双星及三星模型
444核心素养培养双星三星模型——模型建构能力的培养
①各自所需的向心力由彼此间的万有引力提供,即
GmL12m2=m1ω21r1,GmL12m2=m2ω22r2
r1
②两颗星的周期及角速度都相同,即 T1=T2,ω1=ω2
③两颗星的半径与它们之间的距离关系为:r1+r2=L
(3)两颗星到圆心的距离 r1、r2 与星体质量成反比,即mm12=rr21。
双星问题提示: 两星间的万有引力分别给两星 提供做圆周运动的向心力,且 两星的角速度相等.
8
@《创新设计》
转到解析
目录
备选训练
2. 2015年4月,科学家通过欧航局天文望远镜在一个河外星系中,发现了一对相互环绕旋 转的超大质量双黑洞系统,如图所示。这也是天文学家首次在正常星系中发现超大质量 双黑洞。这对验证宇宙学与星系演化模型、广义相对论在极端条件下的适应性等都具有 十分重要的意义。我国今年底也将发射全球功能最强的暗物质探测卫星。若图中双黑洞 的质量分别为M1和M2,它们以两者连线上的某一点为圆心做匀速圆周运动。根据所学 知识,下列选项正确的是( )
n3 A. k2T
n3 B. k T
n2 C. k T
n D. kT
区分开星体间距与 轨道半径的不同
审题 1、此双星满足什么物理规 设疑 律?
2、双星质量改变后,原表达式要进行 哪些修改?
对 m 恒星:GMLm2 =m2Tπ2·r 对 M 恒星:GMLm2 =M2Tπ2(L-r)
2
@《创新设计》
L r2
目录
课堂互动
2.三星模型
(1)三颗星位于同一直线上,两颗环绕星围绕中央星在同一半径为 R 的圆形轨道上运行(如 图 7 甲所示)。其中一个环绕星由其余两颗星的引力提供向心力:GRm22+(G2Rm)2 2=ma
“双星”及“三星”问题
“双星”及“三星”问题宇宙中,因天体间的相互作用而呈现出诸如双星、三星及多星系统组成的自然天文现象,天体之间相互作用遵循万有引力的规律,他们的运动规律也同样遵循开普勒行星运动的三条基本规律。
现代实验观测表明,在天体运动中,将两颗彼此距离较近而绕同一点做圆周运动的行星称为双星模型。
而三星等多星模型则是指彼此相互依存和相互作用且围绕某一点作圆周运动的行星。
多星系统问题的求解方法仍然是建立万有引力方程和牛顿第二定律方程。
由于多星间的引力和运动情况特殊性,从而产生了很多有趣的天文现象。
一、“双星”问题:两颗质量可以相比的恒星相互绕着旋转的现象,叫双星。
双星问题是万有引力定律在天文学上的应用的一个重要内容,现就这类问题的处理作简要分析。
1.要明确双星中两颗子星做匀速圆周运动的向心力来源双星中两颗子星相互绕着旋转可看作匀速圆周运动,其向心力由两恒星间的万有引力提供。
由于力的作用是相互的,所以两子星做圆周运动的向心力大小是相等的,利用万有引力定律可以求得其大小。
2.要明确双星中两颗子星匀速圆周运动的运动参量的关系两子星绕着连线上的一点做圆周运动,所以它们的运动周期是相等的,角速度也是相等的,所以线速度与两子星的轨道半径成正比。
3.要明确两子星圆周运动的动力学关系。
设双星的两子星的质量分别为M1和M2,相距L,M1和M2的线速度分别为v1和v2,角速度分别为ω1和ω2,由万有引力定律和牛顿第二定律得:在这里要特别注意的是在求两子星间的万有引力时两子星间的距离不能代成了两子星做圆周运动的轨道半径。
4.“双星”问题的分析思路质量m1,m2;球心间距离L;轨道半径 r1 ,r2;周期T1,T2 ;角速度ω1,ω2 线速度V1 V2;周期相同:(参考同轴转动问题) T1=T2角速度相同:(参考同轴转动问题)ω1 =ω2向心力相同:Fn1=Fn2(由于在双星运动问题中,忽略其他星体引力的情况下向心力由双星彼此间万有引力提供,可理解为一对作用力与反作用力)轨道半径之比与双星质量之比相反:(由向心力相同推导)r1:r2=m2:m1m1ω2r1=m2ω2r2m1r1=m2r2 r1:r2=m2:m1线速度之比与质量比相反:(由半径之比推导) V1:V2=m2:m1V1=ωr1 V2=ωr2双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为,经过一段时间演化后,两星总质量变为原来的倍,两星之间的距离变为原来的倍,则此时圆周运动的周期为()A. B.C. D.设两颗恒星的质量分别为和,两颗恒星的运行半径分别为和,两恒星之间的距离,两恒星运动时都是由它们之间的万有引力提供向心力,即,,联立得两恒星的质量和,故,当质量和变为原来的k倍,距离变为原来倍时,两恒星做圆周运动的周期,B项正确.二、“三星”问题有两种情况:第一种三颗星连在同一直线上,两颗星围绕中央的星(静止不动)在同一半径为R的圆轨道上运行,周期相同;第二种三颗星位于等边三角形的三个顶点上,并沿外接于等边三角形的外接圆轨道运行,三星运行周期相同。
双星及三星模型教学内容
双星及三星模型收集于网络,如有侵权请联系管理员删除《双星及三星模型》导学提纲设计人:班级: 组名: 姓名:【学习目标】 1. 理解双星模型特点2. 掌握双星及三星运动的向心力来源 【导读流程】一.双星模型条件及特点 :例1 双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T ,经过一段时间演化后,两星总质量变为原来的k 倍,两星之间的距离变为原来的n 倍,则此时圆周运动的周期为( )A.T k n 23B.T k n 3C.T kn 2D.T k n例2(2015•天门模拟)经长期观测人们在宇宙中已经发现了“双星系统”.“双星系统”由两颗相距较近的恒星组成,每个恒星的线度远小于两个星体之间的距离,而且双星系统一般远离其他天体.如图所示,两颗星球组成的双星,在相互之间的万有引力作用下,绕连线上的O 点做周期相同的匀速圆周运动.现测得两颗星之间的距离为L ,质量之比为m 1:m 2=3:2.则可知( )A. m 1、m 2做圆周运动的线速度之比为3:2B. m 1、m 2做圆周运动的角速度之比为3:2C. m 1做圆周运动的半径为 2/5LD. m 2做圆周运动的半径为 2/5L二. 三星模型的向心力来源 :例3. (2015安微理综)由三颗星体构成的系统,忽略其它星体对它们的作用,存在着一种运动形式:三颗星体在相互之间的万有引力作用下,分别位于等边三角形的三个顶点上,绕某一共同的圆心O 在三角形所在的平面内做相同角速度的圆周运动(图示为A 、B 、C 三颗星体质量不相同时的一般情况)。
若A 星体质量为2m ,B 、C 两星体的质量均为m ,三角形的边长为a ,求:(1)A 星体所受合力大小F A ;(2)B 星体所受合力大小F B ;(3)C 星体的轨道半径R C ;(4)三星体做圆周运动的周期T。
2021学年高中物理微专题四双星三星模型课件人教版必修2.ppt
(1)对第一种形式中 A 而言,B、C 对 A 的万有引力的合力提
供 A 做圆周运动的向心力,则有
GRm12 2+G2Rm122=mR1(2Tπ)2. (2)对第二种形式中 A 而言,B、C 对 A 的万有引力的合力提
供 A 做圆周运动的向心力,则有Gm2 r2源自cos30°+Grm2 2
cos 30°=mR22Tπ2
答案:BD
练 2 月球与地球质量之比约为 1:80,有研究者认为月球和
地球可视为一个双星系统,它们都围绕地月连线上某点 O 做匀
速圆周运动.据此观点,可知月球与地球绕 O 点运动线速度大
小之比约为( )
A.1:6 400 B.1:80
C.80:1
D.6 400:1
解析:月球和地球绕 O 点做匀速圆周运动,它们之间的万有引 力提供各自的向心力,则地球和月球的向心力相等.且月球、地球 和 O 点始终共线,说明月球和地球有相同的角速度和周期.因此有 mω2r=Mω2R,所以vv′=Rr =Mm,线速度和质量成反比.故选 C.
