正弦定理和余弦定理公开课课教案
正弦定理和余弦定理教案
正弦定理和余弦定理教案第一课时 正弦定理 (一) 课题引入如图1.1-1,固定∆ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。
A 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。
能否用一个等式把这种关系精确地表示出来? C B (图1.1-1) (二) 探索新知在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。
如图1.1-2,在Rt ∆ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin a A c =,sin b B c =,又sin 1cC c==,A则sin sin sin abcc ABC=== b c 从而在直角三角形ABC 中,sin sin sin abcABC==C a B(图1.1-2)思考:那么对于任意的三角形,以上关系式是否仍然成立? 可分为锐角三角形和钝角三角形两种情况:如图1.1-3,当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin abAB=, C同理可得sin sin cbC B =, b a 从而sin sin abAB=sin cC=A D B(图1.1-3) 证明二:(等积法)在任意斜△ABC 当中 S △ABC =A bc B ac C ab sin 21sin 21sin 21==两边同除以abc 21即得:A a sin =B b sin =Cc sin证明三:(外接圆法)如图所示,∠A=∠D∴R CD DaA a 2sin sin === (R 为外接圆的半径)a bcOBCAD同理B b sin =2R ,Ccsin =2R 由于涉及边长问题,从而可以考虑用向量来研究这个问题。
证明四:(向量法) 过A 作单位向量j 垂直于AC →由 AC →+ CB →= AB →两边同乘以单位向量j 得 j •(AC →+CB →)=j •AB →则j •AC →+j •CB →=j •AB →∴|j |•|AC →|cos90︒+|j |•|CB →|cos(90︒-C)=|j |•| AB →|cos(90︒-A) ∴A c C a sin sin = ∴A a sin =Ccsin 同理,若过C 作j 垂直于CB →得: C c sin =B b sin ∴A a sin =B b sin =Ccsin 从而sin sin abAB=sin cC=类似可推出,当∆ABC 是钝角三角形时,以上关系式仍然成立。
正弦、余弦定理教案
A
1200 C B
例 2 如图, 在三角形 ABC 中, 已知 a=3,b=2,c= 19 ,求此三角形各个角的大小及其面积。 (精确到 0.1) 。 A
C
B
例 3 已知 ABC 的顶点为 A(6,5),B(-2,8)和 C(4,1),求 A (精确到 0.1 )
四、课堂练习: 已知 ABC 的三个角 A,B, C 所对的边分别为 a,b,c,根据下列条件,分别解三角形(保留根号 或精确到 0.01)
三.三角形中正弦定理的证明: 法 1:从特殊到一般,穷举法: 直角三角形中特性: 锐角三角形中有无特性? 钝角三角形如何? C B
A
法 2:在三角形的外接圆中论证:
分学习小组探讨,教师适当点拨。
四、 定理应用: 例 1:已知Δ ABC 中, 0 (1)a=20 , A=30 , (2)a=20 , b=40 , (3)a=20 , b=40 , (4)a=20 , b=30 , (5)a=20 , b=25 , (6)a=20 , b=15 ,
a ,sinB=____________,sinc=___________。 2R
(3)a:b:c=__________________________. (4)Δ ABC 面积 S=_______________=_______________=________________。 二、公式应用: (30 分钟) 1.在△ABC 中,若 sin A sin B ,则 A 与 B 的大小关系为( A. A B B. A B C. A ≥ B ) )
0 0 0 0
学生完成后,教师订正答案
六、课后作业:见作业 1。
七、课后反思
第 2 课时 知识与技能
江苏正弦定理和余弦定理教案
江苏正弦定理和余弦定理教案一、教学目标:1. 让学生了解正弦定理和余弦定理的定义及应用。
2. 培养学生运用正弦定理和余弦定理解决实际问题的能力。
3. 通过对正弦定理和余弦定理的学习,提高学生的数学思维能力和创新能力。
二、教学内容:1. 正弦定理的定义及证明。
2. 余弦定理的定义及证明。
3. 正弦定理和余弦定理的应用。
4. 相关例题解析。
5. 实践练习。
三、教学重点与难点:1. 正弦定理和余弦定理的推导过程。
2. 灵活运用正弦定理和余弦定理解决实际问题。
四、教学方法:1. 采用讲授法,讲解正弦定理和余弦定理的定义、证明及应用。
2. 利用多媒体展示相关例题,进行解析。
3. 开展小组讨论,让学生互动交流,巩固所学知识。
4. 布置实践练习题,巩固所学内容。
五、教学过程:1. 引入:通过回顾三角形的基本知识,引导学生思考正弦定理和余弦定理的定义。
2. 讲解:详细讲解正弦定理和余弦定理的定义、证明及应用。
3. 例题解析:利用多媒体展示相关例题,进行解析,让学生掌握解题技巧。
4. 小组讨论:让学生围绕例题展开讨论,互相交流解题思路。
5. 实践练习:布置实践练习题,让学生独立完成,巩固所学知识。
6. 总结:对本节课的内容进行归纳总结,强调重点知识点。
7. 作业布置:布置课后作业,巩固所学内容。
8. 课后反思:教师对本节课的教学效果进行反思,为下一步教学做好准备。
六、教学评价:1. 课后作业:通过课后作业的完成情况,评估学生对正弦定理和余弦定理的理解和应用能力。
2. 课堂练习:通过课堂练习的实时反馈,了解学生在学习过程中的掌握情况,及时调整教学方法。
3. 小组讨论:观察学生在小组讨论中的参与程度和思考深度,评估他们的合作能力和问题解决能力。
4. 期中期末考试:通过期中期末考试的正弦定理和余弦定理部分,全面评估学生的学习成果。
七、教学资源:1. 教材:选用权威的数学教材,提供正弦定理和余弦定理的基础知识。
2. 多媒体课件:制作精美的多媒体课件,通过动画、图像等形式直观展示正弦定理和余弦定理的应用。
最新正弦定理余弦定理说课稿优秀5篇
最新正弦定理余弦定理说课稿优秀5篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!最新正弦定理余弦定理说课稿优秀5篇作为一位无私奉献的人·民教师,通常会被要求编写说课稿,说课稿有助于教学取得成功、提高教学质量。
正弦定理和余弦定理公开课课教案
《正玄定理和余弦定理》教案【教学对象】高三(5班)【授课教师】广州市南沙麒麟中学 陈文旭【课 型】 高三第一轮复习课【课时安排】1个课时【教学目标】1. 理解正弦定理和余弦定理的适用范围;2. 会正确选择正玄定理或余弦定理,求有关三角形的边和角的问题;3. 能够使用定理的变形,解决一些与三角形的计算有关的度量问题。
【教学重点】1. 会根据不同已知条件选择恰当的定理解决问题;2. 能够综合应用正弦定理、余弦定理解决有关几何的计算问题。
【教学难点】1. 熟练运用正弦定理、余弦定理的变化形式;2. 能够综合分析题目条件,结合正弦定理和余弦定理进行化简。
【教学设计理念】本节主要体现了“分析、类比”的数学思想,结合前面所学三角函数知识的进行解题,通过多让学生参与,发展每个学生的潜能,使学生在具体解题过程中感受正弦定理、余弦定理的适用条件和特点,能够不拘一格,发散学生的思维。
【考纲分析】1. 掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题2. 能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。
3. 总结近五年高考题,发现有两年考查了本知识点,都是以客观题的形式出现,分值5分。
(2011广东·理 第12题、2010广东·理 第11题)【教学策略】讲练结合法,类比分析法【教学过程】一、温故而知新1、正弦定理:2(sin sin sin a b c R R ABC A B C===∆ 为外接圆的半径) 2、正弦定理的变形:①2sin ,2sin ,2sin a R A b R B c R C ===②::sin :sin :sin a b c A B C =3、余弦定理:2222222222cos 2cos 2cos a b c bc Ab c a ca B c a b ab C=+-=+-=+-2222222224cos 2cos 2cos 2、余弦定理的变形:+-=+-=+-=b c a A bcc a b B caa b c C ab5、三角形面积公式:111sin sin sin 222ABC S bc A ac B ab C ===V二、例题精讲例1.(1)在△ABC 中,已知23045,,B ,求边长c ==︒=︒a A .(2)在△ABC中,已知60===o a b A ,求边长c. (3)在△ABC中,已知45===o a b B ,求边长c.小结①:利用正弦定理可以解决哪些有关三角形的问题?(1)已知三角形的两个角和任一边,求其它的边和角;(2)已知三角形的两边以及其中一边的对角,求其它的边和角。
