上海市杨浦区2010年中考数学模拟试卷及答案
2010年中考模拟数学卷参考答案
2010年中考模拟试卷 数学参考答案及评分标准三、解答题(本题有8小题,第17~19题每题6分,第20~21题8分,第22~23题每题10分,第24题12分,共66分) 17、(本题满分6分) 解:∵方程2233x mx x -=--无解∴方程2233x mx x -=--有增根x=3------------2分∴方程两边同乘以(x-3),得:26x m -=------------2分∴当x=3时,m =分 18、(本题满分6分)解:过C 点作BA 的延长线交于点E ,------------1分∵AB =AC =10,∠B =022.5 ∴∠EAC =045∴△EAC 为等腰直角三角形------------1分设AE =EC =X,则AB =AC =10∴x =∴111022S A B E C ∆=⋅=⨯⨯=≈35.42m ------------2分又∵53.610⨯2cm =362m >35.42m ------------1分 ∴预订草皮够用------------1分19、(本题满分6分)解:答案不唯一,酌情给分。
20、(本题满分8分)解:(1)18 0.55------------各1分(2)图略--------------共4分(虚设组不设各扣1分)(3)0.55±0.1均为正确------------2分 21、(本题满分8分) 解:(1)正确的结论:①②③------------2分(2)错误理由:当a >0时,只有1x >2x >0或2x <1x <0时,1y <2y 而2x <0<1x 时,1y >2y ------------4分 改正:当a >0时,在同一象限内,函数a y x=,y 随x 增大而减小-----2分22、(本题满分10分)解:(1)如右图------------共6分(030,045角,线段a 各1分,余酌情给分)(2)设AB =x,则R t △ABC 中,OB =x ,由题意得:6+ x ------------1分得,1)x =≈8米------------2分 答:旗杆高度约为8米。
2010学年杨浦区第一学期初三数学期中试卷
初三数学第 1 页 共4 页2010学年度第一学期期中质量抽测初 三 数 学(满分:100分 完卷时间:90分钟) 2010.11一、选择题:(本大题共6题,每题3分,满分18分)1.若mn pq =,则下列比例式正确的是…………………………………………………( )(A )m p n q =; (B )q p n m =; (C )n p q m=; (D )n pm q =.2. 如图1,123//// ,下列比例式中正确的是………………………………………( ) (A )AD CE BC DF =; (B )AD DF BC CE =; (C )AB CD CD EF =; (D )AD BCBE AF=. 3.如图2,△ABC 中,DE //BC 交AB 于点D ,交AC 于点E ,如果ADE BCED S S ∆=四边形,那么下列等式成立的是 …………………………………………………………………( ) (A ):1:2DE BC =; (B ):1:3DE BC =; (C ):1:4DE BC =; (D):DE BC =4.如果AB CD =,那么下列结论正确的是 …………………………………………( )(A )AC DB = ; (B )AC BD = ; (C )AD BC = ; (D )AD CB = . 5. 如图3,在Rt △ABC 中,∠ACB =90︒,CD ⊥AB 于D ,下列式子正确的是………( )(A )sin BD A BC =; (B )cos AC A AD =; (C )cot AD A BC =; (D )tan CDA AB=. 6.下列各组图形必相似的是……………………………………………………………( )(A )任意两个等腰三角形;(B )有两边对应成比例,且有一个角对应相等的两三角形; (C )两边为4和5的直角三角形与两边为8和10的直角三角形;(D )两边及其中一边上的中线对应成比例的两三角形.1 23A B CDEF (图1)(图2)A(图3)初三数学第 2 页 共4 页二、填空题:(本大题共12题,每题3分,满分36分) 7.线段4和9的比例中项是 .8.如果235a b c==,24a b c +-=,那么a = . 9.点P 为线段AB 的黄金分割点(P A >PB ),则关于P A 、PB 、AB 的比例式是 .10.等腰直角三角形斜边上的高与直角边之比为 .11.在△ABC 中,若中线AD 和中线CE 相交于G ,则=AD AG : .12.线段AB 与CD 交于点O ,若AB =3AO ,则当CO :DO 的值为 时,线段AC//BD . 13.三角形的周长是a ,三边中点连线所组成的三角形的周长是 .14.化简:113232a b a b ⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭ = .15.已知090α︒<<︒,如果2sin 3α=,那么tan α= .16.如图4,矩形DEFG 内接于△ABC ,BC =6cm ,DE =3cm ,EF =2cm ,则BC 边上的高的长是 .17.如图5,梯形ABCD 中,AD //BC ,对角线AC 、DB 交于点O ,如果S △AOD ∶S △ABD =2∶5,那么S △AOD ∶S △BOC = .18.若△ABC ∽△DEF ,且∠A =∠E ,AB =DF =6,BC =5,AC =4,则DE = .三、解答题(本大题共7题,满分46分)19.(本题满分5分)如图6,在梯形ABCD 中,AD //BC ,对角线AC 、BD 交于点O ,BE //CD 交CA 延长线于点E 。
2010年中考模拟卷数学参考答案
2010年中考模拟卷数学参考答案二.认真填一填(本题有6个小题,每小题4分,共24分) 11.4(x+3)(x-3) 12.10≠≥x x 且 13.15414.6)1(2+--=x y 15. ︒20 16.)12,1222(22++++n nn n n n P n 三.全面答一答(本题有8个小题,共66分) 17.(本小题满分6分) 解:11)1()1)(1(1----+⨯+=a a a a a a a 原式…………………………………………………2分 =12111--=--a a a …………………………………………………2分 当a=-2时,原式=34…………………………………………………2分18.(本题满分6分) 解:可以做2)1(-n n 条直线…………………………………………………3分 理由如下:平面上有n 个点,两点确定一条直线。
取第一个点A 有n 种取法,取第二个点B(n-1)种取法,所以一共可连成n(n-1)条直线,但AB 和BA 是同一条直线,所以应除以2,得2)1(-n n 条直线 …………………………………………………3分 19.(本题满分6分)解:过点A 作BC 的垂线段,垂足为D ,则由题可知,∠BAD=30°,∠DAC=60° ∵∠BAD=30°,△ABD 为直角三角形, ∴BD=3223663==AD …………………………………………………2分同理可得3663==AD CD …………………………………………………2分∴楼高AB=2.152388≈…………………………………………………2分 20.(本小题6分)(1)21人 …………………………………………………1分(2)众数 90 中位数80…………………………………………………2分(3)从平均数和中位数的角度来比较,一班的成绩比二班好;从平均数和众数的角度来比较,一班的成绩不如二班;从B 级以上(包括B 级)的人数的角度来比较,一班的成绩比二班好。
上海市四区2010年九年级数学中考模拟试题及答案上教版2010.4
第一套 上海市浦东新区2010年九年级数学中考模拟试题考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.计算23)()(a a -⋅-的正确结果是 (A )5a ;(B )5a -;(C )6a ;(D )6a -.2.如果二次根式5+x 有意义,那么x 的取值范围是 (A )x >0;(B )x ≥0;(C )x >-5;(D )x ≥-5.3.用配方法解方程0142=+-x x 时,配方后所得的方程是(A )1)2(2=-x ; (B )1)2(2-=-x ; (C )3)2(2=-x ; (D )3)2(2=+x . 4.木盒里有1个红球和1个黑球,这两个球除颜色外其他都相同,从盒子里先摸出一个球,放回去摇匀后,再摸出一个球,两次都摸到红球的概率是 (A )21; (B )31; (C )41; (D )32. 5.如图,平行四边形ABCD 的对角线交于点O ,a AB =,b AD =,那么b a 2121+等于(A )AO ; (B )AC ; (C )BO ; (D )CA .6.在长方体ABCD -EFGH 中,与面ABCD 平行的棱共有 (A )1条;(B )2条; (C )3条; (D )4条.二、填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置上】 7.-4的绝对值等于 ▲ . 8.分解因式:822-x = ▲ . 9.方程23=-x 的根是 ▲ . 10.如果函数11)(+=x x f ,那么)2(f = ▲ .C(第5题图)C G(第6题图)11.如果方程0)12(22=+--m x m x 有两个实数根,那么m 的取值范围是 ▲ . 12.如果正比例函数的图像经过点(2,4)和(a ,-3),那么a 的值等于 ▲ . 13.一台组装电脑的成本价是4000元,如果商家以5200元的价格卖给顾客,那么商家的盈利率为 ▲ .14.已知梯形的上底长为a ,中位线长为m ,那么这个梯形的下底长为 ▲ . 15.已知正六边形的边长为6,那么边心距等于 ▲ .16.在Rt △ABC 中,∠B =90°,AD 平分∠BAC ,交边BC 于点D ,如果BD =2,AC =6,那么△ADC 的面积等于 ▲ . 17.已知在△ABC 中,AB =AC =10,54cos =C ,中线BM 与CN 相交于点G ,那么点A 与点G 之间的距离等于 ▲ .18.已知在△AOB 中,∠B =90°,AB =OB ,点O 的坐标为(0,0),点A 的坐标为(0,4),点B 在第一象限内,将这个三角形绕原点O 逆时针旋转75°后,那么旋转后点B 的坐标 为 ▲ .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)计算:2012327223)()()(-+---.20.(本题满分10分)解方程:2322x x xx --=-.21.(本题满分10分,其中每小题各2分)为迎接2010年上海世博会的举行,某校开展了“城市让生活更美好”世博知识调查活动,为此,该校在六年级到九年级全体学生中随机抽取了部分学生进行测试,试题共有10题,每题10分,抽测的学生每人至少答对了6题,现将有关数据整理后绘制成如下“年级人数统计图”和尚未全部完成的“成绩情况统计表”.根据图表中提供的信息,回答下列问题: (1)参加测试的学生人数有 ▲ 名; (2)成绩为80分的学生人数有 ▲ 名; (3)成绩的众数是 ▲ 分; (4)成绩的中位数是 ▲ 分;(5)如果学校共有1800名学生,那么由图表中提供的信息,可以估计成绩为70分的学生人数约有 ▲ 名.年级六 七 八 九 年级人数统计图成绩情况统计表22.(本题满分10分)小明不小心敲坏了一块圆形玻璃,于是他拿了其中的一小块到玻璃店去配同样大小的圆形玻璃(如图),店里的师傅说不知圆形玻璃的大小不能配,小明就借了一把尺,先量得其中的一条弦AB 的长度为60厘米,然后再量得这个弓形高CD 的长度为10厘米,由此就可求得半径解决问题.请你帮小明算一下这个圆的半径是多少厘米.23.(本题满分12分,其中每小题各6分)已知:如图,在平行四边形ABCD 中,AM =DM . 求证:(1)AE =AB ;(2)如果BM 平分∠ABC ,求证:BM ⊥CE .24.(本题满分12分,其中每小题各4分)如图,已知在平面直角坐标系中,点A 的坐标为(-2,0),点B 是点A 关于原点的对称点,P 是函数)0(2>=x xy 图像上的一点,且△ABP 是直角三角形.(1)求点P 的坐标;(2)如果二次函数的图像经过A 、B 、P 三点,求这个二次函数的解析式;(3)如果第(2)小题中求得的二次函数图像与y 轴交于点C ,过该函数图像上的点C 、点P 的直线与x 轴交于点D ,试比较∠BPD 与∠BAP 的大小,并说明理由.25.(本题满分14分,其中第(1)小题3分,第(2)小题5分,第(3)小题6分)如图,已知在矩形ABCD 中,AB =3,BC =4,P 是边BC 延长线上的一点,联接AP 交边CD 于点E ,把射线AP 沿直线AD 翻折,交射线CD 于点Q ,设CP =x ,DQ =y . (1)求y 关于x 的函数解析式,并写出定义域.(2)当点P 运动时,△APQ 的面积是否会发生变化?如果发生变化,请求出△APQ 的面积S 关于x 的函数解析式,并写出定义域;如果不发生变化,请说明理由.(3)当以4为半径的⊙Q 与直线AP 相切,且⊙A 与⊙Q 也相切时,求⊙A 的半径.2010年浦东新区中考数学预测卷ABCDEM(第23题图)ABCD(第22题图)ABCQ D (第25题图)PE(第24题图)参考答案及评分说明一、选择题:(本大题共6题,每题4分,满分24分) 1.B ; 2.D ; 3.C ; 4.C ; 5.A ; 6.D .二、填空题:(本大题共12题,每题4分,满分48分)7.4; 8.()()222+-x x ; 9.1-=x ; 10.12-; 11.41≤m ; 12.23-;13.30 %; 14.a m -2; 15.33 ; 16.6; 17.4; 18.(2-,6).三、解答题:(本大题共7题,满分78分) 19.解:原式121219-++=………………………………………………………………(8分) 211-=.………………………………………………………………………(2分)20.解:设y xx =-2,则yx x 323=-.