传感器与检测技术-教案
传感器与检测技术 - 课教案
传感器与检测技术 - 课教案精品资料教学任务:使学生了解检测技术的含义,检测技术的发展方向。
掌握测量误差的概念和通过误差要求如何选择测量装置的精度等级。
掌握测量误差的处理方法和测量数据的处理 ... 检测传感器与检测技术课教案学期: 2006-2007学时: 64系 (部):电气与电子工程技术系教研室: 楼宇智能化工程技术授课教师: 董春利黄安春授课班级所授课班级授课班级授课班级在系所在系传感器与检测技术教案年月日星期章节: 课题一检测技术的基本知识 (一)第一节测量技术概论第二节测量数据的估算和处理教学任务:使学生了解检测技术的含义,检测技术的发展方向。
掌握测量误差的概念和通过误差要求如何选择测量装置的精度等级。
掌握测量误差的处理方法和测量数据的处理方法。
重点及难点:根据误差要求合理选择检测装置的精度等级测量数据的处理方法教学内容提要: 1、检测技术的含义、作用和地位;2、检测系统的组成;3、误差的基本概念和仪表的精度等级4、随机误差和系统误差的处理方法5、测量数据的处理方法复习思考题、作业:课后小结:传感器与检测技术教案年月日星期章节: 课题一检测技术的基本知识 (二)第三节传感器的组成和分类第四节传感器的基本特性教学任务:使学生了解传感器的定义、传感器的组成—三部分: 敏感元件、传感元件和检测线路以及传感器的分类方法。
掌握传感器的静态特性—线性度、灵敏度、回程误差、测量范围与量程和精度等级等的基本概念,了解传感器的动态特性的分析方法。
重点及难点:灵敏度的概念、灵敏度与量程、稳定性的关系多环节系统的灵敏度 & 传感器的组成教学内容提要: 1、传感器的组成:敏感元件、传感元件、检测线路及其作用2、传感器的分类:从输出的角度分、从输入的角度分3、传感器的静态特性4、传感器的动态特性的分析方法复习思考题、作业:课后小结:传感器与检测技术教案年月日星期章节: 课题二电阻式传感器 (一)第一节电阻应变式传感器教学任务:掌握电阻应变效应、电阻应变片的工作原理;电阻应变片的分类及其特点;电阻应变片的检测线路,桥路的三种形式。
传感器与检测技术教案
传感器与检测技术教案一、教学目标1. 了解传感器的概念、作用和分类。
2. 掌握常见传感器的原理、结构和应用。
3. 学会传感器信号的处理与分析方法。
4. 能够运用传感器解决实际工程问题。
二、教学内容1. 传感器的基本概念传感器的定义传感器的作用传感器的分类2. 常见传感器的原理与应用电阻式传感器电容式传感器电感式传感器霍尔传感器光电传感器热电偶传感器超声波传感器3. 传感器信号的处理与分析信号处理的基本方法信号滤波与降噪信号线性化与校准信号的检测与测量4. 传感器的选用与安装传感器的选用原则传感器的安装方法传感器的调试与校准5. 传感器在工程中的应用案例工业自动化技术汽车电子生物医学三、教学方法1. 讲授法:讲解传感器的基本概念、原理和应用。
2. 案例分析法:分析实际工程中的应用案例,加深对传感器技术的理解。
3. 实验法:进行传感器实验,掌握传感器信号的处理与分析方法。
4. 小组讨论法:分组讨论传感器选用与安装的问题,提高解决问题的能力。
四、教学资源1. 教材:传感器与检测技术相关教材。
2. 课件:传感器的基本概念、原理和应用的PPT课件。
3. 实验设备:传感器实验装置、信号处理器等。
4. 网络资源:传感器相关技术的学术论文、专利、企业产品介绍等。
五、教学评价1. 课堂参与度:评估学生在课堂上的发言、提问和讨论情况。
2. 课后作业:评估学生完成课后作业的质量。
3. 实验报告:评估学生在传感器实验中的操作技能和分析能力。
4. 小组项目:评估学生在小组讨论中的贡献和解决问题的能力。
5. 期末考试:评估学生对传感器与检测技术的综合掌握程度。
六、教学安排1. 课时:共计32课时,包括16次课。
2. 授课方式:课堂讲授与实验相结合。
3. 授课时间:每次课2课时,共计4小时。
4. 实验时间:每次课后的实验环节,共计8小时。
七、教学进度计划1. 第1-4课时:介绍传感器的基本概念、作用和分类。
2. 第5-8课时:讲解常见传感器的原理、结构和应用。
传感器及检测技术教案
传感器及检测技术教案一、教学内容:1.传感器的基本概念和分类2.传感器的检测原理和工作方式3.常见传感器的应用领域和特点4.传感器的选择和应用案例分析二、教学目标:1.理解传感器的基本概念和分类2.掌握传感器的检测原理和工作方式3.熟悉常见传感器的应用领域和特点4.学会根据需求选择合适的传感器并进行应用案例分析三、教学过程:1.传感器的基本概念和分类(15分钟)a.介绍传感器的定义和作用b.分类:按照测量物理量(温度、压力、光强等)、按照检测原理(电磁、光学、声学等)进行分类,并介绍每种分类的特点和应用领域c.示意图及实物展示,让学生具体了解传感器的形态和外观2.传感器的检测原理和工作方式(25分钟)a.介绍传感器的检测原理,如电磁感应、光学原理、压阻原理等,以及各种原理的工作方式和特点b.结合案例,让学生分析不同传感器的工作原理和适用场景c.展示一些传感器的内部结构图和工作原理示意图,帮助学生加深理解3.常见传感器的应用领域和特点(25分钟)a.介绍温度传感器、压力传感器、光强传感器等常见传感器的应用领域和特点b.讨论每种传感器的优缺点,并结合实际案例探讨不同传感器的选择和应用场景c.引导学生思考传感器的技术发展和应用前景4.传感器的选择和应用案例分析(35分钟)a.分组讨论:给定一个实际问题,让学生根据所学知识选择合适的传感器,并讨论选择的理由和可行性b.每组进行汇报和讨论,学生之间进行交流和学习c.教师点评和总结,归纳出选择传感器的一般原则和方法四、教学手段:1.教师讲述:通过讲解和解析案例,帮助学生理解传感器的基本概念、分类和工作原理等内容2.示意图、实物展示和多媒体资料:通过图片、视频等形式,直观展示传感器的外观、内部结构以及工作原理3.小组讨论和案例分析:提供实际问题,让学生通过小组讨论和案例分析的方式,加深对传感器选择和应用的理解4.学生报告和教师点评:每组学生进行报告并接受教师点评,帮助学生理解和巩固所学内容五、教学评估:1.看学生的课堂参与情况,是否积极回答问题和互动交流2.通过小组讨论和案例分析的形式,看学生对所学知识的理解和应用能力3.学生的报告和教师的点评,看学生对所学内容的掌握程度和思考能力六、教学反思:1.教学内容设计简洁明了,便于学生理解和掌握2.教学形式丰富多样,培养学生思维能力和团队合作精神3.教师在课堂上加强实例讲解和案例分析的环节,帮助学生将知识应用到实际问题中4.教学评估及时反馈学生的学习情况。