正弦定理教案优秀5篇
正弦定理教案优秀5篇《正弦定理、余弦定理》教学设计篇一一、教学内容:本节课主要通过对实际问题的探索,构建数学模型,利用数学实验猜想发现正弦定理,并从理论上加以证实,最后进行简单的应用。
二、教材分析:1、教材地位与作用:本节内容安排在《普通高中课程标准实验教科书。
数学必修5》(A 版)第一章中,是在高二学生学习了三角等知识之后安排的,显然是对三角知识的应用;同时,作为三角形中的一个定理,也是对初中解直角三角形内容的直接延伸,而定理本身的应用(定理应用放在下一节专门研究)又十分广泛,因此做好该节内容的教学,使学生通过对任意三角形中正弦定理的探索、发现和证实,感受“类比--猜想--证实”的科学研究问题的思路和方法,体会由“定性研究到定量研究”这种数学地思考问题和研究问题的思想,养成大胆猜想、善于思考的品质和勇于求真的精神。
2、教学重点和难点:重点是正弦定理的发现和证实;难点是三角形外接圆法证实。
三、教学目标:1、知识目标:把握正弦定理,理解证实过程。
2、能力目标:(1)通过对实际问题的探索,培养学生数学地观察问题、提出问题、分析问题、解决问题的能力。
(2)增强学生的协作能力和数学交流能力。
(3)发展学生的创新意识和创新能力。
3、情感态度与价值观:(1)通过学生自主探索、合作交流,亲身体验数学规律的发现,培养学生勇于探索、善于发现、不畏艰辛的创新品质,增强学习的成功心理,激发学习数学的爱好。
(2)通过实例的社会意义,培养学生的爱国主义情感和为祖国努力学习的责任心。
四、教学设想:本节课采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以四周世界和生活实际为参照对象,为学生提供充分自由表达、质疑、探究、讨论问题的机会,让学生通过个人、小组、集体等多种解难释疑的尝试活动,将自己→←所学知识应用于对任意三角形性质的深入探讨。
让学生在“活动”中学习,在“主动”中发展,在“合作”中增知,在“探究”中创新。
高中数学优质课《正弦定理和余弦定理复习课》公开课优秀教案
高中数学优质课《正弦定理和余弦定理复习课》公开课教案教学目标:1、掌握正弦定理和余弦定理的推导,并能用它们解三角形.2、利用正、余弦定理求三角形中的边、角及其面积问题是高考考查的热点.3、常与三角恒等变换相结合,综合考查三角形中的边与角、三角形形状的判断等. 教学重点:①能充分应用三角形的性质及有关的三角函数公式证明三角形的边角关系式.②能合理地选用正弦定理余弦定理结合三角形的性质解斜三角形. ③能解决与三角形有关的实际问题.教学难点:①根据已知条件判定解的情形,并正确求解. ②将实际问题转化为解斜三角形. 教学过程 一、知识点回顾1、正弦定理CcB b A a sin sin sin ==2R = 变 形C R c B R b A R a sin 2,sin 2,sin 2===RcC R b B R a A 2sin ,2sin ,2sin ===sin sin sin ::::A B C a b c =面积公式:B ac C ab A bc S ABCsin 21sin 21sin 21===∆ 2、余弦定理 A bc c b a cos 2222-+=⇔bca cb A 2cos 222-+=B ac a c b cos 2222-+=⇔cab ac B 2cos 222-+=C ab b a c cos 2222-+=⇔abc b a C 2cos 222-+=3、正、余弦定理的作用:解三角形(边角互化)二、随堂练习三、例题讲解例1、 (2012·广州模拟)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C . (1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.四、巩固练习1.在△ABC 中,a =15,b =10,A =60°,则cos B =( ) A.63 B.223 C .-63 D .-2232.(2011·课标全国卷)△ABC 中,B =120°,AC =7,AB =5,则△ABC 的面积为________. 例2、(2011·山东高考)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A -2cos C cos B =2c -ab . (1)求sin Csin A的值; (2)若cos B =14,b =2,求△ABC 的面积S .1.(教材改编题)已知△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c .若a =c =6+2,且∠A =75°,则b =( )A .2B .4+2 3C .4-2 3 D.6- 2五、课堂小结 正弦定理和余弦定理公式及变形 六、课后作业课堂新坐标1-10七、板书设计正弦定理和余弦定理1、正余弦定理2、正余弦定理3、正、余弦定理的作用4、例题讲解2.(2011·浙江高考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a cos A =b sin B ,则sin A cos A +cos 2B =( )A .-12 B.12 C .-1 D .13.在△ABC 中,b ,c 是角B 、C 的对边,且cos 2A2=b +c2c .试判定△ABC 的形状.4. (2012·河源质检)△ABC 的面积是30,内角A ,B ,C 所对边长分别为a ,b ,c ,cos A =1213.(1)求AB →·AC →; (2)若c -b =1,求a 的值.。
江苏正弦定理和余弦定理教案
江苏正弦定理和余弦定理教案一、教学目标1. 让学生掌握正弦定理和余弦定理的定义及表达式。
2. 培养学生运用正弦定理和余弦定理解决实际问题的能力。
3. 引导学生通过观察、分析、归纳和验证等方法,深入理解正弦定理和余弦定理的内在联系。
二、教学内容1. 正弦定理:在三角形中,各边的长度与其对角的正弦值成比例。
2. 余弦定理:在三角形中,各边的平方和等于其他两边平方和与这两边夹角余弦值的乘积的两倍。
三、教学重点与难点1. 教学重点:正弦定理和余弦定理的定义及应用。
2. 教学难点:正弦定理和余弦定理的推导过程及其在实际问题中的应用。
四、教学方法1. 采用问题驱动法,引导学生通过观察、分析、归纳和验证等方法,探索正弦定理和余弦定理。
2. 利用多媒体课件,直观展示正弦定理和余弦定理的推导过程。
3. 设计具有代表性的例题,讲解正弦定理和余弦定理在解决实际问题中的应用。
4. 组织学生进行小组讨论和探究,提高学生的合作能力和解决问题的能力。
五、教学过程1. 导入新课:通过展示三角形模型,引导学生思考三角形中的几何关系。
2. 探究正弦定理:让学生观察三角形模型,引导学生发现各边长度与对角正弦值的关系,进而总结出正弦定理。
3. 验证正弦定理:让学生运用正弦定理解决具体问题,验证其正确性。
4. 探究余弦定理:引导学生观察三角形模型,发现各边平方和与夹角余弦值的关系,总结出余弦定理。
5. 验证余弦定理:让学生运用余弦定理解决具体问题,验证其正确性。
6. 总结正弦定理和余弦定理:引导学生对比总结两个定理的异同点。
7. 巩固练习:设计具有针对性的练习题,让学生巩固正弦定理和余弦定理的应用。
8. 拓展与应用:引导学生运用正弦定理和余弦定理解决实际问题,提高学生的应用能力。
六、教学评价1. 课堂讲解:评价学生对正弦定理和余弦定理的理解程度,以及运用这两个定理解决问题的能力。
2. 练习题:通过布置练习题,检验学生对正弦定理和余弦定理的掌握情况。
三角正弦定理公开课教案
三角正弦定理公开课教案教学目标:- 了解三角形的三边与其对应的角的关系- 掌握正弦定理的概念和应用- 能够在实际问题中运用正弦定理求解未知量教学准备:- 白板、黑板和彩色粉笔- 教学投影仪和幻灯片- 三角形模型或图形辅助工具- 练题和答案教学过程:第一步:引入- 通过幻灯片或板书引入三角形的概念,介绍三角形的基本术语和符号表示法。
第二步:讲解正弦定理的定义1. 引导学生观察一个任意三角形ABC,并关注其三边和对应的角。
2. 结合实际例子,向学生解释正弦定理的定义:“在任意三角形ABC中,三边a,b和c与其对应的角A,B和C之间存在以下关系:sin A/a = sin B/b = sin C/c。
”3. 强调正弦定理适用于任意三角形,不仅适用于特殊三角形。
第三步:推导正弦定理的原理1. 利用幻灯片或板书展示正弦定理的推导过程,引导学生思考为何三角形的三边和对应的角之间会有这样的关系。
2. 解释三角形中的基本原理,如相似三角形的比例关系和正弦函数的定义。
