2009年全国高考文科数学试题及答案-湖北卷
2009年高考湖北数学(文)试题及参考答案
城关镇救灾工作应急预案我镇是自然灾害发生较为频繁的地区,洪涝、干旱、泥石流、风雹、低温冷冻、山体滑坡等突发性自然灾害的发生, 对国家和人民群众的生命财产造成了损失。
为规范救灾工作,提高救灾工作应急反应能力,保障救灾工作高效、有序进行,最大限度地减轻灾害造成的损失,确保人民群众生命财产安全,维护灾区社会稳定,特制定本预案。
一、总则(一) 预案的工作原则统一领导分级负责的原则。
本预案指导全镇辖区内自然灾害的应对工作。
并有效与上级政府和有关部门的应急预案对接。
部门分工综合协调的原则。
预案要确定政府各部门救灾职能,做到相互配合和衔接,共同完成应急任务。
一是坚持以人为本的原则。
二是坚持预防为主的原则。
三是坚持依法规范的原则。
四是坚持统一领导的原则。
五是坚持协同处置的原则。
六是坚持资源整合的原则。
七是坚持科学应对的原则。
( 二) 预案的适应范围救灾预案适用于洪涝、干旱、泥石流、风雹、低温冷冻、山体滑坡等突发性自然灾害发生后的应急反应。
二、灾害预警和灾情报告( 一) 灾害预警自然灾害发生后,应在3小时以内向上级人民政府和有关部门报告初步灾情( 即快报),并迅速组织有关部门调查核实灾情。
发生特大灾害的,可以越级向上级人民政府或主管部门报告。
灾情内容主要包括: 灾害种类、发生时间、地点、范围、受灾程度、灾害后果、采取的措施, 生产、生活方面需要解决的问题等。
三、预案启动的条件及方式( 一) 预案启动的条件发生大灾、中灾时,乡镇救灾预案启动。
( 二) 预案启动的方式镇预案由镇政府颁布实施。
四、救灾准备( 一) 救援人员的组成紧急救援队伍主要由受灾地区的干部和群众组成。
遇重大灾害时,由镇武装部协调民兵应急分队参加抢险救灾。
( 二) 救援物资的准备紧急救援物包括抢险物资和救助物资两大部分。
抢险物资主要包括抢修水利设施、抢修道路、抢修电力、抢修通讯所需要的设备和材料。
抢救伤员的药品及其它紧急抢险所需的物资。
救助物资包括粮食、衣被、饮用水和其他生存性救助所需物资等。
2009年全国高考数学试题——全国卷2(文科)含答案
2009年普通高等学校招生全国统一考试试卷题文科数学第Ⅰ卷(选择题)本卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A B ,互斥,那么 球的表面积公式球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径表示球的半径()()()P A B P A P B =球的体积公式球的体积公式如果事件A 在一次试验中发生的概率是P ,那么,那么 34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率次的概率其中R 表示球的半径表示球的半径()(1)(01,2)k kn k n n P k C P P k n -=-= ,,, 有志者事竟成有志者事竟成 加油加油 同学们同学们一.选择题一.选择题(1)已知全集U ={1,2,3,4,5,6,7,8},M ={1,3,5,7},N ={5,6,7},则C u ( M N )= (A) {5,7} (B ) {2,4} (C ){2.4.8} (D ){1,3,5,6,7} (2)函数y=x -(x £0)的反函数是的反函数是(A )2y x =(x ³0) (B )2y x =-(x ³0)(B )2y x =(x £0) (D )2y x =-(x £0) (3) 函数y=22log2xy x -=+的图像的图像(A ) 关于原点对称关于原点对称 (B )关于主线y x =-对称对称(C ) 关于y 轴对称轴对称 (D )关于直线y x =对称对称(4)已知△ABC 中,12cot 5A =-,则c o s A =(A) 1213(B) 513(C) 513- (D) 1213-(5) 已知正四棱柱1111C A B CDD A B C D -中,1A A =2A B ,E 为1A A 重点,则异面直线B E 与1C D 所形成角的余弦值为所形成角的余弦值为(A )1010(B) 15(C) 31010(D) 35(6) 已知向量a = (2,1), a ·b = 10 = 10,︱,︱a + b ︱= 52,则︱b ︱=((A )5 (B )10 (C )5 (D )25 (7)设2lg ,(lg ),lg ,a e b e c e ===则(A )a b c >> (B )a c b >> (C )c a b >> (D )c b a >> (8)双曲线13622=-y x 的渐近线与圆)0()3(222>=+-r r y x 相切,则r= (A )3 (B )2 (C )3 (D )6 (9)若将函数)0)(4tan(>+=w p w x y 的图像向右平移6p 个单位长度后,与函数)6tan(p w +=x y 的图像重合,则w 的最小值为的最小值为 (A)61 (B)41 (C)31 (D)21(10)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有门相同的选法有 (A )6种 (B )12种 (C )24种 (D )30种(11)已知直线)0)(2(>+=k x k y 与抛物线C:x y 82=相交A 、B 两点,F 为C 的焦点。
2009年全国统一高考数学试卷(文科)(全国卷ⅱ)(含解析版)(附详细答案)
2009年全国统一高考数学试卷(文科)(全国卷Ⅱ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)函数y=(x≤0)的反函数是()A.y=x2(x≥0)B.y=﹣x2(x≥0)C.y=x2(x≤0)D.y=﹣x2(x≤0)2.(5分)已知全集U={1,2,3,4,5,6,7,8},M={1,3,5,7},N={5,6,7},则?U(M∪N)=()A.{5,7}B.{2,4}C.{2,4,8}D.{1,3,5,6,7}3.(5分)函数y=log2的图象()A.关于直线y=﹣x对称B.关于原点对称C.关于y轴对称D.关于直线y=x对称4.(5分)已知△ABC中,cotA=﹣,则cosA=()A.B.C.D.5.(5分)已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,E为AA1中点,则异面直线BE与CD1所形成角的余弦值为()A.B.C.D.6.(5分)已知向量=(2,1),=10,|+|=,则||=()A.B.C.5D.257.(5分)设a=lge,b=(lge)2,c=lg,则()A.a>b>c B.c>a>b C.a>c>b D.c>b>a 8.(5分)双曲线﹣=1的渐近线与圆(x﹣3)2+y2=r2(r>0)相切,则r=()A.B.2C.3D.69.(5分)若将函数y=tan(ωx+)(ω>0)的图象向右平移个单位长度后,与函数y=tan(ωx+)的图象重合,则ω的最小值为()A.B.C.D.10.(5分)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有()A.6种B.12种C.24种D.30种11.(5分)已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B两点,F为C的焦点,若|FA|=2|FB|,则k=()A.B.C.D.12.(5分)纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标“△”的面的方位()A.南B.北C.西D.下二、填空题(共4小题,每小题5分,满分20分)13.(5分)设等比数列{a n}的前n项和为S n.若a1=1,S6=4S3,则a4= .14.(5分)(x﹣y)4的展开式中x3y3的系数为.15.(5分)已知圆O:x2+y2=5和点A(1,2),则过A且与圆O相切的直线与两坐标轴围成的三角形的面积= .16.(5分)设OA是球O的半径,M是OA的中点,过M且与OA成45°角的平面截球O的表面得到圆C.若圆C的面积等于,则球O的表面积等于.三、解答题(共6小题,满分70分)17.(10分)已知等差数列{a n}中,a3a7=﹣16,a4+a6=0,求{a n}前n项和s n.18.(12分)设△ABC的内角A、B、C的对边长分别为a、b、c,cos(A﹣C)+cosB=,b2=ac,求B.19.(12分)如图,直三棱柱ABC﹣A1B1C1中,AB⊥AC,D、E分别为AA1、B1C 的中点,DE⊥平面BCC1.(Ⅰ)证明:AB=AC;(Ⅱ)设二面角A﹣BD﹣C为60°,求B1C与平面BCD所成的角的大小.20.(12分)某车间甲组有10名工人,其中有4名女工人;乙组有10名工人,其中有6名女工人.现采用分层抽样(层内采用不放回简单随即抽样)从甲、乙两组中共抽取4名工人进行技术考核.(1)求从甲、乙两组各抽取的人数;(2)求从甲组抽取的工人中恰有1名女工人的概率;(3)求抽取的4名工人中恰有2名男工人的概率.21.(12分)设函数f(x)=x3﹣(1+a)x2+4ax+24a,其中常数a>1,(Ⅰ)讨论f(x)的单调性;(Ⅱ)若当x≥0时,f(x)>0恒成立,求a的取值范围.22.(12分)已知椭圆的离心率为,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l的距离为,(Ⅰ)求a,b的值;(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.2009年全国统一高考数学试卷(文科)(全国卷Ⅱ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)函数y=(x≤0)的反函数是()A.y=x2(x≥0)B.y=﹣x2(x≥0)C.y=x2(x≤0)D.y=﹣x2(x≤0)【考点】4R:反函数.【专题】11:计算题.【分析】直接利用反函数的定义,求出函数的反函数,注意函数的定义域和函数的值域.【解答】解:由原函数定义域x≤0可知A、C错,原函数的值域y≥0可知D错,故选:B.【点评】本题考查反函数的求法,反函数概念,考查逻辑推理能力,是基础题.2.(5分)已知全集U={1,2,3,4,5,6,7,8},M={1,3,5,7},N={5,6,7},则?U(M∪N)=()A.{5,7}B.{2,4}C.{2,4,8}D.{1,3,5,6,7}【考点】1H:交、并、补集的混合运算.【专题】11:计算题.【分析】先求集合M∪N,后求它的补集即可,注意全集的范围.【解答】解:∵M={1,3,5,7},N={5,6,7},∴M∪N={1,3,5,6,7},∵U={1,2,3,4,5,6,7,8},∴?U(M∪N)={2,4,8}故选:C.【点评】本题考查集合运算能力,本题是比较常规的集合题,属于基础题.3.(5分)函数y=log2的图象()A.关于直线y=﹣x对称B.关于原点对称C.关于y轴对称D.关于直线y=x对称【考点】3K:函数奇偶性的性质与判断;3M:奇偶函数图象的对称性.【专题】31:数形结合.【分析】先看函数的定义域,再看f(﹣x)与f(x)的关系,判断出此函数是个奇函数,所以,图象关于原点对称.【解答】解:由于定义域为(﹣2,2)关于原点对称,又f(﹣x)==﹣=﹣f(x),故函数为奇函数,图象关于原点对称,故选:B.【点评】本题考查函数奇偶性的判断以及利用函数的奇偶性判断函数图象的对称性.4.(5分)已知△ABC中,cotA=﹣,则cosA=()A.B.C.D.【考点】GG:同角三角函数间的基本关系.【专题】11:计算题.【分析】利用同角三角函数的基本关系cosA转化成正弦和余弦,求得sinA和cosA 的关系式,进而与sin2A+cos2A=1联立方程求得cosA的值.【解答】解:∵cotA=∴A为钝角,cosA<0排除A和B,再由cotA==,和sin2A+cos2A=1求得cosA=,故选:D.【点评】本题考查同角三角函数基本关系的运用.主要是利用了同角三角函数中的平方关系和商数关系.5.(5分)已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,E为AA1中点,则异面直线BE与CD1所形成角的余弦值为()A.B.C.D.【考点】LM:异面直线及其所成的角.【专题】11:计算题;31:数形结合;44:数形结合法;5G:空间角.【分析】由BA1∥CD1,知∠A1BE是异面直线BE与CD1所形成角,由此能求出异面直线BE与CD1所形成角的余弦值.【解答】解:∵正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,E为AA1中点,∴BA1∥CD1,∴∠A1BE是异面直线BE与CD1所形成角,设AA1=2AB=2,则A1E=1,BE==,A1B==,∴cos∠A1BE===.∴异面直线BE与CD1所形成角的余弦值为.故选:C.【点评】本题考查异面直线所成角的余弦值的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.6.(5分)已知向量=(2,1),=10,|+|=,则||=()A.B.C.5D.25【考点】91:向量的概念与向量的模;9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】根据所给的向量的数量积和模长,对|a+b|=两边平方,变化为有模长和数量积的形式,代入所给的条件,等式变为关于要求向量的模长的方程,解方程即可.【解答】解:∵|+|=,||=∴(+)2=2+2+2=50,得||=5故选:C.【点评】本题考查平面向量数量积运算和性质,根据所给的向量表示出要求模的向量,用求模长的公式写出关于变量的方程,解方程即可,解题过程中注意对于变量的应用.7.(5分)设a=lge,b=(lge)2,c=lg,则()A.a>b>c B.c>a>b C.a>c>b D.c>b>a【考点】4M:对数值大小的比较;4O:对数函数的单调性与特殊点.【分析】因为10>1,所以y=lgx单调递增,又因为1<e<10,所以0<lge<1,即可得到答案.【解答】解:∵1<e<3<,∴0<lge<1,∴lge>lge>(lge)2.∴a>c>b.故选:C.【点评】本题主要考查对数的单调性.即底数大于1时单调递增,底数大于0小于1时单调递减.8.(5分)双曲线﹣=1的渐近线与圆(x﹣3)2+y2=r2(r>0)相切,则r=()A.B.2C.3D.6【考点】IT:点到直线的距离公式;KC:双曲线的性质.