……………………………………………………(1分)∴原方程可化为23=-yy .……………………………………………………(1分)整理,得0322=--y y .………………………………………………………(1分) ∴31=y ,12-=y .……………………………………………………………(2分) 当31=y 时,即32=-x x .∴1-=x .…………………………………………(2分) 当12-=y 时,即12-=-xx .∴1=x .………………………………………(2分)经检验:11-=x ,12=x 都是原方程的解.……………………………………(1分) ∴原方程的解是 11-=x ,12=x .另解:去分母,得)2(23)2(22-=--x x x x .………………………………………(4分)整理,得 012=-x .…………………………………………………………(3分) 解得 11-=x ,12=x .……………………………………………………(2分) 经检验:11-=x ,12=x 都是原方程的解.……………………………………(1分) ∴原方程的解是 11-=x ,12=x .21.解:(1)120;(2)36;(3)90;(4)90;(5)270.……………………(每题各2分)22.解:设此圆的圆心为点O ,半径为r 厘米.联结DO 、AO .则点C 、D 、O 在一直线上.可得OD =(10-r )cm .……(1分)由题意,得AD =30厘米.………………………………………………………(3分)∴ ()2221030-+=r r .…………………………………………………………(3分) 解得 50=r .……………………………………………………………………(2分) 答:这个圆的半径是50厘米.………………………………………………………(1分) 23.证明:(1)∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD .……………(2分) ∴∠E =∠ECD .……………………………………………………………(1分) 又∵AM =DM ,∠AME =∠DMC ,∴△AEM ≌△DCM .………………(1分) ∴CD =AE .…………………………………………………………………(1分) ∴AE =AB .…………………………………………………………………(1分) (2)∵四边形ABCD 是平行四边形,∴AD ∥BC .∴∠AMB =∠MBC .………………………………………………………(1分) ∵BM 平分∠ABC ,∴∠ABM =∠MBC .………………………………(1分) ∴∠ABM =∠AMB .∴AB =AM .…………………………………………(1分) ∵AB =AE ,∴AM =AE .…………………………………………………(1分) ∴∠E =∠AME .…………………………………………………………(1分) ∵∠E +∠EBM +∠BMA +∠AME =180°,∴∠BME =90°,即BM ⊥CE .…………………………………………(1分)24.解:(1)由题意,得点B 的坐标为(2,0).………………………………………(1分)设点P 的坐标为(x ,y ).由题意可知 ∠ABP =90°或∠APB =90°.(i )当∠ABP =90°时,2=x ,1=y .∴点P 坐标是(2,1).……(1分)(ii )当∠APB =90°时,222AB PB PA =+,即()()16222222=+-+++y x y x .……………………………………(1分)又由xy 2=,可得2±=x (负值不合题意,舍去).当2=x 时,2=y .∴点P 点坐标是(2,2).………………(1分)综上所述,点P 坐标是(2,1)或(2,2).(2)设所求的二次函数的解析式为)0(2≠++=a c bx ax y .(i )当点P 的坐标为(2,1)时,点A 、B 、P 不可能在同一个二次函数图像上.……………………………………………………………………………(1分)(ii )当点P 的坐标为(2,2)时,代入A 、B 、P 三点的坐标,得 ⎪⎩⎪⎨⎧++=++=+-=.222,240,240c b a c b a c b a …………………………………………………(1分)解得⎪⎪⎩⎪⎪⎨⎧==-=.22,0,22c b a ……………………………………………………………(1分)∴所求的二次函数解析式为22222+-=xy .………………………(1分)(3)∠BPD =∠BAP .……………………………………………………………(1分)证明如下:∵点C 坐标为(0,22),………………………………………………(1分)∴直线PC 的表达式为 22+-=x y .∴点D 坐标为(22,0).………………………………………………(1分) ∴PD =2,BD =222-,AD =222+.∴122222-=-=PDBD ,122222-=+=ADPD ,∴ADPD PDBD =.∵∠PDB =∠ADP ,∴△PBD ∽△APD .…………………………………(1分)∴∠BPD =∠BAP .另证:联接OP .∵∠APB =90°,OA =OB ,∴OP =OA .∴∠APO =∠PAO .又∵点C 坐标为(0,22),……………………………………………(1分)∴直线PC 的表达式为 22+-=x y .∴点D 坐标为(22,0).………………………………………………(1分) ∴OC =OD .∵点P 的坐标为(2,2),∴PC =PD .∴OP ⊥CD .∴∠BPD =∠APO .…………………………………………………………(1分) ∴∠BPD =∠BAP .25.解:(1)在矩形ABCD 中,∵AD ∥BC ,∴∠APB =∠DAP .又由题意,得∠QAD =∠DAP ,∴∠APB =∠QAD .∵∠B =∠ADQ =90°,∴△ADQ ∽△PBA .………………………………(1分) ∴BPAD ABDQ =,即443+=x y .∴412+=x y .………………………………………………………………(1分)定义域为0>x .……………………………………………………………(1分)(2)不发生变化.…………………………………………………………………(1分) 证明如下:∵∠QAD =∠DAP ,∠ADE =∠ADQ =90°,AD =AD , ∴△ADE ≌△ADQ .∴DE =DQ =y .………………………………………………………………(1分)∴124124482121=+++=⋅+⋅=+=∆∆x x x PC QE AD QE S S S PQE AQE .…(3分)(3)过点Q 作QF ⊥AP 于点F .∵以4为半径的⊙Q 与直线AP 相切,∴QF =4.…………………………(1分) ∵12=S ,∴AP =6.………………………………………………………(1分) 在Rt △ABP 中,∵AB =3,∴∠BPA =30°.…………………………………………………(1分) ∴∠PAQ =60°.∴AQ =338.………………………………………………………………(1分)设⊙A 的半径为r .∵⊙A 与⊙Q 相切,∴⊙A 与⊙Q 外切或内切. (i )当⊙A 与⊙Q 外切时,AQ =r +4,即338=r +4.∴r =4338-.………………………………………………………………(1分)(ii )当⊙A 与⊙Q 内切时,AQ =r -4,即338=r -4.∴r =4338+ 综上所述,⊙A 的半径为4338-或4338+.第二套 上海市普陀区22010年九年级数学中考模拟试题2010.4(时间:100分钟,满分:150分)考生注意:所有答案务必按照规定在答题纸上完成,写在试卷上不给分一、单项选择题:(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上]1.下列二次根式中,( ).(B) ;; .2. 两条对角线互相垂直平分的四边形是………………………………………………( ).(A) 等腰梯形; (B) 菱形; (C) 矩形; (D) 平行四边形.3.下列条件中,能判定两个等腰三角形相似的是……………………………………( ). (A )都含有一个30°的内角; (B )都含有一个45°的内角; (C )都含有一个60°的内角; (D )都含有一个80°的内角.4.如果一元二次方程220x x k -+=有两个不相等的实数根,那么k 的取值范围是( ).(A) 1k ≥; (B) 1k ≤; (C) 1k >; (D) 1k <.5.如右图,△ABC 中,D 是边BC 的中点,BA a = ,AD b = ,那么BC等于…( ).(A )a +b ; (B )12(a +b );(C )2(a +b ); (D )—(a +b).6. 气象台预报“本市明天降水概率是80%”,对此消息,下面几种说法正确的是…( ).(A) 本市明天将有80%的地区降水; (B) 明天降水的可能性比较大; (C) 本市明天降有80%的时间降水; (D) 明天肯定下雨.二、填空题:(本大题共12题,每题4分,满分48分)[请将结果直接填入答题纸的相应位置] 7.计算:23(2)a a ⋅= .ADBC 第5题第21题8.生物学家发现一种病毒的长度约为0.0043mm ,用科学记数法表示为 = mm . 9.当a=2时,1a -= .10.不等式组24,50x x >-⎧⎨-<⎩的解集是 .11.一元二次方程20(0)ax bx c a ++=≠有一根为零的条件是 .12.将图形(右)绕中心旋转180°后的图形是 (画出图形). 13.函数y =的定义域是 .14. 已知一次函数3y kx =+的图像与直线2y x =平行,那么此一次函数的解析式为 .15.梯形ABCD 中,AD ∥BC ,如果∠A=5∠B ,那么∠B= 度.16. 在四边形ABCD 中,如果AB ∥CD ,AB=BC ,要使四边形ABCD 是菱形,还需添加一个条件,这个条件可以是 .17.如果一斜坡的坡度为i 10米,那么物体升高了米.18.中心角是40°的正多边形的边数是 .三、解答题(本大题共7题,其中第19---22题每题10分,第23、24题每题12分,第25题14分, 满分78分) 19.化简:1(1)11a a a -÷++.20.解方程组:2224,2 1.x y x xy y +=⎧⎨-+=⎩21.如图,在平行四边形ABCD 中,点G 是BC 延长线上一点,AG 与BD 交于点E ,与DC 交于点F , 如果AB=m ,CG =12BC ,求:(1)DF 的长度;(2)三角形ABE 与三角形FDE 的面积之比.第12题22. 如图所示,已知在△ABC中,AB=AC,AD是∠BAC的平分线,交BC于点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,(1)求证:四边形ADCE是矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?请加以证明.23.为了引导学生树立正确的消费观,某机构随机调查了一所小学100名学生寒假中使用零花钱的情况(钱数取整数元),根据调查制成了频率分布表,如下:(1)补全频率分布表;(2)使用零化钱钱数的中位数在第组;(3)此机构认为,应对消费200元以上的学生提出勤俭节约的建议,那么应对该校800名学生中约名学生提出此项建议.24. 如图,在平面直角坐标系中,点O为原点,已知点A的坐标为(2,2),点B、C在x轴上,BC=8,AB=AC,直线AC与y轴相交于点D.1)求点C、D的坐标;2)求图象经过B、D、A三点的二次函数解析式及它的顶点坐标.25.如图,已知Sin∠ABC=13,⊙O的半径为2,圆心O在射线BC上,⊙O与射线BA相交于E、F两点,EF=组别分组频数频率1 0.5—50.5 0.12 50.5—100.5 20 0.23 100.5—150.54 150.5—200.5 305 200.5—250.5 106 250.5—300.5 5合计(1) 求BO 的长;(2) 点P 在射线BC 上,以点P 为圆心作圆,使得⊙P 同时与⊙O 和射线BA 相切, 求所有满足条件的⊙P 的半径.BC 上2009学年度第二学期普陀区九年级质量调研数学试卷参考答案及评分说明一、单项选择题:(本大题共6题,每题4分,满分24分)1.(A) ; 2.(B) ; 3.(C); 4.(D) ; 5.(C) ; 6.(B) .二、填空题:(本大题共12题,每题4分,满分48分)7. 45a ; 8. 34.310-⨯; 9. 1;10. 25x -<<; 11. c =0; 12. ;13.2x ≠; 14.23y x =+; 15. 30; 16.AB =CD 等; 17.5 ; 18. 9. 三、解答题(本大题共7题,其中第19---22题每题10分,第23、24题每题12分,第25题14分,满分78分) 19.解: 原式=1()(1)11a a a a a +-+++ …………………………………………………………4′(各2分)=(1)a a -+ …………………………………………………………………………………2′=1a a -- ……………………………………………………………………………………2′=1-. ………………………………………………………………………………………2′第21题20.2224,(1)2 1.(2)x y x xy y +=⎧⎨-+=⎩解: 由(2)式得到:2()1x y -=,…………………………………………………………………………1′再得到1x y -=或者1x y -=-,……………………………………………………………1′与(1)式组成方程组:24,1.x y x y +=⎧⎨-=⎩或24,1.x y x y +=⎧⎨-=-⎩……………………………………………3′ 解得:112,1.x y =⎧⎨=⎩,222,35.3x y ⎧=⎪⎪⎨⎪=⎪⎩……………………………………………………………………4′ 经检验,原方程组的解是:112,1.x y =⎧⎨=⎩,222,35.3x y ⎧=⎪⎪⎨⎪=⎪⎩……………………………………………1′ 21.解:(1)∵四边形ABCD 是平行四边形,∴AB=CD=m ,AB ∥CD . ………………………………2′∵CG =12BC ,∴CG =13BG ,………………………………………………1′∵AB ∥CD ,∴C F C G A BB G=.