湖北中职技能高考数学模拟试题及解答一
中职高考数学试题及答案
中职高考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是实数集的子集?A. 整数集B. 有理数集C. 无理数集D. 复数集答案:B2. 函数y=f(x)=x^2的反函数是?A. f^(-1)(x)=√xB. f^(-1)(x)=x^(1/2)C. f^(-1)(x)=x^(-1)D. f^(-1)(x)=x^(2)答案:A3. 已知向量a=(3,-1),b=(2,2),求向量a与向量b的数量积。
A. 4B. -2C. 6D. 8答案:B4. 以下哪个函数是奇函数?A. y=x^2B. y=x^3C. y=x+1D. y=x^2-1答案:B5. 以下哪个不等式的解集是全体实数?A. x^2-4x+4<0B. x^2-2x+1≤0C. x^2+x+1>0D. x^2-x-1=0答案:C6. 已知集合A={1,2,3},B={2,3,4},求A∩B。
A. {1,2}B. {2,3}C. {3,4}D. {1,4}答案:B7. 直线y=2x+3与x轴的交点坐标是?A. (-3/2, 0)B. (3/2, 0)C. (-1, 0)D. (1, 0)答案:B8. 已知等比数列的首项a1=2,公比q=3,求第5项的值。
A. 486B. 81C. 243D. 729答案:D9. 以下哪个函数是周期函数?A. y=ln(x)B. y=x^2C. y=sin(x)D. y=e^x答案:C10. 已知函数f(x)=x^3-3x+1,求f'(x)。
A. 3x^2-3B. x^2-3x+1C. 3x^2-3xD. x^3-3答案:A二、填空题(每题3分,共15分)1. 函数y=f(x)=x^2+2x+1的最小值是________。
答案:02. 已知等差数列的首项a1=5,公差d=3,求第10项的值是________。
答案:323. 已知双曲线x^2/a^2 - y^2/b^2=1的焦点在x轴上,且a=2,b=1,则该双曲线的离心率e是________。
湖北中职技能高考数学模拟试题及解答
湖北中职技能高考数学模拟试题及解答(一)一、选择题(本大题共6小题,每小题分,共30分)在每小题给出的四个备选项中,只有一项是符合题目要求的,请将其选出。
未选,错选或多选均不得分。
1.下列三个结论中正确的个数为①所有的直角三角形可以构成一个集合;②两直线夹角的范围为;③若,则.A、0B、1C、2D、3答案:B 考查集合的定义,夹角的定义,不等式的乘法性质。
2.直线的倾斜角为A、B、C、D、答案:D考查直线一般式求斜率,特殊角的三角函数。
3.下列三个结论中正确的为①零向量与任意向量垂直;②数列是以5为公差的等差数列;③的解集为.A、①②B、①③C、②③D、①②③答案:B考查零向量定义,等差数列通项公式,一元二次不等式的解法。
4.下列函数中为幂函数的是①;②;③;④;⑤.A、①②⑤B、①③⑤C、①④⑤D、②③④答案:B考查幂函数的定义。
5.下列函数中既是奇函数,又在区间是增函数的是A、B、C、D、答案:B考查函数奇偶性和单调性的判断。
6.等差数列中,,,则A、84B、378C、189D、736答案:B考查等差数列通项公式及前n项和公式的运用。
二、填空题(本大题共4小题,每小题6分,共24分)把答案填在答题卡相应题号的横线上。
7.计算:答案:考查指数、对数的运算法则及计算能力。
8.函数的定义域用区间表示为答案:考查函数定义域的求法,不等式的解法及集合交集。
9.若数列是等差数列,其中成等比数列,则公比答案:2 考查等比中项,等差数列通项公式,等比数列定义。
10.与向量垂直的单位向量坐标为答案:或考查向量垂直的充要条件,单位向量的定义。
三、解答题(本大题共3小题,每小题12分,共36分)应写出文字说明,证明过程或演算步骤。
11.平面内给定三个向量,,解答下列问题:(I)求满足的实数; (6分)(II)设,求实数k的值. (6分)答案:(I)=得:考查向量的线性运算(II)由可得:得:-2考查向量的线性运算,向量平行的充要条件。
湖北中职技能高考数学模拟试题及解答
