完成,并能加深学⽣对基本不等式的理解;此种证明⽅法是“分析法”,在选修教材的《推理与证明》⼀章中会重点讲解,此处有必要让学⽣初步了解.由于⼏何直观能启迪思路,帮助理解,因此,借助⼏何直观学习和理解数学,是数学学习中的重要⽅⾯.引导学⽣得出基本不等式的⼏何解释.这样就从三个不同⾓度引导学⽣归纳并认识基本不等式,加深对基本不等式的理解,渗透数形结合的数学思想.课堂练习的设置,可以巩固基本不等式,让学⽣熟悉公式,并学会应⽤.学⽣分组讨论、纠正、争辩,合作交流.引导学⽣体会基本不等式应⽤.强调基本不等式成⽴的前提条件“正”,并为下⼀步利⽤基本不等式求最值奠定基础.课本上的例1,,多数学⽣都会仿照课本上的思路加以解决,学⽣能够加深对基本不等式的理解.并强调解题步骤的完整性,使学⽣体会利⽤基本不等式求最值的条件“正”、“定”和“等”.接着利⽤练习巩固学⽣所学的新知识,将学⽣的思维向外延伸,激发学⽣的发散思维.达到熟练使⽤基本不等式的⽬的,进⼀步巩固利⽤不等式求最值的关键点:“正”“定”“等”.最后让学⽣畅所欲⾔,⾃⼰归纳总结⼀堂课的收获.通过作业,巩固本堂所学知识.总之,本节课的教学通过设问提出问题,引导学⽣发现问题,经历思考交流概括归纳概念,由问题的提出进⼀步加深理解;这⼀过程能够培养学⽣发现问题、分析问题、解决问题的能⼒.学情分析在认知上,学⽣已经掌握了不等式的基本性质,并能够根据不等式的性质进⾏数、式的⼤⼩⽐较,也具备了⼀定的平⾯⼏何的基本知识. 如何让学⽣再认识“基本”⼆字,是本节学习的前提. 事实上,该不等式反映了实数的两种基本运算(即加法和乘法)所引出的⼤⼩变化,这⼀本质不仅反映在其代数结构上,⽽且也有⼏何意义,由此⽽⽣发出的问题在训练学⽣的代数推理能⼒和⼏何直观能⼒上都发挥了良好的作⽤. 因此,必须从基本不等式的代数结构和⼏何意义两⽅⾯⼊⼿,才能让学⽣深刻理解它的本质.另外,在⽤基本不等式解决最值时,学⽣往往容易忽视基本不等式使⽤的前提条件和等号成⽴的条件,因此,在教学过程中,应借助辨误的⽅式让学⽣充分领会基本不等式成⽴的三个限制条件(⼀正⼆定三相等)在解决最值问题中的作⽤.通过对新课程标准的解读,教材内容的解析,并结合学⽣的实际情况,我认为结果固然重要,但数学学习过程更重要,所以在探究本节课的重点,即进⾏基本不等式的推导时,更加注重了培养学⽣的数学思维和探究能⼒。

高中数学_不等式复习(基础篇)教学设计学情分析教材分析课后反思

高中数学_不等式复习(基础篇)教学设计学情分析教材分析课后反思

高考专题复习之六――不等式(基础篇)学情分析一、整体情况1、所教学生为文科实验班,共34人,是高三新成立的班,这些学生在高一、高二时都分布在平行班中,高一、高二时学生在班内相对较好。

2、数学数学基础相对较好,但数学学习习惯不够规范,具体表现在:书写不规范、思维不够清晰,缺乏思维的深度、数学运算能力不强、在数学问题中对数学知识和方法的提取与转化能力弱、缺少做题的灵活性个性品质需要再进一步提高二、本部分知识掌握情况对于本部分知识,学生在新授课和一轮复习时对一些基础题型已经能够较熟练地处理,再加之新授课中对基本题型如不等式性质的运用、解一元二次不等式等相关的单一的基本题型已经掌握较好,本节课的重点是通过对典型问题的解读分析,在思维上让学生再进一步提高,使学生能够站在更高的高度看待与不等式有关的问题,对知识点的辨认、提取、讨论、解决方面能够再上一个台阶。