3. 让学生一起参与推导正弦定理的过程,加强对定理的理解。
第四步:应用正弦定理解决实际问题1. 提供一些实际问题的应用示例,如通过测量角度和已知边长来求解未知边长、计算高度等。
2. 分组活动或讨论,让学生运用正弦定理解决给定的实际问题。
3. 引导学生注意在解决问题过程中的单位换算和精度控制,培养问题解决的能力和思维灵活性。
第五步:练与总结1. 分发练题,让学生独立完成并及时纠正错误。
答案可以在幻灯片或白板上呈现。
2. 带领学生讨论练题的解决思路和方法,加深对正弦定理的理解。
3. 总结本节课的内容,强调正弦定理在解决三角形相关问题中的重要性。
教学评价:- 观察学生在讲解过程中的参与程度和表现。
- 检查学生在练题中的答案和解题方法。
- 分组活动或课堂讨论中的学生互动和合作情况。
- 对学生问题解决能力和应用正弦定理的情况进行评估。
《正弦定理和余弦定理》教案6新人教A版
《正弦定理和余弦定理》教案6(新人教A版必修5)讲义一正弦定理和余弦定理以及其应用知识与技能:掌握正弦定理和余弦定理,并能加以灵活运用。
一、知识引入与讲解:Ⅰ、正弦定理的探索和证明及其基本应用:正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即=2R例1.(1)、已知ABC中,A,,求 (=2)(2)、已知ABC中,,求(答案:1:2:3)Ⅱ、余弦定理的发现和证明过程及其基本应用:例2.(1)、在ABC中,已知,,,求b及A ()(2)、在ABC中,已知,,,试判断此三角形的解的情况。
例3.在ABC中,已知,,,判断ABC的类型。
分析:由余弦定理可知(注意:)解:,即,∴。
练习:(1)在ABC中,已知,判断ABC的类型。
(2)已知ABC满足条件,判断ABC的类型。
(答案:(1);(2)ABC是等腰或直角三角形)例4.在ABC中,,,面积为,求的值分析:可利用三角形面积定理以及正弦定理解:由得,则=3,即,从而例题5、某人在M汽车站的北偏西20的方向上的A处,观察到点C处有一辆汽车沿公路向M站行驶。
公路的走向是M站的北偏东40。
开始时,汽车到A的距离为31千米,汽车前进20千米后,到A的距离缩短了10千米。
问汽车还需行驶多远,才能到达M汽车站?解:由题设,画出示意图,设汽车前进20千米后到达B处。
在ABC中,AC=31,BC=20,AB=21,由余弦定理得cosC==,则sinC =1- cosC =,sinC =,所以 sinMAC = sin(120-C)= sin120cosC - cos120sinC = 在MAC中,由正弦定理得 MC ===35从而有MB= MC-BC=15 答:汽车还需要行驶15千米才能到达M汽车站。
练习题:1、判断满足下列条件的三角形形状,(1)、acosA = bcosB(等腰三角形或直角三角形)(2)、sinC = (直角三角形)2、如图,在四边形ABCD中,ADB=BCD=75,ACB=BDC=45,DC=,求:(1) AB的长(2)、求四边形ABCD的面积解(1)因为BCD=75,ACB=45,所以ACD=30 ,又因为BDC=45,所以 DAC=180-(75+ 45+ 30)=30,所以AD=DC=在BCD中,CBD=180-(75+ 45)=60,所以= ,BD = =在ABD中,AB=AD+ BD-2ADBDcos75= 5,所以得 AB=(2) S= ADBDsin75= 同理, S=所以四边形ABCD的面积S=。
高中数学正余弦定理教案模板(精选7篇)-最新
高中数学正余弦定理教案模板(精选7篇)作为一位杰出的老师,时常要开展教案准备工作,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。
如何把教案做到重点突出呢?这里给大家分享一些关于高中数学余弦定理教案,方便大家学习。
下面是的为您带来的7篇《高中数学正余弦定理教案模板》,希望能够对困扰您的问题有一定的启迪作用。
余弦定理教案篇一今天我说课的内容是余弦定理,本节内容共分3课时,今天我将就第1课时的余弦定理的证明与简单应用进行说课。
下面我分别从教材分析。
教学目标的确定。
教学方法的选择和教学过程的设计这四个方面来阐述我对这节课的教学设想。
一、教材分析本节内容是江苏教育出版社出版的普通高中课程标准实验教科书《数学》必修五的第一章第2节,在此之前学生已经学习过了勾股定理。
平面向量、正弦定理等相关知识,这为过渡到本节内容的学习起着铺垫作用。
本节内容实质是学生已经学习的勾股定理的延伸和推广,它描述了三角形重要的边角关系,将三角形的“边”与“角”有机的联系起来,实现边角关系的互化,为解决斜三角形中的边角求解问题提供了一个重要的工具,同时也为在日后学习中判断三角形形状,证明三角形有关的等式与不等式提供了重要的依据。
在本节课中教学重点是余弦定理的内容和公式的掌握,余弦定理在三角形边角计算中的运用;教学难点是余弦定理的发现及证明;教学关键是余弦定理在三角形边角计算中的运用。
二、教学目标的确定基于以上对教材的认识,根据数学课程标准的“学生是数学学习的主人,教师是数学学习的组织者。
引导者与合作者”这一基本理念,考虑到学生已有的认知结构和心理特征,我认为本节课的教学目标有:1、知识与技能:熟练掌握余弦定理的内容及公式,能初步应用余弦定理解决一些有关三角形边角计算的问题;2、过程与方法:掌握余弦定理的两种证明方法,通过探究余弦定理的过程学会分析问题从特殊到一般的过程与方法,提高运用已有知识分析、解决问题的能力;3、情感态度与价值观:在探究余弦定理的过程中培养学生探索精神和创新意识,形成严谨的数学思维方式,培养用数学观点解决问题的能力和意识、三、教学方法的选择基于本节课是属于新授课中的数学命题教学,根据《学记》中启发诱导的思想和布鲁纳的发现学习理论,我将主要采用“启发式教学”和“探究性教学”的教学方法即从一个实际问题出发,发现无法使用刚学习的正弦定理解决,造成学生在认知上的冲突,产生疑惑,从而激发学生的探索新知的欲望,之后进一步启发诱导学生分析,综合,概括从而得出原理解决问题,最终形成概念,获得方法,培养能力。
正弦定理和余弦定理教案设计
正弦定理和余弦定理知识梳理1.正弦定理和余弦定理在△ABC中,若角A,B,C所对的边分别是a,b,c,则(1)S=12ah(h表示边a上的高).(2)S=12bc sin A=12ab sin C=12ac sin B.辨析感悟1.三角形中关系的判断(1)在△ABC 中,sin A >sin B 的充分不必要条件是A >B . (×) (2)(教材练习改编)在△ABC 中,a =3,b =2,B =45°,则A =60°或120°. (√)2.解三角形(3)在△ABC 中,a =3,b =5,sin A =13,则sin B =59.(√) (4)(教材习题改编)在△ABC 中,a =5,c =4,cos A =916,则b =6.(√) 3.三角形形状的判断(5)在△ABC 中,若sin A sin B <cos A cos B ,则此三角形是钝角三角形.(√) (6)在△ABC 中,若b 2+c 2>a 2,则此三角形是锐角三角形. (×)[感悟·提升]1.一条规律 在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ⇔a >b ⇔sin A >sin B ,如(1).2.判断三角形形状的两种途径 一是化边为角;二是化角为边,并常用正弦(余弦)定理实施边、角转换.考点一 利用正弦、余弦定理解三角形【例1】 (1)(2013·湖南卷)在锐角△ABC 中,角A ,B 所对的边长分别为a ,b .若2a sin B =3b ,则角A 等于 ( ). A.π3 B.π4 C.π6 D.π12(2)(2014·杭州模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =1,c =42,B =45°,则sin C =______.解析 (1)在△ABC 中,由正弦定理及已知得2sin A ·sin B =3sin B , ∵B 为△ABC 的内角,∴sin B ≠0. ∴sin A =32.又∵△ABC 为锐角三角形, ∴A ∈⎝ ⎛⎭⎪⎫0,π2,∴A =π3.(2)由余弦定理,得b 2=a 2+c 2-2ac cos B =1+32-82×22=25,即b =5. 所以sin C =c ·sin B b =42×225=45.答案(1)A(2)4 5规律方法已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.【训练1】(1)在△ABC中,a=23,c=22,A=60°,则C=().A.30°B.45°C.45°或135°D.60°(2)在△ABC中,内角A,B,C的对边分别是a,b,c,若a2-b2=3bc,sin C=23sin B,则A=().A.30°B.60°C.120°D.150°解析(1)由正弦定理,得23sin 60°=22sin C,解得:sin C=22,又c<a,所以C<60°,所以C=45°.