《传感器与检测技术》全套教案
!知识目标:掌握接近开关的基本工作原理,了解各种接近开关的环境特性及使用方法,掌握应用接近开 T丨关进行工业技术检测的方法教学■口h I能力目标:对不同接近开关进行敏感性检测,使用霍尔接近开关完成转动次数的测量。
目标!i素质目标:■ ■ ■ W ■・Fr・・T・・*教学重点.■该学…t 难点i接近开关的基本工作原理I---一一 ^—--十一- ——一一-一-一一--- —一-- . - —- - _-一- --- 教学]理实一体千輕丨实物讲解手段!小组讨论、协作接近开关的应用教学!学时丨10教学内容与教学过程设计1理论学习〗项目一开关量检测任务一认识接近开关一、霍尔效应型接近开关1.霍尔效应霍尔效应的产生是由于运动电荷在磁场作用下受到洛仑兹力作用的结果。
把N型半导体薄片放在磁场中,通以固定方向的电流i图1-2霍尔效应么半导体中的载流子(电子)将沿着与电流方向相反的方向运动。
如图1-2所示,i||(从a点至b点),那\I讲解霍尔效应基i本原理,及霍尔电I动势。
2.霍尔元件霍尔元件的结构简单,由霍尔片、四根引线和壳体组成,如图1-3 所示。
图1-3 霍尔元件—H ■ — — = H H H — H ■ ■ H H H H — H I3. 霍尔原件的性能参数 1)额定激励电流 2) 灵敏度KH3) 输入电阻和输出电阻 4) 不等位电动势和不等位电阻 5) 寄生直流电动势 6) 霍尔电动势温度系数 4. 霍尔开关霍尔开关是在霍尔效应原理的基础上,利用集成封装和组装工艺制作而成,可把磁输入 信号转换成实际应用中的电信号,同时具备工业场合实际应用易操作和可靠性的要求。
图1-6霍尔开关5. 霍尔传感器的应用 1)霍尔式位移传感器霍尔元件具有结构简单、体积小、动态特性好和寿命长的优点, 有功功率及电能参数的测量,也在位移测量中得到广泛应用。
1-7 霍尔式位移传感器的工作原理图2)霍尔式转速传感器图1-8所示的是几种不同结构的霍尔式转速传感器。
传感器及检测技术教案全
传感器及检测技术教案全第一章:传感器概述教学目标:1. 了解传感器的定义、分类和作用。
2. 掌握传感器的性能指标和选用原则。
3. 了解传感器在自动化系统中的应用。
教学内容:1. 传感器的定义和分类。
2. 传感器的性能指标:灵敏度、线性度、重复性、稳定性等。
3. 传感器的选用原则:根据测量需求、工作条件等选择合适的传感器。
4. 传感器在自动化系统中的应用案例。
教学方法:1. 讲授:讲解传感器的定义、分类和作用。
2. 案例分析:分析传感器在自动化系统中的应用案例。
作业与练习:1. 了解并总结常用传感器的性能指标。
2. 根据实际测量需求,选择合适的传感器。
第二章:电阻式传感器教学目标:1. 了解电阻式传感器的原理和特点。
2. 掌握电阻式传感器的应用和优缺点。
教学内容:1. 电阻式传感器的原理:电阻变化的原因、测量方法。
2. 电阻式传感器的特点:线性度好、响应速度快等。
3. 电阻式传感器的应用:力、压力、位移等测量。
4. 电阻式传感器的优缺点:精度高、抗干扰能力强等。
教学方法:1. 讲授:讲解电阻式传感器的原理和特点。
2. 实验演示:观察电阻式传感器的工作原理和应用。
作业与练习:1. 了解并总结电阻式传感器的应用领域。
2. 分析电阻式传感器的优缺点。
第三章:电容式传感器教学目标:1. 了解电容式传感器的原理和特点。
2. 掌握电容式传感器的应用和优缺点。
教学内容:1. 电容式传感器的原理:电容变化的原因、测量方法。
2. 电容式传感器的特点:适用于微小量测量、抗干扰能力强等。
3. 电容式传感器的应用:位移、湿度、液位等测量。
4. 电容式传感器的优缺点:精度高、响应速度快等。
教学方法:1. 讲授:讲解电容式传感器的原理和特点。
2. 实验演示:观察电容式传感器的工作原理和应用。
作业与练习:1. 了解并总结电容式传感器的应用领域。
2. 分析电容式传感器的优缺点。
第四章:霍尔传感器教学目标:1. 了解霍尔传感器的原理和特点。
传感器与检测技术教案
传感器与检测技术教案第一课时:传感器与检测技术概述一、教学目标:1.了解传感器与检测技术的基本概念和基本原理;2.熟悉传感器与检测技术在生活中的应用;3.学习传感器与检测技术的分类和特点。
二、教学内容:1.传感器与检测技术的基本概念和基本原理a.传感器的定义和作用;b.检测技术的定义和作用;c.传感器的基本原理:传感器的输入、输出和转换过程。
2.传感器与检测技术的应用a.生活中的传感器与检测技术应用案例介绍;b.传感器与检测技术在工业自动化、环境监测、医疗健康等领域的应用。
3.传感器与检测技术的分类和特点a.传感器的分类:按测量物理量分类、按传感原理分类;b.传感器的特点:灵敏度、精度、响应时间、线性度等。
三、教学过程:1.导入(5分钟)a.讲解传感器与检测技术在日常生活中的应用案例,如智能家居、智能手机等;b.引发学生对传感器与检测技术的兴趣和思考。
2.讲解传感器与检测技术的基本概念和基本原理(20分钟)a.定义传感器并解释其作用;b.定义检测技术并解释其作用;c.讲解传感器的基本原理,包括输入、输出和转换过程。
3.分组讨论传感器与检测技术的应用(15分钟)a.将学生分为小组,每组讨论一个特定领域的传感器与检测技术应用;b.每组汇报讨论结果,展示该领域中的应用案例。
4.传感器与检测技术的分类和特点(30分钟)a.解释传感器的分类,包括按测量物理量分类和按传感原理分类;b.介绍传感器的特点,如灵敏度、精度、响应时间、线性度等。
