初中数学完全平方公式教案范文参考

合集下载

初中数学:完全平方公式的练习和应用教案

初中数学:完全平方公式的练习和应用教案

初中数学:完全平方公式的练习和应用教案一、教学目标1. 能够理解完全平方公式的定义。

2. 能够熟练掌握完全平方公式的运用方法,包括如何求解完全平方以及如何利用完全平方公式进行因式分解。

3. 能够通过大量的练习加深对完全平方公式的理解。

4. 能够准确地应用完全平方公式解决实际问题。

二、教学重难点1. 教学重点:完全平方公式的定义与运用方法。

2. 教学难点:如何应用完全平方公式解决实际问题。

三、教学内容1. 完全平方公式的定义完全平方公式是一个常用的运算公式,用来求一个二次项式的平方。

具体来说,就是这个形式:$$(a+b)^2=a^2+2ab+b^2$$其中,$a$ 和 $b$ 表示任意实数。

可以看出,这个公式可以将一个二次项式展开,得到一些类似于$ab$ 的中间项,其中 $2$ 代表了 $a$ 和 $b$ 的个数。

2. 完全平方公式的运用方法基于完全平方公式的定义,我们可以通过一个简单的例子来说明完全平方公式的运用方法:$$(x+3)^2=x^2+2\times x \times 3 +3^2=x^2+6x+9$$示例说明:对于$(x+3)^2$,我们可以根据完全平方公式直接计算出它的平方结果$x^2+6x+9$。

我们在处理题目时,只需要将问题转化为计算一个二次项式的平方,代入完全平方公式进行计算即可。

3. 完全平方公式的应用在日常生活和工作中,我们可以使用完全平方公式来解决一些实际问题。

以下是一些应用完全平方公式的例子:例1:已知一个教室长为 $12$ 米,宽为 $8$ 米。

建筑师将它围起来,要用多少根长为 $6$ 米的木条?解:建筑师把长、宽两边都用木条护住,所用根数为$2(12+8)=40$,用完全平方公式可以很快计算出答案:$$40^2=1600$$$$40^2=36^2+8^2+2\times 36\times8=1296+64+576=1936$$又得出$1936=44^2$用的木条数量约为 $44\div 6=7$ 根。

数学《完全平方公式》教案

数学《完全平方公式》教案

数学《完全平方公式》教案【教学目标】1. 理解并掌握完全平方公式。

2. 能够运用完全平方公式解决相关问题。

【教学内容】1. 什么是完全平方数?2. 完全平方公式的概念、公式及运用。

3. 题目练习。

【教学步骤】Step1. 导入以单项式 x^2+6x+9 为例,提出 x^2 及 9 这两项,请同学们思考这两项之间是否有什么关系。

Step2. 概念讲解1. 完全平方数的概念:一个数的平方根是整数,就称这个数为完全平方数。

例如,1, 4, 9, 16, 25, 36, \cdots 都是完全平方数。

2. 完全平方公式的概念:将某个一元二次多项式改写为平方形式,这个改写的方法叫做完全平方公式。

举例说明,对于公式 a^2 + 2ab + b^2,如果将 a 与 b 这两个未知数看作相同的数,那么就可以写成 (a+b)^2,这种分解方法就叫做完全平方公式。

Step3. 公式讲解(1)公式:(a+b)^2=a^2+2ab+b^2(2)例题讲解例1:使用完全平方公式化简 x^2+8x+16。

解:我们可以将x^2+8x+16化成 (x+4)^2 的形式,逐步证明如下:\begin{aligned}x^2+8x+16 &= x^2+2(4)(x) + 4^2 \\&= (x+4)^2\end{aligned}因此, x^2+8x+16 可以化简为 (x+4)^2。

Step4. 练习1. 化简 y^2 + 6y + 9。

答:(y+3)^22. 化简 2a^2 + 8ab + 8b^2。

答:2(a+2b)^23. 化简 9s^2 + 12st + 4t^2。

答:(3s+2t)^2【教学反思】通过以上教学,同学们应该能够了解到完全平方数及完全平方公式的概念、公式及运用方法。

针对单项式及多项式的例题,有的可以结合化简方法,有的可以结合分解方法,这些方法的练习及巩固,有其相应的难度,同学们可以根据实际情况来选择合适的练习题目。

数学教案:完全平方公式

数学教案:完全平方公式

数学教案:完全平方公式
数学教案:完全平方公式
作为一名专为他人授业解惑的人民教师,可能需要进行教案编写工作,教案是教学活动的依据,有着重要的地位。

我们应该怎么写教案呢?以下是小编精心整理的数学教案:完全平方公式,欢迎大家分享。

数学教案:完全平方公式1
1.能根据多项式的乘法推导出完全平方公式;(重点)
2.理解并掌握完全平方公式,并能进行计算.(重点、难点)
一、情境导入
计算:
(1)(x+1)2; (2)(x-1)2;
(3)(a+b)2; (4)(a-b)2.
由上述计算,你发现了什么结论?
二、合作探究
探究点:完全平方公式。

《完全平方公式》教案

《完全平方公式》教案

《完全平方公式》教案
一、教学目标
1. 知识与技能:掌握完全平方公式的推导过程和结构特点,能够运用完全平方公式进行整式的乘法运算。

2. 过程与方法:通过观察、分析、归纳等方法,提高学生的数学思维能力和运算能力。

3. 情感态度价值观:培养学生的数学兴趣,增强学生的自信心。

二、教学重难点
1. 教学重点:完全平方公式的推导过程和结构特点。

2. 教学难点:运用完全平方公式进行整式的乘法运算。

三、教学方法
讲授法、演示法、练习法
四、教学过程
1. 导入:复习平方差公式,通过计算(a+b)(a-b)=a^2-b^2,引出今天的课题《完全平方公式》。

2. 知识讲解:讲解完全平方公式的推导过程和结构特点。

(1) 推导过程:(a+b)^2=a^2+2ab+b^2
(2) 结构特点:左边是两个相同的二项式相乘,右边是一个三项式,其中两项是左边两项的平方和,第三项是左边两项的积的2 倍。

3. 练习环节:学生进行练习,教师进行个别指导。

4. 课堂总结:老师对本节课的内容进行总结,强调重点和难点。

5. 布置作业:让学生在课后完成一些练习题,以巩固所学的知识。

五、教学反思
通过本次教学,学生对完全平方公式的推导过程和结构特点有了更深入的理解,能够运用完全平方公式进行整式的乘法运算。

在教学过程中,学生的积极性和参与度较高,通过练习和指导,让他们更加主动地去思考和表达自己的观点。

不足之处是,由于时间限制,有些学生在练习过程中还需要更多的指导和练习,需要在今后的教学中加以改进。

初中数学《完全平方公式》教学设计范文(精选7篇)

初中数学《完全平方公式》教学设计范文(精选7篇)

