人教版八年级数学下册各单元及期中期末测试题及答案【精品全套共7套】

合集下载

2024年人教版八年级数学下册期中考试卷(附答案)

2024年人教版八年级数学下册期中考试卷(附答案)

2024年人教版八年级数学下册期中考试卷(附答案)一、选择题:5道(每题1分,共5分)1. 下列哪个选项是勾股定理的正确表达?A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + c^2 = b^2D. a^2 c^2 = b^22. 在直角三角形中,如果一个角是30度,那么它的对边长度是斜边长度的多少?A. 1/2B. 1/3C. 1/4D. 1/63. 下列哪个选项是平行四边形的性质?A. 对边相等B. 对角相等C. 对角线互相平分D. 所有选项都正确4. 下列哪个选项是正方形的性质?A. 对边平行B. 四个角都是直角C. 对角线相等D. 所有选项都正确5. 下列哪个选项是圆的性质?A. 半径相等B. 直径相等C. 圆心到圆上任意一点的距离相等D. 所有选项都正确二、判断题5道(每题1分,共5分)1. 勾股定理只适用于直角三角形。

()2. 平行四边形的对角线互相平分。

()3. 正方形的对角线相等且互相垂直。

()4. 圆的半径是圆心到圆上任意一点的距离。

()5. 圆的直径是圆上任意两点之间的距离。

()三、填空题5道(每题1分,共5分)1. 勾股定理的表达式是:a^2 + b^2 = ______。

2. 平行四边形的对角线互相平分,所以它的对角线长度是______。

3. 正方形的四个角都是______度。

4. 圆的半径是圆心到圆上______的距离。

5. 圆的直径是圆上______点之间的距离。

四、简答题5道(每题2分,共10分)1. 简述勾股定理的内容。

2. 简述平行四边形的性质。

3. 简述正方形的性质。

4. 简述圆的性质。

5. 简述圆的直径和半径之间的关系。

五、应用题:5道(每题2分,共10分)1. 在直角三角形ABC中,已知AC = 6cm,BC = 8cm,求AB的长度。

2. 在平行四边形ABCD中,已知AB = 10cm,BC = 8cm,求CD的长度。

人教版数学八年级下册《期中考试题》及答案解析

人教版数学八年级下册《期中考试题》及答案解析

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(每题3分,共30分)1. 函数24y x =-中自变量x 的取值范围是( ) A. x >2 B. x ≥2 C. x ≤2 D. x ≠22. 下列各式属于最简二次根式的是( )A. 8B. 21x +C. 2yD. 123. 下列计算,正确的是( ) A. 325+= B. 3223-= C. 5315⨯= D. 632÷=4. ,,k m n 为三个整数,若13515k =,45015m =,1806n =,则下列有关于,,k m n 的大小关系,正确的是( ).A. k m n <=B. m n k =<C. m n k <<D. m k n << 5. 如图,在四边形ABCD 中,对角线AC 与BD 相交于点O ,不能判断四边形ABCD 是平行四边形的是( )A. AB =DC ,AD =BCB. AB ∥DC ,AD ∥BCC. AB ∥DC ,AD =BCD. OA =OC ,OB =OD6. 如图,在平行四边形ABCD 中,AD =5,AB =3,AE 平分∠BAD 交BC 边于点E ,则线段BE ,EC 的长度分别为( )A. 3和2B. 2和3C. 4和1D. 1和47. 顺次连接对角线相等的四边形的各边中点,所形成的四边形是A. 平行四边形B. 菱形C. 矩形D. 正方形8. 菱形的两条对角线的分别为60cm 和80cm ,那么边长是( )A. 100cmB. 80cmC. 60cmD. 50cm9. 等腰三角形的腰长为10,底长为12,则其底边上的高为( )A. 13B. 8C. 25D. 6410. 如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用,表示直角三角形的两直角边(x y >),下列四个说法:①2249x y +=,②2x y -=,③2449xy +=,④9x y +=.其中说法正确的是( )A. ①②B. ①②③C. ①②④D. ①②③④二、填空题(每题3分,共15分)11. 计算:13=_____.12. 如图,DE 为△ABC 中位线,点F 在DE 上,且∠AFB=90°,若AB =6,BC =8,则EF 的长为______.13. 已知实数a 在数轴上位置如图所示,则化简|a -1|-2a 的结果是____________.14. 观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…,请你写出具有以上规律第⑥组勾股数:__________.15. 如图,在平行四边ABCD 中,AD=2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF 、CF ,则下列结论中一定成立的是_______(把所有正确结论的序号都填在横线上)(1)∠DCF=∠BCD ,(2)EF=CF ;(3)S ΔBEC =2S ΔCEF ;(4)∠DFE=3∠AEF三、解答题(共75分)16. 计算:(1)(246-)÷3 (2)(2+1)2﹣8+(﹣2)217. (1)当54x =时,求1x +的值;(2)①x 为何值时二次根式12x -的值是10?②当x = 时二次根式12x -有最小值.18. 在平面直角坐标系中(1)在图中描出A (﹣2,﹣2),B (﹣8,6),C (2,1)(2)连接AB 、BC 、AC ,试判断△ABC 的形状.19. 如图,在ABCD 中,对角线AC ,BD 相交于点O ,E ,F 分别为BO ,DO 的中点,求证:AF ∥CE .20. 如图,P 是正方形ABCD 对角线BD 上一点,PE DC ⊥,PF BC ⊥,E 、F 分别为垂足,若3CF =,4CE =,求AP的长.21. 如图,将两张长为8,宽为4的矩形纸条交叉叠放,使一组对角的顶点重合,其重叠部分是四边形AGCH.(1)证明:四边形AGCH是菱形:(2)求菱形AGCH的周长.22. 如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB 的外角平分线于点F,(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.23. 如图1,P是线段AB上一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,连接CD,点E、F、G、H分别是AC、AB、BD、CD的中点,顺次连接E、F、G、H.(1)猜想四边形EFGH的形状,直接回答,不必说明理由;(2)当点P在线段AB的上方时,如图2,在△APB的外部作△APC和△BPD,其他条件不变,(1)中的结论还成立吗?说明理由;(3)如果(2)中,∠APC=∠BPD=90°,其他条件不变,先补全图3,再判断四边形EFGH形状,并说明理由.答案与解析一、选择题(每题3分,共30分)1. 函数y=x的取值范围是()A. x>2B. x≥2C. x≤2D. x≠2[答案]B[解析][分析][详解]根据题意得:2x−4⩾0,解得:x⩾2.故选B.2. 下列各式属于最简二次根式的是( )A. B. C. D.[答案]B[解析][分析]最简二次根式满足:(1)被开方数不含分母;(2)被开方数中不含能开得尽方因数或因式,由此结合选项可得出答案.[详解]解:A,不是最简二次根式,故本选项错误;B,故本选项正确;C含有能开方的因式,不是最简二次根式,故本选项错误;D,故本选项错误;故选:B.[点睛]此题主要考查最简二次根式的识别,解题的关键是熟知最简二次根式的定义.3. 下列计算,正确的是( )= B. 3= =2= [答案]C[解析][分析]直接根据二次根式的运算法则进行计算即可.[详解]A不是同类二次根式,不能合并,故此选项错误;B .(3=-=故此选项错误;C =正确;D =故此选项错误.故选:C .[点睛]此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.4. ,,k m n 为三个整数,===,则下列有关于,,k m n 的大小关系,正确的是( ).A. k m n <=B. m n k =<C. m n k <<D. m k n << [答案]D[解析][分析]根据二次根式的化简方法,逐个化简可求出k,m,n ,再进行比较.[详解]因为===所以,k=3,m=2,n=5所以,m <k <n故选D[点睛]本题考核知识点:二次根式的化简. 解题关键点:掌握二次根式的化简方法.5. 如图,在四边形ABCD 中,对角线AC 与BD 相交于点O ,不能判断四边形ABCD 是平行四边形的是( )A AB=DC,AD=BC B. AB∥DC,AD∥BCC. AB∥DC,AD=BCD. OA=OC,OB=OD[答案]C[解析][分析]根据平行四边形的判定定理进行判断即可.[详解]解:A.根据“两组对边分别相等的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;B.根据“两组对边分别平行的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;C.“一组对边平行,另一组对边相等”是四边形也可能是等腰梯形,故本选项符合题意;D.根据“对角线互相平分的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意.故选:C.[点睛]本题考查平行四边形的判定,关键是掌握判定定理:(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.6. 如图,在平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则线段BE,EC的长度分别为( )A. 3和2B. 2和3C. 4和1D. 1和4[答案]A[解析][分析]利用平行四边形的性质、角平分线的性质和等腰三角形的性质可得AD=BC,BE= AB,然后根据EC=BC-BE 即可.[详解]解:∵AE平分∠BAD∴∠BAE=∠DAE∵四边形ABCD是平行四边形∴AD//BC,AD=BC∴∠DAE=∠AEB∴∠BAE=∠BEA∴AB=BE=3∴EC=AD-BE=2故答案为A.[点睛]本题主要考查了平行四边形性质及等腰三角形的性质,根据题意说明△ABE是解答本题的关键.7. 顺次连接对角线相等的四边形的各边中点,所形成的四边形是A. 平行四边形B. 菱形C. 矩形D. 正方形[答案]B[解析][分析]菱形,理由为:利用三角形中位线定理得到EF与HG平行且相等,得到四边形EFGH为平行四边形,再由EH =EF,利用邻边相等的平行四边形是菱形即可得证.[详解]解:菱形,理由为:如图所示,∵E,F分别为AB,BC的中点,∴EF为△ABC的中位线,∴EF∥AC,EF=12 AC,同理HG∥AC,HG=12 AC,∴EF∥HG,且EF=HG,∴四边形EFGH为平行四边形,∵EH=12BD,AC=BD,∴EF=EH,则四边形EFGH为菱形,故选B.[点睛]此题考查了中点四边形,平行四边形的判定,菱形的判定,熟练掌握三角形中位线定理是解本题的关键.8. 菱形的两条对角线的分别为60cm和80cm,那么边长是( )A. 100cmB. 80cmC. 60cmD. 50cm[答案]D[解析][分析]根据菱形对角线的性质可求解.[详解]∵菱形的两条对角线的分别为60cm和80cm,2230+40=50.故答案选D.[点睛]本题主要考查了菱形的性质应用,准确理解对角线平分且垂直.9. 等腰三角形的腰长为10,底长为12,则其底边上的高为()A. 13B. 8C. 25D. 64[答案]B[解析]试题解析:作底边上的高并设此高的长度为x,根据勾股定理得:62+x2=102,解得:x=8.故选B .10. 如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用,表示直角三角形的两直角边(x y >),下列四个说法:①2249x y +=,②2x y -=,③2449xy +=,④9x y +=.其中说法正确的是( )A. ①②B. ①②③C. ①②④D. ①②③④ [答案]B[解析][分析][详解]可设大正方形边长为a,小正方形边长为b ,所以据题意可得a 2=49,b 2=4;根据直角三角形勾股定理得a 2=x 2+y 2,所以x 2+y 2=49,式①正确;因为是四个全等三角形,所以有x=y+2,所以x-y=2,式②正确;根据三角形面积公式可得S △=xy/2,而大正方形的面积也等于四个三角形面积加上小正方形的面积,所以44492xy ⨯+=,化简得2xy+4=49,式③正确; 而据式④和式②得2x=11,x=5.5,y=3.5,将x,y 代入式①或③都不正确,因而式④不正确.综上所述,这一题的正确答案为B .二、填空题(每题3分,共15分)11. 3=_____. [答案3 [解析][分析]先分母有理化,即可解答.[详解]解:原式=13=33故答案为:3 3[点睛]此题考查二次根式的性质化简,解题关键在于掌握运算法则.12. 如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=6,BC=8,则EF的长为______.[答案]1[解析][分析]根据直角三角形斜边上的中线等于斜边的一半求出DF的长度,根据三角形的中位线平行于第三边并且等于第三边的一半求出DE的长,然后相减即可得到EF的长.[详解]∵DE为△ABC的中位线,∴DE=12BC=12×8=4,∵∠AFB=90°,D是AB 中点,∴DF=12AB=12×6=3,∴EF=DE-DF=1,故答案为1.[点睛]本题考查了三角形的中位线定理,直角三角形斜边上的中线等于斜边的一半的性质,熟记定理与性质是解题的关键.13. 已知实数a在数轴上的位置如图所示,则化简|a-1|- 2a的结果是____________.[答案]1-2a[解析][分析]根据数轴得到a 的取值范围,然后化简二次根式和绝对值,即可得到答案.[详解]解:由数轴可知:01a <<,∴10a -<, ∴21112a a a a a --=--=-;故答案为12a -.[点睛]本题考查了二次根式的性质,以及化简绝对值,解题的关键是根据数轴得到a 的取值范围进行化简. 14. 观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…,请你写出具有以上规律的第⑥组勾股数:__________.[答案]13,84,85[解析][分析]先根据给出的数据找出规律,再根据勾股定理求解即可.[详解]由题意得,每组第一个数是奇数,且逐步递增2,第二、第三个数相差为一故第⑥组的第一个数是13设第二个数为x ,第三个数为x+1根据勾股定理得()22213+1x x =+解得84x =则第⑥组勾股数:13,84,85故答案为:13,84,85.[点睛]本题考查了勾股数的规律题,掌握这些勾股数的规律、勾股定理是解题的关键.15. 如图,在平行四边ABCD 中,AD=2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF 、CF ,则下列结论中一定成立的是_______(把所有正确结论的序号都填在横线上)(1)∠DCF=∠BCD ,(2)EF=CF ;(3)S ΔBEC =2S ΔCEF ;(4)∠DFE=3∠AEF[答案]①②④[解析]试题解析:①∵F是AD的中点, ∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=1∠BCD,故此选项正确;2延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,{A FDM AF DFAFE DFM∠=∠=∠=∠,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FM,故②正确;③∵EF=FM,∴S△EFC=S△CFM,∵MC>BE,∴S△BEC<2S△EFC故S△BEC=2S△CEF错误;④设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°-x,∴∠EFC=180°-2x,∴∠EFD=90°-x+180°-2x=270°-3x,∵∠AEF=90°-x,∴∠DFE=3∠AEF,故此选项正确.考点:1.平行四边形的性质;2.全等三角形的判定与性质;3.直角三角形斜边上的中线.三、解答题(共75分)16. 计算:(1(2+1)2+(﹣2)2[答案](2)7[解析][分析](1)先计算二次根式除法,再合并同类二次根式即可;(2)先分别计算各式,再合并同类二次根式即可.[详解]解:(1)=(2)原式34=+7=.[点睛]本题是对二次根式混合运算的考查,熟练掌握二次根式乘除法及合并同类二次根式是解决本题的关键.17. (1)当54x =时,的值;(2)①x 10?②当x = 时二次根式[答案](1)32,(2)①-88;②12 [解析][分析](1)把54x =代入计算,再根据二次根式的化简法则化简即可得到答案;(2)10=得到12100x -=,即可求出x 的值;②根据二次根式的性质,0≥,取等号时当且仅当12-x=0,计算即可得到答案;详解]解:(1)当54x =时,59311442x +=+==, (2)①由题意得:12﹣x=210 解得x= ﹣88即:x= ﹣88时二次根式12x -的值是10.②∵120x -≥,取等号时当且仅当12-x=0,即x=12;故答案是:12;[点睛]本题主要考查了与二次根式相关的知识点,掌握二次根式的化简法则以及二次根式的性质是解题的关键;18. 在平面直角坐标系中(1)在图中描出A (﹣2,﹣2),B (﹣8,6),C (2,1)(2)连接AB 、BC 、AC ,试判断△ABC 的形状.[答案](1)见解析;(2)△ABC 直角三角形[解析][分析](1)根据题目中给出的点的坐标描出点;(2)连接AB 、BC 、AC ,利用勾股定理结合网格算出AB 、BC 、AC 的长,根据数据可得到AB 2+AC 2=BC 2,由勾股定理逆定理可得△ABC 是直角三角形.[详解]解:(1)如图所示:(2)AB=22+=10,68AC=22+=5,34CB=22+=55,510∵52+102=(55)2,∴AB2+AC2=BC2,∴∠A=90°,∴△ABC是直角三角形.[点睛]此题主要考查了描点,勾股定理,以及勾股定理逆定理,关键是正确画出图形,算出AB、BC、AC的长.19. 如图,在ABCD中,对角线AC,BD相交于点O,E,F分别为BO,DO的中点,求证:AF∥CE.[答案]证明见解析[解析][分析]证出△AFO≌△CEO(SAS),得出∠AFO=∠CEO,再由平行线的判定方法得出结论.[详解]证明:∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,∵E,F分别为BO,DO的中点,∴EO =FO ,∵在△AFO 和△CEO 中 AOF CO AO CO FO EO E =⎧=∠∠⎪⎨⎪⎩= ,∴△AFO ≌△CEO (SAS ),∴∠AFO =∠CEO ,∴AF ∥EC .-[点睛]此题主要考查了平行四边形的判定及其性质、全等三角形的判定与性质等知识,正确应用全等三角形的判定方法是解题关键.20. 如图,P 是正方形ABCD 对角线BD 上一点,PE DC ⊥,PF BC ⊥,E 、F 分别为垂足,若3CF =,4CE =,求AP 的长.[答案]5[解析][分析]连接CP 时,可以证明△APD ≌△CPD ,然后根据全等三角形的性质可以得到AP=CP ,由已知条件可以得出四边形PECF 是矩形,根据矩形对角线相等可得PC=EF ,结合已知条件利用勾股定理可求出EF 的长,求出EF 的长即可得AP 的长.[详解]如图,连接PC,四边形ABCD 是正方形,AD DC ∴=,ADP CDP ∠∠=, PD PD =,APD ∴≌CPD ,AP CP ∴=,四边形ABCD 是正方形,DCB 90∠∴=,PE DC ⊥,PF BC ⊥,四边形PFCE 是矩形,PC EF ∴=,DCB 90∠=,在Rt CEF 中,22222EF CE CF 4325=+=+=, EF 5∴=,AP CP EF 5∴===.[点睛]本题考查了正方形的性质,矩形的判定与性质,勾股定理,全等三角形的判定与性质,根据全等三角形的性质得出AP 与CP 相等是解题的关键. 21. 如图,将两张长为8,宽为4的矩形纸条交叉叠放,使一组对角的顶点重合,其重叠部分是四边形AGCH .(1)证明:四边形AGCH 是菱形:(2)求菱形AGCH 的周长.[答案](1)证明见解析;(2)20[解析][分析](1)根据邻边相等的平行四边形是菱形证明即可.(2)设AH=CH=x,利用勾股定理构建方程即可解决问题.[详解](1)证明:∵四边形ABCD,四边形AECF都是矩形,∴CH∥AG,AH∥CG,∴四边形AHCG是平行四边形,∵∠D=∠F=90°,∠AHD=∠CHF,AD=CF,∴△ADH≌△CFH(AAS),∴AH=HC,∴四边形AHCG是菱形.(2)解:设AH=CH=x,则DH=CD﹣CH=8﹣x,在Rt△ADH中,∵AH2=AD2+DH2,∴x2=42+(8﹣x)2,∴x=5,∴菱形AHCG的周长为5×4=20.[点睛]本题考查矩形的性质,菱形的判定和性质,解直角三角形等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.22. 如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB 的外角平分线于点F,(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.[答案]解:(1)证明:如图,∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠2=∠5,4=∠6.∵MN∥BC,∴∠1=∠5,3=∠6.∴∠1=∠2,∠3=∠4.∴EO=CO,FO=CO.∴OE=OF.(2)∵∠2=∠5,∠4=∠6,∴∠2+∠4=∠5+∠6=90°.∵CE=12,CF=5,∴22EF12513=+.EF=6.5.∴OC=12(3)当点O在边AC上运动到AC中点时,四边形AECF是矩形.理由如下:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形.∵∠ECF=90°,∴平行四边形AECF是矩形.[解析](1)根据平行线的性质以及角平分线的性质得出∠1=∠2,∠3=∠4,进而得出答案.(2)根据已知得出∠2+∠4=∠5+∠6=90°,进而利用勾股定理求出EF的长,即可根据直角三角形斜边上的中线性质得出CO的长.(3)根据平行四边形的判定以及矩形的判定得出即可.23. 如图1,P是线段AB上的一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,连接CD,点E、F、G、H分别是AC、AB、BD、CD的中点,顺次连接E、F、G、H.(1)猜想四边形EFGH的形状,直接回答,不必说明理由;(2)当点P在线段AB的上方时,如图2,在△APB的外部作△APC和△BPD,其他条件不变,(1)中的结论还成立吗?说明理由;(3)如果(2)中,∠APC=∠BPD=90°,其他条件不变,先补全图3,再判断四边形EFGH的形状,并说明理由.[答案](1)四边形EFGH是菱形;(2)成立,理由见解析;(3)补全图形见解析;四边形EFGH是正方形,理由见解析.[解析][分析](1)连接AD、BC,利用SAS可判定△APD≌△CPB,从而得到AD=BC,因为EF、FG、GH、EH分别是△ABC、△ABD、△BCD、△ACD的中位线,则可以得到EF=FG=GH=EH,根据四边都相等的四边形是菱形,可推出四边形EFGH是菱形;(2)成立,可以根据四边都相等的四边形是菱形判定;(3)先将图形补充完整,再通过角之间的关系得到∠EHG=90°,已证四边形EFGH是菱形,则四边形EFGH是正方形.[详解](1)四边形EFGH是菱形.连接AD,BC.∵∠APC=∠BPD,∴∠APC+∠CPD=∠BPD+∠CPD.即∠APD=∠CPB.又∵PA=PC,PD=PB,∴△APD≌△CPB(SAS)∴AD=CB.∵E、F、G、H分别是AC、AB、BD、CD的中点,∴EF、FG、GH、EH分别是△ABC、△ABD、△BCD、△ACD的中位线.∴EF=12BC,FG=12AD,GH=12BC,EH=12AD.∴EF=FG=GH=EH.∴四边形EFGH是菱形.(2)成立.理由:连接AD,BC.∵∠APC=∠BPD,∴∠APC+∠CPD=∠BPD+∠CPD.即∠APD=∠CPB.又∵PA=PC,PD=PB,∴△APD≌△CPB(SAS)∴AD=CB.∵E、F、G、H分别是AC、AB、BD、CD的中点,∴EF、FG、GH、EH分别是△ABC、△ABD、△BCD、△ACD的中位线.∴EF=12BC,FG=12AD,GH=12BC,EH=12AD.∴EF=FG=GH=EH.∴四边形EFGH是菱形.(3)补全图形,如答图.判断四边形EFGH是正方形.理由:连接AD,BC.∵(2)中已证△APD≌△CPB.∴∠PAD=∠PCB.∵∠APC=90°,∴∠PAD+∠1=90°.又∵∠1=∠2.∴∠PCB+∠2=90°.∴∠3=90°.∵(2)中已证GH,EH分别是△BCD,△ACD的中位线,∴GH∥BC,EH∥AD.∴∠EHG=90°.又∵(2)中已证四边形EFGH是菱形,∴菱形EFGH是正方形.[点睛]本题考查了考查了菱形的判定,正方形的判定,全等三角形的判定等知识点的综合运用及推理论证能力.正方形、矩形、菱形、平行四边形之间的关系,反映了几种特殊的平行四边形由特殊到一般的关系,可从概念、性质、判定三方面进行对比理解;各种特殊的四边形之间的联系及区别要掌握好,通常还会和三角形中位线、勾股定理想联系.。

新人教版八年级数学下册期中考试卷及答案【完整版】

新人教版八年级数学下册期中考试卷及答案【完整版】

新人教版八年级数学下册期中考试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±12.不等式组111324(1)2()x x x x a -⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a 的取值范围是( )A .65a -≤<-B .65a -<≤-C .65a -<<-D .65a -≤≤-3.下列长度的三条线段,能组成三角形的是( )A .4cm ,5cm ,9cmB .8cm ,8cm ,15cmC .5cm ,5cm ,10cmD .6cm ,7cm ,14cm4.如果一次函数y=kx+b (k 、b 是常数,k ≠0)的图象经过第一、二、四象限,那么k 、b 应满足的条件是( )A .k >0,且b >0B .k <0,且b >0C .k >0,且b <0D .k <0,且b <05.二次函数2y ax bx c =++的图象如图所示,对称轴是直线1x =.下列结论:①0abc <;②30a c +>;③()220a c b +-<;④()a b m am b +≤+(m 为实数).其中结论正确的个数为( )A .1个B .2个C .3个D .4个6.如果2a a 2a 1-+,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.下列四个图形中,线段BE是△ABC的高的是()A. B.C. D.8.如图,小华剪了两条宽为1的纸条,交叉叠放在一起,且它们较小的交角为60,则它们重叠部分的面积为()A.1 B.2 C 3 D.23 39.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)10.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A .12B .1C .2D .2二、填空题(本大题共6小题,每小题3分,共18分)1.已知2320x y --=,则23(10)(10)x y ÷=_______.2.已知34(1)(2)x x x ---=1A x -+2B x -,则实数A=__________. 3.分解因式:2x 3﹣6x 2+4x =__________.4.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b ++=________.5.正方形111A B C O 、2221A B C C 、3332A B C C 、…按如图所示的方式放置.点1A 、2A 、3A 、…和点1C 、2C 、3C 、…分别在直线1y x =+和x 轴上,则点n B 的坐标是__________.(n 为正整数)6.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,CE ∥BD ,DE ∥AC .若AC=4,则四边形CODE 的周长是__________.三、解答题(本大题共6小题,共72分)1.解方程组:(1)329817x yx y-=⎧⎨+=⎩(2)272253xyyx⎧+=⎪⎪⎨⎪+=⎪⎩2.先化简,再求值:3x4x2xx1x1--⎛⎫-÷⎪--⎝⎭,其中1x2=.3.已知关于x的分式方程311(1)(2)x kx x x-+=++-的解为非负数,求k的取值范围.4.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.5.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.(1)求证:AB=DC;(2)试判断△OEF的形状,并说明理由.6.某公司计划购买A,B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料,且A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同.(1)求A,B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg,则至少购进A型机器人多少台?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、B5、C6、C7、D8、D9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、1002、13、2x (x ﹣1)(x ﹣2).4、()()2a b a b ++.5、1(21,2)n n -- 6、8三、解答题(本大题共6小题,共72分)1、(1)11x y =⎧⎨=⎩;(2)23x y =⎧⎨=⎩2、x 2-,32-. 3、8k ≥-且0k ≠.4、(1)略;(2)四边形BECD 是菱形,理由略;(3)当∠A =45°时,四边形BECD 是正方形,理由略5、(1)略(2)等腰三角形,理由略6、(1)A 型机器人每小时搬运150千克材料,B 型机器人每小时搬运120千克材料;(2)至少购进A 型机器人14台.。

人教版八年级数学下册期中测试卷【带答案】

人教版八年级数学下册期中测试卷【带答案】

人教版八年级数学下册期中测试卷【带答案】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.﹣3的绝对值是( )A .﹣3B .3C .-13D .132.已知35a =+,35b =-,则代数式22a ab b -+的值是( )A .24B .±26C .26D .253.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( ) A .﹣4 B .4 C .﹣2 D .24.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为( ) A .-3 B .-1 C .1 D .35.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=, B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 6.一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为( )A .4B .6C .7D .107.下列图形中,是轴对称图形的是( )A .B .C .D .8.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°9.如图,将△ABC放在正方形网格图中(图中每个小正方形的边长均为1),点A,B,C恰好在网格图中的格点上,那么△ABC中BC边上的高是()A.102B.104C.105D.510.如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A.120°B.130°C.140°D.150°二、填空题(本大题共6小题,每小题3分,共18分)13x x=,则x=__________2.不等式组34012412xx+≥⎧⎪⎨-≤⎪⎩的所有整数解的积为__________.3.若m+1m=3,则m2+21m=________.4.如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是_________.5.如图,△ABC 中,AB=BC ,∠ABC=90°,F 为AB 延长线上一点,点E 在BC 上,且AE=CF ,若∠BAE=25°,则∠ACF=__________度.6.如图,在ABC 中,点D 是BC 上的点,40BAD ABC ︒∠=∠=,将ABD ∆沿着AD 翻折得到AED ,则CDE ∠=______°.三、解答题(本大题共6小题,共72分)1.解方程23111x x x -=--.2.先化简,再求值:2443(1)11m m m m m -+÷----,其中22m =.3.已知22a b -=,且1a ≥,0b ≤.(1)求b 的取值范围(2)设2m a b =+,求m 的最大值.4.已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.5.如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.6.班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发.苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地.问:(1)大巴与小车的平均速度各是多少?(2)苏老师追上大巴的地点到基地的路程有多远?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、D5、D6、B7、B8、B9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、0或1.2、03、74、x >3.5、706、20三、解答题(本大题共6小题,共72分)1、2x =2、22mm -+ 1. 3、(1)102b -≤≤;(2)2 4、(1)略;(2)结论:四边形ACDF 是矩形.理由见解析.5、(1)略;(2)112.5°.6、(1)大巴的平均速度为40公里/时,则小车的平均速度为60公里/时;(2)苏老师追上大巴的地点到基地的路程有30公里。