(2)∵sin C=23sin B,由正弦定理,得c=23b,∴cos A=b2+c2-a22bc=-3bc+c22bc=-3bc+23bc2bc=32,又A为三角形的内角,∴A=30°.答案(1)B(2)A考点二判断三角形的形状【例2】(2014·临沂一模)在△ABC中,a,b,c分别为内角A,B,C的对边,且2a sin A=(2b-c)sin B+(2c-b)sin C.(1)求角A的大小;(2)若sin B+sin C=3,试判断△ABC的形状.解(1)由2a sin A=(2b-c)sin B+(2c-b)sin C,得2a2=(2b-c)b+(2c-b)c,即bc=b2+c2-a2,∴cos A=b2+c2-a22bc=12,∴A=60°.(2)∵A+B+C=180°,∴B+C=180°-60°=120°. 由sin B+sin C=3,得sin B+sin(120°-B)=3,∴sin B+sin 120°cos B-cos 120°sin B= 3.∴32sin B+32cos B=3,即sin(B+30°)=1.∵0°<B<120°,∴30°<B+30°<150°. ∴B+30°=90°,B=60°.∴A =B =C =60°,△ABC 为等边三角形.【训练2】 (1)(2013·山东省实验中学诊断)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2c 2=2a 2+2b 2+ab ,则△ABC 是 ( ).A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形 (2)在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)sin C ,则△ABC 的形状是( ).A .锐角三角形B .直角三角形C .等腰三角形D .等腰或直角三角形 解析 (1)由2c 2=2a 2+2b 2+ab ,得a 2+b 2-c 2=-12ab ,所以cos C =a 2+b 2-c 22ab =-12ab2ab =-14<0,所以90°<C <180°,即△ABC 为钝角三角形. (2)由已知(a 2+b 2)sin(A -B )=(a 2-b 2)sin C , 得b 2[sin(A -B )+sin C ]=a 2[sin C -sin(A -B )], 即b 2sin A cos B =a 2cos A sin B , 即sin 2 B sin A cos B =sin 2 A cos A sin B ,所以sin 2B =sin 2A ,由于A ,B 是三角形的内角, 故0<2A <2π,0<2B <2π. 故只可能2A =2B 或2A =π-2B , 即A =B 或A +B =π2.故△ABC 为等腰三角形或直角三角形. 答案 (1)A (2)D考点三 与三角形面积有关的问题【例3】 (2013·新课标全国Ⅱ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a =b cos C +c sin B .(1)求B ;(2)若b =2,求△ABC 面积的最大值.审题路线 (1)a =b cos C +c sin B ――→正弦定理边化角sin A =…⇒sin(B +C )=…⇒求出角B .(2)由⎩⎪⎨⎪⎧S =12ac sin B ,b 2=a 2+c 2-2ac cos B⇒得出a 2与c 2的关系式⇒利用基本不等式求ac 的最大值即可.解 (1)由已知及正弦定理,得sin A =sin B cos C +sin C sin B .① 又A =π-(B +C ),故sin A =sin(B +C )=sin B cos C +cos B sin C .② 由①,②和C ∈(0,π)得sin B =cos B . 又B ∈(0,π),所以B =π4.(2)△ABC 的面积S =12ac sin B =24ac . 由已知及余弦定理,得4=a 2+c 2-2ac cos π4.又a 2+c 2≥2ac ,故ac ≤42-2,当且仅当a =c 时,等号成立. 因此△ABC 面积的最大值为2+1.【训练3】 (2013·湖北卷)在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c .已知cos 2A -3cos(B +C )=1.(1)求角A 的大小;(2)若△ABC 的面积S =53,b =5,求sin B sin C 的值. 解 (1)由cos 2A -3cos(B +C )=1, 得2cos 2A +3cos A -2=0,即(2cos A -1)(cos A +2)=0,解得cos A =12或cos A =-2(舍去).因为0<A <π,所以A =π3. (2)由S =12 bc sin A =12bc ·32=34bc =53,得bc =20. 又b =5,所以c =4.由余弦定理,得a 2=b 2+c 2-2bc cos A =25+16-20=21, 故a =21.又由正弦定理,得sin B sin C =b a sin A ·ca sin A =bc a 2sin 2A =2021×34=57. 解三角形问题【典例】 (12分)(2013·山东卷)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a +c =6,b =2,cos B =79.(1)求a ,c 的值;(2)求sin(A -B )的值.[规范解答] (1)由余弦定理b 2=a 2+c 2-2ac cos B , 得b 2=(a +c )2-2ac (1+cos B ), 又b =2,a +c =6,cos B =79,所以ac =9,解得a =3,c =3, (6分)(2)在△ABC 中,sin B =1-cos 2B =429, (7分) 由正弦定理得sin A =a sin Bb =223.(9分)因为a =c ,所以A 为锐角, 所以cos A =1-sin 2A =13.(10分)因此sin(A -B )=sin A cos B -cos A sin B =10227. (12分) 【自主体验】已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,c =3a sin C -c cos A . (1)求A ;(2)若a =2,△ABC 的面积为3,求b ,c . 解 (1)由c =3a sin C -c cos A 及正弦定理,得 3sin A sin C -cos A ·sin C -sin C =0, 由于sin C ≠0,所以sin ⎝ ⎛⎭⎪⎫A -π6=12,又0<A <π,所以-π6<A -π6<5π6,故A =π3. (2)△ABC 的面积S =12bc sin A =3,故bc =4.而a 2=b 2+c 2-2bc cos A ,故b 2+c 2=8,解得b =c =2.基础巩固题组 一、选择题1.(2013·绍兴模拟)在△ABC 中,若a 2-c 2+b 2=3ab ,则C =( ). A .30° B .45° C .60° D .120°解析由a2-c2+b2=3ab,得cos C=a2+b2-c22ab=3ab2ab=32,所以C=30°.答案 A2.(2014·合肥模拟)在△ABC中,A=60°,AB=2,且△ABC的面积为32,则BC的长为().A.32 B.3 C.2 3 D.2解析S=12×AB·AC sin 60°=12×2×32AC=32,所以AC=1,所以BC2=AB2+AC2-2AB·AC cos 60°=3,所以BC= 3. 答案 B3.△ABC的内角A,B,C的对边分别为a,b,c,已知b=2,B=π6,C=π4,则△ABC的面积为().A.23+2 B.3+1 C.23-2 D.3-1解析由正弦定理bsin B=csin C及已知条件得c=22,又sin A=sin(B+C)=12×22+32×22=2+64.从而S△ABC =12bc sin A=12×2×22×2+64=3+1.答案 B4.△ABC的内角A,B,C所对的边分别为a,b,c.若B=2A,a=1,b=3,则c=().A.2 3 B.2 C. 2 D.1解析由asin A=bsin B,得asin A=bsin 2A,所以1sin A=32sin A cos A,故cos A=32,又A∈(0,π),所以A=π6,B=π3,C=π2,c=a2+b2=12+(3)2=2.答案 B5.(2013·陕西卷)设△ABC的内角A,B,C所对的边分别为a,b,c,若b cos C+c cos B=a sin A,则△ABC的形状为().A.直角三角形B.锐角三角形C.钝角三角形D.不确定解析由正弦定理及已知条件可知sin B cos C+cos B sin C=sin2A,即sin(B+C)=sin2A,而B+C=π-A,所以sin(B+C)=sin A,所以sin2A=sin A,又0<A<π,sin A>0,∴sin A=1,即A =π2. 答案 A 二、填空题6.