5.总结与小结(10分钟)a.综合讨论传感器与检测技术的基本概念、基本原理、应用、分类和特点;b.总结本节课的重点和要点;c.提出下节课的预习任务。
四、教学资源和工具:1.讲义或课件;2.动态模型或实物模型展示传感器与检测技术的应用案例;3.实验室或示范设备展示传感器的工作原理。
五、教学评价与反思:1.课堂讨论和案例分析教学评价;2.学生的课后作业评价;3.教师课堂教学反思和自我评价。
传感器与检测技术教案
传感器与检测技术5目录6传感器与检测技术概述第一章并按照一定规律转换成可用输出信号的器件或被测量传感器:是能感受规定的装置。
机电一体化系统常用传感器1.1传感器的组成1.1.1组成。
传感器一般由敏感元件,转换元件及基本转换电路三部分是直接感受被测物理量,并以确定关系输出另一物理量的元敏感元件:①。
件(如弹性敏感元件将力、力矩转换为位移或应变输出)是将敏感元件输出的非电量转换成电路参数(电阻、电感、转换元件:②电容)及电流或电压等电信号。
是将该电信号转换成便于传输,处理的电量。
③基本转换电路:闭环系统。
大多数传感器为开环系统,也有带反馈的传感器的分类1.1.2.按被测量对象分类:1温度力矩、、力、、(1)内部信息传感器:主要检测系统内部的位置速度。
以及异常变化接触:主要检测系统的外部环境状态,它有相对应的2)外部信息传感器((视觉传感器、超非接触式式(触觉传感器、滑动觉传感器、压觉传感器)和声测距、激光测距)。
2.传感器按工作机理:利用某种性质随被测参数的变化而变化的原理制成的:1()物性型传感器。
(主要有:光电式传感器、压电式传感器)(主要有是利用物理学中场的定律和运动定律等构成的结构型传感器(2)电感式传感器、电容式传感器、光栅式传感器)。
3.按被测物理量分类7用于测量温度。
如位移传感器用于测量位移,温度传感器 4. 按工作原理分类、陀光电式、磁电式、压电式、热电式可分为电阻式、电感式、电容式、有利于传感器的设计和应用:螺式、机械式、流体式。
5. 按传感器能量源分类:(主不需外加电源,而是将被测量的相关能量转换成电量输出(1)无源型:能量转换型;要有:压电式、磁电感应式、热电式、光电式)又称(主要有:电需要外加电源才能输出电量,又称能量控制型(2)有源型:电阻式包括光敏电阻、热敏电阻、湿敏电。
阻式、电容式、电感式、霍尔式)。
阻等形式 6. 按输出信号的性质分类:);0”或开(ON)和关(OFF开关型(二值型)(1):是“1”和“/输出是与输入物理量变换相对应的连续变化的电量,其输入模拟型:(2)输出可线性,也可非线性;它可以是任何一种脉冲发生器所①计数型:又称脉冲数字型,(3)数字型:(又②代码型发出的脉冲数与输入量成正比,加上计数器可对输入量进行计数;”1称编码型):输出的信号是数字代码,各码道的状态随输入量变化。
《传感器与检测技术》教案
教学重点、难点:电阻应变片的工作原理、应变电阻传感器的测量电路、直流电桥平衡条件、 直流电桥电压灵敏度教学方法、手段:教学基本内容: 第2章 电阻式传感器电阻式传感器的种类繁多,应用广泛,其基本原理是将被测物理量的变化转换成电阻值的变化,再经相应的测量电路而最后显示被测量值的变化。
电阻式传感器与相应的测量电路组成的测力、测压、称重、测位移、测加速度、测扭矩、测温度等测试系统。
目前已成为生产过程检测以及实现生产自动化不可缺少的手段之一。
2.1 电位器式传感器(不要求) 2.2 应变片式传感器1.电阻应变片的工作原理电阻应变片的工作原理是基于电阻应变效应,即在导体产生机械变形时,它的电阻值相应发生变化。
如图所示, 一根金属电阻丝, 在其未受力时, 原始电阻值为:AlR ρ=当电阻丝受到拉力F 作用时, 将伸长ΔL, 横截面积相应减小ΔS, 电阻率将因晶格发生变形等因素而改变Δρ, 故引起电阻值相对变化量为:ρρd A dA l dl R dR +-= l dl=ε(应变) μεμ222-=-==ldl r dr A dA则:ρρεμd R dR ++=)21( 通常把单位应变能引起的电阻值变化称为电阻丝的灵敏度系数。
其物理意义是单位应变所引起的电阻相对变化量, 其表达式为ερρμ/)21(d K ++=备注:教学基本内容: 灵敏度系数受两个因素影响: 一个是受力后材料几何尺寸的变化, 即(1+2μ); 另一个是受力后材料的电阻率发生的变化, 即(Δρ/ρ)/ε。
对金属材料电阻丝来说, 灵敏度系数表达式中(1+2μ)的值要比((Δρ/ρ)/ε)大得多, 而半导体材料的((Δρ/ρ)/ε)项的值比(1+2μ)大得多。
大量实验证明, 在电阻丝拉伸极限内, 电阻的相对变化与应变成正比, 即K 为常数。
对于半导体材料:επσπρρ⋅⋅=⋅=E d半导体应变片的灵敏系数比金属丝高50~60倍,但半导体材料的温度系数大,应变时非线性比较严重。
传感器与检测技术-教案
传感器与检测技术-教案第一章:传感器概述1.1 教学目标了解传感器的定义、分类和作用理解传感器的基本原理和特性掌握传感器的选用和安装方法1.2 教学内容传感器的定义和分类传感器的基本原理和特性传感器的选用和安装方法1.3 教学方法讲授传感器的基本概念和分类分析实际案例,讲解传感器的工作原理和特性动手实验,演示传感器的选用和安装方法1.4 教学评估课堂问答,检查学生对传感器定义和分类的理解分析案例,评估学生对传感器工作原理和特性的掌握程度实验报告,评估学生对传感器选用和安装方法的掌握程度第二章:温度传感器2.1 教学目标了解温度传感器的定义、分类和作用理解温度传感器的基本原理和特性掌握温度传感器的选用和安装方法2.2 教学内容温度传感器的定义和分类温度传感器的基本原理和特性温度传感器的选用和安装方法2.3 教学方法讲授温度传感器的基本概念和分类分析实际案例,讲解温度传感器的工作原理和特性动手实验,演示温度传感器的选用和安装方法2.4 教学评估课堂问答,检查学生对温度传感器定义和分类的理解分析案例,评估学生对温度传感器工作原理和特性的掌握程度实验报告,评估学生对温度传感器选用和安装方法的掌握程度第三章:压力传感器3.1 