初中数学《完全平方公式》教学设计初中数学《完全平方公式》教学设计范文(精选7篇)作为一名教师,编写教学设计是必不可少的,借助教学设计可以提高教学效率和教学质量。

那么优秀的教学设计是什么样的呢?下面是小编帮大家整理的初中数学《完全平方公式》教学设计范文,欢迎阅读,希望大家能够喜欢。

初中数学《完全平方公式》教学设计篇1学习目标:1、经历探索完全平方公式的过程,发展学生观察、交流、归纳、猜测、验证等能力。

2、会推导完全平方公式,了解公式的几何背景,会用公式计算。

3、数形结合的数学思想和方法。

学习重点:会推导完全平方公式,并能运用公式进行简单的计算。

学习难点:掌握完全平方公式的结构特征,理解公式中a、b的广泛含义。

学习过程:一、学习准备1、利用多项式乘以多项式计算:(a+b)2 (a—b)22、这两个特殊形式的多项式乘法结果称为完全平方公式。

尝试用自己的语言叙述完全平方公式:3、完全平方公式的几何意义:阅读课本64页,完成填空。

4、完全平方公式的结构特征:(a+b)2=a2+2ab+b2(a—b)2=a2—2ab+b2左边是形式,右边有三项,其中两项是形式,另一项是()注意:公式中字母的含义广泛,可以是,只要题目符合公式的结构特征,就可以运用这一公式,可用符号表示为:(□±△)=□2±2□△+△25、两个完全平方公式的转化:(a—b)2= 2=()2+2()+()2=()二、合作探究1、利用乘法公式计算:(3a+2b)2 (2)(—4x2—1)2分析:要分清题目中哪个式子相当于公式中的a ,哪个式子相当于公式中的b2、利用乘法公式计算:992 (2)()2分析:要利用完全平方公式,需具备完全平方公式的结构,所以992可以转化()2,()2可以转化为()2。

3、利用完全平方公式计算:(a+b+c)2 (2)(a—b)3三、学习对照学习目标,通过预习,你觉得自己有哪些方面的收获?又存在哪些方面的疑惑?四、自我测试1、下列计算是否正确,若不正确,请订正;(1)(—1+3a)2=9a2—6a+1(2)(3x2—)2=9x4—(3)(xy+4)2=x2y2+16(4)(a2b—2)2=a2b2—2a2b+42、利用乘法公式计算:(1)(3x+1)2(2)(a—3b)2(3)(—2x+ )2(4)(—3m—4n)23、利用乘法公式计算:99924、先化简,再求值;( m—3n)2—( m+3n)2+2,其中m=2,n=3五、思维拓展1、如果x2—kx+81是一个完全平方公式,则k的值是()2、多项式4x2+1加上一个单项式后,使它能成为一个整式的完全平方,那么加上的单项式可以是()3、已知(x+y)2=9,(x—y)2=5 ,求xy的值4、x+y=4 ,x—y=10 ,那么xy=()5、已知x— =4,则x2+ =()初中数学《完全平方公式》教学设计篇2一、教材分析:(一)教材的地位与作用本节内容主要研究的是完全平方公式的推导和公式在整式乘法中的应用。

《完全平方公式》教案【通用七篇】

《完全平方公式》教案【通用七篇】

《完全平方公式》教案【通用七篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、致辞讲话、短语口号、心得感想、条据书信、合同协议、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as summary reports, speeches, phrases and slogans, thoughts and feelings, evidence letters, contracts and agreements, rules and regulations, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!《完全平方公式》教案【通用七篇】《完全平方公式》教案篇1一、教学目标:经历探索完全平方公式的过程,进一步发展符号感和推理能力;在变式中,拓展提高;通过积极参与数学学习活动,培养学生自主探究能力,勇于创新的精神和合作学习的习惯;重点是正确理解完全平方公式(a±b)2=a2±2ab+b2.并初步运用;难点是完全平方公式的运用。

初中数学完全平方公式教案范文

初中数学完全平方公式教案范文

初中数学完全平方公式教案范文一、教学目标1.理解完全平方公式的含义和作用;2.掌握完全平方公式的求值方法;3.运用完全平方公式解决实际问题;4.培养学生对数学问题的分析和解决能力。

二、教学重点1.理解完全平方的概念;2.掌握完全平方公式的应用;3.运用完全平方公式解决实际问题。

三、教学难点1.运用完全平方公式解决实际问题。

四、教学过程1.导入新课教师出示一个边长为x的正方形,并称其面积为A。

请学生以最简洁的方式表示出A的面积。

引导学生发现正方形的面积可以用x^2来表示,即A=x^2、然后教师出示一个边长为(a+b)的正方形,并告诉学生这个正方形的面积为多少。

引导学生用(x+y)^2中的x和y代替a和b,推测出(a+b)^2可以表示成什么样的式子。

教师引导学生发现(a+b)^2=a^2+2ab+b^2,并告诉学生这个公式叫做完全平方公式。

2.讲授完全平方公式的应用教师通过具体的例子讲解完全平方公式的运用,如求(3+4)^2,学生将该式子应用完全平方公式计算出结果,并进行验证。

教师再给学生提供一些类似的练习题,巩固他们对完全平方公式的运用。

3.解决实际问题教师给学生提供一些实际问题,如求一个长方形的面积,已知长和宽之和为x,宽为y。

学生根据题目中的条件,利用完全平方公式来求解。

4.拓展思考教师引导学生思考完全平方公式的推广和拓展,如(a-b)^2的展开式、(a+b)(a-b)的展开式等。

然后给学生提供相应的练习题,让学生运用所学知识解答。

五、课堂小结教师对本节课的内容进行总结,并提醒学生复习完全平方公式的应用方法和注意事项。

六、课后作业1.完成课堂练习题;2.准备下节课的知识预习。

七、教学反思通过本节课的教学,学生能够理解完全平方公式的含义和作用,能够运用完全平方公式解决实际问题。

同时,通过课堂实践和思考,学生的数学思维和解决问题的能力得到了培养和提高。

在今后的教学中,可以进一步拓展与完全平方公式相关的知识,丰富教学内容,提高学生的综合应用能力。

《完全平方公式》说课稿

《完全平方公式》说课稿

《完全平方公式》说课稿(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、自我总结、合同协议、条据书信、演讲致辞、规章制度、策划方案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, the shop provides you with various types of classic model essay, such as work summary, self-summary, contract agreement, memorandum letter, speech speech, rules and regulations, planning programs, teaching materials, composition, other model essay, etc. want to know different model essay format and writing style, please pay attention!《完全平方公式》说课稿《完全平方公式》说课稿作为一位兢兢业业的人民教师,时常要开展说课稿准备工作,编写说课稿是提高业务素质的有效途径。

完全平方公式说课稿(通用3篇)