【专题】11:计算题.【分析】求出渐近线方程,再求出圆心到渐近线的距离,根据此距离和圆的半径相等,求出r.【解答】解:双曲线的渐近线方程为y=±x,即x±y=0,圆心(3,0)到直线的距离d==,∴r=.故选:A.【点评】本题考查双曲线的性质、点到直线的距离公式.9.(5分)若将函数y=tan(ωx+)(ω>0)的图象向右平移个单位长度后,与函数y=tan(ωx+)的图象重合,则ω的最小值为()A.B.C.D.【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】11:计算题.【分析】根据图象的平移求出平移后的函数解析式,与函数y=tan(ωx+)的图象重合,比较系数,求出ω=6k+(k∈Z),然后求出ω的最小值.【解答】解:y=tan(ωx+),向右平移个单位可得:y=tan[ω(x﹣)+]=tan (ωx+)∴﹣ω+kπ=∴ω=k+(k∈Z),又∵ω>0∴ωmin=.故选:D.【点评】本题是基础题,考查三角函数的图象的平移,待定系数法的应用,考查计算能力,是常考题.10.(5分)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有()A.6种B.12种C.24种D.30种【考点】D5:组合及组合数公式.【专题】11:计算题.【分析】根据题意,分两步,①先求所有两人各选修2门的种数,②再求两人所选两门都相同与都不同的种数,进而由事件间的相互关系,分析可得答案.【解答】解:根据题意,分两步,①由题意可得,所有两人各选修2门的种数C42C42=36,②两人所选两门都相同的有为C42=6种,都不同的种数为C42=6,故选:C.【点评】本题考查组合公式的运用,解题时注意事件之间的关系,选用直接法或间接法.11.(5分)已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B两点,F为C的焦点,若|FA|=2|FB|,则k=()A.B.C.D.【考点】K8:抛物线的性质.【专题】11:计算题;16:压轴题.【分析】根据直线方程可知直线恒过定点,如图过A、B分别作AM⊥l于M,BN ⊥l于N,根据|FA|=2|FB|,推断出|AM|=2|BN|,点B为AP的中点、连接OB,进而可知,进而推断出|OB|=|BF|,进而求得点B的横坐标,则点B的坐标可得,最后利用直线上的两点求得直线的斜率.【解答】解:设抛物线C:y2=8x的准线为l:x=﹣2直线y=k(x+2)(k>0)恒过定点P(﹣2,0)如图过A、B分别作AM⊥l于M,BN⊥l于N,由|FA|=2|FB|,则|AM|=2|BN|,点B为AP的中点、连接OB,则,∴|OB|=|BF|,点B的横坐标为1,故点B的坐标为,故选:D.【点评】本题主要考查了抛物线的简单性质.考查了对抛物线的基础知识的灵活运用.12.(5分)纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标“△”的面的方位()A.南B.北C.西D.下【考点】LC:空间几何体的直观图.【专题】16:压轴题.【分析】本题考查多面体展开图;正方体的展开图有多种形式,结合题目,首先满足上和东所在正方体的方位,“△”的面就好确定.【解答】解:如图所示.故选B【点评】本题主要考查多面体的展开图的复原,属于基本知识基本能力的考查.二、填空题(共4小题,每小题5分,满分20分)13.(5分)设等比数列{a n}的前n项和为S n.若a1=1,S6=4S3,则a4= 3 .【考点】87:等比数列的性质;89:等比数列的前n项和.【专题】11:计算题.【分析】根据S6=4S3可求得q3,进而根据等比数列的通项公式,得到答案.【解答】解:设等比数列的公比为q,则由S6=4S3知q≠1,∴S6==.∴q3=3.∴a1q3=3.故答案为:3【点评】本题主要考查了等比数列的求和问题.属基础题.14.(5分)(x﹣y)4的展开式中x3y3的系数为 6 .【考点】DA:二项式定理.【分析】先化简代数式,再利用二项展开式的通项公式求出第r+1项,令x,y 的指数都为1求出x3y3的系数【解答】解:,只需求展开式中的含xy项的系数.∵的展开式的通项为令得r=2∴展开式中x3y3的系数为C42=6故答案为6.【点评】本题考查二项展开式的通项公式是解决二项展开式的特定项问题的工具.15.(5分)已知圆O:x2+y2=5和点A(1,2),则过A且与圆O相切的直线与两坐标轴围成的三角形的面积= .【考点】J7:圆的切线方程.【专题】11:计算题;16:压轴题.【分析】判断点A在圆上,用点斜式写出切线方程,求出切线在坐标轴上的截距,从而求出直线与两坐标轴围成的三角形的面积.【解答】解:由题意知,点A在圆上,切线斜率为==﹣,用点斜式可直接求出切线方程为:y﹣2=(x﹣1),即x+2y﹣5=0,从而求出在两坐标轴上的截距分别是5和,所以,所求面积为.【点评】本题考查求圆的切线方程的方法,以及求直线与坐标轴围成的三角形的面积.16.(5分)设OA是球O的半径,M是OA的中点,过M且与OA成45°角的平面截球O的表面得到圆C.若圆C的面积等于,则球O的表面积等于8π.【考点】LG:球的体积和表面积.【专题】11:计算题;16:压轴题.【分析】本题可以设出球和圆的半径,利用题目的关系,求解出具体的值,即可得到答案.【解答】解:设球半径为R,圆C的半径为r,.因为.由得R2=2故球O的表面积等于8π故答案为:8π,【点评】本题考查学生对空间想象能力,以及球的面积体积公式的利用,是基础题.三、解答题(共6小题,满分70分)17.(10分)已知等差数列{a n}中,a3a7=﹣16,a4+a6=0,求{a n}前n项和s n.【考点】84:等差数列的通项公式;85:等差数列的前n项和.【专题】34:方程思想.【分析】利用等差数列的通项公式,结合已知条件列出关于a1,d的方程组,求出a1、d,进而代入等差数列的前n项和公式求解即可.【解答】解:设{a n}的公差为d,则,即,解得,因此S n=﹣8n+n(n﹣1)=n(n﹣9),或S n=8n﹣n(n﹣1)=﹣n(n﹣9).【点评】本题考查等差数列的通项公式及求和公式运用能力,利用方程的思想可求解.18.(12分)设△ABC的内角A、B、C的对边长分别为a、b、c,cos(A﹣C)+cosB=,b2=ac,求B.【考点】GG:同角三角函数间的基本关系;HP:正弦定理.【专题】11:计算题.【分析】本题考查三角函数化简及解三角形的能力,关键是注意角的范围对角的三角函数值的制约,并利用正弦定理得到sinB=(负值舍掉),从而求出答案.【解答】解:由cos(A﹣C)+cosB=及B=π﹣(A+C)得cos(A﹣C)﹣cos(A+C)=,∴cosAcosC+sinAsinC﹣(cosAcosC﹣sinAsinC)=,∴sinAsinC=.又由b2=ac及正弦定理得sin2B=sinAsinC,故,∴或(舍去),于是B=或B=.又由b2=ac知b≤a或b≤c所以B=.【点评】三角函数给值求值问题的关键就是分析已知角与未知角的关系,然后通过角的关系,选择恰当的公式,即:如果角与角相等,则使用同角三角函数关系;如果角与角之间的和或差是直角的整数倍,则使用诱导公式;如果角与角之间存在和差关系,则我们用和差角公式;如果角与角存在倍数关系,则使用倍角公式.19.(12分)如图,直三棱柱ABC﹣A1B1C1中,AB⊥AC,D、E分别为AA1、B1C 的中点,DE⊥平面BCC1.(Ⅰ)证明:AB=AC;(Ⅱ)设二面角A﹣BD﹣C为60°,求B1C与平面BCD所成的角的大小.【考点】LQ:平面与平面之间的位置关系.【专题】11:计算题;14:证明题.【分析】(1)连接BE,可根据射影相等的两条斜线段相等证得BD=DC,再根据相等的斜线段的射影相等得到AB=AC;(2)求B1C与平面BCD所成的线面角,只需求点B1到面BDC的距离即可,作AG⊥BD于G,连GC,∠AGC为二面角A﹣BD﹣C的平面角,在三角形AGC 中求出GC即可.【解答】解:如图(I)连接BE,∵ABC﹣A1B1C1为直三棱柱,∴∠B1BC=90°,∵E为B1C的中点,∴BE=EC.又DE⊥平面BCC1,∴BD=DC(射影相等的两条斜线段相等)而DA⊥平面ABC,∴AB=AC(相等的斜线段的射影相等).(II)求B1C与平面BCD所成的线面角,只需求点B1到面BDC的距离即可.作AG⊥BD于G,连GC,∵AB⊥AC,∴GC⊥BD,∠AGC为二面角A﹣BD﹣C的平面角,∠AGC=60°不妨设,则AG=2,GC=4在RT△ABD中,由AD?AB=BD?AG,易得设点B1到面BDC的距离为h,B1C与平面BCD所成的角为α.利用,可求得h=,又可求得,∴α=30°.即B1C与平面BCD所成的角为30°.【点评】本题主要考查了平面与平面之间的位置关系,考查空间想象能力、运算能力和推理论证能力,属于基础题.20.(12分)某车间甲组有10名工人,其中有4名女工人;乙组有10名工人,其中有6名女工人.现采用分层抽样(层内采用不放回简单随即抽样)从甲、乙两组中共抽取4名工人进行技术考核.(1)求从甲、乙两组各抽取的人数;(2)求从甲组抽取的工人中恰有1名女工人的概率;(3)求抽取的4名工人中恰有2名男工人的概率.【考点】B3:分层抽样方法;C6:等可能事件和等可能事件的概率.【专题】11:计算题.【分析】(1)根据分层抽样原理,要从甲、乙两组各10人中共抽取4名工人,则从每组各抽取2名工人.(2)从甲组抽取2人的结果有C102种,恰有1名女工人的结果有C41C61种,代入等可能事件的概率公式即可(3)从甲乙各10人虫各抽2人的结果有C102C102种,而4名工人中恰有2名男工人的情况分①两名男工都来自甲,有C62C62②甲乙各抽1名男工C61C41C41C61③两名男工都来自乙有C42C42种结果【解答】解:(1)由于甲、乙两组各有10名工人,根据分层抽样原理,要从甲、乙两组中共抽取4名工人进行技术考核,则从每组各抽取2名工人.(2)记A表示事件:从甲组抽取的工人中恰有1名女工人,则(3)A i表示事件:从甲组抽取的2名工人中恰有i名男工人,i=0,1,2Bj表示事件:从乙组抽取的2名工人中恰有j名男工人,j=0,1,2B表示事件:抽取的4名工人中恰有2名男工人.A i与B j独立,i,j=0,1,2,且B=A0?B2+A1?B1+A2?B0故P(B)=P(A0?B2+A1?B1+A2?B0)=P(A0)?P(B2)+P(A1)?P(B1)+P(A2)?P(B0)==【点评】本题考查概率统计知识,要求有正确理解分层抽样的方法及利用分类原理处理事件概率的能力,第一问直接利用分层统计原理即可得人数,第二问注意要用组合公式得出概率,第三问关键是理解清楚题意以及恰有2名男工人的具体含义,从而正确分类求概率.21.(12分)设函数f(x)=x3﹣(1+a)x2+4ax+24a,其中常数a>1,(Ⅰ)讨论f(x)的单调性;(Ⅱ)若当x≥0时,f(x)>0恒成立,求a的取值范围.【考点】3R:函数恒成立问题;6B:利用导数研究函数的单调性.【专题】15:综合题;16:压轴题.【分析】(1)先对函数进行求导,根据导函数大于0时原函数单调递增,导函数小于0时原函数单调递减可确定函数的单调性.(2)先将问题转化为求函数在x≥0时的最小值问题,再结合(1)中的单调性可确定f(x)在x=2a或x=0处取得最小值,求出最小值,即可得到a的范围.【解答】解:(1)f'(x)=x2﹣2(1+a)x+4a=(x﹣2)(x﹣2a)由a>1知,当x<2时,f'(x)>0,故f(x)在区间(﹣∞,2)是增函数;当2<x<2a时,f'(x)<0,故f(x)在区间(2,2a)是减函数;当x>2a时,f'(x)>0,故f(x)在区间(2a,+∞)是增函数.综上,当a>1时,f(x)在区间(﹣∞,2)和(2a,+∞)是增函数,在区间(2,2a)是减函数.(2)由(1)知,当x≥0时,f(x)在x=2a或x=0处取得最小值.=,f(0)=24a由假设知即解得1<a<6故a的取值范围是(1,6)【点评】本题考查导数与函数的综合运用能力,涉及利用导数讨论函数的单调性.22.(12分)已知椭圆的离心率为,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l的距离为,(Ⅰ)求a,b的值;(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.【考点】K4:椭圆的性质.【专题】15:综合题;16:压轴题.【分析】(I)设F(c,0),则直线l的方程为x﹣y﹣c=0,由坐标原点O到l的距离求得c,进而根据离心率求得a和b.(II)由(I)可得椭圆的方程,设A(x1,y1)、B(x2,y2),l:x=my+1代入椭圆的方程中整理得方程△>0.由韦达定理可求得y1+y2和y1y2的表达式,假设存在点P,使成立,则其充要条件为:点P的坐标为(x1+x2,y1+y2),代入椭圆方程;把A,B两点代入椭圆方程,最后联立方程求得c,进而求得P点坐标,求出m的值得出直线l的方程.【解答】解:(I)设F(c,0),直线l:x﹣y﹣c=0,由坐标原点O到l的距离为则,解得c=1又,∴(II)由(I)知椭圆的方程为设A(x1,y1)、B(x2,y2)由题意知l的斜率为一定不为0,故不妨设l:x=my+1代入椭圆的方程中整理得(2m2+3)y2+4my﹣4=0,显然△>0.由韦达定理有:,,①假设存在点P,使成立,则其充要条件为:点P的坐标为(x1+x2,y1+y2),点P在椭圆上,即.整理得2x12+3y12+2x22+3y22+4x1x2+6y1y2=6.又A、B在椭圆上,即2x12+3y12=6,2x22+3y22=6、故2x1x2+3y1y2+3=0②将x1x2=(my1+1)(my2+1)=m2y1y2+m(y1+y2)+1及①代入②解得∴,x1+x2=,即当;当【点评】本题主要考查了椭圆的性质.处理解析几何题,学生主要是在“算”上的功夫不够.所谓“算”,主要讲的是算理和算法.算法是解决问题采用的计算的方法,而算理是采用这种算法的依据和原因,一个是表,一个是里,一个是现象,一个是本质.有时候算理和算法并不是截然区分的.例如:三角形的面积是用底乘高的一半还是用两边与夹角的正弦的一半,还是分割成几部分来算?在具体处理的时候,要根据具体问题及题意边做边调整,寻找合适的突破口和切入点.。
2009年全国高考数学试题——全国卷2(文科)含答案
w.w.w.k.s.5.u.c.o.m
第Ⅱ卷(非选择题)
本卷共10小题,共90分。
二.填空题:本大题共4小题,每小题5分,共20分。把答案填写在答题卡上相应位置的横线上.