微专题(四) 双星、三星模型
模型建构
模型一 双星模型
1.模型构建 在天体运动中,将两颗彼此相距较近,且在相互之间万有引 力作用下绕两者连线上的某点做周期相同的匀速圆周运动的星 球称为双星.
2.模型特点:它们间的距离为 L.此双星问题的特点是:
(1)两星的运行轨道为同心圆,圆心是它们之间连线上的某 一点.
【解析】 双星系统周期相同(角速度相同),所受万有引力作 为向心力相同,所以 B 项错误,D 项正确;由 F=mω2r,m1r1ω2= m2r2ω2,得 m1v1=m2v2,vv12=mm21=23,A 项错误;rr12=mm21又 r1+r2=L,
专题 天体运动的“四个热点”问题
专题 天体运动的“四个热点”问题双星或多星模型1.双星模型(1)定义:绕公共圆心转动的两个星体组成的系统,我们称之为双星系统。
如图1所示。
图1(2)特点①各自所需的向心力由彼此间的万有引力提供,即 Gm 1m 2L 2=m 1ω21r 1,Gm 1m 2L2=m 2ω22r 2 ②两颗星的周期及角速度都相同,即T 1=T 2,ω1=ω2③两颗星的半径与它们之间的距离关系为r 1+r 2=L(3)两颗星到圆心的距离r 1、r 2与星体质量成反比,即m 1m 2=r 2r 1。
2.多星模型模型 三星模型(正三角形排列) 三星模型(直线等间距排列) 四星模型图示向心力的来源 另外两星球对其万有引力的合力 另外两星球对其万有引力的合力 另外三星球对其万有引力的合力【例1】 (多选)(2018·全国Ⅰ卷,20)2017年,人类第一次直接探测到来自双中子星合并的引力波。
根据科学家们复原的过程,在两颗中子星合并前约100 s 时,它们相距约400 km ,绕二者连线上的某点每秒转动12圈。
将两颗中子星都看作是质量均匀分布的球体,由这些数据、万有引力常量并利用牛顿力学知识,可以估算出这一时刻两颗中子星( )A.质量之积B.质量之和C.速率之和D.各自的自转角速度解析 由题意可知,合并前两中子星绕连线上某点每秒转动12圈,则两中子星的周期相等,且均为T =112 s ,两中子星的角速度均为ω=2πT,两中子星构成了双星模型,假设两中子星的质量分别为m 1、m 2,轨道半径分别为r 1、r 2,速率分别为v 1、v 2,则有G m 1m 2L 2=m 1ω2r 1、G m 1m 2L 2=m 2ω2r 2,又r 1+r 2=L =400 km ,解得m 1+m 2=ω2L 3G ,A 错误,B 正确;又由v 1=ωr 1、v 2=ωr 2,则v 1+v 2=ω(r 1+r 2)=ωL ,C 正确;由题中的条件不能求解两中子星自转的角速度,D 错误。
核心素养培养双星三星模型——模型建构能力的培养课件
双星三星模型的特点
综合性
双星三星模型涵盖了知识 、技能、态度和价值观等 多个方面,旨在培养学生
的全面发展。
实践性
该模型强调实践和应用, 通过项目式学习和合作学 习等方式,让学生在实践
中提升核心素养。
动态性
双星三星模型的评估标准 是动态的,根据学生的表 现和需求进行适时调整,
以实现个性化发展。
双星三星模型的应用范围
核心素养培养双星三星模型— —模型建构能力的培养
CONTENTS
• 引言 • 双星三星模型概述 • 模型建构能力的培养 • 核心素养与双星三星模型的关
系 • 案例分析 • 总结与展望
01
引言
背景介绍
随着社会的发展和科技的进步,人们越来越认识到教育的重要性。在教 育领域中,核心素养的培养成为了关注的焦点。为了更好地培养学生的 核心素养,研究者提出了双星三星模型这一概念。
题的能力。
案例二:利用双星三星模型培养物理实验能力
总结词
双星三星模型能够帮助学生更好地理解 物理实验的设计思路和操作过程,提高 实验能力。
VS
详细描述
在物理实验教学中,教师采用双星三星模 型引导学生进行实验设计和操作。学生需 要根据实验目标,设计实验方案,选择合 适的实验器材,进行实验操作并记录数据 ,最后分析实验结果并得出结论。这种教 学方法能够帮助学生更好地理解物理实验 的设计思路和操作过程,提高实验能力。
双星三星模型强调在教育过程中注重学生的主体性和主动性,通过引导 学生进行自我认知、自我规划和自我评价,培养学生的自主学习和终身
学习的能力。
在双星三星模型中,模型建构能力的培养是其中的一个重要方面。模型 建构能力是指学生能够运用所学知识,通过分析和解决问题,构建出相 应的模型,从而解决实际问题的能力。
(完整版)双星三星四星问题
双星模型、三星模型、四星模型一、双星问题1.模型构建:在天体运动中,将两颗彼此相距较近,且在相互之间万有引力作用下绕两者连线上的某点做角速度、周期相同的匀速圆周运动的恒星称为双星。
2.模型条件: (1)两颗星彼此相距较近。
(2)两颗星靠相互之间的万有引力提供向心力做匀速圆周运动。
(3)两颗星绕同一圆心做圆周运动。
3.模型特点: (1)“向心力等大反向”——两颗星做匀速圆周运动的向心力由它们之间的万有引力提供。
(2)“周期、角速度相同”——两颗恒星做匀速圆周运动的周期、角速度相等。
(3)三个反比关系:m1r1=m2r2;m1v1=m2v2;m1a1=m2a2推导:根据两球的向心力大小相等可得,m1ω2r1=m2ω2r2,即m1r1=m2r2;等式m1r1=m2r2两边同乘以角速度ω,得m1r1ω=m2r2ω,即m1v1=m2v2;由m1ω2r1=m2ω2r2直接可得,m1a1=m2a2。
(4)巧妙求质量和:Gm1m2L2=m1ω2r1①Gm1m2L2=m2ω2r2②由①+②得:G m1+m2L2=ω2L ∴m1+m2=ω2L3G4. 解答双星问题应注意“两等”“两不等”(1)“两等”: ①它们的角速度相等。
②双星做匀速圆周运动向心力由它们之间的万有引力提供,即它们受到的向心力大小总是相等。
(2)“两不等”:①双星做匀速圆周运动的圆心是它们连线上的一点,所以双星做匀速圆周运动的半径与双星间的距离是不相等的,它们的轨道半径之和才等于它们间的距离。
②由m1ω2r1=m2ω2r2知由于m1与m2一般不相等,故r1与r2一般也不相等。
二、多星模型(1)定义:所研究星体的万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同.(2)三星模型:①三颗星位于同一直线上,两颗环绕星围绕中央星在同一半径为R的圆形轨道上运行(如图甲所示).②三颗质量均为m的星体位于等边三角形的三个顶点上(如图乙所示).(3)四星模型:①其中一种是四颗质量相等的恒星位于正方形的四个顶点上,沿着外接于正方形的圆形轨道做匀速圆周运动(如图丙).②另一种是三颗恒星始终位于正三角形的三个顶点上,另一颗位于中心O,外围三颗星绕O做匀速圆周运动(如图丁所示).三、卫星的追及相遇问题1、某星体的两颗卫星从相距最近到再次相距最近遵从的规律:内轨道卫星所转过的圆心角与外轨道卫星所转过的圆心角之差为2π的整数倍。
双星三星四星问题说课讲解
双星三星四星问题双星模型、三星模型、四星模型一、双星问题1.模型构建:在天体运动中,将两颗彼此相距较近,且在相互之间万有引力作用下绕两者连线上的某点做角速度、周期相同的匀速圆周运动的恒星称为双星。
2.模型条件: (1)两颗星彼此相距较近。
(2)两颗星靠相互之间的万有引力提供向心力做匀速圆周运动。
(3)两颗星绕同一圆心做圆周运动。
3.模型特点: (1)“向心力等大反向”——两颗星做匀速圆周运动的向心力由它们之间的万有引力提供。
(2)“周期、角速度相同”——两颗恒星做匀速圆周运动的周期、角速度相等。
(3)三个反比关系:m1r1=m2r2;m1v1=m2v2;m1a1=m2a2推导:根据两球的向心力大小相等可得,m1ω2r1=m2ω2r2,即m1r1=m2r2;等式m1r1=m2r2两边同乘以角速度ω,得m1r1ω=m2r2ω,即m1v1=m2v2;由m1ω2r1=m2ω2r2直接可得,m1a1=m2a2。