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =2,b =2,sin B +cos B =2,则角A 的大小为________.解析 由题意知,sin B +cos B =2,所以2sin ⎝ ⎛⎭⎪⎫B +π4=2,所以B =π4,根据正弦定理可知a sin A =b sin B ,可得2sin A =2sin π4,所以sin A =12,又a <b ,故A =π6.答案 π67.(2014·惠州模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为________.解析 由余弦定理,得a 2+c 2-b 22ac =cos B ,结合已知等式得cos B ·tan B =32,∴sin B =32,∴B =π3或2π3. 答案 π3或2π38.(2013·烟台一模)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =1,b =2,cos C =14,则sin B 等于________.解析 由余弦定理,得c 2=a 2+b 2-2ab cos C =4,即c =2.由cos C =14得sin C =154.由正弦定理b sin B =c sin C ,得sin B =b sin C c =22×154=154(或者因为c =2,所以b =c =2,即三角形为等腰三角形,所以sin B =sin C =154). 答案154三、解答题9.(2014·宜山质检)在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,且a =12c +b cos C . (1)求角B 的大小;(2)若S △ABC =3,b =13,求a +c 的值.解 (1)由正弦定理,得sin A =12sin C +sin B cos C , 又因为A =π-(B +C ),所以sin A =sin(B +C ), 可得sin B cos C +cos B sin C =12sin C +sin B cos C , 即cos B =12,又B ∈(0,π),所以B =π3.(2)因为S △ABC =3,所以12ac sin π3=3,所以ac =4, 由余弦定理可知b 2=a 2+c 2-ac ,所以(a +c )2=b 2+3ac =13+12=25,即a +c =5.10.(2013·北京卷)在△ABC 中,a =3,b =26,∠B =2∠A . (1)求cos A 的值;(2)求c 的值.解 (1)因为a =3,b =26,∠B =2∠A ,所以在△ABC 中,由正弦定理,得3sin A =26sin 2A , 所以2sin A cos A sin A =263,故cos A =63.(2)由(1)知cos A =63,所以sin A =1-cos 2A =33. 又因为∠B =2∠A ,所以cos B =2cos 2A -1=13,所以sin B =1-cos 2B =223. 在△ABC 中,sin C =sin(A +B ) =sin A cos B +cos A sin B =539. 所以c =a sin Csin A =5. 能力提升题组 一、选择题1.(2014·温岭中学模拟)在锐角△ABC 中,若BC =2,sin A =223,则AB →·AC →的最大值为( ). A.13 B.45 C .1 D .3解析 由余弦定理,得a 2=b 2+c 2-2bc ×13=4,由基本不等式可得4≥43bc ,即bc ≤3,所以AB →·AC →=bc cos A =13bc ≤1. 答案 C2.(2013·青岛一中调研)在△ABC 中,三边长a ,b ,c 满足a 3+b 3=c 3,那么△ABC 的形状为( ).A .锐角三角形B .钝角三角形C .直角三角形D .以上均有可能 解析 由题意可知c >a ,c >b ,即角C 最大, 所以a 3+b 3=a ·a 2+b ·b 2<ca 2+cb 2,即c 3<ca 2+cb 2,所以c 2<a 2+b 2.根据余弦定理,得cos C =a 2+b 2-c 22ab >0,所以0<C <π2,即三角形为锐角三角形. 答案 A 二、填空题3.(2013·浙江卷)在△ABC 中,∠C =90°,M 是BC 的中点.若sin ∠BAM =13,则sin ∠BAC =________.解析 如图,令∠BAM =β,∠BAC =α,故|CM |=|AM |sin(α-β),∵M 为BC 的中点,∴|BM |=|AM |sin(α-β).在△AMB 中,由正弦定理知,|AM |sin B =|BM |sin β,即|AM |sin ⎝ ⎛⎭⎪⎫π2-α=|AM |·sin (α-β)sin β,∵sin β=13,∴cos β=223, ∴13=cos α·⎝ ⎛⎭⎪⎫223sin α-13cos α=223sin αcos α-13cos 2α, 整理得1=22sin αcos α-cos 2α,标准文档实用文案 所以22tan α-1tan 2 α+1=1, 解得tan α=2,故sin α=63.答案 63三、解答题4.(2013·长沙模拟)在△ABC 中,边a ,b ,c 分别是角A ,B ,C 的对边,且满足b cos C =(3a -c )cos B .(1)求cos B ;(2)若BC →·BA →=4,b =42,求边a ,c 的值.解 (1)由正弦定理和b cos C =(3a -c )cos B ,得sin B cos C =(3sin A -sin C )cos B ,化简,得sin B cos C +sin C cos B =3sin A cos B ,即sin(B +C )=3sin A cos B , 故sin A =3sin A cos B ,所以cos B =13.(2)因为BC →·BA →=4,所以BC →·BA →=|BC →|·|BA →|·cos B =4,所以|BC →|·|BA →|=12,即ac =12.① 又因为cos B =a 2+c 2-b 22ac =13,整理得,a 2+c 2=40.②联立①②⎩⎨⎧ a 2+c 2=40,ac =12,解得⎩⎨⎧ a =2,c =6或⎩⎨⎧ a =6,c =2.。
正弦定理和余弦定理教案
cos A cos B cos C
(三) 理解定理 ①已知三角形的任意两边及它们的夹角就可以求出第三边; ②已知三角形的三条边就可以求出其它角。
例题: 例 1、△ABC 的三个内角 A,B,C 所对的边分别为 a,b,c,asin Asin B+bcos2A= 2a. b (1)求 ; a (2)若 c2=b2+ 3a2,求 B.
)
8.△ABC 中,AB= 3,AC=1,∠B=30° ,则△ABC 的面积等于( A. 3 2 B. 3 4 C. 3 或 3 2 D.
) 3 3 或 2 4
2π 9.在△ABC 中,若 b=1,c= 3,∠C= ,则 a=________. 3
10.在△ABC 中,角 A,B,C 所对的边分别为 a,b,c.若 a= 2,b=2,sinB+cosB= 2,则角 A 的大小为 ________. 1 11.在△ABC 中,D 为边 BC 上一点,BD= DC,∠ADB=120° ,AD=2.若△ADC 的面积为 3- 3,则∠BAC 2 =_______.
)
3、已知△ABC 中,a=c=2,A=30° ,则 b=( A. 3 B. 2 3
4、 △ABC 中,a= 5,b= 3,sinB= A. 1 个 B. 2 个
2 ,则符合条件的三角形有( 2 C. 3 个 D. 0 个
)
5.在△ABC 中,内角 A,B,C 的对边分别是 a,b,c.若 a2-b2= 3bc,sinC=2 3sinB,则 A=( A.30° B.60° C.120° D.150°
a
sin A
a
sin A
b
sin B
,
ห้องสมุดไป่ตู้
《余弦定理、正弦定理应用举例》教案、导学案、课后作业
《6.4.3 余弦定理、正弦定理》教案第3课时余弦定理、正弦定理应用举例【教材分析】三角形中的几何计算问题主要包括长度、角、面积等,常用的方法就是构造三角形,把所求的问题转化到三角形中,然后选择正弦定理、余弦定理加以解决,有的问题与三角函数联系比较密切,要熟练运用有关三角函数公式.【教学目标与核心素养】课程目标1、能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解常用的测量相关术语;2、激发学生学习数学的兴趣,并体会数学的应用价值;同时培养学生运用图形、数学符号表达题意和应用转化思想解决数学问题的能力.数学学科素养1.数学抽象:方位角、方向角等概念;2.逻辑推理:分清已知条件与所求,逐步求解问题的答案;3.数学运算:解三角形;4.数学建模:数形结合,从实际问题中抽象出一个或几个三角形,然后通过解这些三角形,得到所求的量,从而得到实际问题的解.【教学重点和难点】重点:由实际问题中抽象出一个或几个三角形,然后逐个解决三角形,得到实际问题的解;难点:根据题意建立数学模型,画出示意图.【教学过程】一、情景导入在古代,天文学家没有先进的仪器就已经估算出了两者的距离,是什么神奇的方法探索到这个奥秘的呢?我们知道,对于未知的距离、高度等,存在着许多可供选择的测量方案,但是没有足够的空间,不能用全等三角形的方法来测量,所以,有些方法会有局限性。