湖北中职技能高考数学模拟试题及解答Document number【980KGB-6898YT-769T8CB-246UT-18GG08】湖北中职技能高考数学模拟试题及解答(一) 一、选择题(本大题共6小题,每小题分,共30分)在每小题给出的四个备选项中,只有一项是符合题目要求的,请将其选出。
未选,错选或多选均不得分。
1.下列三个结论中正确的个数为①所有的直角三角形可以构成一个集合;②两直线夹角的范围为(0°,90°); ③若ac >bb ,则a >b . A 、0 B 、1 C 、2 D 、3 答案:B 考查集合的定义,夹角的定义,不等式的乘法性质。
2.直线3x +√3y −5=0的倾斜角为A 、π6B 、π3C 、5π6 D 、2π3答案:D 考查直线一般式求斜率,特殊角的三角函数。
3.下列三个结论中正确的为①零向量与任意向量垂直;②数列{3n +5}是以5为公差的等差数列;③(−x +2)(2x −3)>0的解集为(32,2).A 、①②B 、①③C 、②③D 、①②③ 答案:B 考查零向量定义,等差数列通项公式,一元二次不等式的解法。
4.下列函数中为幂函数的是①y =x 2;②y =2x ;③y =x −12;④y =−1x ;⑤ y =1x 2. A 、①②⑤ B 、①③⑤ C 、①④⑤ D 、②③④答案:B 考查幂函数的定义。
5.下列函数中既是奇函数,又在区间(0,+∞)是增函数的是 A 、y =x 2 B 、y =−1x C 、y =sinx D 、y =1x答案:B 考查函数奇偶性和单调性的判断。
6.等差数列{a n }中,a 3=8,a 16=34,则S 18=A 、84B 、378C 、189D 、736答案:B 考查等差数列通项公式及前n 项和公式的运用。
二、填空题(本大题共4小题,每小题6分,共24分)把答案填在答题卡相应题号的横线上。
中职高考数学试卷含答案
考试时间:120分钟满分:100分一、选择题(每题5分,共50分)1. 已知等差数列{an}的首项a1=3,公差d=2,则第10项a10的值为:A. 21B. 23C. 25D. 272. 下列函数中,在其定义域内是增函数的是:A. y = -2x + 1B. y = 2x^2 - 3x + 1C. y = x^3 - 3x^2 + 4x - 1D. y = 1/x3. 在直角坐标系中,点A(-2,3)关于y轴的对称点B的坐标为:A. (-2,-3)B. (2,-3)C. (2,3)D. (-2,3)4. 若等比数列{an}的首项a1=1,公比q=2,则第5项a5的值为:A. 16B. 8C. 4D. 25. 下列命题中,正确的是:A. 若a>b,则a^2>b^2B. 若a>b,则a+c>b+cC. 若a>b,则ac>bcD. 若a>b,则a/c>b/c6. 下列方程中,无解的是:A. x + 3 = 0B. 2x + 4 = 0C. 3x + 5 = 0D. x + 2 = 07. 若函数f(x) = x^2 - 4x + 3,则f(2)的值为:A. 1B. 3C. 5D. 78. 在直角坐标系中,点P(3,4)到原点O的距离为:A. 5B. 7C. 9D. 119. 若等差数列{an}的前n项和为Sn,且a1=2,d=3,则S10的值为:A. 50B. 60C. 70D. 8010. 下列不等式中,正确的是:A. 2x + 3 > 5B. 3x - 2 < 7C. 4x + 1 ≥ 3D. 5x - 4 ≤ 6二、填空题(每题5分,共25分)11. 若等差数列{an}的首项a1=1,公差d=2,则第6项a6的值为______。
12. 函数f(x) = 2x + 3在定义域内的______是增函数。
13. 点(-3,2)关于x轴的对称点坐标为______。
2020年湖北省普通高等学校招生中职毕业生技能高考模拟试题文化综合数学部分1-20套参考答案