(4)巧妙求质量和:Gm1m2L2=m1ω2r1①Gm1m2L2=m2ω2r2②由①+②得:G m1+m2L2=ω2L ∴m1+m2=ω2L3G4. 解答双星问题应注意“两等”“两不等”(1)“两等”: ①它们的角速度相等。
②双星做匀速圆周运动向心力由它们之间的万有引力提供,即它们受到的向心力大小总是相等。
(2)“两不等”:①双星做匀速圆周运动的圆心是它们连线上的一点,所以双星做匀速圆周运动的半径与双星间的距离是不相等的,它们的轨道半径之和才等于它们间的距离。
②由m1ω2r1=m2ω2r2知由于m1与m2一般不相等,故r1与r2一般也不相等。
二、多星模型(1)定义:所研究星体的万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同.(2)三星模型:①三颗星位于同一直线上,两颗环绕星围绕中央星在同一半径为R的圆形轨道上运行(如图甲所示).②三颗质量均为m的星体位于等边三角形的三个顶点上(如图乙所示).(3)四星模型:①其中一种是四颗质量相等的恒星位于正方形的四个顶点上,沿着外接于正方形的圆形轨道做匀速圆周运动(如图丙).②另一种是三颗恒星始终位于正三角形的三个顶点上,另一颗位于中心O,外围三颗星绕O做匀速圆周运动(如图丁所示).三、卫星的追及相遇问题1、某星体的两颗卫星从相距最近到再次相距最近遵从的规律:内轨道卫星所转过的圆心角与外轨道卫星所转过的圆心角之差为2π的整数倍。
双星及三星模型知识讲解
《双星及三星模型》导学提纲设计人: 审核人:高三物理备课组班级: 组名: 姓名:【学习目标】1. 理解双星模型特点2. 掌握双星及三星运动的向心力来源 【导读流程】一.双星模型条件及特点 :例1 双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T ,经过一段时间演化后,两星总质量变为原来的k 倍,两星之间的距离变为原来的n 倍,则此时圆周运动的周期为( )A.T k n 23B.T k n 3C.T kn 2D.T k n例2(2015•天门模拟)经长期观测人们在宇宙中已经发现了“双星系统”.“双星系统”由两颗相距较近的恒星组成,每个恒星的线度远小于两个星体之间的距离,而且双星系统一般远离其他天体.如图所示,两颗星球组成的双星,在相互之间的万有引力作用下,绕连线上的O 点做周期相同的匀速圆周运动.现测得两颗星之间的距离为L ,质量之比为m 1:m 2=3:2.则可知( )A. m 1、m 2做圆周运动的线速度之比为3:2B. m 1、m 2做圆周运动的角速度之比为3:2C. m 1做圆周运动的半径为 2/5LD. m 2做圆周运动的半径为 2/5L二. 三星模型的向心力来源 :例3. (2015安微理综)由三颗星体构成的系统,忽略其它星体对它们的作用,存在着一种运动形式:三颗星体在相互之间的万有引力作用下,分别位于等边三角形的三个顶点上,绕某一共同的圆心O 在三角形所在的平面内做相同角速度的圆周运动(图示为A 、B 、C 三颗星体质量不相同时的一般情况)。
若A 星体质量为2m ,B 、C 两星体的质量均为m ,三角形的边长为a ,求:(1)A 星体所受合力大小F A ; (2)B 星体所受合力大小F B ; (3)C 星体的轨道半径R C ; (4)三星体做圆周运动的周期T 。
多星系统模型讲课教案
5.化变力为恒力求变力做功
变力做功直接求解时,通常都比较复杂,但 若通过转换研究对象,有时可转化为求恒力 做功,可以用W=Flcos α求解。此法常应用于 轻绳通过定滑轮拉物体的问题中。
结束语
谢谢大家聆听!!!
32
特点: 四颗行星转动的方向相同,周期、角速度、线速度的大小相等
(2)三颗质量相等的行星位于三角形的三个顶点上,另一 颗恒星位于三角形的中心o点,三颗行星以o点为圆心。绕正 三角形的外接圆做匀速圆周运动。
特点: 外围三颗行星转动的方向相同,周期、角速度、线速度的大小相等
解题模板
谢谢观看
高中物理微课堂
3.用F-x图象求变力做功
在F-x图象中,图线与x轴所围“面积”的代数和就表 示力F在这段位移方向上所做的功,且位于x轴上方的 “面积”为正,位于x轴下方的“面积”为负,但此方法中 学阶段只适用于便于求图线所围面积的情况(如三角 形、矩形、圆等规则的几何图)。
例3(图象法)一物体所受的力F随位移x变化的图象如 图所示,求在这一过程中,力F对物体做的功为多少?
4.利用微元法求变力做功
将物体的位移分割成许多小段,因小段很小,每一小 段上作用在物体上的力可以视为恒力,这样就将变力 做功转化为在无数个无穷小的位移方向上的恒力所 做元功的代数和。此法在中学阶段常应用于求解大 小不变、方向改变的变力做功问题。
例5(微元法)如图所示,在水平面上,有一弯曲的槽道 AB,槽道由半径分别为 R/2 和R的两个半圆构成。现用 大小恒为F的拉力将一光滑小球从A点沿槽道拉至B点, 若拉力F的方向时刻与小球运动方向一致,则此过程中拉 力所做的功为
特点: 两行星转动的方向相同,周期、角速度、线速度的大小 相等
(2)三颗质量相等的行星位于一正三角形的顶点处,都绕 三角形的中心做圆周运动。每颗行星运行所需要的向心力都 由其余两颗行星对其的引力的合力来提供。
双星模型三星模型四星模型
双星模型三星模型四星模型The manuscript was revised on the evening of 2021双星模型、三星模型、四星模型天体物理中的双星,三星,四星,多星系统是自然的天文现象,天体之间的相互作用遵循万有引力的规律,他们的运动规律也同样遵循开普勒行星运动的三条基本规律。
双星、三星系统的等效质量的计算,运行周期的计算等都是以万有引力提供向心力为出发点的。
双星系统的引力作用遵循牛顿第三定律:F F =',作用力的方向在双星间的连线上,角速度相等,ωωω==21。
【例题1】天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星。
双星系统在银河系中很普遍。
利用双星系统中两颗恒星的运动特征可推算出它们的总质量。
已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T ,两颗恒星之间的距离为r ,试推算这个双星系统的总质量。
(引力常量为G ) 【解析】:设两颗恒星的质量分别为m 1、m 2,做圆周运动的半径分别为r 1、r 2,角速度分别为ω1、ω2。
根据题意有21ωω=①r r r =+21②根据万有引力定律和牛顿定律,有 G1211221r w m rm m =③G 1221221r w m r m m =④联立以上各式解得2121m m rm r +=⑤根据解速度与周期的关系知 Tπωω221==⑥联立③⑤⑥式解得【例题2】神奇的黑洞是近代引力理论所预言的一种特殊天体,探寻黑洞的方案之一是观测双星系统的运动规律.天文学家观测河外星系大麦哲伦云时,发现了LMCX3双星系统,它由可见星A 和不可见的暗星B 构成,两星视为质点,不考虑其他天体的影响.A 、B 围绕两者连线上的O 点做匀速圆周运动,它们之间的距离保持不变,如图4-2所示.引力常量为G ,由观测能够得到可见星A 的速率v 和运行周期T.(1)可见星A 所受暗星B 的引力F a 可等效为位于O 点处质量为m′的星体(视为质点)对它的引力,设A 和B 的质量分别为m 1、m 2,试求m′(用m 1、m 2表示). (2)求暗星B 的质量m 2与可见星A 的速率v 、运行周期T 和质量m 1之间的关系式;(3)恒星演化到末期,如果其质量大于太阳质量m s 的2倍,它将有可能成为黑洞.若可见星A 的速率v=×105 m/s ,运行周期T=π×104 s ,质量m 1=6m s ,试通过估算来判断暗星B 有可能是黑洞吗?(G=×10-11 N·m 2/kg 2,m s =×1030 kg )解析:设A 、B 的圆轨道半径分别为,由题意知,A 、B 做匀速圆周运动的角速度相同,设其为。
人造卫星运行特点和双星三星模型
请问a、b、c、d四颗地球卫星运动时线速 度、角速度、向心加速度旳大小比较情况?
