4静电场中的导体
4静电场中的导体

3) 推论:处于静电平衡的导体是等势体 导体表面是等势面 导 体 是 等 势 体
en
E dl
E
+
+ + +
E dl 0
导体内部电势相等
dl
+
+
et
U AB E dl 0
AB
A
B
注意 当电势不同的导体相互接触或用另一导体(例如导 线)连接时,导体间将出现电势差,引起电荷宏观 的定向运动,使电荷重新分布而改变原有的电势差, 直至各个导体之间的电势相等、建立起新的静电平 衡状态为止。
各个分区的电场分布(电场方向以向右为正):
1 2 3 4 在Ⅰ区:E 2 0 2 0 2 0 2 0 1 Q 方向向左 0 2 0 S
Eint 0
◆ 导体表面紧邻处的场强必定和导体表面垂直。
E S 表面
证明(1):如果导体内部有一点场强不为零,该点的 自由电子就要在电场力作用下作定向运动,这就不 是静电平衡了。 证明(2):若导体表面紧邻处的场强不垂直于导体表 面,则场强将有沿表面的切向分量 Et,使自由电子 沿表面运动,整个导体仍无法维持静电平衡。
const .
E dS
S
q
i
i
0
E dl 0
L
3. 电荷守恒定律
讨论题:
1. 将一个带电+q、半径为 RB 的大导体球 B 移近一 个半径为 RA 而不带电的小导体球 A,试判断下列说 法是否正确。 +q B (1) B 球电势高于A球。 (2) 以无限远为电势零点,A球的电势 A 0 。 (3) 在距 B 球球心的距离为r ( r >> RB ) 处的一点P, q /(40。 r2) 该点处的场强等于 (4) 在 B 球表面附近任一点的场强等于 B / 0 ,
静电场中的导体和电解质

Q + + + + ++ + + + + E= 0 S+ + + + + + + + ++
Q q + + + +++ + +-q + + - E= 0 S + 结论: 电荷分布在导体外表面, 导体 + q + + 内部和内表面没净电荷. + - - + + + + ++ 腔内有电荷q: E 0 q 0
i
结论: 电荷分布在导体内外两个表面,内表面感应电荷为-q. 外表面感应电荷为Q+q.
NIZQ
第 5页
大学物理学 静电场中的导体和电介质
结论: 在静电平衡下,导体所带的电荷只能分布在导体的 表面,导体内部没有净电荷. • 静电屏蔽 一个接地的空腔导体可以隔离内 外电场的影响. 1. 空腔导体, 腔内没有电荷 空腔导体起到屏蔽外电场的作用. 2. 空腔导体,腔内存在电荷 接地的空腔导 体可以屏蔽内、 外电场的影响.
NIZQ
第 3页
大学物理学 静电场中的导体和电介质
• 静电平衡时导体中的电场特性
E内 0
场强:
ΔVab
b
a
E dl 0
• 导体内部场强处处为零 E内 0 • 表面场强垂直于导体表面 E表面 // dS
• 导体为一等势体 V 常量 • 导体表面是一个等势面
S
0 E P dS qi
大学物理——静电场中的导体和电介质