完全平方公式说课稿(通用3篇)

What we are most proud of is not that we never fall, but that we can get up every time we fall.整合汇编简单易用(页眉可删)完全平方公式说课稿(通用3篇)完全平方公式说课稿1一、教材分析1、教材的地位和作用本节教材是初中数学七年级下册第一章第八节的内容,是初中数学的重要内容之一。

一方面,这是在学习了整式的加、减、乘、除及平方差公式的基础上,对多项式乘法的进一步深入和拓展;另一方面,又为学习《因式分解》《配方法》等知识奠定了基础,是进一步研究《一元二次方程》《二次函数》的工具性内容。

鉴于这种认识,我认为,本节课不仅有着广泛的实际应用,而且起着承前启后的作用。

2、学情分析从心理特征来说,初中阶段的学生逻辑思维能力有待培养,从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。

但同时,这一阶段的学生好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

从认知状况来说,学生在此之前已经学习了多项式乘法法则、平方差公式的探索过程,对“完全平方公式”已经有了初步的认识,为顺利完成本节课的教学任务打下了基础,但对于“完全平方公式”的理解,(由于其抽象程度较高,)学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。

3、教学重难点根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:对公式(a+b) 2=a2+2ab+b2的理解,包括它的推导过程、结构特点、语言表述(学生自己的语言)、几何解释。

难点确定为:从广泛意义上理解完全平方公式的符号含义,培养学生有条理的思考和语言表达能力。

二、教学目标分析新课标指出,教学目标应包括知识与技能目标,过程与方法目标,情感与态度目标这三个方面,而这三维目标又应是紧密联系的一个有机整体,学生学会知识与技能的过程同时成为学会学习,形成正确价值观的过程,这告诉我们,在教学中应以知识与技能为主线,渗透情感态度价值观,并把前面两者充分体现在过程与方法中。

初中完全平方公式教案

初中完全平方公式教案

初中完全平方公式教案一、教学目标:1. 让学生掌握完全平方公式的推导过程和应用。

2. 培养学生运用完全平方公式解决实际问题的能力。

3. 提高学生对数学知识的兴趣和积极性。

二、教学内容:1. 完全平方公式的推导。

2. 完全平方公式的应用。

3. 完全平方公式的拓展。

三、教学重点与难点:1. 完全平方公式的推导过程。

2. 完全平方公式的灵活运用。

四、教学过程:1. 导入:利用多媒体展示一个正方形,让学生观察并思考如何求得这个正方形的面积。

引导学生回顾平方公式,为新课的学习做好铺垫。

2. 新课讲解:a) 完全平方公式的推导:通过示例,讲解完全平方公式的推导过程,让学生理解并掌握完全平方公式的来源。

例如:(a+b)² = a² + 2ab + b²b) 完全平方公式的应用:讲解如何运用完全平方公式解决实际问题,例如:求解完全平方方程、估算无理数的大小等。

c) 完全平方公式的拓展:介绍完全平方公式的拓展知识,如:完全平方数、完全平方根等。

3. 课堂练习:设计一些练习题,让学生运用完全平方公式解决问题,巩固所学知识。

4. 总结与反思:让学生总结本节课所学的内容,反思自己在学习过程中的优点和不足,为今后的学习做好准备。

五、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。

2. 课后作业:检查学生完成的课后作业,评估学生对完全平方公式的掌握程度。

3. 单元测试:通过单元测试,了解学生在段时间内对完全平方公式的运用能力。

六、教学策略:1. 采用直观演示法,让学生通过观察、实践,理解完全平方公式的推导过程。

2. 运用实例讲解法,让学生学会如何运用完全平方公式解决实际问题。

3. 设计多样化的练习题,激发学生的学习兴趣,提高学生的动手能力。

4. 鼓励学生积极参与课堂讨论,培养学生的合作意识。

5. 注重个体差异,给予每个学生充分的关注和指导,使他们在课堂上都能有所收获。

完全平方公式教案

完全平方公式教案

完全平方公式教案完全平方公式教案「篇一」教学目标:1.经历探索完全平方公式的过程,进一步发展学生的符号感和推理能力;2.会推导完全平方公式,并能运用公式进行简单的`计算;3.了解完全平方公式的几何背景. 教学重点:1.弄清完全平方公式的来源及其结构特点,能用自己的语言说明公式及其特点;2.会用完全平方公式进行运算. 教学难点:会用完全平方公式进行运算教学过程:一、探索练习:一块边长为a米的正方形实验田,因需要将其边长增加b米,形成四块实验田,以种植不同的新品种.(图略)用不同的形式表示实验田的总面积,并进行比较你发现了什么?观察得到的式子,想一想:(1)(a+b)2等于什么?你能不能用多项式乘法法则说明理由呢?(2)(a-b)2等于什么?小颖写出了如下的算式:(a-b)2=[a+(b)]2。

她是怎么想的?你能继续做下去吗?由此归纳出完全平方公式:(a+b)2=a2+2ab+b2(a-b)2=a22ab+b2教师在此时应该引导观察完全平方公式的特点,并用自己的言语表达出来。

例:(利用完全平方公式计算)(1)(2x-3)2解:(2x-3)2=(2x)2-2(2x)3+32=4x12x+9二、巩固练习:1.下列各式中哪些可以运用完全平方公式计算_______________(1) ;(2) ;(3) ;(4) 。

2.计算下列各式:(1) ;(2) ;(3) ;(4) ;(5) ;(6) 。

4.填空:(1) _____________;(2) ;(3) ; 三、提高练习:1.求的值,其中2.若小结:熟记完全平方公式,会用完全平方公式进行运算. 作业:课本P36习题1.13:1、2. 教学后记:学生基本上能套用平方差公式进行运算,但是也有出现以下错误: (1)(a+b)2=a2+b2 (2)(+a)(2-a)=6-a2对公式的真正理解有待加强。

完全平方公式教案「篇二」教学过程一、议一议探索单项式除以单项式法则(出示投影1)计算下列各题,并说说你的理由 1. x yx , (8m n )(2m n) , (a b c)(3a b).师生共同分析:此题是做除法运算,可以从两方面思考:根据除法是乘法的逆运算,将除法问题转化为乘法问题去解决,即x = x y,由单项式乘以单项式法则可得(x y)x = x y,因此,x yx =x y . 另外,根据同底数幂的除法法则,由约分也可得 =x y.学生动笔:写出(2)(3)题的结果. 教师板书: x yx =x y, (8m n )(2m n)=4n , (a b c)(3a b)= a bc师:以上运算是单项式除以单项式的运算,你能说说如何进行单项式除以单项式的运算?学生活动:小组讨论,教师引导学生从系数、同底数幂、只在被除式含有的字母三方面思考,讨论充分后,由一名同学叙述,其余同学补充纠正.出示单项式除法法则(投影显示)单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。