(13)设等比数列{}的前n项和为。若,则= ×
(11)已知直线与抛物线C:相交A、B两点,F为C的焦点。若,则k=
(A) (B) (C) (D)
(12)纸质的正方体的六个面根据其方位分别标记为上、下、东、南、西、北。现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到右侧的平面图形,则标"△"的面的方位是
2009年普通高等学校招生全国统一考试试卷题
文科数学
第Ⅰ卷(选择题)
本卷共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式: w.w.w.k.s.5.u.c.o.m
如果事件互斥,那么 球的表面积公式
如果事件相互独立,那么 其中表示球的半径
(III)表示事件:从甲组抽取的2名工人中恰有名男工人,
表示事件:从乙组抽取的2名工人中恰有名男工人,
表示事件:抽取的4名工人中恰有2名男工人。
与独立, ,且
故
w.w.w.k.s.5.u.c.o.m
(21)(本小题满分12分)
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)若当x≥0时,f(x)>0恒成立,求a的取值范围。
w.w.w.k.s.5.u.c.o.m
(22)(本小题满分12分)
(21)解:
(I)
由知,当时,,故在区间是增函数;
当时,,故在区间是减函数;
2009年全国统一高考真题数学试卷(文科)(全国卷ⅰ)(含答案解析版)
2009年全国统一高考数学试卷(文科)(全国卷Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)sin585°的值为()A.B.C.D.2.(5分)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素共有()A.3个B.4个C.5个D.6个3.(5分)不等式<1的解集为()A.{x|0<x<1}∪{x|x>1}B.{x|0<x<1}C.{x|﹣1<x<0}D.{x|x<0}4.(5分)已知tana=4,cotβ=,则tan(a+β)=()A.B.﹣C.D.﹣5.(5分)已知双曲线﹣=1(a>0,b>0)的渐近线与抛物线y=x2+1相切,则该双曲线的离心率为()A.B.2C.D.6.(5分)已知函数f(x)的反函数为g(x)=1+2lgx(x>0),则f(1)+g(1)=()A.0B.1C.2D.47.(5分)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有()A.150种B.180种C.300种D.345种8.(5分)设非零向量、、满足,则=()A.150°B.120°C.60°D.30°9.(5分)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影D为BC的中点,则异面直线AB与CC1所成的角的余弦值为()A.B.C.D.10.(5分)如果函数y=3cos(2x+φ)的图象关于点(,0)中心对称,那么|φ|的最小值为()A.B.C.D.11.(5分)已知二面角α﹣l﹣β为60°,动点P、Q分别在面α、β内,P到β的距离为,Q到α的距离为,则P、Q两点之间距离的最小值为()A.1B.2C.D.412.(5分)已知椭圆C:+y2=1的右焦点为F,右准线为l,点A∈l,线段AF 交C于点B,若=3,则||=()A.B.2C.D.3二、填空题(共4小题,每小题5分,满分20分)13.(5分)(x﹣y)10的展开式中,x7y3的系数与x3y7的系数之和等于.14.(5分)设等差数列{a n}的前n的和为S n,若S9=72,则a2+a4+a9=.15.(5分)已知OA为球O的半径,过OA的中点M且垂直于OA的平面截球面得到圆M.若圆M的面积为3π,则球O的表面积等于.16.(5分)若直线m被两平行线l1:x﹣y+1=0与l2:x﹣y+3=0所截得的线段的长为,则m的倾斜角可以是①15°②30°③45°④60°⑤75°其中正确答案的序号是(写出所有正确答案的序号)三、解答题(共6小题,满分70分)17.(10分)设等差数列{a n}的前n项和为S n,公比是正数的等比数列{b n}的前n项和为T n,已知a1=1,b1=3,a3+b3=17,T3﹣S3=12,求{a n},{b n}的通项公式.18.(12分)在△ABC中,内角A、B、C的对边长分别为a、b、c,已知a2﹣c2=2b,且sinAcosC=3cosAsinC,求b.19.(12分)如图,四棱锥S﹣ABCD中,底面ABCD为矩形,SD⊥底面ABCD,AD=,DC=SD=2,点M在侧棱SC上,∠ABM=60°(I)证明:M是侧棱SC的中点;(Ⅱ)求二面角S﹣AM﹣B的大小.20.(12分)甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束.假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立.已知前2局中,甲、乙各胜1局.(Ⅰ)求再赛2局结束这次比赛的概率;(Ⅱ)求甲获得这次比赛胜利的概率.21.(12分)已知函数f(x)=x4﹣3x2+6.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设点P在曲线y=f(x)上,若该曲线在点P处的切线l通过坐标原点,求l的方程.22.(12分)如图,已知抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点.(Ⅰ)求r的取值范围;(Ⅱ)当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐标.2009年全国统一高考数学试卷(文科)(全国卷Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)sin585°的值为()A.B.C.D.【考点】GE:诱导公式.【分析】由sin(α+2kπ)=sinα、sin(α+π)=﹣sinα及特殊角三角函数值解之.【解答】解:sin585°=sin(585°﹣360°)=sin225°=sin(45°+180°)=﹣sin45°=﹣,故选:A.【点评】本题考查诱导公式及特殊角三角函数值.2.(5分)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素共有()A.3个B.4个C.5个D.6个【考点】1H:交、并、补集的混合运算.【分析】根据交集含义取A、B的公共元素写出A∩B,再根据补集的含义求解.【解答】解:A∪B={3,4,5,7,8,9},A∩B={4,7,9}∴∁U(A∩B)={3,5,8}故选A.也可用摩根律:∁U(A∩B)=(∁U A)∪(∁U B)故选:A.【点评】本题考查集合的基本运算,较简单.3.(5分)不等式<1的解集为()A.{x|0<x<1}∪{x|x>1}B.{x|0<x<1}C.{x|﹣1<x<0}D.{x|x<0}【考点】7E:其他不等式的解法.【分析】本题为绝对值不等式,去绝对值是关键,可利用绝对值意义去绝对值,也可两边平方去绝对值.【解答】解:∵<1,∴|x+1|<|x﹣1|,∴x2+2x+1<x2﹣2x+1.∴x<0.∴不等式的解集为{x|x<0}.故选:D.【点评】本题主要考查解绝对值不等式,属基本题.解绝对值不等式的关键是去绝对值,去绝对值的方法主要有:利用绝对值的意义、讨论和平方.4.(5分)已知tana=4,cotβ=,则tan(a+β)=()A.B.﹣C.D.﹣【考点】GP:两角和与差的三角函数.【专题】11:计算题.【分析】由已知中cotβ=,由同角三角函数的基本关系公式,我们求出β角的正切值,然后代入两角和的正切公式,即可得到答案.【解答】解:∵tana=4,cotβ=,∴tanβ=3∴tan(a+β)===﹣故选:B.【点评】本题考查的知识点是两角和与差的正切函数,其中根据已知中β角的余切值,根据同角三角函数的基本关系公式,求出β角的正切值是解答本题的关键.5.(5分)已知双曲线﹣=1(a>0,b>0)的渐近线与抛物线y=x2+1相切,则该双曲线的离心率为()A.B.2C.D.【考点】KC:双曲线的性质;KH:直线与圆锥曲线的综合.【专题】11:计算题.【分析】先求出渐近线方程,代入抛物线方程,根据判别式等于0,找到a和b 的关系,从而推断出a和c的关系,答案可得.【解答】解:由题双曲线的一条渐近线方程为,代入抛物线方程整理得ax2﹣bx+a=0,因渐近线与抛物线相切,所以b2﹣4a2=0,即,故选:C.【点评】本小题考查双曲线的渐近线方程直线与圆锥曲线的位置关系、双曲线的离心率,基础题.6.(5分)已知函数f(x)的反函数为g(x)=1+2lgx(x>0),则f(1)+g(1)=()A.0B.1C.2D.4【考点】4R:反函数.【专题】11:计算题.【分析】将x=1代入即可求得g(1),欲求f(1),只须求当g(x)=1时x的值即可.从而解决问题.【解答】解:由题令1+2lgx=1得x=1,即f(1)=1,又g(1)=1,所以f(1)+g(1)=2,故选:C.【点评】本小题考查反函数,题目虽然简单,却考查了对基础知识的灵活掌握情况,也考查了运用知识的能力.7.(5分)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有()A.150种B.180种C.300种D.345种【考点】D1:分类加法计数原理;D2:分步乘法计数原理.【专题】5O:排列组合.【分析】选出的4人中恰有1名女同学的不同选法,1名女同学来自甲组和乙组两类型.【解答】解:分两类(1)甲组中选出一名女生有C51•C31•C62=225种选法;(2)乙组中选出一名女生有C52•C61•C21=120种选法.故共有345种选法.故选:D.【点评】分类加法计数原理和分类乘法计数原理,最关键做到不重不漏,先分类,后分步!8.(5分)设非零向量、、满足,则=()A.150°B.120°C.60°D.30°【考点】9S:数量积表示两个向量的夹角.【分析】根据向量加法的平行四边形法则,两个向量的模长相等可构成菱形的两条相邻边,三个向量起点处的对角线长等于菱形的边长,这样得到一个含有特殊角的菱形.【解答】解:由向量加法的平行四边形法则,∵两个向量的模长相等∴、可构成菱形的两条相邻边,∵∴、为起点处的对角线长等于菱形的边长,∴两个向量的夹角是120°,故选:B.【点评】本小题考查向量的几何运算、考查数形结合的思想,基础题.向量知识,向量观点在数学.物理等学科的很多分支有着广泛的应用,而它具有代数形式和几何形式的“双重身份”能融数形于一体.9.(5分)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影D为BC的中点,则异面直线AB与CC1所成的角的余弦值为()A.B.C.D.【考点】LO:空间中直线与直线之间的位置关系.【分析】首先找到异面直线AB与CC1所成的角(如∠A1AB);而欲求其余弦值可考虑余弦定理,则只要表示出A1B的长度即可;不妨设三棱柱ABC﹣A1B1C1的侧棱与底面边长为1,利用勾股定理即可求之.【解答】解:设BC的中点为D,连接A1D、AD、A1B,易知θ=∠A1AB即为异面直线AB与CC1所成的角;并设三棱柱ABC﹣A1B1C1的侧棱与底面边长为1,则|AD|=,|A1D|=,|A1B|=,由余弦定理,得cosθ==.故选:D.【点评】本题主要考查异面直线的夹角与余弦定理.10.(5分)如果函数y=3cos(2x+φ)的图象关于点(,0)中心对称,那么|φ|的最小值为()A.B.C.D.【考点】HB:余弦函数的对称性.【专题】11:计算题.【分析】先根据函数y=3cos(2x+φ)的图象关于点中心对称,令x=代入函数使其等于0,求出φ的值,进而可得|φ|的最小值.【解答】解:∵函数y=3cos(2x+φ)的图象关于点中心对称.∴∴由此易得.故选:A.【点评】本题主要考查余弦函数的对称性.属基础题.11.(5分)已知二面角α﹣l﹣β为60°,动点P、Q分别在面α、β内,P到β的距离为,Q到α的距离为,则P、Q两点之间距离的最小值为()A.1B.2C.D.4【考点】LQ:平面与平面之间的位置关系.【专题】11:计算题;16:压轴题.【分析】分别作QA⊥α于A,AC⊥l于C,PB⊥β于B,PD⊥l于D,连CQ,BD 则∠ACQ=∠PBD=60°,在三角形APQ中将PQ表示出来,再研究其最值即可.【解答】解:如图分别作QA⊥α于A,AC⊥l于C,PB⊥β于B,PD⊥l于D,连CQ,BD则∠ACQ=∠PDB=60°,,又∵当且仅当AP=0,即点A与点P重合时取最小值.故选:C.【点评】本题主要考查了平面与平面之间的位置关系,以及空间中直线与平面之间的位置关系,考查空间想象能力、运算能力和推理论证能力,属于基础题.12.(5分)已知椭圆C:+y2=1的右焦点为F,右准线为l,点A∈l,线段AF 交C于点B,若=3,则||=()A.B.2C.D.3【考点】K4:椭圆的性质.【专题】11:计算题;16:压轴题.【分析】过点B作BM⊥x轴于M,设右准线l与x轴的交点为N,根据椭圆的性质可知FN=1,进而根据,求出BM,AN,进而可得|AF|.【解答】解:过点B作BM⊥x轴于M,并设右准线l与x轴的交点为N,易知FN=1.由题意,故FM=,故B点的横坐标为,纵坐标为±即BM=,故AN=1,∴.故选:A.【点评】本小题考查椭圆的准线、向量的运用、椭圆的定义,属基础题.二、填空题(共4小题,每小题5分,满分20分)13.(5分)(x﹣y)10的展开式中,x7y3的系数与x3y7的系数之和等于﹣240.【考点】DA:二项式定理.【专题】11:计算题.【分析】首先要了解二项式定理:(a+b)n=C n0a n b0+C n1a n﹣1b1+C n2a n﹣2b2++C n r a n﹣r b r++C n n a0b n,各项的通项公式为:T r=C n r a n﹣r b r.然后根据题目已知求解即可.+1【解答】解:因为(x﹣y)10的展开式中含x7y3的项为C103x10﹣3y3(﹣1)3=﹣C103x7y3,含x3y7的项为C107x10﹣7y7(﹣1)7=﹣C107x3y7.由C103=C107=120知,x7y3与x3y7的系数之和为﹣240.故答案为﹣240.【点评】此题主要考查二项式定理的应用问题,对于公式:(a+b)n=C n0a n b0+C n1a n ﹣1b1+C n2a n﹣2b2++C n r a n﹣r b r++C n n a0b n,属于重点考点,同学们需要理解记忆.14.(5分)设等差数列{a n}的前n的和为S n,若S9=72,则a2+a4+a9=24.【考点】83:等差数列的性质.【分析】先由S9=72用性质求得a5,而3(a1+4d)=3a5,从而求得答案.【解答】解:∵∴a5=8又∵a2+a4+a9=3(a1+4d)=3a5=24故答案是24【点评】本题主要考查等差数列的性质及项与项间的内在联系.15.(5分)已知OA为球O的半径,过OA的中点M且垂直于OA的平面截球面得到圆M.若圆M的面积为3π,则球O的表面积等于16π.【考点】LG:球的体积和表面积.【专题】11:计算题;16:压轴题.【分析】由题意求出圆M的半径,设出球的半径,二者与OM构成直角三角形,求出球的半径,然后可求球的表面积.【解答】解:∵圆M的面积为3π,∴圆M的半径r=,设球的半径为R,由图可知,R2=R2+3,∴R2=3,∴R2=4.∴S=4πR2=16π.球故答案为:16π【点评】本题是基础题,考查球的体积、表面积的计算,理解并能够应用小圆的半径、球的半径、以及球心与圆心的连线的关系,是本题的突破口,解题重点所在,仔细体会.16.