AD转换器

合集下载

AD转换器及其接口设计详解

AD转换器及其接口设计详解

AD转换器及其接口设计详解AD转换器(Analog-to-Digital Converter,简称ADC)是将模拟信号转换为数字信号的一种设备。

在现代电子系统中,由于数字信号处理的高速、高精度和可编程性等优势,数字信号的应用广泛而且日益增多,而模拟信号则需要通过AD转换器转换为数字信号才能够被处理和分析。

在设计AD转换器的接口时,需要考虑以下几个方面:1.信号输入接口:AD转换器的输入通常是来自于外界的模拟信号,如声音、视频、温度等。

因此,设计AD转换器的接口时,首先需要提供适当的模拟输入接口,通常是通过引脚或者接口连接。

2.时钟信号接口:AD转换器需要一个时钟信号来同步转换过程。

时钟信号的频率和精度对AD转换器的性能有重要影响。

因此,设计AD转换器的接口时,需要提供一个稳定的时钟信号输入接口,并能够精确控制时钟频率。

3.控制信号接口:AD转换器通常需要一些控制信号来配置转换参数,如采样率、精度、增益等。

因此,在设计AD转换器的接口时,应提供一些控制信号输入引脚或者接口,以便用户可以灵活地配置AD转换器的性能参数。

4.数字输出接口:AD转换器的输出是数字信号,通常是二进制码。

设计AD转换器的接口时,需要提供一个数字输出接口,可以是并行接口、串行接口或者其他形式的接口,以便用户可以直接读取或者传输AD转换器的输出信号。

5.数据传输接口:AD转换器的输出信号通常需要经过处理和传输才能被其他系统使用。

因此,在设计AD转换器的接口时,应考虑提供一个数据传输接口,以便用户可以方便地将AD转换器的输出数据传输给其他系统。

在实际的AD转换器设计中,还需要考虑一些其他因素,如功耗、电磁兼容性、抗干扰能力等。

此外,根据具体应用需求,还可以考虑一些特殊功能的接口设计,如温度传感器接口、输入放大器接口、数字滤波器接口等。

总之,AD转换器的接口设计应综合考虑模拟信号输入、时钟信号输入、控制信号输入、数字输出和数据传输等因素,并根据具体应用需求,设计合适的接口形式和参数,以提高AD转换器的性能和适用性。

AD转换器

AD转换器

6)内部具有三态输出缓冲器,可直接与8位、 12位或16位微处理器直接相连。 7)具有+10.000V的高精度内部基准电压源, 只需外接一只适当阻值的电阻,便可向DAC 部分的解码网络提供参考输入。内部具有 时钟产生电路,不须外部接线。 8 ) 需 三 组 电 源 : + 5 V、VCC(+12V~+ 15V)、VEE(-12V~-15V)。 由 于 转 换 精 度高,所提供电源必须有良好的稳定性,并 进行充分滤波,以防止高频噪声的干扰。
按输出方式分可分为:并行、串行、串并行。 按转换原理可分为:计数式、双积分式、逐次 逼近式。 按转换速度可分为:低速(转换时间≥1s)、 中速(转换时间≤lms)、高速(转换时间 ≥1μ s)和超高速(转换时间≤1ns) 按转换精度和分辨率可分为:3位、4位、8位、 10位、12位、14位、16位
能将模拟电压成正比的转换成数字量。
是模拟信号和数字信号接口的关键部件。
2、应用
雷达、通信、电子对抗、声纳、卫星、导弹、测控系统、地 震预测、医疗、仪器仪表、图像和音频等领域。
一、A/D转换的一般步骤及基本原理 3、 A/D转换的一般步骤
A/D转换过程为:采样、保持、量化和编码。
(1)采样与保持
一、A/D转换的一般步骤及基本原理
3、高于8位的并行输出A/D转换器接口
接口的一般形式
数据分两次输入,需增加一个并行接口。除此之外,其接口 形式和工作原理与8位ADC相同。
图2-32Байду номын сангаас
高于8位ADC接口的一般形式
【例2】 ADC574与8031/8051 PC机接口设计
(1).硬件连线 接口可以采用查询和中断二种控制方式。
(2).软件设计