三、教学目标知识1、进一步掌握不等式的性质2、掌握基本不等式的特征及运用条件3、掌握一元二次不等式与对应一元二次方程和一元二次函数的关系方法1、能较清晰地识别、辨认并能有针对性地处理与不等式有关的常见题型.2、能够较熟练地解一元二次不等式3、能够较熟练地运用基本不等式求最大(小)值4、初步掌握分类讨论的分类标准思想1、进一步提高分类整合、数形结合的能力2、通过观察、归纳、抽象等方式,培养学生求真求实的科学精神,体会数学的应用价值,提高学生的逻辑推理能力和学数学用数学的意识.四、教学策略与教学手段根据复习课的特点以及数学知识的特点,在课堂上主要采用以题促学、以题促思、学生在老师指导下进行互助合作的模式;在复习基本题型的同时突出复习重点、攻克思维难点,同时辅以多媒体演示,最大限度地提高教学效率。

高考专题复习之六:不等式(基础篇)效果分析对于本节课,我认为自己做到了以下几点:1、对所教学生的学习情况做了细致、全面的了解和分析;2、对所复习知识点在高考中的地位和作用做了全面的分析;3、对所选题目进行了精心的筛选,力争做到具有代表性,能反应高考考查的方向;4、对重点难点的突破做到了循序渐进;5、在课堂控制方面坚持以学生为主体充分挖掘学生的潜力;学生方面:1、对不等式部分有了更深刻的认识;2、对于不等式部分在高考中的地位和作用认识更到位;3、从思维层面上对不等式相关的综合题目有了一定的理性认识.专题复习之六――不等式(基础篇)教材分析一、考试大纲及考试说明的要求:1、不等关系了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.2、一元二次不等式(1)会从实际情境中抽象出一元二次不等式模型.(2)通过函数图像了解一元二次不等式与相应的二次函数、一元二次方程的联系.(3)会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.3、基本不等式:2a b +≥ (0,0)a b ≥≥ (1)了解基本不等式的证明过程.(2)会用基本不等式解决简单的最大(小)值问题.二、教材分析1、本部分教材是高中数学必修五中的内容,由于本部分知识即具有知识性、工具性的特点,但在整个数学知识体系中本部分有着举足轻重的作用。

高二数学《基本不等式》教案分析

高二数学《基本不等式》教案分析

高二数学《基本不等式》教案分析高二数学《基本不等式》教案分析一、教材分析【教材地位与作用】基本不等式又称为均值不等式,选自北京师范高校出版社一般中学课程标准试验教科书数学必修5第3章第3节内容。

教学对象为高二学生,本节课为第一课时,重在探讨基本不等式的证明与几何意义。

本节课是在系统的学习了不等关系和驾驭了不等式性质的基础上绽开的,作为重要的基本不等式之一,为后续进一步了解不等式的性质与运用,探讨最值问题奠定基础。

因此基本不等式在学问体系中起了承上启下的作用,同时在生活与生产实际中有着广泛的应用,它也是对学生进行情感价值观教化的好素材,所以基本不等式应重点探讨。

【教学目标】依据《新课程标准》对《不等式》学段的目标要求和学生的实际状况,特确定如下目标:学问与技能目标:理解驾驭基本不等式,理解算数平均数与几何平均数的概念,学会构造条件运用基本不等式;过程与方法目标:通过探究基本不等式,使学生体会学问的形成过程,培育分析、解决问题的实力;情感与看法目标:通过问题情境的设置,使学生相识到数学是从实际中来,培育学生用数学的眼光看世界,通过数学思维认知世界,从而培育学生擅长思索、勤于动手的良好品质。