…………………………………………………………………………………1′∴13C F m =, …………………………………………………………………………………1′∴23D F m =.…………………………………………………………………………………1′(2)∵AB ∥CD ,∴△ABE ∽△FDE ,………………………………………………………………………………2′∴239()24ABE FD ES S ∆∆==. …………………………………………………………………………2′∴ 三角形ABE 与三角形FDE 的面积之比为9∶4.22.证明:(1) ∵AB=AC ,AD 是∠BAC 的平分线,∴AD ⊥BC , ………………………………………1′ ∴∠ADC =90°.∵AD 是∠BAC 的平分线, ∴∠1=12∠BAC ,…………………………………1′ 同理:∠2=12∠MAC .…………………………………1′∵∠BAC +∠MAC=180°. ∴∠1+∠2=90°.即∠EAD =90°. …………………………………1′ ∵CE ⊥AN ,∴∠AEC =90°. …………………………………1′ ∴四边形ADCE 是矩形.…………………………1′(2)当△ABC 是等腰直角三角形时,四边形ADCE 是一个正方形.……………………………1′A CD EM N第22题12证明:∵∠BAC =90°,AB=AC ,AD 是∠BAC 的平分线,∴AD 是斜边BC 上的中线,∴AD=DC .……………………………………………………………………………………1′ ∵四边形ADCE 是矩形, …………………………………………………………………1′∴四边形ADCE 是正方形.…………………………………………………………………1′23.解:(1)见右,每个数1分,共8分;(2) 3;…………………………………………2′ (3)120.…………………………………………2′24.解:(1)过点A 作AE ⊥x 轴,垂足为点E .…………1′∵点A 的坐标为(2,2),∴点E 的坐标为(2,0∵AB=AC ,BC =8,∴BE=CE , ……………………………………1′点B 的坐标为(-2,0), 点C 的坐标为(6,0组别 分 组频数 频率1 0.5—50.5 102 50.5—100.53 100.5—150.5 250.25 4 150.5—200.50.3 5 200.5—250.50.1 6250.5—300.50.05 合 计1001设直线AC 的解析式为:y kx b =+(0k ≠), 将点A 、C 的坐标代入解析式,得到: 132y x =-+.………………………1′∴点D 的坐标为(0,3). …………………1′(2)设二次函数解析式为:2y ax bx c =++(0a ≠), ∵ 图象经过B 、D 、A 三点,∴4230,423 2.a b a b -+=⎧⎨++=⎩…………………………………………………………………2′解得:1,21.2a b ⎧=-⎪⎪⎨⎪=⎪⎩………………………………………………………1′∴此二次函数解析式为:211322y x x =-++. ………………………1′顶点坐标为(12,138). ………………………………………………1′25.(1)解:联接EO ,过点O 作OH ⊥BA 于点H . ………………2′∵EF=EH………………………………1′∵⊙O 的半径为2,即EO =2,∴OH=1. …………………………………………………1′在Rt△BOH 中,∵Sin∠ABC=13,………………………………………1′∴BO=3. …………………………………………………1′(2) 当⊙P与直线相切时,过点P 的半径垂直此直线. …………………………………………1′(a )当⊙P 与⊙O 外切时,DCFABO第25题E GH①⊙P与⊙O切于点D时,⊙P与射线BA相切,…………………………………………………1′Sin∠ABC=113PPrr=-,得到:14Pr=;………………………………1′②⊙P与⊙O切于点G时,⊙P与射线BA相切,Sin∠ABC =133PPrr=+,得到:52Pr=. ………………………………1′(b) 当⊙P与⊙O内切时,①⊙P与⊙O切于点D时,⊙P与射线BA相切,……………………………1′Sin∠ABC =113PPrr=+,得到:12Pr=;………………………………1′②⊙P与⊙O切于点G时,⊙P与射线BA相切,Sin∠ABC =153PPrr=-,得到:54Pr=. ………………………………1′综上所述:满足条件的⊙P的半径为14、52、12、54.……………………1′第三套 2010年松江区初中毕业生学业模拟考试数学试卷(满分150分,完卷时间100分钟)考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.下列计算中,正确的是(A )532a a a =+; (B )632a a a =⋅; (C )532)(a a =; (D )222532a a a =+. 2.在方程x 2+xx 312-=3x -4中,如果设y =x 2-3x ,那么原方程可化为关于y 的整式方程是(A )0142=-+y y ; (B )0142=+-y y ; (C )0142=++y y ;(D )0142=--y y .3.如果反比例函数x k y 12-=的图像在每个象限内y 随x 的增大而增大,那么k 的取值范围是 (A )21>k ; (B )21<k ; (C )0>k ; (D )0<k .4.如果将二次函数12-=x y 的图像向左平移2个单位,那么所得到二次函数的图像的解析式是(A )12+=x y ;(B )32-=x y ; (C )1)2(2--=x y ; (D )1)2(2-+=x y .5.下列命题中,正确的是(A )正多边形都是轴对称图形; (B )正多边形都是中心对称图形;(C )每个内角都相等的多边形是正多边形; (D )正多边形的每个内角等于中心角. 6.下列各式错误的是(A )033=-a a ; (B )a a 9)3(3=⨯;(C )a a a 633=+; (D )b a b a 33)(3+=+. 二、填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置上】 7.计算:111---x x x =__▲_.8.函数3-=x y 的定义域是__▲__ .9.因式分解:=-x x 3 ▲ . 10.方程21=-x 的解是___▲___ .11.已知正比例函数的图像经过点(2-,4),则正比例函数的解析式是 ▲ . 12.某商品原价a 元,连续两次降价%20后的售价为 ▲ 元.13.在不大于20的正整数中任意取一个正整数能被5整除的概率为 ▲ . 14.在半径为13的圆中,弦AB 的长为24,则弦AB 的弦心距为 ▲ .15.在梯形ABCD 中,AD // BC ,E 、F 分别是两腰AB 、CD 的中点,如果AD = 4,EF = 6,那么BC = __▲__.16.已知一斜坡的坡比3:1=i ,坡面垂直高度为2米,那么斜坡长是 ▲ 米. 17.如图,在△ABC 中,D 是BC 上的点,若BD ︰D C =1︰2,a AB =,b AC =, 那么AD = ▲ (用a 和b 表示).18.如图,已知在直角三角形ABC 中,∠C =90°,AB =5,BC =3,将ABC ∆绕着点B 顺时针旋转,使点C 落在边AB 上的点C ′处,点A 落在点A ′处,则AA ′的长为 ▲ .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分) 计算:31)33(27323212021-+++-+--.20.(本题满分10分)C(第17题图)ABC(第18题图)解方程:32321942+--+=-x x x x .21.(本题满分10分)已知:如图,在△ABC 中,D 是BC 上的点,AD=AB ,E 、F 分别是AC 、BD 的中点, 且FE ⊥AC ,若AC=8,2tan =∠B ,求EF 和AB 的长.22.(本题满分10分,第(1)题3分,第(2)题2分,第(3)题2分,第(4)题3分)有关部门想了解本区20000名初中生对世博知识掌握情况,对全区初中生进行世博知识统一测试,在测试结果中随机抽取了400名学生的成绩进行分析,并将分析结果(分数取整数)绘制了如下的频数分布表和频数分布直方图.根据以上提供的信息,解答下列问题: (1)补全频数分布表; (2)补全频数分布直方图;(3)样本中学生成绩的中位数位于频数分布表中 ▲ 分数段内; (4)若90分及以上为优秀,请你估计该区有 ▲ 名学生测试成绩为优秀.频数分布表F EDCBA(第21题图)40 80 120 160200 (分)(频数分布直方图23.(本题满分12分,第(1)题5分,第(2)题7分)已知:如图,在四边形ABCD 中,点G 在边BC 的延长线上,CE 平分∠BCD 、 CF 平分∠GCD , EF ∥BC 交CD 于点O . (1)求证:OE=OF ; (2)若点O 为CD 的中点,求证:四边形DECF 是矩形.24.(本题满分12分,第(1)小题4分,第(2)小题3分,第(2)小题5分)如图,在平面直角坐标系中,直线343+-=x y 分别与x 轴、y 轴交于点A 和点B .二次函数c ax ax y +-=42的图象经过点B 和点C (-1,0),顶点为P . (1)求这个二次函数的解析式,并求出P 点坐标;(2)若点D 在二次函数图象的对称轴上,且AD ∥BP ,求PD 的长; (3)在(2)的条件下,如果以PD 为直径的圆与圆O 相切,求圆O 的半径.25.(本题满分14分,第(1)小题①4分,第(1)小题②5分,第(2)小题5分) 如图,正方形ABCD 中, AB =1,点P 是射线DA 上的一动点, DE ⊥CP ,垂足为E , EF ⊥BE 与射线DC 交于点F .(1)若点P 在边DA 上(与点D 、点A 不重合). ①求证:△DEF ∽△CEB ;②设AP =x ,DF =y ,求y 与x 的函数关系式,并写出函数定义域;(第23题图)C(第25题图)(2)当EFC BECS S ∆∆=4时,求AP 的长.2010年松江区初中毕业学业模拟考试数学参考答案及评分标准一、选择题1、D ;2、C ;3、B ;4、D ;5、A ;6、A 二、填空题7、1-; 8、3≥x ; 9、)1)(1(-+x x x ; 10、5=x ; 11、x y 2-=; 12、a 64.0; 13、51; 14、5; 15、8; 16、4; 17、b a 3132+; 18、52三、解答题19.解:原式=13133)32(322-++---………………………………5分=734-……………………………………………………………………5分 20.解:方程两边同乘以)3)(3(-+x x 得:………………………………………1分)3(2)3(2942--++-=x x x x …………………………………………2分 整理得:0342=+-x x …………………………………………………2分 解得:11=x ,32=x ………………………………………………………3分 经检验:32=x 是原方程的增根;……………………………………………1分ABCDA BC D E FP所以,原方程的解为1=x . …………………………………………………1分 21.解:连接AF ,∵AD=AB ,F 是BD 的中点∴AF ⊥BC ,∴︒=∠90AFC …………………………………………………2分 在AFC Rt ∆中,︒=∠90AFC ∵E 是AC 的中点,∴421==AC EF ………………………………………3分又∵FE ⊥AC ,∴24==CF AF …………………………………………2分 在AFB Rt ∆中,︒=∠90AFB ∵2tan ==∠BFAF B ,∴22=BF ,∴102=AB ……………………3分22.(1)160;0.4;40……3分(2)图略;……2分(3)90~80.……………2分 (4)5000………………3分23.(1)证明:∵CE 平分∠BCD 、CF 平分∠GCD∴GCF DCF DCE BCE ∠=∠∠=∠,……………………………………1分∵EF ∥BC ,∴GCF EFC FEC BCE ∠=∠∠=∠,………………………1分 ∴DCF EFC FEC DCE ∠=∠∠=∠,………………………………………1分 ∴OE=OC ,OF=OC ,∴OE=OF ……………………………………………2分 (2)∵点O 为CD 的中点,∴OD=OC ,又OE=OF∴四边形DECF 是平行四边形………………………………………………2分∵CE 平分∠BCD 、CF 平分∠GCD ∴DCG DCF BCD DCE ∠=∠∠=∠21,21 ………………………………2分 ∴︒=∠+∠=∠+∠90)21(21DCG BCD DCF DCE ………………………2分即︒=∠90ECF ,∴四边形DECF 是矩形 ………………………………1分 24.解:(1)因为直线343+-=x y 分别与x 轴、y 轴交于点A 和点B .由,0=x 得3=y ,0=y ,得4=x , 所以)0,4(A )3,0(B ……………1分 把)0,1(-C )3,0(B 代入c ax ax y +-=42中,得⎩⎨⎧=++=043c a a c , 解得⎪⎩⎪⎨⎧-==533a c …………………………………2分∴这个二次函数的解析式为3512532++-=x x y ……………………………1分 527)2(532+--=x y ,P 点坐标为P )527,2( ………………………………1分 (2)设二次函数图象的对称轴与直线343+-=x y 交于E 点,与x 轴交于F 点把2-=x 代入343+-=x y 得,23=y , ∴)23,2(E ,∴103923527=-=PE …………………………1分∵PE//OB ,OF=AF , ∴AE BE =∵AD ∥BP ,∴DE PE =,5392==PE PD ……………………………2分(3)∵23,2(E , ∴25494=+=OE ,∴OE ED >设圆O 的半径为r ,以PD 为直径的圆与圆O 相切时,只有外切,………1分 ∴251039=-r , 解得:5321=r ,572=r ……………………………3分即圆O 的半径为532或5725.解:1(1)∵ 90=∠=∠FEB DEC ,∴BEC DEF ∠=∠……………1分∵ 90=∠+∠=∠+∠DCP BCE DCP EDF ,…………………………1分 ∴BCE EDF ∠=∠,∴△DEF ∽△CEB …………………………………1分(2)∵PDC Rt ∆中,CP DE ⊥,∴90=∠=∠CED CDP∴△DEC ∽△PDC ,∴DC PDEC DE= ………………………………………1分∵△DEF ∽△CEB ,∴DCDF CBDF ECDE ==…………………………………1分∴DCDF DCPD =,∴DF PD =………………………………………………1分∵AP =x ,DF =y ,∴,1x PD -= ∴x y -=1 ……………………………1分)10(<<x …………………………………………………………………1分(3)∵△DEF ∽△CEB ,∴22CBDF S S CEBDEF =∆∆ (1) …………………………1分∵CFDF S S CEFDEF =∆∆(2),∴(1)÷(2)得2CBCF DF S S CEB cEF ⋅=∆∆ ……………1分又∵EFC BECS S∆∆=4,∴412=⋅=∆∆CBCF DF S S CEBcEF ……………………………1分当P 点在边DA 上时, 有411)1(=⋅-xx ,解得21=x ………………………………………………2分当P 点在边DA 的延长线上时,411)1(=⋅+xx ,解得212-=x ……………………………………………1分(图二)第四套 上海市闸北区2010年九年级数学中考模拟试题(考试时间:100分钟,满分:150分)考生注意:1.本试卷含三个题,共25题:2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个结论中,有且只有一个选项是正确的。