AD转换器及其接口设计

AD转换器及其接口设计

AD转换器及其接口设计AD转换器(Analog-to-Digital Converter,简称ADC)是一种将模拟信号转换为数字信号的电子设备。

在现代电子系统中,ADC被广泛应用于各种领域,包括通信、娱乐、医疗、工业控制等。

本文将详细介绍AD 转换器及其接口设计。

一、AD转换器的基本原理1.采样:AD转换器将模拟信号按照一定的时间间隔进行采样,即在一段时间内获取信号的样本值。

采样定理要求采样频率必须大于信号最高频率的两倍,以保证采样后的数字信号能完整地表示模拟信号。

2.量化:采样后的信号是连续的模拟信号,需要将其离散化为一定数量的离散值。

量化过程将每个样本值映射为最接近的一个离散值,并用有限位数的二进制表示。

3.编码:量化后的离散信号是一个个数字,需要进一步进行编码以表示其大小。

常用的编码方式有二进制码、格雷码等。

二、AD转换器的接口设计1.模拟输入端口:AD转换器通常具备一个或多个模拟输入端口,用于接收模拟信号。

模拟输入端口一般要满足一定的电压范围要求,通常为0V至参考电压(通常为3.3V或5V)之间。

2.数字输出端口:AD转换器通过数字输出端口将转换后的数字信号输出给外部设备。

数字输出端口一般为并行接口或串行接口,常见的有SPI、I2C和UART等。

3.时钟信号:AD转换器需要一个时钟信号来同步采样和转换过程。

时钟信号通常由外部提供,可以是外部晶体振荡器或其他时钟源。

4.控制信号:AD转换器还可能需要一些控制信号来设置工作模式、增益、采样率等参数。

控制信号一般由微处理器或其他逻辑电路生成和控制。

三、AD转换器的接口设计要点1.采样率:为了准确地表示模拟信号,AD转换器的采样率需要满足采样定理的要求。

采样率的选择需要根据应用场景和信号频率来确定。

2.分辨率:分辨率是指AD转换器能够表示的最小量化步长。

一般分辨率越高,表示精度越大。

分辨率一般由位数来表示,如8位、10位、12位等。

3.电压范围:AD转换器的模拟输入端口需要满足一定的电压范围要求。

什么是ad转换器

什么是ad转换器

什么是ad转换器将模拟信号转换成数字信号的电路,称为模数转换器(简称a/d转换器或adc,analog to digital converter);将数字信号转换为模拟信号的电路称为数模转换器(简称d/a转换器或dac,digital to analog converter);a/d转换器和d/a转换器已成为信息系统中不可缺俚慕涌诘缏贰?br> 为确保系统处理结果的精确度,a/d转换器和d/a转换器必须具有足够的转换精度;如果要实现快速变化信号的实时控制与检测,a/d与d/a转换器还要求具有较高的转换速度。

转换精度与转换速度是衡量a/d与d/a转换器的重要技术指标。

随着集成技术的发展,现已研制和生产出许多单片的和混合集成型的a/d和d/a转换器,它们具有愈来愈先进的技术指标。

A/D转换的作用是将时间连续、幅值也连续的模拟量转换为时间离散、幅值也离散的数字信号,因此,A/D 转换一般要经过取样、保持、量化及编码4个过程。

在实际电路中,这些过程有的是合并进行的,例如,取样和保持,量化和编码往往都是在转换过程中同时实现的。

取样和保持取样是将随时间连续变化的模拟量转换为时间离散的模拟量。

取样过程示意图如图11.8.1所示。

图(a)为取样电路结构,其中,传输门受取样信号S(t)控制,在S(t)的脉宽τ期间,传输门导通,输出信号v O(t)为输入信号v1,而在(T s-τ)期间,传输门关闭,输出信号v O(t)=0。

电路中各信号波形如图(b)所示。

图11.8.1 取样电路结构(a)图11.8.1 取样电路中的信号波形(b)通过分析可以看到,取样信号S(t)的频率愈高,所取得信号经低通滤波器后愈能真实地复现输入信号。

但带来的问题是数据量增大,为保证有合适的取样频率,它必须满足取样定理。

取样定理:设取样信号S(t)的频率为f s,输入模拟信号v1(t)的最高频率分量的频率为f imax,则f s与f imax必须满足下面的关系f s≥2f imax,工程上一般取f s>(3~5)f imax。

AD 转换器概述

AD 转换器概述

则 fs ≥ 2fimax
0
TG O(t)
S(t) S(t)=1:开关闭合 S(t)=0:开关断开
t
t
t
取样与保持电路及工作原理
采得模拟信号转换为数字信号都需要一定时间,为了给后续的量 化编码过程提供一个稳定的值,在取样电路后要求将所采样的模 拟信号保持一段时间。
I
A1
采样
S
A2
O
CH
开关驱 动电路
0 1 ·0 …· ·
0
数据寄存器
11 0…
···
0
Dn-1 1
Dn-2 0 数字
···
量输出 D1
D0
D/A 转换器
O 7.5V
• 转换原理 第三个CP:
A=6.84V
模拟 量输入
I
电压 比较器
I ≥6.25V 启
动 脉 冲
CP 时钟 控制逻 辑电路
VREF=10VVREF
移位寄位器
0 0 1·…· · 0
(2) 第一次积分:
S2
+I A S1
R
–VREF B
定 时
S

O

+
1
O
1
t 0
I
dt
1
VI T1
n 级计数器
+
C
C

F
1
FF
1
FF
1
FF
1
号 Q Fn 1J
Qn n-1 1J
Q 1 1J
0 1J
G
n
C < -1
1K R
C< 1K
R
1
C<
1K R

AD和DA转换器的分类及其主要技术指标

AD和DA转换器的分类及其主要技术指标

AD和DA转换器的分类及其主要技术指标AD和DA转换器(Analog-to-Digital and Digital-to-Analog converters)是电子设备中常用的模数转换器和数模转换器。

AD转换器将连续的模拟信号转换成对应的离散数字信号,而DA转换器则将离散的数字信号转换成相应的连续模拟信号。

本篇文章将介绍AD和DA转换器的分类以及它们的主要技术指标。

一、AD转换器分类AD转换器主要分为以下几个类型:1.逐次逼近型AD转换器(Successive Approximation ADC)逐次逼近型AD转换器是一种常见且常用的AD转换器。