(5分)若直线m被两平行线l1:x﹣y+1=0与l2:x﹣y+3=0所截得的线段的长为,则m的倾斜角可以是①15°②30°③45°④60°⑤75°其中正确答案的序号是①或⑤(写出所有正确答案的序号)【考点】I2:直线的倾斜角;N1:平行截割定理.【专题】11:计算题;15:综合题;16:压轴题.【分析】先求两平行线间的距离,结合题意直线m被两平行线l1与l2所截得的线段的长为,求出直线m与l1的夹角为30°,推出结果.【解答】解:两平行线间的距离为,由图知直线m与l1的夹角为30°,l1的倾斜角为45°,所以直线m的倾斜角等于30°+45°=75°或45°﹣30°=15°.故填写①或⑤故答案为:①或⑤【点评】本题考查直线的斜率、直线的倾斜角,两条平行线间的距离,考查数形结合的思想.三、解答题(共6小题,满分70分)17.(10分)设等差数列{a n}的前n项和为S n,公比是正数的等比数列{b n}的前n项和为T n,已知a1=1,b1=3,a3+b3=17,T3﹣S3=12,求{a n},{b n}的通项公式.【考点】8M:等差数列与等比数列的综合.【专题】11:计算题.【分析】设{a n}的公差为d,数列{b n}的公比为q>0,由题得,由此能得到{a n},{b n}的通项公式.【解答】解:设{a n}的公差为d,数列{b n}的公比为q>0,由题得,解得q=2,d=2∴a n=1+2(n﹣1)=2n﹣1,bn=3•2n﹣1.【点评】本小题考查等差数列与等比数列的通项公式、前n项和,基础题.18.(12分)在△ABC中,内角A、B、C的对边长分别为a、b、c,已知a2﹣c2=2b,且sinAcosC=3cosAsinC,求b.【考点】HR:余弦定理.【分析】根据正弦定理和余弦定理将sinAcosC=3cosAsinC化成边的关系,再根据a2﹣c2=2b即可得到答案.【解答】解:法一:在△ABC中∵sinAcosC=3cosAsinC,则由正弦定理及余弦定理有:,化简并整理得:2(a2﹣c2)=b2.又由已知a2﹣c2=2b∴4b=b2.解得b=4或b=0(舍);法二:由余弦定理得:a2﹣c2=b2﹣2bccosA.又a2﹣c2=2b,b≠0.所以b=2ccosA+2①又sinAcosC=3cosAsinC,∴sinAcosC+cosAsinC=4cosAsinCsin(A+C)=4cosAsinC,即sinB=4cosAsinC由正弦定理得,故b=4ccosA②由①,②解得b=4.【点评】本题主要考查正弦定理和余弦定理的应用.属基础题.19.(12分)如图,四棱锥S﹣ABCD中,底面ABCD为矩形,SD⊥底面ABCD,AD=,DC=SD=2,点M在侧棱SC上,∠ABM=60°(I)证明:M是侧棱SC的中点;(Ⅱ)求二面角S﹣AM﹣B的大小.【考点】LO:空间中直线与直线之间的位置关系;MJ:二面角的平面角及求法.【专题】11:计算题;14:证明题.【分析】(Ⅰ)法一:要证明M是侧棱SC的中点,作MN∥SD交CD于N,作NE⊥AB交AB于E,连ME、NB,则MN⊥面ABCD,ME⊥AB,设MN=x,则NC=EB=x,解RT△MNE即可得x的值,进而得到M为侧棱SC的中点;法二:分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,并求出S点的坐标、C点的坐标和M点的坐标,然后根据中点公式进行判断;法三:分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,构造空间向量,然后数乘向量的方法来证明.(Ⅱ)我们可以以D为坐标原点,分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,我们可以利用向量法求二面角S﹣AM﹣B的大小.【解答】证明:(Ⅰ)作MN∥SD交CD于N,作NE⊥AB交AB于E,连ME、NB,则MN⊥面ABCD,ME⊥AB,设MN=x,则NC=EB=x,在RT△MEB中,∵∠MBE=60°∴.在RT△MNE中由ME2=NE2+MN2∴3x2=x2+2解得x=1,从而∴M为侧棱SC的中点M.(Ⅰ)证法二:分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,则.设M(0,a,b)(a>0,b>0),则,,由题得,即解之个方程组得a=1,b=1即M(0,1,1)所以M是侧棱SC的中点.(I)证法三:设,则又故,即,解得λ=1,所以M是侧棱SC的中点.(Ⅱ)由(Ⅰ)得,又,,设分别是平面SAM、MAB的法向量,则且,即且分别令得z1=1,y1=1,y2=0,z2=2,即,∴二面角S﹣AM﹣B的大小.【点评】空间两条直线夹角的余弦值等于他们方向向量夹角余弦值的绝对值;空间直线与平面夹角的余弦值等于直线的方向向量与平面的法向量夹角的正弦值;空间锐二面角的余弦值等于他的两个半平面方向向量夹角余弦值的绝对值;20.(12分)甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束.假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立.已知前2局中,甲、乙各胜1局.(Ⅰ)求再赛2局结束这次比赛的概率;(Ⅱ)求甲获得这次比赛胜利的概率.【考点】C8:相互独立事件和相互独立事件的概率乘法公式.【专题】12:应用题.【分析】根据题意,记“第i局甲获胜”为事件A i(i=3,4,5),“第j局甲获胜”为事件B i(j=3,4,5),(1)“再赛2局结束这次比赛”包含“甲连胜3、4局”与“乙连胜3、4局”两个互斥的事件,而每局比赛之间是相互独立的,进而计算可得答案,(2)若“甲获得这次比赛胜利”,即甲在后3局中,甲胜2局,包括3种情况,根据概率的计算方法,计算可得答案.【解答】解:记“第i局甲获胜”为事件A i(i=3,4,5),“第j局甲获胜”为事件B i(j=3,4,5).(Ⅰ)设“再赛2局结束这次比赛”为事件A,则A=A3•A4+B3•B4,由于各局比赛结果相互独立,故P(A)=P(A3•A4+B3•B4)=P(A3•A4)+P(B3•B4)=P(A3)P(A4)+P(B3)P (B4)=0.6×0.6+0.4×0.4=0.52.(Ⅱ)记“甲获得这次比赛胜利”为事件H,因前两局中,甲、乙各胜1局,故甲获得这次比赛胜利当且仅当在后面的比赛中,甲先胜2局,从而B=A3•A4+B3•A4•A5+A3•B4•A5,由于各局比赛结果相互独立,故P(H)=P(A3•A4+B3•A4•A5+A3•B4•A5)=P(A3•A4)+P(B3•A4•A5)+P(A3•B4•A5)=P(A3)P(A4)+P(B3)P(A4)P(A5)+P(A3)P(B4)P(A5)=0.6×0.6+0.4×0.6×0.6+0.6×0.4×0.6=0.648【点评】本小题考查互斥事件有一个发生的概率、相互独立事件同时发生的概率,解题之前,要分析明确事件间的关系,一般先按互斥事件分情况,再由相互独立事件的概率公式,进行计算.21.(12分)已知函数f(x)=x4﹣3x2+6.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设点P在曲线y=f(x)上,若该曲线在点P处的切线l通过坐标原点,求l的方程.【考点】6B:利用导数研究函数的单调性;6H:利用导数研究曲线上某点切线方程.【专题】16:压轴题.【分析】(1)利用导数求解函数的单调性的方法步骤进行求解.(2)根据已知,只需求出f(x)在点P处的导数,即斜率,就可以求出切线方程.【解答】解:(Ⅰ)令f′(x)>0得或;令f′(x)<0得或因此,f(x)在区间和为增函数;在区间和为减函数.(Ⅱ)设点P(x0,f(x0)),由l过原点知,l的方程为y=f′(x0)x,因此f(x0)=f′(x0)x0,即x04﹣3x02+6﹣x0(4x03﹣6x0)=0,整理得(x02+1)(x02﹣2)=0,解得或.所以的方程为y=2x或y=﹣2x【点评】本题比较简单,是一道综合题,主要考查函数的单调性、利用导数的几何意义求切线方程等函数基础知识,应熟练掌握.22.(12分)如图,已知抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点.(Ⅰ)求r的取值范围;(Ⅱ)当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐标.【考点】IR:两点间的距离公式;JF:圆方程的综合应用;K8:抛物线的性质.【专题】15:综合题;16:压轴题.【分析】(1)先联立抛物线与圆的方程消去y,得到x的二次方程,根据抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点的充要条件是此方程有两个不相等的正根,可求出r的范围.(2)先设出四点A,B,C,D的坐标再由(1)中的x二次方程得到两根之和、两根之积,表示出面积并求出其的平方值,最后根据三次均值不等式确定得到最大值时的点P的坐标.【解答】解:(Ⅰ)将抛物线E:y2=x代入圆M:(x﹣4)2+y2=r2(r>0)的方程,消去y2,整理得x2﹣7x+16﹣r2=0(1)抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点的充要条件是:方程(1)有两个不相等的正根∴即.解这个方程组得,.(II)设四个交点的坐标分别为、、、.则直线AC、BD的方程分别为y﹣=•(x﹣x1),y+=(x﹣x1),解得点P的坐标为(,0),则由(I)根据韦达定理有x1+x2=7,x1x2=16﹣r2,则∴令,则S2=(7+2t)2(7﹣2t)下面求S2的最大值.由三次均值有:当且仅当7+2t=14﹣4t,即时取最大值.经检验此时满足题意.故所求的点P的坐标为.【点评】本题主要考查抛物线和圆的综合问题.圆锥曲线是高考必考题,要强化复习.。
2009年高考试题与答案(全国卷1数学文)
2009年高考试题与答案(全国卷1数学文)2009年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第I 卷1至2页,第II 卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项: 1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷....上作答无效......3.第Ⅰ卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.参考公式:如果事件A B ,互斥,那么球的表面积公式 ()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)k k n kn n P k C P P k n -=-=,,,一、选择题(1)sin 585°的值为 (A) 22-(B)22(C)32- (D) 32 (2)设集合A={4,5,7,9},B={3,4,7,8,9},全集=A B ,则集合C u (A B )中的元素共有(A) 3个(B ) 4个(C )5个(D )6个(3)不等式111x x +?-的解集为(A ){}}{011x x x x (B ){}01x x ??(C ) }{10x x -?? (D )}{0x x ? (4)已知tan a =4,cot β=13,则tan(a+β)= (A)711 (B)711- (C) 713 (D) 713-(5)设双曲线()222200x y a b a b-=1>,>的渐近线与抛物线21y =x +相切,则该双曲线的离心率等于(A )3 (B )2 (C )5(D )6(6)已知函数()f x 的反函数为()()10g x x =+2lgx >,则(1)(1)f +g =(A )0 (B )1 (C )2 (D )4(7)甲组有5名男同学、3名女同学;乙组有6名男同学、2名女同学,若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有(A )150种(B )180种(C )300种(D )345种(8)设非零向量a b c 、、满足a b c ==,a +b =c ,则a b ,=(A )150° (B )120° (C )60° (D )30° (9)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点,则异面直线AB 与1CC 所成的角的余弦值为(A)34 (B) 54 (C) 74(D)34(10) 如果函数3cos(2)y x φ=+的图像关于点4(,0)3π中心对称,那么φ的最小值为(A)6π (B) 4π (C) 3π(D)2π (11)已知二面角l αβ--为600 ,动点P 、Q 分别在面,αβ内,P 到β的距离为3,Q 到α的距离为23,则P 、Q 两点之间距离的最小值为(A )2 (B )2 (C )23 (D )4(12)已知椭圆22:12x C y +=的右焦点为F,右准线l ,点A l ∈,线段AF 交C 于点B 。
2009年湖北省高考数学试题答案(文数)(word版 8K纸)
俯视图侧视图正视图3342009年普通高等学校招生全国统一考试(湖北卷)数学(文科)本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,考试时间120分钟. 第I 卷(选择题)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合33{|0},{|||},""""122x P x Q x x m P m Q x =≤=-≤∈∈-那么是的 ( )A .充分不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件2.公差不为0的等差数列{}n a 中,2200520072009330a a a -+=,数列{}n b 是等比数列,且20072007b a =,则20062008b b =( )A .4B .8C .16D .363. 若纯虚数z 满足2(2i)4(1i)z b -=-+(其中i 是虚数单位,b 是实数),则b =( )A .2-B .2C .-4D .4 4.若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如下图所示,则这个棱柱的体积为( )A. 123B. 363C. 273D. 65.已知直线0=++C By Ax (其中0,222≠=+C C B A )与圆422=+y x 交于N M ,,O 是坐标原点,则OM ·ON =( ) A .- 1 B .- 1 C . - 2 D .2 6.设0(sin cos )a x x dx π=+⎰,则二项式61()a x x-,展开式中含2x 项的系数是( ) A. 192- B. 192 C. -6 D. 6 7.已知对数函数()log a f x x =是增函数,则函数(||1)f x +的图象大致是( )8.关于x 的方程2(1)10(0,)x a x a b a a b +++++=≠∈R 、的两实根为12,x x ,若12012x x <<<<,则ba的取值范围是( ) A .4(2,)5--B .34(,)25--C .52(,)43--D .51(,)42--第Ⅱ卷(非选择题)二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9—12题)9. 右图是2008年北京奥运会上,七位评委为某奥运项目打出 的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数为 ;方差为 .10.已知⎩⎨⎧>+-≤=0,1)1(0,cos )(x x f x x x f π,则4()3f 的值为_______.11. 