于是上面介绍的问题是用以前的方法所不能解决的。
那么运用正弦定理、余弦定理能否解决这些问题?又怎么解决?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本48-51页,思考并完成以下问题1、方向角和方位角各是什么样的角?2、怎样测量物体的高度?3、怎样测量物体所在的角度?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究1、实际测量中的有关名称、术语四、典例分析、举一反三题型一测量高度问题例1 济南泉城广场上的泉标是隶书“泉”字,其造型流畅别致,成了济南的标志和象征.李明同学想测量泉标的高度,于是他在广场的A 点测得泉标顶端的仰角为60°,他又沿着泉标底部方向前进15.2 m ,到达B 点,测得泉标顶部仰角为80°.你能帮李明同学求出泉标的高度吗?(精确到1 m)【答案】泉城广场上泉标的高约为38 m.【解析】如图所示,点C ,D 分别为泉标的底部和顶端.依题意,∠BAD =60°,∠CBD =80°,AB =15.2 m ,则∠ABD =100°,故∠ADB =180°-(60°+100°)=20°.在△ABD 中,根据正弦定理,BD sin 60°=AB sin ∠ADB . ∴BD =AB ·sin 60°sin 20°=15.2·sin 60°sin 20°≈38.5(m). 在Rt △BCD 中,CD =BD sin 80°=38.5·sin 80°≈38(m),即泉城广场上泉标的高约为38 m.解题技巧(测量高度技巧)(1)在测量高度时,要理解仰角、俯角的概念,仰角和俯角都是在同一铅垂面内,视线与水平线的夹角;(2)准确理解题意,分清已知条件与所求,画出示意图;(3)运用正、余弦定理,有序地解相关的三角形,逐步求解问题的答案,注意方程思想的运用.跟踪训练一1、乙两楼相距200 m ,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高分别是多少?【答案】甲楼高为200 3 m ,乙楼高为40033m. 【解析】如图所示,AD 为乙楼高,BC 为甲楼高.在△ABC 中,BC =200×tan 60°=2003,AC =200÷sin 30°=400,由题意可知∠ACD =∠DAC =30°,∴△ACD 为等腰三角形.由余弦定理得AC 2=AD 2+CD 2-2AD ·CD ·cos 120°,4002=AD 2+AD 2-2AD 2×⎝ ⎛⎭⎪⎫-12=3AD 2,AD 2=40023,AD =40033.故甲楼高为200 3 m ,乙楼高为40033 m. 题型二 测量角度问题例2 如图所示,A ,B 是海面上位于东西方向相距5(3+3) n mile 的两个观测点.现位于A 点北偏东45°方向、B 点北偏西60°方向的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距20 3 n mile 的C 点的救援船立即前往营救,其航行速度为30n mile/h ,则该救援船到达D 点需要多长时间?【答案】 救援船到达D 点需要的时间为1 h. 【解析】由题意,知AB =5(3+3)n mile ,∠DBA =90°-60°=30°,∠DAB =90°-45°=45°,∴∠ADB =180°-(45°+30°)=105°.在△DAB 中,由正弦定理得BD sin ∠DAB =AB sin ∠ADB, 即BD =AB sin ∠DAB sin ∠ADB===10 3 n mile.又∠DBC =∠DBA +∠ABC =60°,BC =20 3 n mile , 3)sin 45sin1055(33)sin 4545cos 60cos 45sin 60++∴在△DBC 中,由余弦定理,得CD =BD 2+BC 2-2BD ·BC cos ∠DBC = 300+1 200-2×103×203×12=30 n mile , 则救援船到达D 点需要的时间为3030=1 h. 解题技巧: (测量角度技巧)测量角度问题的关键是根据题意和图形及有关概念,确定所求的角在哪个三角形中,该三角形中已知哪些量,需要求哪些量.通常是根据题意,从实际问题中抽象出一个或几个三角形,然后通过解这些三角形,得到所求的量,从而得到实际问题的解.跟踪训练二1、在海岸A 处,发现北偏东45°方向,距离A 处(3-1)n mile 的B 处有一艘走私船,在A 处北偏西75°的方向,距离A 2 n mile 的C 处的缉私船奉命以10 3 n mile 的速度追截走私船.此时,走私船正以10 n mile/h 的速度从B 处向北偏东30°方向逃窜,问缉私船沿什么方向能最快追上走私船?【答案】缉私船沿北偏东60°方向能最快追上走私船.【解析】 设缉私船用t h 在D 处追上走私船,画出示意图,则有CD =103t ,BD =10t ,在△ABC 中,∵AB =3-1,AC =2,∠BAC =120°,∴由余弦定理,得BC 2=AB 2+AC 2-2AB ·AC ·cos∠BAC =(3-1)2+22-2·(3-1)·2·cos 120°=6,∴BC =6,且sin ∠ABC =ACBC ·sin∠BAC =26·32=22, ∴∠ABC =45°,∴BC 与正北方向成90°角.∴∠CBD =90°+30°=120°,在△BCD 中,由正弦定理,得sin ∠BCD =BD ·sin∠CBD CD =10t sin 120°103t=12,∴∠BCD =30°.即缉私船沿北偏东60°方向能最快追上走私船.题型三 测量距离问题例3 如图所示,要测量一水塘两侧A ,B 两点间的距离,其方法先选定适当的位置C ,用经纬仪测出角α,再分别测出AC ,BC 的长b ,a 则可求出A ,B 两点间的距离.若测得CA=400 m ,CB =600 m ,∠ACB =60°,试计算AB 的长.【答案】A ,B 两点间的距离为2007 m.【解析】在△ABC 中,由余弦定理得AB 2=AC 2+BC 2-2AC ·BC cos ∠ACB ,∴AB 2=4002+6002-2×400×600cos 60°=280 000.∴AB =2007 (m).即A ,B 两点间的距离为2007 m.例4 如图所示,A ,B 两点在一条河的两岸,测量者在A 的同侧,且B 点不可到达,要测出A ,B 的距离,其方法在A 所在的岸边选定一点C ,可以测出A ,C 的距离m ,再借助仪器,测出∠ACB =α,∠CAB =β,在△ABC 中,运用正弦定理就可以求出AB .若测出AC =60m ,∠BAC =75°,∠BCA =45°,则A ,B 两点间的距离为________ m.【答案】20 6 .【解析】∠ABC =180°-75°-45°=60°,所以由正弦定理得,AB sin C =AC sin B , ∴AB =AC ·sin C sin B =60×sin 45°sin 60°=206(m). 即A ,B 两点间的距离为20 6 m.解题技巧(测量距离技巧)当A,B两点之间的距离不能直接测量时,求AB的距离分为以下三类:(1)两点间不可通又不可视(如图①):可取某点C,使得A,B与C之间的距离可直接测量,测出AC=b,BC=a以及∠ACB=γ,利用余弦定理得:AB=a2+b2-2ab cos γ.(2)两点间可视但不可到达(如图②):可选取与B同侧的点C,测出BC=a以及∠ABC 和∠ACB,先使用内角和定理求出∠BAC,再利用正弦定理求出AB.(3)两点都不可到达(如图③):在河边测量对岸两个建筑物之间的距离,可先在一侧选取两点C,D,测出CD=m,∠ACB,∠BCD,∠ADC,∠ADB,再在△BCD中求出BC,在△ADC 中求出AC,最后在△ABC中,由余弦定理求出AB.跟踪训练三1.如图,A,B两点在河的同侧,且A,B两点均不可到达,测出A,B的距离,测量者可以在河岸边选定两点C,D,测得CD=a,同时在C,D两点分别测得∠BCA=α,∠ACD=β,∠CDB=γ,∠BDA=δ.在△ADC和△BDC中,由正弦定理分别计算出AC和BC,再在△ABC中,应用余弦定理计算出AB.若测得CD=32km,∠ADB=∠CDB=30°,∠ACD=60°,∠ACB=45°,求A,B两点间的距离.【答案】A,B两点间的距离为64km.【解析】∵∠ADC=∠ADB+∠CDB=60°,∠ACD=60°,∴∠DAC=60°,∴AC=DC=32.在△BCD中,∠DBC=45°,由正弦定理,得BC =DC sin ∠DBC ·sin∠BDC =32sin 45°·sin 30°=64. 在△ABC 中,由余弦定理,得AB 2=AC 2+BC 2-2AC ·BC cos 45°=34+38-2×32×64×22=38. ∴AB =64(km).∴A ,B 两点间的距离为64km. 五、课堂小结让学生总结本节课所学主要知识及解题技巧六、板书设计七、作业课本51页练习,52页习题6.4中剩余题.【教学反思】对于平面图形的计算问题,首先要把所求的量转化到三角形中,然后选用正弦定理、余弦定理解决.构造三角形时,要注意使构造三角形含有尽量多个已知量,这样可以简化运算.学生在这里的数量关系比较模糊,需要强化,三角形相关知识点需要简单回顾。