v E
二、导体上电荷的分布 由导体的静电平衡条件和静电场的基本性 dV 质,可以得出导体上的电荷分布。 1.导体内部无静电荷 证明:在导体内任取体积元 dV
E内 = 0
r r 由高斯定理 E dS ⋅ = 0 ∫
S
∑q = ∫ ρ dV = 0
i i V
Q体积元任取 导体带电只能在表面!
ρ =0
证毕
A B σ1 σ 2σ 3
场 两板之间 强 分 布 两板之外
Q E = ε0S
r E
E=0
练习
已知: 两金属板带电分别为q1、q2 求:σ1 、σ2 、σ3 、σ4
q1
q2
q1 + q2 σ1 = σ 4 = 2S
σ1
σ2
σ3
σ4
q1 − q2 σ 2 = −σ 3 = 2S
2.导体表面电荷 表面附近作圆柱形高斯面
r r σΔS 0 ∫ E • dS = E ⋅ ΔS ⋅ cos 0 =
σ
r E
ΔS
ε0
σ ∴E = ε0
r σ ^ ^ E表 = n n :外法线方向
ε0
3.孤立带电导体表面电荷分布 一般情况较复杂;孤立的带电导体,电荷 分布的实验的定性的分布: 曲率较大,表面尖而凸出部分,电荷面密度较大 曲率较小,表面比较平坦部分,电荷面密度较小 曲率为负,表面凹进去的部分,电荷面密度最小
例3.已知:导体板A,面积为S、带电量Q,在其旁边 放入导体板B。 求:(1)A、B上的电荷分布及空间的电场分布 (2)将B板接地,求电荷分布
σ1 σ 2 σ 3 σ4 − − − =0 a点 2ε 0 2ε 0 2ε 0 2ε 0
A B σ1 σ 2σ 3 σ 4
大学物理-静电场中的导体

E内= 0 等势体
静电平衡时的导体
接地 :取得与无限远相同的电势 通常取为零)。 (通常取为零)。
6
半径为R的金属球与地相连接 的金属球与地相连接, 例1. 半径为 的金属球与地相连接,在与球心 相距d=2R处有一点电荷 处有一点电荷q(>0),问球上的 相距 处有一点电荷 , 感应电荷 q'=? q'?q =
q3
q2 q1
B
R1 R2
A
R3
22
解: (1)当球体和球壳为一般带电体时 ) 用高斯定理可求得场强分布为
r −R E3 = (q1 + 3 Q) ( R2 ≤ r ≤ R3 ) 2 4πε0r R3 − R 1
3 3 2 3 2
4πε0 R q1 E2 = 2 4πε0r
E1 =
q1
3 1
r
(r ≤ R1 )
E = σ / εo
1 3.面电荷密度正比于表面曲率 σ ∝ R 面电荷密度正比于表面曲率
31
例4-2 (3)如果外壳接地,情况如何? )如果外壳接地,情况如何? (4)如果内球接地,情况又如何? )如果内球接地,情况又如何? (3)如果外壳接地 ) 则: 外壳电势= 外壳电势= 无穷远处电势 =0 外壳带电量= 外壳带电量=Q’
S
ε0 V
S 是任意的。 是任意的。 令S→ 0,则必有ρ 内 = 0。 。
8
必为零。 2.导体壳: 外可不为零,但σ内 和 E内必为零。 导体壳: 可不为零, 导体壳 σ
σ内 = 0
E内 = 0
S内
σ外
理由: 理由: 在导体中包围空腔选取 高斯面S 高斯面 , 则:
S
r r ∫ E导内 ⋅ d s = 0
静电场中的导体

分布在导体的表面上。
4、导体以外,靠近导体表面附近处的场强大小与导 体表面在该处的面电荷密度 的关系
E 0
二
静电平衡时导体上电荷的分布
1、 实心导体
+
+ + + +
E 0
+
S
+ + +
+
q E dS 0
S
0
q 0
结论: 导体内部无电荷,电荷只能分布
q
+
q
+
+
q
+
实验验证
外表面所带感应电荷全部入地
总结: 空腔导体(无论接地与否)将使腔内不
受外场影响。
接地空腔导体将使外部空间不受腔内电
场的影响。
四 有导体存在时场强和电势的计算
电荷守恒定律 电荷分布
静电平衡条件
E U
例1、有一外半径R1,内半径为R2的金属球壳。在球壳 中放一半径为R3的金属球,球壳和球均带有电量10-8C的 正电荷。问:(1)两球电荷分布。(2)球心的电势。 (3)球壳电势。 + + + 解:(1)、电荷+q分布在内球表面。 + - + 球壳内表面带电-q。
S A+ +
A
+
+
B+ B +
+ +
+
b、空腔内有带电体
E dS 0
S1
q
i
0
电荷分布在表面上
思考: 内表面上有电荷吗?
E dS 0 qi 0
静电场中的导体与电介质---常见疑问解答