教学目标了解压力传感器的定义、分类和作用理解压力传感器的基本原理和特性掌握压力传感器的选用和安装方法3.2 教学内容压力传感器的定义和分类压力传感器的基本原理和特性压力传感器的选用和安装方法3.3 教学方法讲授压力传感器的基本概念和分类分析实际案例,讲解压力传感器的工作原理和特性动手实验,演示压力传感器的选用和安装方法3.4 教学评估课堂问答,检查学生对压力传感器定义和分类的理解分析案例,评估学生对压力传感器工作原理和特性的掌握程度实验报告,评估学生对压力传感器选用和安装方法的掌握程度第四章:流量传感器4.1 教学目标了解流量传感器的定义、分类和作用理解流量传感器的基本原理和特性掌握流量传感器的选用和安装方法4.2 教学内容流量传感器的定义和分类流量传感器的基本原理和特性流量传感器的选用和安装方法4.3 教学方法讲授流量传感器的基本概念和分类分析实际案例,讲解流量传感器的工作原理和特性动手实验,演示流量传感器的选用和安装方法4.4 教学评估课堂问答,检查学生对流量传感器定义和分类的理解分析案例,评估学生对流量传感器工作原理和特性的掌握程度实验报告,评估学生对流量传感器选用和安装方法的掌握程度第五章:位移传感器5.1 教学目标了解位移传感器的定义、分类和作用理解位移传感器的基本原理和特性掌握位移传感器的选用和安装方法5.2 教学内容位移传感器的定义和分类位移传感器的基本原理和特性位移传感器的选用和安装方法5.3 教学方法讲授位移传感器的基本概念和分类分析实际案例,讲解位移传感器的工作原理和特性动手实验,演示位移传感器的选用和安装方法5.4 教学评估课堂问答,检查学生对位移传感器定义和分类的理解分析案例,评估学生对位移传感器工作原理和特性的掌握程度实验报告,评估学生对位移传感器选用和安装方法的掌握程度第六章:光学传感器6.1 教学目标了解光学传感器的定义、分类和作用理解光学传感器的基本原理和特性掌握光学传感器的选用和安装方法6.2 教学内容光学传感器的定义和分类光学传感器的基本原理和特性光学传感器的选用和安装方法6.3 教学方法讲授光学传感器的基本概念和分类分析实际案例,讲解光学传感器的工作原理和特性动手实验,演示光学传感器的选用和安装方法6.4 教学评估课堂问答,检查学生对光学传感器定义和分类的理解分析案例,评估学生对光学传感器工作原理和特性的掌握程度实验报告,评估学生对光学传感器选用和安装方法的掌握程度第七章:超声波传感器7.1 教学目标了解超声波传感器的定义、分类和作用理解超声波传感器的基本原理和特性掌握超声波传感器的选用和安装方法7.2 教学内容超声波传感器的定义和分类超声波传感器的基本原理和特性超声波传感器的选用和安装方法7.3 教学方法讲授超声波传感器的基本概念和分类分析实际案例,讲解超声波传感器的工作原理和特性动手实验,演示超声波传感器的选用和安装方法7.4 教学评估课堂问答,检查学生对超声波传感器定义和分类的理解分析案例,评估学生对超声波传感器工作原理和特性的掌握程度实验报告,评估学生对超声波传感器选用和安装方法的掌握程度第八章:无线传感器网络8.1 教学目标了解无线传感器网络的定义、分类和作用理解无线传感器网络的基本原理和特性掌握无线传感器网络的选用和安装方法8.2 教学内容无线传感器网络的定义和分类无线传感器网络的基本原理和特性无线传感器网络的选用和安装方法8.3 教学方法讲授无线传感器网络的基本概念和分类分析实际案例,讲解无线传感器网络的工作原理和特性动手实验,演示无线传感器网络的选用和安装方法8.4 教学评估课堂问答,检查学生对无线传感器网络定义和分类的理解分析案例,评估学生对无线传感器网络工作原理和特性的掌握程度实验报告,评估学生对无线传感器网络选用和安装方法的掌握程度第九章:传感器信号处理与分析9.1 教学目标了解传感器信号处理与分析的基本概念、方法和作用理解传感器信号处理与分析的基本原理和特性掌握传感器信号处理与分析的方法和技巧9.2 教学内容传感器信号处理与分析的基本概念和方法传感器信号处理与分析的基本原理和特性传感器信号处理与分析的方法和技巧9.3 教学方法讲授传感器信号处理与分析的基本概念和方法分析实际案例,讲解传感器信号处理与分析的基本原理和特性动手实验,演示传感器信号处理与分析的方法和技巧9.4 教学评估课堂问答,检查学生对传感器信号处理与分析的基本概念和方法的理解分析案例,评估学生对传感器信号处理与分析的基本原理和特性的掌握程度实验报告,评估学生对传感器信号处理与分析的方法和技巧的掌握程度第十章:传感器在工程应用中的案例分析10.1 教学目标了解传感器在工程应用中的重要性理解传感器在不同工程领域的应用案例掌握传感器在工程应用中的选型和应用方法10.2 教学内容传感器在工程应用中的重要性传感器在不同工程领域的应用案例传感器在工程应用中的选型和应用方法10.3 教学方法讲授传感器在工程应用中的重要性分析实际案例,讲解传感器在不同工程领域的应用动手实验,演示传感器在工程应用中的选型和应用方法10.4 教学评估课堂问答,检查学生对传感器在工程应用中的重要性的理解分析案例,评估学生对传感器在不同工程领域应用的掌握程度实验报告,评估学生对传感器在工程应用中的选型和应用方法的掌握程度重点和难点解析1. 传感器的基本概念和分类:重点关注传感器定义和分类的理解,以及传感器的功能和作用。
传感器与检测技术教案NO1
传感器与检测技术教案NO1传感器与检测技术教案NO1课程名称:传感器与检测技术授课对象:电子信息类相关专业学生授课时长:2学时一、教学目标1.学习和理解传感器的基本概念和分类。
2.掌握传感器的工作原理和常见应用。
3.学会选择合适的传感器应用于特定的检测场景。
4.培养学生的实践操作能力,能够使用传感器进行简单的测量和检测。
二、教学内容1.传感器的概念和分类a.传感器的定义和基本概念b.传感器的分类:按测量信号类型、按测量物理量、按工作原理等分类方法c.传感器的特点和要求2.常见传感器的工作原理和应用a.温度传感器:热电阻、热敏电阻、热电偶的工作原理和应用b.压力传感器:压阻式、电容式、电感式压力传感器的工作原理和应用c.光电传感器:光电二极管、光敏三极管、光敏电阻的工作原理和应用d.其他常见传感器:湿度传感器、气体传感器、声音传感器等的工作原理和应用3.传感器的选择与应用案例a.根据检测场景和要求选择合适的传感器b.通过实际案例分析,了解传感器在不同领域的应用4.实践操作和案例分析a.学生进行传感器的实验操作,包括测量温度、压力、光强等。