正弦定理与余弦定理 教案
正弦定理与余弦定理(第1课时)目标:1、梳理本节知识点,使学生有整体观念,并了解高考动向;2、体会正弦定理在解三角形与边角转化过程中的作用;3、体会方程、化归、数形结合等数学思想方法。
重点:正弦定理的灵活运用。
难点:正弦定理在解三角形时,解的个数的讨论问题。
过程:一、 考情分析1、 利用正、余弦定理求三角形中的边、角及其面积问题是高考考查的热点;2、 常与三角恒等变换相结合,综合考查三角形中的边与角、三角形形状的判断;3、 在平面解析几何、立体几何中常作为工具求角和两点间的距离问题。
二、 知识点回顾1.基本公式:(1)内角和定理:A+B+C=180°,sin(A+B)=sinC, cos(A+B)= -cosC, cos2C =sin 2B A +, sin 2C =cos 2B A +; (2)面积公式:S=21ah a , S=21absinC=21bcsinA=21casinB S= pr =))()((c p b p a p p --- (其中p=2c b a ++, r 为内切圆半径) 2.正弦定理:2sin sin sin a b c R A B C ===外 解决两类基本问题:(1)已知两角和任一边,求其他两边和一角;(2)已知两边和其中一边的对角,求另一边的对角;有三种情况:bsinA<a<b 时有两解;a=bsinA 或a=b 时有 解;a<bsinA 时无解。
3.余弦定理:a 2=b 2+c 2-2bccosA , 222cos 2b c a A bc +-=; 解决两类基本问题:(1)已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。
(一)经典回顾1.在△ABC 中, A=60°, B=450,, 则边a=_;2.在△ABC 中,A=60°,则B 的大小是450______;3.在△ABC 中,,b=1,c=2, 则角A=__600_______;4.在△ABC 中,,则边(二)更上一层楼1.1.在△ABC 中,b=5, B=450, tanA=2,求边1.2.在△ABC 中,边 , 求边a 的大小. 52.1.在△ABC 中, B=45°, 判断三角形△ABC 的个数; A=600或12002.2.在△ABC 中, B=75°, 判断三角形△ABC 的个数; 无解2.3在△ABC 中, a=2, 角B =600 ,且三角形两解,求边b 的取值范围;b =a b ==a =015a b C ===cos ,105A B ==c =a b ==a b ==2.4在△ABC 中, a=2,,且三角形有解,求sin2A +cos2A 的取值范围.总结:给出两边和一边的对角,如何判断此三角形的个数? 一、若已知角是直角或钝角,则三角形最多一解;二、若已知角是锐角,先利用大边对大角初步判断,再根据正弦定理及正弦函数的值域作出判断!也可以运用余弦定理结合方程作出判断或求解。
江苏正弦定理和余弦定理教案
江苏正弦定理和余弦定理教案一、教学目标1. 让学生掌握正弦定理和余弦定理的定义及表达式。
2. 培养学生运用正弦定理和余弦定理解决三角形问题的能力。
3. 引导学生通过观察、分析、归纳和推理,探索正弦定理和余弦定理的内在联系。
二、教学内容1. 正弦定理:一个三角形内角的正弦值等于它所对边的长度比该角的对边长度。
2. 余弦定理:一个三角形内角的余弦值等于它所对边的平方和与邻边的平方和的差除以它所对边的邻边长度乘积。
三、教学重点与难点1. 重点:正弦定理和余弦定理的定义及应用。
2. 难点:正弦定理和余弦定理在复杂三角形中的应用。
四、教学方法1. 采用问题驱动法,引导学生通过观察、分析、归纳和推理,探索正弦定理和余弦定理的内在联系。
2. 利用多媒体辅助教学,展示三角形中的角度和边长之间的关系,增强学生的直观感受。
3. 设计具有梯度的练习题,让学生在解决实际问题中掌握正弦定理和余弦定理。
五、教学过程1. 导入:通过展示一个三角形模型,引导学生观察三角形中的角度和边长之间的关系。
2. 新课导入:介绍正弦定理和余弦定理的定义及表达式。
3. 案例分析:运用正弦定理和余弦定理解决实际问题,让学生体会定理的应用价值。
4. 课堂练习:设计具有梯度的练习题,让学生在解决实际问题中掌握正弦定理和余弦定理。
教案仅供参考,具体教学过程中可根据学生实际情况进行调整。
六、教学评估1. 课堂练习:通过实时提问和解答学生的练习题,评估学生对正弦定理和余弦定理的理解和应用能力。
2. 课后作业:布置相关的习题,要求学生在课后完成,以巩固所学知识。
3. 小组讨论:组织学生进行小组讨论,分享彼此解题的心得和方法,以培养学生的合作能力。
七、教学反思1. 教师应反思教学内容是否符合学生的认知水平,并根据学生的反馈进行调整。
2. 教师应反思教学方法是否有效,是否能够激发学生的兴趣和参与度。
3. 教师应关注学生的学习进度和理解程度,及时调整教学计划和策略。
高中《正弦和余弦定理》数学教案4篇
高中《正弦和余弦定理》数学教案4篇教案是讲课的前提,是讲好课的基础,教案则备课的具体表现形式。
它可以反映教师在整个教学中的总体设计和思路尤其是教学态度认真与否的重要尺度。
以下是小编为大家整理的高中《正弦和余弦定理》数学教案,感谢您的欣赏。
高中《正弦和余弦定理》数学教案1教学目标进一步熟悉正、余弦定理内容,能熟练运用余弦定理、正弦定理解答有关问题,如判断三角形的形状,证明三角形中的三角恒等式.教学重难点教学重点:熟练运用定理.教学难点:应用正、余弦定理进行边角关系的相互转化.教学过程一、复习准备:1.写出正弦定理、余弦定理及推论等公式.2.讨论各公式所求解的三角形类型.二、讲授新课:1.教学三角形的解的讨论:①出示例1:在△ABC中,已知下列条件,解三角形.分两组练习→讨论:解的个数情况为何会发生变化②用如下图示分析解的情况.(A为锐角时)②练习:在△ABC中,已知下列条件,判断三角形的解的情况.2.教学正弦定理与余弦定理的活用:①出示例2:在△ABC中,已知sinA∶sinB∶sinC=6∶5∶4,求角的余弦. 分析:已知条件可以如何转化→引入参数k,设三边后利用余弦定理求角.②出示例3:在ΔABC中,已知a=7,b=10,c=6,判断三角形的类型.分析:由三角形的什么知识可以判别→求角余弦,由符号进行判断③出示例4:已知△ABC中,,试判断△ABC的形状.分析:如何将边角关系中的边化为角→再思考:又如何将角化为边3.小结:三角形解的情况的讨论;判断三角形类型;边角关系如何互化.三、巩固练习:3.作业:教材P11B组1、2题.高中《正弦和余弦定理》数学教案2一)教材分析(1)地位和重要性:正、余弦定理是学生学习了平面向量之后要掌握的两个重要定理,运用这两个定理可以初步解决几何及工业测量等实际问题,是解决有关三角形问题的有力工具。
(2)重点、难点。
重点:正余弦定理的证明和应用难点:利用向量知识证明定理(二)教学目标(1)知识目标:①要学生掌握正余弦定理的推导过程和内容;②能够运用正余弦定理解三角形;③了解向量知识的应用。
正余弦定理完美教案
正余弦定理完美教案第一章:正弦定理简介1.1 学习目标了解正弦定理的定义和基本性质学会运用正弦定理解决实际问题1.2 教学内容正弦定理的定义及公式正弦定理与三角形内角和的关系正弦定理在实际问题中的应用1.3 教学方法采用讲解、示例、练习相结合的方式进行教学引导学生通过观察、思考、讨论,发现正弦定理的规律1.4 教学步骤1. 引入正弦定理的概念,引导学生了解正弦定理的定义和公式2. 通过示例,讲解正弦定理在解决实际问题中的应用3. 安排练习题,巩固学生对正弦定理的理解和应用能力第二章:余弦定理简介2.1 学习目标了解余弦定理的定义和基本性质学会运用余弦定理解决实际问题2.2 教学内容余弦定理的定义及公式余弦定理与三角形内角和的关系余弦定理在实际问题中的应用2.3 教学方法采用讲解、示例、练习相结合的方式进行教学引导学生通过观察、思考、讨论,发现余弦定理的规律2.4 教学步骤1. 引入余弦定理的概念,引导学生了解余弦定理的定义和公式2. 通过示例,讲解余弦定理在解决实际问题中的应用3. 安排练习题,巩固学生对余弦定理的理解和应用能力第三章:正弦定理与余弦定理的综合应用3.1 学习目标学会运用正弦定理和余弦定理解决综合问题理解正弦定理和余弦定理之间的关系3.2 教学内容正弦定理和余弦定理的综合应用正弦定理和余弦定理之间的关系3.3 教学方法采用讲解、示例、练习相结合的方式进行教学引导学生通过观察、思考、讨论,发现正弦定理和余弦定理之间的关系3.4 教学步骤1. 通过示例,讲解正弦定理和余弦定理在解决综合问题中的应用2. 引导学生发现正弦定理和余弦定理之间的关系3. 