它采用逐渐逼近的方法逐位进行转换。

其基本原理是将模拟输入信号与一个参考电压进行比较,不断调整比较电压的大小,确保比较结果与模拟输入信号的差别小于一个允许误差。

逐次逼近型AD转换器的转换速度相对较快,精度较高。

2.模数积分型AD转换器(Sigma-Delta ADC)模数积分型AD转换器是一种利用高速和低精度的ADC与一个可编程数字滤波器相结合的技术。

它通过对输入信号进行高速取样并进行每个采样周期的累积和平均,降低了后续操作所需的带宽。

模数积分型AD转换器具有较高的分辨率和较好的线性度,适用于高精度应用。

3.并行型AD转换器(Parallel ADC)并行型AD转换器是一种通过多个比较器并行操作的AD转换器。

它的转换速度较快,但其实现成本相对较高。

并行型AD转换器适用于高速数据采集和信号处理。

4.逐渐逼近型AD转换器(Ramp ADC)逐渐逼近型AD转换器是一种通过线性递增电压与输入信号进行比较的转换器。

它利用逐渐逼近的方法寻找与输入信号最接近的电压值,然后以此电压值对应的时间来估计输入信号的值。

逐渐逼近型AD转换器转换速度较慢,但精度较高。

5.其他类型AD转换器除了上述几种常见的AD转换器类型外,还有其他一些特殊的AD转换器类型,如比例调制型AD转换器、索耳转换器等。

AD转换器

AD转换器
④ 改进型是在上述某种形式A/D转换器的基础上,为满足 某项高性能指标而改进或复合而成的。例如余数比较式即是在逐 次比较式的基础上加以改进,使其在保持原有较高转换速率的前 提下精度可达0.01%以上。
若用百分比表示,其分辨率为(1/212)×100% =0.025%, 若允许最大输入电压为10V,则它能分辨输入模拟电压的最小 变化量为10V×1/212 = 2.4mV。
A/D转换器的分辨率取决于A/D转换器的位数,所以习惯上 也以BCD 码数的位数直接表示。
二、A/D转换器的技术指标
1. 分辨率与量化误差
量化误差是由A/D 转换器有限字长数字量对输入模拟量进 行离散取样(量化)引起的误差,其大小在理论上为一个单位 (1LSB )。将实际转移曲线在零刻度处偏移1/2单位,可使得 量化误差为±1/2LSB。
A/D转换器的量化误差
二、A/D转换器的技术指标
1. 分辨率与量化误差
分辨率是衡量A/D转换器分辨输入模拟量最小变化程度的 技术指标。A/D转换器的分辨率取决于A/D转换器的位数,所 以习惯上以输出二进制数或BCD 码数的位数来表示。
二、A/D转换器的技术指标
3、转换速率
转换速率是指A/D转换器在每秒钟内所能完成的转换次数。 转换速率也可表述为转换时间,即A/D转换从启动到结束 所需的时间,转换速率与转换时间互为倒数。 例如,某A/D转换器的转换速率为5MHz,则其转换时间 是200ns
二、A/D转换器的技术指标
4、满刻度范围
许的最大输入电压值为 4096 ×10=9.9976V。
三、A/D转换器的分类
① 逐次比较式A/D转换器:转换时间一般在μs级,转换精 度一般在0.1%上下,适用于一般场合。
② 积分式A/D转换器:其核心部件是积分器,因此转换时 间一般在ms级或更长,但抗干扰性能强,转换精度可达0.01%

AD转换器主要技术指标

AD转换器主要技术指标

AD转换器主要技术指标AD转换器(Analog-to-Digital Converter,简称ADC)是将模拟信号转换为数字信号的电子器件或电路。

在许多应用领域中,如通信、控制系统、嵌入式电子系统等,AD转换器起着关键的作用。

下面将详细介绍AD转换器的主要技术指标,包括分辨率、采样率、动态范围、非线性和信噪比等。

1. 分辨率(Resolution):分辨率是指ADC能够分辨的电压或电流变化的能力。

它通常以比特(Bit)来表示,用于衡量数字输出和输入之间的差异。

具有更高分辨率的AD转换器可以精确地采样和表示输入信号的细微变化。

2. 采样率(Sampling Rate):采样率是指AD转换器每秒钟可以进行的采样次数。

它通常以赫兹(Hz)来表示,用于衡量AD转换器对模拟信号的抽样频率。

较高的采样率可以准确地重构输入信号,并捕捉到高频成分和快速变化的信号。

3. 动态范围(Dynamic Range):4. 非线性(Nonlinearity):非线性是指AD转换器输出与输入之间的非线性关系。

这种非线性关系可能导致一些失真,如谐波失真或由非线性转换引起的非线性误差。

AD 转换器的非线性通常通过非线性度(Linearity)参数来表示,其中最常用的是完美度(Differential Nonlinearity,DNL)和积分非线性度(Integral Nonlinearity,INL)。