b.学生根据教师提供的案例进行分析和讨论,选择合适的传感器并进行测量实验。
三、教学方法和手段1.理论讲解:通过教师的解释和案例分析,讲解传感器的基本概念、分类、工作原理和应用。
2.实验操作:学生通过实际操作传感器进行测量实验,掌握传感器的使用和操作方法。
3.案例分析:通过教师提供的实际案例,学生进行讨论和分析,选择合适的传感器并进行测量实验。
四、教学评估方法1.课堂练习:布置课后作业或者进行小组讨论,检验学生对课堂内容的理解和掌握情况。
2.实验操作评估:对学生的实验操作能力进行评估,包括实验结果的准确性和操作的熟练程度。
3.课堂表现评估:根据学生在课堂上的表现,包括回答问题的积极性和参与讨论的质量,评估学生的学习态度和能力。
五、教学资源准备1.教学PPT:包括传感器基本概念、分类、工作原理和应用的内容。
传感器及检测技术教案全
传感器及检测技术教案(一)一、教学目标1. 让学生了解传感器的定义、作用和分类。
2. 使学生掌握常见传感器的原理与应用。
3. 培养学生运用传感器进行检测技术的实际操作能力。
二、教学内容1. 传感器的定义与作用2. 传感器的分类3. 常见传感器的原理与应用4. 传感器的基本特性5. 传感器的选用与安装三、教学重点与难点1. 教学重点:传感器的定义、作用、分类;常见传感器的原理与应用。
2. 教学难点:传感器的基本特性;传感器的选用与安装。
四、教学方法1. 采用讲授法讲解传感器的定义、作用、分类和常见传感器的原理与应用。
2. 采用案例分析法分析实际应用中的传感器案例,帮助学生更好地理解传感器的工作原理和应用。
3. 采用实践操作法,让学生动手安装和选用传感器,提高学生的实际操作能力。
五、教学过程1. 导入:介绍传感器在现代科技领域的重要性和广泛应用,激发学生的学习兴趣。
2. 新课讲解:讲解传感器的定义、作用、分类,以及常见传感器的原理与应用。
3. 案例分析:分析实际应用中的传感器案例,加深学生对传感器工作原理和应用的理解。
4. 实践操作:安排学生进行传感器选用与安装的实践操作,提高学生的实际操作能力。
6. 作业布置:布置相关练习题,巩固所学知识。
传感器及检测技术教案(二)一、教学目标1. 让学生了解传感器的基本特性。
2. 使学生掌握传感器的校准方法。
3. 培养学生运用传感器进行检测技术的实际操作能力。
二、教学内容1. 传感器的基本特性2. 传感器的校准方法3. 传感器的故障诊断与维修4. 传感器的误差分析5. 传感器的数据处理与显示三、教学重点与难点1. 教学重点:传感器的基本特性;传感器的校准方法。
2. 教学难点:传感器的故障诊断与维修;传感器的误差分析;传感器的数据处理与显示。
四、教学方法1. 采用讲授法讲解传感器的基本特性和校准方法。
2. 采用案例分析法分析实际应用中的传感器故障案例,帮助学生掌握传感器的故障诊断与维修方法。
英才学院传感器与检测技术教案
英才学院传感器与检测技术教案一、课程简介1.1 课程背景随着科技的不断发展,传感器与检测技术在各个领域中的应用越来越广泛。
为了适应这一趋势,英才学院开设了传感器与检测技术课程,旨在培养学生对该领域的理论知识和实际应用能力的掌握。
1.2 课程目标通过本课程的学习,使学生了解传感器与检测技术的基本概念、原理和方法,掌握各种常见传感器的性能、特点及应用,培养学生分析和解决实际问题的能力。
二、教学内容2.1 传感器概述介绍传感器的定义、分类、性能指标和选用原则,使学生了解传感器在现代检测系统中的重要作用。
2.2 电阻传感器讲解电阻传感器的原理、结构及应用,包括应变片、热电阻、线性电阻等传感器。
2.3 电容传感器介绍电容传感器的原理、特点及应用,涵盖电容式传感器、电感式传感器等。
2.4 电压传感器讲解电压传感器的工作原理、特点及应用,包括直流电压传感器、交流电压传感器等。
三、教学方法3.1 理论教学采用课堂讲授、案例分析等教学方法,使学生掌握传感器与检测技术的基本概念、原理和方法。
3.2 实验教学安排相应的实验课程,使学生在实际操作中了解传感器的性能、特点及应用,提高学生的动手能力。
3.3 课外实践鼓励学生参加科研项目、创新竞赛等,培养学生的实际工程能力和创新精神。
四、考核方式4.1 平时成绩包括课堂表现、作业完成情况、实验报告等,占总成绩的40%。
4.2 期末考试采用闭卷考试方式,涵盖课程基本概念、原理、应用等内容,占总成绩的60%。
五、教学资源5.1 教材推荐使用《传感器与检测技术》等相关教材,为学生提供系统、全面的学习资料。
5.2 实验设备配备传感器实验装置,供学生进行实验操作和实践学习。
5.3 网络资源提供在线课程、学术文献、行业动态等网络资源,方便学生自主学习和拓展视野。
六、教学安排6.1 课时安排本课程共计32课时,其中理论教学24课时,实验教学8课时。
6.2 进度安排第1-8课时:传感器概述及电阻传感器第9-16课时:电容传感器、电压传感器第17-24课时:其他传感器(如温度传感器、湿度传感器等)第25-32课时:实验教学及课程总结七、教学案例7.1 案例一:电阻传感器在应变测量中的应用介绍电阻应变片在工程结构应变测量中的应用,使学生了解电阻传感器的实际应用场景。
(完整版)传感器与检测技术-教案
第一章引言➢教学要求1.掌握传感器的基本概念。
2.掌握传感器的组成框图(p2,图1.1)。
3.掌握传感器的静态性能和动态性能。
4.了解传感器的课程性质和课程任务。
5.了解传感器的分类和发展趋势。
➢教学内容1.1 传感器的发展和作用了解。
1.2 什么是传感器传感器定义:能够感受规定的被测量并按照一定的规律转换成可用输出信号的器件和装置,通常由敏感元件和转换元件组成。
顾名思义,传感器的功能是一感二传,即感受被测信息,并传送出去。