双星、三星模型
1.双星模型:
在天体模型中,将两颗彼此距离较近旳恒(行)星称为双星 两星运动方式:绕两球心连线中某一点做匀速圆周运动
“双星”模型旳特点: (1)两星之间旳万有引力提供各自做匀 速圆周运动旳向心力; (2)两星具有相同旳周期和角速度; (3)两星一直与它们共同旳圆心在同一 条直线上,运动半径之和等于两星间距。R1+R2=L
课本P81 练5
“双星”模型问题
质量不等的两星体在相互间的万有引力作用下,绕两者连线上 某一定点 O 做匀速圆周运动,构成双星系统。由天文观察测得其运 动周期为 T,两星体之间的距离为 r,已知引力常量为 G。下列说
法正确的是 ( C )
A.双星系统的平均密度为G3Tπ2 B.O 点离质量较大的星体较远 C.双星系统的总质量为4GπT2r23 D.若在 O 点放一物体,则物体受两星体的万有引力合力为零
》》》模型 双星、三星模型
2.三星模型: (一般情况下三颗星质量相同)
在天体模型中,三颗恒(行)星在万有引力作用下绕某中心做 匀速圆周运动. “三星”模型旳特点: (1)每颗星旳向心力均由另两颗星对它 旳万有引力旳合力提供; (2)三颗星转动旳方向相同,具有相同 旳周期、角速度和线速度大小。
(多选)宇宙间存在某些离其他恒星较远旳三星系统,其中有
A.物体A随处球自转旳角速度不小于卫星B旳角速度
B.卫星B旳线速度不小于卫星C旳线速度
B
C.物体A随处球自转旳加速度不小于卫星C旳加速度
D.物体A随处球自转旳周期不小于卫星C旳周期
要点:静止在赤道上旳物体运 动规律不同于卫星旳运动规律 它是跟伴随地球一起转
0衡水中学物理最经典-物理建模系列(八) 天体运行中的“两种常见模型”
物理建模系列(八) 天体运行中的“两种常见模型”1.双星模型 (1)模型构建在天体运动中,将两颗彼此相距较近,且在相互之间万有引力作用下绕两者连线上的某点做周期相同的匀速圆周运动的行星称为双星.(2)模型条件①两颗星彼此相距较近.②两颗星靠相互之间的万有引力做匀速圆周运动. ③两颗星绕同一圆心做圆周运动. (3)模型特点①“向心力等大反向”——两颗星做匀速圆周运动的向心力由它们之间的万有引力提供,故F 1=F 2,且方向相反,分别作用在两颗行星上,是一对作用力和反作用力.②“周期、角速度相同”——两颗行星做匀速圆周运动的周期、角速度相等. ③“半径反比”——圆心在两颗行星的连线上,且r 1+r 2=L ,两颗行星做匀速圆周运动的半径与行星的质量成反比.2.三星模型 系统三星系统(正三角形排列)三星系统(直线等间距排列)图示向心力的来源另外两星球对其万有引力的合力另外两星球对其万有引力的合力例 (2018·河北定州中学摸底)双星系统中两个星球A 、B 的质量都是m ,相距L ,它们正围绕两者连线上某一点做匀速圆周运动.实际观测该系统的周期T 要小于按照力学理论计算出的周期理论值T 0,且TT 0=k (k <1),于是有人猜测这可能是受到了一颗未发现的星球C的影响,并认为C 位于A 、B 的连线正中间,相对A 、B 静止,则A 、B 组成的双星系统周期理论值T 0及C 的质量分别为( )A .2π L 22Gm ,1+k 24k m B .2π L 32Gm ,1-k 24k m C .2π2Gm L 3,1+k 24km D .2πL 32Gm ,1-k 24k2m 【解析】 由题意知,A 、B 的运动周期相同,设轨道半径分别为r 1、r 2,对A 有,Gm 2L2=m ⎝⎛⎭⎫2πT 02r 1,对B 有,Gm 2L2=m ⎝⎛⎭⎫2πT 02r 2,且r 1+r 2=L ,解得T 0=2π L 32Gm;有C 存在时,设C 的质量为M ,A 、B 与C 之间的距离r ′1=r ′2=L 2,则Gm 2L 2+GMm r ′21=m ⎝⎛⎭⎫2πT 2r 1,Gm 2L 2+GMm r ′22=m ⎝⎛⎭⎫2πT 2r 2,解得T =2π L 32G (m +4M ),TT 0=mm +4M=k 得M =1-k 24k 2m .【答案】 D解答双星问题应注意“两等”“两不等”(1)“两等”①它们的角速度相等.②双星做匀速圆周运动的向心力由它们之间的万有引力提供,即它们受到的向心力大小总是相等的.(2)“两不等”①双星做匀速圆周运动的圆心是它们连线上的一点,所以双星做匀速圆周运动的半径与双星间的距离是不相等的,它们的轨道半径之和才等于它们间的距离.②由m 1ω2r 1=m 2ω2r 2知由于m 1与m 2一般不相等,故r 1与r 2一般也不相等.[高考真题]1.(2016·课标卷Ⅲ,14)关于行星运动的规律,下列说法符合史实的是( ) A .开普勒在牛顿定律的基础上,导出了行星运动的规律 B .开普勒在天文观测数据的基础上,总结出了行星运动的规律C .开普勒总结出了行星运动的规律,找出了行星按照这些规律运动的原因D .开普勒总结出了行星运动的规律,发现了万有引力定律【解析】 开普勒在天文观测数据的基础上,总结出了开普勒天体运动三定律,找出了行星运动的规律,而牛顿发现了万有引力定律,A 、C 、D 错误,B 正确.【答案】 B2.(2014·课标卷Ⅱ,18)假设地球可视为质量均匀分布的球体.已知地球表面重力加速度在两极的大小为g 0;在赤道的大小为g ;地球自转的周期为T ;引力常量为G .地球的密度为( )A.3πGT 2g 0-gg 0 B .3πGT 2g 0g 0-gC.3πGT2 D .3πGT 2g 0g【解析】 由万有引力定律可知:在两极处G Mm R 2=mg 0,在赤道上:G Mm R 2=mg +m (2πT )2R ,地球的质量:M =43πR 3ρ,联立三式可得:ρ=3πGT 2g 0g 0-g,选项B 正确.【答案】 B3.(2015·课标卷Ⅱ,16)由于卫星的发射场不在赤道上,同步卫星发射后需要从转移轨道经过调整再进入地球同步轨道.当卫星在转移轨道上飞经赤道上空时,发动机点火,给卫星一附加速度,使卫星沿同步轨道运行.已知同步卫星的环绕速度约为3.1×103 m/s ,某次发射卫星飞经赤道上空时的速度为1.55×103 m/s ,此时卫星的高度与同步轨道的高度相同,转移轨道和同步轨道的夹角为30°,如图所示,发动机给卫星的附加速度的方向和大小约为( )A .西偏北方向,1.9×103 m/sB .东偏南方向,1.9×103 m/sC .西偏北方向,2.7×103 m/sD .东偏南方向,2.7×103 m/s【解析】 附加速度Δv 与卫星飞经赤道上空时速度v 2及同步卫星的环绕速度v 1的矢量关系如图所示.由余弦定理可知,Δv =v 21+v 22-2v 1v 2cos 30°≈1.9×103 m/s ,方向东偏南方向,故B 正确,A 、C 、D 错误.【答案】 B[名校模拟]4.(2018·山东临沂高三上学期期中)据报道,2020年前我国将发射8颗海洋系列卫星,包括2颗海洋动力环境卫星和2颗海陆雷达卫星(这4颗卫星均绕地球做匀速圆周运动),以加强对黄岩岛、钓鱼岛及西沙群岛全部岛屿附近海域的监测.设海陆雷达卫星的轨道半径是海洋动力环境卫星的n 倍,下列说法正确的是( )A .在相同时间内,海陆雷达卫星到地心的连线扫过的面积与海洋动力环境卫星到地心的连线扫过的面积相等B .