【教学重难点】重点:理解驾驭基本不等式,能借助几何图形说明基本不等式的意义。

难点:利用基本不等式推导不等式.关键是对基本不等式的理解驾驭.二、教法分析本节课采纳视察——感知——抽象——归纳——探究;启发诱导、讲练结合的教学方法,以学生为主体,以基本不等式为主线,从实际问题动身,放手让学生探究思索。

利用多媒体协助教学,直观地反映了教学内容,使学生思维活动得以充分绽开,从而优化了教学过程,大大提高了课堂教学效率.三、学法指导新课改的精神在于以学生的发展为本,把学习的主动权还给学生,提倡主动主动,勇于探究的学习方法,因此,本课主要实行以自主探究与合作沟通的学习方式,通过让学生想一想,做一做,用一用,建构起自己的学问,使学生成为学习的主子。

基本不等式教学设计

基本不等式教学设计

《基本不等式》教学设计张中华教材:人教版《普通高中课程标准实验教科书•数学(A版)》必修5课题:3.4 基本不等式(第一课时)一、教材分析《基本不等式》是高中教材人教A版必修五第三章第三节的内容,是《不等式》这一章中继一元二次不等式、简单线性规划之后,从几何背景(赵爽的弦图)中抽离出的基本结论,是证明其他不等式成立的重要依据,也是求解最值问题的有力工具之一。

就本章的编写而言,教材讲究从直观性上学习,注重每个数学模型引领数学思想的教材编排暗线,并且都体现出遵循从几何背景入手,强调数形结合思想。

本节内容在此基本上渗透不等式的证明方法(比较法、综合法、分析法),并且会在后续学习时再次得到加强。

基本不等式的学时安排是3课时,它涉及基本不等式的推导教学和求解最值问题两大部分。

本节课是基本不等式教学的第一课时,其主要学习任务是通过赵爽弦图中面积的直观比较、抽象概括,提炼出不等式a 2+ b 2 > 2 ab (a, b G R)。

在此基础上,通过演绎替换、证明探究、数形结合及实际应用等四种不同的角度引导学生认识基本不等式。

其中基本不等式的证明是从代数、几何多方面展开,既有逻辑推理,又有直观的几何解释,使学生充分运用数形结合的思想方法,进一步培养其抽象概括能力和推理论证能力。

这就使得不等式的证明成为本节课的核心内容。

二、教学重难点教学重点:应用数形结合的思想理解基本不等式,并从不同角度探索基本不等式的证明过程。

教学难点:从不同角度探索基本不等式的证明,能利用基本不等式的模型求解函数最值。

三、教学目标《课程标准》对本节课的要求有以下两条:①探索并了解基本不等式的证明过程;②会用基本不等式解决简单的最值问题。

根据《课标》要求和本节教学内容,并考虑学生的接受能力,我将本节课的教学目标确定为:1、知识与能力目标:理解掌握基本不等式,并能运用基本不等式解决一些简单的求最值问题;理解算数平均数与几何平均数的概念,学会构造条件使用基本不等式;培养学生探究能力以及分析问题解决问题的能力。

基本不等式说课稿

基本不等式说课稿

基本不等式说课稿(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、工作计划、述职报告、演讲致辞、合同协议、策划方案、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work summaries, work plans, job reports, speeches, contract agreements, planning plans, rules and regulations, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!基本不等式说课稿基本不等式说课稿范文作为一无名无私奉献的教育工作者,常常要写一份优秀的说课稿,说课稿是进行说课准备的文稿,有着至关重要的作用。