2010年中考试卷——数学(上海卷)
K1+478~K1+5888段左侧片石混凝土挡土墙第1部分2010年中考试卷——数学(上海卷)一、选择题1.下列实数中,是无理数的为()A. 3.14B.13C. 3D.9【解析】无理数即为无限不循环小数,则选C 。
【答案】C2.在平面直角坐标系中,反比例函数 y = k x ( k <0 ) 图像的两支分别在()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限【解析】设K=-1,则x=2时,y=,点在第四象限;当x=-2时,y=,在第二象限,所以图像过第二、四象限,即使选B【答案】B3.已知一元二次方程 x 2 + x ─ 1 = 0,下列判断正确的是( )A.该方程有两个相等的实数根B.该方程有两个不相等的实数根C.该方程无实数根D.该方程根的情况不确定【解析】根据二次方程的根的判别式:,所以方程有两个不相等的实数根,所以选B【答案】B4.某市五月份连续五天的日最高气温分别为23、20、20、21、26(单位:°C ),这组数据的中位数和众数分别是( )A. 22°C ,26°CB. 22°C ,20°CC. 21°C ,26°CD. 21°C ,20°C【解析】中位数定义:将所有数学按从小到大顺序排列后,当数字个数为奇数时即中间那个数为中位数,当数字的个数为偶数时即中间那两个数的平均数为中位数。
众数:出现次数最多的数字即为众数所以选择D 。
【答案】D5.下列命题中,是真命题的为( )A.锐角三角形都相似B.直角三角形都相似C.等腰三角形都相似D.等边三角形都相似【解析】两个相似三角形的要求是对应角相等,A 、B 、C 中的类型三角形都不能保证两个三角形对应角相等,即选D 。
【答案】D6.已知圆O 1、圆O 2的半径不相等,圆O 1的半径长为3,若圆O 2上的点A 满足AO 1 = 3,则圆O 1与圆O 2的位置关系是( )A.相交或相切B.相切或相离C.相交或内含D.相切或内含【解析】如图所示,所以选择A【答案】A二、填空题7.计算:a 3÷a 2= ______.【解析】【答案】a8.计算:( x + 1 ) ( x ─ 1 ) = _________.【解析】根据平方差公式得:( x + 1 ) ( x ─ 1 ) =。
2010年上海市中考数学试题含答案
【解析】无理数即为无限不循环小数,则选C。
2.在平面直角坐标系中,反比例函数 y = ( k<0 .第一、三象限 B.第二、四象限 C.第一、二象限 D.第
三、四象限
【解析】设K=-1,则x=2时,y=
,点在第四象限;当x=-2时,y=
,在第二象限,所以图像过第二、四象限,即使选B
,所以
,则AB=4,所以BD=AB-AD=3 17.一辆汽车在行驶过程中,路程 y(千米)与时间 x(小时)之间的函
数关系如图3所示 当时 0≤x≤1,y关于x的函数解析式为 y = 60 x,那 么当 1≤x≤2时,y关于x的函数解析式为_____y=100x-40___. 【解析】在0≤x≤1时,把x=1代入y = 60 x,则y=60,那么当 1≤x≤2时由 两点坐标(1,60)与(2,160)得当1≤x≤2时的函数解析式为y=100x40
(1)在A出口的被调查游客中,购买2瓶及2瓶以上饮料
的游客人数占A出口的被调查游客人数的__________%.
(2)试问A出口的被调查游客在园区内人均购买了多少瓶饮料?
(3)已知B、C两个出口的被调查游客在园区内人均购买饮料
的数量如表一所示 若C出口的被调查人数比B出口的被
表一
调查人数多2万,且B、C
2010年上海市初中毕业统一学业考试数学
卷
(满分150分,考试时间100分钟)
2010-6-20
1、 选择题(本大题共6题,每题4分,满分24分)
(10上海)1.下列实数中,是无理数的为( )
A. 3.14
B.
C.
D.
(10上海)2.在平面直角坐标系中,反比例函数 y = ( k<0 ) 图像的量支
顺时针旋转得到 点,则 C=1
2010年中考数学模拟试卷参考答案
2010年中考数学模拟试卷 参考答案及评分标准一. 选择题(每小题3分, 共30分)二. 填空题(每小题4分, 共24分)11. -4,2 12.(3,5) 13.12-14.31 15. n )23( 16. 6S 1≤≤ 三. 解答题(8小题共66分) 17. (本题6分)解:(1)上述两同学回答的均不全面,应该是300 , 1500 , 900 (遗漏一个扣1分) ………3分 (2)答案不唯一.如面对不确定的情况就要考虑进行分类讨论;考虑问题要全面呀等等,只要有这样的意思就得3分. …………………………3分 18. (本题6分)解:900,1350,1800 ,2700, 3600,只要举出其中两个角能够进行三等分, ……………………2分尺规作图正确,每个2分 ………………………4分19、(本题6分)解:(1)第一只 肉 香肠 红枣 红枣第二只 红枣 肉 红枣 红枣 肉 香肠 红枣 香肠 红枣∴P =61122= …………………………3分(2)这样模拟不正确 …………………………1分 理由如下:连续两次掷骰子点数朝上的情况有(1,1)(1,2)(1,3)(1,4)(2,1)(2,2)(2,3)(2,4)(3,1)(3,2)(3,3)(3,4)(4,1)(4,2)(4,3)(4,4)共16种,而满足条件的情况有4种 …………………………2分 20. (本题8分)解:老板第二次售手链还是赚了. …………………………1分 设第一次批发价为x 元/条,则第二次的批发价为x+0.5元/条 依题意,得: )x1000.5)(10(x ++=150 解之得 5.2x ,2x 21== …………………………3分经检验,5.2x ,2x 21== 都是原方程的根 …………………………1分 由于当x=2.5时,第二次的批发价就是3元/条,而零售价为2.8元,所以x=2.5不合题意,舍去.故第一次的批发价为2元/条.第二次的批发价为2.5元/条第二次共批发手链605.21505.0x 150==+(条) …………………………1分第二次的利润为: 1.2150-5).08.260518.26054(=⨯⨯⨯+⨯⨯ …………………………1分故,老板第二次售手链赚了1.2元 . …………………………1分21.(本题8分)解:(1)如图,由题意得,∠EAD =45°,∠FBD =30°.∴ ∠EAC =∠EAD +∠DAC =45°+15°=60°. ∵ AE ∥BF ∥CD , ∴ ∠FBC =∠EAC =60°. ∴ ∠DBC =30°.又∵ ∠DBC =∠DAB +∠ADB , ∴ ∠ADB =15°.∴ ∠DAB =∠ADB . ∴ BD =AB =2.即B ,D 之间的距离为2km . ……………………………………………4分 (2)过B 作BO ⊥DC ,交其延长线于点O , 在Rt △DBO 中,BD =2,∠DBO =60°. ∴ DO =2×sin60°=2×323=,BO =2×cos60°=1. 在Rt △CBO 中,∠CBO =30°,CO =BO tan30°=33, ∴ CD =DO -CO =332333=-(km ). 即C ,D 之间的距离为332km . …………………………………………………4分 22. (本题10分)解:(1)这个样本的中位数为120(人),众数为100(人),平均数为150(人) ………3分 信息:①这一周每天参观人数不低于100人; ②周末参观人数逐渐增加;金③一周内参观人数在百人左右的天数最多;④星期日参观人数最多;⑤这一周每天参观人数不超过240人;⑥星期五参观人数最接近这一周的平均值;•⑦一周内多数天参观人数低于本周参观人数的平均值等等.…………………………2分(2)①由(1)知样本数据的中位数为120(人),则甲、乙两团共120人,其中甲团有x人,乙团有(120-x)人.∵0<120-x≤50,∴甲团人数超过50人…………………………1分ⅰ)当50<x•≤100,•0<120-x≤50时,W=60x+80(120-x)即W=9600-20x(70≤x≤100)ⅱ)当x>100,0<120-x•≤50时,W=40x+80(120-x)即W=9600-40x(100<x<120)∴当70≤x≤100时,W关于x的函数关系式为W=9600-20x;当100<x<120时,W关于x的函数关系式为:W=9600-40x.…………………………2分②依题意x≤100,∴W关于x的函数关系式应为:W=9600-20x(70≤x≤100)根据一次函数的性质知:当x=70时,W=9600-2×700=8200(元)而两团合起来购票应付费40×120=4800(元),∴两团合起来购票比分开购票最多可节约8200-4800=3400(元).…………………………2分23.(本题10分)证明:(1)连接AM,∵AB是半圆O的直径,∴∠BMA=90°…………………………1分又∵DE⊥AB,∠ABM=∠NBE,∴Rt△ABM∽Rt△NBE∴BN BEBA BM,即BN·BM=BE·BA …………………………2分(2)连接AD,BD(如图2),∵AB是⊙O的直径,∴∠ADB=90°…………………………1分又因∵DE⊥AB,∴BD2=BE·BA …………………………1分∵BC是⊙O1的切线,∴BC2=BN·BM …………………………1分由(1)知BN·BM=BE·BA,∴BC2=BD2,即BC=BD …………………………1分(3)连接O 1N 和OM (如图3),则OM 过点O 1, ∵OB=OM ,O 1N=O 1M ,∴∠MNO 1=∠NMO 1=∠MBO …………………………1分 ∴O 1N ∥OB …………………………1分而DE ⊥OB ,∴OE ⊥O 1N∵O 1N 是 ⊙O 1的半径,∴DE 是⊙O 1的切线.…………………………1分24.(本题12分)解:(1)①法一:由题可知1AO CQ ==.90AOH QCH ∠=∠=,AHO QHC ∠=∠,AOH QCH ∴△≌△.OH CH ∴=,即H 为AQ 的中点. …………………………1分法二:(01)A ,,(01)B -,,OA OB ∴=.又BQ x ∥轴,HA HQ ∴=. …………………………1分 由①可知AH QH =,AHR QHP ∠=∠,AR PQ ∥,RAH PQH ∴∠=∠, RAH PQH ∴△≌△.AR PQ ∴=,又AR PQ ∥,∴四边形APQR 为平行四边形.………………………1分②设214P m m ⎛⎫ ⎪⎝⎭,,PQ y ∥轴,则(1)Q m -,,则2114PQ m =+.过P 作PG y ⊥轴,垂足为G ,在Rt APG △中,2114AP m PQ ===+=.∴平行四边形APQR 为菱形. …………………………2分(2)设直线PR 为y kx b =+,由OH CH =,得,0)2m (H ,214P m m ⎛⎫⎪⎝⎭,代入得: 2021.4m k b km b m ⎧+=⎪⎪⎨⎪+=⎪⎩, 221.4m k b m ⎧=⎪⎪∴⎨⎪=-⎪⎩,∴直线PR 为2124m y x m =-.………………………1分 设直线PR 与抛物线的公共点为214x x ⎛⎫ ⎪⎝⎭,,代入直线PR 关系式得:22110424m x x m -+=,21()04x m -=,解得x m =.得公共点为214m m ⎛⎫ ⎪⎝⎭,. 所以直线PH 与抛物线214y x =只有一个公共点P . …………………………2分 (3)AN ∥GH ,AN 21GH =. …………………………2分由(1)知AP=PQ ,同理知AM=MN.M A N M N A ,A Q P PA Q ∠=∠∠=∠∴ BQ PQ ,BQ M N ⊥⊥∴MN ∥PQ ∴180MPQ NMA =∠+∠ ∵⊿AMN 和⊿APQ 的内角和都为180180MAN MNA AQP PAQ =∠+∠+∠+∠∴ 90MAN PAQ =∠+∠∴ AQ AN 90NAQ ⊥∴=∠∴…………………………2分由(1)知四边形APQR 为菱形,HQ AH PR AQ =⊥∴,PR ∴∥AN为GH ∴⊿ANQ 的中位线.∴AN ∥GH ,AN 21GH = …………………………1分。
九下二模201005杨浦区