初中完全平方试讲教案

初中完全平方试讲教案

教案:初中完全平方公式教学目标:1. 让学生经历探索完全平方公式的过程,理解并掌握完全平方公式的结构特征。

2. 培养学生观察、发现、归纳、概括的能力,提高学生的逻辑思维能力。

3. 培养学生运用完全平方公式进行计算的能力,感受数学公式的魅力。

教学重点:1. 掌握完全平方公式的结构特征。

2. 利用完全平方公式进行计算。

教学难点:1. 理解完全平方公式中的字母含义。

2. 运用图形面积理解完全平方公式,体会数形结合思想。

教学准备:1. 教学课件或黑板。

2. 练习题。

教学过程:一、导入(5分钟)1. 复习平方差公式:a² - b² = (a + b)(a - b)。

2. 提问:能否类比平方差公式,推导出一个新的公式呢?二、探索完全平方公式(15分钟)1. 引导学生分组讨论,尝试推导完全平方公式。

2. 每组派代表分享推导过程和结果。

3. 教师总结完全平方公式:a² + 2ab + b² = (a + b)²。

三、理解完全平方公式(10分钟)1. 讲解完全平方公式的结构特征:字母a和b的系数分别为1和2。

2. 引导学生理解完全平方公式中的字母含义:a表示第一个数,b表示第二个数。

3. 举例说明完全平方公式的应用。

四、运用完全平方公式进行计算(10分钟)1. 让学生独立完成练习题,运用完全平方公式进行计算。

2. 教师选取部分学生的作业进行讲解和点评。

五、巩固练习(10分钟)1. 让学生完成一些有关完全平方公式的练习题。

2. 教师解答学生的疑问,给予指导。

六、总结与反思(5分钟)1. 让学生回顾本节课所学的内容,总结完全平方公式的推导过程和应用。

2. 教师引导学生体会数形结合思想,感受数学公式的魅力。

教学反思:本节课通过引导学生探索、理解和应用完全平方公式,培养了学生的观察、发现、归纳、概括的能力。

在教学过程中,注意让学生充分思考,发挥他们的主观能动性,使他们在探索中体验到数学的乐趣。

用完全平方公式解决初中数学难题——教案分享

用完全平方公式解决初中数学难题——教案分享

题目:用完全平方公式解决初中数学难题——教案分享近年来,由于一些因素的影响,初中学生的数学成绩逐年下降。

数学是一门重要的学科,是各学科中最基础的一门学科,也是很多实际工作中必须掌握的一门学科。

如何提高初中数学的教学质量,是我们需要解决的一个重要问题。

初中数学中存在很多难题,其中用完全平方公式解决难题,是很多学生都很困惑的一个问题。

本文将介绍如何用完全平方公式解决初中数学难题,并分享一份教案,希望对初中数学教学有所帮助。

一、什么是完全平方公式完全平方公式,也叫平方差公式。

这个公式非常重要,一般是在初中学习二次函数和解二元一次方程时引入的。

它是解决初中数学中用平方来表达两个项的和或差时的常用方法。

完全平方公式是:$$(a+b)^2=a^2+b^2+2ab$$或$$(a-b)^2=a^2+b^2-2ab$$姑且这里用一个简易例子来解释一下:例如:$$x^2+6x+9$$这里的 6x 是由$2×3×x$ 得到的。

并且 $3^2=9$,当我们把它们相加时,就得到$$(x+3)^2 = x^2 +6x +9$$当我们将二次多项式写成完全平方的形式时,问题就变得非常简单了。

而且,它还有许多不同的应用和变化形式,例如平方根和勾股定理等等。

二、在初中数学中如何运用完全平方公式在初中数学中,完全平方公式有许多应用。

下面以常见的三种情形作为例子,来说明这些应用:1.用完全平方公式解决求方程的问题。

例如,对于方程$x^2+8x+16=0$,我们可以用完全平方公式把它变换为$$(x+4)^2=0$$方程的解为 $x=-4$。

2.用完全平方公式证明恒等式。

例如,我们要证明$(a+b)^2=a^2+2ab+b^2$。

由于这个恒等式可以表达出两个数的平方和,我们可以把 $a+b$ 看成两个数之和,运用完全平方公式进行变换。

具体地,我们有$$(a+b)^2=a^2+b^2+2ab$$同时,我们又有$$a^2+2ab+b^2=(a+b)^2$$从而,得到$$(a+b)^2=a^2+2ab+b^2$$恒等式证毕。