海陆雷达卫星做匀速圆周运动的半径的三次方与周期的平方之比等于海洋动力环境卫星做匀速圆周运动的半径的三次方与周期的平方之比C .海陆雷达卫星与海洋动力环境卫星角速度之比为n 32∶1D .海陆雷达卫星与海洋动力环境卫星周期之比为1∶n 32【解析】 由于轨道半径不同,相同时间内扫过的面积不相等,A 错;由开普勒第三定律r 3T2=k 可知,B 项正确;由ω=GM r 3∝r -32得,ω1∶ω2=n -32∶1,由T =2πr 3GM得,T 1∶T 2=1∶n -32,C 、D 均错.【答案】 B5.(2018·山东济南一中上学期期中)在未来的“星际穿越”中,某航天员降落在一颗不知名的行星表面上.该航天员从高h =L 处以初速度v 0水平抛出一个小球,小球落到星球表面时,与抛出点的距离是5L ,已知该星球的半径为R ,引力常量为G ,则下列说法正确的是( )A .该星球的质量M =v 20R22GLB .该星球的质量M =2v 20R25GLC .该星球的第一宇宙速度v =v 0 R 2LD .该星球的第一宇宙速度v =v 0R L【解析】 在该星球表面处:mg =GMm R 2,g =GM R 2,x =v 0t ,y =12gt 2=L ,t =2Lg,由5L =x 2+y 2,得g =v 202L ,M =v 20R 22GL,该星球的第一宇宙速度v =gR =v 0R2L,故A 、C 正确.【答案】 AC 6.(2018·山东潍坊高三上学期期中)2017年8月16日凌晨,中国量子卫星“墨子”在酒泉卫星发射中心成功发射,目前“墨子”已进入离地面高度为h 的极地预定轨道(轨道可视为圆轨道),如图所示.若“墨子”从北纬30°的正上方按图示方向第一次运行至南纬60°正上方,所用时间为t ,已知地球半径为R ,地球表面的重力加速度为g ,引力常量为G ,忽略地球自转,由以上条件可知( )A .地球的质量为gRGB .卫星运行的角速度为π2tC .卫星运行的线速度为πR2tD .卫星运行的线速度为π(R +h )2t【解析】 在地球表面Mg =GMm R 2,M =gR 2G ,A 错;第一次运行至南纬60°历时t =T4,而T =2πω,所以ω=π2t ,B 对;v =ω(R +h )=π(R +h )2t,C 错,D 对.【答案】 BD课时作业(十三) [基础小题练]1.(2018·华中师大第一附中高三上学期期中)已知甲、乙两行星的半径之比为2∶1,环绕甲、乙两行星表面运行的两卫星周期之比为4∶1,则下列结论中正确的是( )A .甲、乙两行星表面卫星的动能之比为1∶4B .甲、乙两行星表面卫星的角速度之比为1∶4C .甲、乙两行星的质量之比为1∶2D .甲、乙两行星的第一宇宙速度之比为2∶1 【解析】 由GMm r 2=mrω2=m v 2r 得ω=GMr 3,v = GM r ,E k =12m v 2, T =2πω=2πr 3GM,代入数据得M 甲∶M 乙=1∶2,ω甲∶ω乙=1∶4,v 甲∶v 乙=1∶2,卫星质量关系不知,不能比较动能大小.【答案】 BC2.天文学家新发现了太阳系外的一颗行星,这颗行星的体积是地球的a 倍,质量是地球的b 倍.已知某一近地卫星绕地球运动的周期约为T ,引力常量为G ,则该行星的平均密度为( )A.4πGb 2T 2a 2 B .4πa GT 2bC.3πb GT 2aD .4πbGT 2a【解析】 对于近地卫星,设其质量为m ,地球的质量为M ,半径为R ,则根据万有引力提供向心力有,G Mm R 2=m ⎝⎛⎭⎫2πT 2R ,得地球的质量M =4π2R 3GT 2,地球的密度为ρ=M 43πR 3=3πGT2;已知行星的体积是地球的a 倍,质量是地球的b 倍,结合密度公式ρ=mV ,得该行星的平均密度是地球的b a 倍,所以该行星的平均密度为3πbGT 2a,故C 正确.【答案】 C3.双星运动是产生引力波的来源之一,假设宇宙中有一双星系统由a 、b 两颗星体组成,这两颗星体绕它们连线的某一点在万有引力作用下做匀速圆周运动,测得两星体的轨道半径之和为l 1,轨道半径之差为l 2,a 星体轨道半径大于b 星体轨道半径,a 星体的质量为m 1,引力常量为G ,则b 星体的周期为( )A.2π2l 21(l 1-l 2)Gm 1B .2π2l 21(l 1+l 2)Gm 1C.2π2l 21(l 1-l 2)Gm 1(l 1+l 2)D .2π2l 21(l 1+l 2)Gm 1(l 1-l 2)【解析】 设a 星体运动的轨道半径为r 1,b 星体运动的轨道半径为r 2,则r 1+r 2=l 1,r 1-r 2=l 2,解得r 1=l 1+l 22,r 2=l 1-l 22,双星系统根据Gm 1m 2l 21=m 1⎝⎛⎭⎫2πT 2r 1,Gm 1m 2l 21=m 2⎝⎛⎭⎫2πT 2r 2,得m 1m 2=r 2r 1,即双星系统中星体质量与轨道半径成反比,得b 星体的质量m 2=r 1m 1r 2=(l 1+l 2)m 1l 1-l 2,a 、b 两星体运动周期相同,对a 星体有Gm 1m 2l 21=m 1⎝⎛⎭⎫2πT 2r 1,解得T =2π2l 21(l 1-l 2)Gm 1,A 选项正确.【答案】 A4.(2018·江苏泰州高三上学期期中)2016年10月19日3时31分,神舟十一号载人飞船与天宫二号空间实验室成功实现自动交会对接,此时天宫二号绕地飞行一圈时间为92.5 min ,而地球同步卫星绕地球一圈时间为24 h ,根据此两组数据我们能求出的是( )A .天宫二号与地球同步卫星受到的地球引力之比B .天宫二号与地球同步卫星的离地高度之比C .天宫二号与地球同步卫星的线速度之比D .天宫二号与地球同步卫星的加速度之比【解析】 由F =GMm r 2及GMm r 2=mrω2=m v 2r =ma 可知,ω=GMr 3,T =2π r 3GM,a =GMr2,v =GMr,已知周期关系可确定半径关系,进而确定线速度关系,加速度关系,但由于不知天宫二号和同步卫星的质量关系,故所受地球引力关系不确定,地球半径未知,所以离地高度关系不确定,C 、D 正确.【答案】 CD5.(2018·安徽师大附中高三上学期期中)登上火星是人类的梦想,“嫦娥之父”欧阳自远透露:中国计划于2020年登陆火星.地球和火星的公转视为匀速圆周运动.忽略行星自转影响,火星和地球相比( )行星 半径/m 质量/kg 公转轨道半径/m地球 6.4×106 6.0×1024 1.5×1011 火星3.4×1066.4×10232.3×1011A.火星的“第一宇宙速度”约为地球的第一宇宙速度的0.45倍 B .火星的“第一宇宙速度”约为地球的第一宇宙速度的1.4倍 C .火星公转的向心加速度约为地球公转的向心加速度的0.43倍 D .火星公转的向心加速度约为地球公转的向心加速度的0.28倍 【解析】 根据第一宇宙速度公式v = GMR (M 指中心天体太阳的质量),v 火v 地=R 地R 火=6.4×1063.4×106=1.4 ,故A 错误,B 正确.根据向心加速度公式a =GMr 2(M 指中心天体太阳的质量),a 火a 地=r 2地r 2火=(1.5×10112.3×1011)2=0.43,故C 正确,D 错误.