2020年湖北省普通高等学校招生中职毕业生技能高考模拟试题数学部分(第一套)参考答案四、选择题(本大题共6小题,每小题5分,共30分) 19.C 20.D 21.B 22.C 23.B 24.D五、填空题(本大题共4小题,每小题5分,共20分) 25. 101 -5 26.]2,0031-(),(Y27.100 28.cm 2六、解答题(本大题共3小题,共40分) 29.(1)解析:由任意角的直角函数的定义得m=-1,21cos ,23sin -=-=αα, 原式==---ααααcos sin 3sin cos(2)原式===+--+-++6sin3cos 4tan6cos 6sin )66sin()32cos()42tan()63cos(62-sin πππππππππππππππ)(30. (1)设点A (x, y )则AB =(1-x, 1-y) 又AB (-7,10)b 2-a 3==ϖϖ所以⎩⎨⎧=--=-10171y x 解得⎩⎨⎧-==98y x 点A (8,-9)(2))4,3(+--=+λλλb a ϖϖ又)(b a ϖϖλ+∥AB所以2871030--=--λλ解得32-=λ (3))4,3(μμμ--=-b a ϖϖ因为⊥-)(b a ϖϖμAB所以⋅-)(b a ϖϖμAB 01040721=-+-=μμ 解得1761=μ31.(1)直线1l 的方程可化为0224=+-a y x ,则直线21与l l 的距离 105724)1(222=+--=a d 解得4或3-==a a(2)解析:设过点P 的直线方程为Y-3=k(x-2)即kx-y-2k+3=0,圆心到该直线的距离等于半径即113212=++--k k k 解得43=k 求得切线方程为2020年湖北省普通高等学校招生中职毕业生技能高考模拟试题数学部分(第二套)参考答案四、选择题(本大题共6小题,每小题5分,共30分) 19.C 20.B 21.C 22.C 23.D 24.C 五、填空题(本大题共4小题,每小题5分,共20分) 25. 212- 26. 27. 28.六、解答题(本大题共3小题,共40分) 29.(1)解析:原式=434tan )6sin (3cos 4tan 3cos 4tan6sin)4tan()6sin(32cos()47tan()312cos()43tan()62sin(=-----=--+-+--++-+--+πππππππππππππππππππππ)(2) 原式=1tan 1tan 4cos sin cos 2sin 4-+=-+αααααα由已知得3tan -=α代入原式=30.(1)182)(62)(652616=+=+=a a a a S 解得45=a(2)1254-=a S ①1265-=a S ② 由②-①得565653即2a a a a a =-= 因为{}n a 为等比数列,所以356==a a q 31.(1)联立21与l l 的方程可得交点坐标(-1,3)由题意可设直线l 的方程为03=+-a y x将交点坐标代入即可得6=a 即所求直线方程为063=+-y x (2)因为直线与圆相切,所以圆心P(-3,4)到直线的距离等于半径 即222543=-+-==r d 故圆的标准方程为8)4()3(22=-++y x 转化为一般方程为0178622=+-++y x y x2020年湖北省普通高等学校招生中职毕业生技能高考模拟试题数学部分(第三套)参考答案四、选择题(本大题共6小题,每小题5分,共30分) 19.A 20.C 21.B 22.B 23.C 24.A五、填空题(本大题共4小题,每小题5分,共20分) 25. 32-31-26. 27.(2,-6) 28.六、解答题(本大题共3小题,共40分) 29.(1)原式=3tan 4cos 23sin )34tan(44-cos 2)33sin(ππππππππα---=--++-+)( =(2)解析由34tan ,53cos 2354sin 54)sin(=-=∴∈-==+ααππαααπ),(又得 原式==-αααcos tan sin 230.(1)因为{}n a 为等差数列,所以⎩⎨⎧=+=+1045342a a a a可转化为⎩⎨⎧=+=+532211d a d a 解得⎩⎨⎧=-=341d a故95291010110=⨯+=d a S (2)因为{}n b 为等比数列,⎩⎨⎧==162652a a所以27253==a a q解得3=q 2a 1= 故132-⨯=n n b31.