现代分子生物学第六章作业
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
现代分子生物学第六章作业
09级一班芮世杭222009317011027
1,列举两种研究基因表达模式的方法并简述其原理。
(1)基因表达序列分析技术(SAGE)是一种以DNA序列测定为基础定量分析全基因组表达模式的技术能够直接读出任何一种细胞类型或组织的基因表达信息在转录组水平上,任何长度超过9—10个碱基的核苷酸片段都可能代表一种特异性核苷酸的转录产物,因此,用特定限制性核酸内切酶分离转录产物中具有基因特异性的9—10个碱基的核苷酸序列并制成标签。将这些序列标签连接,克隆,测序后,根据其占总标签数的比例即可分析其对应编码基因的表达频率。
(2)原位杂交技术(ISH)是用标记的核酸探针,经放射自显影或非放射检测体系,在组织,细胞,间期核及染色体上对核酸进行定位和相对定量研究的一种手段,分为RNA和染色体原位杂交两大类。RNA原位杂交用放射性或非放射性标记的特异性探针与被固定的组织切片反应。若细胞中存在与探针互补的mRNA分子,两者杂交产生双链RNA,课通过反射性标记或经酶促免疫显色,对该基因的表达产物做出定性定量分析。
(3)基因芯片技术(FISH)对寡核苷酸探针做特殊的修饰和标记,用原位杂交与靶染色体或DNA上特定的序列结合,再通过与荧光素分子相耦联的单克隆抗体来确定该DNA序列在染色体上的位置。
2,简述基因芯片技术对分子生物学研究的意义。
解某些基因对特定生长发育阶段的重要性;基因芯片还可用于进行基因诊断,可建立正常人特定组织、器官的基因芯片,给出标准杂交信号图。用可疑病人的cDNA做探针与之杂交,检查哪些基因的表达受抑制或激活,另可研究表达基因的生物学特性。
3,比较酵母双杂交技术和免疫共沉淀技术在研究蛋白质相互作用方面的优缺点?
(1)酵母双杂交技术称Two-hybrid system也叫interaction trap(相互作用陷井),是90年代初发展起来的分离基因的新方法,可用于分离能与已知靶蛋白质(target protein)相互作用的基因。
基本原理:
真核生物的转录因子大多是由两个结构上分开、功能上独立的结构域组成的。如GAL4的N端1-147aa是DNA结合域(BD),其C端768-881aa是转录激活域(AD)。一般情况下,AD能与GAL4效应基因启动子上游的特定DNA区段(UAS)相结合,而此时,AD 则推动了转录起始。
若用基因工程的方法,将GAL4 AD和BD分别克隆到不同的载体上,导入同一细胞株中表达,效应基因无法被激活,但可把来自不同转录因子的AD或BD区域连成一个功能基因。
主要实验过程:
a. 选择缺失GAL4编码基因的酵母寄主菌株-SFY526或HF7c;
b. 构建带有GAL1 UAS-启动子-lac Z(His3)的转化载体;
c. 把已知的靶蛋白质编码基因克隆到pGBT9的多克隆位点上,把所有cDNA都克隆到pGAD424载体上,构成cDNA表达文库。
d. 从大肠杆菌中分别提取这两种重组质粒DNA,共转化感受态酿酒酵母菌株。
e. 将共转化的酵母菌株涂布于缺少Leu,Trp和His的培养基上,筛选表达相互作用的杂种蛋白的阳性菌落。
(2)免疫共沉淀技术:通过抗体来特异性识别候选蛋白,首先将靶蛋白的抗体通过亲和反应俩接到固体培养基上再将可能与靶蛋白发生相互作用的待筛选蛋白加入反应体系中用低离心沉淀或微膜过滤法在固体基质和抗体的共同作用下将蛋白复合物沉淀到试管的底部或者微膜上。如果靶蛋白与待筛选蛋白发生了相互作用,那么,这个待筛选蛋白质就通过靶蛋白就通过靶蛋白与抗体和固体基质相互作用而被分离出来。
4,列举三种研究DNA和蛋白质相互作用的方法,并比较其优缺点。
(1)酵母单交技术:常用于研究确定某个DNA与某个蛋白质之间是否存在相互作用。其特点是可以识别稳定结合于DNA上得蛋白质,可在酵母细胞内研究真核生物中DNA和蛋白质之间的相互作用,并通过帅选DNA文库直接获得靶序列相互作用蛋白的编码基因。此外该体系也是分析鉴定细胞中转录控制因子与顺式作用元件相互作用的有效方法。
基本原理:首先将已知的特定顺势作用元件构建到最基本的启动子上游,把报告基因连接到pmin下游。
然后将编码待测转录子cDNA与已知酵母转录激活结构域融合表达载体导入酵母细胞,该基因产物如果能够与顺式作用元件相结合,就能激活pmin,是报告基因得到表达。(2)酵母双杂交技术称Two-hybrid system也叫interaction trap(相互作用陷井),是90年代初发展起来的分离基因的新方法,可用于分离能与已知靶蛋白质(target protein)相互作用的基因。
基本原理:
真核生物的转录因子大多是由两个结构上分开、功能上独立的结构域组成的。如GAL4的N端1-147aa是DNA结合域(BD),其C端768-881aa是转录激活域(AD)。一般情况下,AD能与GAL4效应基因启动子上游的特定DNA区段(UAS)相结合,而此时,AD 则推动了转录起始。
若用基因工程的方法,将GAL4 AD和BD分别克隆到不同的载体上,导入同一细胞株中表达,效应基因无法被激活,但可把来自不同转录因子的AD或BD区域连成一个功能基因。
主要实验过程:
a. 选择缺失GAL4编码基因的酵母寄主菌株-SFY526或HF7c;
b. 构建带有GAL1 UAS-启动子-lac Z(His3)的转化载体;
c. 把已知的靶蛋白质编码基因克隆到pGBT9的多克隆位点上,把所有cDNA都克隆到pGAD424载体上,构成cDNA表达文库。
d. 从大肠杆菌中分别提取这两种重组质粒DNA,共转化感受态酿酒酵母菌株。
e. 将共转化的酵母菌株涂布于缺少Leu,Trp和His的培养基上,筛选表达相互作用的杂种蛋白的阳性菌落。
(3)DNasel足迹实验:DNasel足迹实验是一种测定DNA结合蛋白在DNA上得准确结合位点的技术。首先是对包含一定顺式作用元件的双链DNA进行单链标记,然后用DNasel水解单链标记的双链DNA,产生不同长度的片段,DNA结合蛋白与其特异序列结合处由于空间位组,DNasel对这部分DNA不能切割,即被DNasel保护。DNasel水解产物经尿素变异,PAGE分离及放射性显影后,形成以相差一个核苷酸为梯度的一系列DNA条带,在此显影图中相应于DNA结合蛋白的位置上由于DNA结合蛋白的保护作用而形成了空白区域。如果在电泳时结合DNA化学测序,则可准确判断出结合区的精确序列。