根据传感器的功能要求,它一般应由三部分组成,即:敏感元件、转换元件、转换电路。
1.3 传感器的分类1.根据被测物理量分类速度传感器、位移传感器、加速度传感器、温度传感器、压力传感器等。
2.按工作原理分类应变式、电压式、电容式、涡流式、差动变压器式等。
3.按能量的传递方式分类有源的和无源的传感器。
1.4 传感器的性能和评价1.4.1传感器的静态特性传感器的静态特性是指传感器的输入信号不随时间变化或变化非常缓慢时,所表现出来的输出响应特性,称静态响应特性。
通常用来描述静态特性的指标有:测量范围、精度、灵敏度、稳定性、非线性度、重复性、灵敏阈和分辨力、迟滞。
• 稳定性传感器的稳定性,一是指传感器测量输出值在一段时间内的变化,即用所谓的稳定度表示;二是指在传感器外部环境和工作条件变化时而引起输出值的变化,即用影响量来表示。
•灵敏度传感器灵敏度是表示传感器的输入增量与由它引起的输出增量之间的函数关系。
更确切地说,灵敏度k等于传感器输出增量与被测量增量之比,是传感器在稳态输出输入特性曲线上各点的斜率。
用公式表示为:• 灵敏阈与分辨力灵敏阈是指传感器能够区分出的最小读数变化量。
对模拟式仪表,当输入量连续变化时,输出量只做阶梯变化,则分辨力就是输出量的每个阶梯所代表的输入量的大小。
对于数字式仪表,灵敏度阈就是分辨力,即仪表指示数字值的最后一位数字所代表的值。
从物理含义看,灵敏度是广义的增益,而灵敏度阈则是死区或不灵敏度。
传感器与检测技术教案
课时授课计划科目传感器与检测技术授课时数共页授课日期审阅授课班级出勤情况年月日课题:绪论授课目的:通过本节课的学习使学生了解传感器概念,组成,分类以及今后的发展趋势授课重点:传感器的概念和组成授课难点:对传感器概念的理解教学类型:讲授教具与挂图:复习提问:引入新课:如果将人的大脑比作CPU,那么感觉器官便是敏感元件,大脑是转换元件,那么四肢根据大脑转换的信息去处理事件,就是一个完整的传感器的模型了。
今天我们来学习一个新的设备传感器。
讲授新课(附后):本课小结:通过本节课的学习,学生初步了解传感器的一般概念和组成。
作业布置:改进措施:绪论[ 一] 组织教学1、师生问好;2、清点人数,做好考勤记录;[ 二] 复习提问[ 三] 引入新课如果将人的大脑比作CPU,那么感觉器官便是敏感元件,大脑是转换元件,那么四肢根据大脑转换的信息去处理事件,就是一个完整的传感器的模型了。
今天我们来学习一个新的设备传感器。
[ 四] 讲授新课传感器的概念传感器:把特定的被测信息(包括物理量、化学量、生物量等)按一定规律转换成某种可用信号输出的器件或装置。
这里“可用信号”是指便于处理、传输的信号。
当今电信号最易于处理和便于传输,因此,可以把传感器狭义地定义为:传感器(狭义定义):能将外界非电信号转换成电信号输出的器件。
当人类进入光子时代,光信息成为更便于快速、高效地处理与传输的可用信号时,传感器的概念也可以变为:能把外界信息转换成光信号输出的器件。
1、传感器技术:是涉及传感(检测)原理、传感器设计、传感器开发和应用的综合技术。
传感技术的含义则更为广泛,它是传感器技术、敏感功能材料科学、细微加工技术等多学科技术相互交叉渗透而形成的一门新技术学科——传感器工程学。
2、传感(检测)原理:是指传感器工作所依据的物理、化学和生物效应,并受相应的定律和法则所支配。
如:物理基础的基本定律包括:守恒定律(能量、动量、电荷等),场的定律(包括动力场运动定律、电磁场的感应定律等,其作用与物体在空间的位置及分布有关。
《传感器与检测技术》全套教案
教学目标知识目标:掌握接近开关的基本工作原理,了解各种接近开关的环境特性及使用方法,掌握应用接近开关进行工业技术检测的方法能力目标:对不同接近开关进行敏感性检测,使用霍尔接近开关完成转动次数的测量。
素质目标:教学重点接近开关的应用教学难点接近开关的基本工作原理教学手段理实一体实物讲解小组讨论、协作教学学时10教学内容与教学过程设计注释项目一开关量检测〖理论学习〗任务一认识接近开关一、霍尔效应型接近开关1.霍尔效应霍尔效应的产生是由于运动电荷在磁场作用下受到洛仑兹力作用的结果。
如图1-2所示,把N型半导体薄片放在磁场中,通以固定方向的电流i图1-2霍尔效应(从a点至b点),那么半导体中的载流子(电子)将沿着与电流方向相反的方向运动。
图1-2 霍尔效应2.霍尔元件霍尔元件的结构简单,由霍尔片、四根引线和壳体组成,如图1-3所示。
图1-3 霍尔元件讲解霍尔效应基本原理,及霍尔电动势。
3.霍尔原件的性能参数1)额定激励电流2)灵敏度KH3)输入电阻和输出电阻4)不等位电动势和不等位电阻5)寄生直流电动势6)霍尔电动势温度系数4.霍尔开关霍尔开关是在霍尔效应原理的基础上,利用集成封装和组装工艺制作而成,可把磁输入信号转换成实际应用中的电信号,同时具备工业场合实际应用易操作和可靠性的要求。
图1-6霍尔开关5.霍尔传感器的应用1)霍尔式位移传感器霍尔元件具有结构简单、体积小、动态特性好和寿命长的优点,它不仅用于磁感应强度、有功功率及电能参数的测量,也在位移测量中得到广泛应用。
图1-7 霍尔式位移传感器的工作原理图2)霍尔式转速传感器图1-8 所示的是几种不同结构的霍尔式转速传感器。
图1-8 几种霍尔式转速传感器的结构3)霍尔计数装置图1-9 所示的是对钢球进行计数的工作示意图和电路图。
当钢球通过霍尔开关传感器时,传感器可输出峰值20 mV 的脉冲电压,该电压经运算放大器(μA741)放大后,驱动半导了解霍尔传感器的应用。
传感器与检测技术教案设计
传感器与检测技术教案设计一、教学目标1.了解传感器和检测技术的基本概念和分类。
2.掌握常见传感器的原理、应用和特点。
3.了解检测技术在各个领域的应用。
4.锻炼学生的实验操作和数据处理能力。
二、教学内容1.传感器的概念和分类(1)传感器的定义和基本概念。
(2)传感器的分类和工作原理。
(3)常见传感器的应用和特点。
2.检测技术及其应用(1)检测技术的定义和基本概念。
(2)检测技术在环境监测、安全检测、医疗诊断等领域的应用。
(3)检测技术的发展趋势和前景。