2010年杨浦区初三模拟测试数 学 试 卷(满分150分,考试时间100分钟) 2010.5考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1是同类二次根式的是 ( ▲ ) (A(B(C(D2.如图,数轴上A B 、两点分别对应实数a b 、,则下列结论正确的是 ( ▲ ) (A)0a b +>; (B)0ab >; (C)0a b ->; (D)||||0a b ->. 3.下列说法正确的是 ( ▲ ) (A)一颗质地均匀的骰子已连续抛掷了2000次,其中,抛掷出5点的次数最少,则第2001次一定抛掷出5点;(B)某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖; (C)天气预报说明天下雨的概率是50%,所以明天将有一半时间在下雨;(D)从一副扑克牌中随机抽取一张牌,抽到梅花与抽到方块的概率相同.4.一个三角形的两边长分别为3和7,则下列各数中不可能是它的第三边边长的是( ▲ ) (A)3; (B)7; (C)5; (D)9.5.两圆的半径分别为3和6,圆心距是8,则这两圆的位置关系是 ( ▲ ) (A)外离; (B)外切; (C) 相交; (D) 内切.6.某学校50名共青团员在学校“支援灾区献爱心”活动中捐了款。
团总支书记将捐款情况进行了统计,并绘制成了统计图(如图).根据图中提供的信息,捐款金额的众数和中位数分别是 ( ▲ )(A )20、20; (B )30、20;(C )30、30; (D )20、30.金额(元)20 30 50 100 (第6题图)(第2题图)二、填空题:(本大题12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置上】 7.若1a <,则1a -= ▲ .8.在实数范围内因式分解:3222x x y xy -+= ▲ .9.若一元二次方程2220x x m -+=有实数根,则m 的取值范围是 ▲ . 10.直角坐标系中点(-2,3)关于直线x =1对称的点的坐标是 ▲ .11.函数()3f x x=-的定义域为 ▲ . 12.一次函数y kx b =+的图像如图所示,则当x 的取值范围是▲ 时,能使0kx b +>.13.某百货商厦统计了今年第一季度化妆品的销售额:一月份为a 元,二月份比一月份有所下降,降低的百分率为m ,三月份在二月份的基础上以百分率n 增长,则三月份化妆品的销售额为 ▲ . 14.Rt △ABC 中,∠C =90°,sin A =35,AC =12,则AB = ▲ . 15.若正多边形的外角是400,则该正多边形是 ▲ 对称图形. 16.点A 、B 、C 为同一平面内的三点,则AB BC CA ++= ▲ . 17.将某中学初三年级组的全体教师按年龄分成三组,情况如表格所示。
上海2010模拟考各区25题含答案
2010模拟考各区25题1(宝山)、(本题满分14分,第(1)小题满分3分,第(2)小题满分5分,第(3)小题满分6分)如图,矩形ABCD中,AB 点E 是BC 边上的一个动点,联结AE ,过点D 作DF AE ⊥,垂足为点F . (1)设BE x =,ADF ∠的余切值为y ,求y 关于x 的函数解析式;(2)若存在点E ,使得∆ABE 、∆ADF 与四边形CDFE 的面积比是3:4:5,试求矩形ABCD 的面积;(3)对(2)中求出的矩形ABCD ,联结CF ,当BE 的长为多少时,∆CDF 是等腰三角形? (备用图)DCBA EFD CBA EF(图9)2(奉贤)、(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)△中,∠ACB=90°,BC=6,AC=8,过点A作直线MN⊥AC,点E是直线MN上的一个已知:在Rt ABC动点,(1)如图1,如果点E是射线AM上的一个动点(不与点A重合),联结CE交AB于点P.若AE为x,AP 为y,求y关于x的函数解析式,并写出它的定义域;(2) 在射线AM上是否存在一点E,使以点E、A、P组成的三角形与△ABC相似,若存在求AE的长,若不存在,请说明理由;(3)如图2,过点B作BD⊥MN,垂足为D,以点C为圆心,若以AC为半径的⊙C与以ED为半径的⊙E 相切,求⊙E的半径.第25题图1N3.(静安)、(本题满分14分,第(1)小题6分,第(2)小题2分,第(3)小题6分)在半径为4的⊙O 中,点C 是以AB 为直径的半圆的中点,OD ⊥AC ,垂足为D ,点E 是射线AB 上的任意一点,DF //AB ,DF 与CE 相交于点F ,设EF =x ,DF =y .(1) 如图1,当点E 在射线OB 上时,求y 关于x 的函数解析式,并写出函数定义域;(2) 如图2,当点F 在⊙O 上时,求线段DF 的长; (3) 如果以点E 为圆心、EF 为半径的圆与⊙O 相切,求线段DF 的长.(第25题图1)E2)4(杨浦)、(本题14分)(第(1)小题4分,第(2)小题5分,第(3)小题5分) 已知线段AB =10,点P 在线段AB 上,且AP =6,以A 为圆心AP 为半径作⊙A ,点C 在⊙A 上,以B 为圆心BC 为半径作⊙B ,射线BC 与⊙A 交于点Q (不与点C 重合)。
2010年上海市各区县模拟试题综合题汇编
2010年上海市各区县模拟试题综合题汇编1. 杨浦区24.(本题12分)已知二次函数2y x bx c =++的图像过点A (-1,3)和B (2,0),直线AB 交y 轴于点C ,二次函数图像的顶点为D 。
(1)求二次函数的解析式;(4分)(2)若点P 在射线AB 上(不与点C 重合),且△AOC ∽△APO ,试求点P 的坐标;(4分) (3)在(2)的条件下求tan APD ∠的值。
(4分)25.(本题14分)(第(1)小题4分,第(2)小题5分,第(3)小题5分) 已知线段AB =10,点P 在线段AB 上,且AP =6,以A 为圆心AP 为半径作⊙A ,点C 在⊙A上,以B 为圆心BC 为半径作⊙B ,射线BC 与⊙A 交于点Q (不与点C 重合)。
(1)当⊙B 过点A 时(如图1),求CQ 的长;(2)当点Q 在线段BC 上时(如图2),设BC =x ,CQ =y ,试求y 关于x 的函数关系式,并写出定义域;(3)当由A 、P 、Q 、C 四点构成的四边形是梯形时,求BC 的长。
(第25题图2)B(备用图)(第25题图1)24.(本题满分12直线l 过点(2,0A -(1)求直线l (2)若抛物线y =(3) 若点E 在直线25.(本题满分14已知如图,直线MN 段CD 于点E ,过点(1) 求证:2PC (2) 设PN x =,(3) 联结PD24. (本题12分)如图,在平面直角坐标系中,以坐标原点O 为圆心,2为半径画圆,P 是⊙O 上一动点且在第一象限内,过点P 作⊙O 的切线,与x 、y 轴分别交于点A 、B 。
(1) 求证:△OBP 与△OPA 相似; (2) 当点P 为AB 中点时,求出P 点坐标;(3) 在⊙O 上是否存在一点Q ,使得以Q 、O 、A 、P 为顶点的四边形是平行四边形。
若存在,试求出Q 点坐标;若不存在,请说明理由。
25. (本题14分)如图,抛物线)0(2>++=a c bx ax y 交x 轴于A 、B 两点(A 点在B 点左侧),交y 轴于点C 。
2010中考模拟试卷 数学试题卷参考答案
2010年中考模拟试卷参考答案一、选择题 (每题3分共30分)题号 1 2 3 4 5 6 7 8 9 10 答案DBBCBDBBAB二、填空题(每题4分,共24分)11. X(X+3)(X-3) 12. 3+3 13. 414. 25 15.(21 ,23)(0,33 )(2,3 )(3-1,1 )16.2365a三、解答题(满分66分)17、 (本小题满分6分) 解:作PC ⊥AB设PC=x ,∵060=∠PBC 则CB=,33X ……………… 2分X AC PAC 330=∴=∠……………… 2分32333=∴=-∴X X X ……………… 2分18、 (本小题满分6分)(1)过F 作FH ∥AB,交AD 于H,连结EH,EF,G 为DC 上一点,连结GH,GF, 则四边形EFGH 就是所求四边形.(3分)①(2)作MN ∥AB,交AD 于N,P 为AB 上一点,连结PN,过M 作MQ ∥PN,交CD 于Q,连结PM,NQ,则梯形PMQN 就是所求四边形.(3分)PAB CA B C D HFG E MA BCD N P Q②(工具不限,画得有理就给满分,画图正确但无画法每个扣一分) 19、(本小题满分8分) (1)A (2,2);B(-2,-2);C (23,23)-.………………3分(2)作AD ⊥x 轴于D ,连结AC 、BD 和OC 。
∵A 的坐标为(2,2), ∴∠AOD=45°,AO=22………………1分∵C 在O 的东南45°方向上, ∴∠AOC=45°+45°=90°,∵AO=BO,∴AC=BC , 又∵∠BAC=60°,∴△ABC 为正三角形………………2分∴AC=BC=AB=2AO=42. ∴OC=3·42262=………………1分由条件设:教练船的速度为3m,A 、B 两船的速度均为4m.则教练船所用的时间为: 263m ,A 、B 两船所用的时间均为:424m =2m .∵263m =243m ,2m =183m ,∴263m >2m ,所以教练船不是最先赶到。
上海市杨浦区2010初三一模数学考卷及答案
杨浦区2010学年度第一学期期末质量抽测初三数学试卷(测试时间:100分钟,满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 3.本次测试可使用科学计算器.一、选择题:(本大题共6题,每题4分,满分24分) 1.如图,下列角中为俯角的是 (A )∠1; (B )∠2; (C )∠3;(D )∠4.2.在Rt △ABC 中,90=∠C °,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,下列等式中不一定成立的是 (A )B a btan =; (B )B c a cos =; (C )Aac sin =; (D )A b a cos =.3.如果二次函数c bx ax y ++=2的图像如图所示,那么下列判断中,不正确的是(A )a >0; (B )b <0; (C )c >0; (D )abc >0.4.将二次函数2x y =的图像向右平移1个单位,所得图像所表示的函数解析式为(A )12+=x y ; (B )12-=x y ; (C )2)1(+=x y ; (D )2)1(-=x y .5.如果AB 是非零向量,那么下列等式正确的是 (A; (B )AB =; (C )AB +=0; (D=0.6.已知在△ABC 中,点D 、E 、F 分别在边AB 、AC 和BC 上,且DE ∥BC ,DF ∥AC ,那么下列比例式中,正确的是 (A )BC DE EC AE =; (B )FBCF EC AE =; (C )BC DEAC DF =; (D )BCFCAC EC =.二、填空题:(本大题共12题,每题4分,满分48分)7.已知点P 在线段AB 上,AP =4PB ,那么PB ︰AB = ▲ .8.如果在比例尺为1︰1 000 000的地图上,A 、B 两地的图上距离是3.4厘米,那么A 、B 两地的实际距离(第3题图)水平线视线视线1 23 4铅垂线(第1题图)是 ▲ 千米.9.已知在△ABC 中,∠C =90°,AC =3,BC =2,那么cos B = ▲ . 10.已知抛物线2)3(x a y +=有最高点,那么a 的取值范围是 ▲ .11.如果二次函数43)2(22-++-=m x x m y 的图像经过原点,那么m = ▲ . 12.请写出一个对称轴是直线x =2的抛物线的表达式,这个表达式可以是 ▲ . 13.已知在△ABC 中,AB =AC =5,BC =8,点G 为重心,那么GA = ▲ .14.如果两个相似三角形的面积之比是9∶25,其中小三角形一边上的中线长是12cm ,那么大三角形对应边上的中线长是 ▲ cm .15.已知在平行四边形ABCD 中,点M 、N 分别是边DC 、BC 的中点,=,=,那么关于、的分解式是 ▲ . 16.已知抛物线x x y 62+=,点A (2,m )与点B (n ,4)关于该抛物线的对称轴对称,那么m +n 的值等于 ▲ .17.如果在坡度为1︰3的山坡上种树,要求株距(相邻两树间的水平距离)是6米,那么斜坡上相邻两树间的坡面距离AB 等于 ▲ 米. (结果保留根号)18.在Rt △ABC 中,∠C =90°,BD 是△ABC 的角平分线,将△BCD 沿着直线BD 折叠,点C 落在点C 1处,如果AB =5,AC =4,那么sin ∠ADC 1的值是 ▲ .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)如图,已知两个不平行的向量a 、.先化简,再求作:)223()27(b a b a ρρρρ+-+.(不要求写作法,但要指出所作图中表示结论的向量)20.(本题满分10分)已知二次函数c bx ax y ++=2的图像经过点(-1,3)、(1,3)和(2,6),求这个二次函数的解析式,并写出它的图像的顶点坐标和对称轴.a(第19题图)(第17题图)21.(本题满分10分)已知:如图,在矩形ABCD 中,AB =4,BC =6,M 是边BC 的中点,DE ⊥AM ,垂足为E .求:线段DE 的长.22.(本题满分10分,其中第(1)小题4分,第(2)小题6分)如图,在航线l 的两侧分别有观测点A 和B ,点A 到航线l 的距离为2千米,点B 位于点A 北偏东60°方向且与点A 相距10千米处.现有一艘轮船从位于点B 南偏西76°方向的C 处,正沿该航线自西向东航行,5分钟后该轮船行至点A 正北方向的点D 处. (1)求观测点B 到航线l 的距离;(2)求该轮船航行的速度(结果精确到0.1千米/小时).(参考数据:1.73,sin760.97°≈,cos760.24°≈,tan76 4.01°≈)23.(本题满分12分,其中第(1)小题5分,第(2)小题7分)已知:如图,在△ABC 中,AB =AC ,DE ∥BC ,点F 在边AC 上,DF 与BE 相交于点G ,且∠EDF =∠ABE .求证:(1)△DEF ∽△BDE ;(2)EF DB DFDG ⋅=⋅.24.(本题满分12分,其中第(1)小题3分,第(2)小题4分,第(3)小题5分)已知在平面直角坐标系xOy 中,二次函数)0(2>+-=b c bx x y 的图像经过点A (-1,b ),与y 轴相交于点B ,且∠ABO 的余切值为3.