在如下程序框图中,已知:0()x f x xe =,则输出的是_________ _.12. 设椭圆()222210x y a b a b+=>>的两个焦点分别为12,F F ,点P 在椭圆上,且120PF PF ⋅= ,123tan 3PF F ∠=,则该椭圆的离心率为 .(二)选做题(13—15题,考生只能从中选做两题)13.(坐标系与参数方程选做题)在极坐标系中,从极点O 作直线与另一直线:cos 4l ρθ=相交于点M ,在OM 上取一点P ,使12OM OP ⋅=.设R 为l 上任意一点,则RP 的最小值 .14. (不等式选讲选做题)若关于x 的不等式1x x a +-<(a ∈R )的解集为∅,则a 的取值范围是 .15. (几何证明选讲选做题)如图,⊙O 1与⊙O 2交于M 、N 两点,直线AE 与这两个圆及MN 依次交于A 、B 、C 、D 、E .且AD =19,BE =16,BC =4,则AE = .三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分12分)已知在ABC V 中,A B C ∠∠∠﹑﹑所对的边分别为a ﹑b﹑c ,若cos cos A bB a= 且sin cos C A = (Ⅰ)求角A 、B 、C 的大小;A B C D7 98 4 4 6 4 7 9 3否 是开始 输入f 0 (x ) 0=i )()(1'x f x f i i -= 结束1+=i i i =2009输出 f i (x )(Ⅱ)设函数()()sin cos 222C f x x x A ⎛⎫=+-+ ⎪⎝⎭,求函数()f x 的单调递增..区间,并指出它相邻两对称轴间的距离.17. (本小题满分13分)在2008年北京奥运会某项目的选拔比赛中, A 、B 两个代表队进行对抗赛, 每队三名队员, A 队队员是123,A A A 、、B 队队员是123,B B B 、、按以往多次比赛的统计, 对阵队员之间胜负概率如下表, 现按表中对阵方式出场进行三场比赛, 每场胜队得1分, 负队得0分, 设A 队、B 队最后所得总分分别为ξ、η, 且3ξη+=.(Ⅰ)求A 队得分为1分的概率;(Ⅱ)求ξ的分布列;并用统计学的知识说明哪个队实力较强.18. (本小题满分13分)已知椭圆22221(0)x y a b a b+=>>的左焦点为F ,左右顶点分别为A C 、,上顶点为B ,过CB F ,,三点作圆P ,其中圆心P 的坐标为()n m ,.(Ⅰ)当0m n +≤时,椭圆的离心率的取值范围. (Ⅱ)直线AB 能否和圆P 相切?证明你的结论.19. (本小题满分13分)在正三角形ABC 中,E 、F 、P 分别是AB 、AC 、BC 边上的点,满足AE:EB =CF:FA =CP:PB =1:2(如图1).将△AEF 沿EF 折起到EF A 1∆的位置,使二面角A 1-EF -B 成直二面角,连结A 1B 、A 1P (如图2)(Ⅰ)求证:A 1E ⊥平面BEP ;(Ⅱ)求直线A 1E 与平面A 1BP 所成角的大小; (III )求二面角B -A 1P -F 的余弦值. 20. (本小题满分14分)已知函数()log k f x x =(k 为常数,0k >且1k ≠),且数列{}()n f a 是首项为4,公差为2的等差数列.(Ⅰ)求证:数列{}n a 是等比数列;(Ⅱ) 若()n n n b a f a =⋅,当2k =时,求数列{}n b 的前n 项和n S ;(III )若lg n n n c a a =,问是否存在实数k ,使得{}n c 中的每一项恒小于它后面的项?若存在,求出k 的范围;若不存在,说明理由.21. (本小题满分14分)已知函数F (x )=|2x -t |-x 3+x +1(x ∈R ,t 为常数,t ∈R ). (Ⅰ)写出此函数F (x )在R 上的单调区间;(Ⅱ)若方程F (x )-k =0恰有两解,求实数k 的值.【答案及详细解析】一、选择题:本大题理科共8小题,每小题5分,共40分. 文科共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的。
2009年湖北高考文科数学试题(完整版)
2009年湖北高考文科数学试题(完整版)2009年湖北高考文科数学试题(完整版)一、选择题1. 已知集合A={x|-2≤x≤2},B={y|0≤y≤9},则集合A×B=()。
A. {(x,y)|-2≤x≤2, 0≤y≤9}B. {(x,y)|-2≤x≤2, 0<y<9}C. {(x,y)|-2<x<2, 0<y<9}D. {(x,y)|-2<x<2,0≤y≤9}2. 若对于任意实数x有f(x+4)=f(x)-5,则对于任意实数y,f(y)的最大值为()。
A. 4B. -5C. 0D. 53. 在坐标平面上,点P(a,b)关于原点的对称点记为P'(-a,-b),如果点A(5,8)关于点B(3,-4)对称,则点A'关于点B'对称,A'的坐标为()。
A. (-1,4)B. (-7,12)C. (-7,-1)D. (-1,-7)4. 若函数f(x)在区间[1,4]上连续,且f(x)>0,则函数g(x)=f(x)+f(5-x)在区间[1,4]上的零点个数为()。
A. 0B. 1C. 2D. 35. 已知二次函数f(x)的图像经过点(2,-3),且对称轴为直线x=1,则函数f(x)的解析式为()。
A. f(x)=-2(x-1)^2-5B. f(x)=-2(x+1)^2-5C. f(x)=2(x-1)^2-5D.f(x)=2(x+1)^2-5二、填空题1. 若已知sin(A-120°)=0.5,则三角函数cosA的值为()。
解:sin(A-120°)=0.5,根据三角函数的周期性,sin(A+240°)=0.5,因此sinA=0.5,cosA的值为0.866。
2. 若函数f(x)=(k+1)x^2-kx-2的图像在x轴上有两个不同的零点,则实数k的取值范围是()。
解:函数f(x)在x轴上有两个不同的零点,说明函数f(x)的图像与x轴有两个交点,即f(x)的图像经过x轴。
2009年湖北省高考数学试题答案(文数)
2009年湖北高考数学卷一、填空题(本大题共14小题,每小题5分,共计70分)1. 全集}1,4,2{2+-=a a U 集合}2,1{+=a A ,若}7{=A C U ,则实数=a ★ .2. 已知数列}{n a 的等差数列,若3,244113==+a a a ,则数列}{n a 的公差等于 ★ .3. 若不等式a x <-|1|成立的充分条件是40<<x ,则实数a 的取值范围是 ★ .4. 已知)2,2(,-∈y x ,且复数yi x z +=,则满足1≥z 的概率是★ .5. 如图,要测量河对岸A 、B 两点间的距离,今沿河岸选取相距40米的C 、D 两点,测得∠ACB=60°,∠BCD=45°,∠ADB=60°,∠ADC=30°,则AB 的距离是 ★ . 6. 下列给出了x 与x 10的七组近似值:组号一 二 三 四 五 六 七 x 0.30103 0.47711 0.69897 0.77815 0.90309 1.00000 1.07918 10x235681012假设在上表的各组对应值中,有且仅有一组是错误的,它是第 ★ 组.7. 设全集},|),{(R y R x y x U ∈∈=,}⎪⎩⎪⎨⎧≥+-≤-->-+=06208201243|),{(y x y x y x y x P ,}|),{(222r yx y x Q ≤+=,其中0>r ,若P C Q U ⊆恒成立,则实数r 的最大值为★ .8. 设(0,0)O ,(1,0)A ,(0,1)B ,点P 是线段AB 上的一个动点,AP AB λ=,若OP AB PA PB ⋅≥⋅,则实数λ的取值范围是 ★ .9. 设两个平面α,β,直线l ,下列条件:(1)l ⊥α,(2)//l β,(3)αβ⊥,若以其中两个为前提,另一个为结论,则构成三个命题,这三个命题中正确的命题个数为___★___10. 已知(4,0)A 、(0,4)B ,从点(2,0)P 射出的光线经直线AB 反向后再射到直线O B 上,最后经直线O B 反射后又回到P 点,则光线所经过的路程是 ★ . 11. 若R kx x x =>}2|{,则k 的取值范围是 ★ .12. 如图,已知正三棱柱ABC —A 1B 1C 1的底面边长为1,高为8,一质点自A 点出发,沿着三棱柱的侧面绕行两周到达A 1点的最短路线长为 ★ .13. 已知2()(0)f x ax bx c a =++≠,且方程()f x x =无实数根,下列命题:①方程[()]f f x x =也一定没有实数根;②若0a >,则不等式[()]f f x x >对一切实数x 都成立; ③若0a <,则必存在实数0x ,使00[()]f f x x >④若0a b c ++=,则不等式[()]f f x x <对一切实数x 都成立.中,正确命题的序号是 ★ .(把你认为正确的命题的所有序号都填上) 14. 如图是从事网络工作者经常用来解释网络运作的蛇形模型:数字1出现在第1行;数字2,3出现在第2行;数字6,5,4(从左至右)出现在第3行;数字7,8,9,10出现在第4行;依此类推.则第99行从左至右算第67个数字为 ★ .二、解答题(本大题共6小题,共计90分) 15. (本小题满分14分) 已知函数2()2sin ()3cos 21,4f x x x x R π=+--∈。
2009年普通高等学校招生全国统一考试文科数学(湖北卷)
2009年普通高等学校招生全国统一考试文科数学(湖北卷)学校:___________姓名:___________班级:___________考号:___________一、填空题1.设集合A={x∣log 2x<1}, B={X∣<1}, 则A= .2.已知(1+ax )3,=1+10x+bx 3+…+a 3x3,则b= .3.甲、乙、丙三人将参加某项测试,他们能达标的概率分别是0.8、0.6、0.5,则三人都达标的概率是 ,三人中至少有一人达标的概率是 .4.过原点作圆2268200x y x y +--+=的两条切线,切点分别为P ,Q ,则线段PQ 的长为 .5.下图是样本容量为200的频率分布直方图。
根据样本的频率分布直方图估计,样本数据落在【6,10】内的频数为 ,数据落在(2,10)内的概率约为 。
二、解答题6.如图,过抛物线y 2=2PX(P>0)的焦点F 的直线与抛物线相交于M 、N 两点,自M 、N 向准线L 作垂线,垂足分别为M 1、N 1(∣)求证:FM 1∣FN 1:(∣)记∣FMM 1、、∣FM 1N 1、∣FN N 1的面积分别为123,,S S S ,试判断S 22=4S 1S 3是否成立,并证明你的结论。
7.在锐角∣ABC 中,a 、b 、c 分别为角A 、B 、C 所对的边,且(∣)确定角C 的大小:(∣)若c =,且∣ABC 的面积为,求a +b 的值.8.如图,四棱锥S ABCD -的底面是正方形,SD ⊥平面ABCD ,SD AD a ==,点E 是SD 上的点,且(01)DE a λλ<≤=. (1)求证:对任意的01λ∈(、),都有AC BE ⊥; (2)若二面角C AE D --的大小为60︒,求λ的.9.已知{a n }是一个公差大于0的等差数列,且满足a 3a 6=55, a 2+a 7=16. (∣)求数列{a n }的通项公式:(∣)若数列{a n }和数列{b n }满足等式:a n =,求数列{b n }的前n 项和S n10.(本小题满分14分)已知关于x 的函数f (x )=331x +bx 2+cx +bc ,其导函数为f +(x )。
2009年全国统一高考数学试卷(文科)(全国卷ⅰ)(含解析版)
2009年全国统一高考数学试卷(文科)(全国卷Ⅰ)一、选择题(共 12小题,每小题 5分,满分 60分)1.(5分)sin585°的值为( )A .B .C .D .2.(5分)设集合 A={4,5,7,9},B={3,4,7,8,9},全集 U=A ∪B ,则集合∁(A ∩B )中的元素共有( )U A .3个B .4个C .5个D .6个3.(5分)不等式 <1的解集为( )A .{x |0<x <1}∪{x |x >1}C .{x |﹣1<x <0}B .{x |0<x <1}D .{x |x <0}4.(5分)已知 tana=4,cotβ=,则 tan (a +β)=( )A .B .﹣C .D .﹣5.(5分)已知双曲线 ﹣ =1(a >0,b >0)的渐近线与抛物线 y=x +1相2切,则该双曲线的离心率为( )A .B .2C .D .6.(5分)已知函数 f (x )的反函数为 g (x )=1+2lgx (x >0),则 f (1)+g (1)=( )A .0B .1C .2D .47.(5分)甲组有 5名男同学,3名女同学;乙组有 6名男同学、2名女同学.若从甲、乙两组中各选出 2名同学,则选出的 4人中恰有 1名女同学的不同选法共有( )A .150种B .180种C .300种D .345种8.(5分)设非零向量、、满足,则=( )A .150°B .120°C .60°D .30°9.(5分)已知三棱柱 ABC ﹣A B C 的侧棱与底面边长都相等, A 在底面 ABC 1111上的射影D为BC的中点,则异面直线AB与CC所成的角的余弦值为( )1A.B.C.D.10.(5分)如果函数y=3cos(2x+φ)的图象关于点(,0)中心对称,那么|φ|的最小值为( )A.B.C.D.11.(5分)已知二面角α﹣l﹣β为60°,动点P、Q分别在面α、β内,P到β的距离为,Q到α的距离为,则P、Q两点之间距离的最小值为( )A.112.(5分)已知椭圆C:+y交C于点B,若=3,则||=( )A.B.2C.B.2C.D.42=1的右焦点为F,右准线为l,点A∈l,线段 AFD.3二、填空题(共4小题,每小题5分,满分20分)13.(5分)(x﹣y)的展开式中,x的系数与 x107y33y7的系数之和等于 .14.(5分)设等差数列{a}的前n的和为S,若S =72,则a+a+a = .n n924915.(5分)已知OA为球O的半径,过OA的中点M且垂直于OA的平面截球面得到圆M.若圆M的面积为3π,则球O的表面积等于 .16.(5分)若直线m被两平行线l:x﹣y+1=0与l:x﹣y+3=0所截得的线段的12长为,则m的倾斜角可以是①15°②30°③45°④60°⑤75°其中正确答案的序号是 (写出所有正确答案的序号)三、解答题(共6小题,满分70分)17.(10分)设等差数列{a}的前n项和为S,公比是正数的等比数列{b}的前n n nn项和为T,已知 a =1,b =3,a+b =17,T﹣S =12,求{a},{b}的通项公n113333n n式.18.(12分)在△ABC中,内角A、B、C的对边长分别为a、b、c,已知a﹣c =2b 2 2,且sinAcosC=3cosAsinC,求b.19.(12分)如图,四棱锥S﹣ABCD中,底面ABCD为矩形,SD⊥底面ABCD,AD=,DC=SD=2,点M在侧棱SC上,∠ABM=60°(I)证明:M是侧棱SC的中点;(Ⅱ)求二面角S﹣AM﹣B的大小.20.(12分)甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束.假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立.已知前2局中,甲、乙各胜1局.(Ⅰ)求再赛2局结束这次比赛的概率;(Ⅱ)求甲获得这次比赛胜利的概率.21.(12分)已知函数f(x)=x﹣3x+6.4 2(Ⅱ)设点P在曲线y=f(x)上,若该曲线在点P处的切线l通过坐标原点,求Ⅰ讨论f(x)的单调性;l的方程.22.