(1)圆的方程可转化为03213222=+-+++k k y x y x由0)321(4914222>+--+=-+k k F E D可得1或5<>k k (2)圆心(2,-1)到直线0434=+-y x 的距离354)1(324=+-⨯-⨯=d3==r d 所以直线与圆相切2020年湖北省普通高等学校招生中职毕业生技能高考模拟试题数学部分(第四套)参考答案四、选择题(本大题共6小题,每小题5分,共30分) 19.B 20.B 21.D 22.B 23.B 24.D 五、填空题(本大题共4小题,每小题5分,共20分) 25.13426.]322,1,()(Y 27. 28.12π六、解答题(本大题共3小题,共40分)29.(1)解析:原式=02200002260cos 30sin 3tan 4sin )60720cos()30720sin()34(tan )46(sin ++=+-++--+-ππππππ= (2)由已知得94cos sin 31cos sin =-=+-αααα两边平方得 原式=αααααααcos sin sin tan tan )cos (sin 2=--= 30.(1)1),(b a +=+λλλϖϖ 因为a b a ϖϖϖ⊥+)(λ 所以-1得0)(==⋅+λλa b a ϖϖϖ(2)b ϖ因为∥c ϖ所以1262-=⨯-=k2251032,cos -=⋅--=⋅⋅>=<b a b a b a ϖϖϖϖϖϖ因为],0[,π>∈<b a ϖϖ 所以43,π>=<b a ϖϖ31.(1)直线0723=--y x 得斜率为23 则与之垂直直线得斜率为32-点斜式方程为)3(324+-=-x y 即0632=-+y x (2)点P(1,0) 因为直线与圆相切所以1)5(211222=++⨯==r d故圆的标准方程为1)1(22=+-y x2020年湖北省普通高等学校招生中职毕业生技能高考模拟试题数学部分(第五套)参考答案四、选择题(本大题共6小题,每小题5分,共30分) 19.B 20.D 21.B 22.B 23.C 24.B 五、填空题(本大题共4小题,每小题5分,共20分)25.-7 0 26.]6,3()3,2(Y 27 .3 28 .六、解答题(本大题共3小题,共40分)29.原式12332)3(023130cos 23tan 2cos6cos2sin 3tan2cos 23tan )23cos()64cos()22sin()34tan(222-=--+-=--+-=-+++-+--++πππππππππππππππ(2)原式αααααααα2222cos tan sin )cos (tan tan )cos (sin -=-=-⋅⋅--⋅=30.(1)因为{}n a 为等差数列,所以44543233b a a a a ==++ 即442a b = 242416a b = 所以44=a 84=b(2){}n a 为等差数列 11=a 4314=+=d a a 所以1=d故n d n a a n =-+=)1(1 {}n b 为等比数列 11=b 8314==q b b 所以2=q故1112--==n n n qb b 31.(1)直线平分圆即直线过圆心(1,2)点斜式方程)1(212-=-x y 即032=+-y x (2)因为直线与圆相切 所以圆心(0,3)到直线032=+-y x 的距离 55353320=+⨯-==r d 故圆的标准方程为59)3(22=-+y x 转化为一般方程为0536622=+-+y y x2020年湖北省普通高等学校招生中职毕业生技能高考模拟试题数学部分(第六套)参考答案四、选择题(本大题共6小题,每小题5分,共30分)19.D (两直线重合) 20.D 21.B 22.B 23.C 24.B (生活常识,冰水共存实例。
湖北省职高对口升学高考数学冲刺模拟试题一(含答案)
