统计技术培训教程(SPC)

合集下载

SPC培训教材资料教程

SPC培训教材资料教程

SPC培训教材资料教程一、SPC 概述SPC 即统计过程控制(Statistical Process Control),是一种借助数理统计方法的过程控制工具。

它通过对生产过程中的数据进行收集、分析和监控,来判断过程是否稳定,并及时发现潜在的问题,采取预防措施以避免不合格产品的产生。

SPC 的核心思想在于“预防为主”,而非传统的“事后检验”。

通过对过程数据的实时监控和分析,能够在问题发生之前就进行预警和干预,从而有效地提高产品质量、降低生产成本、增强企业的竞争力。

二、SPC 的基本原理SPC 的基本原理基于统计学中的正态分布。

在正常情况下,生产过程中的许多质量特性值都服从正态分布。

通过对样本数据的统计分析,可以计算出均值(μ)和标准差(σ)等参数。

控制图是 SPC 中最常用的工具之一。

常见的控制图有均值极差控制图(X R 控制图)、均值标准差控制图(X S 控制图)、中位数极差控制图(Me R 控制图)等。

控制图上通常有中心线(CL)、上控制限(UCL)和下控制限(LCL)。

当数据点落在控制限内,且呈现出随机分布的状态时,说明过程处于稳定状态;反之,如果数据点超出控制限,或者呈现出非随机的分布模式,如连续上升或下降、周期性变化等,则表明过程可能存在异常,需要进行调查和改进。

三、SPC 数据的收集数据收集是 SPC 实施的基础,其质量直接影响到后续的分析和决策。

在收集数据时,需要遵循以下原则:1、代表性:所收集的数据应能够代表生产过程的真实情况。

2、随机性:数据的采集应是随机的,避免人为的选择性采样。

3、样本大小:样本大小应根据过程的稳定性、控制图的类型以及对精度的要求来确定。

一般来说,样本数量越大,分析结果越准确,但同时也会增加成本和时间。

数据的收集可以通过人工测量、自动化检测设备或传感器等方式进行。

无论采用哪种方式,都要确保数据的准确性和可靠性。

四、控制图的绘制与分析1、选择合适的控制图类型根据所监控的质量特性的类型(计量型数据还是计数型数据)、数据的分布特征以及过程的特点,选择合适的控制图类型。

SPC统计培训教程

SPC统计培训教程
• 统计学显示计量特性值分布特点是:中间高,两头低 ,左右对称
14
正态分布
• 正态分布:直方图所取得数据越多,分组越 密,则直方图就越趋近一条光滑的曲线。
• 这条光滑的曲线就形成正态分布曲线,其特点是中间 高,两头底,左右对称并延伸至无穷。
15
正态分布特征
• 正态分布是一条曲线,讨论起来不方便,故 用其两个参数描述其特征:
X图:坐标上的刻度值的最大值与最小 值之差应至少为子组均值勤(X)的最大 值与最小值差的2倍。
R图:刻度值应从最低值为0开始到最大 值之间的差值为初始阶段所遇到的最大极 差(R)的2倍。
46
A5将均值和极差画到控制图上
将均值和极差分别画在其各自的图上。 该工作在确定了刻度以后应尽快完成。将 各点用直线联接起来从而得到可见的图形 和趋势。
43
A3计算每个子组的极差和均值
画在控制图上的特性量是每个子组的样 本均值(X)和样本极差(R),合在一起 后它们分别反映整个过程的均值及其变差 。
对每个子组,计算:
式中:X1,X2为子组内的每个测量值
。N为子组的样本容量。
44
45
A4选择控制图的刻度
两个控制图的纵坐标分别用于X和R的 测量值。
– P=
• 计算上、下控制界限(UCL、LCL)
– UCL=p+3 – LCL=p-
• 画线并标注
– 过程平均——水平实线 – 控制线路(UCL、LCL)——水平虚 线
30
特性值
、变化示意图
不变 倾向性变化
时间
31
特性值
、变化示意图
不变 无规律变化
时间
32
特性值
、变化示意图