(12分)如图,已知抛物线E:y =x与圆M:(x﹣4)+y =r(r>0)相交2 2 2 2于A、B、C、D四个点.(Ⅰ)求r的取值范围;(Ⅱ)当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐标.2009年全国统一高考数学试卷(文科)(全国卷Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)sin585°的值为( )A.B.C.D.【考点】GE:诱导公式.【分析】由sin(α+2kπ)=sinα、sin(α+π)=﹣sinα及特殊角三角函数值解之.【解答】解:sin585°=sin(585°﹣360°)=sin225°=sin(45°+180°)=﹣sin45°=﹣,故选:A.【点评】本题考查诱导公式及特殊角三角函数值.2.(5分)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁(A∩B)中的元素共有( )UA.3个B.4个C.5个D.6个【考点】1H:交、并、补集的混合运算.【分析】根据交集含义取A、B的公共元素写出A∩B,再根据补集的含义求解.【解答】解:A∪B={3,4,5,7,8,9},A∩B={4,7,9}∴∁(A∩B)={3,5,8}故选A.U也可用摩根律:∁(A∩B)=(∁A)∪(∁B)U U U故选:A.【点评】本题考查集合的基本运算,较简单.3.(5分)不等式<1的解集为( )A.{x|0<x<1}∪{x|x>1}D.{x|x<0}B.{x|0<x<1} C.{x|﹣1<x<0}【考点】7E:其他不等式的解法.【分析】本题为绝对值不等式,去绝对值是关键,可利用绝对值意义去绝对值,也可两边平方去绝对值.【解答】解:∵<1,∴|x+1|<|x﹣1|,∴x+2x+1<x﹣2x+1.2 2x<0.∴不等式的解集为{x|x<0}.故选:D.【点评】本题主要考查解绝对值不等式,属基本题.解绝对值不等式的关键是去绝对值,去绝对值的方法主要有:利用绝对值的意义、讨论和平方.4.(5分)已知tana=4,cotβ=,则tan(a+β)=( )A.B.﹣C.D.﹣【考点】GP:两角和与差的三角函数.【专题】11:计算题.【分析】由已知中cotβ=,由同角三角函数的基本关系公式,我们求出β角的正切值,然后代入两角和的正切公式,即可得到答案.【解答】解:∵tana=4,cotβ=,∴tanβ=3∴tan(a+β)=故选:B.==﹣【点评】本题考查的知识点是两角和与差的正切函数,其中根据已知中 β角的余切值,根据同角三角函数的基本关系公式,求出 β角的正切值是解答本题的关键.5.(5分)已知双曲线 ﹣ =1(a >0,b >0)的渐近线与抛物线 y=x +1相2切,则该双曲线的离心率为( )A .B .2C .D .【考点】KC :双曲线的性质;KH :直线与圆锥曲线的综合.【专题】11:计算题.【分析】先求出渐近线方程,代入抛物线方程,根据判别式等于 0,找到 a 和 b 的关系,从而推断出 a 和 c 的关系,答案可得.【解答】解:由题双曲线的一条渐近线方程为 ,代入抛物线方程整理得 ax 2﹣bx +a=0,﹣4a =0,因渐近线与抛物线相切,所以 b 即 ,故选:C .22【点评】本小题考查双曲线的渐近线方程直线与圆锥曲线的位置关系、双曲线的离心率,基础题.6.(5分)已知函数 f (x )的反函数为 g (x )=1+2lgx (x >0),则 f (1)+g (1)=( )A .0B .1C .2D .4【考点】4R :反函数.【专题】11:计算题.【分析】将 x=1代入即可求得 g (1),欲求 f (1),只须求当 g (x )=1时 x 的值即可.从而解决问题.【解答】解:由题令 1+2lgx=1得 x=1,即 f (1)=1,又 g (1)=1,所以 f (1)+g (1)=2,故选:C .【点评】本小题考查反函数,题目虽然简单,却考查了对基础知识的灵活掌握情况,也考查了运用知识的能力.7.(5分)甲组有 5名男同学,3名女同学;乙组有 6名男同学、2名女同学.若从甲、乙两组中各选出 2名同学,则选出的 4人中恰有 1名女同学的不同选法共有( )A .150种B .180种C .300种D .345种【考点】D1:分类加法计数原理;D2:分步乘法计数原理.【专题】5O :排列组合.【分析】选出的 4人中恰有 1名女同学的不同选法,1名女同学来自甲组和乙组两类型.【解答】解:分两类(1)甲组中选出一名女生有 C 51•C 32 1 1(2)乙组中选出一名女生有 C 5 •C 6 •C 2 =120种选法.故共有 345种选法.故选:D .•C 6 =225种选法;1 2【点评】分类加法计数原理和分类乘法计数原理,最关键做到不重不漏,先分类,后分步!8.(5分)设非零向量、、满足,则=( )A .150°B .120°C .60°D .30°【考点】9S:数量积表示两个向量的夹角.【分析】根据向量加法的平行四边形法则,两个向量的模长相等可构成菱形的两条相邻边,三个向量起点处的对角线长等于菱形的边长,这样得到一个含有特殊角的菱形.【解答】解:由向量加法的平行四边形法则,∵两个向量的模长相等∴、可构成菱形的两条相邻边,∵∴、为起点处的对角线长等于菱形的边长,∴两个向量的夹角是120,°故选:B.【点评】本小题考查向量的几何运算、考查数形结合的思想,基础题.向量知识,向量观点在数学.物理等学科的很多分支有着广泛的应用,而它具有代数形式和几何形式的“双重身份”能融数形于一体.9.(5分)已知三棱柱ABC﹣A B C的侧棱与底面边长都相等,A在底面 ABC1111上的射影D为BC的中点,则异面直线AB与CC所成的角的余弦值为( )1A.B.C.D.【考点】LO:空间中直线与直线之间的位置关系.【分析】首先找到异面直线AB与CC所成的角(如∠A AB);而欲求其余弦值11可考虑余弦定理,则只要表示出 A B的长度即可;不妨设三棱柱ABC﹣A B C1111的侧棱与底面边长为 1,利用勾股定理即可求之.【解答】解:设 BC 的中点为 D ,连接 A D 、AD 、A B ,易知 θ=∠A AB 即为异面111直线 AB 与 CC 所成的角;1并设三棱柱 ABC ﹣A B C 的侧棱与底面边长为 1,则|AD |= ,|A D |=,|A B |=11111,由余弦定理,得 cosθ=故选:D .=.【点评】本题主要考查异面直线的夹角与余弦定理.10.(5分)如果函数 y=3cos (2x +φ)的图象关于点( ,0)中心对称,那么|φ|的最小值为( )A .B .C .D .【考点】HB :余弦函数的对称性.【专题】11:计算题.【分析】先根据函数 y=3cos (2x +φ)的图象关于点 中心对称,令 x=代入函数使其等于 0,求出 φ的值,进而可得|φ|的最小值.【解答】解:∵函数 y=3cos (2x +φ)的图象关于点 中心对称.∴ ∴ 由此易得 .故选:A .【点评】本题主要考查余弦函数的对称性.属基础题.11.(5分)已知二面角 α﹣l ﹣β为 60°,动点 P 、Q 分别在面 α、β内,P 到β的距离为,Q 到 α的距离为 ,则 P 、Q 两点之间距离的最小值为( )A.1B.2C.D.4【考点】LQ:平面与平面之间的位置关系.【专题】11:计算题;16:压轴题.【分析】分别作QA⊥α于A,AC⊥l于C,PB⊥β于B,PD⊥l于D,连CQ,BD 则∠ACQ=∠PBD=60°,在三角形APQ中将PQ表示出来,再研究其最值即可.【解答】解:如图分别作QA⊥α于A,AC⊥l于C,PB⊥β于B,PD⊥l于D,连CQ,BD则∠ACQ=∠PDB=60°,,又∵当且仅当AP=0,即点A与点P重合时取最小值.故选:C.【点评】本题主要考查了平面与平面之间的位置关系,以及空间中直线与平面之间的位置关系,考查空间想象能力、运算能力和推理论证能力,属于基础题.12.(5分)已知椭圆C:+y =1的右焦点为F,右准线为l,点A∈l,线段 AF 2交 C 于点 B ,若 =3,则||=( )A .B .2C .D .3【考点】K4:椭圆的性质.【专题】11:计算题;16:压轴题.【分析】过点 B 作 BM ⊥x 轴于 M ,设右准线 l 与 x 轴的交点为 N ,根据椭圆的性质可知 FN=1,进而根据 ,求出 BM ,AN ,进而可得|AF |.【解答】解:过点 B 作 BM ⊥x 轴于 M ,并设右准线 l 与 x 轴的交点为 N ,易知 FN=1.由题意 ,故 FM=,故 B 点的横坐标为,纵坐标为±即 BM=,故 AN=1,∴ .故选:A .【点评】本小题考查椭圆的准线、向量的运用、椭圆的定义,属基础题.二、填空题(共 4小题,每小题 5分,满分 20分)13.(5分)(x ﹣y )的展开式中,x y 的系数与 x y 的系数之和等于 ﹣240 10 7 3 3 7.【考点】DA :二项式定理.【专题】11:计算题.【分析】首先要了解二项式定理:( a +b )n =C n +C n +C n ++C n ++C n a b ,各项的通项公式为:0a n b 01a n ﹣1b 12a n ﹣2b 2r a n ﹣r b r n 0 n a b .然后根据题目已知求解即可.T =C nr n ﹣r rr +1【解答】解:因为( x ﹣y )10的展开式中含 x y 的项为 C 10 x y (﹣1)7 3 3 10﹣3 33=﹣C 10 x y ,3 7 3含 x3y 7的项为 C 107x 10﹣7y 73(﹣1) =﹣C 10 x y .7 7 3 7由 C 103=C 10 =120知,x 77y 与 x y 的系数之和为﹣240.3 7故答案为﹣240.【点评】此题主要考查二项式定理的应用问题,对于公式:( a +b )=C n +C n +C n ++C n ++C n a b ,属于重点考点,同学们需n 0 n n 0n a b 01a n ﹣1b 12a n ﹣2b 2r n ﹣r a b r 要理解记忆.14.(5分)设等差数列{a }的前 n 的和为 S ,若 S =72,则 a +a +a = 24 .n n 9249【考点】83:等差数列的性质.【分析】先由 S =72用性质求得 a ,而 3(a +4d )=3a ,从而求得答案.9515【解答】解:∵∴a =85又∵a +a +a =3(a +4d )=3a =2424915故答案是 24【点评】本题主要考查等差数列的性质及项与项间的内在联系.15.(5分)已知 OA 为球 O 的半径,过 OA 的中点 M 且垂直于 OA 的平面截球面得到圆M.若圆M的面积为3π,则球O的表面积等于 16π .【考点】LG:球的体积和表面积.【专题】11:计算题;16:压轴题.【分析】由题意求出圆M的半径,设出球的半径,二者与OM构成直角三角形,求出球的半径,然后可求球的表面积.【解答】解:∵圆M的面积为3π,∴圆M的半径r=,设球的半径为R,由图可知,R = R+3,∴R =3,∴R =4.2 2 2 2∴S =4πR2=16π.球故答案为:16π【点评】本题是基础题,考查球的体积、表面积的计算,理解并能够应用小圆的半径、球的半径、以及球心与圆心的连线的关系,是本题的突破口,解题重点所在,仔细体会.16.(5分)若直线m被两平行线l:x﹣y+1=0与l:x﹣y+3=0所截得的线段的12长为,则m的倾斜角可以是①15°②30°③45°④60°⑤75°其中正确答案的序号是 ①或⑤ (写出所有正确答案的序号)【考点】I2:直线的倾斜角;N1:平行截割定理.【专题】11:计算题;15:综合题;16:压轴题.【分析】先求两平行线间的距离,结合题意直线m被两平行线l与l所截得的12线段的长为,求出直线m与l的夹角为30°,推出结果.1【解答】解:两平行线间的距离为,由图知直线m与l的夹角为30°,l的倾斜角为45°,11所以直线m的倾斜角等于30°+45°=75°或45°﹣30°=15°.故填写①或⑤故答案为:①或⑤【点评】本题考查直线的斜率、直线的倾斜角,两条平行线间的距离,考查数形结合的思想.三、解答题(共6小题,满分70分)17.(10分)设等差数列{a}的前n项和为S,公比是正数的等比数列{b}的前n n nn项和为T,已知 a =1,b =3,a+b =17,T﹣S =12,求{a},{b}的通项公n113333n n式.【考点】8M:等差数列与等比数列的综合.【专题】11:计算题.【分析】设{a}的公差为d,数列{b}的公比为q>0,由题得n n,由此能得到{a},{b}的通项公式.n n【解答】解:设{a}的公差为d,数列{b}的公比为q>0,n n由题得,解得 q=2,d=2∴a =1+2(n ﹣1)=2n ﹣1,bn=3•2n ﹣1n .【点评】本小题考查等差数列与等比数列的通项公式、前 n 项和,基础题. 18.(12分)在△ABC 中,内角 A 、B 、C 的对边长分别为 a 、b 、c ,已知 a ﹣c =2b 2 2,且 sinAcosC=3cosAsinC ,求 b .【考点】HR :余弦定理.【分析】根据正弦定理和余弦定理将 sinAcosC=3cosAsinC 化成边的关系,再根据a ﹣c =2b 即可得到答案.2 2【解答】解:法一:在△ABC 中∵sinAcosC=3cosAsinC ,则由正弦定理及余弦定理有:,化简并整理得:2(a 又由已知 a ﹣c =2b ∴4b=b 解得 b=4或 b=0(舍);法二:由余弦定理得:a又 a ﹣c =2b ,b ≠0.2﹣c2)=b 2.222.2﹣c 2=b 2﹣2bccosA .22所以 b=2ccosA +2①又 sinAcosC=3cosAsinC ,∴sinAcosC +cosAsinC=4cosAsinCsin (A +C )=4cosAsinC ,即 sinB=4cosAsinC 由正弦定理得 ,故 b=4ccosA ②由①,②解得 b=4.【点评】本题主要考查正弦定理和余弦定理的应用.属基础题.19.(12分)如图,四棱锥S﹣ABCD中,底面ABCD为矩形,SD⊥底面ABCD,AD=,DC=SD=2,点M在侧棱SC上,∠ABM=60°(I)证明:M是侧棱SC的中点;(Ⅱ)求二面角S﹣AM﹣B的大小.【考点】LO:空间中直线与直线之间的位置关系;MJ:二面角的平面角及求法.【专题】11:计算题;14:证明题.【分析】(Ⅰ)法一:要证明M是侧棱SC的中点,作MN∥SD交CD于N,作NE⊥AB交AB于E,连ME、NB,则MN⊥面ABCD,ME⊥AB,设MN=x,则NC=EB=x,解RT△MNE即可得x的值,进而得到M为侧棱SC的中点;法二:分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,并求出S点的坐标、C点的坐标和M点的坐标,然后根据中点公式进行判断;法三:分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,构造空间向量,然后数乘向量的方法来证明.(Ⅱ)我们可以以D为坐标原点,分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,我们可以利用向量法求二面角S﹣AM﹣B的大小.【解答】证明:(Ⅰ)作MN∥SD交CD于N,作NE⊥AB交AB于E,连ME、NB,则MN⊥面ABCD,ME⊥AB,设MN=x,则NC=EB=x,在RT△MEB中,∵∠MBE=60°∴.在 RT △MNE 中由 ME =NE +MN ∴3x =x +22 2 2 2 2解得 x=1,从而 ∴M 为侧棱 SC 的中点 M .(Ⅰ)证法二:分别以 DA 、DC 、DS 为 x 、y 、z 轴如图建立空间直角坐标系 D ﹣xyz,则.设 M (0,a ,b )(a >0,b >0),则, ,由题得 ,即解之个方程组得 a=1,b=1即 M (0,1,1)所以 M 是侧棱 SC 的中点.