人教版八年级数学下册单元测试题全套(含答案)

人教版八年级数学下册单元测试题全套(含答案)

人教版八年级数学下册单元测试题全套(含答案)(含期中期末试题,共7套)第十六章达标检测卷(100分 90分钟)一、判断题:(每小题1分,共5分)1…………………( )222.( )3=2.…( )413…( )5都不是最简二次根式.( ) 二、填空题:(每小题2分,共20分)6.当78.a 9.当101112131415.x 16(A )17.若x<y<0………………………()(A)2x(B)2y(C)-2x(D)-2y18.若0<x<1………………………()(A)2x(B)-2x(C)-2x(D)2x19(a<0)得………………………………………………………………()(A(B(C(D20.当a<0,b<0时,-a+b可变形为………………………………………()(A)2(B)-2(C)2(D)2四、计算题:(每小题6分,共24分)21.;2223)÷)(a≠b).24五、求值:25.已知x26.当x=六、解答题:(共20分)+…).27.(8分)计算(+1)28参考答案(一)判断题:(每小题1分,共5分)1、|-2|=2.【答案】×.2、2).【答案】×.3、=|x -1|,2=x -1(x ≥1).两式相等,必须x ≥1.但等式左边x 可取任何数.【答案】×.4、【提示】13【答案】√.5是最简二次根式.【答案】×. (二)填空题:(每小题2分,共20分)6、7、89、x -410、11、12、13、(7-14、【答案】40.0时,x+1=0,y-3=0.15、【提示】∵34,∴_______<8__________.[4,5].由于84与5之间,则其整数部分x=?小数部分y=?[x=4,y=4【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了.(三)选择题:(每小题3分,共15分)16、【答案】D.【点评】本题考查积的算术平方根性质成立的条件,(A)、(C)不正确是因为只考虑了其中一个算术平方根的意义.17、【提示】∵x<y<0,∴x-y<0,x+y<0.∴|x-y|=y-x.18、19、20、21、【解】原式=2-2=5-3-2=6- 22、【提示】先分别分母有理化,再合并同类二次根式.=431.23、【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式.【解】原式=(a abmnm ·221a b=21b 1mab+22n ma b =21b -1ab +221a b=2221a ab a b -+. 24、【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分.25、26、∴ x 2=1x.当x=1=-1【点评】本题如果将前两个“分式”分拆成两个“分式”=-1)x1x.六、解答题:(共22分)27、(8分)28、(14分)又∵∴ 原式=x y y x +-y x x y +=2x y 当x =14,y =12时, 原式=21412=2.【点评】解本题的关键是利用二次根式的意义求出x 的值,进而求出y 的值.第十七章达标检测卷(120分 120分钟)一、选择题(每小题3分,共30分)1. 已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( ) A .25B .14C .7D .7或252.直角三角形的一条直角边长是另一条直角边长的13,斜边长为10,则它的面积为( ) A.10 B.15 C.20 D.303. 如图,已知正方形B 的面积为144,正方形C 的面积为169,那么正方形A 的面积是( ) A.313 B.144 C.169 D.254、下列说法中正确的是( )A.已知c b a ,,是三角形的三边,则222c b a =+ B.在直角三角形中,两边的平方和等于第三边的平方C.在Rt △ABC 中,90C ︒∠=,所以222c b a =+ D.在Rt △ABC 中,90B ︒∠=,所以222c b a =+5.如果将长为6 cm,宽为5 cm 的长方形纸片折叠一次,那么这条折痕的长不可能是( ) A.8 cm B.52cm C.5.5 cm D.1 cm6.在Rt △ABC 中,∠C=90°,AC=9,BC=12,则点C 到AB 的距离是( )ABC第3题图A.365B.1225 C.94D.3347. 如图,在△ABC 中,∠C=90°,AC=2,点D 在BC 上, ∠ADC=2∠B ,AD=5,则BC 的长为( ) A.3-1 B.3+1 C.5-1 D.5+18. 如图,一圆柱高8 cm ,底面半径为π6cm ,一只蚂蚁从点爬到点处吃食,要爬行的最短路程是( )cm.A.6B.8C.10D.129.三角形三边长分别是6,8,10,则它的最短边上的高为( ) A.6 B.14C.2D.810.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE,且D 点落在对角线上D'处.若AB=3,AD=4,则ED 的长为( )A. B.3 C.1 D. 二、填空题(每题4分,共20分) 11. 在△中,cm ,cm ,⊥于点,则_______.12.在△中,若三边长分别为9、12、15,则以两个这样的三角形拼成的长方形的面积为__________.13.如果一梯子底端离建筑物9 m 远,那么15 m 长的梯子可达到建筑物的高度是_______m.14.三角形一边长为10,另两边长是方程x 2-14x+48=0的两实根,则这是一个________三角形,面积为________. 15. 如图,从点A(0,2)发出的一束光,经x 轴反射,过点B(4,3),则这束光从点A 到点B 所经过路径的长为__________.三、解答题(共7题,共70分)16. (6分)如图,台风过后,一希望小学的旗杆在某处断裂,旗杆顶部落在离旗杆底部8米处,已知旗杆原长16米,你能求出旗杆在离底部多少米的位置断裂吗?17.(8分)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长.18.(8分)如图,小丽想知道自家门前小河的宽度,于是她按以下办法测出了如下数据:小丽在河岸边选取点A,在点A的对岸选取一个参照点C,测得∠CAD=30°;小丽沿河岸向前走30 m选取点B,并测得∠CBD=60°.请根据以上数据,用你所学的数学知识,帮小丽计算小河的宽度.19.(10分)如图,折叠长方形的一边,使点落在边上的点处,cm,cm,求:(1)的长;(2)的长.20.(12分)如图,将竖直放置的长方形砖块ABCD推倒至长方形A'B'C'D'的位置,长方形ABCD的长和宽分别为a,b,AC的长为c.(1)你能用只含a,b的代数式表示S△ABC,S△C'A'D'和S直角梯形A'D'BA吗?能用只含c的代数式表示S△ACA'吗?(2)利用(1)的结论,你能验证勾股定理吗?21.(12分)如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知点C周围200 m范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东45°方向上,从A向东走600 m到达B处,测得C在点B的北偏西60°方向上.(1)MN是否穿过原始森林保护区?为什么?(参考数据:≈1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?22.(14分)如图,将长方形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将长方形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.(1)当m=3时,点B的坐标为_________,点E的坐标为_________;(2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由.参考答案一、1.C2.B3.A4.A5.A6.C7.C8.D9.D10.A二、11.37012.直角;24 分析:解方程得x 1=6,x 2=8.∵2212x x =36+64=100=102,∴这个三角形为直角三角形,从而求出面积.13.43 cm 分析:过点A 作AE ⊥BC 于点E,AF ⊥CD 交CD 的延长线于点F.易得△ABE ≌△ADF,所以AE=AF,进一步证明四边形AECF 是正方形,且正方形AECF 与四边形ABCD 的面积相等,则AE=24=26(cm),所以AC=2AE=2×26=43(cm).14.略15. 分析:如图,设这一束光与x 轴交于点C,作点B 关于x 轴的对称点B',过B'作B'D ⊥y 轴于点D,连接B'C.易知A,C,B'这三点在同一条直线上,再由轴对称的性质知B'C=BC,则AC+CB=AC+CB'=AB'.由题意得AD=5,B'D=4,由勾股定理,得AB'=.所以AC+CB=.三、16.解:如图,过点A作AD⊥BC于点D.在Rt△ABD中,由勾股定理得AD2=AB2-BD2.在Rt△ACD中,由勾股定理得AD2=AC2-CD2.所以AB2-BD2=AC2-CD2.设BD=x,则82-x2=62-(7-x)2,解得x=5.5,即BD=5.5.所以AD==≈5.8.所以S△ABC=·BC·AD≈×7×5.8=20.3≈20.17.解:如图,过B点作BM⊥FD于点M.在△ACB中,∵∠ACB=90°,∠A=60°,∴∠ABC=30°,∴AB=2AC=20,∴BC===10 .∵AB∥CF,∴∠BCM=∠ABC=30°,∴BM=BC=5,∴CM===15.在△EFD中,∵∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5,∴CD=CM-MD=15-5.18.解:过点C作CE⊥AD于点E,由题意得AB=30m,∠CAD=30°,∠CBD=60°,故可得∠ACB=∠CAB=∠BCE=30°,即可得AB=BC=30 m,∴BE=15 m.在Rt△BCE中,根据勾股定理可得CE===15(m).答:小丽自家门前小河的宽度为15m.19.略20.解:(1)易知△ABC,△C'A'D'和△ACA'都是直角三角形,所以S△ABC=ab,S△C'A'D'=ab,S直角梯形A'D'BA=(a+b)(a+b)= (a+b)2,S△ACA'=c2.(2)由题意可知S△ACA'=S直角梯形-S△ABC-S△C'A'D'=(a+b)2-ab-ab=(a2+b2),而S△ACA'=c2.所以A'D'BAa2+b2=c2.21.解:(1)MN不会穿过原始森林保护区.理由如下:过点C作CH⊥AB于点H.设CH=x m.由题意知∠EAC=45°,∠FBC=60°,则∠CAH=45°,∠CBA=30°.在Rt△ACH中,AH=CH=x m,在Rt△HBC中,BC=2x m.由勾股定理,得HB==x m.∵AH+HB=AB=600 m,∴x+x=600.解得x=≈220>200.∴MN不会穿过原始森林保护区.(2)设原计划完成这项工程需要y天,则实际完成这项工程需要(y-5)天.根据题意,得=(1+25%)×.解得y=25.经检验,y=25是原方程的根.∴原计划完成这项工程需要25天.22.解:(1)(3,4);(0,1)(2)点E能恰好落在x轴上.理由如下:∵四边形OABC为长方形,∴BC=OA=4,∠AOC=∠DCE=90°,由折叠的性质可得DE=BD=BC-CD=4-1=3,AE=AB=OC=m.如图,假设点E恰好落在x轴上.在Rt△CDE中,由勾股定理可得EC===2,则有OE=OC-CE=m-2.在Rt△AOE中,OA2+OE2=AE2,即42+(m-2)2=m2,解得m=3.第十八章达标检测卷(120分120分钟)一、选择题(每题4分,共40分)1.不能判定四边形ABCD为平行四边形的题设是()(A)AB平行且等于CD (B)∠A=∠C,∠B=∠D(C)AB=AD,BC=CD (D)AB=CD,AD=BC2.正方形具有而菱形不一定具有的性质是()(A)四条边相等(B)对角线互相垂直平分(C)对角线平分一组对角(D)对角线相等3、顺次连结任意四边形四边中点所得的四边形一定是()A、平行四边形B、矩形C、菱形D、正方形4.正多边形的一个内角是120°,则这个正多边形的边数为()A.4B.8C.6D.125.如图,□ABCD中,∠C=108°,BE平分∠ABC,则∠ABE等于( )A.18°B.36°C.72°D.108°6.下列命题中,真命题是()A、有两边相等的平行四边形是菱形B、对角线垂直的四边形是菱形C、四个角相等的菱形是正方形D、两条对角线相等的四边形是矩形7.从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,若把这个多边形分割成6个三角形,则n 的值是()A.6B.7C.8D.98.菱形的周长是它的高的倍,则菱形中较大的一个角是()A.100°B.120°C.135°D.150°9.如图,菱形ABCD中,AB=5,∠BCD=120°,则对角线AC的长是()A.20B.15C.10D.510.如图,梯形ABCD中,AB∥CD,点E,F,G分别是BD,AC,DC的中点.已知两底之差是6,两腰之和是12,则△EFG 的周长是()A.8B.9C.10D.12二、填空题(每题4分,共24分)11、菱形ABCD的周长为36,其相邻两内角的度数比为1:5,则此菱形的面积为_________。

人教版数学八年级下册《期中测试卷》及答案解析

人教版数学八年级下册《期中测试卷》及答案解析

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一.选择题1. 下列式子中是分式的是( ) A.1πB.3x C.5aD.232. 若代数式11x +在实数范围内有意义,则实数 x 的取值范围是( ) A. x > -1B. x = -1C. x ≠ 0D. x ≠ -13. 2020年1月24日,中国疾控中心成功分离我国首株新型冠状病毒毒种,该毒种直径大约90纳米(1纳米=0.000001毫米),数据“90纳米”用科学记数法表示为( ) A. 70.910-⨯毫米B. 6910-⨯毫米C. 5910-⨯毫米D. 69010-⨯毫米4. 根据分式的基本性质,分式ab a-可变形为( ) A.aa b-- B. ﹣aa b - C. a a b-+D.aa b- 5. 某公司为尽快给医院供应一批医用防护服,原计划x 天生产120套防护服,由于采用新技术,每天增加生产30套,因此提前2天完成任务,列出方程为( )A.1200x=12002x -﹣30 B.1200x =12002x +﹣30 C 12002x +=1200x﹣30 D. 12002x -=1200x﹣306. 下列各曲线中不能表示y 是x 的函数是( )A B.C. D.7. 若点P在一次函数4y x=-+的图像上,则点P一定不在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限8. 如图,在平行四边形ABCD中,CE⊥AB,E为垂足.如果∠A=118°,则∠BCE=()A. 28°B. 38°C. 62°D. 72°9. 如果反比例函数y=12mx-的图象在每个象限内,y随着x的增大而增大,则m的最小整数值为()A. ﹣1B. 0C. 1D. 210. 如图,在平面直角坐标系中点A的坐标为(0,6),点B的坐标为(﹣32,5),将△AOB沿x轴向左平移得到△A′O′B′,点A的对应点A′落在直线y=﹣34x上,则点B的对应点B′的坐标为()A. (﹣8,6)B. (﹣132,5) C. (﹣192,5) D. (﹣8,5)二.填空题11. 计算:(-3)0+3-1=________.12. 关于x的分式方程721511x mx x-+=--有增根,则m的值为__________.13. 若点A(1,y1)和点B(2,y2)在反比例函数y=﹣2x的图象上,则y1与y2的大小关系是_____.14. 如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x 变化的关系图象,其中M 为曲线部分的最低点,则△ABC 的面积是___.15. 如图,在▱ABCD 中,AB =32,BC =10,∠A =45°,点E 是边AD 上一动点,将△AEB 沿直线BE 折叠,得到△FEB ,设BF 与AD 交于点M ,当BF 与▱ABCD 的一边垂直时,DM 的长为_____.三.解答题16. 先化简,再求值:222x x 11x x x 2x 1-⎛⎫-÷ ⎪+++⎝⎭,其中的值从不等式组1214x x -≤⎧⎨-≤⎩的整数解中选取. 17. 小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图. 根据图中提供的信息回答下列问题: (1)小明家到学校的路程是多少米;(2)在整个上学的途中哪个时间段小明骑车速度最快,最快的速度是多少米/分; (3)小明在书店停留了多少分钟;(4)本次上学途中,小明一共行驶了多少米;一共用了多少分钟.18. 如图,点E 是平行四边形ABCD 的边CD 的中点,延长AE 交BC 的延长线于点F . (1)求证:△ADE ≌△FCE.(2)若AB =8,BC =5,则EF 长为 时,AB ⊥AF .19. 如图,点()5,2A ,()()5B m n m <,在反比例函数ky x=的图象上,作AC y ⊥轴于点.⑴求反比例函数的表达式; ⑵若ABC ∆的面积为,求点的坐标.20. 为及时救治新冠肺炎重症患者,某医院需购买A 、B 两种型号的呼吸机.已知购买一台A 型呼吸机需6万元,购买一台B 型呼吸机需4万元,该医院准备投入资金y 万元,全部用于购进35台这两种型号的呼吸机,设购进A 型呼吸机x 台. (1)求y 关于x 的函数关系式;(2)若购进B 型呼吸机数量不超过A 型呼吸机数量的2倍,则该医院至少需要投入资金多少万元? 21. 我们经历了“确定函数的表达式﹣利用函数图象研究其性质﹣运用函数解决问题”的学习过程在画函数图象时,我们通过描点的方法画出了所学的函数图象同时,我们也学习了绝对值的意义:|a|=(0)(0)a a a a ⎧⎨-<⎩,结合上面经历的学习过程,解决下面问题:(1)若一次函数y =kx+b 的图象分别经过点A(﹣1,1),B(2,2),请求出此函数表达式; (2)在给出的平面直角坐标系中,直接画出函数y =|x|和y =kx+b 的图象; (3)根据这两个函数图象直接写出不等式|x|≤kx+b 的解集.22. 在△ABC中,AB=AC,点P为△ABC所在平面内一点过点P分别作PE∥AC交AB于点E,PF∥AB交BC于点D,交AC于点F.(1)观察猜想如图1,当点P在BC边上时,此时点P、D重合,试猜想PD,PE,PF与AB的数量关系:.(2)类比探究如图2,当点P在△ABC内时,过点P作MN∥BC交AB于点M,交AC于点N,试写出PD,PE,PF与AB的数量关系,并加以证明.(3)解决问题如图3,当点P在△ABC外时,若AB=6,PD=1,请直接写出平行四边形PEAF的周长.23. 如图,A点的纵坐标为3,过A点的一次函数图象与正比例函数y=2x的图象相交于点B.(1)求该一次函数的表达式;(2)若点P为第一象限内直线AB上的一动点,设点P的横坐标为m,过点P作x轴的垂线交正比例函数图象于点Q,交x轴于点M.①当△AOB≌△PQB时,求线段PM的长.②当线段PQ=12AO时,请直接写出点P的坐标.答案与解析一.选择题1. 下列式子中是分式的是( ) A.1πB.3x C.5aD.23[答案]C [解析] [分析]根据分式的定义求解即可. [详解]解:1π、3x 、23的分母中不含有字母,属于整式,5a的分母中含有字母,属于分式. 故选:C .[点睛]本题主要考查了分式的定义理解,准确分析是解题的关键. 2. 若代数式11x +在实数范围内有意义,则实数 x 的取值范围是( ) A. x > -1 B. x = -1C. x ≠ 0D. x ≠ -1[答案]D [解析] [分析]先根据分式有意义的条件列出关于x 的不等式,求出x 的取值范围即可. [详解]由题意得 x +1≠0, 解得x ≠−1, 故选:D .[点睛]本题考查的是分式有意义的条件,熟知分式有意义的条件是分母不等于零是解答此题的关键. 3. 2020年1月24日,中国疾控中心成功分离我国首株新型冠状病毒毒种,该毒种直径大约为90纳米(1纳米=0.000001毫米),数据“90纳米”用科学记数法表示为( ) A. 70.910-⨯毫米B. 6910-⨯毫米C. 5910-⨯毫米D. 69010-⨯毫米[解析] [分析]科学记数法的表示形式为a 10n ⨯的形式,其中0a 10≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. [详解]解:90纳米0.00009=毫米5910-=⨯毫米 故选:C .[点睛]本题考查知识点是用科学记数法表示较小的数,需要注意的是当原数的绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数. 4. 根据分式的基本性质,分式ab a-可变形为( ) A.aa b-- B. ﹣aa b - C. a a b-+D.aa b- [答案]B [解析] [分析]根据分式的基本性质即可求出答案. [详解]解:a a ab a a b a b-=-=---, 故选:B .[点睛]此题主要考查分式的变形运算,解题的关键是熟知分式的性质.5. 某公司为尽快给医院供应一批医用防护服,原计划x 天生产120套防护服,由于采用新技术,每天增加生产30套,因此提前2天完成任务,列出方程为( )A. 1200x=12002x -﹣30 B.1200x =12002x +﹣30 C. 12002x +=1200x﹣30D. 12002x -=1200x﹣30[答案]A [解析]根据工作效率=工作总量÷时间结合采用新技术后每天多生产30套,即可得出关于x的分式方程,此题得解.[详解]解:依题意,得:1200x=12002x-﹣30.故选:A.[点睛]本题主要考查了分式方程的应用题,根据已知条件列出方程是解题关键.6. 下列各曲线中不能表示y是x的函数是()A. B.C. D.[答案]D[解析][分析]根据函数的定义:给定一个数集A,对A施加对应法则f,记作f(A),得到另一数集B,也就是B=f(A),那么这个关系式就叫函数关系式简称函数,可以得出答案.[详解]A选项,对于x在的每一个确定的值,y都有唯一确定的值与它对应,y是x的函数,故A不符合题意;B选项,对于x在的每一个确定的值,y都有唯一确定的值与它对应,y是x的函数,故B不符合题意;C选项,对于x在的每一个确定的值,y都有唯一确定的值与它对应,y是x的函数,故C不符合题意;D选项,对于x在的每一个确定的值,y有时有2个甚至3个值与它对应,y不是x的函数,故D符合题意;所以答案为D.[点睛]本题主要考查了函数的定义,熟练掌握函数的概念是解题关键.7. 若点P在一次函数4y x=-+的图像上,则点P一定不在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限[解析][分析]根据一次函数的性质进行判定即可.[详解]一次函数y=-x+4中k=-1<0,b>0,所以一次函数y=-x+4的图象经过二、一、四象限,又点P在一次函数y=-x+4的图象上,所以点P一定不在第三象限,故选C.[点睛]本题考查了一次函数的图象和性质,熟练掌握是解题的关键.y=kx+b:当k>0,b>0时,函数的图象经过一,二,三象限;当k>0,b<0时,函数的图象经过一,三,四象限;当k<0,b>0时,函数的图象经过一,二,四象限;当k<0,b<0时,函数的图象经过二,三,四象限.8. 如图,在平行四边形ABCD中,CE⊥AB,E为垂足.如果∠A=118°,则∠BCE=()A. 28°B. 38°C. 62°D. 72°[答案]A[解析][分析]由在平行四边形ABCD中,∠A=118°,可求得∠B的度数,又由CE⊥AB,即可求得答案.[详解]∵四边形ABCD是平行四边形,∴∠B=180°−∠A=180°−118°=62°,∵CE⊥AB,∴∠BCE=90°−∠B=28°.故选A.[点睛]考查平行四边形的性质,掌握平行四边形的邻角互补是解题的关键.9. 如果反比例函数y=12mx-的图象在每个象限内,y随着x的增大而增大,则m的最小整数值为()A. ﹣1B. 0C. 1D. 2 [答案]C[解析][分析]根据反比例函数的性质可得1﹣2m<0,再解不等式即可.[详解]解:∵反比例函数y=12mx-的图象在每个象限内,y随着x的增大而增大,∴1﹣2m<0,解得,m>12.∴m的最小整数值为1,故选:C.[点睛]本题主要是考查了反比例函数图像的性质,根据函数图象的增减性判断k的值是解题的关键 .10. 如图,在平面直角坐标系中点A的坐标为(0,6),点B的坐标为(﹣32,5),将△AOB沿x轴向左平移得到△A′O′B′,点A的对应点A′落在直线y=﹣34x上,则点B的对应点B′的坐标为()A. (﹣8,6)B. (﹣132,5) C. (﹣192,5) D. (﹣8,5)[答案]C [解析] [分析]根据题意确定点A′的纵坐标,根据点A′落在直线y=﹣34x上,求出点A′的横坐标,确定△OAB沿x轴向左平移的单位长度即可得到答案.[详解]解:由题意可知,点A移动到点A′位置时,纵坐标不变, ∴点A′的纵坐标为6,∵点A′落在直线上y=﹣34x上,∴﹣34x=6,解得x=﹣8,∴△OAB沿x轴向左平移得到△O′A′B′位置,移动了8个单位,∴点B与其对应点B′的坐标为(﹣192,5),故答案选:C.[点睛]本题主要考查了一次函数图像上点的坐标特征和图形的平移,解题的关键是确定△OAB移动的距离.二.填空题11. 计算:(-3)0+3-1=________.[答案]4 3 .[解析] [分析][详解]试题分析:-3的0次幂是1,3的-1次幂是三分子一,1+13=43.考点:整数指数幂的运算.12. 关于x的分式方程721511x mx x-+=--有增根,则m的值为__________.[答案]4.[解析]去分母得:7x+5(x-1)=2m-1,因为分式方程有增根,所以x-1=0,所以x=1, 把x=1代入7x+5(x-1)=2m-1,得:7=2m-1, 解得:m=4,故答案为4.13. 若点A(1,y1)和点B(2,y2)在反比例函数y=﹣2x的图象上,则y1与y2的大小关系是_____.[答案]y 1<y 2[解析][分析]由k=-2可知,反比例函数y =﹣2x 的图象在每个象限内,y 随x 的增大而增大,则问题可解. [详解]解:∵反比例函数y =﹣2x 中,k =﹣2<0, ∴此函数在每个象限内,y 随x 的增大而增大,∵点A (1,y 1),B (2,y 2)在反比例函数y =﹣2x的图象上,2>1, ∴y 1<y 2,故答案为y 1<y 2.[点睛]本题考查了反比例函数的增减性,解答关键是注意根据比例系数k 的符号确定,在各个象限内函数的增减性解决问题.14. 如图1,点P 从△ABC 的顶点B 出发,沿B→C→A 匀速运动到点A,图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则△ABC 的面积是___.[答案]12[解析][分析]根据图象可知点P 在BC 上运动时,此时BP 不断增大,而从C 向A 运动时,BP 先变小后变大,从而可求出线段长度解答.[详解]根据题意观察图象可得BC=5,点P 在AC 上运动时,BPAC 时,BP 有最小值,观察图象可得,BP 的最小值为4,即BPAC 时BP=4,又勾股定理求得CP=3,因点P 从点C 运动到点A ,根据函数的对称性可得CP=AP=3,所以ABC ∆的面积是13+342⨯⨯()=12. [点睛]本题考查动点问题的函数图象,解题的关键是注意结合图象求出线段的长度,本题属于中等题型.15. 如图,在▱ABCD中,AB=32,BC=10,∠A=45°,点E是边AD上一动点,将△AEB沿直线BE折叠,得到△FEB,设BF与AD交于点M,当BF与▱ABCD的一边垂直时,DM的长为_____.[答案]4或7[解析][分析]如图1,当BF⊥AD时,如图2,当BF⊥AB时,根据折叠的性质和等腰直角三角形的判定和性质即可得到结论.[详解]解:如图1,当BF⊥AD时,∴∠AMB=90°,∵将△AEB沿BE翻折,得到△FEB,∴∠A=∠F=45°,∴∠ABM=45°,∵AB=32,∴AM=BM=3222=3,∵平行四边形ABCD,BC=AD=10, ∴DM=AD﹣AM=10﹣3=7;如图2,当BF⊥AB时,∵将△AEB沿BE翻折,得到△FEB, ∴∠A=∠EFB=45°,∴∠ABF =90°,此时F 与点M 重合,∵AB =BF =,∴AF =6,∴DM =10﹣6=4.综合以上可得DM 的长为4或7.故答案为:4或7.[点睛]本题主要考查平行四边形的判定与性质,解题的关键是熟知平行四边形的性质及折叠的特点.三.解答题16. 先化简,再求值:222x x 11x x x 2x 1-⎛⎫-÷ ⎪+++⎝⎭,其中的值从不等式组1214x x -≤⎧⎨-≤⎩的整数解中选取. [答案]1x x-,-2 [解析][分析]先根据分式混合运算顺序和运算法则化简原式,再解不等式组求得x 的范围,据此得出x 的整数值,继而根据分式有意义的条件得出x 的值,代入计算可得.[详解]解:222222221(1)(1)121(1)(1)(1)(1)(1)1x x x x x x x x x x x x x x x x x x x x x x ---+-+⎛⎫-÷=⨯=⨯= ⎪+++++-++--⎝⎭, 解不等式组1214x x -≤⎧⎨-≤⎩得,-1≤x ≤52,∴不等式组的整数解为-1,0,1,2, ∵x ≠±1且x ≠0,∴x=2,将x=2代入1x x-得, 原式=2212=--. [点睛]本题主要考查了分式的化简求值以及解不等式组,解题的关键是掌握基本运算法则,并注意选取代入的数值一定要使原分式有意义.17. 小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是多少米;(2)在整个上学的途中哪个时间段小明骑车速度最快,最快的速度是多少米/分;(3)小明在书店停留了多少分钟;(4)本次上学途中,小明一共行驶了多少米;一共用了多少分钟.[答案](1)1500米;(2)小明在12﹣14分钟最快,速度为450米/分;(3)4分钟.(4)共2700米,共用了14分钟.[解析][分析](1)根据图象,观察学校与小明家的纵坐标,可得答案;(2)分析图象,找函数变化最快的一段,可得小明骑车速度最快的时间段,进而可得其速度;(3)读图,对应题意找到其在书店停留的时间段,进而可得其在书店停留的时间;(4)读图,计算可得答案,注意要计算路程.[详解]解:(1)根据图象,学校的纵坐标为1500,小明家的纵坐标为0,故小明家到学校的路程是1500米;(2)根据图象,12≤x≤14时,直线最陡,故小明在12-14分钟最快,速度为1500-600=45014-12米/分.(3)根据题意,小明在书店停留的时间为从8分到12分,故小明在书店停留了4分钟.(4)读图可得:小明共行驶了1200+600+900=2700米,共用了14分钟.[点睛]本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.18. 如图,点E 是平行四边形ABCD 的边CD 的中点,延长AE 交BC 的延长线于点F .(1)求证:△ADE ≌△FCE .(2)若AB =8,BC =5,则EF 的长为 时,AB ⊥AF .[答案](1)见解析;(2)3[解析][分析](1)利用中点定义可得DE =CE ,再用平行四边形的性质可得∠D =∠DCF ,然后可证明△ADE ≌△FCE ;(2)根据平行四边形的性质可得CE =4,CF =5,然后利用勾股定理可得EF 的长.[详解](1)证明:∵E 是边CD 的中点,∴DE =CE ,∵四边形ABCD 是平行四边形,∴AD ∥BF ,∴∠D =∠DCF ,在△ADE 和△FCE 中D ECF ED CEAED CEF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADE ≌△FCE (ASA );(2)解:∵四边形ABCD 是平行四边形,∴AB =CD =8,CD =AD =5,AB ∥CD ,∵△ADE ≌△FCE ,∴AD =CF =5,∵E 为CD 中点,∴CE =4,∵AB ⊥AF ,AB ∥CD ,∴CE ⊥EF ,∴EF =3,故答案为:3.[点睛]此题主要考查平行四边形的性质与证明,解题的关键是熟知平行四边形的性质特点.19. 如图,点()5,2A ,()()5B m n m <,在反比例函数k y x=的图象上,作AC y ⊥轴于点.⑴求反比例函数的表达式;⑵若ABC ∆的面积为,求点的坐标.[答案](1)10y x =;(2)5,63⎛⎫ ⎪⎝⎭B [解析][分析](1)利用待定系数法即可解决问题;(2)利用三角形的面积公式构建方程求出n ,再利用待定系数法求出m 的值即可;[详解]解:(1)∵点()5,2A 在反比例函数k y x=图象上, 10k ∴=, ∴反比例函数的解析式为:10y x =. (2)由题意:15(2)102n ⨯⨯-=, 6n ∴=,5(,6)3B ∴. [点睛]本题考查反比例函数的应用,解题的关键是熟练掌握待定系数法,学会构建方程解决问题,属于中考常考题型.20. 为及时救治新冠肺炎重症患者,某医院需购买A、B两种型号的呼吸机.已知购买一台A型呼吸机需6万元,购买一台B型呼吸机需4万元,该医院准备投入资金y万元,全部用于购进35台这两种型号的呼吸机,设购进A型呼吸机x台.(1)求y关于x的函数关系式;(2)若购进B型呼吸机的数量不超过A型呼吸机数量的2倍,则该医院至少需要投入资金多少万元?[答案](1)y=2x+140;(2)该医院至少需要投入资金164万元[解析]分析](1)根据题意即可得出y关于x的函数解析式;(2)根据题意列解不等式组求出x的范围,再根据一次函数的性质解答即可.[详解]解:(1)由题意得,y=6x+4(35﹣x)=2x+140;(2)由题意得:350 352xx x->⎧⎨-≤⎩,解得3535 3x<,∵x为正整数,∴x的最小值是12,又∵y=2x+140,k=2>0,∴y随x的增大而增大,∴当x=12时,y最小=2×12+140=164,答:该医院至少需要投入资金164万元.[点睛]此题主要考查不等式组及一次函数的应用,解题的关键是根据题意找到等量关系列出函数.21. 我们经历了“确定函数的表达式﹣利用函数图象研究其性质﹣运用函数解决问题”的学习过程在画函数图象时,我们通过描点的方法画出了所学的函数图象同时,我们也学习了绝对值的意义:|a|=(0)(0)a aa a⎧⎨-<⎩,结合上面经历的学习过程,解决下面问题:(1)若一次函数y=kx+b的图象分别经过点A(﹣1,1),B(2,2),请求出此函数表达式;(2)在给出的平面直角坐标系中,直接画出函数y=|x|和y=kx+b的图象;(3)根据这两个函数图象直接写出不等式|x|≤kx+b的解集.[答案](1)y=1433x+;(2)见解析;(3)﹣1≤x≤2[解析][分析](1)根据待定系数法可以求得该函数的表达式;(2)根据函数表达式可以画出该函数的图象;(3)根据图象可以直接写出所求不等式解集.[详解]解:(1)由题意得1 22k bk b-+=⎧⎨+=⎩,∴1343kb⎧=⎪⎪⎨⎪=⎪⎩,∴此函数表达式为:y=14 33x+;(2)画出函数y=|x|和y=kx+b的图象如图:;(3)由图象可知,不等式|x|≤kx+b的解集为﹣1≤x≤2.[点睛]此题主要考查一次函数的图像与性质,解题的关键是熟知待定系数法及函数的图像与不等式的解的联系.22. 在△ABC中,AB=AC,点P为△ABC所在平面内一点过点P分别作PE∥AC交AB于点E,PF∥AB交BC于点D,交AC于点F.(1)观察猜想如图1,当点P在BC边上时,此时点P、D重合,试猜想PD,PE,PF与AB的数量关系:.(2)类比探究如图2,当点P在△ABC内时,过点P作MN∥BC交AB于点M,交AC于点N,试写出PD,PE,PF与AB的数量关系,并加以证明.(3)解决问题如图3,当点P在△ABC外时,若AB=6,PD=1,请直接写出平行四边形PEAF的周长.[答案](1)PD+PE+PF=AB;(2)PD+PE+PF=AB,见解析;(3)14[解析][分析](1)由PE∥AC,PF∥AB可判断四边形AEPF为平行四边形,根据平行线的性质得∠1=∠C,根据平行四边形的性质得PF=AE,再根据等腰三角形的性质得∠B=∠C,则∠B=∠1,则可根据等腰三角形的判定得PE=BE,所以PE+PF=AB;(2)因为四边形PEAF为平行四边形,所以PE=AF,又三角形FDC为等腰三角形,所以FD=PF+PD=FC,即PE+PD+PF=AC=AB;(3)过点P作MN∥BC分别交AB、AC于M、N两点,推出PE+PF=AM,再推出MB=PD即可得到结论.[详解]解:(1)答:PD+PE+PF=AB.证明如下:∵点P在BC上,∴PD=0,∵PE∥AC,PF∥AB,∴四边形PFAE是平行四边形,∴PF=AE,∵PE∥AC,∴∠BPE=∠C,∴∠B=∠BPE,∴PE=BE,∴PE+PF=BE+AE=AB,∵PD=0,∴PD+PE+PF=AB,故答案为:PD+PE+PF=AB;(2)如图2,结论成立:PD+PE+PF=AB.证明:过点P作MN∥BC分别交AB,AC于M,N两点,∵PE∥AC,PF∥AB,∴四边形AEPF是平行四边形,∵MN∥BC,PF∥AB,∴四边形BDPM是平行四边形,∴AE=PF,∠EPM=∠ANM=∠C,∵AB=AC,∴∠EMP=∠B,∴∠EMP=∠EPM,∴PE=EM,∴PE+PF=AE+EM=AM.∵四边形BDPM是平行四边形,∴MB=PD.∴PD+PE+PF=MB+AM=AB,即PD+PE+PF=AB;(3)如图3,过点P作MN∥BC分别交AB、AC延长线于M、N两点.∵PE∥AC,PF∥AB,∴四边形PEAF是平行四边形,∴PF=AE,∵AB=AC,∴∠B=∠C,∵MN∥BC,∴∠ANM=∠C=∠B=∠AMN,∵PE∥AC,∴∠EPM=∠FNP,∴∠AMN=∠FPN,∴∠EPM=∠EMP,∴PE=ME,∵AE+ME=AM,∴PE+PF=AM,∵MN∥CB,DF∥AB,∴四边形BDPM是平行四边形,∴MB=PD,∴PE+PF﹣PD=AM﹣MB=AB,∴PE+PF=AB+PD=6+1=7,∴平行四边形PEAF的周长=14,故答案为:14.[点睛]本题主要考查了平行四边形的性质应用,结合等腰三角判断角的关系是解题的关键.23. 如图,A点的纵坐标为3,过A点的一次函数图象与正比例函数y=2x的图象相交于点B.(1)求该一次函数的表达式;(2)若点P为第一象限内直线AB上的一动点,设点P的横坐标为m,过点P作x轴的垂线交正比例函数图象于点Q,交x轴于点M.①当△AOB≌△PQB时,求线段PM的长.②当线段PQ=12AO时,请直接写出点P的坐标.[答案](1)y=﹣x+3;(2)①1;②点P坐标为(32,32)或(12,52).[解析][分析](1)根据图象上点的坐标特征求得B的坐标,然后根据待定系数法即可求得一次函数的解析式;(2)①根据题意P(m,﹣m+3),则Q(m,2m),即可得到PQ=|2m﹣(﹣m+3)|=|3m﹣3|,当△AOB≌△PQB 时,AO=PQ,即|3m﹣3|=3,然后结合题意即可求得P(2,1),PM=1;②根据题意得到|3m﹣3|=32,求得m的值,从而求得P的坐标.[详解]解:(1)∵点B的横坐标为1,且点B在正比例函数y=2x的图象上, ∴y=2×1=2,∴B(1,2),∵A点的纵坐标为3,设一次函数的解析式为y=kx+3,代入B(1,2)得,2=k+3,解得k=﹣1,∴一次函数的解析式为y=﹣x+3;(2)①∵点P为第一象限内直线AB上的一动点,且点P的横坐标为m,∴P(m,﹣m+3),∵PQ⊥x轴,且Q在y=2x的图象上,∴Q(m,2m),∴PQ=|2m﹣(﹣m+3)|=|3m﹣3|,当△AOB≌△PQB时,∴AO=PQ,即|3m﹣3|=3,∴m=2或0(由点P在第一象限,故舍去), ∴P(2,1),PM=1;②当线段PQ=12AO时,则|3m﹣3|=32,当3m﹣3=32时,解得m=32,此时P(32,32);当﹣3m+3=32时,解得m=12,此时P(12,52).综上:点P的坐标为(32,32)或(12,52).[点睛]此题考查的是一次函数与几何图形的综合题型,掌握利用待定系数法求一次函数解析式、全等三角形的性质和方程思想是解决此题的关键.。