5. 信噪比(Signal-to-Noise Ratio,SNR):信噪比是指AD转换器输出信号与输入信号之间的比率。

它用于衡量AD转换器对信号的测量准确性和抗干扰性能。

较高的信噪比表示AD转换器输出的数字信号较少受到噪声的影响,从而提高了信号的可靠性和准确性。

除了以上主要技术指标之外,还有一些其他的重要参数需要考虑,如功耗、工作电压、接口类型等。

这些参数根据具体应用的要求来选择,以满足系统的需求和性能要求。

总之,AD转换器的主要技术指标包括分辨率、采样率、动态范围、非线性和信噪比等。

AD转换器及其接口设计详解

AD转换器及其接口设计详解

AD转换器及其接口设计详解AD转换器(Analog-to-Digital Converter)是将模拟信号转换为数字信号的电子设备。

它是现代电子系统中常见的组件之一,广泛应用于通信、测量、仪器仪表、音频处理等领域。

在AD转换器的设计中,接口设计是至关重要的,它直接影响着AD转换器的性能和可靠性。

物理接口是指AD转换器与其他外部设备(如微处理器、FPGA等)之间的连接方式和信号传输方式。

常见的物理接口包括并行接口、串行接口、I2C接口、SPI接口等。

在选择物理接口时,需要考虑系统的数据传输速度、数据带宽、线路长度、抗干扰能力等因素。

不同的物理接口有不同的特点和适用场景,因此需要根据具体应用需求选择适合的物理接口。

逻辑接口是指AD转换器与外部设备之间的控制和数据传输逻辑。

常见的逻辑接口包括并行接口、串行接口、I2C接口、SPI接口、USB接口等。

逻辑接口的设计需要考虑控制信号的数量、数据传输的稳定性、响应速度等因素。

同时,还需要考虑系统的复杂度、功耗、成本等方面的要求。

AD转换器的接口设计还需要考虑信号的采样率、分辨率和精度。

采样率是指AD转换器从模拟信号中采集样本的速率,常用单位为样本/秒(SPS),采样率越高,可以保留更多的信号细节。

分辨率是指AD转换器的输出数值的位数,通常以比特(bit)为单位,分辨率越高,可以提供更准确的数字化信号。

精度是指AD转换器输出的数字值与实际模拟信号之间的误差,一般以最大有效位数或最小非零位数表示,精度越高,误差越小。

在AD转换器的接口设计中,还需要考虑芯片的功耗、尺寸和成本等因素。

功耗是指AD转换器在工作过程中所消耗的电能,功耗越低,可以延长系统的电池寿命或减少系统的散热需求。

尺寸是指AD转换器的物理尺寸,尺寸越小,可以降低系统的体积和重量。

成本是指AD转换器的制造成本,成本越低,可以降低系统的总体成本。

总之,AD转换器的接口设计是一个综合考虑多个因素的过程,需要根据具体应用需求选择适当的物理接口、逻辑接口和信号参数。

什么是AD转换器及其在电子电路中的应用

什么是AD转换器及其在电子电路中的应用

什么是AD转换器及其在电子电路中的应用在电子电路中,AD转换器(Analog-to-Digital Converter)是一种电子设备,用于将模拟信号转换为对应的数字信号。

模拟信号是连续变化的信号,例如声音、光线强度等,而数字信号是离散的,由一系列二进制数字表示。

AD转换器的主要作用是将模拟信号转换为数字信号,以便于电子设备对其进行处理、存储和传输。

AD转换器在电子电路中具有广泛的应用。

下面将介绍一些常见的应用场景及其相关原理。

1. 传感器信号处理传感器是将物理量转换为电信号的装置,例如温度传感器、气压传感器等。

传感器通常输出的是模拟信号,而大多数的电子设备需要数字信号进行处理。

因此,在传感器信号处理中,AD转换器起到了至关重要的作用。

它可以将传感器输出的模拟信号转换为数字信号,并通过数字电路进行信号处理。

2. 数据采集系统在数据采集系统中,AD转换器用于将模拟信号转换为数字信号,以便于存储和处理。

例如,在工业自动化领域,AD转换器可以将传感器采集到的模拟信号转换为数字信号,然后通过串行通信或存储设备传输给控制系统。

3. 音频处理音频信号的处理常常需要数字信号进行。

AD转换器可将音频信号转换为数字信号,以便于数字音频设备进行处理和存储。

例如,音频采集卡中的AD转换器将麦克风捕捉到的声音转换为数字信号,然后传输给计算机进行进一步处理,例如音频合成、降噪等。

4. 显示器的驱动电路在液晶显示器等数字显示设备中,AD转换器用于将输入信号转换为适合驱动电路的数字信号。

由于显示器通常需要显示分辨率较高的图像或视频,因此需要高精度的AD转换器来确保信号的准确度和稳定性。

5. 无线通信系统在无线通信系统中,AD转换器用于将模拟信号(例如音频信号)转换为数字信号,以便于传输。

数字化的信号可以通过调制和解调的方式进行传输,提高传输信号的可靠性和质量。

AD转换器在无线通信系统中起到了关键作用,使得通信信号的数字处理更为方便和高效。

ad转换器工作原理

ad转换器工作原理

ad转换器工作原理
AD转换器是将模拟信号转换为数字信号的电子器件。

它的工作原理可以简要描述为以下几个步骤:
1. 采样:AD转换器首先将连续的模拟信号进行采样,即在一定的时间间隔内获取模拟信号的离散样本。

采样过程中,模拟信号的幅度会被量化为一组离散的数值。

2. 量化:在量化阶段,AD转换器将每个采样点的模拟信号幅度映射到一组数字取值中。

这个过程中,AD转换器使用一组固定的量化电平,将连续的模拟信号转换为离散的数字信号。

量化电平的数目和分辨率决定了转换器的精度。

3. 编码:量化后的数字信号需要进行编码,将其转换为二进制形式的数字信号。

编码过程中,AD转换器使用二进制编码方式,将每个量化后的数字信号映射到相应的二进制编码。

4. 输出:经过采样、量化和编码后,AD转换器将数字信号输出到接收端,供后续数字系统进行处理和分析。

输出的数字信号可以被用于数字信号处理、存储和传输等应用。

需要注意的是,AD转换器的性能受到多种因素的影响,如采样率、分辨率、信噪比等。

较高的采样率和分辨率可以提高转换器的精度和灵敏度,而较低的信噪比可能会导致转换过程中的误差和失真。

因此,在实际应用中,需要根据具体需求选择适合的AD转换器。

a d转换器工作原理

a d转换器工作原理

a d转换器工作原理
AD转换器是模拟信号和数字信号之间的转换器。

在AD转换过程中,模拟信号首先经过采样,然后经过量化和编码,最后转换为数字信号输出。

AD转换器的工作原理如下:
1. 采样:AD转换器会连续地对模拟信号进行采样,即在确定的时间间隔内获取一系列离散的样本值。

采样定理规定采样频率应该是模拟信号最高频率的两倍以上,以避免信号失真。

2. 量化:采样后的模拟信号经过量化处理,将连续的模拟信号转换为离散的量化电平。

量化的目的是将连续的模拟信号离散化,使其能够用数字形式表示。

量化过程中会根据固定的量化级别将连续的模拟信号映射到特定的离散电平上。

3. 编码:量化后的模拟信号需要通过编码转换为数字信号。

编码过程中使用的编码方式包括二进制编码、格雷码等。

编码后的信号将每个量化电平映射为一个数字代码,以表示该离散电平的数值。

4. 数字信号输出:编码后的数字代码通过输出接口输出为数字信号,供其他数字电路或设备使用。

数字信号可以在计算机系统中进行数字信号处理、分析和存储等操作。

总的来说,AD转换器通过采样、量化和编码的过程将连续的模拟信号转换为离散的数字信号。

采样将模拟信号离散化,量
化将离散化后的信号分级表示,编码将信号转换为数字代码,最后输出为数字信号。

这样可以实现模拟信号的数字化处理和传输。

AD转换器介绍

AD转换器介绍

D/A 转换器是将输入的二进制数字量转换成模拟量,以电压或电流的形式输出。

D/A 转换器实质上是一个译码器(解码器)。

一般常用的线性D/A 转换器,其输出模拟电压uO 和输入数字量Dn 之间成正比关系。

UREF为参考电压。

uO =DnUREF将输入的每一位二进制代码按其权值大小转换成相应的模拟量,然后将代表各位的模拟量相加,则所得的总模拟量就与数字量成正比,这样便实现了从数字量到模拟量的转换。