spc培训教材完整版

spc培训教材完整版
利用ISO 9001质量管理体系的框架和流程,推动SPC 的实施和推广。
SPC与其他质量管理体系融合应用
与六西格玛管理的融合
将SPC作为六西格玛管理的一个重要工具,用于识别和改进生产过程中的问题和波 动。
结合六西格玛管理的DMAIC流程,运用SPC对生产过程进行持续改进和优化。
SPC与其他质量管理体系融合应用
免类似异常的再次发生。
06
SPC在企业中实施与推广
SPC实施步骤和关键成功因素
明确目标
确定SPC实施的目标和范围,包括要控制的 产品特性、生产过程和关键质量指标等。
数据收集
建立数据收集系统,收集生产过程中的原始 数据,并进行整理和清洗。
SPC实施步骤和关键成功因素
过程分析
运用统计技术对生产过程进行 分析,识别过程中的异常和波 动,并确定过程能力。
与精益生产的融合
将SPC与精益生产相结合,实现生产过程的高效、稳定和可控。
利用精益生产的理念和工具,如价值流分析、持续改进等,推动SPC的 实施和推广。
企业内部SPC培训和文化建设
统计技术基ห้องสมุดไป่ตู้知识培训
包括概率论、数理统计等基础知识,帮助员工掌握基本的统计概念和方法。
SPC理论和方法培训
深入讲解SPC的理论和方法,包括控制图的制定、分析和应用等,使员工能够熟练掌握 SPC技术。
SPC在企业中应用价值
提高产品质量
通过实施SPC,企业可以及时发现并解决生产过程中的问题,减少产品缺陷和不良品率, 提高产品质量和客户满意度。
降低生产成本
SPC有助于企业优化生产流程、提高设备利用率和劳动生产率,从而降低生产成本、提高 经济效益。
提升企业竞争力

2024版SPC培训教材全课件

2024版SPC培训教材全课件

假设检验的基本概念
明确假设检验的定义、原假设与备择假设的设立原则及两类错误 的含义。
参数假设检验
掌握正态总体均值、方差的假设检验方法及步骤,理解t检验和F 检验的原理及应用场景。
非参数假设检验
了解非参数假设检验的适用条件及常用方法,如秩和检验、符号 检验等。
16
方差分析、回归分析应用举例
方差分析
掌握方差分析的基本原理、计算步骤及结果解释,理解其在多因素实验设计中的应用。
化。
大数据在SPC中的应用
大数据技术的不断发展将为SPC提供更丰富的数据来源和分析手段,有助于提高SPC的 应用效果。
2024/1/30
SPC在服务业的拓展
随着服务业的不断发展,SPC的应用领域将逐渐拓展到服务业领域,为服务业的质量管 理提供新的思路和方法。
36
下一讲预告及预备知识
2024/1/30
01
02
03
04
明确数据收集目标
根据业务需求,明确所需数据 的类型、范围和质量要求。
2024/1/30
制定数据收集计划
设计合理的数据收集流程,包 括数据源选择、采集频率、存
储方式等。
执行数据收集
运用合适的数据收集工具和技 术,按照计划进行数据采集。
数据质量监控
建立数据质量评估机制,确保 数据的准确性、完整性和一致
下一讲内容
下一讲将介绍SPC在企业中的实际应 用案例,包括不同行业和不同场景下 的SPC应用实践。
预备知识
为了更好地理解下一讲内容,建议学 员提前了解相关行业的生产流程和质 量管理要求,以及SPC在实际应用中 的挑战和解决方案。
37
THANKS
感谢观看
2024/1/30

统计过程控制(SPC)-培训教材

统计过程控制(SPC)-培训教材

02
拉图(决定控制重点)
03
计检定
04
制图
05
样计划
06
异数分析/回归分析
过程控制系统
设备 材料 环境 成品
人员
绩效报告
过程中对策
过程中对策
方法
成品改善
过程控制系统 1. 过程: 过程是指人员、设备、材料、方法及环境的输入,经由一 定的整理程序而得到输出的结果,一般称之成品。成品经 观察、测量或测试可衡量其绩效。SPC所控制的过程必须符 合连续性原则。 2. 绩效报告: 从衡量成品得到有关过程绩效的资料,由此提供过程的控 制对策或改善成品。 3. 过程中对策: 是防患于未然的一种措施,用以预防制造出不合规格的成品。 4. 成品改善: 对已经制造出来的不良品加以选别,进行全数检查并返工/ 返修或报废。
控制图(平均值与全距) 1.公式: (1) 控制图 CL = UCL = + A2 LCL = - A2 (2) R 控制图 CL = UCL = D4 LCL = D3 2.实例: 某工厂制造一批紫铜管,应用 -R控制图来控制其内径,尺寸 单位为m/m,利用下页数据表之资料,求得其控制界限并绘图。 (n = 5)
R
X1
X2
X3
X4
X5
X1
X2
X3
X4
X5
1
50
50
49
52
51
50.4
3
14
53
48
47
52
51
50.2
6
2
47
53
53
45
50
49.6
8
15
53
48
49
51