2024年人教版初二数学下册期中考试卷(附答案)

2024年人教版初二数学下册期中考试卷(附答案)

一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 17B. 18C. 19D. 202. 在下列各数中,最大的数是:A. 0.5B. 0.7C. 0.8D. 0.93. 下列哪个图形是正方形?A. 圆B. 矩形C. 正方形D. 三角形4. 下列哪个数是偶数?A. 3B. 4C. 5D. 75. 下列哪个数是分数?A. 0.5B. 0.6C. 0.7D. 0.8二、判断题(每题1分,共5分)1. 2 + 3 = 5 ()2. 4 × 5 = 20 ()3. 6 ÷ 2 = 3 ()4. 7 4 = 3 ()5. 8 + 9 = 17 ()三、填空题(每题1分,共5分)1. 9 + 5 = __2. 8 × 6 = __3. 7 ÷ 7 = __4. 6 3 = __5. 5 × 5 = __四、简答题(每题2分,共10分)1. 请简述加法的定义。

2. 请简述减法的定义。

3. 请简述乘法的定义。

4. 请简述除法的定义。

5. 请简述分数的定义。

五、应用题(每题2分,共10分)1. 小明有5个苹果,小红有3个苹果,他们一共有多少个苹果?2. 小明有10个橘子,他吃掉了4个,还剩下多少个?3. 小明有8个橙子,他吃掉了2个,还剩下多少个?4. 小明有6个梨,他吃掉了3个,还剩下多少个?5. 小明有7个葡萄,他吃掉了1个,还剩下多少个?六、分析题(每题5分,共10分)1. 请分析加法、减法、乘法、除法之间的关系。

2. 请分析分数与整数之间的关系。

七、实践操作题(每题5分,共10分)1. 请用实践操作的方法验证加法的定义。

2. 请用实践操作的方法验证减法的定义。

【答案】一、选择题1. A2. D3. C4. B5. A二、判断题1. √2. √3. √4. √5. √三、填空题1. 142. 483. 14. 35. 25四、简答题1. 加法是将两个数相加得到一个和的运算。

2023-2024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)

2023-2024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)

20232024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)(考试时间:90分钟,满分:100分)一、选择题(每题2分,共20分)1. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=62. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=63. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=64. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8D. 4x2y=65. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=66. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=67. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=68. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=69. 下列哪个选项是正确的?A. 3x+5y=10C. 5x+3y=15D. 4x2y=610. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=6二、填空题(每题2分,共20分)1. 2x+3y=6,求x的值。

2. 3x+5y=10,求y的值。

3. 4x2y=6,求x的值。

4. 5x+3y=15,求y的值。

5. 2x4y=8,求x的值。

6. 3x+5y=10,求y的值。

7. 4x2y=6,求x的值。

8. 5x+3y=15,求y的值。

9. 2x4y=8,求x的值。

10. 3x+5y=10,求y的值。

三、解答题(每题5分,共25分)1. 解方程组:2x+3y=63x+5y=102. 解方程组:5x+3y=153. 解方程组:2x4y=83x+5y=104. 解方程组:3x+5y=104x2y=65. 解方程组:5x+3y=152x4y=8四、计算题(每题10分,共30分)1. 计算:2x+3y=63x+5y=102. 计算:4x2y=65x+3y=153. 计算:2x4y=83x+5y=10五、应用题(每题10分,共20分)1. 应用题:2x+3y=62. 应用题: 4x2y=6 5x+3y=15答案解析:一、选择题1. A2. B3. C4. D5. A6. B7. C8. D9. A10. B二、填空题1. x=12. y=23. x=24. y=35. x=26. y=27. x=28. y=39. x=210. y=2三、解答题1. x=1, y=22. x=2, y=33. x=2, y=24. x=2, y=35. x=2, y=2四、计算题1. x=1, y=22. x=2, y=33. x=2, y=2五、应用题1. x=1, y=22. x=2, y=38. 简答题(每题5分,共25分)1. 简述一元二次方程的一般形式。

2024年最新人教版初二数学(下册)期末试卷及答案(各版本)

2024年最新人教版初二数学(下册)期末试卷及答案(各版本)

2024年最新人教版初二数学(下册)期末试卷及答案(各版本)一、选择题(每题1分,共5分)1. 在直角坐标系中,点P(a, b)关于原点对称的点是()A. P(a, b)B. P(a, b)C. P(a, b)D. P(b, a)2. 下列函数中,是正比例函数的是()A. y = 2x + 1B. y = x^2C. y = 3/xD. y = 3x3. 在平行四边形ABCD中,若AB = 6cm,BC = 8cm,则对角线AC 的取值范围是()A. 2cm < AC < 14cmB. 4cm < AC < 14cmC. 6cm < AC < 14cmD. 2cm < AC < 6cm4. 下列各数中,是无理数的是()A. √9B. √16C. √3D. √15. 下列命题中,正确的是()A. 两条平行线上的任意两点到第三条直线的距离相等B. 两条平行线上的任意两点到第三条直线的距离不相等C. 两条平行线上的任意一点到第三条直线的距离相等D. 两条平行线上的任意一点到第三条直线的距离不相等二、判断题(每题1分,共5分)1. 互为相反数的两个数的和为0。

()2. 任何两个无理数相加都是无理数。

()3. 两条平行线的斜率相等。

()4. 一次函数的图像是一条直线。

()5. 任意两个等腰三角形的面积相等。

()三、填空题(每题1分,共5分)1. 若a = 3,b = 2,则a b = _______。

2. 在直角三角形中,若一个锐角为30°,则另一个锐角为_______°。

3. 若x^2 5x + 6 = 0,则x的值为_______或_______。

4. 一次函数y = 2x + 1的图像与y轴的交点坐标为_______。

5. 平行四边形的对边_______且_______。

四、简答题(每题2分,共10分)1. 简述勾股定理的内容。

2. 什么是正比例函数?请举例说明。

2024年最新人教版初二数学(下册)期末试卷及答案(各版本)

2024年最新人教版初二数学(下册)期末试卷及答案(各版本)

2024年最新人教版初二数学(下册)期末试卷及答案(各版本)一、选择题(每题5分,共20分)1. 下列哪个选项是正确的?A. 1/2B. 3/4C. 5/6D. 7/82. 如果a=2,b=3,那么a+b等于多少?A. 5B. 6C. 7D. 83. 下列哪个选项是正确的?A. 2x+3y=6B. 2x3y=6C. 3x+2y=6D. 3x2y=64. 如果x=4,那么x²等于多少?A. 8B. 16C. 24D. 325. 下列哪个选项是正确的?A. 2a+3b=5B. 2a3b=5C. 3a+2b=5D. 3a2b=5二、填空题(每题5分,共20分)1. 如果a=5,b=3,那么a+b等于______。

2. 如果x=2,那么x²等于______。

3. 如果a=4,b=2,那么a+b等于______。

4. 如果x=3,那么x²等于______。

三、解答题(每题10分,共40分)1. 解答下列方程组:2x+3y=63x2y=52. 解答下列方程:4x3y=73. 解答下列方程组:2a+3b=63a2b=54. 解答下列方程:3x+2y=7四、计算题(每题10分,共30分)1. 计算:2x²+3y²=6,其中x=2,y=3。

2. 计算:3x²2y²=5,其中x=3,y=2。

3. 计算:2a²+3b²=6,其中a=4,b=2。

五、证明题(每题10分,共20分)1. 证明:如果a+b=c,那么a+c=b。

2. 证明:如果x²=y²,那么x=y。

六、应用题(每题10分,共20分)1. 一辆汽车以每小时60公里的速度行驶,行驶了3小时,求它行驶的距离。

2. 一个长方形的长是5厘米,宽是3厘米,求它的面积。

七、简答题(每题10分,共20分)1. 简述方程的基本概念。

2. 简述不等式的基本概念。

八、论述题(每题10分,共20分)1. 论述数学在生活中的应用。

新人教版八年级数学下册期末考试及答案【完整版】

新人教版八年级数学下册期末考试及答案【完整版】

新人教版八年级数学下册期末考试及答案【完整版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±12.下列各数中,313.14159 8 0.131131113 25 7π-⋅⋅⋅--,,,,,,无理数的个数有( )A .1个B .2个C .3个D .4个3.若﹣2a m b 4与5a n +2b 2m +n 可以合并成一项,则m-n 的值是( )A .2B .0C .-1D .14.如图,在四边形ABCD 中,∠A=140°,∠D=90°,OB 平分∠ABC ,OC 平分∠BCD ,则∠BOC=( )A .105°B .115°C .125°D .135°5.如图,a ,b ,c 在数轴上的位置如图所示,化简22()a a c c b -++-的结果是( )A .2c ﹣bB .﹣bC .bD .﹣2a ﹣b6.如果2a a 2a 1+-+=1,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.在平面直角坐标系中,一次函数y=kx+b 的图象如图所示,则k 和b 的取值范围是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <08.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .809.如图,将△ABC 放在正方形网格图中(图中每个小正方形的边长均为1),点A ,B ,C 恰好在网格图中的格点上,那么△ABC 中BC 边上的高是( )A .102B .104C .105D .510.如图,▱ABCD 的对角线AC 、BD 相交于点O ,且AC+BD=16,CD=6,则△ABO 的周长是( )A .10B .14C .20D .22二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222a b b --的值为____________.2.已知x ,y 满足方程组x 2y 5x 2y 3-=⎧+=-⎨⎩,则22x 4y -的值为__________. 3.4的平方根是 .4.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是______.5.如图,在△ABC和△DBC中,∠A=40°,AB=AC=2,∠BDC=140°,BD=CD,以点D为顶点作∠MDN=70°,两边分别交AB,AC于点M,N,连接MN,则△AMN的周长为___________.6.如图,AD∥BC,∠D=100°,CA平分∠BCD,则∠DAC=________度.三、解答题(本大题共6小题,共72分)1.解方程组:4311 213x yx y-=⎧⎨+=⎩2.先化简,再求值:22122()121x x x xx x x x----÷+++,其中x满足x2-2x-2=0.3.已知关于x的方程220x ax a++-=.(1)当该方程的一个根为1时,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.4.如图,直线y=kx+6分别与x 轴、y 轴交于点E ,F ,已知点E 的坐标为(﹣8,0),点A 的坐标为(﹣6,0).(1)求k 的值;(2)若点P (x ,y )是该直线上的一个动点,且在第二象限内运动,试写出△OPA 的面积S 关于x 的函数解析式,并写出自变量x 的取值范围.(3)探究:当点P 运动到什么位置时,△OPA 的面积为,并说明理由.5.如图,有一个直角三角形纸片,两直角边6AC =cm ,8BC = cm ,现将直角边沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?6.在“母亲节”前期,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销售量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍.(1)求降价后每枝玫瑰的售价是多少元?(2)根据销售情况,店主用不多于900元的资金再次购进两种鲜花共500枝,康乃馨进价为2元/枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、A4、B5、A6、C7、C8、C9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、12、-153、±2.4、(-4,2)或(-4,3)5、46、40°三、解答题(本大题共6小题,共72分)1、53xy=⎧⎨=⎩.2、1 23、(1)12,32-;(2)略.4、(1)k=;(2)△OPA的面积S=x+18 (﹣8<x<0);(3)点P坐标为(,)或(,)时,三角形OPA的面积为.5、CD的长为3cm.6、(1)2元;(2)至少购进玫瑰200枝.。

2023年人教版八年级数学下册期中测试卷及答案【完整版】

2023年人教版八年级数学下册期中测试卷及答案【完整版】

2023年人教版八年级数学下册期中测试卷及答案【完整版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.已知一元二次方程x 2+kx-3=0有一个根为1,则k 的值为( )A .−2B .2C .−4D .42.248162(31)(31)(31)(31)(31)⨯+++++的计算结果的个位数字是( )A .8B .6C .2D .03.语句“x 的18与x 的和不超过5”可以表示为( ) A .58x x +≤ B .58x x +≥ C .855x ≤+ D .58x x += 4.已知三角形三边长为a 、b 、c ,且满足247a b -=, 246b c -=-, 2618c a -=-,则此三角形的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .无法确定5.下面四个图形中,∠1=∠2一定成立的是( )A .B .C .D .6.若关于x 的不等式组255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩只有5个整数解,则a 的取值范围( )A .1162a -<-B .116a 2-<<-C .1162a -<-D .1162a -- 4.如图,等边三角形ABC 中,AD ⊥BC ,垂足为D ,点E 在线段AD 上,∠EBC=45°,则∠ACE 等于( )A .15°B .30°C .45°D .60°8.如图,在△ABC 中,AB=AC ,∠BAC=100°,AB 的垂直平分线DE 分别交AB 、BC 于点D 、E ,则∠BAE=( )A .80°B .60°C .50°D .40°9.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )A .0.7米B .1.5米C .2.2米D .2.4米10.如图,在平行四边形ABCD 中,∠ABC 的平分线交AD 于E ,∠BED=150°,则∠A 的大小为( )A .150°B .130°C .120°D .100°二、填空题(本大题共6小题,每小题3分,共18分)116________.2.已知关于x 的分式方程233x k x x -=--有一个正数解,则k 的取值范围为________.3.若m =201520161-,则m 3﹣m 2﹣2017m +2015=________. 4.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b ++=________.5.如图,依据尺规作图的痕迹,计算∠α=_______°. 6.已知:如图,OAD ≌OBC ,且∠O =70°,∠C =25°,则∠AEB =______度.三、解答题(本大题共6小题,共72分)1.解方程:(1)2101x x -=+ (2)2216124x x x --=+-2.(1)已知x 35y 352x 2-5xy +2y 2的值. (2)先化简,再求值:222222x y x y x xy y x xy x y ⎛⎫--÷ ⎪-+--⎝⎭,其中x =221-,y =22-3.已知关于x 的一元二次方程2(3)0x m x m ---=.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.4.如图,在△ABC 中,∠B=40°,∠C=80°,AD 是BC 边上的高,AE 平分∠BAC ,(1)求∠BAE 的度数;(2)求∠DAE 的度数.5.在杭州西湖风景游船处,如图,在离水面高度为5m 的岸上,有人用绳子拉船靠岸,开始时绳子BC 的长为13m ,此人以0.5m/s 的速度收绳.10s 后船移动到点D 的位置,问船向岸边移动了多少m ?(假设绳子是直的,结果保留根号)6.某工厂计划在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数.(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、A4、A5、B6、A7、A8、D9、C10、C二、填空题(本大题共6小题,每小题3分,共18分) 1、22、k<6且k ≠33、40304、()()2a b a b ++.5、56.6、120三、解答题(本大题共6小题,共72分)1、(1)x=1;(2)方程无解2、(1)42,(2)13+-3、(1)略(2)1或24、(1) ∠BAE=30 °;(2) ∠EAD=20°.5、(12m6、(1)2400个, 10天;(2)480人.。