D/A 转换器一般由数码缓冲寄存器、模拟电子开关、参考电压、解码网络和求和电路等组成。

数字量以串行或并行方式输入,并存储在数码缓冲寄存器中;寄存器输出的每位数码驱动对应数位上的电子开关,将在解码网络中获得的相应数位权值送入求和电路;求和电路将各位权值相加,便得到与数字量对应的模拟量。

开关Si 的位置受数据锁存器输出的数码di 控制:当di=1时,Si 将对应的权电阻接到参考电压UREF 上;当di=0时,Si 将对应的权电阻接地。

权电阻网络D/A 转换器的特点①优点:结构简单,电阻元件数较少;②缺点:阻值相差较大,制造工艺复杂。

2. 倒T 型电阻网络D/A 转换器3. 电阻解码网络中,电阻只有R 和2R 两种,并构成倒T 型电阻网络。

当di=1时,相应的开关Si 接到求和点;当di=0时,相应的开关Si 接地。

但由于虚短,求和点和地相连,所以不论开关如何转向,电阻2R 总是与地相连。

这样,倒T 型网络的各节点向上看和向右看的等效电阻都是2R ,整个网络的等效输入电阻为R 。

倒T 型电阻网络D/A 转换器的特点:①优点:电阻种类少,只有R 和2R ,提高了制造精度;而且支路电流流入求和点不存在时间差,提高了转换速度。

②应用:它是目前集成D/A 转换器中转换速度较高且使用较多的一种,如8位D/A 转换器DAC0832,就是采用倒T 型电阻网络。

三、D/A 转换器的主要技术指标1. 分辨率分辨率用于表征D/A 转换器对输入微小量变化的敏感程度。

AD转换器

AD转换器

A/D转换器A/D转换器是用来通过一定的电路将模拟量转变为数字量。

模拟量可以是电压、电流等电信号,也可以是压力、温度、湿度、位移、声音等非电信号。

但在A/D转换前,输入到A/D转换器的输入信号必须经各种传感器把各种物理量转换成电压信号。

A/D转换器的工作原理:(1)逐次逼近法(2)双积分法(3)电压频率转化法3.5.1A/D转换器的分类1)逐次逼近法逐次逼近式A/D是比较常见的一种A/D转换电路,转换的时间为微秒级。

逐次逼近式AD转换器基本原理是从高位到低位逐位试探比较,好像用天平称物体,从重到轻逐级增减砝码进行试探。

逐次逼近法转换过程是:初始化时将逐次逼近寄存器各位清零;转换开始时,先将逐次逼近寄存器最高位置1,送入D/A 转换器,经D/A转换后生成的模拟量送入比较器,称为V o,与送入比较器的待转换的模拟量Vi进行比较,若V o<Vi,该位1被保留,否则被清除。

然后再置逐次逼近寄存器次高位为1,将寄存器中新的数字量送D/A转换器,输出的V o 再与Vi比较,若V o<Vi,该位1被保留,否则被清除。

重复此过程,直至逼近寄存器最低位。

转换结束后,将逐次逼近寄存器中的数字量送入缓冲寄存器,得到数字量的输出。

逐次逼近的操作过程是在一个控制电路的控制下进行的。

2)双积分法采用双积分法的A/D转换器由电子开关、积分器、比较器和控制逻辑等部件组成。

基本原理是将输入电压变换成与其平均值成正比的时间间隔,再把此时双积分式AD转换器时间间隔转换成数字量,属于间接转换。

双积分法A/D转换的过程是:先将开关接通待转换的模拟量Vi,Vi采样输入到积分器,积分器从零开始进行固定时间T的正向积分,时间T到后,开关再接通与Vi极性相反的基准电压VREF,将VREF输入到积分器,进行反向积分,直到输出为0V时停止积分。

Vi越大,积分器输出电压越大,反向积分时间也越长。

计数器在反向积分时间内所计的数值,就是输入模拟电压Vi所对应的数字量,实现了A/D 转换。

AD和DA的工作原理

AD和DA的工作原理

AD和DA的工作原理AD和DA是模数转换和数模转换的简称,分别代表模数转换器(Analog-to-Digital Converter)和数模转换器(Digital-to-Analog Converter)。

