光检测器和光接收器ppt课件

合集下载

光纤通信光检测器与光接收机PPT课件

光纤通信光检测器与光接收机PPT课件

NF3 1 G1G2
第41页/共72页
4.4 光接收机的信噪比
在光纤通信系统中,通常要求光电二极管能检测出微弱的光信号。 为了检测到最小可能的信号,必须对光检测器和它随后的放大器电路进 行最优化设计,以此来保证一定的信噪比。 光接收机输出端的信噪比S/N定义为
w td vd
一般情况下,耗尽区的电场足够高,载流子都可以达到它们的散射极限速度。 典型的Si光电二极管的耗尽区宽度为10um,极限响应时间为0.1ns。
第24页/共72页
上升时间的快速反应分量源于耗尽区产生的载流子,
而慢速分量则是源于距离耗尽区边界处的载流子的扩散。
在光脉冲的后沿,耗尽区的光脉冲吸收得很快,所以在下降时间里产生 了快速分量,在距耗尽区边界以内的载流子扩散造成了脉冲后沿的一个 很慢的延迟拖尾。
第12页/共72页
光 一次电子
高电场
第14页/共72页
§4.2 光电二极管的工作特性
光电二极管的主要特性参数包括响应度、量子效率、响应带宽、APD的倍增系 数及噪声等。这里仅讨论响应度和量子效率。
1、量子效率
单位时间产生的电子数 单位时间注入的光子数
Ip /e
Pin / h
式中 e是电子电荷, h是普朗克常数。
光检测器负载电阻的均方热噪声电流为:
ST
(
f
)BT 0 RL
df
4k BTB RL
K:玻耳兹曼常数 T:绝对温度
第31页/共72页
光电检测器的特性
响应度
量子效率 截止波长 倍增因子 响应时间
噪声
I p RPin
M IM Ip
对于pin
量子噪声
对于APD
R e

光纤通信第6章光电检测器与光接收机.ppt

光纤通信第6章光电检测器与光接收机.ppt

率或信噪比)的条件下,光接收机所需的最
小平均光功率<P>min.灵敏度是光接收机
的重要指标,描述了其准确检测光信号
(dBm) 的能力。 Pr 10lg
P
m in 103
(W
)
APD接收灵敏度
I1 gP1 2g P
Im I1A
Q
Im
N0 N1
Q
P min
N0 N1
2gA
传输速率越大,光检测器的灵敏度越低
结论:光电检测器的灵敏度主要取决于三 个主要因素:
• 光检测器的噪声特性 • 前置放大器的噪声特性 • 传输速度
练习题
1、 InGaAs光电二极管的量子效率是70%,
它的响应度是多少? 2、 P-I-N代表什么意思? 3、门限判决和时钟判决示意图。 4、电路模块判断。 5、灵敏度的概念。
电压并联负反馈放大器(电 流-电压转换器)
优点:宽频带(等效输入电 阻很小)、低噪声(反馈电 阻可以取得很大)、灵敏度 高、动态范围大等综合优点, 被广泛采用。
6.3.2 光接收机的线性通道
提供高的增 益,放大到 适合于判决 电路的电平。
主放 大器
均衡 滤波
AGC电路
对主放输出的失 真数字脉冲进行 整形,使之成为 有利于判决码间 干扰最小的升余 弦波形。
光电二极管的响应度是0.85A/W,饱和输入光功率是 1.5mW,当入射光功率是1mW和2mW时,光电流分别是 多少? 解:当输入光功率是1mW时,由I=RP,可得,
I=RP=[ 0.85A/W] ×[1.5mW]= 0.85mA
当输入光功率是2mW时,公式I=RP不适用,因此我们 无法得到光电流的值。
6.3.1 光接收机的前端(2)