人教版八年级下册数学《期中检测试卷》及答案

人教版八年级下册数学《期中检测试卷》及答案

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一.选择题:(每小题4分,共48分)1.下列各式中,运算正确的是( ) A. 222()-=-B.284⨯=C.2810+= D. 222-=2.下列四组线段中,能构成直角三角形的是( ) A. a =1,b =2,c =3 B. a =2,b =3,c =4 C. a =2,b =4,c =5D. a =3,b =4,c =53.函数y=2x ﹣5的图象经过( ) A. 第一、三、四象限 B. 第一、二、四象限 C. 第二、三、四象限D. 第一、二、三象限 4.关于数据-4,1,2,-1,2,下面结果中,错误的是( ) A. 中位数为1B. 方差为26C. 众数为2D. 平均数为05.要得到函数y =2x +3的图象,只需将函数y =2x 的图象( ) A 向左平移3个单位 B. 向右平移3个单位 C. 向下平移3个单位D. 向上平移3个单位6.如图,在矩形ABCD 中,对角线AC ,BD 交于点O ,已知∠AOD=120°,AB=2,则AC 的长为( )A. 2B. 4C. 6D. 87.已知()()12223,,2,P y P y -是一次函数1y x =--的图象上的两个点,则12,y y 的大小关系是( ) A. 12y y =B. 12y y <C. 12>y yD. 不能确定8.2022年将在北京-张家口举办冬季奥运会,很多学校开设了相关课程.如表记录了某校4名同学短道速滑选拔赛成绩的平均数与方差2s :队员1 队员2 队员3 队员4 平均数(秒) 51 50 51 50 方差2s (秒2) 3.53.514.515.5根据表中数据,要从中选择一名成绩好又发挥稳定运动员参加比赛,应该选择( ) A. 队员1B. 队员2C. 队员3D. 队员49.如图,函数3y x b =+和3y ax =-的图像交于点(2,5)P --,则根据图像可得不等式33x b ax +>-的解集是( )A. 5x >-B. 3x >-C. 2x >-D. 2x <-10.21025x x -+5﹣x ,则x 的取值范围是( ) A. 为任意实数B. 0≤x≤5C. x≥5D. x≤511.直角三角形的面积为 ,斜边上的中线为 ,则这个三角形周长为 ( ) A22d S d +B. 2d S d -C. 22d S d ++D. )22d S d +12.设max 表示两个数中的最大值,例如:max{0,2}2=,max{12,8}12=,则关于的函数max{3,21}y x x =+可表示为( )A. 3y x =B. 21y x =+C. 3(1)21(1)x x y x x <⎧=⎨+≥⎩D. 21(1)3(1)x x y x x +<⎧=⎨≥⎩二.填空题(每小题4分,共24分)13.若x 2+在实数范围内有意义,则x 的取值范围是______.14.已知一组数据x 1,x 2,x 3,x 4,x 5的平均数是2,那么另一组数据3x 1﹣2,3x 2﹣2,3x 3﹣2,3x 4﹣2,3x 5﹣2的平均数是_____. 15.计算3393aaa a +-=__________. 16.如图,两张等宽纸条交叉叠放在一起,若重合部分构成的四边形ABCD 中,3AB =,2AC =,则BD 的长为_______________.17.一次函数y 1=kx+b 与y 2=x+a 的图象如图,则下列结论:①k <0;②a >0;③关于x 的方程kx ﹣x=a ﹣b 的解是x=3;④当x >3时,y 1<y 2中.则正确的序号有____________.18.一般地,在平面直角坐标系中,我们求点到直线间的距离,可用下面的公式求解: 点()00P x ,y 到直线Ax By C 0++=的距离()d 公式是:0022Ax By Cd A B++=+如:求:点()P 1,1到直线2x 6y 90+-=的距离. 解:由点到直线的距离公式,得222161910d 204026⨯+⨯-===+ 根据平行线的性质,我们利用点到直线的距离公式,也可以求两平行线间的距离. 则两条平行线1l :2x 3y 8+=和2l :2x 3y 180++=间的距离是______.三.解答题:(本大题共7小题,共78分)19.0201827233(2π)(1)--+-20.某学校要对如图所示的一块地进行绿化,已知4m AD =,3m CD =,AD DC ⊥,13m AB =,12m BC =,求这块地的面积.21.某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示. (1)根据图示填写下表;(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好; (3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定. 22.如图,一次函数y ax b =+的图象与正比例函数y kx =的图象交于点M .(1)求正比例函数和一次函数的解析式;(2)根据图象写出使正比例函数的值大于一次函数的值的的取值范围; (3)求MOP △的面积.23.如图,矩形ABCD的对角线AC、BD交于点O,且DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;(2)若∠BAC=30°,AC=4,求菱形OCED的面积.24.已知:甲乙两车分别从相距300千米的A、B两地同时出发相向而行,其中甲到达B地后立即返回,如图是它们离各自出发地的距离y(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车离出发地的距离y甲(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量的取值范围;(2)它们出发92小时时,离各自出发地的距离相等,求乙车离出发地的距离y乙(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量的取值范围;(3)在(2)的条件下,求它们在行驶的过程中相遇的时间.25.现有正方形ABCD和一个以O为直角顶点的三角板,移动三角板,使三角板两直角边所在直线分别与直线BC、CD交于点M、N.(1)如图1,若点O与点A重合,则OM与ON的数量关系是;(2)如图2,若点O在正方形的中心(即两对角线交点),则(1)中的结论是否仍然成立?请说明理由;(3)如图3,若点O在正方形的内部(含边界),当OM=ON时,请探究点O在移动过程中可形成什么图形?(4)如图4,是点O在正方形外部的一种情况.当OM=ON时,请你就“点O的位置在各种情况下(含外部)移动所形成的图形”提出一个正确的结论.(不必说明)答案与解析一.选择题:(每小题4分,共48分)1.下列各式中,运算正确的是()A.=- B. 4= C. = D. 2= 2[答案]B[解析][分析],=a≥0,b≥0),被开数相同的二次根式可以合并进行计算即可.[详解]A2=,故原题计算错误;B=,故原题计算正确;C=故原题计算错误;D、2不能合并,故原题计算错误;故选B.[点睛]此题主要考查了二次根式的混合运算,关键是掌握二次根式乘法、性质及加减法运算法则.2.下列四组线段中,能构成直角三角形的是()A. a=1,b=2,c=3B. a=2,b=3,c=4C. a=2,b=4,c=5D. a=3,b=4,c=5[答案]D[解析][分析]根据勾股定理的逆定理对各选项进行逐一分析即可.[详解]解:A、∵12+22=5≠32,∴不能构成直角三角形,故本选项错误;B、∵22+32=13≠42,∴不能构成直角三角形,故本选项错误;C、∵22+42=20≠52,∴不能构成直角三角形,故本选项错误;D、∵32+42=25=52,∴能构成直角三角形,故本选项正确.故选:D.[点睛]本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.3.函数y=2x﹣5的图象经过( )A. 第一、三、四象限B. 第一、二、四象限C. 第二、三、四象限D. 第一、二、三象限[答案]A[解析][分析]先根据一次函数的性质判断出此函数图象所经过的象限,再进行解答即可.[详解]∵一次函数y=2x-5中,k=2>0,∴此函数图象经过一、三象限,∵b= -5<0,∴此函数图象与y轴负半轴相交,∴此一次函数的图象经过一、三、四象限,不经过第二象限.故选A.[点睛]本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k>0时,函数图象经过一、三象限,当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.4.关于数据-4,1,2,-1,2,下面结果中,错误的是( )A. 中位数为1B. 方差为26C. 众数为2D. 平均数为0[答案]B[解析][详解]A.∵从小到大排序为-4,-1,,1,2,2,∴中位数为1,故正确;B.412125x-++-+==,()()()()222224010102022655s--+--+-+-⨯==,故不正确;C.∵众数是2,故正确;D.412125x-++-+==,故正确;故选B.5.要得到函数y=2x+3的图象,只需将函数y=2x的图象()A. 向左平移3个单位B. 向右平移3个单位C. 向下平移3个单位D. 向上平移3个单位[答案]D[解析][分析]平移后相当于x不变y增加了3个单位,由此可得出答案.[详解]解:由题意得x值不变y增加3个单位应向上平移3个单位.故选D.[点睛]本题考查一次函数图象的几何变换,注意平移k值不变的性质.6.如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AB=2,则AC的长为( )A. 2B. 4C. 6D. 8[答案]B[解析][分析]已知四边形ABCD是矩形,∠AOD=120°,AB=2,根据矩形的性质可证得△AOB是等边三角形,则OA=OB=AB=2,AC=2OA=4.[详解]∵四边形ABCD是矩形∴AC=BD,OA=OC,OB=OD∴OA=OB∵∠AOD=120° ∴∠AOB=60°∴△AOB 是等边三角形 ∴OA=OB=AB=2 ∴AC=2OA=4 故选:B[点睛]本题考查了矩形的基本性质,等边三角形的判定和性质.7.已知()()12223,,2,P y P y -是一次函数1y x =--的图象上的两个点,则12,y y 的大小关系是( ) A. 12y y = B. 12y y <C. 12>y yD. 不能确定[答案]C [解析] [分析]根据()()12223,,2,P y P y -是一次函数y=-x-1图象上的两个点,由-3<2,结合一次函数y=-x-1在定义域内是单调递减函数,判断出12,y y 的大小关系即可.[详解]∵()()12223,,2,P y P y -是一次函数y=−x−1的图象上的两个点,且−3<2, ∴12>y y . 故选C[点睛]此题考查一次函数图象上点的坐标特征,解题关键在于结合一次函数y=-x-1在定义域内是单调递减函数8.2022年将在北京-张家口举办冬季奥运会,很多学校开设了相关的课程.如表记录了某校4名同学短道速滑选拔赛成绩的平均数与方差2s :根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择( )A. 队员1B. 队员2C. 队员3D. 队员4[答案]B[解析][分析]据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.[详解]因为队员1和2的方差最小,但队员2平均数最小,所以成绩好,所以队员2成绩好又发挥稳定. 故选B .[点睛]考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.9.如图,函数3y x b =+和3y ax =-的图像交于点(2,5)P --,则根据图像可得不等式33x b ax +>-的解集是( )A. 5x >-B. 3x >-C. 2x >-D. 2x <-[答案]C[解析][分析] 根据一次函数的图象和两函数的交点坐标即可得出答案[详解]解:从图象得到,当x >-2时,3y x b =+的图象在函数y=ax-3的图象上∴不等式3x+b>ax-3的解集是x>-2,故选:C[点睛]此题考查一次函数和一元一次不等式的应用,解题关键在于看懂函数图象10.5﹣x,则x的取值范围是( )A. 为任意实数B. 0≤x≤5C. x≥5D. x≤5 [答案]D[解析][分析]根据二次根式的性质得出5-x≥0,求出即可.[详解]|5|5x x==-=-,∴5-x≥0,解得:x≤5,故选D.[点睛]本题考查了二次根式的性质的应用,注意:当a≥0时,当a≤0时.11.直角三角形的面积为,斜边上的中线为,则这个三角形周长为()2d dC. dD. )2d[答案]D[解析][分析]根据直角三角形的性质求出斜边长,根据勾股定理、完全平方公式计算即可.[详解]解:设直角三角形的两条直角边分别为x、y,∵斜边上的中线为d,∴斜边长2d,由勾股定理得,x2+y2=4d2,∵直角三角形的面积为S,∴12S xy=,则2xy=4S,即(x+y)2=4d2+4S,∴x y+=∴这个三角形周长为:)2d ,故选D. [点睛]本题考查的是勾股定理的应用,直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2. 12.设max 表示两个数中的最大值,例如:max{0,2}2=,max{12,8}12=,则关于的函数max{3,21}y x x =+可表示为( )A. 3y x =B. 21y x =+C. 3(1)21(1)x x y x x <⎧=⎨+≥⎩D. 21(1)3(1)x x y x x +<⎧=⎨≥⎩[答案]D[解析][分析]由于3x 与21x +的大小不能确定,故应分两种情况进行讨论.[详解]当321x x ≥+,即1x ≥时,{}3,213y max x x x =+=;当321x x <+,即1x <时,{}3,2121y max x x x =+=+.故选D .[点睛]本题考查的是一次函数的性质,解答此题时要注意进行分类讨论. 二.填空题(每小题4分,共24分)13.,则x 的取值范围是______.[答案]x≥-2[解析]分析:根据二次根式有意义条件:被开方数为非负数,列不等式求解即可.详解:∵x+2≥0∴x≥-2.故答案为x≥-2.点睛:此题主要考查了二次根式有意义的条件,明确被开方数为非负数是解题关键.14.已知一组数据x 1,x 2,x 3,x 4,x 5的平均数是2,那么另一组数据3x 1﹣2,3x 2﹣2,3x 3﹣2,3x 4﹣2,3x 5﹣2的平均数是_____.[答案]4[解析][分析]平均数的计算方法是求出所有数据的和,然后除以数据的总个数.先求数据x 1,x 2,x 3,x 4,x 5的和,然后再用平均数的定义求新数据的平均数.[详解]一组数据x 1,x 2,x 3,x 4,x 5的平均数是2,有15(x 1+x 2+x 3+x 4+x 5)=2, 那么另一组数据3x 1-2,3x 2-2,3x 3-2,3x 4-2,3x 5-2的平均数是15(3x 1-2+3x 2-2+3x 3-2+3x 4-2+3x 5-2)=4. 故答案是:4.[点睛]考查的是样本平均数的求法及运用,解题关键是记熟公式:12n x nx x x ++⋯+=. 15.计算3393a a a a +-=__________. [答案]3a[解析]分析:先把各根式化简,然后进行合并即可得到结果.详解:原式=333a a a +-=3a点睛:本题主要考查二次根式的加减,比较简单.16.如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形ABCD 中,3AB =,2AC =,则BD 的长为_______________.[答案]2[解析][分析]首先由对边分别平行可判断四边形ABCD 为平行四边形,连接AC 和BD ,过A 点分别作DC 和BC 的垂线,垂足分别为F 和E ,通过证明△ADF ≌△ABC 来证明四边形ABCD 为菱形,从而得到AC 与BD 相互垂直平分,再利用勾股定理求得BD 长度.[详解]解:连接AC 和BD ,其交点为O ,过A 点分别作DC 和BC 的垂线,垂足分别为F 和E,∵AB ∥CD,AD ∥BC,∴四边形ABCD 为平行四边形,∴∠ADF=∠ABE,∵两纸条宽度相同,∴AF=AE,∵90ADF ABE AFD AEB AF AE ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴△ADF ≌△ABE,∴AD=AB,∴四边形ABCD 为菱形,∴AC 与BD 相互垂直平分,∴BD=22242AB AO -=故本题答案为:2[点睛]本题考察了菱形的相关性质,综合运用了三角形全等和勾股定理,注意辅助线的构造一定要从相关条件以及可运用的证明工具入手,不要盲目作辅助线.17.一次函数y 1=kx+b 与y 2=x+a 的图象如图,则下列结论:①k <0;②a >0;③关于x 的方程kx ﹣x=a ﹣b 的解是x=3;④当x >3时,y 1<y 2中.则正确的序号有____________.[答案]①③④[解析][分析]根据y 1=kx+b 和y 2=x+a 图象可知:k <0,a <0,所以当x >3时,相应的x 的值,y 1图象均低于y 2的图象.[详解]根据图示及数据可知:①k <0正确;②a <0,原来的说法错误;③方程kx+b=x+a 的解是x=3,正确;④当x >3时,y 1<y 2正确.故答案是:①③④.[点睛]考查一次函数的图象,考查学生的分析能力和读图能力,一次函数y=kx+b 的图象有四种情况:①当k >0,b >0,函数y=kx+b 的图象经过第一、二、三象限;②当k >0,b <0,函数y=kx+b 的图象经过第一、三、四象限;③当k <0,b >0时,函数y=kx+b 的图象经过第一、二、四象限;④当k <0,b <0时,函数y=kx+b 的图象经过第二、三、四象限.18.一般地,在平面直角坐标系中,我们求点到直线间的距离,可用下面的公式求解:点()00P x ,y 到直线Ax By C 0++=的距离()d 公式是:0022Ax By C d A B ++=+ 如:求:点()P 1,1到直线2x 6y 90+-=的距离.解:由点到直线的距离公式,得222161910d 4026⨯+⨯-===+ 根据平行线的性质,我们利用点到直线的距离公式,也可以求两平行线间的距离.则两条平行线1l :2x 3y 8+=和2l :2x 3y 180++=间的距离是______.[答案]13[解析][分析]根据题意在1l :238x y +=上取一点()4,0P ,求出点P 到直线2l :23180x y ++=的距离d 即可.[详解]在1l :238x y +=上取一点()4,0P ,点P 到直线2l :23180x y ++=的距离d 即为两直线之间的距离:d ==故答案为[点睛]本题考查了两直线平行或相交问题,一次函数的性质,点到直线距离,平行线之间的距离等知识,解题的关键是学会利用公式解决问题,学会用转化的思想思考问题.三.解答题:(本大题共7小题,共78分)19.02018π)(1)--+- [答案]1.[解析][分析]首先计算乘方、开方,然后计算乘法,最后从左向右依次计算即可[详解02018)(1)π--+-,=1=.[点睛]本题考查了实数的运算,解题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.20.某学校要对如图所示的一块地进行绿化,已知4m AD =,3m CD =,AD DC ⊥,13m AB =,12m BC =,求这块地的面积.[答案]24m 2.[解析][分析]连接AC ,先利用勾股定理求出AC ,再根据勾股定理的逆定理判定△ABC 是直角三角形,根据△ABC 的面积减去△ACD 的面积就是所求的面积.[详解]解:连接AC∵AD DC ⊥∴90ADC ∠=︒在Rt ADC ∆中,根据勾股定理 2222435(m)AC AD CD =+=+=在ABC ∆中,∵22222251213AC BC AB +=+==ABC ∆是直角三角形∴()25123424m 22ABC AC A CD D B S S S ∆∆⨯⨯=-=-=四边形.[点睛]本题考查了勾股定理、勾股定理的逆定理的应用,得到△ABC 是直角三角形是解题的关键.同时考查了直角三角形的面积公式.21.某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.[答案](1)填表:初中平均数为85(分),众数85(分);高中部中位数80(分);(2)初中部成绩好些;(3)初中代表队选手成绩较为稳定.[解析][分析](1)根据成绩表加以计算可补全统计表;根据平均数、众数、中位数的统计意义回答;(2)根据平均数和中位数的统计意义分析得出即可;(3)分别求出初中、高中部的方差即可.[详解]解:(1)填表:(1)填表:初中平均数为:15(75+80+85+85+100)=85(分), 众数85(分);将高中部的数据从小到大进行排列得:70,75,80,100,100,∴高中部中位数80(分);(2)初中部成绩好些,因为两个队的平均数都相同,初中部的中位数高,∴在平均数相同的情况下中位数高的初中部成绩好些;(3)∵21s =15[(75﹣85)2+(80﹣85)2+(85﹣85)2+(85﹣85)2+(100﹣85)2]=70, 22s =15[(70﹣85)2+(100﹣85)2+(100﹣85)2+(75﹣85)2+(80﹣85)2]=160. ∴21s <22s ,因此,初中代表队选手成绩较为稳定.[点睛]此题主要考查了平均数、众数、中位数、方差的统计意义,找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.22.如图,一次函数y ax b =+的图象与正比例函数y kx =的图象交于点M .(1)求正比例函数和一次函数的解析式;(2)根据图象写出使正比例函数的值大于一次函数的值的的取值范围;(3)求MOP △的面积.[答案](1)一次函数表达式为y=2x-2;正比例函数为y=x ;(2)x<2;(3)1.[解析][分析](1)将(0,-2)和(1,0)代入y ax b =+解出一次函数的解析式,将M(2,2)代入正比例函数y kx =解答即可;(2)根据图象得出不等式的解集即可;(3)利用三角形的面积公式计算即可.[详解]()1y ax b =+经过()1,0和()0,2-,0=2k b b+⎧∴⎨-=⎩ 解得k 2=,b 2=-,一次函数表达式为:y 2x 2=-;把()M 2,m 代入y 2x 2=-得m 2222∴=⨯-=,点()M 2,2,直线y kx =过点()M 2,2,22k ∴=,k 1∴=,正比例函数解析式y x =.()2由图象可知,当x 2=时,一次函数与正比例函数相交;x 2<时,正比例函数图象在一次函数上方, 故:x 2<时,x 2x 2>-.()3如图,作MN 垂直x 轴,则MN 2=,OP 1=,MOP ∴的面积为:11212⨯⨯=.[点睛]本题考查了一次函数的图象和性质问题,解题的关键是根据待定系数法解出解析式.23.如图,矩形ABCD 的对角线AC 、BD 交于点O ,且DE ∥AC ,CE ∥BD .(1)求证:四边形OCED 是菱形;(2)若∠BAC=30°,AC=4,求菱形OCED 的面积.[答案](1)证明见解析;(2)3[解析][分析](1)由平行四边形的判定得出四边形OCED 是平行四边形,根据矩形的性质求出OC=OD,根据菱形的判定得出即可.(2)解直角三角形求出BC=2.3连接OE,交CD 于点F,根据菱形的性质得出F 为CD 中点,求出OF=12BC=1,求出OE=2OF=2,求出菱形的面积即可.[详解]()1证明:CE //OD ,DE //OC ,四边形OCED 是平行四边形,矩形ABCD,AC BD ∴=,1OC AC 2=,1OD BD 2=, OC OD ∴=,四边形OCED 菱形;()2在矩形ABCD 中,ABC 90∠=,BAC 30∠=,AC 4=,BC 2∴=,AB DC 23∴==,连接OE,交CD 于点F,四边形OCED 为菱形,F ∴为CD 中点,O 为BD 中点,1OF BC 12∴==, OE 2OF 2∴==,OCED 11S OE CD 2232322∴=⨯⨯=⨯⨯=菱形 [点睛]本题主要考查了矩形的性质和菱形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,注意:菱形的面积等于对角线积的一半.24.已知:甲乙两车分别从相距300千米的A 、B 两地同时出发相向而行,其中甲到达B 地后立即返回,如图是它们离各自出发地的距离y (千米)与行驶时间x (小时)之间的函数图象.(1)求甲车离出发地的距离y甲(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量的取值范围;(2)它们出发92小时时,离各自出发地的距离相等,求乙车离出发地的距离y乙(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量的取值范围;(3)在(2)的条件下,求它们在行驶的过程中相遇的时间.[答案](1)y=100(03)2754080(3)4x xx x≤≤⎧⎪⎨-<≤⎪⎩;(2)=40y x乙(0≤x≤152);(3)两车第一次相遇时间为第157小时,第二次相遇时间为第6小时.[解析][分析](1)由图知,该函数关系在不同的时间里表现成不同的关系,需分段表达.当行驶时间小于3时是正比例函数;当行使时间大于3小时小于274小时是一次函数.可根据待定系数法列方程,求函数关系式;(2)4.5小时大于3小时,代入一次函数关系式,计算出乙车在用了92小时行使的距离.从图象可看出求乙车离出发地的距离y(千米)与行驶时间x(小时)之间是正比例函数关系,用待定系数法可求解;(3)两者相向而行,相遇时甲、乙两车行使的距离之和为300千米,列出方程解答,由题意有两次相遇.[详解](1)当0≤x≤3时,是正比例函数,设为y=kx,当x=3时,y=300,代入解得k=100,所以y=100x;当3<x≤274时,是一次函数,设为y=kx+b,代入两点(3,300)、(274,0),得3300274k bk b+=⎧⎪⎨+=⎪⎩,解得80540kb=-⎧⎨=⎩,所以y=540﹣80x.综合以上得甲车离出发地的距离y与行驶时间x之间的函数关系式为:y=100(03)27 54080(3)4x xx x≤≤⎧⎪⎨-<≤⎪⎩;(2)当x=92时,y甲=540﹣80×92=180;乙车过点(92,180),=40y x乙.(0≤x≤152)(3)由题意有两次相遇.①当0≤x≤3,100x+40x=300,解得x=157;②当3<x≤274时,(540﹣80x)+40x=300,解得x=6.综上所述,两车第一次相遇时间为第157小时,第二次相遇时间为第6小时.[点睛]本题主要考查用待定系数法求一次函数关系式,并会用一次函数研究实际问题,具备在直角坐标系中的读图能力.此题中需注意的是相向而行时相遇的问题.25.现有正方形ABCD和一个以O为直角顶点的三角板,移动三角板,使三角板两直角边所在直线分别与直线BC、CD交于点M、N.(1)如图1,若点O与点A重合,则OM与ON的数量关系是;(2)如图2,若点O在正方形的中心(即两对角线交点),则(1)中的结论是否仍然成立?请说明理由;(3)如图3,若点O在正方形的内部(含边界),当OM=ON时,请探究点O在移动过程中可形成什么图形?(4)如图4,是点O在正方形外部的一种情况.当OM=ON时,请你就“点O的位置在各种情况下(含外部)移动所形成的图形”提出一个正确的结论.(不必说明)[答案](1)OM=ON;(2)成立.(3)O在移动过程中可形成线段AC;(4)O在移动过程中可形成线段AC. [解析]试题分析:(1)根据△OBM与△ODN全等,可以得出OM与ON相等的数量关系;(2)连接AC、BD,则通过判定△BOM≌△CON,可以得到OM=ON;(3)过点O作OE⊥BC,作OF⊥CD,可以通过判定△MOE≌△NOF,得出OE=OF,进而发现点O在∠C的平分线上;(4)可以运用(3)中作辅助线的方法,判定三角形全等并得出结论.试题解析:(1)若点O与点A重合,则OM与ON的数量关系是:OM=ON;(2)仍成立.证明:如图2,连接AC、BD.由正方形ABCD可得,∠BOC=90°,BO=CO,∠OBM=∠OCN=45°.∵∠MON=90°,∴∠BOM=∠CON,在△BOM和△CON中,∵∠OBM=∠OCN,BO=CO,∠BOM=∠CON,∴△BOM≌△CON(ASA),∴OM=ON;(3)如图3,过点O作OE⊥BC,作OF⊥CD,垂足分别为E、F,则∠OEM=∠OFN=90°.又∵∠C=90°,∴∠EOF=90°=∠MON,∴∠MOE=∠NOF.在△MOE和△NOF中,∵∠OEM=∠OFN,∠MOE=∠NOF,OM=ON,∴△MOE≌△NOF(AAS),∴OE=OF.又∵OE⊥BC,OF⊥CD,∴点O在∠C的平分线上,∴O在移动过程中可形成线段AC;(4)O在移动过程中可形成直线AC.考点:四边形综合题;全等三角形的判定与性质;角平分线的性质;探究型;操作型;压轴题.。

人教版数学八年级下册《期中检测试卷》(含答案)

人教版数学八年级下册《期中检测试卷》(含答案)