数学试题一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线310x y -+=的倾斜角为 ( ).A.6π B.4π C.3π D.23π2.下表是某厂1~4月用水量(单位:百吨)的一组数据. 由散点图知,用水量y 与月份x 之间有较好的线性相关关系,其线性回归直线方程为ˆˆ0.7yx a =-+,则ˆa = ( ). 月份 1 2 3 4 用水量4.5432.5A .10.5B .5.15C .5.2D .5.253.经过点(1,0),且与直线220x y --=平行的直线方程是( ).A.210x y --=B.210x y -+=C.220x y +-=D.210x y +-=4.已知,m n 是两条不同直线,,,αβγ是三个不同平面,则下列命题正确的是( ).A.若m ∥,n α∥α,则m ∥nB.若,αγβγ⊥⊥,则α∥βC.若m ∥,n α∥β,则α∥βD.若,m n αα⊥⊥,则m ∥n5.一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是 ( ).A.144ππ+ B.122ππ+ C.12ππ+ D.142ππ+ 6.圆221:20C x y x +-=与圆222:40C x y y +-=位置关系是( ). A.相离 B.相交 C.外切 D.内切7.某四面体的三视图如图所示,则该四面体四个面的面积中最大的是( ).A.8B.10C.62D.828.已知直线320m x y -+=与圆222x y n +=相切,其中,*m n N ∈,且5n m -<,则满足条件的有序实数对(,)m n 共有的对数为 ( ).A.1 B .2 C .3 D .4 9.已知某长方体的三个相邻面的表面积分别为2,3,6,且该长方体的顶点都在同一个球面上,则这个球的表面积为 ( ).A.72πB.56πC.14πD.64π 1直线3y kx =+与圆()()22:324C x y -+-=相交于,M N 两点.若23MN ≥,则k 的取值范围是 ( ).A.3 04⎡⎤-⎢⎥⎣⎦,B.[]3 0 4⎡⎤-∞-+∞⎢⎥⎣⎦,,B.C.33 33⎡⎤-⎢⎥⎣⎦, D.2 03⎡⎤-⎢⎥⎣⎦, A.12S S = B.12S S > C.12S S < D.22221S S π+=二、填空题:本大题共5小题,每小题4分,共20分.把答案填在答题卡的相应位置. 11.用一个与球心距离为1的平面去截球,所得的截面面积为π,则该球的体积为 . 12.已知200辆汽车在通过某一段公路的时速的频率分布直方图如图所示,则时速在[60,70]之间的汽车大约有 辆.13.如果执行如图所示的程序框图,输入6,4n m ==,那么输出的p 值为 .第12题图第13题图14.已知(,)P x y 为直线y x =上的动点,2222(1)(2)(2)(1)m x y x y =-+-+++-,则m 的最小值为 .15.如图,在直角梯形ABCD 中,BC DC ⊥,,AE DC M N ⊥、分别是AD BE 、的中点,将ADE ∆沿AE 折起(D 不在平面ABC 内).下列说法正确的是 .①不论D 折至何位置都有//MN 平面DEC ; ②不论D 折至何位置都有MN AE ⊥; ③不论D 折至何位置都有//MN AB ;④在折起过程中,一定存在某个位置,使EC AD ⊥; ⑤在折起过程中,一定存在某个位置,使//MN BD .三、解答题:本大题共6小题,共50分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分8分)求经过点(1,2)A ,且在两个坐标轴上的截距的绝对值相等的直线方程.17.(本小题满分8分)已知直线:(21)(1)740()l m x m y m m R +++--=∈,圆22:(1)(2)25C x y -+-=. (Ⅰ)证明:直线l 与圆C 相交;(Ⅱ)当直线l 被圆C 截得的弦长最短时,求m 的值.18.(本小题满分8分)已知如图,在斜三棱柱ABC C B A -111中,侧面C C AA 11⊥底面ABC ,侧面C C AA 11为菱形,160A AC ∠=,,E F 分别是11,AC AB 的中点. (Ⅰ)求证:EF ∥平面11BB C C ; (Ⅱ)求证:CE ⊥面ABC .19.