光检测器及光接收机ppt课件

光检测器及光接收机ppt课件

光信号 光电 变换
前置 电信号 放大
前端:由光电二极管和前置放大器组成。
作用:将耦合入光电检测器的光信号转换为时变 电流,然后进行预放大(电流-电压转换),以便 后级作进一步处理。是光接收机的核心。
要求:低噪声、高灵敏度、足够的带宽
编辑版pppt
11
5.2.2 光接收机的线性通道
提供高的增 益,放大到 适合于判决 电路的电平。
编辑版pppt
13
光接收机的噪声特性
光接收机的噪声将影响信噪比SNR和通信质 量。主要来自光电探测器和前置放大器的噪声 。分为两类:散粒噪声和热噪声。
1.光检测器产生散粒噪声 2.负载电阻产生热噪声
3.放大器产生放大噪声
编辑版pppt
14
5.3.2 光接收机性能指标
1误码率 BER=Ne/Nt=Ne/Bt 即:误比特率=错误比特/总比特 2灵敏度 (1)输入的最小平均光功率 (2)每个光脉冲的最低平均光子数n0 (3)每个光脉冲的最低平均能量Ed
为确定是“1”或是 “0”,需要对某时隙 的码元作出判决。若 判决结果为“1”,则 由再生电路产生一个 矩形“1”脉冲;若判 决结果为“0”,则由 再生电路重新输入一 个“0”。
判 输出 决 器
时钟恢复
为了精确地确定“判决时 刻”,需要从信号码流中提 取准确的时钟信息作为标定, 以保证与发送端一致。
耗尽层仍为I 层,起产生一 次电子-空穴 对的作用。
增加了一个附加 层,倍增区或增 益区,以实现碰 撞电离产生二次 电子-空穴对。
编辑版pppt
7
温度对雪崩增益的影响
当保持所加偏置电压不变时,降低温度, 则电子和空穴的电离速率会增加,因而雪 崩增益也会增加。

第04章 光检测器和光接收机

第04章 光检测器和光接收机

(4.1.4)
量子效率定义为通过结区的载流子数与入射的光子数之 比, 即
第4章 光检测器和光接收机
通过结区的光生载流子数(光生电子-空穴对数) 入射到器件上的光子数
η=
(4.1.5)
由物理概念可知 光生载流子数(光生电子-空穴对数)=
Ip e
e为电子电荷量, 其值为1.6×10-19 C。
P0 入射的光子数= hν
第4章 光检测器和光接收机
第 4 章 光检测器和光接收机
4.1 光检测器 4.2 光检测器的分类 光检测器的分类 4.3 PIN光电二极管 光电二极管 4.4 雪崩光电二极管 雪崩光电二极管(APD) 4.5 MSM光检测器 光检测器 光检测器 4.6 光检测器的可靠性和注意事项 4.7 IM/DD模式 模式 4.8 光接收机 习题
第4章 光检测器和光接收机
光生载流子在外加负偏压(P接负, N接正)和内建 电场的作用下, 在外电路中出现光电流, 如图4-1-1所示, 从而在电阻R上有信号电压输出。 这样就实现了输出电压 跟随输入光信号变化的光电转换作用。 图4-1-2所示为PN结及其附近的能带分布图, 要注意 的是能带的高、 低是以电子的电位能为依据的, 电位越 负能带越高。
第4章 光检测器和光接收机
(4) 雪崩倍增建立时间(仅对于APD); (5) RC时间常数。 显然, 一个快速响应的光电检测器, 它的响应时 间一定是短的。 要想具有快速响应的特性, 光电二极 管在结构上首先要减薄零场区, 其次是减小结电容。 采用同轴封装和微带结构可以减小管壳电容, 以进一步 减短响应时间。
第4章 光检测器和光接收机
4.1.2
主要工作特性 主要工作特性
下面介绍衡量光检测器性能的几个主要特性参数。 响应度与量子效率 1. 响应度与量子效率 响应度定义为在一定波长的光照射下, 光电检测 器的平均输出电流Ip与入射的平均光功率P0之比, 表示 I P 如下:

第4章光检测器和光接收机

第4章光检测器和光接收机

第4章 光检测器和光接收机
4.1光检测器的工作原理
作用:将接收到的光信号转换成电信号。 工作原理: 把能量大于Eg的光照射到半导体材料上, 则处于低能带的电子吸收该能量后而被激励跃 迁到高能带,从而产生电子_空穴对。通过在 半导体材料上外加电场,使得电子_空穴对在 半导体材料中渡越,形成光电流(光生电流)。 当入射光变化时,光生电流随之做线性变化, 从而把光信号转换成电信号。
第4章 光检测器和光接收机
(4)动态范围
在保证系统误码率指标要求下,接收机的最 低光功率和最大允许光功率之比
Pmax D 10 lg Pmin
D的单位为dB
第4章 光检测器和光接收机
PIN光电检测器优点 (1)I区的宽度远大于P区和N区宽度,所以I区有
更多的光子被吸收,从而增加了量子效率; (2)扩散电流很小 (3)反向偏压可以取较小值
第4章 光检测器和光接收机
2 APD光检测器 工作机理:
入射光在光电二极管中产生最初的电子_空穴对,由 于光电二极管上加了较高反向偏置电压,电子_空穴对在 该电场作用下加速运动,获得很大动能,当它们与中性原 子碰撞时,会使中性原子价带上的电子获得能量后跃迁到 导带上去,于是产生新的电子_空穴对,新产生的电子_空 穴对称为二次电子_空穴对。这些二次载流子同样能再强 电场作用下,碰撞别的中性原子进而产生新的电子_空穴 对,这样就引起了产生新载流子的雪崩过程。 这样,一个光子最终产生了许多的载流子,使得光信 号在光电二极管内部就获得了放大。
第4章 光检测器和光接收机
4.3 光接收机
光接收机的作用是把光发射机发送并 经光纤传输的携带有信息的光信号转化成 相应的电信号,然后放大并再生恢复为原 始电信号。
第4章 光检测器和光接收机

光检测器和光接收机学习PPT

光检测器和光接收机学习PPT

线性动态范围
01 线性动态范围:指光检测器或光接收机在保持线 性响应时的输入光功率范围。
02 线性动态范围越大,光检测器或光接收机的性能 越好,能够探测到的光信号范围越广。
03 在实际应用中,需要根据具体需求选择合适线性 动态范围的光检测器或光接收机。
04
光检测器和光接收机的技术发展与趋

高速光检测器技术
护和可持续发展提供科学依据。
THANKS
感谢观看
光检测器和光接收机学习
• 光检测器和光接收机概述 • 光检测器和光接收机的分类与比较 • 光检测器和光接收机的性能指标 • 光检测器和光接收机的技术发展与趋
势 • 光检测器和光接收机的应用案例
01
光检测器和光接收机概述
光检测器和光接收机的定义
光检测器
光检测器是一种能够将光信号转 换为电信号的器件,常用于光纤 通信、光电传感器等领域。
应用于粒子探测、光谱分析、激光雷达等领域。
光电导探测器
总结词
光电导探测器是一种基于半导体材料的光电检测器,利用材料电阻随光照变化的 特性实现光信号的检测。
详细描述
光电导探测器利用半导体材料的光电导效应,当光照变化时,材料电阻发生变化 ,从而引起电信号的变化。光电导探测器具有响应速度快、灵敏度高、线性范围 宽等特点,广泛应用于高速光通信、光纤传感、光谱分析等领域。
光电倍增管
总结词
光电倍增管是一种高灵敏度的光电检测器,通过多个级联的 dynode 实现光电流的放 大。
详细描述
光电倍增管由多个 dynode(打拿极)组成,当光子打在光电倍增管的阴极上时,光子 能量转化为电子能量,电子经过各级 dynode 的加速撞击,产生更多的电子-空穴对, 从而实现光电流的放大。光电倍增管具有高灵敏度、低噪声、响应速度快等特点,广泛