AD用于将模拟信号转换为数字信号,而DA则是将数字信号转换为模拟信号,两者是相对的过程。

AD的工作原理:AD转换器的作用是将输入的模拟信号,通过一定的采样和量化方法,转换为数字形式的信号,以便于数字设备进行处理和存储。

AD转换器通常分为两个主要阶段:采样和量化。

1.采样:AD转换器首先对输入信号进行采样,即按照一定的时间间隔对连续模拟信号进行抽样。

采样的频率也被称为采样率,通常用赫兹(Hz)表示。

采样率决定了输入信号中能够被留存下来的频率范围。

2.量化:采样后的模拟信号将被输入到量化器中。

量化是将连续的模拟信号转换成离散的数字信号的过程。

在这个过程中,AD转换器将把输入的模拟信号分成一定数量的等级,并为每个等级分配一个数字代码。

采样和量化的过程可以通过二进制表示来完成,其中最常见的是通过ADC(模数转换器)将模拟信号转换为二进制数。

DA的工作原理:DA转换器的作用是将数字信号转换为模拟信号,以便于与模拟设备进行连接和交互。

DA转换器通常包含两个主要部分:数字信号处理和模拟输出。

1.数字信号处理:DA转换器首先接收到一串数字信号,这些信号由计算机或数字设备产生。

这些信号是基于离散的数字表示,通常使用二进制数表示。

DA转换器将会对这些数字信号进行处理,比如滤波、重采样等,以确保生成的模拟信号质量和稳定性。

2.模拟输出:处理后的数字信号被输入到DAC(数模转换器),将数字信号转换为模拟信号。

DAC将根据数字信号的数值,通过一定的电流或电压生成模拟信号。

这些模拟信号将与各种模拟设备进行连接,例如音频设备、电机控制等。

需要注意的是,AD和DA转换的精度和速度是非常重要的参数。

转换器的精度是指转换器所能提供的输出与输入之间的误差。

AD转换器

AD转换器

A/D转换器的量化误差 转换器的量化误差
二、A/D转换器的技术指标
1. 分辨率与量化误差
分辨率是衡量A/D转换器分辨输入模拟量最小变化程度的 转换器分辨输入模拟量最小变化程度的 分辨率是衡量 技术指标。 转换器的分辨率取决于A/D转换器的位数,所 转换器的位数, 技术指标。A/D转换器的分辨率取决于 转换器的分辨率取决于 转换器的位数 以习惯上以输出二进制数或BCD 码数的位数来表示。 码数的位数来表示。 以习惯上以输出二进制数或
A/D转换器概述 / 转换器概述
一、A/D转换器的定义 / 转换器的定义 A/D转换器是将模拟量转换为数字量的器件,这 / 转换器是将模拟量转换为数字量的器件, 转换器是将模拟量转换为数字量的器件 个模拟量泛指电压、电阻、电流、时间等参量, 个模拟量泛指电压、电阻、电流、时间等参量,但在 一般情况下,模拟量是指电压而言的。 一般情况下,模拟量是指电压而言的。 二、A/D转换器的技术指标 / 转换器的技术指标 1. 分辨率与量化误差 2. 转换精度 3. 转换速率 4. 满刻度范围
二、A/D转换器的技术指标
3、转换速率 、
转换速率是指A/ 转换器在每秒钟内所能完成的转换次数 转换器在每秒钟内所能完成的转换次数。 转换速率是指 /D转换器在每秒钟内所能完成的转换次数。 转换速率也可表述为转换时间,即A/D转换从启动到结束 转换速率也可表述为转换时间, / 转换从启动到结束 所需的时间,转换速率与转换时间互为倒数。 所需的时间,转换速率与转换时间互为倒数。 例如, 转换器的转换速率为5MHz,则பைடு நூலகம்转换时间 例如,某A/D转换器的转换速率为 / 转换器的转换速率为 , 是200ns。 。
三、A/D转换器的分类
逐次比较式A/ 转换器 转换时间一般在µs级 转换器: ① 逐次比较式 /D转换器:转换时间一般在 级,转换精 度一般在0.1%上下,适用于一般场合。 度一般在 %上下,适用于一般场合。 积分式A/ 转换器 其核心部件是积分器, 转换器: ② 积分式 /D转换器:其核心部件是积分器,因此转换时 间一般在ms级或更长 但抗干扰性能强,转换精度可达0.01% 级或更长, 间一般在 级或更长,但抗干扰性能强,转换精度可达 % 或更高。适于数字电压表类仪器采用。 或更高。适于数字电压表类仪器采用。 并行比较式又称闪烁式:采用并行比较, ③ 并行比较式又称闪烁式:采用并行比较,其转换时间可 达ns级,但抗干扰性能较差,由于工艺限制,其分辨率一般不高 级 但抗干扰性能较差,由于工艺限制, 于8位。可用于数字示波器等要求转换速度较快的仪器中。 位 可用于数字示波器等要求转换速度较快的仪器中。 改进型是在上述某种形式A/ 转换器的基础上 转换器的基础上, ④ 改进型是在上述某种形式 /D转换器的基础上,为满足 某项高性能指标而改进或复合而成的。 某项高性能指标而改进或复合而成的。例如余数比较式即是在逐 次比较式的基础上加以改进, 次比较式的基础上加以改进,使其在保持原有较高转换速率的前 提下精度可达0.01%以上。 提下精度可达 %以上。