(I )证法三:设 ,则又故即,,解得 λ=1,所以 M 是侧棱 SC 的中点.(Ⅱ)由(Ⅰ)得,又 , ,设分别是平面 SAM 、MAB 的法向量,则 且 ,即 且分别令 得 z =1,y =1,y =0,z =2,1122即∴,二面角 S ﹣AM ﹣B 的大小 .【点评】空间两条直线夹角的余弦值等于他们方向向量夹角余弦值的绝对值;空间直线与平面夹角的余弦值等于直线的方向向量与平面的法向量夹角的正弦值;空间锐二面角的余弦值等于他的两个半平面方向向量夹角余弦值的绝对值; 20.(12分)甲、乙二人进行一次围棋比赛,约定先胜 3局者获得这次比赛的胜利,比赛结束.假设在一局中,甲获胜的概率为 0.6,乙获胜的概率为 0.4,各局比赛结果相互独立.已知前 2局中,甲、乙各胜 1局.(Ⅰ)求再赛 2局结束这次比赛的概率;(Ⅱ)求甲获得这次比赛胜利的概率.【考点】C8:相互独立事件和相互独立事件的概率乘法公式.【专题】12:应用题.【分析】根据题意,记“第i局甲获胜”为事件A(i=3,4,5),“第j局甲获胜”i为事件B(j=3,4,5),i(1)“再赛2局结束这次比赛”包含“甲连胜3、4局”与“乙连胜3、4局”两个互斥的事件,而每局比赛之间是相互独立的,进而计算可得答案,(2)若“甲获得这次比赛胜利”,即甲在后3局中,甲胜2局,包括3种情况,根据概率的计算方法,计算可得答案.【解答】解:记“第i局甲获胜”为事件A(i=3,4,5),i“第j局甲获胜”为事件B(j=3,4,5).i(Ⅰ)设“再赛2局结束这次比赛”为事件A,则A=A •A+B •B,3434由于各局比赛结果相互独立,故P(A)=P(A •A+B •B)=P(A •A)+P(B •B)=P(A)P(A)+P(B)P34343434343(B)=0.6×0.6+0.4×0.4=0.52.4(Ⅱ)记“甲获得这次比赛胜利”为事件H,因前两局中,甲、乙各胜1局,故甲获得这次比赛胜利当且仅当在后面的比赛中,甲先胜2局,从而B=A •A+B •A •A+A •B •A,34345345由于各局比赛结果相互独立,故P(H)=P(A •A+B •A •A+A •B •A)34345345=P(A •A)+P(B •A •A)+P(A •B •A)34345345=P(A)P(A)+P(B)P(A)P(A)+P(A)P(B)P(A)34345345=0.6×0.6+0.4×0.6×0.6+0.6×0.4×0.6=0.648【点评】本小题考查互斥事件有一个发生的概率、相互独立事件同时发生的概率,解题之前,要分析明确事件间的关系,一般先按互斥事件分情况,再由相互独立事件的概率公式,进行计算.21.(12分)已知函数f(x)=x﹣3x+6.4 2(Ⅱ)设点P在曲线y=f(x)上,若该曲线在点P处的切线l通过坐标原点,求Ⅰ讨论f(x)的单调性;l的方程.【考点】6B:利用导数研究函数的单调性;6H:利用导数研究曲线上某点切线方程.【专题】16:压轴题.【分析】(1)利用导数求解函数的单调性的方法步骤进行求解.(2)根据已知,只需求出f(x)在点P处的导数,即斜率,就可以求出切线方程.【解答】解:(Ⅰ)令f′(x)>0得或;令f′(x)<0得或因此,f(x)在区间和为增函数;在区间和为减函数.(Ⅱ)设点P(x,f(x)),00由l过原点知,l的方程为y=f′(x)x,因此f(x)=f′(x)x,即x04﹣3x02+6﹣x(4x03﹣6x)=0,000002+1)(x0﹣2)=0,解得或.整理得(x2所以的方程为y=2 x或y=﹣2x【点评】本题比较简单,是一道综合题,主要考查函数的单调性、利用导数的几何意义求切线方程等函数基础知识,应熟练掌握.22.(12分)如图,已知抛物线E:y =x与圆M:(x﹣4)+y =r(r>0)相交2 2 2 2于A、B、C、D四个点.(Ⅰ)求r的取值范围;(Ⅱ)当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐标.【考点】IR:两点间的距离公式;JF:圆方程的综合应用;K8:抛物线的性质.【专题】15:综合题;16:压轴题.【分析】(1)先联立抛物线与圆的方程消去y,得到x的二次方程,根据抛物线E:y =x与圆M:(x﹣4)+y =r(r>0)相交于A、B、C、D四个点的充2 2 2 2要条件是此方程有两个不相等的正根,可求出r的范围.(2)先设出四点A,B,C,D的坐标再由(1)中的x二次方程得到两根之和、两根之积,表示出面积并求出其的平方值,最后根据三次均值不等式确定得到最大值时的点P的坐标.【解答】解:(Ⅰ)将抛物线E:y =x代入圆M:(x﹣4)+y =r(r>0)的方2 2 2 2程,消去 y2,整理得 x2﹣7x+16﹣r2=0(1)+y抛物线E:y2=x与圆M:(x﹣4)2=r(r>0)相交于A、B、C、D四个点的2 2充要条件是:方程(1)有两个不相等的正根∴即.解这个方程组得,.(II)设四个交点的坐标分别为、、、.=则直线AC、BD的方程分别为y﹣=•(x﹣x),y+(x﹣x),1解得点P的坐标为(,0),则由(I)根据韦达定理有x+x =7,x x =16﹣r,12 1 22则∴令,则S =(7+2t)(7﹣2t)下面求S的最大值.2 2 2由三次均值有:当且仅当7+2t=14﹣4t,即时取最大值.经检验此时满足题意.故所求的点P的坐标为.【点评】本题主要考查抛物线和圆的综合问题.圆锥曲线是高考必考题,要强化复习.。
2009文科数学高考真题全国卷Ⅱ试卷答案
2009年普通高等学校招生全国统一考试试卷文科数学2009年普通高等学校招生全国统一考试文科数学试题参考答案和评分参考一. 选择题(1)C (2)B (3)A (4)D (5)C (6)C(7)B (8)A (9)D (10)C (11)D (12)B二.填空题(13)3 (14)6 (15)254(16)8π 三.解答题17. 解:设{}n a 的公差为d ,则w.w.w.k.s.5.u.c.o.m()()11112616350a d a d a d a d ⎧++=-⎪⎨+++=⎪⎩ 即22111812164a da d a d ⎧++=-⎨=-⎩ 解得118,82,2a a d d =-=⎧⎧⎨⎨==-⎩⎩或 因此()()()()819819n n S n n n n n S n n n n n =-+-=-=--=--,或(18)解:由 cos (A -C )+cosB=32及B=π-(A+C )得 cos (A -C )-cos (A+C )=32, cosAcosC+sinAsinC -(cosAcosC -sinAsinC )=32, sinAsinC=34. 又由2b =ac 及正弦定理得2sin sin sin ,B A C =故 23sin 4B =,sin B = 或sin B =(舍去),于是 B=3π 或 B=23π. 又由 2b ac =知a b ≤或c b ≤所以 B=3π (19)解法一:(Ⅰ)取BC 中点F ,连接EF ,则EF121B B ,从而EF DA 。
连接AF ,则ADEF 为平行四边形,从而AF//DE 。
又DE ⊥平面1BCC ,故AF ⊥平面1BCC ,从而AF ⊥BC ,即AF 为BC 的垂直平分线,所以AB=AC 。
(Ⅱ)作AG ⊥BD ,垂足为G ,连接CG 。
由三垂线定理知CG ⊥BD ,故∠AGC 为二面角A-BD-C 的平面角。
由题设知,∠AGC=600..设AC=2,则AG=AB=2,BC=由AB AD AG BD ⋅=⋅得2AD=故AD=AF 。
2009年普通高校招生统一考试(湖北卷)
2009年普通高校招生统一考试(湖北卷)数学(文史类)注意事项:1.答题前,考试务必将自己的姓名、准考证号填在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡指定位置。
2.选择题每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,在选涂其他答案标号,答在试题卷上无效。
3.填空题和解答题用0.5毫米黑色墨水签字笔在答题卡上每题对应的答题区域内,答在试题卷上无效。
4.考试结束,请将本试题和答题卡一并上交。
一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的。
1.若向量a=(1,1),b=(-1,1),c=(4,2),则c= A.3a+b B. 3a-b C.-a+3b D. a+3b 2.函数)21,(2121-≠∈+-=x R x xx y 且的反函数是A.)21,(2121≠∈-+=x R x x x y 且B.)21,(2121-≠∈+-=x R x xx y 且C.)1,()1(21≠∈-+=x R x x x y 且 D.)1,()1(21-≠∈+-=x R x x x y且3.“sin α=21”是“212cos=α”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件4.从5名志愿者中选派4人在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有一人参加,星期六有两人参加,星期日有一人参加,则不同的选派方法共有 A.120种 B.96种 C.60种 D.48种5.已知双曲线1412222222=+=-by xyx的准线经过椭圆(b >0)的焦点,则b=A.3B.5C.3D.26.如图,在三棱柱ABC-A 1B 1C 1中,∠ACB=900,∠ACC 1=600,∠BCC 1=450,侧棱CC 1的长为1,则该三棱柱的高等于A.21B.22C.23D.337.函数2)62cos(-+=πx y的图像F 按向量a 平移到F /,F /的解析式y=f(x),当y=f(x)为奇函数时,向量a 可以等于 A.)2,6(-πB.)2,6(π C.)2,6(--πD.)2,6(π-8.在“家电下乡”活动中,某厂要将100台洗衣机运往邻近的乡镇,现有4辆甲型货车和8辆乙型货车可供使用,每辆甲型货车运输费用400元,可装洗衣机20台;每辆乙型货车运输费用300元,可装洗衣机10台,若每辆至多只运一次,则该厂所花的最少运输费用为 A.2000元B.2200元C.2400元D.2800元9.设,R x ∈记不超过x 的最大整数为[x ],令{x }=x -[x ],则{215+},[215+],215+A.是等差数列但不是等比数列B.是等比数列但不是等差数列C.既是等差数列又是等比数列D.既不是等差数列也不是等比数列10.古希腊人常用小石子在沙滩上摆成各种性状来研究数,例如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16…这样的数成为正方形数。
2009年湖北省高考数学试卷(文科)答案与解析
2009年湖北省高考数学试卷(文科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2009•湖北)若向量=(1,1),=(﹣1,1),=(4,2),则=()A.3+B.3﹣C.﹣+3D.+3【考点】平面向量的基本定理及其意义;平面向量的坐标运算.【专题】计算题;待定系数法.【分析】设=λ+μ,由=(4,2),用待定系数法求出λ和μ,可得结果.【解答】解:设=λ+μ=(λ,λ)+(﹣μ,μ)=(λ﹣μ,λ+μ )=(4,2),∴λ﹣μ=4,λ+μ=2,∴λ=3,μ=﹣1,可得,故选B.【点评】本题考查两个向量的加减法的法则,两个向量坐标形式的运算.2.(5分)(2009•湖北)函数的反函数是()A.B.C.D.【考点】反函数.【专题】计算题.【分析】按照反函数的定义,直接求出函数的反函数.【解答】解:可得2xy﹣y=x﹣2,所以把x,y互换,它就是原函数的反函数故选A.【点评】解答本题首先熟悉反函数的概念,然后根据反函数求解三步骤:1、换:x、y换位,2、解:解出y,3、标:标出定义域,据此即可求得反函数.3.(5分)(2009•湖北)“sinα=”是“"的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件【考点】二倍角的余弦.【分析】利用二倍角的余弦函数公式化简cos2α=,得到sinα的值等于两个值,得到“sinα=”是“”的充分不必要条件即可.【解答】解:由可得1﹣2sin2α=,即sin2α=,∴sinα=±,故是成立的充分不必要条件,故选A.【点评】此题考查学生掌握充分及必要条件的证明方法,灵活意义二倍角的余弦函数公式化简求值,是一道基础题.4.(5分)(2009•湖北)从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有()A.40种B.60种C.100种D.120种【考点】排列、组合的实际应用.【专题】计算题.【分析】分2步进行,首先从5人中抽出两人在星期五参加活动,再从剩下的3人中,抽取两人安排在星期六、星期日参加活动,分别计算其情况数目,由分步计数原理计算可得答案.【解答】解:根据题意,首先从5人中抽出两人在星期五参加活动,有C52种情况,再从剩下的3人中,抽取两人安排在星期六、星期日参加活动,有A32种情况,则由分步计数原理,可得不同的选派方法共有C52A32=60种,故选B.【点评】本题考查排列、组合的综合运用,注意优先分析特殊的元素,同时需要区分排列与组合的意义.5.(5分)(2009•湖北)已知双曲线的准线经过椭圆(b>0)的焦点,则b=()A.3 B.C.D.【考点】椭圆的标准方程;圆锥曲线的综合.【专题】计算题.【分析】先根据双曲线的方程求得双曲线的准线方程,根据椭圆的方程求得焦点,代入双曲线的准线方程求得b.【解答】解:依题意可得双曲线的准线为,又因为椭圆焦点为所以有.即b2=3故b=.故选C.【点评】本题主要考查了椭圆和双曲线的简单性质,椭圆的标准方程.考查了学生对圆锥曲线基础知识的掌握.6.(5分)(2009•湖北)如图,在三棱柱ABC﹣A1B1C1中,∠ACB=90°,∠ACC1=60°,∠BCC1=45°,侧棱CC1的长为1,则该三棱柱的高等于()A.B.C.D.【考点】棱柱的结构特征.【专题】计算题;作图题.【分析】过C1作面ACB、线BC、AC的垂线,交点分别为O,D,E,连接OD、OC、OE,推出四边形OECD为矩形,求出OC,然后求出该三棱柱的高.【解答】解:过C1作面ACB、线BC、AC的垂线,交点分别为O,D,E,连接OD、OC、OE,可知OE⊥AC,OD⊥BE,又因为∠ACB=90°,所以四边形OECD为矩形.∠ACC1=60°,则CE=CC1=,同理CD=在直角三角形OCD中,由勾股定理得OC=,在直角三角形COC1中0C1==故选A.【点评】本题考查棱柱的结构特征,考查作图和计算能力,是基础题.7.(5分)(2009•湖北)函数y=cos(2x+)﹣2的图象F按向量平移到F′,F′的函数解析式为y=f(x),当y=f(x)为奇函数时,向量a可以等于()A.(,﹣2)B.(,2) C.(,﹣2)D.(,2)【考点】函数y=Asin(ωx+φ)的图象变换;余弦函数的奇偶性.【专题】计算题.【分析】由左加右减上加下减的原则可确定函数y=cos(2x+)﹣2到y=﹣sin2x的路线,进而确定向量.【解答】解::∵y=cos(2x+)﹣2∴将函数y=cos(2x+)﹣2向左平移个单位,再向上平移2个单位可得到y=cos(2x+)=﹣sin2x∴=(,2)故选B.【点评】本题是基础题,考查三角函数图象平移,三角函数的平移原则为左加右减上加下减.注意向量的平移的方向.8.(5分)(2009•湖北)在“家电下乡”活动中,某厂要将100台洗衣机运往邻近的乡镇.现有4辆甲型货车和8辆乙型货车可供使用.每辆甲型货车运输费用400元,可装洗衣机20台;每辆乙型货车运输费用300元,可装洗衣机10台.