《光探测及光接收机》课件

《光探测及光接收机》课件
光电倍增管
光电倍增管是一种高灵敏度的光探测器,它通过多级倍增 系统将微弱的光信号转换为较强的电信号。其特性包括高 灵敏度、低噪声、快速响应等。
光电晶体管
光电晶体管是一种基于晶体管的的光探测器,其特性包括 高响应速度、低噪声、高灵敏度等。
光纤光栅探测器
光纤光栅探测器是一种基于光纤的光探测器,其特性包括 波长选择性、高灵敏度、低噪声等。
安全监控
光探测器可用于安全监控系统 ,如红外热像仪、激光雷达等
,实现远距离探测和监控。
光探测技术的发展趋势与挑战
发展趋势
随着技术的不断发展,光探测器的性能不断提高,响应速度更快、灵敏度更高 、线性范围更广。同时,新型的光探测器不断涌现,如单光子探测器、量子点 探测器等。
挑战
光探测技术面临的挑战主要包括提高探测器的响应速度和灵敏度、降低噪声和 暗电流、减小体积和成本等。此外,新型光探测器的研发和应用也需要解决一 些技术难题,如稳定性、可靠性等。
数据传输。
传感领域
光探测及光接收机还可应用于光学 传感领域,如气体、湿度、温度等 传感器的检测,以及生物传感等。
科学研究
在物理学、化学、生物学等科学研 究中,光探测及光接收机可用于探 测和分析各种光谱信号,为科学研 究提供有力支持。
光探测及光接收机的发展历程与趋势
发展历程
自20世纪60年代以来,随着光纤技术和半导体技术的不断发 展,光探测及光接收机经历了从低速到高速、从低灵敏度到 高灵敏度的发展历程。
工作原理
光探测及光接收机通过光电效应将光信号转换为电信号。当光信号照射到光探测器的表面时,光子与探测器材料 相互作用,产生电子-空穴对。在电场的作用下,电子和空穴分别向相反方向移动,形成电信号。

第7讲 光检测器与光接收机PPT课件

第7讲 光检测器与光接收机PPT课件

2020/10/31
n 9
5.1.1 PIN 光电二极管的工作原理
❖ 要得到高的量子效率,必须采取如下措施:(1) 减小入射 表面的反射率;(2) 尽量减小光子在表面层被吸收的可能 性,增加耗尽层的宽度。因此,为了得到高的量子效率, 常采用 PIN 结构,如图5.2所示。
5.1.2 雪崩光电二极管(APD)
表5.1 Si, Ge, InGaAs PIN光电二极管的通用工作特性参数
参数 波长范围 响应度 暗电流 上升时间
带宽 偏压
符号 λ R In τ B VB
单位 nm A/W nA ns GHz V
Si 400~1000
0.4~0.6 1~10 0.5~1.0 0.3~0.7
❖ 2.APD的平均雪崩增益
❖ 雪崩过程是一个复杂的随机过程,只能以APD的平均雪 崩增益来表示APD增益的大小:
G
1
[1(VIRs)/VB]m
❖ 式中,V是反向偏压;V B 是反向击穿电压;m 是APD结
构和材料决定的参量。
2020/10/31
n 16
5
Ge 800~1650
0.4~0.5 50~500 0.1~0.5 0.5~3.0
5~10
InGaAs 1100~1700 0.75~0.95
0.5~2.0 0.05~0.5 1.0~2.0
5
2020/10/31
n 20
5.1.2 雪崩光电二极管(APD)
❖ 2.前置放大器
❖ 从光检测器输出的光电流信号十分微弱,必须经过前置放 大器放大,前置放大器在光接收机中起关键作用,要求它 有足够小的噪声、适当的带宽和一定的增益。
❖ 光检测器和前置放大器合起来叫做接收机前端,其性能的 优劣直接决定接收的灵敏度。