安排练习题,巩固学生对正弦定理和余弦定理的综合应用能力第四章:正弦定理和余弦定理在几何中的应用4.1 学习目标学会运用正弦定理和余弦定理解决几何问题理解正弦定理和余弦定理在几何中的重要性4.2 教学内容正弦定理和余弦定理在几何中的应用正弦定理和余弦定理在几何中的重要性4.3 教学方法采用讲解、示例、练习相结合的方式进行教学引导学生通过观察、思考、讨论,发现正弦定理和余弦定理在几何中的重要性4.4 教学步骤1. 通过示例,讲解正弦定理和余弦定理在几何问题中的应用2. 引导学生理解正弦定理和余弦定理在几何中的重要性3. 安排练习题,巩固学生对正弦定理和余弦定理在几何中的应用能力第五章:正弦定理和余弦定理在实际问题中的应用5.1 学习目标学会运用正弦定理和余弦定理解决实际问题理解正弦定理和余弦定理在实际问题中的意义5.2 教学内容正弦定理和余弦定理在实际问题中的应用正弦定理和余弦定理在实际问题中的意义5.3 教学方法采用讲解、示例、练习相结合的方式进行教学引导学生通过观察、思考、讨论,发现正弦定理和余弦定理在实际问题中的意义5.4 教学步骤1. 通过示例,讲解正弦定理和余弦定理在实际问题中的应用2. 引导学生理解正弦定理和余弦定理在实际问题中的意义3. 安排练习题,巩固学生对正弦定理和余弦定理在实际问题中的应用第六章:正弦定理和余弦定理的综合练习6.1 学习目标巩固正弦定理和余弦定理的基本概念提高运用正弦定理和余弦定理解决综合问题的能力6.2 教学内容综合练习题,涵盖正弦定理和余弦定理的应用分析解题思路和方法6.3 教学方法提供综合练习题,引导学生独立解答分析解题思路,讨论解题方法6.4 教学步骤1. 提供综合练习题,要求学生独立解答2. 分析解题思路,引导学生运用正弦定理和余弦定理解决问题3. 讨论解题方法,总结正弦定理和余弦定理的应用技巧第七章:正弦定理和余弦定理在三角形中的应用7.1 学习目标深入学习正弦定理和余弦定理在三角形中的应用掌握正弦定理和余弦定理在解决三角形问题时的灵活运用7.2 教学内容正弦定理和余弦定理在三角形中的应用案例三角形特殊角度时的定理特殊性质7.3 教学方法采用案例教学,通过具体三角形问题讲解定理的应用引导学生通过几何画图工具直观理解定理的应用7.4 教学步骤1. 通过具体三角形问题,展示正弦定理和余弦定理的应用2. 引导学生利用几何画图工具,直观理解定理的应用过程3. 安排练习题,巩固学生对定理在三角形中应用的理解第八章:正弦定理和余弦定理在复杂三角形中的应用8.1 学习目标学习正弦定理和余弦定理在复杂三角形中的应用培养学生解决复杂三角形问题的能力8.2 教学内容复杂三角形问题中正弦定理和余弦定理的运用练习题及解题策略8.3 教学方法采用问题解决法,引导学生思考和探讨提供练习题,让学生通过实际操作解决问题8.4 教学步骤1. 引入复杂三角形问题,引导学生思考如何应用定理2. 提供练习题,让学生独立解决3. 讨论解题策略,引导学生总结解题技巧第九章:正弦定理和余弦定理在实际工程中的应用9.1 学习目标学习正弦定理和余弦定理在实际工程中的应用培养学生解决实际工程问题的能力9.2 教学内容正弦定理和余弦定理在工程测量、建筑等方面的应用案例实际工程问题中的解题方法9.3 教学方法采用案例教学,通过实际工程案例讲解定理的应用引导学生通过实际操作,理解定理在工程中的应用9.4 教学步骤1. 通过实际工程案例,展示正弦定理和余弦定理的应用2. 引导学生参与实际操作,理解定理在工程中的应用过程3. 安排练习题,巩固学生对定理在实际工程中应用的理解第十章:总结与复习10.1 学习目标总结正弦定理和余弦定理的主要内容和应用复习本门课程的知识点,为考试做好准备10.2 教学内容复习正弦定理和余弦定理的基本概念、性质和应用总结解题方法和技巧10.3 教学方法通过复习讲义和练习题,引导学生复习和巩固知识点组织复习课堂,鼓励学生提问和讨论10.4 教学步骤1. 发放复习讲义,让学生提前预习2. 组织复习课堂,引导学生复习重点知识点3. 提供练习题,让学生通过实际操作巩固知识点重点和难点解析第六章:正弦定理和余弦定理的综合练习环节:分析解题思路和方法重点和难点解析:此环节需要重点关注解题思路的培养和方法的多样性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《正玄定理和余弦定理》教案
【教学对象】高三(5班)
【授课教师】广州市南沙麒麟中学 陈文旭
【课 型】 高三第一轮复习课
【课时安排】1个课时
【教学目标】
1. 理解正弦定理和余弦定理的适用范围;
2. 会正确选择正玄定理或余弦定理,求有关三角形的边和角的问题;
3. 能够使用定理的变形,解决一些与三角形的计算有关的度量问题。
【教学重点】
1. 会根据不同已知条件选择恰当的定理解决问题;
2. 能够综合应用正弦定理、余弦定理解决有关几何的计算问题。
【教学难点】
1. 熟练运用正弦定理、余弦定理的变化形式;
2. 能够综合分析题目条件,结合正弦定理和余弦定理进行化简。
【教学设计理念】
本节主要体现了“分析、类比”的数学思想,结合前面所学三角函数知识的进行解题,
通过多让学生参与,发展每个学生的潜能,使学生在具体解题过程中感受正弦定理、余弦定
理的适用条件和特点,能够不拘一格,发散学生的思维。
【考纲分析】
1. 掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题
2. 能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际
问题。
3. 总结近五年高考题,发现有两年考查了本知识点,都是以客观题的形式出现,分值
5分。
(2011广东·理 第12题、2010广东·理 第11题)
【教学策略】讲练结合法,类比分析法
【教学过程】
一、温故而知新
1、正弦定理:2(sin sin sin a
b
c
R R ABC A B C ===∆ 为外接圆的半径)
2、正弦定理的变形:①2sin ,2sin ,2sin a R A b R B c R C ===
②::sin :sin :sin a b c A B C =
3、余弦定理:
222
2222222cos 2cos 2cos a b c bc A
b c a ca B c a b ab C =+-=+-=+-
2222222224cos 2cos 2cos 2、余弦定理的变形:
+-=
+-=
+-=b c a A bc c a b B ca a b c
C ab
5、三角形面积公式:11
1
sin sin sin 222A B C S bc A ac B ab C ===
二、例题精讲
例1.(1)在△ABC 中,已知23045,,B ,求边长c ==︒=︒a A .
(2)在△ABC
中,已知60=
==
a b A ,求边长c. (3)在△ABC
中,已知45=
== a b B ,求边长c.
小结①:利用正弦定理可以解决哪些有关三角形的问题?
(1)已知三角形的两个角和任一边,求其它的边和角;
(2)已知三角形的两边以及其中一边的对角,求其它的边和角。
例2
.(1),245.在中,,求边长a 和C ∆===︒∠ABC b c A
(2),________________
在中c=2,
则 B ,的面积:∆=∆A B C A B C
小结②:利用余弦定理可以解决哪些有关三角形的问题?
(1)已知三角形的两边以及这两边的夹角,求其它的边和角;
(2)已知三角形的三边,求它的三个角。
三、课堂练习
1()2b 45_______
(2)23075_____ __
、1中,已知,,则S 中,已知,,,则S ∆∆∆==
=︒=∆==︒=︒=ABC ABC ABC a C ABC a A B
2、 △ABC 的三个内角A 、B 、C 所对边的长分别为a 、b 、c ,已知3,,3c C π
== 2a b =,
则b 的值为 .(2011广东*理 第12题)
3、已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若 a =1,
b A +C =2B ,则sin C = . (2010广东*理 第11题)
4、△ABC 的内角A B C 、、的对边分别为a b c a b c 、、 若、、成等比数列,且2c a =,则cos B 等于( )
1..443
C D 3A. B. 4
四、课堂小结:本节课你收获了什么?
____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
五、课后作业
1、==cos cos cos a b c ABC a b c
∆在中,,则ABC ∆是 ( ) (A )直角三角形 (B )等边三角形 (C )钝角三角形 (D )等腰直角三角形
222
2=、在中,已知=+ ,则角______∆+ABC a b bc c A
3、在△ABC 中,若sin 2sin
cos A B C =,222sin sin sin A B C =+,试判断△ABC 形状。
4.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知cos(A -C ) + cos B = 1,a = 2c ,求C .。