若每辆车至多只运一次,则该厂所花的最少运输费用为()A.2000元B.2200元C.2400元D.2800元【考点】简单线性规划的应用.【专题】计算题;压轴题;数形结合.【分析】根据题中的叙述将实际问题转化为不等式中的线性规划问题,利用线性规划确定最值【解答】解:设需使用甲型货车x辆,乙型货车y辆,运输费用z元,根据题意,得线性约束条件求线性目标函数z=400x+300y的最小值.解得当时,z min=2200.故选B.【点评】在确定取得最大值、最小值时,应注意实际问题的意义,整数最优解.9.(5分)(2009•湖北)设x∈R,记不超过x的最大整数为[x],令{x}=x﹣[x],则{},[],()A.是等差数列但不是等比数列B.是等比数列但不是等差数列C.既是等差数列又是等比数列D.既不是等差数列也不是等比数列【考点】等差关系的确定;等比关系的确定.【专题】计算题;压轴题.【分析】可分别求得,.则等比数列性质易得三者构成等比数列.【解答】解:根据题意可得,.∵×=12,+≠2∴{},[],为等比数列,不是等差数列故选B.【点评】本题主要考查了等差关系和等比关系的判定.定义法之外,也可利用等差中项和等比中项的性质来判断.10.(5分)(2009•湖北)古希腊人常用小石子在沙滩上摆成各种形状来研究数,例如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16…这样的数成为正方形数.下列数中既是三角形数又是正方形数的是()A.289 B.1024 C.1225 D.1378【考点】数列的应用;归纳推理.【专题】计算题;压轴题;新定义.【分析】根据图形观察归纳猜想出两个数列的通项公式,再根据通项公式的特点排除,即可求得结果.【解答】解:由图形可得三角形数构成的数列通项,同理可得正方形数构成的数列通项b n=n2,则由b n=n2(n∈N+)可排除D,又由,与无正整数解,故选C.【点评】考查学生观察、分析和归纳能力,并能根据归纳的结果解决分析问题,注意对数的特性的分析,属中档题.二、填空题(共5小题,每小题5分,满分25分)11.(5分)(2009•湖北)已知(1+ax)5=1+10x+a2x2+bx3+…+a n x n,则a2=40.【考点】二项式定理.【专题】计算题.【分析】根据题意,已知其展开式中x的系数为10,则结合(1+ax)5的展开式,写出其x 项,令其等于10,可得a的值,进而可得a2的值.【解答】解:因为T r+1=C5r•(ax)r r=1时,T2=C51•a1x=10x,解得a=2;r=3时,C52•a2=a2,a2=40;故答案为40.【点评】本题考查二项式定理的应用,注意在其展开式中,会根据题意要求与系数的关系、性质,代入特殊值进行计算.12.(5分)(2009•湖北)甲、乙、丙三人将参加某项测试,他们能达标的概率分别是0.8、0。
2009年高考新课标全国卷-文科数学(含标准答案)
2009年普通高等学校招生全国统一考试(新课标全国卷)一、选择题:本大题共12题,每小题5分,在每小题给出的四个选项中 ,中有一项是符合题目要求的. 1. 已知集合}{{}1,3,5,7,9,0,3,6,9,12A B ==,则A B =A.{3,5} B .{3,6} C.{3,7} D.{3,9}2.复数3223i i+=- A.1 B.1- C .i (D)i -3.对变量,x y 有观测数据(i x ,i y )(1,2,,10i =⋅⋅⋅),得散点图1;对变量,u v 有观测数据(i u ,i v )(i=1,2,…,10),得散点图2. 由这两个散点图可以判断A.变量x与y 正相关,u 与v 正相关 B .变量x 与y正相关,u 与v 负相关C.变量x 与y 负相关,u 与v正相关 D.变量x 与y负相关,u 与v 负相关4.有四个关于三角函数的命题:1p :∃x∈R , 2sin 2x +2cos 2x =12 2p : ,x y R ∃∈, sin()sin sin x y x y -=- 3p : ∀x ∈[]0,π1cos 2sin 2x x -= 4p : sin cos 2x y x y π=⇒+= 其中假命题的是 A.1p ,4p B.2p ,4p C .1p ,3p D.2p ,3p5.已知圆1C :2(1)x ++2(1)y -=1,圆2C 与圆1C 关于直线10x y --=对称,则圆2C 的方程为 A.2(2)x ++2(2)y -=1 B.2(2)x -+2(2)y +=1C .2(2)x ++2(2)y +=1D .2(2)x -+2(2)y -=1 6.设,x y 满足24,1,22,x y x y x y +≥⎧⎪-≥⎨⎪-≤⎩则z x y =+A .有最小值2,最大值3B .有最小值2,无最大值C.有最大值3,无最小值D.既无最小值,也无最大值7.已知()()3,2,1,0=-=-a b ,向量λ+a b 与2-a b 垂直,则实数λ的值为A.17-B.17 C .16- D .168.等比数列{}n a 的前n 项和为n S ,已知2110m m m a a a -++-=,2138m S -=,则m =A .38B .20 C.10 D.99.如图,正方体1111ABCD A B C D -的棱线长为1,线段11B D 上有两个动点E ,F,且12EF =,则下列结论中错误的是 A .AC BE ⊥ B.E F∥平面ABC DC.三棱锥A BEF -的体积为定值 D .△AEF 的面积与△BE F的面积相等10.执行如图所示的程序框图,输入2,0.5x h =-=,那么输出的各个数的和等于A.3B. 3.5C. 4 D.4.511.一个棱锥的三视图如图,则该棱锥的全面积(单位:2cm )为 A .48122+ B.48242+ C .36122+ D .36242+12.用min{a,b ,c}表示a ,b ,c 三个数中的最小值.设()min{2,2,10}xf x x x =+-(x≥0),则()f x 的最大值为A .4 B.5 C.6 D .7 第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.曲线21x y xe x =++在点(0,1)处的切线方程为________________.14.已知抛物线C的顶点坐标为原点,焦点在x 轴上,直线y=x 与抛物线C 交于A,B 两点,若(2,2)P 为AB 的中点,则抛物线C的方程为________________.15.等比数列{}n a 的公比0q >, 已知2a =1,216n n n a a a +++=,则{n a }的前4项和4S =________________.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解法 2:前同解法 1,联立①、②得
a 2 b 2 ab 7 a 2 b 2 =13 ab 6 ab 6
消去 b 并整理得 a 13a 36 0 解得 a 4或a 9
4 2 2 2
所以
a 2 a 3 或 故ab 5 b 3 b 2
DE a(0 1)
(Ⅰ)求证:对任意的 (0、1],都有 AC BE ; (Ⅱ)若二面角 D AE D 的大小为 60 ,求 的值。
0
18. 本小题主要考查空间直线与直线、 直线与平面的位置 关系和二面角等基础知识,考查空间想象能力、推理论证能力和运算求解能力。 (满分 12 分) (Ⅰ)证法 1:连接 BD ,由底面 ABCD 是正方形可得 AC BD。
2 2
。
理得 PQ 4 15. 下图是样本容量为 200 的频率分布直方图。 根据样本的频率分布直方图估计,样本数据落在[6,10)内的频数为 10)内的概率约为 。 ,数据落在[2,
【答案】64 【解析】观察直方图易得两个频率为 200 0.08 4 64 ,频率为
0.1 4 0.4
6
, 2)
【答案】D 8. 在“家电下乡”活动中,某厂要将 100 台洗衣机运往邻近的乡镇,现有 4 辆甲型货车和 8 辆乙型 20 台;每辆乙型货 车运输费用 300 元,可装洗衣机 10 台,若每辆车至多只运一次,则该厂所花的最少运输 费用为 A.2000 元 【答案】B B.2200 元 C.2400 元 D.2800 元
1 2x 1 ( x R, 且x ) 的反函数是 2 1 2x
B. y
1 2x 1 ( x R, 且x ) 1 2x 2
1 x ( x R, 且x 1) 2(1 x)
1 1 ”是“ cos 2 ”的 2 2
1 2x 1 ( x R, 且x ) 1 2x 2
SD 平面 ABCD , BD 是 BE 在平面 ABCD 上的射影,
由三垂线定理得 AC BE (Ⅱ) 解法 1: SD 平面 ABCD , CD 平面 ABCD , SD CD. 又底面 ABCD 是正方形, CD AD ,又 SD AD D , CD 平面 SAD 过点 D 在平面 SAD 内做 DF AE 于 F,连接 CF,则 CF AE, 故 CFD 是二面角 C-AE-D 的平面角,即 CFD=60° 在 Rt△ADE 中, AD= a , DE=
2 2
X 1 <1), 则 A B = X 2
.
B= x | 2 x 1
∴A∩B= x | 0 x 1 .
14. 过原点 O 作圆 x y 6 x 8 y 20 0 的两条切线,设切点分别为 P、Q,则线段 PQ 的长为 【答案】4 【解析】可得圆方程是 ( x 3) ( y 4) 5 又由圆的切线性质及在三角形中运用正弦定
17. (本小题满分 12 分) 围建一个面积为 360m 的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维 修) ,其它三面围墙要新建,在旧墙对面的新墙上要留一个宽度为 2m 的进出口,如图所 示,已知旧墙的维修费用为 45 元/m,新墙的造价为 180 元/m,设利用的旧墙长度为 x(单 位:m),修建此矩形场地围墙的总费用为 y(单位:元)。 (Ⅰ)将 y 表示为 x 的函数: (Ⅱ)试确定 x,使修建此矩形场地围墙的总费用最小,并求出最小总费用。 17. 本小题主要考查函数和不等式等基础知识, 考查用平均不等式求最值和运用数学知识解 决实际问题的能力。 (满分 12 分) 解: (Ⅰ)如图,设矩形的另一边长为 a m,
2009 年普通高校招生统一考试(湖北卷) 数学(文史类)
注意事项: 1. 答题前,考试务必将自己的姓名、准考证号填在试题卷和答题卡上,并将准考证号条形 码粘贴在答题卡指定位置。 2. 选择题每小题选出答案后,用 2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动, 用橡皮擦干净后,在选涂其他答案标号,答在试题卷上无效。 3. 填空题和解答题用 0.5 毫米黑色墨水签字笔在答题卡上每题对应的答题区域内,答在试 题卷上无效。 4. 考试结束,请将本试题和答题卡一并上交。 一、选择题:本大题共 10 小题,每小题 5 分,共 50 分,在每小题给出的四个选项中,只 有一项是符合要求的。 1. 若向量 a=(1,1) ,b=(-1,1) ,c=(4,2) ,则 c= A. 3a+b 【答案】B 2. 函数 y A. y B. 3a-b C.-a+3b D. a+3b
5 2 5 5
.
【答案】40 【解析】因为 Tr 1 C 5 (ax ) ∴ C 5 a 10
r r 1 1 2 C3 a2
b .解得 a 2, b 40
12. 甲、乙、丙三人将参加某项测试,他们能达标的概率分别是 0.8、0.6、0.5,则三人都 达标的概率是 ,三人中至少有一人达标的概率是 。
2 2
B.1024
C.1225
D.1378
n ( n 1) ,同理可得正方形数构成的数列 2
n
通项 bn n ,则由 bn n ( n N ) 可排除 A、D,又由 a 奇数,故选 C.
n ( n 1) 知 an 必为 2
二.填空题:本大题共 5 小题,每小题 5 分,共 25 分。请将答案填在答题卡对应题号的位 置上,一题两空的题,其答案按先后次序填写。 11. 已知 (1 ax) 1 10 x bx ... a x ,则 b=
3
7, C
3
. 由面积公式得
1 3 3 ab sin , 即ab 6 ① 2 3 2
由余弦定理得
a 2 b 2 2ab cos
3
2
7,即a 2 b 2 ab 7 ②
③
由②变形得 ( a b) 3ab 7 将①代入③得 ( a b) 25 ,故 a b 5
1 x ( x R, 且x 1) 2(1 x )
C. y 【答案】D 3.“sin =
D. y
A.充分而不必要条件 C.充要条件 【答案】A
B.必要而不充分条件 D.既不充分也不必要条件
4. 从 5 名志愿者中选派 4 人在星期五、星期六、星期日参加公益活动,每人一天,要求星 期五有一人参加,星期六有两人参加,星期日有一人参加,则不同的选派方法共有 A.120 种 【答案】C B.96 种 C.60 种 D.48 种
0 x 4 【解析】设甲型货车使用 x 辆,已型货车 y 辆.则 0 y 8 ,求 Z=400x+300y 最小 20 x 10 y 100
值.可求出最优解为(4,2)故 min 2200 故选 B.
9. 设 [
x R, 记 不 超 过
x 的 最 大 整 数 为 [ x ], 令 { x }= x -[ x ] , 则
360 2 360 2 360 10440 .当且仅当 225x= 时,等号成立. x x
即当 x=24m 时,修建围墙的总费用最小,最小总费用是 10440 元. 18.(本小题满分 12 分) 如图,四棱锥 S ABCD 的底面是正方形, SD ⊥平 面 ABCD , SD AD a , 点 E 是 SD 上 的 点 , 且
【解析】5 人中选 4 人则有 C 5 种,周五一人有 C 4 种,周六两人则有 C 3 ,周日则有 C1 种, 故共有 C 5 × C 4 × C 3 =60 种,故选 C 5. 已知双曲线
4 1 2
4
1
2
1
x2 y2 x2 y2 1 的准线经过椭圆 2 1 (b>0)的焦点,则 b= 2 2 4 b
B. 5 C. 3 D. 2
A.3 【答案】C
【解析】可得双曲线的准线为 x
a2 1 ,又因为椭圆焦点为 ( 4 b 2 , 0) 所以有 c
4 b 2 1 .即 b2=3 故 b= 3 .故 C.
6. 如图,在三棱柱 ABC-A1B1C1 中,∠ACB=90 ,∠ACC1=60 ,∠BCC1=45 ,侧棱 CC1 的长为 1,则 该三棱柱的高等于 A. C.
a , AE= a 2 1 。
于是, DF
a AD DE AE 2 1
DF CD
在 Rt△CDF 中,由 cot60°=
2 1
得
1
2
3 2 ,即 3 3 =3 3
(0,1] , 解得 =
2 2
DC、 DS 的方向分别作为 x、y、z 的正方向建立如图所示的 (Ⅰ)证法 2:以 D 为原点, DA、
比数列 10. 古希腊人常用小石子在沙滩上摆成各种性状来研究数,例如:
他们研究过图 1 中的 1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数; 类似地,称图 2 中的 1,4,9,16,…这样的数成为正方形数。下列数中及时三角形数又是 正方形数的是 A.289 【答案】C 【解析】由图形可得三角形数构成的数列通项 a n
【答案】0.24 0.96 【解析】三人均达标为 0.8×0.6×0.5=0.24,三人都不达标的概率为(1-0.8)×(1-0.6) ×(1-0.5)=0.04,所以,三人中至少有一人达标的概率为 1-0.04=0.96 13. 设集合 A=(x∣log2x<1), B=(X∣ 【答案】 x | 0 x 1 【解析】易得 A= x | 0 x 2
本小题主要考查正弦定理和余弦定理等基础知识及解三角形的方法,考查基本运算能力。 (满分 12 分)