初三数学《完全平方公式》教学教案范文

初三数学《完全平方公式》教学教案范文

初三数学《完全平方公式》教学教案范文教案:初三数学《完全平方公式》教学内容:本节课的教学内容选自初三数学教材第四章第二节《完全平方公式》。

该章节主要介绍了完全平方公式的概念、推导过程以及如何运用完全平方公式解决实际问题。

具体内容包括:完全平方公式的定义,完全平方公式的推导,完全平方公式的运用。

教学目标:1. 让学生理解完全平方公式的概念,掌握完全平方公式的推导过程。

2. 培养学生运用完全平方公式解决实际问题的能力。

3. 提高学生对数学知识的兴趣,培养学生的逻辑思维能力。

教学难点与重点:难点:完全平方公式的推导过程及运用。

重点:完全平方公式的记忆和运用。

教具与学具准备:教具:黑板、粉笔、多媒体课件。

学具:笔记本、练习本、铅笔、橡皮。

教学过程:一、情景引入(5分钟)1. 老师提出问题:同学们,你们知道生活中有哪些地方会用到平方公式吗?2. 学生思考后回答,老师给予评价和引导。

二、新课讲解(15分钟)1. 老师简要介绍完全平方公式的定义和推导过程。

2. 通过多媒体课件展示完全平方公式的推导过程,让学生跟随老师一起动手操作,加深理解。

3. 老师给出几个例子,让学生尝试运用完全平方公式解答,并及时给予指导和反馈。

三、随堂练习(10分钟)1. 老师给出几道练习题,让学生独立完成,并及时给予讲解和反馈。

2. 学生互相交流解题心得,老师给予评价和指导。

四、板书设计(5分钟)1. 老师根据讲解的内容,板书完全平方公式的定义和推导过程。

2. 老师在黑板上给出几个例子,让学生跟随板书,加深对完全平方公式的记忆。

五、作业设计(5分钟)1. 老师布置几道运用完全平方公式的练习题,让学生回家完成。

2. 学生独立完成作业,第二天交给老师批改。

六、课后反思及拓展延伸(5分钟)1. 老师让学生谈谈对本节课内容的理解和收获。

2. 学生提出问题,老师给予解答和指导。

3. 老师给出一些拓展延伸的问题,让学生思考和讨论。

教学反思:本节课通过情景引入、新课讲解、随堂练习、板书设计、作业设计等环节,让学生掌握了完全平方公式的概念和运用。

初三数学《完全平方公式》教学优质教案范文

初三数学《完全平方公式》教学优质教案范文

初三数学《完全平方公式》教学优质教案范文一、教学内容本节课我们将学习人教版初中数学教材九年级上册第二章《一元二次方程》中第三节《完全平方公式》。

具体内容包括:理解完全平方公式结构特点,掌握完全平方公式推导和应用,解决实际问题。

二、教学目标1. 知识目标:让学生掌握完全平方公式结构特点,能够熟练运用公式解决相关问题。

2. 能力目标:培养学生逻辑思维能力和解决问题能力,提高数学运算技巧。

3. 情感目标:激发学生学习兴趣,培养学生合作精神和探究意识。

三、教学难点与重点教学难点:完全平方公式推导和应用。

教学重点:完全平方公式结构特点及其应用。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。

2. 学具:练习本、草稿纸、计算器。

五、教学过程1. 导入:通过一个实际问题引入完全平方公式,让学生思考如何求解一个数平方。

实践情景:小明篮球弹跳高度为h,每次弹跳后上升高度是h/2,问小明第n次弹跳后,篮球上升总高度是多少?2. 新课导入:引导学生观察平方数规律,发现完全平方公式结构特点。

a. 展示平方数表,让学生观察平方数规律。

b. 学生小组讨论,推导完全平方公式。

3. 例题讲解:通过讲解典型例题,让学生掌握完全平方公式应用。

例题1:计算(3x + 4y)^2。

例题2:已知a^2 + 2ab + b^2 = 64,求a + b值。

4. 随堂练习:让学生独立完成练习题,巩固所学知识。

练习题1:计算(2x 3y)^2。

练习题2:已知x^2 2xy + y^2 = 25,求x y值。

六、板书设计1. 完全平方公式2. 内容:a. 完全平方公式结构特点:a^2 + 2ab + b^2 = (a + b)^2b. 完全平方公式推导过程c. 完全平方公式应用七、作业设计1. 作业题目:a. 计算(5x + 6y)^2。

b. 已知x^2 6xy + 9y^2 = 64,求x 3y值。

答案:a. (5x + 6y)^2 = 25x^2 + 60xy + 36y^2b. x 3y = ±82. 课后思考题:探究完全平方公式其他应用,如解一元二次方程等。

《完全平方公式》说课稿

《完全平方公式》说课稿

《完全平方公式》说课稿尊敬的各位评委、老师:大家好!今天我说课的内容是《完全平方公式》。

下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程、板书设计这几个方面来展开我的说课。

一、教材分析《完全平方公式》是初中数学中的重要公式之一,它在整式乘法和因式分解中都有着广泛的应用。

本节课是在学生学习了整式的乘法和平方差公式的基础上进行的,既是对整式乘法的进一步深入,也是为后续学习因式分解打下基础。

本节课的教材内容主要包括完全平方公式的推导、公式的结构特征以及公式的应用。

通过对完全平方公式的学习,学生能够进一步提高运算能力和逻辑推理能力,体会从特殊到一般、从具体到抽象的数学思想方法。

二、学情分析在学习本节课之前,学生已经掌握了整式的乘法运算和平方差公式,具备了一定的运算基础和逻辑推理能力。

但是,对于完全平方公式的结构特征和应用,学生可能会存在一定的困难。

因此,在教学过程中,要注重引导学生通过观察、比较、归纳等方法,理解公式的本质,掌握公式的应用。

此外,学生在学习过程中可能会出现粗心大意、符号错误等问题,需要在教学中加强训练和指导。

三、教学目标1、知识与技能目标(1)理解并掌握完全平方公式的结构特征。

(2)能够熟练运用完全平方公式进行整式的乘法运算。

2、过程与方法目标(1)通过经历完全平方公式的推导过程,培养学生的观察、分析、归纳和推理能力。

(2)在运用公式的过程中,提高学生的运算能力和解决问题的能力。

3、情感态度与价值观目标(1)让学生在自主探索和合作交流中,体验数学学习的乐趣,增强学习数学的信心。

(2)培养学生严谨的治学态度和勇于创新的精神。

四、教学重难点1、教学重点完全平方公式的结构特征和应用。

2、教学难点对完全平方公式的理解和灵活运用。

五、教法与学法1、教法为了突出重点,突破难点,我将采用启发式教学法、讲练结合法和多媒体辅助教学法。

通过引导学生观察、思考、讨论,激发学生的学习兴趣,提高课堂教学效率。

完全平方公式:从基础到应用的初中数学教案

完全平方公式:从基础到应用的初中数学教案

完全平方公式: 从基础到应用的初中数学教案一、教学目标1、了解完全平方公式的定义和意义。

2、学会如何推导完全平方公式。

3、能够应用完全平方公式求解一些数学问题。

二、教学重难点重点:完全平方公式的定义和推导方法。

难点:如何应用完全平方公式解决实际问题。

三、教学准备1、课件:完全平方公式的定义和推导方法。

2、实物:若干可以用完全平方公式解决的实际问题。

四、教学过程第一节:引入1、教师向学生简单介绍一下什么是完全平方。

2、让学生自己尝试找出一个完全平方数。

3、教师引导学生讨论完全平方数的特点:完全平方数可以分解为两个相同的因数之积。

第二节:定义和推导1、详细讲解完全平方公式的定义:(a+b)²=a²+2ab+b²2、引导学生分析完全平方公式的意义及推导方法。

3、让学生自己举一些例子,并尝试证明完全平方公式的正确性。

第三节:应用1、教师引导学生根据完全平方公式解决以下问题:(1) 某个正方形的面积是25平方米,这个正方形的边长是多少?(2) 已知a=2,b=3,求(a+b)²。

(3) 某个长方形的面积是15平方米,长与宽的差是1米,求长和宽分别是多少米?2、学生通过讨论与实际数学问题结合的方式,练习应用完全平方公式。

第四节:总结1、教师引导学生回顾学习内容,提出问题,并指导学生总结重点。

2、教师让学生再一次尝试找出完全平方数。

五、作业布置根据课堂内容和习题集,完成本节课的作业。

六、教学反思通过本节课的讲解,学生对完全平方公式的概念和应用深入理解,并能够熟练运用完全平方公式解决一些数学问题。

本节课的唯一缺点可能是时间不够充分,如果有更多的时间,可以让学生进行更多的练习。

初三数学《完全平方公式》教学教案范文

初三数学《完全平方公式》教学教案范文

初三数学《完全平方公式》教学教案范文一、教学内容本节课选自人教版初中数学九年级上册第三章《一元二次方程》第三节《完全平方公式》。

详细内容包括:完全平方公式的推导与应用,以及利用完全平方公式解一元二次方程。

二、教学目标1. 让学生掌握完全平方公式的结构特点及其应用,能熟练运用完全平方公式展开表达式。

2. 培养学生运用完全平方公式解决实际问题,提高学生的运算能力和解决问题的能力。

3. 培养学生的逻辑思维能力和合作交流能力,激发学生学习数学的兴趣。

三、教学难点与重点重点:完全平方公式的推导和应用。

难点:理解完全平方公式的结构特点,并能灵活运用解决实际问题。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。