静电场中的导体与电介质---常见疑问解答1. 无限大均匀带电平面(面电荷密度为σ)两侧场强为)2/(0εσ=E ,而在静电平衡状态下,导体表面(该处表面面电荷密度为σ)附近场强为0/εσ=E ,为什么前者比后者小一半?参考解答:关键是题目中两个式中的σ不是一回事。
下面为了讨论方便,我们把导体表面的面电荷密度改为σ′,其附近的场强则写为./0εσ'=E对于无限大均匀带电平面(面电荷密度为σ),两侧场强为)2/(0εσ=E .这里的 σ 是指带电平面单位面积上所带的电荷。
对于静电平衡状态下的导体,其表面附近的场强为./0εσ'=E这里的 σ′是指带电导体表面某处单位面积上所带的电荷。
如果无限大均匀带电平面是一个静电平衡状态下的无限大均匀带电导体板,则σ是此导体板的单位面积上(包括导体板的两个表面)所带的电荷,而σ′仅是导体板的一个表面单位面积上所带的电荷。
在空间仅有此导体板(即导体板旁没有其他电荷和其他电场)的情形下,导体板的表面上电荷分布均匀,且有两表面上的面电荷密度相等。
在此情况下两个面电荷密度间的关系为σ =2σ′。
这样,题目中两个E 式就统一了。
2. 把一个带电物体移近一个导体壳,带电体单独在导体壳的腔内产生的电场是否为零?静电屏蔽效应是如何发生的?参考解答:把一个带电物体移近一个导体壳时,带电体单独在导体壳的腔内产生的电场不是零,因为带电物体在空间任何一点都可以产生电场。
本题正确的说法是:带电物体上的电荷和导体壳外表面上的感应电荷在导体壳外表面以内空间(包括导体金属部分占据的空间和导体壳的腔内空间)所产生的合电场为零(详细解释仍需用到“惟一性定理”),也可以说是在导体壳外表面以内空间,导体壳外表面上感应电荷的电场把带电物体上电荷所产生的电场给抵消了。
正因有以上结论,一个导体壳可以保护其腔内空间不受导体壳外带电体的影响,这就是静电屏蔽(接地导体壳可保护壳外空间不受腔内带电体的影响也是静电屏蔽)。
电场中的导体和电介质

二、电容器
1、电容器的定义
两个带有等值而异号电荷的导体 所组成的系统,叫做电容器。
+Q
-Q
2、电容器的电容
如图所示的两个导体放在真空中,它们所 带的电量为+Q、-Q,它们的电势分别为 V1、V2,定义电容器的电容为: 计算电容的一般步骤为: •设电容器的两极板带有等量异号电荷; •求出两极板之间的电场强度的分布; •计算两极板之间的电势差; •根据电容器电容的定义求得电容。
3-4 物质中的电场
在静电场中总是有导体或电介质存在的,而且静电场 的一些应用都要涉及静电场中导体和电介质的行为, 以及它们对静电场的影响。
一、静电场中的导体
1、静电感应及静电平衡
若把导体放在静电场中,导体中的自由电子将在电场力的 作用下作宏观定向运动,引起导体中电荷重新分布而呈现 出带电的现象,叫作静电感应。 开始时, E’< E0 ,金属内部的场强不零, 自由电子继续运动,使得E’增大。这个过 程一直延续到E’= E0即导体内部的场强为零 时为止。此时导体内没有电荷作定向运动, 导体处于静电平衡状态。
根据静电平衡条件,空腔 由静电平衡条件,腔内壁非均匀 分布的负电荷对外效应等效于: 导体内表面总的感应电荷为 -q, 非均匀分布;外表面,总的感 在与 q 同位置处置 q 。 应电荷为 q,非均匀分布。
9
R
q q q U U U U U 0 q 壳 地 内壁 外壁 q q O o d q外壁 0
C Q V
Q C= 4 0 R V
静电场中的导体