光检测器与光接收机课件

光检测器与光接收机课件

光接收机的应用实例
01
光纤通信系统
在光纤通信系统中,光接收机用于接收远端发送的光信号,并将其转换
为电信号进行进一步处理。
02
激光雷达
激光雷达通过发射激光束并接收反射回来的光信号来测量目标距离、速
度和角度等信息。光接收机在激光雷达中负责接收反射回来的光信号。
03
生物医学成像
在生物医学成像领域,如荧光显微镜和共聚焦显微镜中,光接收机用于
工作原理
光检测器通过光电效应将光信号 转换为电信号,而光接收机则对 电信号进行处理,以便后续的信 号处理和传输。
分类与特点
பைடு நூலகம்分类
光检测器和光接收机有多种分类方式, 如按工作波长、响应速度、噪声性能 等。
特点
不同类型的光检测器和光接收机具有 不同的特点,如响应速度、灵敏度、 带宽等,适用于不同的应用场景。
光接收机的性能参数
灵敏度
光接收机的灵敏度是指其能够检测到的最小光功率。灵敏度越高, 光接收机在低光功率条件下也能正常工作。
带宽
光接收机的带宽是指其响应频率范围。带宽越宽,光接收机能够传 输的数据速率越高。
线性范 围
线性范围是指光接收机正常工作范围内,输出信号与输入光功率之间 的线性关系。线性范围越大,光接收机对光功率变化的响应越准确。
详细描述
光检测器和光接收机能够检测到环境中特定波长的光线,并将其转换为可用于监 测的电信号。在环境监测中,它们被广泛应用于水质检测、空气质量监测、温室 气体测量等领域,以帮助环境保护和治理。
THANKS
感谢观看
捕捉荧光信号或反射光信号,以获得高分辨率的图像。
PART 04
光检测器与光接收机的比 较与选择
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
d
PD
d
L
4.1.2 APD光检测器 APD光检测器也称为雪崩光电二极管 (Avalanche Photodiode),其工作机理如下:入射信 号光在光电二极管中产生最初的电子-空穴对,由于光 电二极管上加了较高的反向偏置电压,电子-空穴对在 该电场作用下加速运动,获得很大动能,当它们与中性 原子碰撞时,会使中性原子价带上的电子获得能量后跃 迁到导带上去,于是就产生新的电子-空穴对,新产生 的电子-空穴对称为二次电子-空穴对。这些二次载流子 同样能在强电场作用下,碰撞别的中性原子进而产生新 的电子-空穴对,这样就引起了产生新载流子的雪崩过 程。也就是说,一个光子最终产生了许多的载流子,使 得光信号在光电二极管内部就获得了放大。 从结构来看,APD与PIN的不同在于增加了一 个附加层P,如图4.1.3所示。在反向偏置时,夹在I层 与N+层间的PN+结中存在着强电场,一旦入射信号光 从左侧P+区进入I区后,在I区被吸收产生电子-空穴对, 其中的电子迅速漂移到PN+结区,PN+结中的强电场便 使得电子产生雪崩效应。
图4.1.3 APD光电二极管