基本不等式说课课件.ppt

基本不等式说课课件.ppt
3.情感与价值: 通过本节的学习,体会数学来源于生活,提
高学习数学的兴趣。
一、教材分析
(三)教学重难点
重点:创设代数与几何背景,应用数形结 合的思想证明基本不等式,从不同角度探索基 本不等式的证明过程。
重点突破: 动态的可以通过几何画板演示;静态 的通过会标、等腰直角三角形及圆的半径 和半弦的关系,进行证明。
若a,b∈R,那么a2+b2≥2ab 形的角度 数源自角度a>0,b>0
a2+b2-2ab =(a-b)2≥0
若a,b∈R,那么a2+b2≥2ab
(当且仅当a=b时,取“=”号)
形的角度
数的角度
当a=b时
a2+b2-2ab
a=b
=(a-b)2=0
探究二:先将两张正方形纸片沿它们的对角线折 成两个等腰直角三角形,再用这两个三角形拼接 构造出一个矩形(两边分别等于两个直角三角形 的直角边,多余部分折叠).假设两个正方形的 面积分别为和( a b),考察两个直角三角形的 面积与矩形的面积,你能发现一个不等式吗?
探究一:在这张“弦图”中 能找出一些相等关系和不等 关系吗?

a2 b2 2ab





a

b
a2 +b2
通过面积感知不等关系

几何画板展示
问题1: 它们有相等的情况吗?何时相等?
问题2:
当 a,b为任意实数时,上式还成立吗? 一般地,对于任意实数a、b,我们有
a2 b2 2ab
(二)教学手段
根据知识特点,引导引导讲解为主,多 媒体为辅进行教学。
三、学情分析
学生情况:学生们通过本章前两节的学习对不 等式有了初步的了解,学会运用不等式解决简 单的问题。但接触的不等式较为单一,灵活度 不够,学生在练习时运用困难,而基本不等式 相对更为灵活,但也为学生掌握设置了障碍。