R1 r R2
E3
1
4
0
Q q/ r2
U
R1
E.dr
R2 R1
E2.dr
R2 E3.dr 0
r R2
q/
4 0
1 R1
1 R2
1
4 0
Q q/ R2
0,
解得
q
R 1
Q
R
2
故外球壳外表面荷电 Q q/ Q R1 Q
R2
17
10
例8-14 如图所示,一带正电Q的点电荷离半径为R的金属球壳 外的距离为d,求金属球壳上的感应电荷在球心O处的场强。
q/
R
r
E0 0 E/ d
Q
解 以球心为坐标原点,球心指向点电荷的方向为矢径方向,则
点电荷在球心处的场强
Q
E0 4 0 (R d )2 r0
又
E E/ E 0
内
0
q
总之,导体壳内部电场不受壳外电荷的影响,接地导体使 得外部电场不受壳内电荷的影响。这种现象称为静电屏蔽。
12
2、尖端放电
在带电尖端附近,电离的分子与周围分子碰撞,使周围的 分子处于激发态发光而产生电晕现象。
+ +
++ +++
+ +
+++
+
尖端效应在大多数情况下是有害的:如高压电线上的电晕, 故此,高压设备中的金属柄都做成光滑的球形。
△s面上σ均匀, E1=常矢 ,且垂直于导体表面,又E内=0
e
E表
E s1 1
0
ds
s
大学物理4第四讲等势面场强与电势的的关系,静电场中的导体-精选文档

d
0
+
d +
表面上: Ued E dl 0
+ l1 + l2 b+
U U U U a b d e
●整个导体连同表面为一个等势体。
15
e
二、导体上的电荷分布
1.实心导体 电荷只分布在导体表面,导体内部电荷为零。 证明:在导体内作任意高斯面
§17-5
等势面、场强与电势梯度的关系
一、等势面(电势分布的图示法)
●电场中电势相等的点所构成的曲面 1.等势面的规定 ●电场中任意相邻的两等势面之 间的电势差相等。
EE
a
b
c
U U U U U U U const c b a c b b a
U 例:点电荷场 P
1
P 2
E d l E n
5
在直角坐标中:
dU El dl
U Ez z
U Ex x
U Ey y
E dl
U U U ˆ ˆ ˆ E ( i j k ) gradU x y z
电势为标量,易于计算,而由关系
E g r a d UU 可更方便地求得 E 。
U const ,E 0 不是指等势面上
7
三、场强与电势梯度关系的应用 q ,求 E 例1:已知点电荷的电势 U 4 0 r 2 2 2 解: r x y z Y q U 2 2 2 + 4 x y z 0
U q x E x 2 2 2 3 / 2 x 4 ( x y z ) 0 U q y E y 2 2 2 3 / 2 y 4 ( x y z ) 0
大学物理 第四章静电场中的导体

R3
∞
ϕr = ∫r E2dr + ∫R E3dr + ∫R E4dr ( R1 ≤ r ≤ R2 )
2 3
R2
R3
∞
ϕr = ∫r E3dr + ∫R E4dr
3
R3
∞
( R2 ≤ r ≤ R3 )
ϕr = ∫ E4dr r
∞
(r ≥ R3 )
16
(2)如果球体和球 ) 壳均为导体, 壳均为导体, 再求电场分布 和电势分布。 和电势分布。 球体内
− − −
+ + +
E
① 所带电荷在带电体上可以自由移动 ② 电荷体密度 ρ = 0 ,电荷只能分布在表面 2 ( 静 电 平 衡 状 态 时)
一、静电感应(Electrostatic Induction) 静电感应
当导体受到外电场作用时, 当导体受到外电场作用时,不论导体原来 是否带电,导体中的运动电荷, 是否带电,导体中的运动电荷,在外电场力 的作用下,将相对于晶体点阵作宏观运动, 的作用下,将相对于晶体点阵作宏观运动, 引起导体上电荷重新分布的现象,称为静电 引起导体上电荷重新分布的现象, 感应现象。 感应现象。
0
∞
= ∫ E2dr + ∫ E4dr
r R3
20
R2
∞
球壳中
( R2 ≤ r ≤ R3 )
R3
ϕr = ∫ E3dr + ∫ E4dr = ∫ E4dr r R
3
0
∞
∞
R3
球壳外
(r ≥ R3 ) ϕr = ∫r E4dr
∞
21
导体接地
接地点的电势等于零。 接地点的电势等于零。
第9章-静电场中的导体和电介质