SPC培训教材基础篇

SPC培训教材基础篇

04 SPC工具和技术
控制图
总结词
控制图是SPC的核心工具,用于监控生产过程中的关键特性,通过图形化展示过程数据,帮助管理者识别异常波 动。
详细描述
控制图是一种统计工具,用于监控生产过程中的关键特性。它通过将实际数据绘制在图上,并与控制界限进行比 较,来检测异常波动。控制图通常包括中心线(CL)、上控制限(UCL)和下控制限(LCL)。当数据点超出控 制限或连续7个点在均值的一侧时,通常认为过程存在异常。
总结词
通过实施SPC,确保生产安全和环保达标,提高企业形象 和社会责任感。
详细描述
该化工生产企业采用SPC对生产过程进行监控和分析,及 时发现并解决潜在的安全隐患和环保问题,确保生产安全 和环保达标。同时,通过实施SPC,提高了企业的形象和 社会责任感。
案例四:某医疗器械制造企业的SPC应用
总结词
在质量管理体系中广泛应用,如 ISO 9001质量管理体系。
02 SPC基本原理
数据的收集与整理
数据的收集
确保数据的准确性和完整性,选 择适当的测量工具和设备,定期 校准和维护测量设备,确保数据 来源可靠。
数据的整理
对收集到的数据进行整理和分类 ,利用图表和统计方法对数据进 行初步分析,以便更好地理解和 呈现数据。
数据的分析与解释
数据分析
运用统计学方法对数据进行分析,识 别数据的分布、趋势和异常值,为后 续的数据解释提供依据。
数据的解释
根据数据分析的结果,对数据进行合 理的解释和推断,挖掘数据背后的原 因和规律,为改进和控制过程提供支 持。
过程的控制与改进
过程控制
运用SPC技术对过程进行监控和控制,及时发现异常和波动 ,采取相应的措施进行调整和控制,确保过程的稳定性和可 靠性。

统计过程控制( SPC)基础知识培训

统计过程控制( SPC)基础知识培训

六.SPC的特點及功效
特点:
SPC是全系統的,全過程的,要求全員參加,人人有責。這點與 全面 質量管理的精神完全一致。 SPC強調用科學方法(主要是統計技術,尤其是控
制圖理論)來保證全過程的預防。 SPC不僅用於生産過程,而且可用於服務過程和一
切管理過程。
功效:
看清品质状况.提前发现问题 找出问题根源,少花钱办好事; 减少报表麻烦,满足客户要求; 提升生产效率,降低品质成本.
(品质是设计,管理,习惯出来的) (质量与每个人的工作都有关系)
二.品质管理方法的發展
推動品質活動 約每10年就出現一種關鍵品質管理方法 1950-1960 SPC 1960-1970 QCC、SPC 1970-1980 TQM、QCC、SPC 1980-1990 ISO9000、TQM、QCC、SPC 1990-2000 SIX SIGMA、ISO9000、TQM、QCC、SPC
▪变差产生的原因:分为特殊原因和普通原因。
▪特殊原因又叫异常原因或非机遇原因等(占15%)。
▪它是一种间断性的,不可预计的,不稳定的变差根源。主要由操 作者或相关人员采取局部措施予以解决。例如:作业者操作方法 错误,仪器出现问题,原材料不良等等。
▪普通原因又叫偶发原因或机遇原因等(占85%)。
▪它是一种可预测的,持续作用于制程的变差根源。主要由管理人 员采取系统措施予以解决。例如:电压的偶然波动,机器固有的 振动等等。
三.什麼是SPC
SPC是英文Statistical Process Control的字首簡稱,即 統計過程控制。
SPC就是應用統計技術對過程中的各個階段收集的 數據進行分析,並調整制程(或过程),從而達到预防 不良和提高制程能力的目的。

统计过程控制(SPC)—培训教材(第二版)

统计过程控制(SPC)—培训教材(第二版)