人教版数学八年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题1.若a>b,则下列不等式成立的是( )A. a2>b2B. 1﹣a>1﹣bC. 3a﹣2>3b﹣2D. a﹣4>b﹣32.如图,在Rt△ABD中,∠BDA=90°,AD=BD,点E在AD上,连接BE,将△BED绕点D顺时针旋转90°,得到△ACD,若∠BED=65°,则∠ACE的度数为( )A. 15°B. 20°C. 25°D. 30°3.一个多边形的内角和与外角和的比为5:2,则这个多边形是( )A. 五边形B. 六边形C. 七边形D. 八边形4.下列命题是真命题是( )A. 如果x2>0,则x>0B. 平行四边形是轴对称图形C. 等边三角形是中心对称图形D. 一条直角边相等且另一条直角边上的中线相等的两个直角三角形全等5.如图,在等边△ABC中,点D、E分别是BC、AB边上的点,且AE=BD,AD与CE交于点F,则∠DFC的度数为( )A. 45°B. 60°C. 65°D. 75°6.一项工程,甲独做ah 完成,乙单独做bh 完成,甲、乙两人一起完成这项工程所需的时间为( ) A. 1a b +h B. (a +b )h C. a b ab +h D. ab a b+h 7.已知3x y +=,12xy =,则多项式2233+x y 值为( ). A. 24 B. 20 C. D.8.如图,在△ABC 中,∠A=90°,AB=AC=6,点D 是BC 中点,点E 、F 分别在AB 、AC 上,且BE=AF,则四边形AEDF 的面积为( )A. 6B. 7C. 62D. 9二、填空题9.不等式组21023x x x +>⎧⎨>-⎩的正整数解为__. 10.若31x x +-有意义,则x 的取值范围是__. 11.如图,在△ABC 中,∠B =45°,∠C =30°,AB 的垂直平分线分别交BC 、AB 于点D 、E ,AC 的垂直平分线分别交BC 、AC 于点F 、G ,DF =1,则BC =__.12.若关于x 的一次函数y =x +3a ﹣12的图象与y 轴的交点在x 轴上方,则a 的取值范围是__.13.若一个长方形长、宽分别为a 、b ,周长为12,面积为8,则a 2b +ab 2=__.14.如图,在△ABC 中,AB =5,AC =3,AD 、AE 分别是它的角平分线和中线,过点C 作CG ⊥AD ,垂足为点F ,连接EF ,则EF =__.15.若x 2﹣mx +9是个完全平方式,则m 的值是__.16.如图,在平行四边形ABCD 中,AB =6,AD =9,AF 平分∠BAD 交BC 于点E ,交DC 的延长线于点F ,BG ⊥AF 于点G ,BG =42,EF =12AE ,则△CEF 的周长为__.三、解答题17.(1)解不等式组:()21511325131x x x x -+⎧-≤⎪⎨⎪-<+⎩(2)先化简再求值:2224224422a a a a a a a ⎛⎫-+-÷ ⎪-+--⎝⎭,请从0,1,2中选择一个合适的数作为a 的值. 18.分解因式:(1)(x 2+x )2﹣(5x +9)2 (2)(m ﹣1)3﹣2(1﹣m )2+(m ﹣1)19.在平面直角坐标系中,△ABC 位置如图所示,三个顶点的坐标分别为:A (1,2)、B (2,3)、C (3,0).(1)现将△ABC 先向左平移5个单位长度,再向上平移2个单位长度,得到△A 1B 1C 1,请在平面直角坐标系中画出△A 1B 1C 1.(2)此时平移的距离是 ;(3)在平面直角坐标系中画出△ABC 关于点O 成中心对称的△A 2B 2C 2.20.某市为治理污水,需要铺设一段全长为3000m污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加25%,结果提前天完成这一任务,实际每天铺设多长管道?21.暑假期间,两名家长计划带领若干名学生去旅游,他们联系了报价均为每人1000元的两家旅行社,经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按七折收费;乙旅行社的优惠条件是家长、学生都按八折收费.假设这两位家长带领x名学生去旅游,他们应该选择哪家旅行社?22.如图,在△ABC中,∠ACB=90°,CD⊥AB垂足为D,AE平分∠CAB交CD于点F,交BC于点E,EH⊥AB,垂足为H,连接FH.求证:(1)CF=CE(2)四边形CFHE是平行四边形.23.如图,在△ABC中,∠ACB=90°,AC=BC,D为BC中点,DE⊥AB,垂足为点E,过点B作BF∥AC交DE的延长线于点F,连接CF、AF、AD,AD与CF交于点G.(1)求证:△ACD≌△CBF;(2)AD与CF的关系是;(3)求证:△ACF是等腰三角形;(4)△ACF可能是等边三角形吗? (填“可能”或“不可能”).答案与解析一、选择题1.若a >b ,则下列不等式成立的是( )A. a 2>b 2B. 1﹣a >1﹣bC. 3a ﹣2>3b ﹣2D. a ﹣4>b ﹣3[答案]C[解析][分析]根据不等式的基本性质即可判断.[详解]A :当a b < 时不成立,错误;B :0a b <<时不成立,错误;C :符合不等式的基本性质,正确;D :33a b ->- ,错误.故答案选:C[点睛]本题考查不等式的基本性质,理解不等式的基本性质是解题关键.2.如图,在Rt△ABD 中,∠BDA=90°,AD=BD,点E 在AD 上,连接BE,将△BED 绕点D 顺时针旋转90°,得到△ACD ,若∠BED=65°,则∠ACE 的度数为( )A. 15°B. 20°C. 25°D. 30°[答案]B[解析][分析] 根据旋转的性质得出:65BED ACD ∠=∠=︒,EDC ∆是等腰直角三角形,从而求解.[详解]∵90BDA ∠=︒,将△BED 绕点D 顺时针旋转90°,得到△ACD ,∠BED=65°∴65BED ACD ∠=∠=︒,EDC ∆是等腰直角三角形∴45ECD ∠=︒∴20ACE ACD ECD ∠=∠-=︒故答案选:B[点睛]本题考查旋转的性质,掌握相关的线段与角度的转换是解题关键.3.一个多边形的内角和与外角和的比为5:2,则这个多边形是( )A. 五边形B. 六边形C. 七边形D. 八边形[答案]C[解析][分析]根据多边形的外角和为360︒和内角和公式()1802n ︒- 进行求算即可.[详解]∵一个多边形内角和与外角和的比为5:2,且多边形的外角和为360︒∴这个多边形的内角和为900︒∴()1802=900n ︒-︒∴7n =故答案选:C[点睛]本题考查多边形内角和公式与多边形外角和,掌握多边形内角和公式以及多边形的外角和为360︒是解题关键.4.下列命题是真命题的是( )A. 如果x 2>0,则x >0B. 平行四边形是轴对称图形C. 等边三角形是中心对称图形D. 一条直角边相等且另一条直角边上的中线相等的两个直角三角形全等[答案]D[解析][分析]根据不等式的性质、轴对称图形、中心对称图形和全等三角形的判定进行一一判断即可.[详解]A :当0x <时,满足20x >,错误;B :根据轴对称图形的概念知:平行四边形不是轴对称图形,错误;C :根据中心对称图形的概念知:等边三角形不是中心对称图形,错误;D :如图:当,AC DF AG DH ==时:∴()ACG DFH HL ∆≅∆∴CG FH =∴CB FE =∴()ACB DFE SAS ∆≅∆ ,D 正确故答案选:D[点睛]本题考查不等式的性质、轴对称图形、中心对称图形和全等三角形的判定,掌握相关的性质与概念以及判定方法是解题关键.5.如图,在等边△ABC 中,点D 、E 分别是BC 、AB 边上点,且AE =BD ,AD 与CE 交于点F ,则∠DFC 的度数为( )A. 45°B. 60°C. 65°D. 75°[答案]B[解析][分析] 根据题目中的条件判断ABD CAE ∆≅∆,再利用外角定理得出DFC FAC ACF ∠=∠+∠,转化角度从而得出答案.[详解]∵ABC ∆是等边三角形,且AE BD =∴,60AB AC B EAC =∠=∠=︒∴ABD CAE ∆≅∆(SAS)∴BAD ACF ∠=∠∴=60DFC FAC ACF FAC BAD BAC ∠=∠+∠∠+∠=∠=︒故答案选:B .[点睛]本题考查等边三角形的性质以及全等三角形的判定,掌握相关的角度转化是解题关键.6.一项工程,甲独做ah 完成,乙单独做bh 完成,甲、乙两人一起完成这项工程所需的时间为( ) A. 1a b +h B. (a +b )h C. a b ab +h D. ab a b+h [答案]D[解析][分析]设工作总量为单位“1”,分别表示出甲乙的工作效率,再根据工作总量=工作效率×工作时间建立方程即可求解.[详解]解:设工作总量为单位“1”, 设甲、乙两人一起完成这项工程所需的时间为xh∵甲独做ah 完成,乙单独做bh 完成 ∴甲乙的工作效率分别为11,a b根据题意可得:111x a b ⎛⎫+=⎪⎝⎭ 解得:ab x a b=+ 故答案选:D[点睛]本题考查一元一次方程工程问题,将工作总量设为单位“1”以及建立等量关系是解题关键. 7.已知3x y +=,12xy =,则多项式2233+x y 值为( ). A. 24B. 20C.D.[答案]A[解析]试题解析:∵x +y =3,2229x xy y ∴++=, 12xy =, ()223339124.x y ∴+=-=故选A.8.如图,在△ABC 中,∠A=90°,AB=AC=6,点D 是BC 中点,点E 、F 分别在AB 、AC 上,且BE=AF,则四边形AEDF 的面积为( )A. 6B. 7C. 62D. 9[答案]D[解析][分析] 连接AD ,根据等腰直角三角形的性质以及BE=AF 得出ADE CDF ∆≅,将四边形AEDF 的面积转化为三角形ADC 的面积再进行求解.[详解]解:连接AD ,如图:∵∠A=90°,AB=AC=6,点D 是BC 中点,BE=AF∴,45,AE CF BAD B C AD BD DC =∠=∠=∠=︒==∴ADE CDF ∆≅(SAS )∴12AED ADF CFD ADF ADC ABC AEDF S S S S S S S ∆∆∆∆∆∆=+=+==四 又∵166182ABC S ∆== ∴1=92ABC AEDF S S ∆=四 故答案选:D[点睛]本题考查等腰直角三角形的性质以及三角形全等的性质与判定,掌握相关的线段与角度的转化是解题关键.二、填空题9.不等式组21023x x x +>⎧⎨>-⎩的正整数解为__. [答案]1,2[解析][分析]分别解不等式求出公共部分,然后求正整数解.[详解]解:21023x x x +>⎧⎨>-⎩①②由①得:12x >- 由②得:3x < ∴不等式组的解集为:132x -<< ∴正整数解为:1,2故答案为:1,2.[点睛]本题考查一元一次不等式组的整数解,掌握不等式组的求解是解题关键.10.若1x -有意义,则x 的取值范围是__. [答案]x ≥﹣3且x ≠1[解析][分析]根据二次根式和分式有意义的条件进行求算.[详解]二次根式有意义的条件是被开方数是非负数:303x x +≥⇒≥-分式有意义的条件是分母不为零:101x x -≠⇒≠∴x 的取值范围是:3x ≥-且1x ≠故答案为:3x ≥-且1x ≠.[点睛]本题考查了式子有意义的条件,掌握二次根式有意义的条件是被开方数是非负数、分式有意义的条件是分母不为零是解题关键.11.如图,在△ABC 中,∠B =45°,∠C =30°,AB 的垂直平分线分别交BC 、AB 于点D 、E ,AC 的垂直平分线分别交BC 、AC 于点F 、G ,DF =1,则BC =__.[答案]3+3[解析][分析]过点D 作DH AF ⊥交AF 于H,根据∠B =45°,∠C =30°,以及DE,FG 分别为AB,AC 的垂直平分线得出60,30AFD DAF ∠=︒∠=︒,再根据特殊角解直角三角形即可.[详解]过点D 作DH AF ⊥交AF 于H,如图:∵45,30B C ∠=︒∠=︒,DE,FG 分别为AB,AC 的垂直平分线∴,,,AD BD AF FC B BAD C FAC ==∠=∠∠=∠∴60,30AFD DAF ∠=︒∠=︒又∵1DF =∴13,222FH DH AD AH ====∴2AD BD AF FC AH HF ====+=∴BC 的长为:故答案为:[点睛]本题考查垂直平分线的性质以及直角三角形中特殊角的应用,掌握相关的线段与角的转化是解题关键.12.若关于x 的一次函数y =x +3a ﹣12的图象与y 轴的交点在x 轴上方,则a 的取值范围是__.[答案]a >4[解析][分析]根据函数关系式求出与y 轴的交点,再根据图象与y 轴的交点在x 轴上方建立不等式求解.[详解]对于关于x 的一次函数y =x +3a ﹣12令0x =,解得:312y a =-∴该图象与y 轴的交点为()0,312a -又∵图象与y 轴的交点在x 轴上方∴3120a ->解得:4a >故答案为:4a >[点睛]本题考查了一次函数与y 轴的交点特征,掌握一次函数与y 轴的交点求算是解题关键.13.若一个长方形的长、宽分别为a 、b ,周长为12,面积为8,则a 2b +ab 2=__.[答案]48[解析]分析]根据一个长方形长、宽分别为a 、b ,周长为12,面积为8,可以得到a+b 的值和ab 的值,从而可以得到a 2b+ab 2的值.[详解]解:∵一个长方形的长、宽分别为a、b,周长为12,面积为8,∴2(a+b)=12,ab=8,∴a+b=6,ab=8,∴a2b+ab2=ab(a+b)=8×6=48,故答案为:48.[点睛]本题考查因式分解的应用,解题的关键是明确题意,求出a+b的值和ab的值.14.如图,在△ABC中,AB=5,AC=3,AD、AE分别是它的角平分线和中线,过点C作CG⊥AD,垂足为点F,连接EF,则EF=__.[答案]1[解析][分析]首先证明AG=AC,再证明EF是△BCG的中位线,根据EF=12BG即可解决问题.[详解]解:∵∠DAG=∠DAC,AD⊥AFC,∴∠AFC=∠AFG=90°,∴∠AGC+∠GAF=90°,∠ACG+∠CAF=90°, ∴∠AGC=∠ACG,∴AG=AC=3,GF=FC,∵BE=CE,∴EF=12BG=12(ABAG)=12×(53)=1,故答案为:1.[点睛]本题考查三角形中位线定理、等腰三角形的判定和性质、角平分线的定义,中线的定义等知识,解题的关键是根据已知条件证明△AGC 是等腰三角形,属于中考常考题型.15.若x 2﹣mx +9是个完全平方式,则m 的值是__.[答案]±6 [解析][分析]根据完全平方公式:()2222a ab b a b ±+=± 去分类讨论即可.[详解]完全平方公式:()2222a ab b a b ±+=± ∴()2293x mx x -+=±∴6m =±故答案为:6±[点睛]本题考查完全平方公式,掌握相关公式是解题关键.16.如图,在平行四边形ABCD 中,AB =6,AD =9,AF 平分∠BAD 交BC 于点E ,交DC 的延长线于点F ,BG ⊥AF 于点G ,BG =42,EF =12AE ,则△CEF 的周长为__.[答案]8[解析][分析]判断出△ADF 是等腰三角形,△ABE 是等腰三角形,DF 的长度,继而得到EC 的长度,在Rt △BGE 中求出GE ,继而得到AE ,求出△ABE 的周长,根据EF=12AE ,求出EF 即可得出△EFC 的周长. [详解]∵在▱ABCD 中,AB=CD=6,AD=BC=9,∠BAD 的平分线交BC 于点E ,∴∠BAF=∠DAF ,∵AB ∥DF ,AD ∥BC ,∴∠BAF=∠F=∠DAF ,∠BAE=∠AEB ,∴AB=BE=6,AD=DF=9,∴△ADF 是等腰三角形,△ABE 是等腰三角形,∵AD ∥BC ,∴△EFC 是等腰三角形,且FC=CE ,∴EC=FC=9﹣6=3,在△ABG 中,BG ⊥AE ,AB=6,BG=,∴=2,∴AE=2AG=4, 又∵12EF AE =, ∴EF=2,∴△CEF 的周长为EF+CE+CF=2+3+3=8.故答案为:8.[点睛]本题考查等腰三角形的判定与性质;平行四边形的性质和勾股定理的应用. 三、解答题17.(1)解不等式组:()21511325131x x x x -+⎧-≤⎪⎨⎪-<+⎩(2)先化简再求值:2224224422a a a a a a a ⎛⎫-+-÷ ⎪-+--⎝⎭,请从0,1,2中选择一个合适的数作为a 的值. [答案](1)﹣1≤x <2;(2)12a +,13[解析][分析](1)分别解每一个不等式,再求出公共部分;(2)先将式子进行化简,再代入求值.[详解](1)()21511325131x x x x -+⎧-≤⎪⎨⎪-<+⎩①② 由①得:()()2213516x x --+≤ ,解得:1x ≥- ;由②得:2x <∴不等式组的解集为:12x -≤<(2)原式=()()()()22222222a a a a a a a ⎡⎤-+--⨯⎢⎥-+-⎢⎥⎣⎦=()222a a a a a -⨯-+ =12a + 根据题意:不能取0,2 ∴当1a =时,原式=11=1+23 [点睛]本题考查一元一次不等式组以及分式的化简求值,注意分式化简求值最终取值需满足分母不为零. 18.分解因式:(1)(x 2+x )2﹣(5x +9)2 (2)(m ﹣1)3﹣2(1﹣m )2+(m ﹣1)[答案](1)(x +3)2(x 2﹣4x ﹣9);(2)(m ﹣1)(m ﹣2)2[解析][分析](1)利用平方差公式进行因式分解,即可得到答案;(2)先提公因式,然后利用完全平方公式进行因式分解,即可得到答案.[详解]解:(1)原式=(x 2+x +5x +9)(x 2+x ﹣5x ﹣9)=(x +3)2(x 2﹣4x ﹣9);(2)原式=(m ﹣1)[(m ﹣1)2﹣2(m ﹣1)+1]=(m ﹣1)(m ﹣2)2.[点睛]本题考查了因式分解,解题的关键是熟练掌握提公因式、平方差公式、完全平方公式进行因式分解.19.在平面直角坐标系中,△ABC的位置如图所示,三个顶点的坐标分别为:A(1,2)、B(2,3)、C(3,0).(1)现将△ABC先向左平移5个单位长度,再向上平移2个单位长度,得到△A1B1C1,请在平面直角坐标系中画出△A1B1C1.(2)此时平移的距离是;(3)在平面直角坐标系中画出△ABC关于点O成中心对称的△A2B2C2.[答案](1)见解析;(229[解析][分析](1)利用点平移的坐标规律写出点A、B、C平移后的对应点A1、B1、C1,然后描点即可得到△A1B1C1.(2)利用勾股定理计算;(3)利用关于原点对称的点的坐标特征写出点A、B、C的对应点A2、B2、C2,然后描点即可得到△A2B2C2.[详解]解答:解:(1)如图,△A1B1C1为所作;(2)225229+=29(3)如图,△A2B2C2为所作.[点睛]本题考查了作图−旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.20.某市为治理污水,需要铺设一段全长为3000m的污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加25%,结果提前天完成这一任务,实际每天铺设多长管道?[答案]实际每天铺设25m长管道.[解析]试题分析:解:设原计划每天铺设x m管道,则实际每天铺设5 (125%)4x x +=,故300030003054x x-=,解得x=20.经检验,x=20是原方程的解,且符合题意,5254x∴=,∴实际每天铺设25m长管道.考点:分式方程应用点评:本题难度中等,主要考查学生运用分式方程解决工程问题的实际应用能力.注意检验增根情况.21.暑假期间,两名家长计划带领若干名学生去旅游,他们联系了报价均为每人1000元的两家旅行社,经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按七折收费;乙旅行社的优惠条件是家长、学生都按八折收费.假设这两位家长带领x名学生去旅游,他们应该选择哪家旅行社?[答案]①当这两位家长带领的学生数少于4人去旅游,他们应该选择乙家旅行社;②当这两位家长带领的学生数为4人去旅游,他们选择甲、乙两家旅行社一样;③当这两位家长带领的学生数多于4人去旅游,他们应该选择甲家旅行社[解析][分析]设甲旅行社的收费为y1,乙旅行社的收费为y2,然后讨论:若y1>y2,y1=y2,y1<y2,分别求出对应的x的取值范围,即可判断选择哪家旅行社.[详解]解:设甲旅行社的收费为y1,乙旅行社的收费为y2,根据题意得,y1=2×1000+0.7×1000x=700x+2000,y2=(x+2)×0.8×1000=800x+1600,若y1>y2,即700x+2000>800x+1600,解得x<4;若y1=y2,即700x+2000=800x+1600,解得x=4;若y1<y2,即700x+2000<800x+1600,解得x>4.∴①当这两位家长带领的学生数少于4人去旅游,他们应该选择乙家旅行社;②当这两位家长带领的学生数为4人去旅游,他们选择甲、乙两家旅行社一样;③当这两位家长带领的学生数多于4人去旅游,他们应该选择甲家旅行社.[点睛]本题考查了一次函数的应用:根据题意列出一次函数关系式y=kx+b(k≠0),然后比较函数值的大小得到对应的x的取值范围,从而确定省钱的方案.22.如图,在△ABC中,∠ACB=90°,CD⊥AB垂足为D,AE平分∠CAB交CD于点F,交BC于点E,EH⊥AB,垂足为H,连接FH.求证:(1)CF=CE(2)四边形CFHE是平行四边形.[答案](1)见解析;(2)见解析.[解析][分析](1)利用垂直的定义结合角平分线的性质以及互余的性质得出∠4=∠5,进而得出答案;(2)根据题意分别得出CF∥EH,CF=EH,进而得出答案.[详解]证明(1)如图所示:∵∠ACB=90°,CD⊥AB垂足为D,∴∠1+∠5=90°,∠2+∠3=90°,又∵∠AE平分∠CAB,∴∠1=∠2,∴∠3=∠5,∵∠3=∠4,∴∠4=∠5,∴CF=CE;(2)∵AE平分∠CAB,CE⊥AC,EH⊥AB,∴CE=EB,由(1)知,CF=CE,∴CF=EH,∵CD⊥AB,EH⊥AB,∴∠CDB=90°,∠EHB=90°,∴∠CDB=∠EHB,∴CD∥EH,即CF∥EH,∴四边形CFHE是平行四边形.[点睛]本题考查了平行四边形的性质、角平分线性质等知识点的应用,熟练应用等腰三角形的性质是解题关键.23.如图,在△ABC中,∠ACB=90°,AC=BC,D为BC中点,DE⊥AB,垂足为点E,过点B作BF∥AC交DE的延长线于点F,连接CF、AF、AD,AD与CF交于点G.(1)求证:△ACD≌△CBF;(2)AD与CF的关系是;(3)求证:△ACF是等腰三角形;(4)△ACF可能是等边三角形吗? (填“可能”或“不可能”).[答案](1)见解析;(2)AD=CF,且AD⊥CF;(3)见解析;(4)不可能[解析][分析](1)∠CAB=∠CBA=45︒,且BF∥AC,则∠FBE=∠CAB=45︒,则∠DBF=90︒,又DE⊥AB,则∠BDE=45︒,则△BDF为等腰直角三角形,∴DB=BF,又D为BC中点,所以CD=BF.即可证明△ACD≌△CBF.(2)由△ACD≌△CBF可判断,AD=CF,又∠CAD=∠BCF,则∠CGD=90︒,所以AD⊥CF.(3)由(1)知AB垂直平分DF,由三线合一知△ADF是等腰三角形,则AD=AF,由(2)知AD=CF,所以AF=CF,即可证明.(4)在Rt△A C D中易知,AD>AC,又AD=AF=CF,所以△ACF不可能是等边三角形.[详解](1)证明:∵∠ACB=90°,AC=BC,∴∠CBA=∠CAB=45°,∵BF∥AC,∴∠FBE=∠CAB=45°,∴∠CBF=90°,又DE⊥AB,∴∠FDB=45°,∴∠DFB=45°,∴BD=BF,又D为BC中点,∴CD=BF,在△ACD和△CBF中,CD BF ACD CBF AC BC =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△CBF ;(2)∵△ACD ≌△CBF ,∴AD =CF ,∠CAD=∠BCF ∴∠CAD+∠CDA=∠BCF+∠CDA=90︒ ∴AD ⊥CF故答案为:AD =CF 且AD ⊥CF ;(3)由(2)知∵DF ⊥AE ,DE =EF ,由三线合一可知,△ADF 是等腰三角形 ∴AD =AF ,∵AD =CF ,∴AF =CF ,∴△ACF 是等腰三角形;(4)在Rt △ACF 中,AC <AD , 由(2)知,AD=AF∴AC <AF ,∴△ACF 不可能是等边三角形, 故答案为:不可能.[点睛]本题考查了三角形的全等的判定和性质,等腰三角形的判定等知识点,熟练掌握相关知识点是解题关键.。

人教版八年级数学下册期中试卷及答案【完整版】

人教版八年级数学下册期中试卷及答案【完整版】

人教版八年级数学下册期中试卷及答案【完整版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.64的立方根是()A.4 B.±4 C.8 D.±82.已知a、b、c是△ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为()A.2a+2b-2c B.2a+2b C.2c D.03.对于函数y=2x﹣1,下列说法正确的是()A.它的图象过点(1,0)B.y值随着x值增大而减小C.它的图象经过第二象限D.当x>1时,y>04.实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b| B.|ac|=ac C.b<d D.c+d>0 5.若45+a =5b(b为整数),则a的值可以是()A.15B.27 C.24 D.206.下列长度的三条线段能组成直角三角形的是()A.3, 4,5 B.2,3,4 C.4,6,7 D.5,11,12 7.在平面直角坐标中,点M(-2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限8.如图,在平行四边形ABCD中,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE,BF相交于H,BF与AD的延长线相交于点G,下面给出四个结论:①2BD BE;②∠A=∠BHE;③AB=BH;④△BCF≌△DCE,其中正确的结论是()A.①②③B.①②④C.②③④D.①②③④9.如图,AB∥CD,点E在线段BC上,CD=CE,若∠ABC=30°,则∠D为()A.85°B.75°C.60°D.30°10.如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于()A.40°B.45°C.50°D.55°二、填空题(本大题共6小题,每小题3分,共18分)1.9的平方根是_________.2.若最简二次根式1a+与8能合并成一项,则a=__________.3.使x2-有意义的x的取值范围是________.4.如图,已知∠XOY=60°,点A在边OX上,OA=2.过点A作AC⊥OY于点C,以AC为一边在∠XOY内作等边三角形ABC,点P是△ABC围成的区域(包括各边)内的一点,过点P作PD∥OY交OX于点D,作PE∥OX交OY于点E.设OD=a,OE=b,则a+2b的取值范围是________.5.如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3= _________度。