E 加上外电场后 外 E外
把金属导体置于外电场 中,自由电子将产生宏 观定向运动,导体中电 荷按照外电场特性和导 体形状形成特定的分布
在外电场作用下,引起 导体中电荷重新分布而呈 现出的带电现象,称为
静电感应现象 Electrostatic Induction
问:这种静电感应的过程是否会一直进行下去?
辨析
0 一块无限大均匀带电导体薄板,电荷面密度为 0
问:在它附近一点的场强=?
解:由无限大带电均匀平面两侧的场强公式,得
二、导体处于静电平衡状态时的场强分布
导体外部近表面处场强 E
方向:与该处导体表面垂直
E
0
n
大小:与该处导体表面电荷面密度 成正比。 E(nˆ )
0
S
ES
S 0
ΔS
P
E
0
E内=0
讨论:导体表面附近的场强公式
E
0
指导体表面附近场点近旁的导体电荷面密度
一、静电感应 导体的静电平衡条件
无外电场时
无外电场时,导体中 自由电子在金属内作无 规则热运动,而没有宏 观定向运动,整个导体 呈现电中性
无外电场时
导体的静电感应过程
E 外
加上外电场后
导体的静电感应过程
E 外
+
加上外电场后
导体的静电感应过程
E 外
+
+
加上外电场后
导体的静电感应过程
E 外
+ +
E 外
+ + + + +
4、静电场中的导体、电容、能量

一、金属导电模型 导体 conductor
静电场中的导体
导体中存在大量的可自由移动的电荷 绝缘体dielectric 也称 电介质 理论上认为电介质中一个自由移动的电荷也没有 半导体 semiconductor
带电性质介于上述两者之间
本节只涉及金属导体对场的影响
二、静电感应 当导体不带电,又没有外电场时,导体中的 正负电荷等量均匀分布,宏观上呈电中性。
R 9 109 m
若将地球看作导体球,它的电容为 C = 40R = 4 8.85 1012 6.4 106 7.11 104 F 法拉单位太大,工程中常使用:
微法(F)、皮法(pF)
1F 106 μF 1012 pF
二、电容器 电容 两个相互绝缘的导体组成的一个静电系 统—电容器.
E外
+
加上外电场后
导体的静电感应过程
E外
+
+ 加上外电场后
导体的静电感应过程
E外
+ + +
+ +
加上外电场后
导体的静电感应过程
E外
+ +
+ 加上外电场后
导体的静电感应过程
E外
+ + +
+ +
加上外电场后
导体的静电感应过程
E外
+ + +
+ +
加上外电场后
导体的静电感应过程 + + +
E外
+
若让它们带上等量异号电荷,两导体的电 势差为UA –UB,它随所带电荷的电量改变而 改变,但二者之比对同一系统不变.
第二章 静电场中的导体与电介质