过程设计 和开发
产品和 过程确定
反馈、评定 和纠正措施
样件制作
试生产
批量生产
7、“过程分析(乌龟图)”在统计过程控制(SPC)中的运用: 过程分析(乌龟图)审核工作表
使用什么方式进行 ⑤
(材料/设备/装置)
填写机器(包括试验设备),材 料,计算机系统,过程中所使用
的软件等的详细说明
由谁进行? ⑥
(能力/技能/知识/培训)
2、统计过程控制(SPC)的定义: 使用诸如控制图等统计技术来分析制造过程或
其输出,以便采取适当的措施,为达到并保持统计 控制状态从而提高或改进制造过程能力。
3、 ISO/TS 16949:2002体系对 SPC 的要求:
ISO 9001:2000质量管理体系—要求 8 测量、分析和改进 8.1 总则
铸造不良情况检查表
项目 地点
日期 废品数 不良分类
欠铸 冷隔 小砂眼 粘砂 其他 合计
铸造质量不良 质检科
1月 2月
224 258
240 256
151 165
75
80
14
18
704 777
收集人 XXX 日期
记录人 XXX 班次
2000年1月-6月
3月 4月 5月
356 353 332
283 272 245
统计过程控制
Statistical Process Control (SPC)
一、统计过程控制(SPC)概述
1、统计过程控制(SPC)的概念: 指 Statistical Process Control (统计过
程控制)的英文简称。 S ( Statistical ) 统计 P ( Process ) 过程 C ( Control ) 控制

统计过程控制(SPC)

统计过程控制(SPC)
图2
解:
于是,过程能力指数为:
过程能力不够充分,从图2发现分布中心μ=0.1968与规范中心M=(TU+TL)/2=0.1720有偏离,应进行调整。调整后,Cp值会有所提高。
单侧规范情况的过程能力指数
01
只有上限要求,而对下限没有要求: 只适用于的范围:
02
只有下限要求,而对上限没有要求: 只适用于的范围:
4
3
6
5
判稳准则的分析 判稳准则的思路
打一个点未出界有两种可能性:
► 过程本来稳定 ► 漏报 (这里由于α小,所以β大),故打一个点子未出界不能立即判稳。
在点子随机排列的情况下,符合下列各点之一判稳:
01
► 连续25个点,界外点数d=0;
02
► 连续35个点,界外点数d<0;
03
► 连续100个点,界外点数d<2。
0.1821
0.1828
0.0086
18
0.1812
0.1585
0.1699
0.168
0.1694
0.0227
19
0.1700
0.1567
0.1694
0.1702
0.1666
0.0135
20
0.1698
0.1664
0.17
0.16
0.1666
0.01
图1
μ’
μ
图2-7 正态曲线随着标准差变化
σ=2.5
σ=1.0
σ=0.4
y
x
不论μ与σ取值为何,产品质量特性值落在[μ-3σ,μ+3σ]范围内的概率为99.73%。 图2-8 正态分布曲线下的面积

统计过程控制SPC培训教材ppt课件

统计过程控制SPC培训教材ppt课件
方 法
材 料
人 员
机 器
中要因
中要因
中要因
中要因
小要因
如何做
小要因
*
6. 直方图(Histogram;亦称柱状图):将所收集的测定特性值或结果 值,分为几个相等的区间作为横轴,并将各区间内所测定的特性值或 结果值依所出现的次数累积而成的面积,用柱子排起来的图形,称为 直方图。亦即指用来对特征数据进行分级整理,将杂乱无章的资料, 解析出其规律性,以得出其分布特征的统计分析的方法。
与要求相比偏高
与要求相比偏低
正常
SL=130
Sμ=160
20 15 10 5
*
7. 控制图(Control Chart):用来表示一个过程特性的图象,图上标 有根据那个特性收集到的一些统计数据,如一条中心线、一条或两条 控制限,它能减少I类错误和Ⅱ类错误的净经济损失。它有两个基本 的用途:一是用来判定一个过程是否一直受统计控制;二是用来帮助 过程保持受控状态。亦即指附有控制界限的图表,用以描述样本数据 与界限比较。若数据超出界限或出现“链”及非随机图形,表示过程 存在特殊原因变差,则应采用适当的措施加以消除。 7.1 Ⅰ类错误:拒绝一个真实的假设。例如:采取了一个适用于特 殊原因的措施而实际上过程还没有发生变化;即过度控制。 7.2 Ⅱ类错误:没有拒绝一个错误的假设。例如:对实际上受特殊 原因影响的过程没有采取适当的措施;即控制不足。 7.3 计数值控制图与计量值控制图的应用比较:
*
铸造车间产品生产废品统计表
*
5. 特性要因分析图(Characteristic Diagram ;亦称石川图或鱼骨图/鱼刺图 或因果图):指将造成某项结果的众多原因,以有系统的方式来表达结果 (特性)与原因之间的关系图表。 5.1 因果图(Cause-and-Effect Diagram):一种用于解决单个问题的简 单工具,它对各种过程要素采用图形描述来分析过程可能的变差源, 也被称作鱼刺图(以其形状命名)或石川图(以其发明命名)。 A)、某项结果的形成,必定有其原因,应设法利用图解法找出其原 因来,这个概念是由日本品管大师石川馨博士提出的。 B)、特性要因图是利用5M+1E:人员(Man)、机器(Machine)、材 料(Material)、方法(Method)、测量(Measurement)、环 境(Environment)等五大类加以分析及应用的。