(本小题满分9分)汽车是碳排放量比较大的行业之一.欧盟规定,从2012年开始,将对2CO 排放量超过130g/km 的M1型新车进行惩罚.某检测单位对甲、乙两类M1型品牌车各抽取5辆进行2CO 排放量检测,记录如下(单位:g/km ).甲 80 110 120140 150 乙100120xy160经测算发现,乙品牌车2CO 排放量的平均值为120x =乙g/km .(Ⅰ)从被检测的5辆甲类品牌车中任取2辆,则至少有一辆不符合2CO 排放量的概率是多少?(Ⅱ)若90130x <<,试比较甲、乙两类品牌车2CO 排放量的稳定性.(参考公式:2222121[()()()]n s x x x x x x n=-+-++-)20.(本小题满分8分)已知如图,直线:50l x y +-=,圆C 经过(1,0)(3,0)A B 、两点,且与直线l 相切,圆心C 在第一象限. (Ⅰ)求圆C 的标准方程;(Ⅱ)设P 为l 上的动点,求APB ∠的最大值,以及此时P 点坐标.21.(本小题满分9分)已知如图,在三棱锥P ABC -中,顶点P 在底面的投影H 是ABC ∆的垂心. (Ⅰ)证明:PA BC ⊥;(Ⅱ)若PB PC =,2BC =,且二面角P BC A --度 数为60︒,求三棱锥P ABC -的体积P ABC V -的值.参考答案题号 1 2 3 4 5 6 7 8 9 10答案 C D A D B B B D CA11. 82 12. 80; 13. 360; 14. 4 ; 15.①②④三、解答题16.解:当截距为0时,设y kx =,过点(1,2)A ,则得2k =,即2y x =;……………3分 当截距不为0时,设直线为1x y a a +=或1x y a a+=-, 因为直线过点(1,2)A ,则得3a =,或1a =-,即30x y +-=,或10x y -+=,…7分 综上可知,所求直线方程为:2y x =,30x y +-=,或10x y -+= ……………8分 17.(Ⅰ)直线l 方程变形为(27)(4)0x y m x y +-++-=,由27040x y x y +-=⎧⎨+-=⎩,得31x y =⎧⎨=⎩,所以直线l 恒过定点(3,1)P , ………………………2分 又||55PC =<,故P 点在圆C 内部,所以直线l 与圆C 相交;………………………4分(Ⅱ)当l PC ⊥时,所截得的弦长最短,此时有1l PC k k ⋅=-, ………………………6分而211,12l PC m k k m +=-=-+,于是2112(1)m m +=-+,解得34m =-. ……………………8分18.(Ⅰ)证明:取BC 中点M ,连结FM ,1C M .在△ABC 中, ∵F ,M 分别为BA ,BC 的中点, ∴FM ∥12AC . ∵E 为11A C 的中点,AC ∥11A C ∴FM ∥1EC . ∴四边形1EFMC 为平行四边形 ∴1EF C M ∥.∵1C M ⊂平面11BB C C ,且EF ⊄平面11BB C C , ∴EF ∥平面11BB C C .………………4分 (Ⅱ)证明:连接C A 1,∵C C AA 11是菱形,160A AC ∠=, ∴△C C A 11为等边三角形 ∵E 是11A C 的中点,∴CE ⊥11C A ,∵四边形C C AA 11是菱形 , ∴11C A ∥AC . ∴CE ⊥AC . ∵ 侧面11AA C C ⊥底面ABC , 且交线为AC ,⊂CE 面11AA C C∴ CE ⊥面ABC . ………………………………………8分 19. 解:(Ⅰ)从被检测的5辆甲类品牌车中任取2辆,共有10种不同的2CO 排放量结果: (110,80);(120,80);(140,80);(150,80);(120,110);(140,110);(150,110);(140,120);(150,120);(150,140). 设“至少有一辆不符合2CO 排放量”为事件A ,则事件A 包含以下7种不同的结果:(140,80);(150,80);(140,110);(150,110);(140,120);(150,120);(150,140). 