【答案】 BC6.(2018·山东泰安高三上学期期中)发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步椭圆轨道3.轨道1、2相切于Q 点,轨道2、3相切于P 点.轨道3到地面的高度为h ,地球的半径为R ,地球表面的重力加速度为g .以下说法正确的是( )A .卫星在轨道3上的机械能大于在轨道1上的机械能B .卫星在轨道3上的周期小于在轨道2上的周期C .卫星在轨道2上经过Q 点时的速度小于它在轨道3上经过P 时的速度D .卫星在轨道3上的线速度为v =Rg R +h【解析】 卫星经历两次点火加速才转移至同步轨道3,在轨道3上的机械能肯定大于轨道1上的机械能,A 对;由T =2πr 3GM可知,B 错;由于v =GMr,所以v 1>v 3,又轨道2上Q 点离心运动,由v Q >v 1可知v Q >v 3,所以v Q >v P ,C 错;将r =R +h ,GM =gR 2,代入v =GMr得v =R gR +h,D 对. 【答案】 AD[创新导向练]7.巧思妙想——以“苹果”为话题考查天体运行规律已知地球的半径为6.4×106 m ,地球自转的角速度为7.27×10-5rad/s ,地球表面的重力加速度为9.8 m/s 2,在地球表面发射卫星的第一宇宙速度为7.9×103 m/s ,第三宇宙速度为16.7×103 m/s ,月地中心间距离为3.84×108 m .假设地球上有一颗苹果树长到月球那么高,则当苹果脱离苹果树后,请根据此时苹果线速度的计算,判断苹果将不会( )A .落回地面B .成为地球的“苹果月亮”C .成为地球的同步“苹果卫星”D .飞向茫茫宇宙【解析】 地球自转的角速度为7.27×10-5rad/s ,月球到地球中心的距离为3.84×108 m ,地球上有一棵苹果树长到了接近月球那么高,根据v =rω得:苹果的线速度为v =2.8×104 m/s ,第三宇宙速度为16.7×103 m/s ,由于苹果的线速度大于第三宇宙速度,所以苹果脱离苹果树后,将脱离太阳系的束缚,飞向茫茫宇宙,故A 、B 、C 正确.【答案】 ABC8.科学探索——以“一箭20星”为背景考查卫星运行参数月球和地球的质量之比为a ∶1,半径之比为b ∶1,将一单摆由地球带到月球,将摆球从与地球表面相同高度处由静止释放(释放点高度低于悬点高度),释放时摆线与竖直方向的夹角相同,当摆球运动到最低点时,在月球上和地球上摆线对摆球的拉力之比为( )A.b 2a B .a b 2C.a 2bD .b a2【解析】 设重力加速度大小为g ,摆球释放的高度为h ,摆球运动到最低点有mgh =12m v 2,摆球在最低点有F -mg =m v 2l ,得F =mg +2mghl,F 与g 成正比.在星球表面上有GMm R 2=mg ,得g =GM R 2,故摆球在月球和地球上受到的拉力之比为ab 2,B 选项正确. 【答案】 B9.军事科技——以导弹拦截为背景考查万有引力定律知识2016年1月27日,我国在境内再次成功地进行了陆基中段反导拦截技术试验,中段是指弹道导弹在大气层外空间依靠惯性飞行的一段.如图所示,一枚蓝军弹道导弹从地面上A 点发射升空,目标是攻击红军基地B 点,导弹升空后,红军反导预警系统立刻发现目标,从C 点发射拦截导弹,并在弹道导弹飞行中段的最高点D 将其击毁.下列说法中正确的是( )A .图中E 到D 过程,弹道导弹机械能不断增大B .图中E 到D 过程,弹道导弹的加速度不断减小C .弹道导弹在大气层外运动轨迹是以地心为焦点的椭圆D .弹道导弹飞行至D 点时速度大于7.9 km/s【解析】 图中E 到D 过程, 导弹在大气层外空间依靠惯性飞行,没有空气阻力,机械能不变,远离地球,轨道变大,速度减小,万有引力减小,所以加速度减小,在万有引力作用下,运动轨迹是以地心为焦点的椭圆,A 错误,B 、C 正确;第一宇宙速度是近地卫星的环绕速度,而D 点在大气层外部,所以轨道要大于近地卫星轨道,运行速度要小于第一宇宙速度,D 错误;故选B 、C.【答案】 BC10.探测火星——以火星探测为背景考查星体运行规律随着人类航天事业的进步,太空探测越来越向深空发展,火星正在成为全球航天界的“宠儿”.我国计划于2020年发射火星探测器,一步实现绕、落、巡工程目标.假设某宇航员登上了火星,在其表面以初速度v 竖直上抛一小球(小球仅受火星的引力作用),小球上升的最大高度为h ,火星的直径为d ,引力常量为G ,则( )A .火星的第一宇宙速度为v d hB .火星的密度为3v 24πGhdC .火星的质量为v 2d 22GhD .火星的“近火卫星”运行周期为2πvd h【解析】 在火星表面竖直上抛的小球做匀减速直线运动,设火星表面的重力加速度为g ,第一宇宙速度为v 0,火星的自转周期为T ,则2gh =v 2,得g =v 22h,在火星表面的物体的重力等于万有引力,也是在火星表面附近做圆周运动的向心力,mg =G Mm r 2=m (2πT )2r ,又r=d 2,M =43πr 3·ρ,得:v 0=v d 4h ,M =v 2d 28Gh ,ρ=3v 24πGhd,T =2πv dh2,故选B. 【答案】 B[综合提升练]11.(2018·山东淄博一中高三上学期期中)如图所示,火箭载着宇宙探测器飞向某行星,火箭内平台上还放有测试仪器.火箭从地面起飞时,以加速度g 02竖直向上做匀加速直线运动(g 0为地面附近的重力加速度),已知地球半径为R 0.(1)到某一高度时,测试仪器对平台的压力是起飞前的1718,求此时火箭离地面的高度h ;(2)探测器与箭体分离后,进入行星表面附近的预定轨道,进行一系列科学实验和测量,若测得探测器环绕该行星运动的周期为T 0,试问:该行星的平均密度为多少?(假定行星为球体,且已知万有引力恒量为G )【解析】 (1)火箭起飞前有:N 1=mg 0 火箭起飞后有:N 2-mg =mg 02 且有N 1N 2=1718GMmR 2=mg 0 GMm(R +h )2=mg联立以上各式解得h =R2.(2)设行星半径为r ,质量为M ,密度为ρ,则 GM 1m r 2=mr ⎝⎛⎭⎫2πT 02由ρ=M 1V ,V =43πr 3得ρ=3πGT 20. 【答案】 (1)R 2 (2)3πGT 2012.中国计划在2017年实现返回式月球软着陆器对月球进行科学探测,宇航员在月球上着陆后,自高h 处以初速度v 0水平抛出一小球,测出水平射程为L (这时月球表面可以看成是平坦的),已知月球半径为R ,万有引力常量为G .求:(1)月球表面处的重力加速度及月球的质量M 月;(2)如果要在月球上发射一颗绕月球运行的卫星,所需的最小发射速度为多大?(3)当着陆器绕距月球表面高H 的轨道上运动时,着陆器环绕月球运动的周期是多少?【解析】 (1)设月球表面的重力加速度为g ,由平抛运动规律有h =12gt 2① L =v 0·t ②得g =2h v 20L 2③ 着陆器在月球表面所受的万有引力等于重力,GM 月m R 2=mg ④得M 月=2h v 20R 2GL 2⑤ (2)卫星绕月球表面运行,有GM 月m ′R 2=m ′v 2R ⑥联立⑤⑥得v =v 0L2hR ⑦ (3)由牛顿第二定律有G M 月m (R +H )2=m (R +H )4π2T 2⑧联立⑤⑧得T =2π2L 2(R +H )3hR 2v 20. 【答案】 (1)2h v 20L 2 2h v 20R 2GL 2 (2)v 0L 2hR (3)2π2L 2(R +H )3hR 2v 20。