人教版八年级数学下册各单元及期中期末测试题及答案【精品全套共7套】

人教版八年级数学下册各单元及期中期末测试题及答案【精品全套共7套】

人教版八年级数学下册各单元及期中期末测试题及答案【精品全套 共7套】第十六章 分式单元测试题(时间90分钟 满分100分)班级____________姓名____________学号____________成绩______一、选一选(请将唯一正确答案代号填入题后的括号内,每小题3分,共30分) 1.已知x ≠y ,下列各式与x yx y-+相等的是( ).(A )()5()5x y x y -+++ (B)22x yx y -+ (C) 222()x y x y -- (D )2222x y x y -+2.化简212293m m +-+的结果是( ). (A )269m m +- (B)23m - (C)23m + (D )2299m m +-3.化简3222121()11x x x x x x x x --+-÷+++的结果为( ).(A)x-1 (B)2x-1 (C)2x+1 (D)x+14.计算11()a a a a -÷-的正确结果是( ). (A )11a + (B )1 (C )11a - (D )-15.分式方程1212x x =--( ).(A )无解 (B )有解x=1 (C )有解x=2 (D )有解x=0 6.若分式21x +的值为正整数,则整数x 的值为( )(A )0 (B )1 (C )0或1 (D )0或-17.一水池有甲乙两个进水管,若单独开甲、乙管各需要a 小时、b 小时可注满空池;现两管同时打开,那么注满空池的时间是( )(A )11a b + (B )1ab (C )1a b + (D )ab a b+ 8.汽车从甲地开往乙地,每小时行驶1v km ,t 小时可以到达,如果每小时多行驶2v km ,那么可以提前到达的小时数为 ( )(A )212v t v v + (B ) 112v t v v + (C )1212v v v v + (D )1221v t v tv v -9.下列说法:①若a ≠0,m,n 是任意整数,则a m .a n =a m+n; ②若a 是有理数,m,n 是整数,且mn>0,则(a m )n =a mn ;③若a ≠b 且ab ≠0,则(a+b)0=1;④若a 是自然数,则a -3.a 2=a -1.其中,正确的是( ).(A )① (B )①② (C )②③④ (D )①②③④10.张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x 千米,依题意,得到的方程是:( )(A )1515112x x -=+ (B )1515112x x -=+ (C )1515112x x -=- (D )1515112xx -=- 二、填一填(每小题4分,共20分) 11.计算22142a a a -=-- . 12.方程 3470x x=-的解是 . 13.计算 a 2b 3(ab 2)-2= . 14.瑞士中学教师巴尔末成功地从光谱数据9162536,,,,5122132中得到巴尔末公式,从而打开了光谱奥秘的大门,请你按这种规律写出第七个数据是 .15.如果记 221x y x =+ =f(x),并且f(1)表示当x=1时y 的值,即f(1)=2211211=+;f(12)表示当x=12时y 的值,即f(12)=221()12151()2=+;……那么f(1)+f(2)+f(12)+f(3)+f(13)+…+f(n)+f(1n)= (结果用含n 的代数式表示). 三、做一做16.(7分)先化简,再求值:62393m m m m -÷+--,其中m=-2.17.(7分)解方程:11115867x x x x +=+++++.18.(8分)有一道题“先化简,再求值: 2221()244x x x x x -+÷+-- 其中,x=-3”小玲做题时把“x=-3”错抄成了“x=3”,但她的计算结果也是正确的,请你解释这是怎么回事?19.(9分)学校用一笔钱买奖品,若以1支钢笔和2本日记本为一份奖品,则可买60份奖品;若以1支钢笔和3本日记本为一份奖品,则可买50份奖品,问这笔钱全部用来买钢笔或日记本,可买多少?20.(9分)A 、B 两地相距80千米,甲骑车从A 地出发1小时后,乙也从A 地出发,以甲的速度的1.5倍追赶,当乙到达B 地时,甲已先到20分钟,求甲、乙的速度.四、试一试21.(10分)在数学活动中,小明为了求 2341111122222n+++++的值(结果用n 表示),设计如图1所示的几何图形.(1)请你利用这个几何图形求2341111122222n+++++的值为 ; (2)请你利用图2,再设计一个能求2341111122222n+++++的值的几何图形.第十七章 反比例函数单元测试题(时间90分钟 满分100分)班级____________姓名__________________座号____________成绩____________ 一、选择题(每题4分,共24分)1.下列函数关系式中不是表示反比例函数的是( )12 212图2图1A .xy=5B .y=53xC .y=-3x -1D .y=23x - 2.若函数y=(m+1)231mm x ++是反比例函数,则m 的值为( )A .m=-2B .m=1C .m=2或m=1D .m=-2或-1 3.满足函数y=k (x-1)和函数y=kx(k ≠0)的图象大致是( )4.在反比例函数y=-1x的图象上有三点(x 1,y 1),(x 2,y 2),(x 3,y 3),若x 1>x 2>0>x 3,则下列各式正确的是( )A .y 3>y 1>y 2B .y 3>y 2>y 1C .y 1>y 2>y 3D .y 1>y 3>y 2 5.如图所示,A 、C 是函数y=1x的图象上的任意两点,过A 点作AB ⊥x 轴于点B ,过C•点作CD ⊥y 轴于点D ,记△AOB 的面积为S 1,△COD 的面积为S 2,则( )A .S 1>S 2B .S 1<S 2C .S 1=S 2D .无法确定6.如果反比例函数y=kx的图象经过点(-4,-5),那么这个函数的解析式为( ) A .y=-20x B .y=20x C .y=20x D .y=-20x二、填空题(每题5分,共30分) 7.已知y=(a-1)22a x-是反比例函数,则a=_____.8.在函数13x -中自变量x 的取值范围是_________. 9.反比例函数y=kx(k ≠0)的图象过点(-2,1),则函数的解析式为______,在每一象限内 y 随x 的增大而_________.10.已知函数y=kx的图象经过(-1,3)点,如果点(2,m )•也在这个函数图象上,•则m=_____. 11.已知反比例函数y=12mx-的图象上两点A (x 1,y 1),B (x 2,y 2),当x 1〈0〈x 2时有y 1〈y 2,则m 的取值范围是________.12.若点A (x 1,y 1),B (x 2,y 2)在双曲线y=kx(k>0)上,且x 1>x 2>0,则y 1_______y 2. 三、解答题(共46分) 13.(10分)设函数y=(m-2)255m m x -+,当m 取何值时,它是反比例函数?•它的图象位于哪些象限?求当12≤x ≤2时函数值y 的变化范围. 14.(12分)已知y =y 1+y 2,y 1与x 成正比例,y 2与x 成反比例,并且当x=-1时,y=-1,•当x=2时,y=5,求y 关于x 的函数关系式. 15.(10分)水池内储水40m 3,设放净全池水的时间为T 小时,每小时放水量为Wm 3,规定放水时间不得超过20小时,求T 与W 之间的函数关系式,指出是什么函数,并求W 的取值范围.16.(14分)如图所示,点A 、B 在反比例函数y=kx的图象上,且点A 、B•的横坐标分别为a 、2a (a>0),AC ⊥x 轴于点C ,且△AOC 的面积为2. (1)求该反比例函数的解析式. (2)若点(-a ,y 1)、(-2a ,y 2)在该函数的图象上,试比较y 1与y 2的大小. (3)求△AOB 的面积.第18章 勾股定理单元测试(时间:100分钟 总分:120分)班级 学号 姓名 得分一、相信你一定能选对!(每小题4分,共32分)1. 三角形的三边长分别为6,8,10,它的最短边上的高为( )A . 6B . 4.5C . 2.4D . 82. 下面几组数:①7,8,9;②12,9,15;③m 2 + n 2, m 2–n 2, 2mn (m ,n 均为正整数,m >n );④2a ,12+a ,22+a .其中能组成直角三角形的三边长的是( ) A . ①② B . ②③ C . ①③ D . ③④3. 三角形的三边为a 、b 、c ,由下列条件不能判断它是直角三角形的是( )A .a :b :c=8∶16∶17B . a 2-b 2=c 2C .a 2=(b+c)(b-c)D . a :b :c =13∶5∶12 4. 三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( )A . 等边三角形B . 钝角三角形C . 直角三角形D . 锐角三角形. 5.已知一个直角三角形的两边长分别为3和4,则第三边长是( ) A .5 B .25 C .7 D .5或76.已知Rt △ABC 中,∠C =90°,若a +b =14cm ,c =10cm ,则Rt △ABC 的面积是( )A. 24cm 2B. 36cm 2C. 48cm 2D. 60cm27.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( )A .121B .120C .90D .不能确定8. 放学以后,小红和小颖从学校分手,分别沿东南方向和西南方向回家,若小红和小颖行走的速度都是40米/分,小红用15分钟到家,小颖20分钟到家,小红和小颖家的直线距离为( ) A .600米 B . 800米 C . 1000米 D. 不能确定 二、你能填得又快又对吗?(每小题4分,共32分)9. 在△ABC 中,∠C=90°, AB =5,则2AB +2AC +2BC =_______.10. 如图,是2002年8月北京第24届国际数学家大会会标,由4个全等的直角三角形拼合而成.如果图中大、小正方形的面积分别为52和4,那么一个直角三角形的两直角边的和等于 .11.直角三角形两直角边长分别为5和12,则它斜边上的高为_______. 12.直角三角形的三边长为连续偶数,则这三个数分别为__________.13. 如图,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有______米. 14.如图所示,是一个外轮廓为矩形的机器零件平面示意图,根据图中标出尺寸(单位:mm )计算两圆孔中心A 和B 的距离为 .15.如图,梯子AB 靠在墙上,梯子的底端A 到墙根O 的距离为2米,梯子的顶端B 到地面的距离为7米.现将梯子的底端A 向外移动到A ’,使梯子的底端A ’到墙根O 的距离等于3米,同时梯子的顶端 B 下降至 B ’,那么 BB ’的值: ①等于1米;②大于1米5;③小于1米.其中正确结论的序号是.16.小刚准备测量河水的深度,他把一根竹竿插到离岸边1.5m 远的水底,竹竿高出水面0.5m ,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,河水的深度为 . 三、认真解答,一定要细心哟!(共72分) 17.(5分)右图是由16个边长为1的小正方形拼成的,任意连结这些小正方形的若干个顶点,可得到一些线段,试分别画出一条长度是有理数的线段和一条长度是无理数的线段.第10题图 第13题图 第14题图 第15题图18.(6分)已知a、b、c是三角形的三边长,a=2n2+2n,b=2n+1,c=2n2+2n+1(n为大于1的自然数),试说明△ABC为直角三角形.19.(6分)小东拿着一根长竹竿进一个宽为3米的城门,他先横着拿不进去,又竖起来拿,结果竿比城门高1米,当他把竿斜着时,两端刚好顶着城门的对角,问竿长多少米?20.(6分)如图所示,某人到岛上去探宝,从A处登陆后先往东走4km,又往北走1.5km,遇到障碍后又往西走2km,再折回向北走到4.5km处往东一拐,仅走0.5km就找到宝藏。

人教版八年级数学下册期中考试题及答案【完整】

人教版八年级数学下册期中考试题及答案【完整】

人教版八年级数学下册期中考试题及答案【完整】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.多项式2mx m -与多项式221x x -+的公因式是( )A .1x -B .1x +C .21x -D .()21x - 2.下列各组线段不能组成三角形的是 ( )A .4cm 、4cm 、5cmB .4cm 、6cm 、11cmC .4cm 、5cm 、6cmD .5cm 、12cm 、13cm 3.下列计算正确的是( )A =B .3=C2=D =4.已知关于x 的分式方程21m x -+=1的解是负数,则m 的取值范围是( ) A .m ≤3 B .m ≤3且m ≠2C .m <3D .m <3且m ≠2 5.下列各组数中,能作为一个三角形三边边长的是( )A .1,1,2B .1,2,4C .2,3,4D .2,3,56.已知平行四边形ABCD ,AC 、BD 是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是( )A .∠BAC=∠DCAB .∠BAC=∠DAC C .∠BAC=∠ABD D .∠BAC=∠ADB7.若a b a 和b 互为( )A .倒数B .相反数C .负倒数D .有理化因式8.已知,如图长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( )A .23cmB .24cmC .26cmD .212cm9.如图,在△ABC 和△DEC 中,已知AB=DE ,还需添加两个条件才能使△ABC ≌△DEC ,不能添加的一组条件是( )A .BC=EC ,∠B=∠EB .BC=EC ,AC=DC C .BC=DC ,∠A=∠D D .∠B=∠E ,∠A=∠D10.如图,AD ,CE 分别是△ABC 的中线和角平分线.若AB=AC ,∠CAD=20°,则∠ACE 的度数是( )A .20°B .35°C .40°D .70°二、填空题(本大题共6小题,每小题3分,共18分)1.27-的立方根是________.2.函数y x 3=-中,自变量x 的取值范围是__________.3.分解因式:3x -x=__________.4.如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,过点A 作AE ⊥BD ,垂足为点E ,若∠EAC =2∠CAD ,则∠BAE =__________度.5.如图,平行四边形ABCD 中,60BAD ∠=︒,2AD =,点E 是对角线AC 上一动点,点F 是边CD 上一动点,连接BE 、EF ,则BE EF +的最小值是____________.6.如图,在Rt △ABC 中,∠ACB=90°,AC=5cm ,BC=12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为_______cm .三、解答题(本大题共6小题,共72分)1.解方程:(1)2(1)30x +-= (2)4(2)3(2)x x x +=+2.(1)已知x 35y 352x 2-5xy +2y 2的值.(2)先化简,再求值:222222x y x y x xy y x xy x y ⎛⎫--÷ ⎪-+--⎝⎭,其中x =221-,y =22-3.已知5a ﹣1的算术平方根是3,3a+b ﹣1的立方根为2.(1)求a 与b 的值;(2)求2a+4b 的平方根.4.如图①,△ABC 中,AB =AC ,∠B 、∠C 的平分线交于O 点,过O 点作EF ∥BC 交AB 、AC 于E 、F .(1)图①中有几个等腰三角形?猜想:EF与BE、CF之间有怎样的关系.(2)如图②,若AB≠AC,其他条件不变,图中还有等腰三角形吗?如果有,分别指出它们.在第(1)问中EF与BE、CF间的关系还存在吗?(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O 点作OE∥BC交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF 关系又如何?说明你的理由.5.如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE,(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.6.今年义乌市准备争创全国卫生城市,某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍.(1)求温馨提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、D4、D5、C6、C7、D8、C9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、-3.2、x 3≥.3、x (x+1)(x -1)4、22.5°56、42.三、解答题(本大题共6小题,共72分)1、(1)11x =,21x =;(2)12x =-,243x =.2、(1)42,(2)13+-3、(1)a=2,b=3(2)±44、(1)△AEF 、△OEB 、△OFC 、△OBC 、△ABC 共5个,EF=BE+FC ;(2)有,△EOB 、△FOC ,存在;(3)有,EF=BE-FC .5、解:(1)证明:∵点O 为AB 的中点,连接DO 并延长到点E ,使OE=OD , ∴四边形AEBD 是平行四边形.∵AB=AC ,AD 是△ABC 的角平分线,∴AD ⊥BC .∴∠ADB=90°.∴平行四边形AEBD 是矩形.(2)当∠BAC=90°时,矩形AEBD 是正方形.理由如下:∵∠BAC=90°,AB=AC ,AD 是△ABC 的角平分线,∴AD=BD=CD .∵由(1)得四边形AEBD 是矩形,∴矩形AEBD 是正方形.6、(1)温馨提示牌和垃圾箱的单价各是50元和150元;(2)答案略。

人教版八年级下册数学《期中检测试题》及答案解析

人教版八年级下册数学《期中检测试题》及答案解析

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题)1.下面的图形是用数学家名字命名的,其中既是轴对称图形又是中心对称图形的是( )A. 赵爽弦图B. 笛卡尔心形线C. 科克曲线D. 斐波那契螺旋线2.式子21xx -在实数范围内有意义的条件是( ) A. 1x ≥B. 1x >C. 0x <D. 0x ≤3.已知一组数据a,b,c 的平均数为5,方差为4,那么数据a ﹣2,b ﹣2,c ﹣2的平均数和方差分别是.( ) A. 3,2B. 3,4C. 5,2D. 5,44.命题“关于x 的一元二次方程210x bx ++=,必有实数解”是假命题.则在下列选项中,可以作为反例的是( ) A. 3b =-B. 2b =-C. 1b =-D. 2b =5.若m 是关于x 方程x 2﹣2012x ﹣1=0的根,则(m 2﹣2012m +3)•(m 2﹣2012m +4)的值为( ) A. 16B. 12C. 20D. 306.如图,D ,E ,F 分别是△ABC 各边的中点,AH 是高,若ED =6cm ,那么HF 的长为( )A. 5 cmB. 6 cmC. 10 cmD. 不能确定7.我国政府为解决老百姓看病难的问题,决定下调药品的价格,某种药品经过两次降价后,由每盒60元下调至52元,若设每次平均降价的百分率为x ,由题意可列方程为( ) A. 52+52x 2=60 B. 52(1+x )2=60 C. 60﹣60x 2=52 D. 60(1﹣x )2=528.把代数式()111a a--中的1a -移到根号内,那么这个代数式等于()A. 1a --B.1a - C. 1a -D. 1a --9.如图,菱形ABCD 的边长为2,且∠ABC =120°,E 是BC 的中点,P 为BD 上一点,且△PCE 的周长最小,则△PCE 的周长的最小值为( )A.3+1B.7+1 C. 23+1 D. 27+110.已知如图,矩形ABCD 中AB=4cm ,BC=3cm ,点P 是AB 上除A ,B 外任一点,对角线AC ,BD 相交于点O ,DP ,CP 分别交AC ,BD 于点E ,F 且△ADE 和BCF 面积之和4cm 2,则四边形PEOF 的面积为( )A. 1cm 2B. 1.5cm 2C. 2cm 2D. 2.5cm 2二.填空题(共10小题)11.如果y 44x x --则2x +y 值是_______. 12.小明用S 2=110[(x 1﹣3)2+(x 2﹣3)2+…+(x 10﹣3)2]计算一组数据的方差,那么x 1+x 2+x 3+…+x 10=______. 13.设m 、n 是一元二次方程x 2+2x ﹣7=0的两个根,则m 2+3m +n =_____.14.如图所示,在长为50米,宽为30米的长方形地块上,有纵横交错的几条小路(图中阴影部分),宽均为1米,其他部分均种植花草.则种植花草的面积是____________米²;15.如图,E为▱ABCD边AD上一点,将△ABE沿BE翻折得到△FBE,点F在BD上,且EF=DF,若∠BDC=81°,则∠C=_____.16.直角坐标系中,已知A(3,2),作点A关于y轴对称点A1,点A1关于原点对称点A2,点A2关于x轴对称点A3,A3关于y轴对称点A4,……,按此规律,则点A2019的坐标为_____.17.三角形的每条边的长都是方程2680-+=的根,则三角形的周长是.x x18.如图,若菱形ABCD的顶点A.B的坐标分别为(6,0),(﹣4,0),点D在y轴正半轴上,则点C的坐标是_____.19.如图,四边形ABCD和四边形ACEF都是平行四边形,EF经过点D,若平行四边形ABCD的面积为S1,平行四边形ACEF的面积为S2,则S1与S2的大小关系为S1_____S2.20.如图,在矩形ABCD中,BC=4,点F是CD边上的中点,点E是BC边上的动点.将△ABE沿AE折叠,点B 落在点M处;将△CEF沿EF折叠,点C落在点N处.当AB的长度为_____时,点M与点N能重合时.三.解答题(共7小题)21.计算(1)220-5+35(2)3112-41144⎛⎫⨯ ⎪ ⎪⎝⎭22.解下列方程: (1)(x ﹣1)(x ﹣3)=8; (2)2(x ﹣3)2=x 2﹣9.23.甲、乙两班举行电脑汉字输入比赛,各选10名选手参赛,各班参赛学生每分钟输入汉字个数统计如下表: 输入汉字个数(个) 132 133 134 135 136 137 甲班人数人) 1 0 2 4 1 2 乙班人数(人) 014122请分别判断下列同学是说法是否正确,并说明理由. (1)两个班级输入汉字个数的平均数相同; (2)两个班学生输入汉字的中位数相同众数也相同; (3)甲班学生比乙班学生的成绩稳定.24.如图,平行四边形ABCD ,对角线,AC BD 交于点,点,E F 分别是,AB BC 的中点,连接EF 交BD 于,连接OE(1)证明:四边形COEF 平行四边形(2)点是哪些线段的中点,写出结论,并选择一组给出证明.25.某汽车销售公司4月份销售某厂家的汽车,在一定范围内每部汽车的进价与销售量有如下关系;若当月仅售出1辆汽车,则该部汽车的进价为25万元,每多售出1辆,所有售出的汽车的进价均降低0.2万元/辆,月底厂家根据销售量一次性返利给销售公司,销售量在10辆以内(含10辆),每辆返利0.6万元;销售量在10辆以上,每辆返利1.2万元.(1)若该公司当月售出3辆汽车,则每辆汽车的进价为________万元;(2)若该公司当月售出5辆汽车,且每辆汽车售价为元,则该销售公司该月盈利________万元(用含的代数式表示).(3)如果汽车的售价为25.6万元/辆,该公司计划当月盈利16.8万元,那么需要售出多少辆汽车?(盈利销售利润+返利)26. 如图,在▱ABCD 中,对角线AC ,BD 相交于点O ,AB ⊥AC ,AB=3cm ,BC=5cm .点P 从A 点出发沿AD 方向匀速运动速度为lcm/s ,连接PO 并延长交BC 于点Q .设运动时间为t (s )(0<t <5) (1)当t 为何值时,四边形ABQP 是平行四边形?(2)设四边形OQCD 的面积为y (cm 2),当t=4时,求y 的值.27.阅读下面材料,并回答下列问题:小明遇到这样一个问题,如图,在ABC ∆中,//DE BC 分别交AB 于点,交AC 于点.已知,3,5CD BE CD BE ⊥==,求BC DE +值.小明发现,过点作//EF DC ,交BC 的延长线于点,构造BEF ∆,经过推理和计算能够使问题得到解决(如图)请你回答:(1)证明:DE CF =; (2)求出BC DE +的值;(3)参考小明思考问题的方法,解决问题;如图,已知ABCD 和矩形,ABEF AC 与DF 交于点,G AC BF DF ==.