与PIN光检测器比较起来,光电流在器件内部就得到了放大,从而避免了由外部电子 线路放大光电流所带来的噪声。我们从统计平均的角度设一个光子产生M个载流子, 它等于APD光电二极管雪崩后输出的光电流 IM与未倍增时的初始光电流IP的比值 I M (4.1.4) I 式中,M称为倍增因子。倍增因子与载流子的电离率有关,电离率是指载流子在漂移 的单位距离内平均产生的电子-空穴对数。电子电离率与空穴电离率是不相同的,分 别 用 和表示,它们与反向偏置电压、耗尽区宽度、掺杂浓度等因素有关,记为 k (4.1.5) k 式中,kA为电离系数,它是光检测器性能的一种度量。对 M的影响可由下式给出,即 1 k M (4.1.6) e k w 1 1 e 当 0 时,仅有电子参与雪崩过程,M , 增益随w指数增长;当 且k 时,由式 (4.1.6)可得,出现雪崩击穿。通常,M值的范围在10~500之间。 APD光电二极管出现雪崩击穿是因为所加的反向偏置电压过大,考虑到M与反向偏置 电压之间的密切关系,常用经验公式描述它们的关系,即 1 M (4.1.7) 1 (V / V ) 式中,n是与温度有关的特性指数,n = 2.5~7;VBR是雪崩击穿电压,对于不同的半 导体材料,该值从70 ~200V 不等;V 为反向偏置电压,一般取其为 VBR 的 80%~90%。 APD管使用时必须注意保持工作电压低于雪崩击穿电压,以免损坏器件。
图4.1.1 光检测器的工作原理 左侧入射的信号光透过P+区进入耗尽区,当PN结上加反向偏置电压时, 耗尽区内受激吸收生成的电子-空穴对分别在电场的作用下做漂移运动,电子向N 区漂移,空穴向P+区漂移,从而在外电路形成了随光信号变化的光生电流信号。 耗尽区的宽度由反向电压的大小决定。符号P+表示重掺杂区。
4.1 光检测器的工作原理
光检测器的作用是将接收到的光信号转换成电流信号。其工作过程的基 本机理是光的吸收,见第1章1.1节。当能量超过禁带宽度Eg的光子入射到半导 体材料上时,每一个光子若被半导体材料吸收将会产生一个电子-空穴对,如果 此时在半导体材料上加上电场,电子-空穴对就会在半导体材料中渡越,形成光 电流。图4.1.1说明了光检测器的工作原理。
4.1.1 PIN光检测器 PIN光检测器也称为PIN光电二极管,在此,PIN的意义是表明半导体材料的结构,P+ 和N型半导体材料之间插入了一层掺杂浓度很低的半导体材料(如Si),记为I,称为 本征区,如图4.1.2所示。
图4.1.2 PIN光电二极管 在图4.1.1中,入射光从P+区进入后,不仅在耗尽区被吸收,在耗尽区外也被吸收,它 们形成了光生电流中的扩散分量,如P+区的电子先扩散到耗尽区的左边界,然后通过 耗尽区才能到达N区,同样,N区的空穴也是要扩散到耗尽区的右边界后才能通过耗 尽区到达P+区。我们将耗尽区中光生电流称为漂移分量,它的传送时间主要取决于耗 尽区宽度。显然扩散电流分量的传送要比漂移电流分量所需时间长,结果使光检测 器输出电流脉冲后沿的拖尾加长,由此产生的时延将影响光检测器的响应速度。设 w t 耗尽区宽度为w,载流子在耗尽区的漂移时间可由下式计算,即 (4.1.1) v
tr d
v 是载流子的漂移速度;
d
t tr
的典型值为100ps。
如果耗尽区的宽度较窄,大多数光子尚未被耗尽区吸收,便已经到达了N区,而在这 部分区域,电场很小,无法将电子和空穴分开,所以导致了量子效率比较低。
实际上,PN结耗尽区可等效成电容,它的大小与耗尽区宽度的关系如下: A C (4.1.2) w 式中, 是半导体的介电常数;A是耗尽区的截面积。Cd的典型值为1~2pF。可见, 耗尽区宽度w越窄,结电容越大,电路的RC时间常数也越大,不利于高速数据传输。 考虑到漂移时间和结电容效应,光电二极管的带宽可以表示成 1 B (4.1.3) 2( w / v ) R (A / w) 式中,RL是负载电阻。 由上述分析可知,增加耗尽区宽度是非常有必要的。 由图4.1.2可见,I区的宽度远大于P+区和N区宽度,所以在I区有更多的光子被吸收, 从而增加了量子效率;同时,扩散电流却很小。PIN光检测器反向偏压可以取较小的 值,因为其耗尽区厚度基本上是由I区的宽度决定的。 当然,I 区的宽度也不是越宽越好,由式(4.1.1)和式(4.1.3)可知,宽度w越大, 载流子在耗尽区的漂移时间就越长,对带宽的限制也就越大,故需综合考虑。由于 不同半导体材料对不同波长的光吸收系数不同,所以本征区的宽度选取也各不相同。 例如 Si PIN 光吸收系数比 InGaAs PIN 小两个数量级,所以它的本征区宽度大约是 40m,而InGaAs PIN本征区宽度大约是4m。这也决定了两种不同材料制成的光检 测器带宽和使用的光波段范围不同, Si PIN 用于 850nm 波段, InGaAs PIN 则用于 1310nm和1550nm波段。
相关文档
最新文档