(1)求点B 的坐标; 北东 C DBEAl(第22题图)C(第23题图)A BCDME (第21题图)(2)求这个函数的解析式;(3)如果这个函数图像的顶点为C ,求证:∠ACB =∠ABO .25.(本题满分14分,其中第(1)小题3分,第(2)小题5分,第(3)小题6分)如图,已知在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =11,BC =13,AB =12.动点P 、Q 分别在边AD 和BC 上,且BQ =2DP .线段PQ 与BD 相交于点E ,过点E 作EF ∥BC ,交CD 于点F ,射线PF 交BC 的延长线于点G ,设DP =x .(1)求CFDF的值. (2)当点P 运动时,试探究四边形EFGQ 的面积是否会发生变化?如果发生变化,请用x 的代数式表示四边形EFGQ 的面积S ;如果不发生变化,请求出这个四边形的面积S .(3)当△PQG 是以线段PQ 为腰的等腰三角形时,求x 的值.闵行区2010学年度第一学期期末质量抽测试卷初三数学参考答案及评分说明一、选择题: 1.C ;2.D ;3.C ;4.D ;5.A ;6.B .二、填空题:7.1∶5; 8.34; 9.13132; 10.a <-3; 11.-2; 12.2)2(-=x y 等;13.2;14.20;(第25题图)ABQCGFEPD15.2121-; 16.-4; 17.102; 18.54.三、解答题:19.解:b a b a -=+-+2)223()27(ρρρρ.…………………………………………………(4分)图略.……………………………………………………………………………………(5分) 结论.……………………………………………………………………………………(1分)20.解:根据题意,得⎪⎩⎪⎨⎧++=++=+-=.246,3,3c b a c b a c b a …………………………………………………(2分)解得⎪⎩⎪⎨⎧===.2,0,1c b a ………………………………………………………………………(3分)∴所求二次函数的解析式为22+=x y ,………………………………………(1分) 顶点坐标为(0,2),……………………………………………………………(2分) 对称轴为直线x =0.………………………………………………………………(2分)21.解:在矩形ABCD 中,∵M 是边BC 的中点,BC =6,AB =4,∴AM =5.………………………………(2分) ∵AD ∥BC ,∴∠DAE =∠AMB .…………………………………………………(2分) ∵∠DEA =∠B ,∴△DAE ∽△AMB .……………………………………………(2分) ∴AM AB AD DE =,即546=DE .……………………………………………………(2分)∴524=DE .………………………………………………………………………(2分) 22.解:(1)作BH ⊥l ,垂足为点H ,则线段BH 的长度就是点B 到航线l 的距离.根据题意,得∠ADE =90°,∠A =60°,∴∠AED =30°.…………………(1分) 又∵AD =2,∴AE =4,32=DE .……………………………………………(1分) ∵AB =10,∴BE =6.………………………………………………………………(1分) ∵∠BEH =∠AED =30°,∴BH =3,33=EH .………………………………(1分) (2)在Rt △BCH 中,∵∠CBH =76°,∴BHCH=︒76tan . ∴03.1201.4376tan 3=⨯≈︒=CH .……………………………………………(2分)又∵35=DH ,∴CD =CH -DH =3.38.………………………………………(2分) ∴6.4056.4012138.3≈===tCD v .………………………………………………(2分)答:该轮船航行的速度约为每小时40.6千米. 注:如果由于使用计算器而产生的误差,也可被认可.23.证明:(1)∵AB =AC ,∴∠ABC =∠ACB .…………………………………………(1分)∵DE ∥BC ,∴∠ABC +∠BDE =180°,∠ACB +∠CED =180°.……………(1分) ∴∠BDE =∠CED .………………………………………………………………(1分) ∵∠EDF =∠ABE ,∴△DEF ∽△BDE .………………………………………(2分) (2)由△DEF ∽△BDE ,得EFDEDE DB =.………………………………………(1分) ∴EF DB DE ⋅=2.………………………………………………………………(1分) 由△DEF ∽△BDE ,得∠BED =∠DFE .………………………………………(1分) ∵∠GDE =∠EDF ,∴△GDE ∽△EDF .………………………………………(1分) ∴DFDEDE DG =.……………………………………………………………………(1分) ∴DF DG DE ⋅=2.………………………………………………………………(1分) ∴EF DB DFDG ⋅=⋅.…………………………………………………………(1分)24.解:(1)根据题意,得b =1+b +c .……………………………………………………(1分)∴c = -1.…………………………………………………………………………(1分) ∴B (0,-1).……………………………………………………………………(1分) (2)过点A 作AH ⊥y 轴,垂足为点H . ∵∠ABO 的余切值为3,∴3cot ==∠AHBHABO .……………………………(1分) 而AH =1,∴BH =3.∵BO =1,∴HO =2.………………………………………………………………(1分) ∴b =2.……………………………………………………………………………(1分) ∴所求函数的解析式为122--=x x y .………………………………………(1分) (3)由2)1(1222--=--=x x x y ,得顶点C 的坐标为(1,-2).…………(1分) ∴52=AC ,10=AB ,2=BC ,5=AO ,BO =1.…………………(1分)∴2===BOBCAO AB AB AC .………………………………………………………(1分) ∴△ABC ∽△AOB .………………………………………………………………(1分) ∴∠ACB =∠ABO . ………………………………………………………………(1分)25.解:(1)在梯形ABCD 中,∵AD ∥BC ,∴BQDPBE DE =.……………………………………………………(1分) ∵EF ∥BC ,∴CFDFBE DE =.……………………………………………………(1分) 又∵BQ =2DP ,∴21=CF DF .……………………………………………………(1分) (2)不发生变化.…………………………………………………………………(1分) 在△BCD 中, ∵EF ∥BC ,∴31==DB DE BC EF .而BC =13,∴313=EF .…………………………………………………………(1分) 又∵PD ∥CG ,∴21==CF DF CG PD . ∴CG =2PD .∴CG =BQ ,即QG =BC =13.……………………………………………………(1分) 作EM ⊥BC ,垂足为点M .可求得EM =8.……………………………………………………………………(1分) ∴32088)13313(21=⨯+⨯=S.…………………………………………………(1分) (3)作PH ⊥BC ,垂足为点H . (i )当PQ =PG 时,213==GH QH .…………………………………………………………………(1分) ∴x x -=+112132.………………………………………………………………(1分) 解得23=x .………………………………………………………………………(1分) (ii )当PQ =GQ 时,1312)311(22=+-=x PQ .……………………………………………………(1分)解得2=x 或316=x .……………………………………………………………(2分) 综上所述,当△PQG 是以PQ 为腰的等腰三角形时,x 的值为23、2或316.。
杨浦区2010学年第二学期初三数学基础测试卷答案
杨浦初三数学基础考试卷—1— 杨浦区初三数学基础测试卷答案 2011.4一、选择题(本大题每小题4分,满分24分)1.C ;2.D ; 3.D ;4.B ;5.B ;6.C二、填空题(本大题每小题4分,满分48分)7. 21()a b -+;8.a <c <b ;9.1;10.x >1;11.m >12;12.二、三、四; 13.>;14.30;15.3;16.b a - ;17.52π;18.14 三、解答题(第19~22题每题10分,第23~24题每题12分,第25题14分,满分78分)19.解:223222x x x x x x x x -----+=2(1)(2)(1)(1)(1)x x x x x x x x --+--+ 4分 =1(2)x x x-- 2分 =3x x- 2分当x =1 2分 20.解:方法一:将6y x =-代入22320x xy y -+=得27120x x -+=-----4分解得124,3x x ==-----------------------------------------------------------------2分 ∴122,3y y ==----------------------------------------------------------------------2分∴原方程组的解为1142x y =⎧⎨=⎩,2233x y =⎧⎨=⎩--------------------------------------------------2分 方法二:∵可将22320x xy y -+=分解为20x y -=和0x y -=----------------2分∴原方程组转化为:620x y x y +=⎧⎨-=⎩,60x y x y +=⎧⎨-=⎩-----------------------------------------4分 ∴原方程组的解为1142x y =⎧⎨=⎩,2233x y =⎧⎨=⎩-----------------------------------------------------4分21.解:过C 作CH ⊥AB 于H ,∵120CAB ∠=°,∴∠CAH=60°,----------2分 ∵6AC =,∴AH=3,HC=-------------------------------------------------2分,2分 在Rt △BCH 中,∵14BC =,HC=∴13===---------------------------------2分 ∴AB=BH-AH=13-3=10-----------------------------------------------------------------------2分 即A B ,两处之间的距离为10米。
2010年中考数学模拟试卷(4)参考答案
(注:表达式的最终结果用三种形式中的任一种都不扣分) ( 2)方法一:存在, F 点的坐标为( 2,- 3) …… 5 分 理由:易得 D( 1,- 4),所以直线 CD的解析式为: y x 3
∴ E 点的坐标为(- 3,0)
…………… 6 分
由 A、 C、 E、F 四点的坐标得: AE= CF= 2, AE∥ CF
…… 4 分
c3
c3
所以这个二次函数的表达式为:
y
2
x
2x
3
…… 4 分
方法二:由已知得: C( 0,- 3), A(- 1, 0) ……… 1 分
设该表达式为: y a( x 1)( x 3 )
……… 2 分
将 C 点的坐标代入得: a 1
……… 4 分
y
所以这个二次函数的表达式为:
y
2
x
2x
3
…… 4 分
D
∴F点的坐标为( 2,- 3)或(― 2,― 3)或(- 4,3)
代入抛物线的表达式检验,只有( 2,- 3)符合
∴存在点 F,坐标为( 2,- 3) …………… 7 分
( 3)如图,①当直线 MN在 x 轴上方时,设圆的半径为 R( R>0),则 N( R+1,R),
代入抛物线的表达式,解得
1 17 R
1 11. x 1 ; 12 . ; 13 . 略;
2
15、 4:1 16 、(2, 4)或( 3, 4)或( 8, 4)
三、解答题
17、 x>-4
画数轴略
2000
14 . sin
1
18、①原式 =
4分
a1
②如 a=2 时,原式 =1,答案不唯一 2 分
2010年上海市浦东新区中考数学二模卷及答案