专题天体运动的三大难点破解剖析宇宙中的双星三星模型讲义
高中物理剖析宇宙中的双星、三星模型一、考点突破:考点课程目标备注双星、三星模型1. 掌握双星、三星模型的向心力来源;2. 会根据万有引力定律求解双星、三星模型的周期,线速度等物理量;3. 掌握两种模型的特点;双星问题是万有引力定律在天文学上的应用的一个重要内容,主要考查转动星体向心力来源及参数之间的关系,高考重点,属于高频考点中等难度,命题形式选择题居多;二、重难点提示:重点:1.根据万有引力定律求解双星、三星模型的周期,线速度等物理量;2. 双星、三星两种模型的特点;难点:双星、三星模型的向心力来源;一、双星模型绕公共圆心转动的两个星体组成的系统,我们称之为双星系统,如图所示,双星系统模型有以下特点:1各自需要的向心力由彼此间的万有引力相互提供即221LmGm=m1ω错误!r1,221LmGm=m2ω错误!r2;2两颗星的周期及角速度都相同即T1=T2,ω1=ω2;3两颗星的半径与它们之间的距离关系为r1+r2=L;4两颗星到圆心的距离r1、r2与星体质量成反比即1221r r m m =; 5双星的运动周期T =2π)(213m m G L +;6双星的总质量公式m 1+m 2=GT L 2324π;二、三星模型第一种情况:三颗星连在同一直线上,两颗星围绕中央的星静止不动在同一半径为R 的圆轨道上运行;特点:1. 周期相同; 2. 三星质量相同; 3. 三星间距相等;4. 两颗星做圆周运动的向心力相等;原理:A 、C 对B 的引力充当向心力,即:,可得:GmR T 543π=,同理可得线速度:R GmR 25; 第二种情况:三颗星位于等边三角形的三个顶点上,并沿等边三角形的外接圆轨道运行;特点:1. 运行周期相同; 2. 半径相同; 3. 质量相同; 4. 所需向心力相等;原理:B 、C 对A 的引力的合力充当向心力,即:r Tm R Gm F 2222430cos 2π==︒合,其中R r 33=, 可得:运行周期GmRR T 32π=;例题1 如图,质量分别为m 和M 的两颗星球A 和B 在引力作用下都绕O 点做匀速圆周运动,星球A 和B 两者中心之间距离为L;已知A 、B 的中心和O 三点始终共线,A 和B 分别在O 的两侧;引力常数为G;1求两星球做圆周运动的周期;2在地月系统中,若忽略其他星球的影响,可以将月球和地球看成上述星球A 和B,月球绕其轨道中心运行的周期记为T 1;但在近似处理问题时,常常认为月球是绕地心做圆周运动的,这样算得的运行周期为T 2;已知地球和月球的质量分别为×1024kg 和 ×1022kg ;求T 2与T 1两者平方之比;结果保留3位有效数字思路分析:1A 和B 绕O 做匀速圆周运动,它们之间的万有引力提供向心力,则A 和B 的向心力相等;且A 和B 和O 始终共线,说明A 和B 有相同的角速度和周期;因此有,,连立解得,;对A 根据牛顿第二定律和万有引力定律得, 化简得:;2将地月看成双星,由⑴得;将月球看作绕地心做圆周运动,根据牛顿第二定律和万有引力定律得; 化简得:;所以两种周期的平方比值为 答案:12例题2 宇宙中存在一些离其他恒星较远的、由质量相等的三颗星组成的三星系统,通常可忽略其他星体对它们的引力作用;已观测到稳定的三星系统存在两种基本的构成形式:一种是三颗星位于同一直线上,两颗星围绕中央星在同一半径为R 的圆轨道上运行;另一种形式是三颗星位于等边三角形的三个顶点上,并沿外接于等边三角形的圆形轨道运行;设每个星体的质量均为m;1试求第一种形式下,星体运动的线速度和周期;2假设两种形式下星体的运动周期相同,第二种形式下星体之间的距离应为多少 思路分析:1对于第一种运动情况,以某个运动星体为研究对象,根据牛顿第二定律和万R M r m 22ωω=L R r =+L M m m R +=L M m Mr +=L m M MT m L GMm +=22)2(π)(23m M G L T +=π)(231m M G L T +=πL T m LGMm 22)2(π=GML T 322π=01.11098.51035.71098.5)(242224212=⨯⨯+⨯=+=M M m T T )(23m M G L T +=π有引力定律有:F 1=22R Gm ,222)2(R Gm F =,F 1+F 2=mv 2/R 运动星体的线速度:v =; 周期为T,则有T=, T=4π;2设第二种形式星体之间的距离为r,则三个星体做圆周运动的半径为R′=;由于星体做圆周运动所需要的向心力靠其他两个星体的万有引力的合力提供,由力的合成和牛顿运动定律有:F 合=cos30°,F 合=m R′,所以r=R;答案:12知识脉络 一、RGmR25vRπ2GmR 53︒30cos 2/r 222rGm 22π4T31)512(R GmR 25GmR 5π43R 31)512(双星模型:绕公共圆心转动的两个星体组成的系统,我们称之为双星系统。
(完整版)双星三星四星问题
双星模型、三星模型、四星模型一、双星问题1.模型构建:在天体运动中,将两颗彼此相距较近,且在相互之间万有引力作用下绕两者连线上的某点做角速度、周期相同的匀速圆周运动的恒星称为双星。
2.模型条件: (1)两颗星彼此相距较近。
(2)两颗星靠相互之间的万有引力提供向心力做匀速圆周运动。
(3)两颗星绕同一圆心做圆周运动。
3.模型特点: (1)“向心力等大反向”——两颗星做匀速圆周运动的向心力由它们之间的万有引力提供。
(2)“周期、角速度相同”——两颗恒星做匀速圆周运动的周期、角速度相等。
(3)三个反比关系:m1r1=m2r2;m1v1=m2v2;m1a1=m2a2推导:根据两球的向心力大小相等可得,m1ω2r1=m2ω2r2,即m1r1=m2r2;等式m1r1=m2r2两边同乘以角速度ω,得m1r1ω=m2r2ω,即m1v1=m2v2;由m1ω2r1=m2ω2r2直接可得,m1a1=m2a2。
(4)巧妙求质量和:Gm1m2L2=m1ω2r1①Gm1m2L2=m2ω2r2②由①+②得:G m1+m2L2=ω2L ∴m1+m2=ω2L3G4. 解答双星问题应注意“两等”“两不等”(1)“两等”: ①它们的角速度相等。
②双星做匀速圆周运动向心力由它们之间的万有引力提供,即它们受到的向心力大小总是相等。
(2)“两不等”:①双星做匀速圆周运动的圆心是它们连线上的一点,所以双星做匀速圆周运动的半径与双星间的距离是不相等的,它们的轨道半径之和才等于它们间的距离。
②由m1ω2r1=m2ω2r2知由于m1与m2一般不相等,故r1与r2一般也不相等。