2. 学具:练习本、草稿纸、计算器。

五、教学过程1. 导入:通过实际情景引入,如“一块正方形菜地的面积是9平方米,如果菜地的边长增加1米,面积增加多少?”让学生思考并尝试解答。

(a+b)² = a² + 2ab + b²(ab)² = a² 2ab + b²揭示完全平方公式的结构特点。

3. 例题讲解:讲解如何运用完全平方公式展开表达式,以及如何利用完全平方公式解一元二次方程。

(1) 利用完全平方公式展开:(x+3)²,(2y1)²。

(2) 利用完全平方公式解方程:x²+6x+9=0,2y²8y+16=0。

六、板书设计1. 完全平方公式:(a+b)² = a² + 2ab + b²(ab)² = a² 2ab + b²2. 例题与解答:3. 课堂练习:七、作业设计1. 作业题目:(1) 利用完全平方公式展开:(m+4)²,(n2)²。

(2) 利用完全平方公式解方程:3x²12x+9=0,5y²+10y+3=0。

初中数学教学案例完全平方公式与平方差公式

初中数学教学案例完全平方公式与平方差公式

初中数学教学案例完全平方公式与平方差公式【教学目标】1.知识与技能:掌握完全平方公式和平方差公式的表达与运用;2.过程与方法:能够运用公式解决问题;3.情感态度与价值观:培养学生对数学的兴趣与自信心,注重学生的创造性思维。

【教学重点】1.熟练掌握完全平方公式和平方差公式;2.理解公式的运用。

【教学难点】1.运用公式解决实际问题;2.培养学生的思维能力和创造性思维。

【教学准备】课件、教学设计案例、练习题。

【教学过程】【导入】1.导入一个实际例子:小明在院子里铺地砖,对于一个边长为x的正方形区域,他使用了4块砖铺满,并且所有砖完全没有剩余。

请问这个区域内的总砖数是多少?2.引导学生思考如何求解这个问题,鼓励学生发表自己的想法。

【呈现】1.给出完全平方公式和平方差公式的定义。

2. 讲解完全平方公式:(a+b)²=a²+2ab+b²,并通过具体例子进行演示和解释。

3. 讲解平方差公式:(a-b)²=a²-2ab+b²,并通过具体例子进行演示和解释。

【合作探究】1.学生分组合作,每组2-3人,完成教师分发的练习题。

2.学生发表自己的解题思路和方法,教师进行点评和引导。

【总结】1.整理学生的合作探究结果,总结完全平方公式和平方差公式的运用规律。

2.引导学生从实际问题中找到应用完全平方公式和平方差公式的场景。

【拓展】给学生一道拓展题:小明和小红一起去种菜,他们分别在两片田地中进行种植,田地中的植物都被小动物破坏了一些。

小明的田地中共有(5a-3b)²株植物,小红的田地中共有(5a+3b)²株植物。

请问两个田地中的植物总数是多少?【家庭作业】1.完成课堂上未完成的练习题;2.在生活中找到一个实际问题,并用完全平方公式和平方差公式解决。

【教学反思】本节课的教学设计旨在通过实际问题的引入,激发学生的学习兴趣和动手能力。

通过学生的合作探究和发表解题思路,培养了学生的思维能力和创造性思维。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学完全平方公式教案范文参考完全平方公式则是对多项式乘法中出现的较为特殊的算式的一种归纳、总结.同时,完全平方公式的推导是初中数学中运用推理方法进行代数式恒等变形的开端。

以下是小编整理的初中数学完全平方公式教案,希望可以提供给大家进行参考和借鉴。

初中数学完全平方公式教案范文一课题名称:完全平方公式(1)一、内容简介本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。

关键信息:1、以教材作为出发点,依据《数学课程标准》,引导学生体会、参与科学探究过程。

首先提出等号左边的两个相乘的多项式和等号右边得出的三项有什么关系。

通过学生自主、独立的发现问题,对可能的答案做出假设与猜想,并通过多次的检验,得出正确的结论。

学生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和实践能力等方面的发展。

2、用标准的数学语言得出结论,使学生感受科学的严谨,启迪学习态度和方法。

二、学习者分析:1、在学习本课之前应具备的基本知识和技能:①同类项的定义。

②合并同类项法则③多项式乘以多项式法则。

2、学习者对即将学习的内容已经具备的水平:在学习完全平方公式之前,学生已经能够整理出公式的右边形式。

这节课的目的就是让学生从等号的左边形式和右边形式之间的关系,总结出公式的应用方法。

三、教学/学习目标及其对应的课程标准:(一)教学目标:1、经历探索完全平方公式的过程,进一步发展符号感和推力能力。

2、会推导完全平方公式,并能运用公式进行简单的计算。

(二)知识与技能:经历从具体情境中抽象出符号的过程,认识有理数、实数、代数式、防城、不等式、函数;掌握必要的运算,(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、防城、不等式、函数等进行描述。

(四)解决问题:能结合具体情景发现并提出数学问题;尝试从不同角度寻求解决问题的方法,并能有效地解决问题,尝试评价不同方法之间的差异;通过对解决问题过程的反思,获得解决问题的经验。

(五)情感与态度:敢于面对数学活动中的困难,并有独立克服困难和运用知识解决问题的成功体验,有学好数学的自信心;并尊重与理解他人的见解;能从交流中获益。

四、教育理念和教学方式:1、教师是学生学习的组织者、促进者、合作者:学生是学习的主人,在教师指导下主动的、富有个性的学习,用自己的身体去亲自经历,用自己的心灵去亲自感悟。

教学是师生交往、积极互动、共同发展的过程。

当学生迷路的时候,教师不轻易告诉方向,而是引导他怎样去辨明方向;当学生登山畏惧了的时候,教师不是拖着他走,而是唤起他内在的精神动力,鼓励他不断向上攀登。

2、采用“问题情景―探究交流―得出结论―强化训练”的模式展开教学。

3、教学评价方式:(1)通过课堂观察,关注学生在观察、总结、训练等活动中的主动参与程度与合作交流意识,及时给与鼓励、强化、指导和矫正。

(2)通过判断和举例,给学生更多机会,在自然放松的状态下,揭示思维过程和反馈知识与技能的掌握情况,使老师可以及时诊断学情,调查教学。

(3)通过课后访谈和作业分析,及时查漏补缺,确保达到预期的教学效果。

五、教学媒体:多媒体六、教学和活动过程:教学过程设计如下:〈一〉、提出问题[引入]同学们,前面我们学习了多项式乘多项式法则和合并同类项法则,通过运算下列四个小题,你能总结出结果与多项式中两个单项式的关系吗?(2m+3n)2=_______________,(-2m-3n)2=______________,(2m-3n)2=_______________,(-2m+3n)2=_______________。