第二章 静电场中的导体与电介质2.1 导体与电介质的区别:(1)宏观上,它们的电导率数量级相差很大(相差10多个数量级,而不同导体间电导率数量级最多就相差几个数量级)。
(2)微观上导体内部存在大量的自由电子,在外电场下会发生定向移动,产生宏观上的电流而电介质内部的电子处于束缚状态,在外场下不会发生定向移动(电介质被击穿除外)。
2.2静电场中的导体1. 导体对电场的响应:静电场中的导体,其内部的自由电子会发生定向漂移,电荷分布会发生变化,这是导体对电场的响应方式称为静电感应,导体表面会产生感应电荷,感应电荷激发的附加场会在导体内部削弱外电场直至导体内部不再有自由电子定向移动,导体内电荷宏观分布不再随时间变化,这时导体处于静电平衡状态。
2. 导体处于静电平衡状态的必要条件:0i E =(当导体处于静电平衡状态时,导体内部不再有自由电子定向移动,导体内电荷宏观分布不再随时间变化,自然其内部电场(指外场与感应电荷产生的电场相叠加的总电场)必为0。
3. 静电平衡下导体的电学性质:(1)导体内部没有净电荷,电荷(包括感应电荷和导体本身带的电荷)只分布在导体表面。
这个可以由高斯定理推得:ii sq E ds ε⋅=⎰⎰,S 是导体内“紧贴”表面的高斯面,所以0i q =。
(2)导体是等势体,导体表面是等势面。
显然()()0b a b i a V V E dl -=⋅=⎰,a,b 为导体内或导体表面的任意两点,只需将积分路径取在导体内部即可。
(3)导体表面以处附近空间的场强为:0ˆEn δε=,δ为邻近场点的导体表面面元处的电荷密度,ˆn为该面元的处法向。
简单的证明下:以导体表面面元为中截面作一穿过导体的高斯柱面,柱面的处底面过场点,下底面处于导体内部。
由高斯定理可得:12i s s dsE ds E ds δε⋅+⋅=⎰⎰⎰⎰,1s ,2s 分别为高斯柱面的上、下底面。
因为导体表面为等势面所以ˆE En=,所以1s E ds Eds ⋅=⎰⎰而i E =0所以0ds Eds δε=,即0ˆE n δε=(0δ>E 沿导体表面面元处法线方向,0δ<E 沿导体表面面元处法线指向导体内部)。
静电场中的导体和电介质