SPC统计方法培训教材

SPC统计方法培训教材

准确:ca= x-u T/2
= = 29.13-29.1 0.03
0.2/2
0.1
=30%(C级)
精密:cp= Su-sl = 29.20-29.0 = 0.2 = 1.11(B级)

6*0.03
0.18
综合:cpk=(1- 1cal )cp=1.11*0.7=0.77(C级)
举例说明(2)
2.部品068K33381 67± 0.2的尺寸,在9月30日生产检测,
平均值为66.91、标准差ó为0.065 ,试计算 ca、cp、cpk
的值:
准确:ca= x-u T/2
பைடு நூலகம்
= 66.91-67 0.4/2
=45%
精密:cp=T/6ó=0.46*0.065=1.03
综合:cpk=(1- 1ca1 )cp=(1-0.45)*1.03=0.575
x R控制图的作法
3) 计算控制界限:
cp计算公式=
规格公差 6个估计标准差
=T/6ó(双边规格)
ó=√∑( xn-x )2 = √(x1-x)2 +(x2-x) 2 +(xn-x)2
n
n
cp=
规格上限-实际平均值 3个估计标准差
=(su-x)/3Ó(单边规格)
或cp=
规格上限-实际平均值 3个估计标准差
=(x-s1)/3Ó(单边规格)
CPK
1.1
不良品率 1/1000
1.0
0.67 0.33
3/1000 4.55/100 31.75/10 0
σ水平与合格率之间的关系
水 合格率 平%
1σ 30.85
每百万次 不合格数 PPM

统计过程控制(SPC)培训

统计过程控制(SPC)培训
C. 留意SPC小组制定之次品分析表,关心主要之次品并 向主管反映次品之成因,协助有关人员减低主要次品的形 成。
D. 积极参与SPC图的制作,确保SPC图之数据准时更新。 唯有工艺稳定,关键因素被控制在制定范围内,即时处理并 解决错误问题,才可确保工艺输出品质优良之产品,生产畅
顺。
统计过程控制(SPC)培训
P Chart (不良率管制图) NP Chart ( 不良数个数管制图) C Chart (缺陷数管制图) U Chart (单位缺陷数管制图)
统计过程控制(SPC)培训
常见的三种图的适用场合
▪ X-(MR) chart 因各种原因(时间、费用等)每次只能得到一个 样本或不易取得一个以上样本,或希望尽快发现并消除异常 因素时用之。 ▪ X bar –R chart 适用于产品批量较大的工序,通常N=4或5时。 ▪ P chart 适用在好/坏立分或进料检验时允收/拒收容易判断的 情况 。
Test 1 2
3 4
C
B
A LCL
八点一排在C区或以下
5
.............................................................
统计过程控制(SPC)培训
SPC的特点
• 1) SPC可以判断过程的异常,及时告警。 • 2)强调全员参加,而不是只依靠少数质量管理
人员。 3)强调应用统计技术来保证预防原则的实现。 4)强调从整个过程、整个体系来推行SPC,而不
是仅局限于个别工序,采用什么控制图的问题。
统计过程控制(SPC)培训
组数目。 A2、D4 、 D3 为与样本大小 n有关的系数。
系数
n2
n3
n4