三、教学方法1.讲授相结合通过讲解传感器和检测技术的基本概念和分类,引导学生理解相关原理和应用。
2.实验操作通过设置相关实验,让学生亲自操作传感器和检测技术设备,掌握其具体工作原理和使用方法。
3.讨论与交流鼓励学生在学习过程中提问和解答问题,促进学生之间的互动和交流。
四、教学步骤1.介绍传感器的概念和分类(20分钟)(1)传感器的定义和基本概念。
(2)传感器的分类:按感知要素分为物理传感器、化学传感器、生物传感器等;按感知原理分为电阻式传感器、电容式传感器、磁敏传感器等。
2.讲解常见传感器的原理、应用和特点(40分钟)(1)光敏传感器的原理、应用和特点。
(2)温度传感器的原理、应用和特点。
(3)气体传感器的原理、应用和特点。
(4)加速度传感器的原理、应用和特点。
3.进行传感器实验(40分钟)(1)光敏传感器实验:通过改变光照强度和距离的变化,观察光敏传感器输出信号的变化。
(2)温度传感器实验:通过改变温度源和温度变化时间,观察温度传感器输出信号的变化。
(3)气体传感器实验:通过改变气体浓度和温度,观察气体传感器输出信号的变化。
(4)加速度传感器实验:通过改变加速度的大小和方向,观察加速度传感器输出信号的变化。
4.介绍检测技术及其应用(20分钟)(1)检测技术的定义和基本概念。
(2)检测技术在环境监测、安全检测、医疗诊断等领域的应用。
(3)检测技术的发展趋势和前景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章引言➢教学要求1.掌握传感器的基本概念。
2.掌握传感器的组成框图(p2,图1.1)。
3.掌握传感器的静态性能和动态性能。
4.了解传感器的课程性质和课程任务。
5.了解传感器的分类和发展趋势。
➢教学内容1.1 传感器的发展和作用了解。
1.2 什么是传感器传感器定义:能够感受规定的被测量并按照一定的规律转换成可用输出信号的器件和装置,通常由敏感元件和转换元件组成。
顾名思义,传感器的功能是一感二传,即感受被测信息,并传送出去。
根据传感器的功能要求,它一般应由三部分组成,即:敏感元件、转换元件、转换电路。
1.3 传感器的分类1.根据被测物理量分类速度传感器、位移传感器、加速度传感器、温度传感器、压力传感器等。
2.按工作原理分类应变式、电压式、电容式、涡流式、差动变压器式等。
3.按能量的传递方式分类有源的和无源的传感器。
1.4 传感器的性能和评价1.4.1传感器的静态特性传感器的静态特性是指传感器的输入信号不随时间变化或变化非常缓慢时,所表现出来的输出响应特性,称静态响应特性。
通常用来描述静态特性的指标有:测量范围、精度、灵敏度、稳定性、非线性度、重复性、灵敏阈和分辨力、迟滞。
• 稳定性传感器的稳定性,一是指传感器测量输出值在一段时间内的变化,即用所谓的稳定度表示;二是指在传感器外部环境和工作条件变化时而引起输出值的变化,即用影响量来表示。
•灵敏度传感器灵敏度是表示传感器的输入增量与由它引起的输出增量之间的函数关系。
更确切地说,灵敏度k等于传感器输出增量与被测量增量之比,是传感器在稳态输出输入特性曲线上各点的斜率。
用公式表示为:• 灵敏阈与分辨力灵敏阈是指传感器能够区分出的最小读数变化量。
对模拟式仪表,当输入量连续变化时,输出量只做阶梯变化,则分辨力就是输出量的每个阶梯所代表的输入量的大小。
对于数字式仪表,灵敏度阈就是分辨力,即仪表指示数字值的最后一位数字所代表的值。
从物理含义看,灵敏度是广义的增益,而灵敏度阈则是死区或不灵敏度。
•迟滞传感器在正(输入量增大)反(输入量减小)行程中——输入特性曲线不重合的程度称为迟滞。
•线性度传感器的输出——输入校准曲线与理论拟合直线之间的最大偏差与传感器满量程输出之比,称为该传感器的“非线性误差”或称“线性度”,也称“非线性度”。
1.4.2传感器的动态特性动态特性是指传感器对于随时间变化的输入量的响应特性。
只要输入量是时间的函数,则其输出量必将是时间的函数。
研究动态特性的标准输入形式有三种,即正弦、阶跃和线性,而经常使用的是前两种。
•零阶传感器动态特性指标零阶传感器,其输入量无论随时间如何变化,其输出量的幅值总是与输入量成确定的比例关系,在时间上也不滞后,幅角φ等于零。
所以零阶传感器的动态特性指标就是静态特性指标。
• 一阶传感器动态特性指标一阶传感器动态特性指标有:静态灵敏度和时间常数τ。
如果时间常数τ越小,系统的频率特性就越好。
在弹簧阻尼系统中,就要求系统的阻尼系数小,而弹簧刚度要大。
•二阶传感器动态特性指标二阶传感器的传递函数:频率函数为:幅频特性为:相频特性为:上面各式中:0ω——系统无阻尼时的固有振动角频率;k ——弹簧常数;m ——质量;ζ——相对阻尼系数;C ——阻尼器阻尼系数;K ——静态灵敏度。
由于大多数传感器均为二阶系统,所以我们要专门讨论二阶系统的阶跃响应。
根据二阶系统相对阻尼系数ζ的大小,将其二阶响应分成三种情况:既1ζ>时过阻尼;1ζ=时临界阻尼;1ζ<时欠阻尼。
在一定的值下,欠阻尼系统比临界阻尼系统更快地达到稳态值;过阻尼系统反应迟钝,动作缓慢,所以一般传感器都设计成欠阻尼。
一般取值为0.6~0.8。
第二章 应变式传感器➢ 教学要求1.掌握电阻应变效应的基本概念。
2.掌握电桥原理与电阻应变计桥路。
3.掌握应变计的静态性能和动态性能。
4. 掌握温度误差产生的原因及其补偿方法。
4.了解应变计的分类和命名规则。
5.了解应变计的应用和发展现状。
➢ 教学内容2.1 电阻应变效应2.1.1 电阻应变效应定义:导体或半导体材料在外界力的作用下产生机械变形时,其电阻值相应发生变化,这种现象称为“应变效应”。
设有一段长为l ,截面积为A ,电阻率为ρ的导体(如金属丝),它具有的电阻为:l R Aρ= 式中:ρ—电阻丝的电阻率;l —电阻丝的长度;A —电阻丝的截面积。
2.1.2 应变计的分类了解。
2.1.3 应变计型号命名了解。
2.2 应变计的主要特性2.2.1应变计的灵敏度系数当具有初始电阻值的应变计粘贴于试件表面时,试件受力引起的表面应变,将传递给应变计的敏感栅,使其产生电阻相对变化。