〈二〉、分析问题1、[学生回答]分组交流、讨论(2m+3n)2=4m2+12mn+9n2,(-2m-3n)2=4m2+12mn+9n2,(2m-3n)2=4m2-12mn+9n2,(-2m+3n)2=4m2-12mn+9n2。

(1)原式的特点。

(2)结果的项数特点。

(3)三项系数的特点(特别是符号的特点)。

(4)三项与原多项式中两个单项式的关系。

2、[学生回答]总结完全平方公式的语言描述:两数和的平方,等于它们平方的和,加上它们乘积的两倍;两数差的平方,等于它们平方的和,减去它们乘积的两倍。

3、[学生回答]完全平方公式的数学表达式:(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.〈三〉、运用公式,解决问题1、口答:(抢答形式,活跃课堂气氛,激发学生的学习积极性) (m+n)2=____________,(m-n)2=_______________,(-m+n)2=____________,(-m-n)2=______________,(a+3)2=______________,(-c+5)2=______________,(-7-a)2=______________,(0.5-a)2=______________.2、判断:()①(a-2b)2=a2-2ab+b2()②(2m+n)2=2m2+4mn+n2()③(-n-3m)2=n2-6mn+9m2()④(5a+0.2b)2=25a2+5ab+0.4b2()⑤(5a-0.2b)2=5a2-5ab+0.04b2()⑥(-a-2b)2=(a+2b)2()⑦(2a-4b)2=(4a-2b)2()⑧(-5m+n)2=(-n+5m)23、小试牛刀①(x+y)2=______________;②(-y-x)2=_______________;③(2x+3)2=_____________;④(3a-2)2=_______________;⑤(2x+3y)2=____________;⑥(4x-5y)2=______________;⑦(0.5m+n)2=___________;⑧(a-0.6b)2=_____________.〈四〉、[学生小结]你认为完全平方公式在应用过程中,需要注意那些问题?(1)公式右边共有3项。

(2)两个平方项符号永远为正。

(3)中间项的符号由等号左边的两项符号是否相同决定。

(4)中间项是等号左边两项乘积的2倍。

〈五〉、冒险岛:(1)(-3a+2b)2=________________________________(2)(-7-2m)2=__________________________________(3)(-0.5m+2n)2=_______________________________(4)(3/5a-1/2b)2=________________________________(5)(mn+3)2=__________________________________(6)(a2b-0.2)2=_________________________________(7)(2xy2-3x2y)2=_______________________________(8)(2n3-3m3)2=________________________________〈六〉、学生自我评价[小结]通过本节课的学习,你有什么收获和感悟?本节课,我们自己通过计算、分析结果,总结出了完全平方公式。