统计过程控制SPC--培训

统计过程控制SPC--培训

最常用,判断工序是否异常的效 适用于产品批量较大而

制图
果好,但计算工作量大
且稳定正常的工序。
值 中位数—极差
计算简便,但效果较差些,便于
控 制
控制图 两极控制图
L—S
现场使用
一张图可同时控制均值和方差, 计算简单,使用方便
图 单值—移动极 X—Rs 简便省事,并能及时判断工序是 因各种原因每次只能得
C (Control)控制: 事物的发展和变化保持 稳定
统计过程控制(SPC)定义:
是一种使用诸如控制图等统计技术来分析制造 过程,以便采取适当的措施,为达到并保持统计控 制状态从而提高制造过程能力的质量统控计过制程控制方SPC法--培训。
一、统计过程控制简介
起源与发展
休哈特博士在 贝尔实验室发 明了控制图
差控制图
否处于稳定状态。缺点是不易发 到一个数据或希望尽快
现工序分布中心的变化。
发现并消除异常原因
计 不合格品数控
pn

制图
值 不合格品率控
p

制图
制 缺陷数控制图
C
图 单位缺陷数控
U
制图
较常用,计算简单,操作工人易 于理解
计算量大,管理界限凹凸不平
样本容量相等 样本容量可以不等
较常用,计算简单,操作工人易 于理解,使用简便
——《6 Sigma管理法 追求卓越的阶梯》
统计过程控制SPC--培训
一、统计过程控制简介
统计过程控制(SPC):
Statistical Process Control 的英文简称
S (Statistical)统计: 以统计学的方法分 析数据
P (Process)过程: 有输入-输出的一系列的 活动
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Page 2 3. Cp,Cpk 的判断方法: 工序能力指数 Cpk>1.67 1.33<Cpk<1.67 1.0<Cpk<1.33 0.67<Cpk<1.0 判断 充足,如过大则过 剩 合格 尚可 不足 处理 如过大,则可考虑降低成 本。 产品用抽样或出货检验就 可以 产品有发生不良的危险, 需注意 •操作方法需变更或改善。 •机械设备需变更或改善。 •原材料需变更。 • 公差需检讨。 •需作全数选别。 须停产调查,找出原因。
龙在天涯 dragonair@
Cp,Cpk 工序能力
Page 1
1,定义: Cp Capability Process, Cpk Capability Process Indexes. 工序能力就是工序能够满足规格的能力。我们常用 Cpk 来表达示工序能力, 是一种有效的表达品 质特性好与坏的指数。 Cp 又称精密度, 表示变异的大小,表示无限次从同一群体或来源的数据的离散趋势, 在正常情况下 应服从正态分布。 对品质特性的确定,控制,和验证都高不开对分布中心,标准偏差σ,Cpk 的研究。
统计技术培训教材
版本 (B) (修定了一些公式的输入错误,增加了 P-chart ,及 Pre-control chart 内容.)
1. CP,CPK 工序能力 2. SPC 统计过程控制 3. Pre-Control Chart 预先控制图
Prepared By: dragonair
/Leabharlann 龙在天涯 dragonair@
LSL
99.73% 在规格 内
CL
USL
LSL
CL
USL
LSL
CL
USL
Cp=1
Cp=0.67
Cp=1.33
2,Cp,Cpk 的计算: Cp=
USL-LSL(规格宽度) 6σ (工序宽度)
USL upper specification limit (规格上限) LSL lower specification limit (规格下限)
Cpk<0.67
严重不足
* 工序进行 SPC 控制时, Cp>1 才有效。 4,Cpk 提高的方法和分析的思路。 1),如果 Cp 不足,则; 1)工序的变异大 2)品质变异大 3)易超出规格界限 提高 Cp 的方向 1) 机器设备,测试仪器的改善 2)技术上改善 3)操作人员的训练 4)操作标准的遵守 5)适当的工序控制 6)原材料适当的控制 如果 Cp 足够,而 Cpk 不足,则表明中心偏移。 1), 减小偏移量是首选的方法, 2), 当确认属于设计不合理时,可采用放大公差范围的措施。
USL
偏移(k) CL
LSL
(标准偏差)σ =
Cpk=(1-k)Cp K=2 -T /(USL-LSL) 当只有上限无下限时, 计算 Cpk
当只有下限无上限时, 计算 Cpk
龙在天涯 dragonair@
相关文档
最新文档