所以,7.0107)(==A P . ………………………………………4分 (Ⅱ)由题可知,120==乙甲x x ,220=+y x .()22580120S =-+甲()+-2120110()+-2120120()+-2120140()30001201502=-25S =乙()+-2120100()+-2120120()+-2120x ()+-2120y ()2120160-+=2000()+-2120x ()2120-y ………………………………………6分220,x y +=∴25S =乙+2000()+-2120x ()2100-x ,令t x =-120,13090<<x ,1030<<-∴t ,25S ∴=乙+2000+2t ()220+t ,2255S S ∴-=乙甲22406002(30)(10)0t t t t +-=+-<120==乙甲x x ,22<S S 乙甲,∴乙类品牌车碳排放量的稳定性好. ……………………9分20. 解:(Ⅰ)由题知,设圆心(2,),0C b b >,半径为r ,则22(21)(0)|25|11r b b r ⎧=-+-⎪⎨+-=⎪+⎩,解得12b r =⎧⎪⎨=⎪⎩, 所以圆C 的标准方程为:22(2)(1)2x y -+-=; ………………………………………4分 (Ⅱ)如图,令圆C 与直线l 相切于0P 点,由平面几何知识可知0APB AQB AP B ∠<∠=∠,所以P 取切点0P 时,APB ∠取得最大值, ………………………………………6分易求直线0:1CP l y x =-,由150y x x y =-⎧⎨+-=⎩解得0(3,2)P , 易知0AP B ∆为等腰直角三角形,则045AP B ∠=︒,所以APB ∠最大值为45︒,此时P 点坐标为(3,2).………………………………………8分 21.(Ⅰ)连接AH ,并延长交BC 于D ,连接BH ,并延长交AC 于E ,连接PD , 由PH ABC ⊥面,得PH BC ⊥,又H 是ABC ∆的垂心,可得AD BC ⊥,而PH AD H ⋂=,则BC PAD ⊥面,所以PA BC ⊥;………………………………4分 (Ⅱ)由(Ⅰ)知BC PAD ⊥面,则BC PD ⊥,所以PDA ∠为二面角P BC A --的平面角,则有=60PDA ∠︒ 由BC PD ⊥,PB PC =,可知=BD DC ,又BC AD ⊥,所以=AB AC 在ABC ∆中,因为H 是垂心,由平面几何可知~ABD BHD ∆∆,所以2,1AD BD AD DH BD BD DH =⇒⋅==,则113tan 60222PAD S AD PH AD DH ∆=⋅=⋅⋅︒=,所以113323323P ABC PAD V S BC -∆=⋅=⨯⨯=. ………………………………………9分。
技能高考数学试卷及答案
一、选择题(每题5分,共50分)1. 下列各数中,无理数是()A. √4B. 2πC. 3.14D. 0.1010010001…2. 已知函数f(x) = 2x - 1,若f(a) = 3,则a的值为()A. 2B. 1C. 0D. -13. 下列各点中,在直线2x + 3y - 6 = 0上的是()A. (1, 2)B. (2, 1)C. (3, 2)D. (2, 3)4. 已知等差数列{an}的首项a1 = 3,公差d = 2,则第10项an的值为()A. 21B. 22C. 23D. 245. 若复数z = a + bi(a,b∈R)满足|z - 3i| = |z + 2i|,则z的实部a为()A. 1B. 2C. 3D. 46. 下列各函数中,单调递增的是()A. y = -x^2B. y = 2xC. y = x^2D. y = 2^x7. 已知圆的方程为x^2 + y^2 - 4x - 6y + 9 = 0,则该圆的半径为()A. 1B. 2C. 3D. 48. 若等比数列{an}的首项a1 = 1,公比q = 2,则第5项an的值为()A. 32B. 16C. 8D. 49. 已知不等式2x - 3 > 5,则x的取值范围为()A. x > 4B. x < 4C. x ≥ 4D. x ≤ 410. 若向量a = (1, 2),向量b = (3, 4),则向量a·b的值为()A. 5B. 6C. 7D. 8二、填空题(每题5分,共25分)11. 已知函数f(x) = x^2 - 2x + 1,则f(3)的值为______。