AD转换及其原理

AD转换及其原理

AD转换及其原理AD转换器(Analog-to-Digital Converter,简称ADC)是将模拟信号转换为数字信号的电子设备。

在现代电子技术中,AD转换器广泛应用于各种领域,如通信、计算机、仪器仪表、医疗设备等。

AD转换的原理是利用一定的电路和算法将连续的模拟信号转换为离散的数字信号。

整个转换过程可以分为三个步骤:采样、量化和编码。

首先是采样过程,即将模拟信号在时间上离散取样。

采样的目的是为了获取一定时间段内的模拟信号的定量表示。

采样率是衡量采样的频率,通常用赫兹(Hz)来表示。

根据采样定理,采样率应该至少是被采样信号中最高频率成分的两倍,以避免采样失真。

接下来是量化过程,即将采样得到的模拟信号转换为离散的数字信号。

采样得到的信号是连续变化的,而存储和处理数字信号时需要离散的数值。

因此,量化是将连续的模拟信号按照一定的规则映射到离散的数字值。

常见的量化方式有线性量化和非线性量化。

线性量化根据信号的幅值和量化级别来进行映射,而非线性量化则根据信号的幅值和概率分布进行映射。

最后是编码过程,即将量化得到的数字信号转换为二进制码。

编码的目的是为了方便数字信号的存储和处理。

常用的编码方式有二进制编码和格雷码。

二进制编码是将每个数字信号对应的离散值用二进制数表示,格雷码则是相邻离散值的编码只有一个位数的变化,以减少编码转换时可能引入的错误。

AD转换器的实现方式有许多种,常见的包括逐次逼近型、并行型和积分型等。

逐次逼近型AD转换器是一种非常常见且常用的转换方式。

它的工作原理是通过逐步逼近的方式将模拟信号与一系列已知的参考电压进行比较,以确定最接近的数字值。

逐次逼近型AD转换器的精度一般由比较次数决定,比较次数越多,精度越高,但转换速度会降低。

除了转换方式,AD转换器的精度也是一个重要的指标。

精度指的是数字输出值和实际输入值之间的误差大小。

常见的精度指标有位数(bit)和有效位数(ENOB)等。

位数是指AD转换器的输出位数,通常越高精度越高,有效位数是指真正用于表示输入信号的有效位数,它比位数少一些,因为AD转换器的输出范围往往比输入信号的范围大一些。

AD转换器

AD转换器

A/D 转换器的量化误差 幻灯片 4
二、A/D 转换器的技术指标 分辨率与量化误差
分辨率是衡量 A/D 转换器分辨输入模拟量最小变化程度的技术指标。A/D 转换 器的分辨率取决于 A/D 转换器的位数,所以习惯上以输出二进制数或 BCD 码数的位数 来表示。
量化误差是由于 量 化)引起的误差,其大小在理论上也为一个单位(1LSB )。 量化误差和分辨率是统一的,即提高分辨率可以减小量化误差。 幻灯片 5
二、A/D 转换器的技术指标 4、满刻度范围
满刻度范围是指 A/D 转换器所允许最大的输入电压范围。 如(0~5)V,(0~10)V,(-5~+5)V 等
满刻度值只是个名义值,实际的 A/D 转换器的最大输入电压值总比满刻度值
小 1/2n(n 为转换器的位数)。这是因为 0 值也是 2n 个转换器状态中的一个。
幻灯片 6
转换精度 幻灯片 7
转换精度指标通常由以下分项误差有组成: ① 偏移误差:是指输出为零时,输入不为零的值,所以有时又称零点误差。 偏移误差可以通过在 A/D 转换器的外部加接调节电位器,将偏移误差调至最小。 ② 满刻度误差:又称增益误差,它是指 A/D 转换器满刻度时输出的代码所对 应的实际输入电压值与理想输入电压值之差,满刻度误差一般是由参考电压、放大器放 大倍数、电阻网络误差等引起。满刻度误差可以通过外部电路来修正。 ③ 非线性误差:是指实际转移函数与理想直线的最大偏移。非线性误差不包 括量化误差,偏移误差和满刻度误差。 ④ 微分非线性误差:是指转换器实际阶梯电压与理想阶梯电压(1LSB)之间的 差值。为保证 A/D 转换器的单调性能,A/D 转换器的微分非线性误差一般不大于 1LSB。 非线性误差和微分非线性误差在使用中很难进行调整。