平行板电容器的电容,与极板的面积成正比,与极板 间的距离成反比。
圆柱形电容器的电容
两柱面间的场强大小 E Q 2 0 Lr 方向沿着径向 两柱面间的电势差
U A U B Edr Q 2 0 L ln R2 R1
R2
Q 2 0 Lr
R1
dr
柱形电容器的电容
dWe we dV
取半径为r,厚为dr的球壳, 电场总能量为: 其体积元为: 2
8r
2
dr
dV 4r dr
2
Q We dWe 8
R2
R1
dr 1 Q2 ( R2 R1 ) 2 r 2 4R2 R1
Q C U
4 0 R
★电量按半径比例进行重新分配
2 1 Q Q 2 Q 3 3 F 2 2 4π 0 R 18π 0 R
二. 电容器及其电容 常见的电容器: 平行板电容器----两块导体薄板; 圆柱形电容器----导体薄柱面; 球形电容器----导体薄球面; 当电容器的两极板分别带有等值异号电荷Q时,电荷Q与 两极板A、B间的电势差 (UA-UB) 的比值定义为电容器的 电容:
外 内
E内 ? S
★电荷只分布在外表面,内表面上处处无电荷
内表=0
E内=0
2、 若导体壳包围的空间(腔)有电荷:
内
q S ★内表面带电总量为-q,内表面上各处 电荷面密度取决于腔内电荷的分布
外
q内表 q
E内 0
3、静电屏蔽
S
A
Q
B
E内 0
在电子仪器中,用金属网罩把电路包起来,使其 不受外界带电体的干扰。 传送微弱电信号的导线,外表用金属丝编成的网 包起来,这种的导线叫屏蔽线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用接地空腔导体屏蔽内外场
+
-- -
+
-
+
-
+
+
-
+ + +
-
+ -
-
-
-
-
+ -
-- - - + - - +
+
+ +
解:由静电感应原理,球形腔B和C在静电平衡时 将分别在其腔内感应出-qb 和-qc的电荷,且因qb 和qc都分 别在其腔的中心,所以-qb 和-qc 都将分别均匀地分布于其腔的 内壁。因此,qb和qc与其感应电 荷的作用力都为零。又因静电 平衡时导体
导体的静电平衡
1.定义: 导体内部有自由电子,受静电场作用
作定向运动. 稳定后,导体上电荷静止不动。
2.条件: 内部:E 内 =0 外部:E垂直表面
b
E0
a
-
+ EE=0 + 内
+
b
U ab
E d l 0 内部和表面无电荷移动。
a
导体表面是等势面,整个 导体是等势体。
A B
qb
C
qc
qd
r
qb qc
球内电场强度为零,所以qb,qc和qd之间的相 互作用力都为零。由电荷守恒原理,可知导体球A 外表面有电荷qb+qc,但分布不均匀,所以这些电 荷与qd的相互作用力约为: (qb qc )qd F 2 4 0 r
电场对电荷的作用力
1.电场强度定义
E F q
电荷受到电场作用力:
F qE
电场作用力与电荷运动速率无关。
例电偶极子 匀场E中的电场力和力矩。
M 2 l 2
l
p ql 在均
sin qE pE sin
E
合力为0。当电偶极子静止时,力矩也为 0。上面结果可用矢量积表示出来。
M PE
En
感应电荷
例.空腔导体不带电。S1,S2,S3为闭合曲 S1、S2 面,电通量为零的曲面是_________。 S2 场强处处为零的曲面是________。
S3
S2 S1
q
例有一大块金属平板,面积S,带有总 电量Q,在其近旁平行地放置第二块 金属平板,此板原来不带电。
求: 1、静电平衡时的电荷分布,及周围电 场分布; 2、当第二块板接地时,情况会怎样?
+ + + +
+ ++
+ + A + + + + +- Nhomakorabea-
+
+ +
B
+
+
3.静电平衡时导体的电荷分布 1)导体内部没有净电荷, 净电荷只分布在导体表面上。
证明:
•实心导体q
S
E dS
0
+
+ +
q
+ +
+
S
+
q
+
E内=0
Sq内=0
•空腔导体q
注意标出感应电荷
+ + + + q+Q + + + + Q + -Q + ++ + + + + ++ +
'
' 1
' 2
Q S
'
2
右 边 电 P 场 为 零
' 4
由高斯定律
0
' '
2 3
' '
4 1
'
3
Q S
P点电场为0
0
' 1 ' 2 ' 3
0
例 在原不带电的金属球壳中心放
点电荷q,内外半径分别为R1 ,R2 。 + 求电荷及电场分布。 -
- --- -
2)带电导体表面场强
推导:高斯定律
ˆ E n
: E DS
DS 0
E
DS
0
E 表面电荷密度
曲率半径 电场极大,使得周围空气分子电离;实验规律!
1
尖端放电
孤立导体
4. 有导体时静电场的计算
有导体时注意:
内部 E i 0
表面 E 等势体
-
-
qe
E 4 r
2
qi
-
+
0
E1
q 4 0 r
2
E3
q qi qe 4 0 r
2
q 4 0 r
2
如果用细导线联结AB,
q 与 qi 中和 系统的电荷仍为q, 但 E 内 0
E 外 q 4 0 r
2
+
+
内
+q
+
外
+
+
• 电势?
5. 静电屏蔽
+
-
解: 导体内部电场为0, 电
荷为零。S为高斯面,则
qi q 0
- + + S +
+ q +
+ +
qi -
qe
+
金属球壳电荷守恒
qi qe 0 qe qi q
计算E:
+ +
qi +q + + 由球对称,取半径为r的 3 2 1 + + - + - + 高斯球面 +
E 2 0,
Q 1 2 S - - - - - (1 - )
3 4 0 - - - - - (2) -
1 2 3 4
A
B
分析:导体内部 E=0
通量为零,内部总电荷为零
2 3 0 - - - - - (3 - )
E p E1 E 2 E 3 E 4 0
.p
Q1 0
Q 2S
4
2 0
1
2 0
2
2 0
3
2 0
1 2 4
3
Q 2S
4 1 2 3 - - - - -(4) -
2、第二块板接地,情况如何?
右面电荷跑到地球远处表面
' 1
2
'
' 3
4 0 左边的板电荷仍守恒