在知识探索的过程中,同学们积极思考,大胆探索,团结协作共同取得了进步。

〈七〉[作业]P34随堂练习P36习题初中数学完全平方公式教案范文二总体说明:完全平方公式则是对多项式乘法中出现的较为特殊的算式的一种归纳、总结.同时,完全平方公式的推导是初中数学中运用推理方法进行代数式恒等变形的开端,通过完全平方公式的学习对简化某些整式的运算、培养学生的求简意识有较大好处.而且完全平方公式是后继学习的必备基础,不仅对学生提高运算速度、准确率有较大作用,更是以后学习分解因式、分式运算、解一元二次方程以及二次函数的恒等变形的重要基础,同时也具有培养学生逐渐养成严密的逻辑推理能力的作用.因此学好完全平方公式对于代数知识的后继学习具有相当重要的意义.本节是北师大版七年级数学下册第一章《整式的运算》的第8小节,占两个课时,这是第一课时,它主要让学生经历探索与推导完全平方公式的过程,培养学生的符号感与推理能力,让学生进一步体会数形结合的思想在数学中的作用.一、学生学情分析学生的技能基础:学生通过对本章前几节课的学习,已经学习了整式的概念、整式的加减、幂的运算、整式的乘法、平方差公式,这些基础知识的学习为本节课的学习奠定了基础.学生活动经验基础:在平方差公式一节的学习中,学生已经经历了探索和应用的过程,获得了一些数学活动的经验,培养了一定的符号感和推理能力;同时在相关知识的学习过程中,学生经历了很多探究学习的过程,具有了一定的独立探究意识以及与同伴合作交流的能力.二、教学目标知识与技能:(1)让学生会推导完全平方公式,并能进行简单的应用.(2)了解完全平方公式的几何背景.数学能力:(1)由学生经历探索完全平方公式的过程,进一步发展学生的符号感与推理能力.(2)发展学生的数形结合的数学思想.情感与态度:将学生头脑中的前概念暴露出来进行分析,避免形成教学上的“相异构想”.三、教学重难点教学重点:1、完全平方公式的推导;2、完全平方公式的应用;教学难点:1、消除学生头脑中的前概念,避免形成“相异构想”;2、完全平方公式结构的认知及正确应用.四、教学设计分析本节课设计了十一个教学环节:学生练习、暴露问题――验证――推广到一般情况,形成公式――数形结合――进一步拓广――总结口诀――公式应用――学生反馈――学生PK――学生反思――巩固练习.第一环节:学生练习、暴露问题活动内容:计算:(a+2)2设想学生的做法有以下几种可能:①(a+2)2=a2+22②(a+2)2=a2+2a+22③正确做法;针对这几种结果都将a=1代入计算,得出①②都是错误的,但③的做法是否一定正确呢?怎么验证?活动目的:在很多学生的头脑中,认为两数和的完全平方与两数的平方和等同,即:(a+2)2=a2+22,如果不将这种定式思维_,就很难建立起一个正确的概念;这一环节的目的就是让学生的这种错误或其它错误充分暴露出来,并让学生充分认识到自己原有的定式思维是错误的,为下一步构建新的思维模式埋下伏笔.第二环节:验证(a+2)2=a2�4a+22活动内容:(a+2)2=(a+2)?(a+2)=a2+2a+2a+22活动目的:在前一环节已经打破了学生的原有的思维定式的基础上,给学生建立正确的思维方法,避免形成“相异构想”.第三环节:推广到一般情况,形成公式活动内容:(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2活动目的:让学生经历从特殊到一般的探究过程,体验到发现的快乐.第四环节:数形结合活动内容:设问:在多项式的乘法中,很多公式都都可以用几何图形进行解释,那么完全平方公式怎样用几何图形解释呢?展示动画,用几何图形诠释完全平方公式的几何意义.学生思考:还有没有其它的方法来诠释完全平方公式?(课后思考)活动目的:让学生进一步认识到数与形都不是孤立存在的,数与形是可以有机地结合在一起,从而发展学生的数形结合的数学思想.第五环节:进一步拓广活动内容:推导两数差的完全平方公式:(a�b)2=a2�2ab+b2方法1:(a�b)2=(a�b)(a�b)=a2�ab�ab+b2=a2�2ab+b2方法2:(a�b)2=[a+(�b)]2=a2+2a(�b)+(�b)2=a2�2ab+b2活动目的:让学生经历由两数和的完全平方公式拓广到两数差的完全平方公式的过程,体会到符号差异带来的结果差异,由第二种推导方法体会到两数差的完全平方公式是两数和的完全平方公式的应用.第六环节:总结口诀、认识特征活动内容:比较两个公式的共同点与不同点:(a+b)2=a2+2ab+b2(a�b)2=a2�2ab+b2特征:①左边都是一个二项式的完全平方,两者仅有一个符号不同;右边都是二次三项式,其中第一、三项是公式左边二项式中每一项的平方,中间一项是左边二项式中两项乘积的两倍,两者也仅一个符号不同;②公式中的a、b可以是任意一个代数式(数、字母、单项式、多项式)口诀:首平方,尾平方,首尾相乘的两倍在中央.活动目的:认识完全平方公式的特征,总结出完全平方公式的口诀,便于学生理解与记忆,避免学生在应用该公式中出现错误.第七环节:公式应用活动内容:例:计算:①(2x�3)2;②(4x+)2解:①(2x�3)2=(2x)2�2?(2x)?3+32=4x2�12x+9②(4x+)2=(4x)2+2?????(4x)()+()2=16x2+2xy+活动目的:在前几个环节中,学生对完全平方公式已经有了感性认识,通过本环节的讲解以及下一环节的练习,使学生逐步经历认识――模仿――再认识.从而上升到理性认识的阶段.第八环节:随堂练习活动内容:计算:①;②;③(n+1)2�n2活动目的:通过学生的反馈练习,使教师能全面了解学生对完全平方公式的理解是否到位,完全平方公式的应用是否得当,以便教师能及时地进行查缺补漏.第九环节:学生PK活动内容:每个学生各出五道完全平方公式的计算题给自己的同桌解答,比一比谁的准确性率高,速度快.活动目的:活跃课堂气氛,激起学生的好胜心,进一步巩固学生对完全平方公式的理解与应用.第十环节:学生反思活动内容:通过今天这堂课的学习,你有哪些收获?收获1:认识了完全平方公式,并能简单应用;收获2:了解了两数和与两数差的完全平方公式之间的差异;收获3:感受到数形结合的数学思想在数学中的作用.活动目的:通过对一堂课的归纳与总结,巩固学生对完全平方公式的认识,体会数学思想的精妙.第十一环节:布置作业:课本P43习题1.13初中数学完全平方公式教案范文三教学目标1、知识与技能:体会公式的发现和推导过程,了解公式的几何背景,理解公式的本质,会应用公式进行简单的计算.2、过程与方法:通过让学生经历探索完全平方公式的过程,培养学生观察、发现、归纳、概括、猜想等探究创新能力,发展推理能力和有条理的表达能力.培养学生的数形结合能力.3、情感态度价值观:体验数学活动充满着探索性和创造性,并在数学活动中获得成功的体验与喜悦,树立学习自信心.教学重难点教学重点:1、对公式的理解,包括它的推导过程、结构特点、语言表述(学生自己的语言)、几何解释.2、会运用公式进行简单的计算.教学难点:1、完全平方公式的推导及其几何解释.2、完全平方公式的结构特点及其应用.教学工具课件教学过程一、复习旧知、引入新知问题1:请说出平方差公式,说说它的结构特点.问题2:平方差公式是如何推导出来的?问题3:平方差公式可用来解决什么问题,举例说明.问题4:想一想、做一做,说出下列各式的结果.(1)(a+b)2(2)(a-b)2(此时,教师可让学生分别说说理由,并且不直接给出正确评价,还要继续激发学生的学习兴趣.)二、创设问题情境、探究新知一块边长为a米的正方形实验田,因需要将其边长增加b米,形成四块实验田,以种植不同的新品种.(如图)(1)四块面积分别为:、、、;(2)两种形式表示实验田的总面积:①整体看:边长为的大正方形,S=;②部分看:四块面积的和,S=.总结:通过以上探索你发现了什么?问题1:通过以上探索学习,同学们应该知道我们提出的问题4正确的结果是什么了吧?问题2:如果还有同学不认同这个结果,我们再看下面的问题,继续探索.(a+b)2表示的意义是什么?请你用多项式的乘法法则加以验证.(教学过程中教师要有意识地提到猜想、感觉得到的不一定正确,只有再通过验证才能得出真知,但还是要鼓励学生大胆猜想,发表见解,但要验证)问题3:你能说说(a+b)2=a2+2ab+b2这个等式的结构特点吗?用自己的语言叙述.(结构特点:右边是二项式(两数和)的平方,右边有三项,是两数的平方和加上这两数乘积的二倍)问题4:你能根据以上等式的结构特点说出(a-b)2等于什么吗?请你再用多项式的乘法法则加以验证.总结:我们把(a+b)2=a2+2ab+b2(a�b)2=a2�2ab+b2称为完全平方公式.问题:①这两个公式有何相同点与不同点?②你能用自己的语言叙述这两个公式吗?语言描述:两数和(或差)的平方等于这两数的平方和加上(或减去)这两数积的2倍.强化记忆:首平方,尾平方,首尾二倍放中央,和是加来差是减.三、例题讲解,巩固新知例1:利用完全平方公式计算(1)(2x-3)2(2)(4x+5y)2(3)(mn-a)2解:(2x-3)2=(2x)2-2o(2x)o3+32=4x2-12x+9(4x+5y)2=(4x)2+2o(4x)o(5y)+(5y)2=16x2+40xy+25y2(mn-a)2=(mn)2-2o(mn)oa+a2=m2n2-2mna+a2交流总结:运用完全平方公式计算的一般步骤(1)确定首、尾,分别平方;(2)确定中间系数与符号,得到结果.四、练习巩固练习1:利用完全平方公式计算练习2:利用完全平方公式计算练习3:(练习可采用多种形式,学生上黑板板演,师生共同评价.也可学生独立完成后,学生互相批改,力求使学生对公式完全掌握,如有学生出现问题,学生、教师应及时帮助.)五、变式练习六、畅谈收获,归纳总结1、本节课我们学习了乘法的完全平方公式.2、我们在运用公式时,要注意以下几点:(1)公式中的字母a、b可以是任意代数式;(2)公式的结果有三项,不要漏项和写错符号;(3)可能出现①②这样的错误.也不要与平方差公式混在一起.七、作业设置教案。

相关文档
最新文档