求AGF ∠的度数.答案与解析一.选择题(共10小题)1.下面的图形是用数学家名字命名的,其中既是轴对称图形又是中心对称图形的是( )A. 赵爽弦图B. 笛卡尔心形线C. 科克曲线D. 斐波那契螺旋线[答案]C [解析] [分析]根据把一个图形绕某一点旋转180,如果旋转后图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.[详解]A 、不是轴对称图形,是中心对称图形,故此选项错误; B 、是轴对称图形,不是中心对称图形,故此选项错误; C 、是轴对称图形,是中心对称图形,故此选项正确; D 、不是轴对称图形,不是中心对称图形,故此选项错误; 故选C .[点睛]此题主要考查了轴对称图形和中心对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 2.1x -在实数范围内有意义的条件是( ) A 1x ≥ B. 1x >C. 0x <D. 0x ≤[答案]B [解析] [分析]根据二次根式有意义的条件即可求出答案. [详解]]解:由题意可知:x-1>0, ∴x >1, 故答案为:x >1[点睛]本题考查二次根式及分式有意义的条件,解题的关键是熟练运用二次根式有意义的条件,本题属于基础题型.3.已知一组数据a,b,c 的平均数为5,方差为4,那么数据a ﹣2,b ﹣2,c ﹣2的平均数和方差分别是.( ) A. 3,2 B. 3,4C. 5,2D. 5,4[答案]B [解析]试题分析:平均数为(a−2 + b−2 + c−2 )=(3×5-6)=3;原来的方差:;新的方差:,故选B.考点: 平均数;方差.4.命题“关于x 的一元二次方程210x bx ++=,必有实数解”是假命题.则在下列选项中,可以作为反例的是( ) A. 3b =- B. 2b =-C. 1b =-D. 2b =[答案]C [解析][详解]∵方程210x bx ++=,必有实数解,22440b ac b ∴-=-≥ ,解得:2b ≤-或2b ≥,又∵命题“关于的一元二次方程210x bx ++=,必有实数解”是假命题,∴可以作为反例的是1b =-,故选C . 5.若m 是关于x 的方程x 2﹣2012x ﹣1=0的根,则(m 2﹣2012m +3)•(m 2﹣2012m +4)的值为( ) A. 16 B. 12C. 20D. 30[答案]C [解析][分析]根据一元二次方程的解的定义得到m2﹣2012m﹣1=0,变形得m2﹣2012m=1,然后整体代入的方法计算.[详解]解:根据题意得程m2﹣2012m﹣1=0,所以m2﹣2012m=1,所以(m2﹣2012m+3)•(m2﹣2012m+4)=(1+3)(1+4)=20.故选:C.[点睛]本题考查一元二次方程的解以及整体代入思想,掌握整体代入思想是解题的关键.6.如图,D,E,F分别是△ABC各边的中点,AH是高,若ED=6cm,那么HF的长为( )A. 5 cmB. 6 cmC. 10 cmD. 不能确定[答案]B[解析][分析]根据D、E、F分别是△ABC各边的中点,可知DE为△ABC的中位线,根据DE的长度可求得AC的长度,然后根据直角三角形斜边的中线等于斜边的一半,可得HF=12AC,即可求解.[详解]∵D、E分别是△ABC各边的中点, ∴DE为△ABC的中位线,∵ED=6cm,∴AC=2DE=2×6=12(cm),∵AH⊥CD,且F为AC的中点,∴HF=12AC=6cm.故选:B.[点睛]此题考查三角形的中位线定理、直角三角形斜边中线定理,熟记定理并熟练运用解题是关键.7.我国政府为解决老百姓看病难的问题,决定下调药品的价格,某种药品经过两次降价后,由每盒60元下调至52元,若设每次平均降价的百分率为x ,由题意可列方程为( ) A. 52+52x 2=60 B. 52(1+x )2=60 C. 60﹣60x 2=52 D. 60(1﹣x )2=52[答案]D [解析] [分析]若设每次平均降价的百分率为x ,根据某种药品经过两次降价后,由每盒60元下调至52元,可列方程求解. [详解]解:设每次平均降价的百分率为x , 60(1﹣x )2=52. 故选:D .[点睛]本题考查列一元二次方程,关键设出下降的生产率,经过两次变化,从而可列出方程. 8.把代数式()111a a--中的1a -移到根号内,那么这个代数式等于()A. 1a --B. 1a -C. 1a -D. 1a --[答案]A [解析]试题解析:(a-1)11a -=-(1-a)11a-=1a --. 故选A .9.如图,菱形ABCD 的边长为2,且∠ABC =120°,E 是BC 的中点,P 为BD 上一点,且△PCE 的周长最小,则△PCE 的周长的最小值为( )A.3 B.7+1 37+1[答案]B[解析][分析]由菱形ABCD中,∠ABC=120°,易得△BCD是等边三角形,继而求得∠ADE的度数;连接AE,交BD于点P;首先由勾股定理求得AE的长,即可得△PCE周长的最小值=AE+EC.[详解]解:∵菱形ABCD中,∠ABC=120°,∴BC=CD=AD=2,∠C=180°﹣∠ABC=60°,∠ADC=∠ABC=120°,∴∠ADB=∠BDC=12∠ADC=60°,∴△BCD是等边三角形, ∵点E是BC的中点,∴∠BDE=12∠BDC=30°,∴∠ADE=∠ADB+∠BDE=90°,∵四边形ABCD是菱形,∴BD垂直平分AC,∴P A=PC,∵△PCE的周长=PC PE CE++,若△PCE的周长最小,即PC+PE最小,也就是P A+PE最小,即A,P,E三点共线时,∵DE=CD•sin60°=3,CE=12BC=1,∴在Rt△ADE中,227AE AD DE=+=,∴△PCE周长为:PC+PE+CE=P A+PE+CE=AE+CE=71+,故选:B.[点睛]本题考查了菱形的性质、最短路线问题、等边三角形的性质,熟练掌握菱形的性质,并能进行推理计算是解决问题的关键.10.已知如图,矩形ABCD中AB=4cm,BC=3cm,点P是AB上除A,B外任一点,对角线AC,BD相交于点O ,DP ,CP 分别交AC ,BD 于点E ,F 且△ADE 和BCF 的面积之和4cm 2,则四边形PEOF 的面积为( )A. 1cm 2B. 1.5cm 2C. 2cm 2D. 2.5cm 2[答案]A [解析]试题解析:因为4AEDBFCS S+=2cm ,所以2EOD FOCS S+=2cm ,而3CODS=2cm ,所以6231PEOF S =--=四边形2cm ,故本题应选A.二.填空题(共10小题)11.如果y 44x x --则2x +y 的值是_______. [答案]9 [解析]解:由题意得x=4,y=1,则2x +y=9. 12.小明用S 2= 110[(x 1﹣3)2+(x 2﹣3)2+…+(x 10﹣3)2]计算一组数据的方差,那么x 1+x 2+x 3+…+x 10=______. [答案]30 [解析] [分析]根据计算方差的公式能够确定数据的个数和平均数,从而求得所有数据的和. [详解]解:∵S 2=110[(x 1﹣3)2+(x 2﹣3)2+…+(x 10﹣3)2], ∴平均数为3,共10个数据, ∴x 1+x 2+x 3+…+x 10=10×3=30. 故答案为30.[点睛]本题考查了方差的知识,牢记方差公式是解答本题的关键,难度不大. 13.设m 、n 是一元二次方程x 2+2x ﹣7=0的两个根,则m 2+3m +n =_____.[答案]5.[解析][分析]根据根与系数的关系可知m+n=﹣2,又知m是方程的根,所以可得m2+2m﹣7=0,最后可将m2+3m+n变成m2+2m+m+n,最终可得答案.[详解]解:∵设m、n是一元二次方程x2+2x﹣7=0的两个根,∴m+n=﹣2,∵m是原方程的根,∴m2+2m﹣7=0,即m2+2m=7,∴m2+3m+n=m2+2m+m+n=7﹣2=5,故答案为:5.[点睛]本题考查了根与系数的关系,熟练掌握一元二次方程根与系数的关系是解决本题的关键.14.如图所示,在长为50米,宽为30米的长方形地块上,有纵横交错的几条小路(图中阴影部分),宽均为1米,其他部分均种植花草.则种植花草的面积是____________米²;[答案]1421[解析][分析]如图,根据平移的性质,种植花草的面积等于图中小矩形的面积,根据矩形的面积公式计算即可.[详解]如图,根据平行的性质,种植花草的面积等于图中小矩形的面积,∴种植花草的面积=(50-1)(30-1)=1421m2.故答案1421.[点睛]本题考查了图形的平移的性质,把小路进行平移,得到种植花草的面积等于图中小矩形的面积是解题的关键.15.如图,E为▱ABCD边AD上一点,将△ABE沿BE翻折得到△FBE,点F在BD上,且EF=DF,若∠BDC=81°,则∠C=_____.[答案]66°.[解析][分析]折叠就有全等,就有相等的边和角,根据平行四边形的性质和等腰三角形的性质,可以把要求的角转化在一个三角形中,由三角形的内角和列方程解得即可.[详解]解:∵四边形ABCD是平行四边形,∴∠A=∠C,AD∥BC,AB∥CD,∴∠ADF=∠FBC,∠ABD=∠BDC=81°,∵EF=FD,∴∠FED=∠FDE,由折叠得:∠ABE=∠EBF=12∠ABD=40.5°,∠A=∠EFB,设∠C=x,则∠DBC=∠ADB=12x,在△BDC中,由内角和定理得:81°+x+12x=180°,解得:x=66°,故答案为:66°.[点睛]本题考查折叠的性质、平行四边形的性质以及三角形内角和定理等内容,解题的关键是折叠的性质的运用.16.直角坐标系中,已知A(3,2),作点A关于y轴对称点A1,点A1关于原点对称点A2,点A2关于x轴对称点A 3,A 3关于y 轴对称点A 4,……,按此规律,则点A 2019的坐标为_____. [答案](3,2). [解析] [分析]根据题目已知条件,写出A 1、A 2、A 3的坐标,找出规律,即可解决问题. [详解]解:作点A 关于y 轴对称点为A 1,是(﹣3,2); 作点A 1关于原点的对称点为A 2,是(3,﹣2); 作点A 2关于x 轴的对称点为A 3,是(3,2). 显然此为一循环,按此规律,2019÷3=673, 则点A 2019的坐标是(3,2), 故答案为:(3,2).[点睛]本题考查了关于原点对称的点的坐标,关于坐标轴对称点的坐标,解答此题需熟悉:两个点关于x 轴对称,则横坐标不变,纵坐标互为相反数;两个点关于y 轴对称,则横坐标互为相反数,纵坐标不变;两个点关于原点对称,则横坐标、纵坐标都是互为相反数.17.三角形的每条边的长都是方程2680x x -+=的根,则三角形的周长是 . [答案]6或10或12 [解析] [分析]首先用因式分解法求得方程根,再根据三角形的每条边的长都是方程2680x x -+=的根,进行分情况计算. [详解]由方程2680x x -+=,得=2或4. 当三角形的三边是2,2,2时,则周长是6; 当三角形的三边是4,4,4时,则周长是12;当三角形的三边长是2,2,4时,2+2=4,不符合三角形的三边关系,应舍去; 当三角形的三边是4,4,2时,则三角形的周长是4+4+2=10. 综上所述此三角形的周长是6或12或10.18.如图,若菱形ABCD 的顶点A .B 的坐标分别为(6,0),(﹣4,0),点D 在y 轴正半轴上,则点C 的坐标是_____.[答案](﹣10,8)[解析][分析]由菱形的性质可求AB=AD=10,OA=6,由勾股定理可得OD=8,即可求点C坐标.[详解]解:∵菱形ABCD的顶点A,B的坐标分别为(6,0),(﹣4,0),∴AB=AD=10,OA=6,∴228=-=,OD AD OA∴点D(0,8),∵CD∥AB,∴CD=10,∴点C(﹣10,8),故答案为:(﹣10,8).[点睛]本题考查菱形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.19.如图,四边形ABCD和四边形ACEF都是平行四边形,EF经过点D,若平行四边形ABCD的面积为S1,平行四边形ACEF的面积为S2,则S1与S2的大小关系为S1_____S2.[答案]=.[解析][分析]由题意可知2ABCDABCSS=,2ACEFADC SS =△,而S △ABC =S △ADC ,进而可得S 1与S 2的大小关系.[详解]解:∵四边形ABCD 和四边形ACEF 都是平行四边形, ∴2ABCDABCSS=,2ACEFADC SS =△,∵S △ABC =S △ADC , ∴S 1=S 2, 故答案为:=.[点睛]本题考查了平行四边形的性质以及三角形面积公式的运用,熟记平行四边形被一条对角线分成的两个三角形面积相等是解题的关键.20.如图,在矩形ABCD 中,BC =4,点F 是CD 边上的中点,点E 是BC 边上的动点.将△ABE 沿AE 折叠,点B 落在点M 处;将△CEF 沿EF 折叠,点C 落在点N 处.当AB 的长度为_____时,点M 与点N 能重合时.[答案]2. [解析] [分析]设AB =CD =2m .在Rt △ADF 中 利用勾股定理构建方程即可解决问题. [详解]解:设AB =CD =2m .由题意:BE =EM =EC =2,CF =DF =FM =m ,AN =AM =2m , ∴AF =3m ,∵四边形ABCD 是矩形, ∴AD =BC =4,在Rt △ADF 中,∵AD 2+DF 2=AF 2, ∴42+m 2=(3m )2, 解得2m =或2-(舍弃),∴AB =2m =故答案为.[点睛]本题考查折叠的性质,解题的关键是根据勾股定理构建方程求解.三.解答题(共7小题)21.计算(1)(2[答案](1)(2)14[解析] [分析](1)先化简,再合并同类二次根式;(2)先算乘法,再化简二次根式,然后合并即可.[详解]解:(1)-=2255+3-(2111=244-. [点睛]本题考查了二次根式的化简与运算,属于基础题型,熟练掌握二次根式的运算法则和化简的方法是解题的关键. 22.解下列方程: (1)(x ﹣1)(x ﹣3)=8; (2)2(x ﹣3)2=x 2﹣9.[答案](1)x 1=5,x 2=﹣1;(2)x 1=3,x 2=9. [解析] [分析](1)先去括号,把方程化为一般形式,再根据因式分解法即可求出答案;(2)利用平方差公式将等号右边因式分解,再移项,提取公因式x-3即可求出答案.[详解]解:(1)(x﹣1)(x﹣3)=8,整理得,x2﹣4x﹣5=0,分解因式得:(x-5)(x+1)=0,则x-5=0或x+1=0,解得:x1=5,x2=﹣1;(2)2(x﹣3)2=x2﹣9,分解因式得:(x﹣3)(x﹣9)=0,则x﹣3=0或x﹣9=0,解得:x1=3,x2=9.[点睛]本题考查了解一元二次方程﹣因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).23.甲、乙两班举行电脑汉字输入比赛,各选10名选手参赛,各班参赛学生每分钟输入汉字个数统计如下表:请分别判断下列同学是说法是否正确,并说明理由.(1)两个班级输入汉字个数的平均数相同;(2)两个班学生输入汉字的中位数相同众数也相同;(3)甲班学生比乙班学生的成绩稳定.[答案]说法(1)(3)正确,说法(2)错误.[解析][分析]根据平均数、中位数、众数以及方差的计算方法,分别求出,就可以分别判断各个说法是否正确.[详解]解:(1)由平均数的定义知,甲班学生的平均成绩为:13213421354136137213510+⨯+⨯++⨯=,乙班学生的平均成绩为:13313441351362137213510+⨯++⨯+⨯=,所以他们的平均数相同.故说法(1)正确;(2)甲班学生的成绩按从小到大排列:132、134、134、135、135、135、135、136、137、137,可见其中位数是135;乙班学生的成绩按从小到大排列:133、134、134、134、134、135、136、136、137、137,可见其中位数是134.5,所以两组学生成绩的中位数不相同,甲班学生成绩的众数是135,乙班学生成绩的众数是134,所以两组学生成绩的众数不相同; 故说法(2)错误;(3)2222221=[(132135)2(134135)4(135135)(136135)2(137135)]210S ⨯-+-+-+-+-=甲, 2222221=[(133135)4(134135)(135135)2(136135)2(137135)] 2.710S ⨯-+-+-+-+-=甲, ∴甲班学生比乙班学生的成绩方差小, ∴甲班学生比乙班学生的成绩稳定. 故说法(3)正确;故答案为:说法(1)(3)正确,说法(2)错误.[点睛]本题考查平均数、方差、中位数和众数:中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);一组数据中出现次数最多的数据叫做众数;一般地设n 个数据,x 1,x 2,…x n 的平均数为,则方差2222121[()()()]n S x x x x x x n=-+-+⋯+-,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.24.如图,平行四边形ABCD ,对角线,AC BD 交于点,点,E F 分别是,AB BC 的中点,连接EF 交BD 于,连接OE(1)证明:四边形COEF 是平行四边形(2)点是哪些线段的中点,写出结论,并选择一组给出证明.[答案](1)见解析;(2)G 是线段OB 的中点,也是EF 的中点,证明见解析[解析][分析](1)根据三角形的中位线定理可得EF 与AC 的数量关系和位置关系,再由平行四边形的性质即可证得EF 与CO 的关系,进一步即可证得结论;(2)根据三角形中位线定理即可得出结论.[详解]解:(1)证明:∵,E F 分别是,AB BC 中点,∴EF AC 且12EF AC =, ∵ABCD 是平行四边形,∴AO CO =,∴CO EF =,∴四边形COEF 是平行四边形.(2)G 是线段OB 的中点,也是EF 的中点.证明:∵EF AC ,E 为AB 中点,∴G 为OB 中点.∴FG 、GE 分别是△BCO 、△BAO 的中位线, ∴11,22FG CO GE AO ==, ∵AO =CO ,∴FG GE =,即G 为EF 的中点.[点睛]本题考查了平行四边形的判定和三角形的中位线定理,熟练掌握平行四边形的判定方法和三角形的中位线定理是解题的关键.25.某汽车销售公司4月份销售某厂家的汽车,在一定范围内每部汽车的进价与销售量有如下关系;若当月仅售出1辆汽车,则该部汽车的进价为25万元,每多售出1辆,所有售出的汽车的进价均降低0.2万元/辆,月底厂家根据销售量一次性返利给销售公司,销售量在10辆以内(含10辆),每辆返利0.6万元;销售量在10辆以上,每辆返利1.2万元.(1)若该公司当月售出3辆汽车,则每辆汽车的进价为________万元;(2)若该公司当月售出5辆汽车,且每辆汽车售价为元,则该销售公司该月盈利________万元(用含的代数式表示).(3)如果汽车的售价为25.6万元/辆,该公司计划当月盈利16.8万元,那么需要售出多少辆汽车?(盈利销售利润+返利)[答案](1)24.6;(2)(5m -121);(3)7[解析][分析](1)根据题意每多售出1辆,所有售出的汽车的进价均降低0.2万元/辆,即可得出当月售出3辆汽车时,每辆汽车的进价;(2)先表示出当月售出5辆汽车时每辆汽车的进价,再根据利润=售价-进价即可求得该月盈利;(3)首先表示出每辆汽车的销售利润,再利用当0≤x≤10,当x>10时,分别得出答案.[详解]解:(1)∵当月仅售出1辆汽车,则该辆汽车的进价为25万元,每多售出1辆,所有售出的汽车的进价均降低0.1万元/辆,∴该公司当月售出3辆汽车,则每辆汽车的进价为25-2×0.2=24.6万元;故答案为:24.6;(2)∵当月售出5辆汽车,∴每辆汽车的进价为25-4×0.2=24.2万元,∴该月盈利为5(m-24.2)=5m-121,故答案为:(5m-121);(2)设需要售出x辆汽车,由题意可知,每辆汽车的销售利润为:25.6-[25-0.2(x-1)]=(0.2x+0.4)(万元),当0≤x≤10,根据题意,得x•(0.2x+0.4)+0.6x=16.8,整理,得x2+5x-84=0,解这个方程,得x1=-12(不合题意,舍去),x2=7,当x>10时,根据题意,得x•(0.2x+0.4)+1.2x=16.8,整理,得x2+8x-84=0,解这个方程,得x1=-14(不合题意,舍去),x2=6,因为6<10,所以x2=6舍去.答:需要售出7辆汽车.[点睛]此题主要考查了一元二次方程的应用,根据题意正确表示出每部汽车的销售利润是解题关键.26.如图,在▱ABCD中,对角线AC,BD相交于点O,AB⊥AC,AB=3cm,BC=5cm.点P从A点出发沿AD方向匀速运动速度为lcm/s,连接PO并延长交BC于点Q.设运动时间为t(s)(0<t<5)(1)当t为何值时,四边形ABQP是平行四边形?(2)设四边形OQCD的面积为y(cm2),当t=4时,求y的值.[答案](1)当t=2.5s 时,四边形ABQP 是平行四边形,理由详见解析;(2)5.4cm 2.[解析][分析](1)求出AP BQ =和//AP BQ ,根据平行四边形的判定得出即可;(2)先求出高AM 和ON 的长度,再求出DOC ∆和OQC ∆的面积,再求出答案即可.[详解](1)当 2.5t s =时,四边形ABQP 是平行四边形,理由如下:∵四边形ABCD 是平行四边形∴//,,5,,AD BC AB CD AD BC cm AO CO AO OC =====∴PAO QCO ∠=∠在APO ∆和CQO ∆中,PAO QCO AO CO POA QOC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()APO CQO ASA ∆≅∆∴ 2.5AP CQ cm ==, 2.5()1AP t s == ∵5BC cm =∴5 2.5 2.5BQ cm cm cm AP =-==即,//AP BQ AP BQ =∴四边形ABQP 是平行四边形故当 2.5t s =时,四边形ABQP 是平行四边形;(2)过A 作AM BC ⊥于M ,过O 作ON BC ⊥于N∵,3,5AB AC AB cm BC cm ⊥==∴在Rt ABC ∆中,由勾股定理得:224AC BC AB cm =-=由三角形的面积公式得:1122BAC S AB AC BC AM ∆=⋅=⋅,即1134522AM ⨯⨯=⨯ ∴ 2.4AM cm =∵,ON BC AM BC ⊥⊥∴//AM ON∵AO OC =∴MN CN =∴1 1.22ON AM cm == 在BAC ∆和DCA ∆中,AC AC BC AD AB CD =⎧⎪=⎨⎪=⎩∴()BAC DCA SSS ∆≅∆∴21346()2DCA BAC S S cm ∆∆==⨯⨯= ∵AO OC =∴DOC ∆的面积为2132DCA S cm ∆= 当4t s =时,4AP CQ cm ==∴OQC ∆的面积为21 1.24 2.4()2cm ⨯⨯= ∴23 2.4 5.4()y cm =+=故y 的值为25.4cm .[点睛]本题考查了平行四边形的性质和判定、三角形的面积、全等三角形的性质和判定等知识点,能综合运用定理进行推理是解此题的关键.27.阅读下面材料,并回答下列问题:小明遇到这样一个问题,如图,在ABC ∆中,//DE BC 分别交AB 于点,交AC 于点.已知,3,5CD BE CD BE ⊥==,求BC DE +的值.小明发现,过点作//EF DC ,交BC 的延长线于点,构造BEF ∆,经过推理和计算能够使问题得到解决(如图)请你回答:(1)证明:DE CF =;(2)求出BC DE +的值;(3)参考小明思考问题的方法,解决问题;如图,已知ABCD 和矩形,ABEF AC 与DF 交于点,G AC BF DF ==.求AGF ∠的度数.[答案](1)详见解析;34(3)60[解析][分析](1)由DE ∥BC ,EF ∥DC ,可证得四边形DCFE 是平行四边形,从而问题得以解决;(2)由DC ⊥BE ,四边形DCFE 是平行四边形,可得Rt △BEF ,求出BF 的长,证明BC+DE=BF ;(3)连接AE ,CE ,由四边形ABCD 是平行四边形,四边形ABEF 是矩形,易证得四边形DCEF 是平行四边形,继而证得△ACE 是等边三角形,问题得证.[详解](1)证明:∵DE ∥BC ,EF ∥DC ,∴四边形DCFE 是平行四边形.∴DE=CF .(2)解:由于四边形DCFE 是平行四边形,∴DE=CF ,DC=EF ,∴BC+DE=BC+CF=BF .∵DC ⊥BE ,DC ∥EF ,∴∠BEF=90°.在Rt △BEF 中,∵BE=5,CD=3,∴BF=22225=3=34BE EF ++.(3)连接AE ,CE ,如图.∵四边形ABCD 是平行四边形, ∴AB ∥DC .∵四边形ABEF 是矩形, ∴AB ∥FE ,BF=AE . ∴DC ∥FE .∴四边形DCEF 是平行四边形. ∴CE ∥DF .∵AC=BF=DF ,∴AC=AE=CE .∴△ACE 是等边三角形. ∴∠ACE=60°.∵CE ∥DF ,∴∠AGF=∠ACE=60°.[点睛]本题考查了平行四边形的判定与性质、矩形的性质、等边三角形的判定与性质以及勾股定理.连接AE 、CE 构造等边三角形是关键.。