实验证明,在一定的应变范围内,有下列关系:RR k ε∆=式中,k 为电阻应变计的灵敏度系数。
必须指出,应变计的灵敏系数并不等于其敏感栅整长应变丝的灵敏度系数,一般情况下,0k k <。
这是因为,在单向应力产生双向应变的情况下,k 除受到敏感栅结构形状﹑成型工艺﹑粘结剂和基底性能的影响外,尤其受到栅端圆弧部分横向效应的影响。
应变计的灵敏度系数直接关系到应变测量的精度。
因此,值通常采用从批量生产中每批抽样,在规定条件下通过实测确定,该值称为“标称灵敏度系数”。
2.2.2 横向效应定义:在单位应力、双向应变情况下,横向应变总是起着抵消纵向应变的作用。
应变计这种既敏感纵向应变,又同时受横向应变影响而使灵敏系数及相对电阻比都减小的现象,称为横向效应。
其大小用横向效应系数H(百分数)来表示,即:x K 对轴向应变的灵敏度系数;y K 为对横向应变的灵敏度系数。
减小横向效应的方法:采用直角线栅式应变计或箔式应变计。
2.2.3应变计的动态特性实验表明,机械应变波是以相同于声波的形式和速度在材料中传播的。
当它依次通过一定厚度的基底、胶层(两者都很薄,可忽略不计)和栅长而为应变计所响应时,就会有时间的迟后。
应变计的这种响应迟后对动态(高频)应变测量,就会产生误差。
应变计的动态特性就是指其感受随时间变化的应变时之响应特性。
2.2.4其它特性参数机械滞后实用中,由于敏感栅基底和粘结剂材料性能,或使用中的过载,过热,都会)使应变计产生残余变形,导致应变计输出的不重合。
这种不重合性用机械滞后(Zj 来衡量。
它是指粘贴在试件上的应变计,在恒温条件下增(加载)、减(卸载)试件应变的过程中,对应同一机械应变所指示应变量(输出)之差值,见图2.1所示。
<3~10με。
实测中,可在测试前通过多通常在室温条件下,要求机械滞后Zj次重复预加、卸载,来减小机械滞后产生的误差。
图2.1 应变计的机械滞后特性图2.2 应变计的蠕变和零漂特性蠕变和零漂粘贴在试件上的应变计,在恒温恒载条件下,指示应变量随时间单向变化的特性称为蠕变。
如图2.2中θ所示。
当试件初始空载时,应变计示值仍会随时间变化的现象称为零漂。
如图2.2所示。
蠕变反映了应变计在长时间工作中对时间的稳定性,通常要求θ中的P<3~15μs。
引起蠕变的主要原因是,制作应变计时内部产生的内应力和工作中出现的剪应力,使丝栅、基底,尤其是胶层之间产生的“滑移”所致。
选用弹性模量较大的粘结剂和基底材料,适当减薄胶层和基底,并使之充分固化,有利于蠕变性能的改善。
应变极限应当知道,应变计的线性(灵敏系数为常数)特性,只有在一定的应变限度范围内才能保持。
当试件输入的真实应变超过某一限值时,应变计的输出特性将出现非线性。
在恒温条件下,使非线性误差达到10%时的真实应变值,称为应变极限。
如图2.3所示。
应变极限是衡量应变计测量范围和过载能力的指标,通常要求lim 8000εμε≥。
影响limε的主要因素及改善措施,与蠕变基本相同。
图2.3 应变计的应变极限特性2.3 应变计的粘贴了解粘贴剂的选用要求,和常用粘合剂的选用原则:有机粘合剂通常用于低温﹑常温合中温,无机粘合剂用于高温。
2.4电桥原理及电阻应变计桥路2.4.1直流电桥的特性方程及平衡条件电桥的供桥电源电压为,R1、R2、R3和R4为桥臂,RL为负载内阻,负载电流IL为:2.4 直流电桥该方程为直流电桥的特性方程。
I L =0时电桥平衡,则平衡条件为:这说明要使电桥平衡,其相邻两臂电阻的比值应相等或相对两臂电阻的乘积相等。
2.4.2 直流电桥的电压灵敏度应变片工作时,其电阻变化很小,电桥相应输出电压也很小。
要推动记录仪工作,须将输出电压放大,为此必须了解ΔR/R 与电桥输出电压的关系。
电桥灵敏度定义为:单臂工作应变片的电桥电压灵敏度为:式中,21R n R2.4.3交流电桥的平衡条件和电压输出Z1、Z2、Z3、Z4为复阻抗,U 为交流电压源,开路输出电压为U 0,根据交流电路分析(和直流电路类似)可得平衡条件为:设(i=1,2,3,4) 式中 、 ——各桥臂电阻和电抗;, ——各桥臂复阻抗的模和幅角。
因此,交流电桥的平衡条件必须同时满足:或2.5 交流电桥 2.6交流电桥分布电容的影响电桥的调平就是确保试件在未受载、无应变的初始条件下,应变电桥满足平衡条件(初始输出为零)。
在实际的应变测量中,由于各桥臂应变计的性能参数不可能完全对称,加之应变计引出导线的分布电容(其容抗与供桥电源频率有关),严重影响着交流电桥的初始平衡和输出特性。
因此,交流电桥平衡时,必须同时满足电阻和电容平衡两个条件。
1324R R =R R 和 3241R C =R C对全等臂电桥,上式即为1234R =R =R =R 和 1 2 C =C2.5 温度误差及其补偿2.5.1 温度误差产生的原因用应变片测量时,希望其电阻只随应变而变,而不受其它因素的影响。
但实际上环境温度变化时,也会引起电阻的相对变化,从而产生温度误差。
应变计的温度效应及其热输出由两部分组成:前部分为热阻效应所造成;后部分为敏感栅与试件热膨胀失配所引起。
在工作温度变化较大时,这种热输出干扰必须加以补偿。
(1)敏感栅金属丝电阻本身随温度变化产生的温度误差000(1)t R R t R R t αα=+∆=+∆(2)试件材料与应变丝材料的线膨胀系数不一,使应变丝产生附加形变而造成的电阻变化。
式中tα——敏感栅材料的电阻温度系数;K——应变计的灵敏系数;,s tββ——分别为试件和敏感栅材料的线膨胀系数。
2.5.2温度补偿方法常采用温度自补偿法和桥路补偿法。
温度自补偿法这种方法是通过精心选配敏感栅材料与结构参数来实现热输出补偿的。
(1)单丝自补偿应变计由式可知,欲使热输出为0,只要满足条件(a)丝绕式 (b)短接式双丝自补偿应变计(2)双丝自补偿应变计这种应变计的敏感栅是由电阻温度系数为一正一负的两种合金丝串接而成,如图所示。
应变计电阻R由两部分电阻Ra 和Rb组成,即R=Ra +Rb。
当工作温度变化时,若Ra栅产生正的热输出εat与Rb栅产生负的热输出εbt,能大小相等或相近,就可达到自补偿的目的。