AD转换的工作原理

AD转换的工作原理

AD转换的工作原理
AD转换的工作原理是将模拟信号转换为数字信号的过程。


体来说,AD转换器将连续变化的输入模拟信号按照一定的时
间间隔进行采样,并在每个采样点上测量该点的电压值。

采样后,模拟信号的幅值通过量化过程转换为数字形式的离散数值。

量化是AD转换器中的关键步骤之一。

它基于ADC的分辨率,将每个采样点的电压值量化成数字化的离散数值。

分辨率是ADC能够区分的最小电压变化量,通常以位数(比特数)表示。

例如,一个8位ADC可以将电压范围划分为256个小区间,每个小区间代表一个数字值。

量化后,数字信号经过编码器进行编码处理,将每个量化值转换为二进制形式表示。

编码可以使用不同的编码方式,如二进制编码、格雷码等。

编码完成后,数字信号可以存储、处理和传输。

AD转换器的工作原理是根据采样和量化两个基本步骤完成的。

通过不断重复这两个步骤,AD转换器能够对模拟信号进行连
续的转换,从而获取到数字形式的信号。

这种数字信号具有离散性和可存储性,可以方便地进行数字信号处理和传输。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CHS2:CHS0
111 110 101 100 VAIN ( 输入电压 ) 8 位 A/D 转换器 011 010 001 VDD (1) VREF ( 参考 电压 ) PCFG2:PCFG0 000 or 010 or 100 001 or 011 or 101 000
AN7 AN6 AN5 AN4 AN3/VREF AN2 AN1 AN0
DS31021A_CN 第 21-3 页
PICmicro 中档单片机系列
寄存器 21-2: U-0 — bit 7 bit 7:3 bit 2:0 未用:读为 '0' PCFG2:PCFG0: A/D 端口配置控制位 PCFG2:PCFG0 000 001 010 011 100 101 11x A = 模拟输入 注: AN7 A A D D D D D AN6 A A D D D D D AN5 A A D A D D D AN4 A A A A D D D AN3 A VREF A VREF A VREF D AN2 A A A A D D D AN1 A A A A A A D AN0 A A A A A A D ADCON1 寄存器 U-0 — U-0 — U-0 — U-0 — R/W-0 PCFG2 R/W-0 PCFG1 R/W-0 PCFG0 bit 0
bit 1 bit 0
保留 : 总是保持该位为 0。 ADON: A/D 模块开启位 1 = A/D 转换器模块工作 0 = A/D 转换器关闭,不消耗工作电流 图注 R = 可读位 U = 未用,读为 ‘0’
W = 可写位 - n = POR 复位值
2004 Microchip Technology Inc.
DS31021A_CN 第 21-4 页
2004 Microchip Technology Inc.
第 21 章 8 位 A/D 转换器
21.3 操作
当 A/D 转换完成之后,转换结果被载入 ADRES 寄存器, GO/DONE (ADCON0<2>) 位被清零, 且 A/D 中断标志位 ADIF 置 1。
D = 数字 I/O
当 AN3 被选作 VREF 时,A/D 的参考电压为 AN3 引脚的电压。当 AN3 被选作 模拟输入 (A) 时, A/D 的参考电压为器件的 VDD。
图注 R = 可读位 U = 未用,读为 ‘0’
W = 可写位 - n = POR 复位值
注 1:
在器件的复位时,复用为模拟功能 (ANx) 的端口引脚均被强制置为模拟输入。
注:
器件是否具有该模块,请参考附录 C.3 或器件数据手册。
2004 Microchip Technology Inc.
DS31021A_CN 第 21-1 页
PICmicro 中档单片机系列
21.1 简介
此模数转换器 (A/D) 模块有多达 8 个模拟输入通道。 A/D 转换器能将一个模拟输入信号转换成相应的 8 位数字信号。采样保持输出是转换器的输入, A/D 转换器采用逐次逼近法产生转换结果。通过软件设置,模拟参考电压可以选择为器件的正向 电源电压 (VDD) 或 VREF 引脚上的电平。 A/D 转换器具备可在休眠状态下工作的独特特性。 A/D 转换器有 3 个寄存器,它们是: • A/D 结果寄存器 (ADRES) • A/D 控制寄存器 0 (ADCON0) • A/D 控制寄存器 1 (ADCON1) ADCON0 寄存器,如图 21-1 所示,控制 A/D 模块的操作。 ADCON1 寄存器,如图 21-2 所示, 可对端口的引脚功能进行配置。 这些 I/O 引脚可被配置成模拟输入 ( 其中一个 I/O 也可作为模拟参 考电压 ) 或数字 I/O 口。 A/D 模块结构框图如图 21-1 所示。 图 21-1: 8 位 A/D 转换器结构图
21
R/W-0 CHS1 R/W-0 CHS0 R/W-0 GO/DONE R/W-0 Resv R/W-0 ADON bit 0
8 位 A/D 转换器
bit 5:3
ADCS1:ADCS0: A/D 转换时钟选择位 00 = FOSC/2 01 = FOSC/8 10 = FOSC/32 11 = FRC ( 来自内部 A/D 的 RC 振荡器的时钟 ) CHS2:CHS0: 模拟通道选择位 000 = channel 0, (AN0) 001 = channel 1, (AN1) 010 = channel 2, (AN2) 011 = channel 3, (AN3) 100 = channel 4, (AN4) 101 = channel 5, (AN5) 110 = channel 6, (AN6) 111 = channel 7, (AN7)
21
8 位 A/D 转换器
当配置好 A/D 模块后,在启动转换前必须先选择 A/D 转换的通道。模拟输入通道的相应 TRIS 位 必须设置为输入。采集时间 (acquisition time) 的确定参见 21.4 “A/D 采集时间要求 ” 小节。在 这一采集时间过去之后, A/D 转换即可开始。按照以下步骤进行 A/D 转换: 1. 配置 A/D 模块 • 对模拟引脚 / 参考电压 / 数字 I/O (ADCON1) 进行配置 • 选择 A/D 输入通道 (ADCON0) • 选择 A/D 转换时钟 (ADCON0) • 打开 A/D 转换模块 (ADCON0) 需要时,设置 A/D 中断 • 将 ADIF 位清零 • 将 ADIE 位置 1 • 将 GIE 位置 1 等待所需的采集时间 启动 A/D 转换 • 将 GO/DONE 置 1 (ADCON0) 等待 A/D 转换完成,通过以下两种方法之一可判断转换是否完成: • 轮询 GO/DONE 位是否被清零; 或 • 等待 A/D 转换的中断。 6. 7. 读取 A/D 结果寄存器 (ADRES),需要时将 ADIF 位清零。 要再次进行 A/D 转换, 根据要求转入步骤 1 或步骤 2。 每一位的 A/D 转换时间定义为 TAD。 在下一次采集开始前至少需要等待 2TAD。
bit 2
注: 对未用满 8 个 A/D 通道的器件,未使用的选项被保留。不要选择未使用的通道。 GO/DONE: A/D 转换状态位 当 ADON = 1 时 1 = A/D 转换正在进行 ( 该位置 1 启动 A/D 转换。 A/D 转换结束后该位由硬件自动清零 ) 0 = 未进行 A/D 转换
注 (1): 在某些器件上, 该引脚是一个被称为 AVDD 的独立引脚。 这样可允许 A/D 转换器的 VDD 连接到一个精密电压源上。
DS31021A_CN 第 21-2 页
2004 Microchip Technology Inc.
第 21 章 8 位 A/D 转换器
21.2 控制寄存器
寄存器 21-1: ADCON0 寄存器 R/W-0 R/W-0 R/W-0 ADCS1 ADCS0 CHS2 bit 7 bit 7:6
21
8 位 A/D 转换器
第 21 Hale Waihona Puke 8 位 A/D 转换器目录
本章包括以下一些主要内容: 21.1 21.2 21.3 21.4 21.5 21.6 21.7 21.8 21.9 21.10 21.11 21.12 21.13 21.14 21.15 21.16 21.17 简介 ............................................................................................................................ 21-2 控制寄存器 ................................................................................................................. 21-3 操作 ............................................................................................................................ 21-5 A/D 采集时间要求 ...................................................................................................... 21-6 A/D 转换时钟的选择 ................................................................................................... 21-8 配置模拟输入端口 ...................................................................................................... 21-9 A/D 转换 ................................................................................................................... 21-10 休眠期间的 A/D 转换 ................................................................................................ 21-12 A/D 精度 / 误差 ......................................................................................................... 21-13 复位对 A/D 转换的影响 ............................................................................................ 21-13 CCP 触发器的使用 ................................................................................................... 21-14 连接注意事项 ........................................................................................................... 21-14 传递函数................................................................................................................... 21-14 初始化 ...................................................................................................................... 21-15 设计技巧................................................................................................................... 21-16 相关应用笔记 ........................................................................................................... 21-17 版本历史................................................................................................................... 21-18
相关文档
最新文档