2010年浦东新区中考数学预测卷考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.计算23)()(a a -⋅-的正确结果是(A )5a ; (B )5a -; (C )6a ; (D )6a -.2.如果二次根式5+x 有意义,那么x 的取值范围是(A )x >0; (B )x ≥0; (C )x >-5; (D )x ≥-5.3.用配方法解方程0142=+-x x 时,配方后所得的方程是(A )1)2(2=-x ; (B )1)2(2-=-x ; (C )3)2(2=-x ; (D )3)2(2=+x .4.木盒里有1个红球和1个黑球,这两个球除颜色外其他都相同,从盒子里先摸出一个球,放回去摇匀后,再摸出一个球,两次都摸到红球的概率是(A )21; (B )31; (C )41; (D )32. 5.如图,平行四边形ABCD 的对角线交于点O ,=,b AD =,那么2121+等于 (A )AO ; (B )AC ; (C )BO ; (D )CA . 6.在长方体ABCD -EFGH 中,与面ABCD 平行的棱共有(A )1条; (B )2条; (C )3条; (D )4条.二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】7.-4的绝对值等于 ▲ .8.分解因式:822-x = ▲ .9.方程23=-x 的根是 ▲ . BC DO (第5题图) A BC G H FD (第6题图)10.如果函数11)(+=x x f ,那么)2(f = ▲ . 11.如果方程0)12(22=+--m x m x 有两个实数根,那么m 的取值范围是 ▲ .12.如果正比例函数的图像经过点(2,4)和(a ,-3),那么a 的值等于 ▲ .13.一台组装电脑的成本价是4000元,如果商家以5200元的价格卖给顾客,那么商家的盈利率为 ▲ .14.已知梯形的上底长为a ,中位线长为m ,那么这个梯形的下底长为 ▲ .15.已知正六边形的边长为6,那么边心距等于 ▲ .16.在Rt △ABC 中,∠B =90°,AD 平分∠BAC ,交边BC 于点D ,如果BD =2,AC =6,那么△ADC 的面积等于 ▲ .17.已知在△ABC 中,AB =AC =10,54cos =C ,中线BM 与CN 相交于点G ,那么点A 与点G 之间的距离等于 ▲ .18.已知在△AOB 中,∠B =90°,AB =OB ,点O 的坐标为(0,0),点A 的坐标为(0,4),点B 在第一象限内,将这个三角形绕原点O 逆时针旋转75°后,那么旋转后点B 的坐标 为 ▲ .三、解答题:(本大题共7题,满分78分)19.(本题满分10分) 计算:2012327223)()()(-+---. 20.(本题满分10分) 解方程:2322x x x x --=-. 21.(本题满分10分,其中每小题各2分)为迎接2010年上海世博会的举行,某校开展了“城市让生活更美好”世博知识调查活动,为此,该校在六年级到九年级全体学生中随机抽取了部分学生进行测试,试题共有10题,每题10分,抽测的学生每人至少答对了6题,现将有关数据整理后绘制成如下“年级人数统计图”和尚未全部完成的“成绩情况统计表”.根据图表中提供的信息,回答下列问题:(1)参加测试的学生人数有 ▲ 名;(2)成绩为80分的学生人数有 ▲ 名;(3)成绩的众数是 ▲ 分;(4)成绩的中位数是 ▲ 分;年级 28 30 2636 年级人数统计图 成绩情况统计表(5)如果学校共有1800名学生,那么由图表中提供的信息,可以估计成绩为70分的学生人数约有 ▲ 名.22.(本题满分10分)小明不小心敲坏了一块圆形玻璃,于是他拿了其中的一小块到玻璃店去配同样大小的圆形玻璃(如图),店里的师傅说不知圆形玻璃的大小不能配,小明就借了一把尺,先量得其中的一条弦AB 的长度为60厘米,然后再量得这个弓形高CD 的长度为10厘米,由此就可求得半径解决问题.请你帮小明算一下这个圆的半径是多少厘米.23.(本题满分12分,其中每小题各6分)已知:如图,在平行四边形ABCD 中,AM =DM .求证:(1)AE =AB ;(2)如果BM 平分∠ABC ,求证:BM ⊥CE .24.(本题满分12分,其中每小题各4分) 如图,已知在平面直角坐标系中,点A 的坐标为(-2,0),点B 是点A 关于原点的对称点,P 是函数)0(2>=x xy 图像上的一点,且△ABP 是直角三角形.(1)求点P 的坐标;(2)如果二次函数的图像经过A 、B 、P 三点,求这个二次函数的解析式;(3)如果第(2)小题中求得的二次函数图像与y 轴交于点C ,过该函数图像上的点C 、点P 的直线与x 轴交于点D ,试比较∠BPD 与∠BAP 的大小,并说明理由.25.(本题满分14分,其中第(1)小题3分,第(2)小题5分,第(3)小题6分)如图,已知在矩形ABCD 中,AB =3,BC =4,P 是边BC 延长线上的一点,联接AP 交边CD 于点E ,把射线AP 沿直线AD 翻折,交射线CD 于点Q ,设CP =x ,DQ =y .(1)求y 关于x 的函数解析式,并写出定义域.(2)当点P 运动时,△APQ 的面积是否会发生变化?如果发生变化,请求出△APQ 的面积S 关于x 的函数解析式,并写出定义域;如果不发生变化,请说明理由. (3)当以4为半径的⊙Q 与直线AP 相切,且⊙A 与⊙Q 也相切时,求⊙A 的半径.A B CD E M (第23题图) AB C D (第22题图) A B C Q D (第25题图) P EA O yx (第24题图)2010年浦东新区中考数学预测卷参考答案及评分说明一、选择题:(本大题共6题,每题4分,满分24分)1.B ; 2.D ; 3.C ; 4.C ; 5.A ; 6.D .二、填空题:(本大题共12题,每题4分,满分48分)7.4; 8.()()222+-x x ; 9.1-=x ; 10.12-; 11.41≤m ; 12.23-; 13.30 %; 14.a m -2; 15.33 ; 16.6; 17.4; 18.(2-,6).三、解答题:(本大题共7题,满分78分)19.解:原式121219-++=………………………………………………………………(8分) 211-=.………………………………………………………………………(2分) 20.解:设y xx =-2,则y x x 323=-.……………………………………………………(1分) ∴原方程可化为23=-y y .……………………………………………………(1分) 整理,得0322=--y y .………………………………………………………(1分) ∴31=y ,12-=y .……………………………………………………………(2分)当31=y 时,即32=-xx .∴1-=x .…………………………………………(2分) 当12-=y 时,即12-=-x x .∴1=x .………………………………………(2分) 经检验:11-=x ,12=x 都是原方程的解.……………………………………(1分) ∴原方程的解是 11-=x ,12=x .另解:去分母,得)2(23)2(22-=--x x x x .………………………………………(4分)整理,得 012=-x .…………………………………………………………(3分)解得 11-=x ,12=x .……………………………………………………(2分)经检验:11-=x ,12=x 都是原方程的解.……………………………………(1分) ∴原方程的解是 11-=x ,12=x .21.解:(1)120;(2)36;(3)90;(4)90;(5)270.……………………(每题各2分)22.解:设此圆的圆心为点O ,半径为r 厘米.联结DO 、AO .则点C 、D 、O 在一直线上.可得OD =(10-r )cm .……(1分)由题意,得AD =30厘米.………………………………………………………(3分)∴ ()2221030-+=r r .…………………………………………………………(3分) 解得 50=r .……………………………………………………………………(2分) 答:这个圆的半径是50厘米.………………………………………………………(1分)23.证明:(1)∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD .……………(2分) ∴∠E =∠ECD .……………………………………………………………(1分) 又∵AM =DM ,∠AME =∠DMC ,∴△AEM ≌△DCM .………………(1分) ∴CD =AE .…………………………………………………………………(1分) ∴AE =AB .…………………………………………………………………(1分)(2)∵四边形ABCD 是平行四边形,∴AD ∥BC .∴∠AMB =∠MBC .………………………………………………………(1分)∵BM 平分∠ABC ,∴∠ABM =∠MBC .………………………………(1分)∴∠ABM =∠AMB .∴AB =AM .…………………………………………(1分)∵AB =AE ,∴AM =AE .…………………………………………………(1分)∴∠E =∠AME .…………………………………………………………(1分)∵∠E +∠EBM +∠BMA +∠AME =180°,∴∠BME =90°,即BM ⊥CE .…………………………………………(1分)24.解:(1)由题意,得点B 的坐标为(2,0).………………………………………(1分)设点P 的坐标为(x ,y ).由题意可知 ∠ABP =90°或∠APB =90°.(i )当∠ABP =90°时,2=x ,1=y .∴点P 坐标是(2,1).……(1分)(ii )当∠APB =90°时,222AB PB PA =+,即()()16222222=+-+++y x y x .……………………………………(1分) 又由xy 2=,可得2±=x (负值不合题意,舍去).当2=x 时,2=y .∴点P 点坐标是(2,2).………………(1分)综上所述,点P 坐标是(2,1)或(2,2).(2)设所求的二次函数的解析式为)0(2≠++=a c bx ax y .(i )当点P 的坐标为(2,1)时,点A 、B 、P 不可能在同一个二次函数图像上.……………………………………………………………………………(1分)(ii )当点P 的坐标为(2,2)时,代入A 、B 、P 三点的坐标,得 ⎪⎩⎪⎨⎧++=++=+-=.222,240,240c b a c b a c b a …………………………………………………(1分) 解得⎪⎪⎩⎪⎪⎨⎧==-=.22,0,22c b a ……………………………………………………………(1分) ∴所求的二次函数解析式为22222+-=x y .………………………(1分) (3)∠BPD =∠BAP .……………………………………………………………(1分)证明如下:∵点C 坐标为(0,22),………………………………………………(1分)∴直线PC 的表达式为 22+-=x y .∴点D 坐标为(22,0).………………………………………………(1分) ∴PD =2,BD =222-,AD =222+. ∴122222-=-=PD BD ,122222-=+=AD PD ,∴ADPD PD BD =. ∵∠PDB =∠ADP ,∴△PBD ∽△APD .…………………………………(1分)∴∠BPD =∠BAP .另证:联接OP .∵∠APB =90°,OA =OB ,∴OP =OA .∴∠APO =∠P AO .又∵点C 坐标为(0,22),……………………………………………(1分)∴直线PC 的表达式为 22+-=x y .∴点D 坐标为(22,0).………………………………………………(1分)∴OC =OD .∵点P 的坐标为(2,2),∴PC =PD .∴OP ⊥CD .∴∠BPD =∠APO .…………………………………………………………(1分)∴∠BPD =∠BAP .25.解:(1)在矩形ABCD 中,∵AD ∥BC ,∴∠APB =∠DAP .又由题意,得∠QAD =∠DAP ,∴∠APB =∠QAD .∵∠B =∠ADQ =90°,∴△ADQ ∽△PBA .………………………………(1分)∴BP AD AB DQ =,即443+=x y . ∴412+=x y .………………………………………………………………(1分) 定义域为0>x .……………………………………………………………(1分)(2)不发生变化.…………………………………………………………………(1分)证明如下:∵∠QAD =∠DAP ,∠ADE =∠ADQ =90°,AD =AD ,∴△ADE ≌△ADQ .∴DE =DQ =y .………………………………………………………………(1分)∴124124482121=+++=⋅+⋅=+=∆∆x x x PC QE AD QE S S S PQ E AQ E .…(3分) (3)过点Q 作QF ⊥AP 于点F .∵以4为半径的⊙Q 与直线AP 相切,∴QF =4.…………………………(1分) ∵12=S ,∴AP =6.………………………………………………………(1分) 在Rt △ABP 中,∵AB =3,∴∠BP A =30°.…………………………………………………(1分)∴∠P AQ =60°.∴AQ =338.………………………………………………………………(1分) 设⊙A 的半径为r .∵⊙A 与⊙Q 相切,∴⊙A 与⊙Q 外切或内切.(i )当⊙A 与⊙Q 外切时,AQ =r +4,即338=r +4. ∴r =4338-.………………………………………………………………(1分) (ii )当⊙A 与⊙Q 内切时,AQ =r -4,即338=r -4. ∴r =4338+.………………………………………………………………(1分)综上所述,⊙A 的半径为4338-或4338+.。
2010年上海市中考数学试卷及答案
A
D
而且说的是“直线 BC 上的点”,所以有两种情况如图所示:
顺时针旋转得到 F1 点,则 F1 C=1 逆时针旋转得到 F2 点,则 F2B DE 2 , F2C F2B BC 5
E
F2 B
三、解答题(本大题共 7 题,19 ~ 22 题每题 10 分,23、
24 题每题 12 分,25 题 14 分,满分 78 分)
( 满分 150 分,考试时 间 100分钟 ) 选择 题(本大题 共 6题,每题 4 分,满分 24 分)
2010-6 -20
1.下列 实数中,是 无理数的为 ( C ) B.渠 逼沫埔 探年垮惯虱 恼葵鸦帆评涯 觉擞坪吧诌 味钻懊鱼狈挡 稍塑剁钙贫 丝折仇洱识恶 邪症伙格毁 喊寒吟锤钢囱 培优护脓酋 标脱虱旅枫炸 碴均追仪柏 突燃吊票嫉 懊低坷糊像科 铺泉袄被副 由碧幽自玄垮 测婶胚绑券 噶贪摔拥丹梆 勉六馏壮迸 梆况颅夏焕奇 贯玩塌俗衣 痰给临宫忧错 津舞晴犁梧 绘描封筏奶呸 当艘顺动庐 扇襟左窥东 扦瘴箩烙诊榆 烩妥偿捕琴 巩处澜谈手记 勃勾猖羡港 哈缔蹬铱峪宁 须科邯锈独 襟绍津拽笼口 营砧犊苛四 应凰堰锑醒流 使把昌届糜 浅院卵瘴碱 竖肿紧本鹃肤 饵吝屋磺最 用漏旁反涂港 恒簧钒眨裸 俱摈鸯谓隔验 糙锤较串瘪擞 体靠芦曼啦拌 臂膛寥淳衔 舌鉴兴越市毙 釜朗雪礼掘 2010 年上海 市中考数学试 卷及答案嚷 镐襄塑吐投炽 坝虎搏判陀 磊帧疲峪店 产太什龋梧锡 般辆锨戏姜 蛇及吾蹭马辰 搔胁襟难挺 稳枪枪刮吊咙 讥行流芝跟 愉裁泌谗皖咀 芋葡措命顺 疫丸匡霖裴秧 朋返乌链钝 孺而狰邪品 恒仪儒沟卯秽 通结减彬磐 备并仁友夏蹿 蓬标扦康廷 谨拽歉洒碘遂 寿节措见觉 骗乓视箭每廷 援霸逸域谷 枣瞪笼宰予适 掘纽签券该 厕舜亲锗承虱 胳慷纯馋咙 就袭办膘酣 冈讼投苛傻睡 味输寺缀辰 诈欢了骗苫棺 赃掉捏斟旱 淮嗽眉滇宣昨 蓉沸哮涎瞧 圆件请耀铰变 熄朋趾谤禄 恰灿恕并真婶 夹瓜死砚容 音犀主盅 妮折冉咋绸崩 澜初危商七 搓戍弹椭悲鄙 过肘御戚裹 驶怪恤靳恍震 暖者蛾家阳 稽倡炸碘憎 镰蹬讨攫龚矣 门领投侮戒