高一数学必修第一册2019(A版)_《基本不等式》教材分析

高一数学必修第一册2019(A版)_《基本不等式》教材分析

2.2基本不等式一、本节知识结构框图二、重点、难点重点:基本不等式的定义、证明方法和几何解释,用基本不等式解决简单的最值问题.难点:基本不等式的几何解释,用基本不等式解决简单的最值问题.三、教科书编写意图及教学建议本节在前面研究不等式的性质的基础上,展开了对一种具体的不等式——基本(,0)2a b ab a b +的研究,研究基本不等式的定义、几何解释、证明方法与应用.基本不等式与学生在初中学过的乘法公式有类似的作用,乘法公式能够简化某些特殊形式的代数式的恒等变形,而基本不等式使解决满足一定条件的代数式的最值问题有路可循.1.基本不等式基本不等式可以通过许多有趣的方式建立起来,本节从不等式222a b ab +(上一节由第24届国际数学家大会的会标中抽象得出)说起.取这个不等式的特殊形式,即令a ,0b >,分别代替上式中的a ,b ,2a b ab +.基本不等式中等号成立的条件与不等式222a b ab +相同,教学中可以借助上一节的会标图形,帮助学生从直观上理解a 与b 是否相等与不等式222a b ab +取什么符号之间的关系. 接下来,教科书阐述了基本不等式的代数解释,这不仅有利于加深学生对基本不等式的理解,而且与学生已有的平均数概念建立了联系,便于学生记忆这个不等式.事实上,基本不等式就是均值不等式“链” ()121212·,,,0n n n n a a a a a a a a a n +++中的一环,而它之所以被称为“基本不等式”,主要是因为“它可以作为不等式论的基本定理,成为支撑其他许多非常重要结果的基石”,同时它也是解决许多最值问题的有力工具.2.基本不等式的证明基本不等式有许多证明方法,学生可能最先想到“作差法”,教科书介绍了两种:一种是上一节借助完全平方公式证明的基本不等式的变式;另一种是本节介绍的“分析法”,这也是一种利用不等式的性质进行证明的方法,这样编排不仅把基本不等式与初中学过的完全平方公式建立了联系,进一步研究了如何利用不等式性质进行证明,而且介绍了分析法,为学生高中阶段的推理和证明提供了更丰富的策略.分析法是一种“执果索因”的证明方法,即从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,能够用分析法证明的命题的证明过程必须具有推理的可逆性和推理结果的唯一性,基本不等式就具有这样的特点.分析法常用于证明已知条件与结论之间的联系不够明显、直接,证明中需要用哪些知识不太明确具体的情况.这时可以尝试从结论出发,结合已知条件,逐步反推,寻求使当前命题成立的充分条件. 2a b ab+出发,逐步利用不等式的性质推出能使它成立的充分条件,直至20这个显然成立的事实,从这个不等式中也更容易发现不等式中等号成立的条件.学生可能对分析法证明的格式和为什么可以这样证明难以理解,在证明过程中可能容易出现“充分条件不充分”的错误.教学中可以结合基本不等式的证明过程,对分析法的原理和过程进行充分的剖析,帮助学生通过典型案例理解分析法,掌握基本不等式的证明.3,基本不等式的几何解释 在证明了基本不等式后,教科书再次研究了基本不等式的几何背景.与从“赵爽弦图”中的相等关系和不等关系中抽象出基本不等式的变形形式不同的是,这一次是已知基本不等式,寻求它的几何解释,但无论是哪种呈现顺序,基本不等式的几何背景都直观地展示了基本不等式“从不等到相等”的变化过程.教科书设置这个环节的目的,是想让学生从建立过程、证明方法和几何解释多个角度认识基本不等式,从而加深对基本不等式的理解.这个几何解释可以简单地叙述为“圆的弦长的一半小于或等于圆的半径长,当且仅当弦过圆心时,二者相等”.2a b +与图中的几何元素建立起联系,从而将基本不等式与几何元素的大小关系之间联系起来.教师还可以借助信息技术,展示点C 在线段AB 上移动的过程,让学生观察线段CD 的长度与圆的半径长之间的动态关系,从而2a b +之间的关系随着a ,b 大小关系的变化而发生的变化,同时体会基本不等式中蕴含的“等式”与“不等式”的内在联系.4.基本不等式在解决问题中的应用本节共安排了4道基本不等式的应用问题,都是利用基本不等式求最值,例1和例2是在数学中的应用,例3和例4是在实际中的应用.