二、多星模型(1)定义:所研究星体的万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同.(2)三星模型:①三颗星位于同一直线上,两颗环绕星围绕中央星在同一半径为R的圆形轨道上运行(如图甲所示).②三颗质量均为m的星体位于等边三角形的三个顶点上(如图乙所示).(3)四星模型:①其中一种是四颗质量相等的恒星位于正方形的四个顶点上,沿着外接于正方形的圆形轨道做匀速圆周运动(如图丙).②另一种是三颗恒星始终位于正三角形的三个顶点上,另一颗位于中心O,外围三颗星绕O做匀速圆周运动(如图丁所示).三、卫星的追及相遇问题1、某星体的两颗卫星从相距最近到再次相距最近遵从的规律:内轨道卫星所转过的圆心角与外轨道卫星所转过的圆心角之差为2π的整数倍。
双星模型、三星模型、四星模型专练
双星模型、三星模型、四星模型专练双星模型、三星模型、四星模型专练1、天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星。
双星系统在银河系中很普遍。
利用双星系统中两颗恒星的运动特征可推算出它们的总质量。
已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T,两颗恒星之间的距离为r,试推算这个双星系统的总质量。
(引力常量为G)2、神奇的黑洞是近代引力理论所预言的一种特殊天体,探寻黑洞的方案之一是观测双星系统的运动规律.天文学家观测河外星系大麦哲伦云时,发现了LMCX3双星系统,它由可见星A和不可见的暗星B构成,两星视为质点,不考虑其他天体的影响.A、B围绕两者连线上的O 点做匀速圆周运动,它们之间的距离保持不变,如图4-2所示.引力常量为G,由观测能够得到可见星A的速率v和运行周期T. (1)可见星A所受暗星B的引力F a可等效为位于O点处质量为m′的星体(视为质点)对它的引力,设A和B的质量分别为m1、m2,试求m′(用m1、m2表示).(2)求暗星B的质量m2与可见星A的速率v、运行周期T和质量m1之间的关系式;(3)恒星演化到末期,如果其质量大于太阳质量m s的2倍,它将有可能成为黑洞.若可见星A的速率v=2.7×105 m/s,运行周期T=4.7π×104 s,质量m1=6m s,试通过估算来判断暗星B有可能是黑洞吗?(G=6.67×10-11 N·m2/kg2,m s=2.0×1030 kg)3、天体运动中,将两颗彼此相距较近的行星称为双星,它们在万有引力作用下间距始终保持不变,并沿半径不同的同心轨道作匀速园周运动,设双星间距为L,质量分别为M1、M2,试计算(1)双星的轨道半径(2)双星运动的周期。
4、如右图,质量分别为m和M的两个星球A和B在引力作用下都绕O点做匀速周运动,星球A和B两者中心之间距离为L。
专题:天体运动的三大难点破解3 剖析宇宙中的双星、三星模型(讲义)
重点:1. 根据万有引力定律求解双星、三星模型的周期,线速度等物理量;2. 双星、三星两种模型的特点。
难点:双星、三星模型的向心力来源。
一、双星模型绕公共圆心转动的两个星体组成的系统,我们称之为双星系统,如下图,双星系统模型有以下特点:〔1〕各自需要的向心力由彼此间的万有引力互相提供即221L m Gm =m 1ω21r 1,221L m Gm =m 2ω22r 2; 〔2〕两颗星的周期及角速度都一样即T 1=T 2,ω1=ω2;〔3〕两颗星的半径与它们之间的间隔 关系为r 1+r 2=L ;〔4〕两颗星到圆心的间隔 r 1、r 2与星体质量成反比即1221r r m m =; 〔5〕双星的运动周期T =2π)(213m m G L +;〔6〕双星的总质量公式m 1+m 2=GT L 2324π。
二、三星模型第一种情况:三颗星连在同一直线上,两颗星围绕中央的星〔静止不动〕在同一半径为R 的圆轨道上运行。
特点:1. 周期一样; 2. 三星质量一样; 3. 三星间距相等;4. 两颗星做圆周运动的向心力相等。
原理:A 、C 对B 的引力充当向心力,即:,可得:GmR T 543π=,同理可得线速度:R Gm R 25。
第二种情况:三颗星位于等边三角形的三个顶点上,并沿等边三角形的外接圆轨道运行。
特点:1. 运行周期一样; 2. 半径一样; 3. 质量一样; 4. 所需向心力相等。
原理:B 、C 对A 的引力的合力充当向心力,即:r Tm R Gm F 2222430cos 2π==︒合,其中R r 33=,可得:运行周期GmRR T 32π=。
例题1 如图,质量分别为m 和M 的两颗星球A 和B 在引力作用下都绕O 点做匀速圆周运动,星球A 和B 两者中心之间间隔 为L 。
A 、B 的中心和O 三点始终共线,A 和B 分别在O 的两侧。
引力常数为G 。
〔1〕求两星球做圆周运动的周期。
〔2〕在地月系统中,假设忽略其他星球的影响,可以将月球和地球看成上述星球A 和B ,月球绕其轨道中心运行的周期记为T 1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《双星及三星模型》导学提纲
设计人: 审核人:高三物理备课组
班级: 组名: 姓名:
【学习目标】 1. 理解双星模型特点
2. 掌握双星及三星运动的向心力来源 【导读流程】
一.
双星模型条件及特点 :
例1 双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T ,经过一段时间演化后,两星总质量变为原来的k 倍,两星之间的距离变为原来的n 倍,则此时圆周运动的周期为( )
A.T k n 23
B.T k n 3
C.T k
n 2
D.T k n
例2(2015•天门模拟)经长期观测人们在宇宙中已经发现了“双星系统”.“双星系统”由两颗相距较近的恒星组成,每个恒星的线度远小于两个星体之间的距离,而且双星系统一般远离其他天体.如图所示,两颗星球组成的双星,在相互之间的万有引力作用下,绕连线上的O 点做周期相同的匀速圆周运动.现测得两颗星之间的距离为L ,质量之比为m 1:m 2=3:2.则可知( )
A. m 1、m 2做圆周运动的线速度之比为3:2
B. m 1、m 2做圆周运动的角速度之比为3:2
C. m 1做圆周运动的半径为 2/5L
D. m 2做圆周运动的半径为 2/5L
二. 三星模型的向心力来源 :
例3. (2015安微理综)由三颗星体构成的系统,忽略其它星体对它们的作用,存在着一种运
动形式:三颗星体在相互之间的万有引力作用下,分别位于等边三角形的三个顶点上,绕某一共同的圆心O 在三角形所在的平面内做相同角速度的圆周运动(图示为A 、B 、C 三颗星体质量不相同时的一般情况)。
若A 星体质量为2m ,B 、C 两星体的质量均为m ,三角形的边长为a ,求: (1)A 星体所受合力大小F A ; (2)B 星体所受合力大小F B ;
(3)C 星体的轨道半径R C ;
(4)三星体做圆周运动的周期T 。
例4.宇宙中存在一些离其他恒星较远的、由质量相等的三颗星组成的三星系统,通常可忽略其他星体对它们的引力作用,已观测到稳定的三星系统存在两种基本的构成形式:一种是三颗星位于同一直线上,两颗星围绕中央星在同一半径为
的圆轨道上运行,如图甲所示。
另一种形式是三
颗星位于等边三角形的三个项点上,并沿外接于等边三角形的圆形轨道运行,如图乙所示,设每个星体的质量均为
,
(1)试求第一种形式下,星体运动的线速度和周期;
(2)假设两种形式星体的运动周期相同,第二种形式下星体之间的距离应为多少。