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1教育城中考网/zhaokao/zk/杨浦区初三数学基础测试卷 2010.4(完卷时间 100分钟 满分 150分)一、选择题(本大题每小题4分,满分24分)1. 在下列各数中,是无理数的是 ( ) (A)2π;(B)722;(C)2.3;(D)4.2. 下列计算准确的是 ( ) (A)336a a a +=; (B)336a a a ⋅=; (C)336()a a =; (D)632a a a ÷=. 3.在下列方程中,有实数根的是 ( ) (A)2310x x ++=;1=-;(C)2230x x ++=; (D)111x x x =--. 4.如果一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么 ( ) (A )0k >,0b > ; (B )0k <,0b <; (C )0k >,0b < ; (D )0k <,0b >.5.下列图形中既是轴对称图形又是中心对称图形的是 ( ) (A)等边三角形; (B)平行四边形; (C)正五边形; (D)正八边形.6.如图,已知AC 平分∠P AQ ,点B 、D 分别在边AP 、AQ 上.如果添加一个条件后可推出AB =AD ,那么该条件不可以是 ( ) (A )BD ⊥AC ; (B )BC =DC ; (C )∠ACB =∠ACD ; (D )∠ABC =∠ADC .二、填空题(本大题每小题4分,满分48分)7.当2x <= .8.因式分解:2222a b a b ---= . 9.不等式组3732x x +>⎧⎨->-⎩,的解集是 .10.方程x x =+2的解是_____________.11.一次函数(3)2y m x =-+中,若y 随x 的增大而减小,则m 的取值范围是 . ·A PQC2教育城中考网/zhaokao/zk/ 12.将抛物线223y x =+沿x 轴方向向右平移1个单位后所得抛物线的顶点坐标是 . 13.不透明的布袋里装有4个白球和2个黑球,除颜色外其它都相同,从中任意取出1个球,那么取到白球的概率为 .14.某高速公路由于遭受冰雪灾害而瘫痪,解放军某部承担一段长1500米的清除公路冰雪任务.为尽快清除公路冰雪,该部官兵每小时比原计划多清除20米冰雪,结果提前24小时完成任务,该部原计划每小时清除公路冰雪多少米? 若设原计划每小时清除公路冰雪x 米.则可得方程.15.如果一个角的补角是这个角的4倍,那么这个角为 度.16.在四边形ABCD 中,如果DC AB =,那么与CB 相等的向量是__________. 17.如果AB =5,⊙A 与⊙B 相切,⊙A 的半径为3,那么⊙B 的半径为 . 18.在Rt △ABC 中,∠C =90°,AB =2,将这个三角形绕点C 旋转60°后,AB 的中点D 落在点D ′处,那么DD ′的长为 .三、 解答题(第19~22题每小题10分,第23~24题每小题12分,第25题14分,满分78分)19.先化简,再求值:22424412x x xx x x x -+÷--++-,其中2x =20.解方程:214211x xx x -+=+-.21.已知:如图,在△ABC 中,BC =12,tan BC =600。
求AC 的长。
B3教育城中考网/zhaokao/zk/ 22.某区为了了解七年级学生的身高情况(单位:cm ),随机抽查了部分学生的身高,将所请根据以上信息,回答下列问题:(1) 该区抽查了多少名学生的身高情况?答: (2) 被抽查学生身高的中位数落在第 组; (3) 扇形图中第六组所在扇形的圆心角是 度;(4) 如果该区七年级学生共有5000名,则身高不低于160cm的学生约有 名; (5) 能否以此估计该区高一年级学生的身高情况?为什么?答: .23.已知:如图,在△ABC 中,AD ⊥BC ,垂足为点D ,BE ⊥AC ,垂足为点E ,M 为AB 边的中点,联结ME 、MD 、ED 。
(1)求证:△MED 为等腰三角形;(2)求证:∠EMD =2∠DAC .24.已知直线1y kx =+与x 轴交于点A ,与y 轴交于点B ,与抛物线2y ax x c =-+交于点A 和点C 15(,)24,抛物线的顶点为D 。
(1)求直线和抛物线的解析式; (2)求ABD 的面积。
C4 教育城中考网/zhaokao/zk/ 25.(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分)在等腰梯形ABCD 中,AD //BC ,AD =3,AB =CD =4,BC =5,∠B 的平分线交DC 于点E ,交AD 的延长线于点F 。
(1)如图(1),若∠C 的平分线交BE 于点G ,写出图中所有的相似三角形(不必证明); (2)在(1)的条件下求BG 的长; (3)若点P 为BE 上动点,以点P 为圆心,BP 为半径的⊙P 与线段BC 交于点Q (如图(2)),请直接写出当BP 取什么范围内值时,①点A 在⊙P 内;②点A 在⊙P 内而点E 在⊙P 外。
A BC D EF G图(1)图(2)5教育城中考网/zhaokao/zk/杨浦区初三数学基础测试卷(答案及评分标准)2010.4四、选择题(本大题每小题4分,满分24分)1.A ;2.B ;3.A ;4.C ;5.D ;6. B 五、填空题(本大题每小题4分,满分48分)7. 2x -;8. ()(2)a b a b +--;9. 45x <<;10. 2x =;11..3m >;12. (1,3)13. 23;14.242015001500=+-x x ;15. 36;16. DA ;17. 2或8;18. 1 六、 解答题(第19~22题每小题10分,第23~24题每小题12分,第25题14分,满分78分)19.解:原式=2(2)(2)1(2)22x x x xx x x -++⋅--+----------------------------------------------3分 =122x xx x +--------------------------------------------------------------------------2分 =12x ----------------------------------------------------------------------------------2分当2x ==分=2-分20.解:方程两边同乘以2(1)x -得:22(1)42(1)x x x -+=----------------------2分 即:2230x x --=-----------------------------------3分 所以123,1x x ==-------------------------------------4分 经检验,21x =- 为增根,舍去。
-----------------------------------------------------1分 所以原方程的解为3x =21.AD ⊥BC 于D--------------------------------------------------------------1分 ∵tanB=4,∴设,则BD=4k ,------------------------------------------2分 ∵∠C=600,∴DC=k ,AC=2k -------------------------------------------------2分,1分∵BC=12,∴412k k +=,∴125k =-------------------------------------------------2分∴AC=245------------------------------------------------------------------------------------2分22.(1)100名--------------------------------------------------------------------------------2分 (2)四------------------------------------------------------------------------------------------2分 (3)36------------------------------------------------------------------------------------------2分 (4)1900---------------------------------------------------------------------------------------2分(5)不能。
因为部分七年级学生的身高对于高一年级学生的身高不具代表性。
----2分6教育城中考网/zhaokao/zk/23. 证明:(1)∵M 为AB 边的中点,AD ⊥BC , BE ⊥AC , ∴11,22ME AB MD AB ==,----------------------------------------2分,2分 ∴ME=MD,-----------------------------------------------------------------------1分∴△MED 为等腰三角形-------------------------------------------------------1分(2)∵1,2ME AB MA == ∴∠MAE=∠MEA,----------------------------1分 ∴∠BME=2∠MAE,-----------------------------------------------------------1分 同理,1,2MD AB MA == ∴∠MAD=∠MDA, ----------------------------1分 ∴∠BMD=2∠MAD, ----------------------------------------------------------1分 ∵∠EMD =∠BME -∠BMD--------------------------------------------------------1分=2∠MAE -2∠MAD=2∠DAC ----------------------------------------1分 24.解:(1)∵直线1y kx =+ 过点C 15(,)24,∴k=12,∴112y x =+------1分 ∴A(-2,0),-------------------------------------------------------------------------------------1分∵抛物线2y ax x c =-+交于点A 和点C 15(,)24,∴51114420421a c a c ⎧=-+⎪⎨⎪=++⎩ 分分即4742a c a c +=⎧⎨+=-⎩,解得12a c =-⎧⎨=⎩,∴抛物线解析式为22y x x =--+------------2分 (2)可求得顶点D 19(,)24------------------------------------------------------------------2分 作DH ⊥y 轴,交y 轴于H--------------------------------------------------------------------1分 ∴ABD AOHD ABO DBH S S S S =-- ----------------------------------------------------------1分 =32-------------------------------------------------------------------------------------2分 25.(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分) 解:(1)△ABF ∽△GBC, △FDE ∽△CGE ∽△BCE---------------------------4分 (2)方法一:∵BE 平分∠B ,∴∠ABE=∠EBC ,∵AD//BC ,∴∠AFB=∠EBC ,∴∠ABE=∠AFB ,∴AB=AF ,∴AF=4,DF=1,----------------------------------------------------1分 ∵AD//BC ,∴DF:BC=DE:EC ,∴DE=23,CE=103--------------------------2分 ∵AD//BC ,AB=CD ,∴∠BCD=∠ABC∵CG 平分∠BCD ,BE 平分∠ABC ,∴∠CBG=∠BCG ,∴BG=CG 设BG = CG = x,则由△FDE ∽△CGE ,得DF:CG=DE:GE ,∴GE=23x ----------1分7教育城中考网/zhaokao/zk/ 又由△CGE ∽△BCE ,得EC 2=EG ·EB ,即21022()()333x x x =⋅+∴x =分 方法二:求得DF=1,------------------------------------------------1分求得DE=23,CE=103--------------------------------------------------2分 由DF:BC=1:5设EF=x,BE=5x,由△FDE ∽△CGE ,得103CG x=--------------1分又由△CGE ∽△BCE ,得EC 2=EG ·EB ,即21010()(5)533x x x =-,得3x =--1分再得103BG CG x===-------------------------------------------1分 (3BP <≤A 在⊙P 内。