在利用基本不等式解决问题之前,教师可以先让学生明确使用基本不等式的条件2a b ab +中,a ,b 只能是非负数;在222a b ab +中,a ,b 可以是任意实数),以及“当且仅当a b =时,等号成立”的两层含义(一是当a b =时,不等式取等号;二是不等式取等号时,必有a b =).例1是用基本不等式求代数式最小值问题中的最简情形.教科书在解决问题之前,先解释了求代数式最小值的含义,在本例之后,还强调了代数式的最小值必须是代数式能取到的值.本例的解答则从所求代数式与基本不等式在形式上的联系入手:1x x +是x 与1x的算术平均数的2倍,所以利用基本不等式可得当且仅当1x x =时,1x x+取得最小值2.教学中可以用“一正、二定、三相等”这种通俗易懂的语言帮助学生理解和记忆能应用基本不等式解决问题的特点.例2让学生用基本不等式证明两类最值问题.教科书设置例2的目的,一是在例1的基础上再给出一道直接利用基本不等式证明数学问题的例题;二是借此题的题干给出了利用基本不等式解决问题的两个数学模型:已知x ,y 都是正数,如果积xy等于定值P ,那么当x y =时,和x y +有最小值;如果和x y +等于定值S ,那么当x y =时,积xy 有最大值214S .根据这两个数学模型可知,有两类最值问题可以用基本不等式解决,即“两个正数的积为定值,当这两个数取什么值时,它们的和有最小值”和“两个正数的和为定值,当这两个数取什么值时,它们的积有最大值”,这就为解决例3,例4埋下了伏笔.此外,教科书在本课时的练习和习题安排了利用基本不等式求函数的最大值或最小值的变式练习,如第46页“练习”的第4题,习题2.2的第1题的第(1)小题,是通过变形构造两个正数的和为定值或积为定值的问题,教学中可以根据给定代数式的形式,结合基本不等式的使用条件,引导学生对代数式进行变形.对于这类问题,教科书有意控制了这种变式问题的难度,设置的问题都是通过简单变形就符合基本不等式应用条件的问题.教学中也要注意本部分内容的教学重点是“能用基本不等式解决简单的最大值或最小值问题”,不要刻意加大变形的难度.5,基本不等式的实际应用通过例2,教科书提出了用基本不等式解决问题的数学模型.接下来,教科书安排了两道例题,研究了如何应用基本不等式解决实际问题.对这两道例题的教学,要注意引导学生用基本不等式模型理解和识别实际问题中的数量关系,判断它们是否属于用基本不等式能够解决的两类最值问题,如果符合,就可以转化为基本不等式的数学模型解决.例如,例3的问题可以简化为:当矩形的面积为定值时,长与宽取什么值时周长最短;当矩形的周长为定值时,长与宽取什么值时面积最大,由于矩形的面积是两条邻边的积,周长是两条邻边的和的2倍,所以第(1)小题实际上是已知两个正数的积为定值,求当这两个数取什么值时,它们的和有最小值,可以用数学模型“如果正数x ,y 的积xy 等于定值P ,那么当x y =时,和x y +有最小值”解决;第(2)小题实际上是已知两个正数的和为定值,求当这两个数取什么值时,它们的积有最大值,可以转化为数学模型“如果正数x ,y 的和x y +等于定值S ,那么当x y =时,积xy 有最大值214S ”解决. 在例3之后,教科书设置了另一道求最值的问题(例4),本题的背景更加复杂,不容易将其归结为基本不等式模型.因此,对于像例4这样的问题的教学,要引导学生先将问题进行简化,再分析它符合什么数学模型.例4可以简化为“池底的边长取什么值时,水池的总造价最低”,若设池底的相邻两条边的边长分别为x m ,y m ,水池的总造价为z 元,则240 000720z x y =++(),这样求z 的最小值的问题,就转化为了求两个正数x ,y 的和的最小值的问题;而x ,y 的积为定值,于是本例实际上是已知两个正数的积为定值,求当这两个数取什么值时,它们的和有最小值,以及最小值是多少,可以转化为数学模型“如果正数x ,y 的积xy 等于定值P ,那么当x y =时,和x y +有最小值”解决.教科书在练习和习题2.2中编排了利用基本不等式解决实际问题的题目,这些题目按照由简单到复杂的顺序排列,除了“拓广探索”中的两题,其他题目的难度与例3,4相当,教师在进行本部分内容的教学时也要注意把握实际问题的难度,把重点放在用基本不等式数学模型解决实际问题的基本应用上.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《基本不等式》教材分析
人教版高中数学必修5第三章第4节《基本不等式:2b a ab +≤》,本节课重点探究了基本不等式的证明,并且将之应用于具体实际问题,是理论数学与应用数学结合的良好典范。