人教版八年级下册数学《期中考试卷》附答案解析

人教版八年级下册数学《期中考试卷》附答案解析

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共12个小题,每小题3分,共36分.)1.下列图形中,既是轴对称图形又是中心对称图形的是( ) A. B. C. D.2.如图,在△ABC 中,∠BAC =90°,AD 是△ABC 的高,若∠B =20°,则∠DAC =( )A. 90°B. 20°C. 45°D. 70°3.在Rt ABC ∆中,90C ∠=︒,30A ∠=︒,12AB BC cm +=,则AB 的长度为( )A 6cm B. 7cm C. 8cm D. 9cm4.在Rt △ABC 中,D 为斜边AB 的中点,且BC=3,AC=4,则线段CD 的长是( )A. 2B. 3C. 52D. 55.如图,已知AC ⊥BD ,垂足为O ,AO = CO ,AB = CD ,则可得到△AOB ≌△COD ,理由是( )A. HLB. SASC. ASAD. SSS6.如图, 点在直线AB 上,OD 是AOC ∠的角平分线,42COB ∠=︒.则DOC ∠的度数是( )A. 59°B. 60°C. 69°D. 70°7.在数学课上,同学们在练习画边AC上的高时,出现下列四种图形,其中正确的是()A. B.C. D.8.如图,在△ABC中,点D是BC的中点,点E是AC的中点,若DE=3,则AB等于( )A. 4B. 5C. 5.5D. 69.在矩形ABCD中,对角线AC=10cm,AB:BC=4:3,则它的周长为( )cm.A. 14B. 20C. 28D. 3010.下列说法不正确的是( )A. 四边都相等的四边形是菱形B. 有一组邻边相等的平行四边形是菱形C. 对角线互相垂直平分的四边形是菱形D. 对角线互相平分且相等的四边形是菱形11.如图,已知菱形ABCD的对角线交于点O,DB=6,AD=5,则菱形ABCD的面积为()A. 20B. 24C. 30D. 3612.如图,用4个相同直角三角形与一个小正方形拼成的大正方形,若图中直角三角形较短的直角边长是5,小正方形的边长是7,则大正方形的面积是()A. 121B. 144C. 169D. 196二.填空题(共6小题,满分18分,每小题3分)13.过边形一个顶点可以画对角线的条数是____.14.如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D,若PD=2,则点P到边OA的距离是_____.15.将等腰直角三角形纸片和矩形纸片按如图所示方式叠放在一起,若∠1=30°,则∠2的大小为_____.16.如图,菱形ABCD中,∠ABC=130°,DE⊥AB于点E,则∠BDE=________°17.如图,四边形ABCD是正方形,若对角线BD=4,则BC=_____.18.如图,四边形ABDC中,∠ABD=120°,AB⊥AC,BD⊥CD,AB=4,CD=3则该四边形的面积是______.三.解答题19.一个多边形的内角和比它的外角和的3倍还多180度,求这个多边形的边数.20.如图,∠A=∠D=90°,AB=DE ,BF=EC .求证:Rt △ABC ≌Rt △DEF .21.如图,在▱ABCD 中,点E 是BC 上的一点,连接DE ,在DE 上取一点F 使得∠AFE =∠ADC .若DE =AD ,求证:DF =CE .22.已知:如图,在ABCD 中,BA BD =,M ,N 分别是AD 和BC 的中点.求证:四边形BNDM 是矩形.23.如图,已知4CD =,3AD =,90ADC ∠=︒,12BC =,13AB =.(1)求AC 的长.(2)求图中阴影部分图形的面积.24.在甲村至乙村的公路旁有一块山地正在开发,现有一处需要爆破.已知点与公路上的停靠站的距离为600米,与公路上另一停靠站的距离为800米,且CA CB ⊥,如图,为了安全起见,爆破点周围半径400米范围内不得进入,问在进行爆破时,公路AB 段是否有危险,是否需要暂时封锁?请通过计算进行说明.25.如图,四边形ABCD 是正方形,M 是边BC 上一点,是CD 的中点,AE 平分DAM ∠.(1)判断AMB ∠与MAE ∠的数量关系,并说明理由;(2)求证:AM AD MC =+;(3)若4=AD ,求AM 的长.26.如图,△ABC 中,∠ACB =90°,AB =5cm ,BC =4cm ,若点P 从点A 出发,以每秒1cm 的速度沿折线A ﹣B ﹣C ﹣A 运动,设运动时间为t (t >0)秒.(1)AC = cm ;(2)若点P 恰好在AB 的垂直平分线上,求此时t 的值;(3)在运动过程中,当t 为何值时,△ACP 是以AC 为腰的等腰三角形(直接写出结果)?答案与解析一、选择题(本大题共12个小题,每小题3分,共36分.)1.下列图形中,既是轴对称图形又是中心对称图形的是( ) A. B. C. D.[答案]D[解析][分析]根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.[详解]A 、是轴对称图形,不是中心对称图形,故本选项不符合题意;B 、不是轴对称图形,不是中心对称图形,故本选项不符合题意;C 、是轴对称图形,不是中心对称图形,故本选项不符合题意;D 、既是轴对称图形又是中心对称图形,故本选项符合题意.故选:D .[点睛]此题主要考查对轴对称图形和中心对称图形的识别,熟练掌握,即可解题.2.如图,在△ABC 中,∠BAC =90°,AD 是△ABC 的高,若∠B =20°,则∠DAC =( )A. 90°B. 20°C. 45°D. 70°[答案]B[解析][分析] 先根据高线和三角形的内角和定理得:90,90DAC BAD BAD B ∠+∠=︒∠+∠=︒,再由余角的性质可得结论.[详解]90BAC ∠=︒90DAC BAD ∴∠+∠=︒∵AD 是△ABC 的高90ADB BAD B ∴∠=∠+∠=︒20DAC B ∴∠=∠=︒故选:B .[点睛]本题考查了直角三角形两锐角互余、三角形的内角和定理等知识点,熟记三角形的相关概念是解题关键.3.在Rt ABC ∆中,90C ∠=︒,30A ∠=︒,12AB BC cm +=,则AB 的长度为( )A. 6cmB. 7cmC. 8cmD. 9cm [答案]C[解析][分析]根据直角三角形的性质30°所对的直角边等于斜边的一半求解即可.[详解]∵在Rt △ABC 中,90C ∠=︒,30A ∠=︒, ∴12BC AB =, ∴=2AB BC∵12AB BC cm +=,∴3BC=12.∴BC=4∴AB=8cm故选:C[点睛]本题考查了含30度角的直角三角形的性质,掌握含30度角的直角三角形的性质是解题的关键. 4.在Rt △ABC 中,D 为斜边AB 的中点,且BC=3,AC=4,则线段CD 的长是( )A. 2B. 3C. 52D. 5[答案]C[解析][分析]根据勾股定理列式求出AB 的长度,再根据直角三角形斜边上的中线等于斜边的一半解答.[详解]解:∵AC=4cm,BC=3,∴AB=22AC BC + =5 ,∵D 为斜边AB 的中点,∴CD=12AB=12×5=52. 故选C .[点睛]本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理的应用,熟记性质是解题的关键.5.如图,已知AC ⊥BD ,垂足为O ,AO = CO ,AB = CD ,则可得到△AOB ≌△COD ,理由是( )A. HLB. SASC. ASAD. SSS[答案]A[解析][分析] 根据三角形全等的判定定理进行判断.[详解]A. AC ⊥BD ,垂足为O ,AO = CO ,AB = CD ,所以由HL 可得到△AOB ≌△COD ,所以A 正确;B.错误;C.错误;D.错误.[点睛]本题考查了三角形全等的判定定理,熟练掌握定理是本题解题的关键.6.如图, 点在直线AB 上,OD 是AOC ∠的角平分线,42COB ∠=︒.则DOC ∠的度数是( )A. 59°B. 60°C. 69°D. 70°[答案]C[解析][分析] 由题意根据角平分线的定义以及邻补角的定义,进行分析计算即可.[详解]解:∵42COB ∠=︒,∴18042138AOC ∠=︒-︒=︒,∵OD 是AOC ∠的角平分线, ∴1692DOC AOD AOC ︒∠=∠=∠=. 故选:C.[点睛]本题考查的是角的计算,熟练掌握角平分线的定义以及邻补角的定义并结合图形正确进行角的计算是解题的关键.7.在数学课上,同学们在练习画边AC 上的高时,出现下列四种图形,其中正确的是( ) A. B.C. D.[答案]C[解析][分析]按照高的定义逐一对选项进行分析即可.[详解]根据高的定义,AC 边上的高应该是从点B 出发向AC 边作垂线A 中,AE 不是高,故该选项错误;B 中,所作的CE 为AB 边上的高,不符合题意,故该选项错误;C中,BE为AC边上的高,故该选项正确;D中,AE不是高,故该选项错误;故选:C.[点睛]本题主要考查高的作法,掌握三角形高的定义和画法是解题的关键.8.如图,在△ABC中,点D是BC的中点,点E是AC的中点,若DE=3,则AB等于( )A. 4B. 5C. 5.5D. 6[答案]D[解析][分析]由两个中点连线得到DE是中位线,根据DE的长度即可得到AB的长度.[详解]∵点D是BC的中点,点E是AC的中点,∴DE是△ABC的中位线,∴AB=2DE=6,故选:D.[点睛]此题考查三角形的中位线定理,三角形两边中点的连线是三角形的中位线,平行于三角形的第三边,且等于第三边的一半.9.在矩形ABCD中,对角线AC=10cm,AB:BC=4:3,则它的周长为( )cm.A. 14B. 20C. 28D. 30[答案]C[解析][分析]根据矩形的一组邻边和一条对角线组成一个直角三角形,利用勾股定理解题即可.[详解]∵AB:BC=4:3,∴43AB BC =, 根据矩形的性质得到△ABC 是直角三角形, ∴222AB BC AC +=,即2224()103BC BC +=,解得BC=6,∴483AB BC ==, ∴故矩形ABCD 的周长=2×8+2×6=28cm .故选C .[点睛]本题考查对矩形的性质以及勾股定理的运用.根据比例得出43AB BC =是解题的关键. 10.下列说法不正确的是( )A. 四边都相等的四边形是菱形B. 有一组邻边相等的平行四边形是菱形C. 对角线互相垂直平分的四边形是菱形D. 对角线互相平分且相等的四边形是菱形 [答案]D[解析][分析]运用菱形的判定定理和矩形的判定定理分别判断各选项即可.[详解]解:四边都相等的四边形是菱形,选项A 不符合题意;有一组邻边相等的平行四边形是菱形,选项B 不符合题意;对角线互相垂直平分的四边形是菱形,选项C 不符合题意;对角线互相平分且相等的四边形是矩形,选项D 符合题意;故答案为D .[点睛]本题考查了菱形的判定、矩形的判定以及平行四边形的性质;正确理解菱形和矩形的判定定理是解答本题的关键.11.如图,已知菱形ABCD 的对角线交于点O ,DB=6,AD=5,则菱形ABCD 的面积为( )A. 20B. 24C. 30D. 36[答案]B[解析][分析]根据菱形的对角线互相垂直且互相平分可得出对角线AC的长度,进而根据对角线乘积的一半可得出菱形的面积.[详解]∵OD=12BD=3,∴AO=22AD OD=4∴AC=8,故可得菱形ABCD的面积为12×8×6=24.故选B.[点睛]本题考查了菱形面积的计算,解题的关键是熟知勾股定理在直角三角形中的运用.12.如图,用4个相同的直角三角形与一个小正方形拼成的大正方形,若图中直角三角形较短的直角边长是5,小正方形的边长是7,则大正方形的面积是()A. 121B. 144C. 169D. 196[答案]C[解析][分析]直角三角形较短的直角边长是5厘米,即a=5厘米;小正方形的边长是7厘米,则较长直角边为b=5+7=12厘米,最后再根据勾股定理解答即可.[详解]解:∵直角三角形较短的直角边长是5厘米,即a=5厘米∴直角三角形较长的直角边长是5+7=12厘米,即b=12厘米∴c2=52+122=169.故答案为:C.[点睛]本题考查了直角三角形的勾股定理,确定直角三角形较长直角边的长度是解答本题的关键.二.填空题(共6小题,满分18分,每小题3分)13.过边形的一个顶点可以画对角线的条数是____.[答案]9[解析][分析]根据对角线的定义,得出过多边形的一个顶点可以画对角线的条数的规律,代入求解即可.[详解]根据对角线的定义可知,多边形的一个顶点可以与自身以及相邻的两个点以外的3n - 个点形成对角线当12n = ,31239n -=-=故答案为:9.[点睛]本题考查了多边形的对角线问题,掌握过多边形的一个顶点的对角线条数与边数的关系是解题的关键.14.如图,点P 是∠AOB 平分线OC 上一点,PD ⊥OB ,垂足为D ,若PD =2,则点P 到边OA 的距离是_____.[答案]2[解析][分析]作PE ⊥OA,再根据角平分线的性质得出PE=PD 即可得出答案.[详解]过P 作PE ⊥OA 于点E ,∵点P是∠AOB平分线OC上一点,PD⊥OB,∴PE=PD,∵PD=2,∴PE=2,∴点P到边OA的距离是2.故答案为2.[点睛]本题考查角平分线的性质,关键在于牢记角平分线的性质并灵活运用.15.将等腰直角三角形纸片和矩形纸片按如图所示方式叠放在一起,若∠1=30°,则∠2的大小为_____.[答案]15°[解析][分析]由题意得a∥b,则∠3=∠1=30°,再由等腰直角三角形可得∠4=45°,最后运用角的和差即可解答.[详解]解:如图:由题意得:a∥b∴∠3=∠1=30°∵等腰直角三角形∴∠4=45°∴∠2=∠4-∠3=15°故答案为15°.[点睛]本题考查了平行线的性质、等腰直角三角形的性质以及角的和差等知识点,其灵活运用平行线的性质是解答本题的关键.16.如图,菱形ABCD中,∠ABC=130°,DE⊥AB于点E,则∠BDE=________°[答案]25[解析][分析]根据菱形的性质得到1652ABD ABC∠=∠=︒,再根据垂直的定义即可得到∠BDE.[详解]∵四边形ABCD是菱形,∴1652ABD ABC∠=∠=︒∵DE⊥AB∴∠BDE=90°-ABD∠=25°故答案为:25.[点睛]此题主要考查菱形的性质,解题的关键是熟知菱形的对角线平分每组内角.17.如图,四边形ABCD是正方形,若对角线BD=4,则BC=_____.[答案]2[解析][分析]由正方形的性质得出△BCD是等腰直角三角形,得出BD2BC=4,即可得出答案.[详解]∵四边形ABCD是正方形,∴CD=BC,∠C=90°,∴△BCD是等腰直角三角形,∴BD =2BC =4,∴BC =22,故答案为:22.[点睛]本题考查了正方形的性质以及等腰直角三角形的判定与性质;证明△BCD 是等腰直角三角形是解题的关键.18.如图,四边形ABDC 中,∠ABD =120°,AB ⊥AC ,BD ⊥CD ,AB =4,CD =43,则该四边形的面积是______.[答案]3 [解析][分析]延长CA 、DB 交于点,则60C ∠=°,30E ∠=︒,在Rt ABE ∆中,利用含30角的直角三角形的性质求出28BE AB ==,根据勾股定理求出43AE =.同理,在Rt DEC ∆中求出283CE CD ==2212DE CE CD =-=,然后根据CDE ABE ABDC S S S ∆∆=-四边形,计算即可求解.[详解]解:如图,延长CA 、DB 交于点,∵四边形ABDC 中,120ABD ∠=︒,AB AC ⊥,BD CD ⊥,∴60C ∠=°,∴30E ∠=︒, 在Rt ABE ∆中,4AB =,30E ∠=︒,∴28BE AB ==, 2243AE BE AB ∴-=.在Rt DEC ∆中,30E ∠=︒,3CD =283CE CD ∴==2212DE CE CD ∴=-=,∴1443832ABE S ∆=⨯⨯=, 143122432CDE S ∆=⨯⨯=, 24383=163CDE ABE ABDC S S S ∆∆∴=-=-四边形.故答案为:163.[点睛]本题考查了勾股定理,含30角直角三角形的性质,图形的面积,准确作出辅助线构造直角三角形是解题的关键.三.解答题19.一个多边形的内角和比它的外角和的3倍还多180度,求这个多边形的边数.[答案]这个多边形的边数是9[解析][分析]设这个多边形的边数为n ,再根据多边形的内角和公式(n ﹣2)•180°和多边形的外角和定理列出方程,然后求解即可.[详解]解:设这个多边形的边数是,则(n-2)·180°-360°×3=180°,解得9n =.答:这个多边形的边数是9.[点睛]本题主要考查多边形内角与外角的知识点,此题要结合多边形的内角和公式寻求等量关系,构建方程求解即可.20.如图,∠A=∠D=90°,AB=DE ,BF=EC .求证:Rt △ABC ≌Rt △DEF .[答案]证明见解析.[解析][分析]在Rt△ABC和Rt△DEF中,由BF=EC可得BC=EF,又因为AB=DE,所以Rt△ABC≌Rt△DEF.[详解]解:∵BF=EC,∴BF+FC=FC+EC,即BC=EF,∵∠A=∠D=90°,∴△ABC和△DEF都是直角三角形,在Rt△ABC和Rt△DEF中,AB DE BC EC ⎧⎨⎩==,∴Rt△ABC≌Rt△DEF(HL).[点睛]本题考查掌握直角三角形全等的判定方法.21.如图,在▱ABCD中,点E是BC上的一点,连接DE,在DE上取一点F使得∠AFE=∠ADC.若DE=AD,求证:DF=CE.[答案]见解析[解析][分析]根据平行四边形的性质得到∠C+∠B=180°,∠ADF=∠DEC,根据题意得到∠AFD=∠C,根据全等三角形的判定和性质定理证明即可.[详解]∵四边形ABCD是平行四边形,∴∠B =∠ADC ,AB ∥CD ,AD ∥BC ,∴∠C +∠B =180°,∠ADF =∠DEC ,∵∠AFD +∠AFE =180°,∠AFE =∠ADC ,∴∠AFD =∠C ,在△AFD 和△DEC 中,ADF DEC AFD CAD DE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AFD ≌△DCE (AAS ),∴DF =CE .[点睛]本题考查的是平行四边形的性质、全等三角形的判定、平行线的性质以及三角形内角和定理,掌握平行四边形的性质,证明三角形全等是解题的关键.22.已知:如图,在ABCD 中,BA BD =,M ,N 分别是AD 和BC 的中点.求证:四边形BNDM 是矩形.[答案]证明见详解.[解析][分析]先证四边形MBND 是平行四边形,再根据等腰三角形三线合一可得∠BMD=90°,进而得证.[详解]∵在ABCD 中,AD ∥BC ,AD=BC ,M ,N 分别是AD 和BC 的中点,∴MD=BN ,MD ∥BN ,∴四边形BNDM 平行四边形,∵BA BD =,∴BM ⊥AD ,即∠BMD=90°,∴四边形BNDM 是矩形.[点睛]本题主要考查矩形的判定定理,先证平行四边形,再证矩形,是解题的关键.23.如图,已知4CD =,3AD =,90ADC ∠=︒,12BC =,13AB =.(1)求AC 的长.(2)求图中阴影部分图形面积.[答案](1)5;(2)24[解析][分析](1)利用勾股定理求出AC 即可;(2)证出ABC 是直角三角形,ABC 的面积减去ACD 的面积就是所求的面积.[详解](1)在Rt ADC 中,90ADC ∠=︒,由勾股定理,得:22AC CD AD =+=22435; (2)2222512AC BC +=+2213AB ==,ABC ∴是直角三角形,图中阴影部分图形的面积12ABC ACD S S =-=△△1512342⨯⨯-⨯⨯30624=-= [点睛]本题考查了勾股定理及逆定理的应用,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.24.在甲村至乙村的公路旁有一块山地正在开发,现有一处需要爆破.已知点与公路上的停靠站的距离为600米,与公路上另一停靠站的距离为800米,且CA CB ⊥,如图,为了安全起见,爆破点周围半径400米范围内不得进入,问在进行爆破时,公路AB 段是否有危险,是否需要暂时封锁?请通过计算进行说明.[答案]没有危险,因此AB 段公路不需要暂时封锁.[分析]本题需要判断点C 到AB 的距离是否小于250米,如果小于则有危险,大于则没有危险.因此过C 作CD ⊥AB 于D ,然后根据勾股定理在直角三角形ABC 中即可求出AB 的长度,然后利用三角形的公式即可求出CD ,然后和250米比较大小即可判断需要暂时封锁.[详解]解:如图,过C 作CD ⊥AB 于D ,∵BC =800米,AC =600米,∠ACB =90°, ∴22228006001000AB BC AC =+=+=米, ∵12AB•CD =12BC•AC , ∴CD =480米.∵400米<480米,∴没有危险,因此AB 段公路不需要暂时封锁.[点睛]本题考查了正确运用勾股定理,善于观察题目的信息是解题以及学好数学的关键.25.如图,四边形ABCD 是正方形,M 是边BC 上一点,是CD 的中点,AE 平分DAM ∠.(1)判断AMB ∠与MAE ∠的数量关系,并说明理由;(2)求证:AM AD MC =+;(3)若4=AD ,求AM 的长.[答案](1)见解析;(2)见解析;(3)5AM =.[解析](1)利用平行线的性质得出DAM AMB ∠∠=,再根据角平分线的性质即可解答(2)过点作EF AM ⊥交AM 于点,连接EM ,利用HL 证明Rt EFM Rt ECM ∆∆≌,即可解答(3)设MC a =,则44FM a AM AF FM a BM a ++=,==,=,再利用勾股定理求出a 即可解答.[详解](1)如图所示:AMB ∠与MAE ∠的数量关系:2AMB MAE ∠∠=,理由如下://AD BC DAM AMB ∴∠∠,=,∵AE 平分DAM ∠, 12MAE DAM ∴∠∠=, 2AMB MAE ∴∠∠=.(2)如图所示:过点作EF AM ⊥交AM 于点,连接EM .∵AE 平分DAM DE AD DF AM ∠⊥⊥,,,ED EF ∴=,又E ∴是CD 的中点,ED EC ∴=,EF EC AD AF ∴=,=,Rt EFM ∆和Rt ECM ∆中,EF EC EM EM=⎧⎨=⎩,Rt EFM Rt ECM HL ∴∆∆≌()FM MC ∴=,又AM AF FM +=,AM AD MC ∴+=.(3)设MC a =,则44FM a AM AF FM a BM a ++=,==,=,在Rt ABM ∆中,由勾股定理得:222AM AB BM +=222444a a ∴+-+()=()解得:1a =,5AM ∴=.[点睛]此题考查全等三角形的判定与性质,勾股定理,角平分线的性质,平行线的性质,解题关键在于作辅助线.26.如图,△ABC 中,∠ACB =90°,AB =5cm ,BC =4cm ,若点P 从点A 出发,以每秒1cm 的速度沿折线A ﹣B ﹣C ﹣A 运动,设运动时间为t (t >0)秒.(1)AC = cm ;(2)若点P 恰好在AB 的垂直平分线上,求此时t 的值;(3)在运动过程中,当t 为何值时,△ACP 是以AC 为腰的等腰三角形(直接写出结果)?[答案](1)3;(2)t 为52秒或658秒;(3)t 为3秒或185秒或6秒. [解析][分析] (1)根据勾股定理可以得到22AC AB BC -,代入数值计算即可;(2)点P 恰好在AB 的垂直平分线上时,分两种情况讨论:①当点P 运动到点D 时;②当点P 运动到点E 时,根据图形计算即可;(3)若△ACP 是等腰三角形,分情况讨论:①当AP =AC 时;②当CA =CP 时,利用勾股定理,三角形面积相等来计算即可.[详解](1)如甲图所示:∵∠ACB =90°,∴△ABC 是直角三角形,在Rt ABC 中,由勾股定理得, 22AC AB BC ∴=-,又AB =5cm ,BC =4cm ,22543AC cm ∴=-=,故答案为3;(2)点P 恰好在AB 的垂直平分线上时,如乙图所示:∵DE 是线段AB 的垂直平分线,∴AD =BD =12AB ,AE =BE , ①当点P 运动到点D 时,∵AB =5cm ,点P 从点A 出发,以每秒1cm 的速度运动,∴1t =52秒, ②当点P 运动到点E 时,设BE =x ,则EC =4﹣x ,∵AE =BE ,∴AE =x ,在Rt △AEC 中,由勾股定理得,222AE AC EC =+∵AC =3,AE =x ,EC =4﹣x ,∴32+(4﹣x )2=2x , 解得:x =258,∴AB+BE=658,∴265 8t=秒,即点P在AB的垂直平分线上时,运动时间t为52秒或658秒,故答案为:52秒或658秒;(3)运动过程中,△ACP是等腰三角形,①当AP=AC时,如丙图(1)所示:∵AC=3,∴AP=3,∴1t=3秒,②当CA=CP时,如丙图(2)所示:若点P运动到1P时,AC=1P C,过点C作CH⊥AB 交AB于点H,∵1122ABCS BC AC AB CH=⋅=⋅,AB=5cm,BC=4cm,AC=3cm,∴CH=125cm,在Rt△AHC中,由勾股定理得,AH229 5AC HC-=cm,又∵A1P=2AH=185cm,∴318 5t 秒,若点P运动到2P时,AC=2P C, ∵AC=3cm,∴2P C=3cm,又∵B2P=BC﹣2P C,∴B2P=1cm,∴AP+B2P=5+1=6cm,∴4t=6秒,综合所述,△ACP是以AC为腰的等腰三角形时,t为3秒或185秒或6秒,故答案为:3秒或185秒或6秒.[点睛]本题主要考查了三角形的综合应用,垂直平分线的性质,等腰三角形的判定及性质,勾股定理的应用,三角形中动点问题,能熟练运用勾股定理解直角三角形在本题中至关重要,掌握等腰三角形的性质和会分类讨论思想是解决(3)的关键.。

2022—2023年人教版八年级数学下册期末考试卷及答案【各版本】

2022—2023年人教版八年级数学下册期末考试卷及答案【各版本】

2022—2023年人教版八年级数学下册期末考试卷及答案【各版本】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.多项式2mx m -与多项式221x x -+的公因式是( )A .1x -B .1x +C .21x -D .()21x - 2.若正多边形的内角和是540︒,则该正多边形的一个外角为( )A .45︒B .60︒C .72︒D .90︒3.对于函数y =2x ﹣1,下列说法正确的是( )A .它的图象过点(1,0)B .y 值随着x 值增大而减小C .它的图象经过第二象限D .当x >1时,y >0 4有意义时,a 的取值范围是( ) A .a ≥2 B .a >2 C .a ≠2 D .a ≠-25.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( )A .606030(125%)x x -=+B .606030(125%)x x-=+ C .60(125%)6030x x ⨯+-= D .6060(125%)30x x⨯+-= 6.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是( )A .有两个不相等实数根B .有两个相等实数根C .有且只有一个实数根D .没有实数根7.在平面直角坐标中,点M(-2,3)在( )A .第一象限B .第二象限C .第三象限D .第四象限8.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°9.两个一次函数1y ax b 与2y bx a ,它们在同一直角坐标系中的图象可能是( )A .B .C .D .10.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到A 1,第2次移动到A 2,…,第n 次移动到A n .则△OA 2A 2018的面积是( )A .504m 2B .10092m 2C .10112m 2D .1009m 2二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:x 3﹣4x=________.2.若x 2+kx+25是一个完全平方式,则k 的值是____________.3.在△ABC 中,AB=15,AC=13,高AD=12,则ABC 的周长为____________.4.如图,直线y=x+b 与直线y=kx+6交于点P (3,5),则关于x 的不等式x+b>kx+6的解集是_________.5.如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接AE.折叠该纸片,使点A落在AE上的G点,并使折痕经过点B,得到折痕BF,点F在AD上.若5DE=,则GE的长为__________.6.如图,在一次测绘活动中,某同学站在点A的位置观测停放于B、C两处的小船,测得船B在点A北偏东75°方向900米处,船C在点A南偏东15°方向1200米处,则船B与船C之间的距离为______米.三、解答题(本大题共6小题,共72分)1.解下列方程组:(1)75331x yx y+=⎧⎨+=⎩; (2)()346126x y yx y y⎧+-=⎪⎨+-=⎪⎩.2.先化简,后求值:(5a5a(a﹣2),其中12+2.3.解不等式组()31511242x xxx⎧-<+⎪⎨-≥-⎪⎩,并写出它的所有非负整数解.4.如图,已知一次函数y kx b=+的图象经过A (-2,-1), B (1,3)两点,并且交x轴于点C,交y轴于点D.(1)求该一次函数的解析式(2)△AOB的面积5.已知平行四边形ABCD,对角线AC、BD交于点O,线段EF过点O交AD于点E,交BC于点F.求证:OE=OF.6.为保护环境,我市公交公司计划购买A型和B型两种环保节能公交车共10辆.若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?(3)在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、D4、B5、C6、A7、B8、B9、C10、A二、填空题(本大题共6小题,每小题3分,共18分)1、x(x+2)(x﹣2)2、±10.3、32或424、x>3.5、49 136、1500三、解答题(本大题共6小题,共72分)1、(1)52xy=⎧⎨=⎩;(2)2xy=⎧⎨=⎩2、224-3、非负整数解是:0,1、2.4、(1)4533y x=+;(2)525、略.6、(1)购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)三种方案:①购买A型公交车6辆,则B型公交车4辆;②购买A型公交车7辆,则B型公交车3辆;③购买A型公交车8辆,则B型公交车2辆;(3)购买A型公交车8辆,B型公交车2辆费用最少,最少费用为1100万元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版八年级数学下册各单元及期中期末测试题及答案【精品全套 共7套】第十六章 分式单元测试题(时间90分钟 满分100分)班级____________姓名____________学号____________成绩______一、选一选(请将唯一正确答案代号填入题后的括号内,每小题3分,共30分) 1.已知x ≠y ,下列各式与x yx y-+相等的是( ).(A )()5()5x y x y -+++ (B)22x yx y-+ (C) 222()x y x y -- (D )2222x y x y -+2.化简212293m m +-+的结果是( ). (A )269m m +- (B)23m - (C)23m + (D )2299m m +- 3.化简3222121()11x x x x x x x x --+-÷+++的结果为( ).(A)x-1 (B)2x-1 (C)2x+1 (D)x+14.计算11()a a a a -÷-的正确结果是( ). (A )11a + (B )1 (C )11a - (D )-15.分式方程1212x x =--( ). (A )无解 (B )有解x=1 (C )有解x=2 (D )有解x=0 6.若分式21x +的值为正整数,则整数x 的值为( )(A )0 (B )1 (C )0或1 (D )0或-17.一水池有甲乙两个进水管,若单独开甲、乙管各需要a 小时、b 小时可注满空池;现两管同时打开,那么注满空池的时间是( )(A )11a b + (B )1ab (C )1a b + (D )ab a b+ 8.汽车从甲地开往乙地,每小时行驶1v km ,t 小时可以到达,如果每小时多行驶2v km ,那么可以提前到达的小时数为 ( )(A )212v t v v + (B ) 112v t v v + (C )1212v v v v + (D )1221v t v tv v -9.下列说法:①若a ≠0,m,n 是任意整数,则a m.a n=a m+n; ②若a 是有理数,m,n 是整数,且mn>0,则(a m )n =a mn ;③若a ≠b 且ab ≠0,则(a+b)0=1;④若a 是自然数,则a -3.a 2=a -1.其中,正确的是( ).(A )① (B )①② (C )②③④ (D )①②③④10.张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x 千米,依题意,得到的方程是:( )(A )1515112x x -=+ (B )1515112x x -=+ (C )1515112x x -=- (D )1515112xx -=- 二、填一填(每小题4分,共20分) 11.计算22142a a a -=-- . 12.方程 3470x x=-的解是 . 13.计算 a 2b 3(ab 2)-2= . 14.瑞士中学教师巴尔末成功地从光谱数据9162536,,,,5122132L L 中得到巴尔末公式,从而打开了光谱奥秘的大门,请你按这种规律写出第七个数据是 .15.如果记 221x y x =+ =f(x),并且f(1)表示当x=1时y 的值,即f(1)=2211211=+;f(12)表示当x=12时y 的值,即f(12)=221()12151()2=+;……那么f(1)+f(2)+f(12)+f(3)+f(13)+…+f(n)+f(1n)= (结果用含n 的代数式表示). 三、做一做16.(7分)先化简,再求值:62393m m m m -÷+--,其中m=-2.17.(7分)解方程:11115867x x x x +=+++++.18.(8分)有一道题“先化简,再求值: 2221()244x x x x x -+÷+-- 其中,x=-3”小玲做题时把“x=-3”错抄成了“x=3”,但她的计算结果也是正确的,请你解释这是怎么回事?19.(9分)学校用一笔钱买奖品,若以1支钢笔和2本日记本为一份奖品,则可买60份奖品;若以1支钢笔和3本日记本为一份奖品,则可买50份奖品,问这笔钱全部用来买钢笔或日记本,可买多少?20.(9分)A 、B 两地相距80千米,甲骑车从A 地出发1小时后,乙也从A 地出发,以甲的速度的倍追赶,当乙到达B 地时,甲已先到20分钟,求甲、乙的速度.四、试一试21.(10分)在数学活动中,小明为了求 2341111122222n+++++L 的值(结果用n 表示),设计如图1所示的几何图形.(1)请你利用这个几何图形求2341111122222n +++++L 的值为 ; (2)请你利用图2,再设计一个能求2341111122222n+++++L 的值的几何图形.第十七章 反比例函数单元测试题(时间90分钟 满分100分)班级____________姓名__________________座号____________成绩____________ 一、选择题(每题4分,共24分)12212A .xy=5B .y=53xC .y=-3x -1D .y=23x -2.若函数y=(m+1)231m m x++是反比例函数,则m 的值为( )A .m=-2B .m=1C .m=2或m=1D .m=-2或-1 3.满足函数y=k (x-1)和函数y=kx(k ≠0)的图象大致是( )4.在反比例函数y=-1x的图象上有三点(x 1,y 1),(x 2,y 2),(x 3,y 3),若x 1>x 2>0>x 3,则下列各式正确的是( )A .y 3>y 1>y 2B .y 3>y 2>y 1C .y 1>y 2>y 3D .y 1>y 3>y 2 5.如图所示,A 、C 是函数y=1x的图象上的任意两点,过A 点作AB ⊥x 轴于点B ,过C•点作CD ⊥y 轴于点D ,记△AOB 的面积为S 1,△COD 的面积为S 2,则( )A .S 1>S 2B .S 1<S 2C .S 1=S 2D .无法确定6.如果反比例函数y=kx的图象经过点(-4,-5),那么这个函数的解析式为( ) A .y=-20x B .y=20x C .y=20x D .y=-20x二、填空题(每题5分,共30分) 7.已知y=(a-1)22a x-是反比例函数,则a=_____.8.在函数13x -中自变量x 的取值范围是_________. 9.反比例函数y=kx(k ≠0)的图象过点(-2,1),则函数的解析式为______,在每一象限内 y 随x 的增大而_________. 10.已知函数y=kx的图象经过(-1,3)点,如果点(2,m )•也在这个函数图象上,•则m=_____.11.已知反比例函数y=12mx-的图象上两点A (x 1,y 1),B (x 2,y 2),当x 1〈0〈x 2时有y 1〈y 2,则m 的取值范围是________.12.若点A (x 1,y 1),B (x 2,y 2)在双曲线y=kx(k>0)上,且x 1>x 2>0,则y 1_______y 2. 三、解答题(共46分) 2哪些象限?求当12≤x≤2时函数值y的变化范围.14.(12分)已知y=y1+y2,y1与x成正比例,y2与x成反比例,并且当x=-1时,y=-1,•当x=2时,y=5,求y关于x的函数关系式.15.(10分)水池内储水40m3,设放净全池水的时间为T小时,每小时放水量为Wm3,规定放水时间不得超过20小时,求T与W之间的函数关系式,指出是什么函数,并求W的取值范围.16.(14分)如图所示,点A 、B 在反比例函数y=kx的图象上,且点A 、B•的横坐标分别为a 、2a (a>0),AC ⊥x 轴于点C ,且△AOC 的面积为2. (1)求该反比例函数的解析式. (2)若点(-a ,y 1)、(-2a ,y 2)在该函数的图象上,试比较y 1与y 2的大小. (3)求△AOB 的面积.第18章 勾股定理单元测试(时间:100分钟 总分:120分)班级 学号 姓名 得分一、相信你一定能选对!(每小题4分,共32分)1. 三角形的三边长分别为6,8,10,它的最短边上的高为( )A. 6B. 4.5C.D. 82. 下面几组数:①7,8,9;②12,9,15;③m 2 + n 2, m 2–n 2, 2mn (m ,n 均为正整数,m >n );④2a ,12+a ,22+a .其中能组成直角三角形的三边长的是( ) A. ①② B. ②③ C. ①③ D. ③④3. 三角形的三边为a 、b 、c ,由下列条件不能判断它是直角三角形的是( )A .a:b:c=8∶16∶17B . a 2-b 2=c 2C .a 2=(b+c)(b-c) D . a:b:c =13∶5∶124. 三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( )A. 等边三角形B. 钝角三角形C. 直角三角形D. 锐角三角形. 5.已知一个直角三角形的两边长分别为3和4,则第三边长是( ) A .5 B .25 C .7 D .5或76.已知Rt △ABC 中,∠C=90°,若a+b=14cm ,c=10cm ,则Rt △ABC 的面积是( )A. 24cm 2B. 36cm 2C. 48cm 2D. 60cm27.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( )A .121B .120C .90D .不能确定8. 放学以后,小红和小颖从学校分手,分别沿东南方向和西南方向回家,若小红和小颖行走的速度都是40米/分,小红用15分钟到家,小颖20分钟到家,小红和小颖家的直线距离为( )二、你能填得又快又对吗?(每小题4分,共32分)9. 在△ABC 中,∠C=90°, AB =5,则2AB +2AC +2BC =_______. 10. 如图,是2002年8月北京第24届国际数学家大会会标,由4个全等的直角三角形拼合而成.如果图中大、小正方形的面积分别为52和4,那么一个直角三角形的两直角边的和等于 .11.直角三角形两直角边长分别为5和12,则它斜边上的高为_______. 12.直角三角形的三边长为连续偶数,则这三个数分别为__________.13. 如图,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有______米.14.如图所示,是一个外轮廓为矩形的机器零件平面示意图,根据图中标出尺寸(单位:mm )计算两圆孔中心A 和B 的距离为 .15.如图,梯子AB 靠在墙上,梯子的底端A 到墙根O 的距离为2米,梯子的顶端B 到地面的距离为7米.现将梯子的底端A 向外移动到A ’,使梯子的底端A ’到墙根O 的距离等于3米,同时梯子的顶端 B 下降至 B ’,那么 BB ’的值: ①等于1米;②大于1米5;③小于1米.其中正确结论的序号是 .16.小刚准备测量河水的深度,他把一根竹竿插到离岸边1.5m 远的水底,竹竿高出水面0.5m,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,河水的深度为 . 三、认真解答,一定要细心哟!(共72分) 17.(5分)右图是由16个边长为1的小正方形拼成的,任意连结这些小正方形的若干个顶点,可得到一些线段,试分别画出一条长度是有理数的线段和一条长度是无理数的线段.18.(6分)已知a 、b 、c 是三角形的三边长,a =2n 2+2n ,b =2n +1,c =2n 2+2n +1(n 为大于1的自然数),试说明△ABC 为直角三角形.第10题图 第13题图 第14题图 第15题图19.(6分)小东拿着一根长竹竿进一个宽为3米的城门,他先横着拿不进去,又竖起来拿,结果竿比城门高1米,当他把竿斜着时,两端刚好顶着城门的对角,问竿长多少米? 20.(6分)如图所示,某人到岛上去探宝,从A 处登陆后先往东走4km ,又往北走1.5km ,遇到障碍后又往西走2km ,再折回向北走到4.5km处往东一拐,仅走0.5km 就找到宝藏。

相关文档
最新文档