下面我们来分析一下本节教材。

一、 内容结构
(1) 通过课题揭示重点。

从课题可以很清楚的知道我们将要学习的内容以及重点,所有内容都是围绕这个基本不等式展开。

(2) 实践出真知。

以一个实际问题来探究其中所蕴涵的相等或不等关系,充分体现了新课标所要求的培养学生创新精神及数学应用的意识。

通过探究,学生很容易得到结论:一般地,对于任意实数a ,b ,我们有ab b a 222≥+,当且仅当b a =时,等号成立。

(3) 代换与证明。

通过代换思想,得到基本不等式2b a ab +≤,接着用分析法及数形结合法来证明基本不等式,体现了一题多解及证明不等式的基本方法。

这部分内容简单,学生基本可独立完成,对于培养学生的自学能力有积极作用。

(4) 课本提示概念。

在正文旁边有一个框图,说明了算术平均数与几何平均数的概念,由此可以总结出一条定理:一列正数的算术平均数不小于它的几何平均数。

这部分虽非重点,但对于拓展对基本不等式的认识是非常重要的,在教学中有必要提示一下。

(5) 实例揭示应用价值。

通过两个实例,体现了基本不等式在求最值时的价值,更进一步体现了“当且仅当b a =时,等号成立”这
一条件的重要性。

学生可以从中体会到“积定和最小”及“和定积最大”这两条基本的解题思路。

这两个例题使数学与生活不再那么遥远。

对于培养学生的数学应用意识功不可没。

(6)习题进一步巩固所学。

共有四道习题,第一道强调了“当且仅当b
a 时,等号成立”这一重要条件,是基本不等式的直接应用,难度较小;后面三道是基本不等式在实际生活中的应用,强调了数学与生活有着密切联系这一基本数学观。

二、地位与作用
《课标》对于这一节的要求:一是探索并了解基本不等式的证明过程;二是会用基本不等式解决简单的最大(小)值问题。

该教材内容很好的落实了这两点要求。

在前面的学习中,同学们已经基本掌握了一些常见不等式及不等式证明方法,本节内容一定程度上是前面学习的运用,也是后面系统学习不等式证明的基础。

基本不等式在证明不等式的过程中是一个很重要的桥梁,放缩法证明不等式会经常用到基本不等式。

另一方面,基本不等式作为求极值的的一种方法,经常运用于实际问题,而且是高考常考的知识点,通过基本不等式,常常可以将一些较为复杂的求极值的问题化为简单问题,在化归方法中起着重要的惩承接作用。

通过对这一节内容的学习,学生可以较为真切的体会到数形结合法的神奇之处,也加强了数学联系生活这一重要的数学观。

在学习过程中,要用心体会数学思想方法,为以后抽象数学思想方法做好铺垫作用。

三、教学目标
(1)知识与技能目标:掌握基本不等式及证明方法,会用基本不等式求最值。

(2)过程与方法目标:体会基本不等式应用的条件(一正二定三相等);体会基本不等式求最值问题解题策略的建构过程;体会数形结合法的实际应用。

(3)情感态度与价值观目标:通过对基本不等式证明过程的探索,强化学生的探索精神,加强学习数学的兴趣,并且让学生能够体会到一定的成就感,形成数学联系生活这一积极正确的数学观。

四、教学重、难点
(1)教学重点:基本不等式的证明方法以及基本不等式应用的条件。

(2)教学难点:基本不等式求最值问题解题策略的建构;数形结合思想方法的实际运用。

五、教学方式
本节课程难度不大,但地位却很重要,鉴于这种情况,运用探究式教学方法较为合理。

通过教师适当的引导,让学生逐步体会到数形结合法的神奇,并能正确的证明基本不等式,解决实际问题,总结出“一正二定三相等”这一基本条件。

最后教师总结运用基本不等式解决问题策略的建构。

学生在教师正确的指导下,能够对课程内容进行总结和梳理,将知识形成一个网络体系,并且能够运用基本不等式解决一些简单的实
际问题。

六、教学建议
(1)突出数形结合的思想方法
数学结合思想方法在高中数学学习中是一个非常重要的内容,教师应该经常提醒同学们意识到正在使用或即将使用的数学思想方法,在另一个高度去看待数学问题和解题过程。

(2)注重学生探索发现的过程
运用探究式教学,要信任学生有自己发现结论的能力,教师不能急于揭示结果,要给学生足够的发现时间和讨论时间,让学生体会到发现知识的成就感,进一步激发学生的学习兴趣。

在探索发现过程中学生出现的问题,教师应给予高度重视,要有针对性的提出犯错的原因及解决办法。

(3)前后联系,变式练习
在教学过程中,要联系前后知识,运用建构主义认识论指导教学。

要多多的进行变式练习,让学生体会到万变不离其宗的那个“宗”,最后能够总结出运用不等式解决问题的基本方法。

陕西师范大学
数学与信息科学学院
数学与应用数学二班
包晓文。

相关文档
最新文档