12. 若等差数列{an}的首项a1 = 5,公差d = -3,则第10项an的值为______。
13. 复数z = 2 - 3i的模为______。
14. 若直线y = kx + b与圆x^2 + y^2 = 1相切,则k^2 + b^2的值为______。
湖北中职技能高考数学模拟试题及解答
湖北中职技能高考数学模拟试题及解答Tomorrow Will Be Better, February 3, 2021湖北中职技能高考数学模拟试题及解答十三四、选择题本大题共6小题,每小题5分,共30分在每小题给出的四个选项中,只有一项是符合题目要求的,请将其选出;未选、错选或多选均不得分;19.集合P ={}0162≥-x x ,Q =}{Z n n x x ∈=,2,则P ∩Q =A. {}2,0,2-B.{}4,4,2,2--C. {}2,2- D .{}4,4,0,2,2--答案:A20.下列三个结论中为正确结论的个数是1零向量和任何向量平行;2“a b >”是“22bc ac >”的充要条件;3从零点开始,经过2小时,时针所转过的度数是60︒A. 0B. 1C. 2D. 3答案:B21.下列函数中在()0,+∞内为增函数的是 .A.log a y x =)10(≠>a a ,B. 12log y x =C. 1log e y x =D. 2log y x=答案:D22.下列三个结论中为正确结论的个数是1指数式312731=-写成对数式为3131log 27-=;2不等式|21-x +4|>3的解集为{113>-<x x x 或};3若角α的终边过点P ()4,a -,且3cos 5α=-,则实数a =3A. 0B. 1C. 2D. 3答案:C 23.在等比数列{}n a 中,221a =,621a ,则4a 等于 .A. 1B. 2C. 1-D. 1±答案:A24.下列三个结论中为正确结论的个数是1))((R x x f y ∈=是偶函数,则它的图象必经过点))(,(a f a -; 222是数列{}220n n --中的项;(3)直线0105=+-y x 在x 轴、y 轴上的截距分别为10-、2A. 0B. 1C. 2D. 3答案:D五、填空题本大题共4小题,每小题6分,共24分把答案填在答题卡相应题号的横线上;25.函数()()01lg 1x y x -=-的定义域用区间表示是 ; 答案:()(]3,22,126.计算:[]5lg 2lg ln )3()21(2121--+---e =__________;答案:1-27.在等差数列{}n a 中,26,694==a a ,则=12S _______________; 答案:19228.已知4sin 5α=-,且α是第三象限的角,=αtan ____________. 答案:34 六、解答题本大题共3小题,每小题12分,共36分应写出文字说明,证明过程或演算步骤;16、本小题满分12分已知()1,2a =-,()3,1b =-,()1,5c =--.1求3()a b c +- ;4分2求向量b a ,夹角的弧度数;4分3若()()a xb a b +⊥-,求x 的值. 4分解:1a b +=-1,2+3,-1=2,1………2分∴3()a b c +- =32,1--1,-5=)8,7(………4分2||a =||b =()13215a b ⋅=-⨯+⨯-=- ……………1分∴cos ,||||5a ba b a b ⋅===……………3分 0,a b π≤≤ , ∴3,4a b π=……………4分 3(31,2)a xb x x +=--(4,3)a b -=- ……………2分由()()a xb a b +⊥-得 ()()431320x x --+-=……………3分∴23x =……………4分 17、本小题满分12分解答下列问题:1计算23cos 20190tan 20182sin2017sin 2016πππ-++-;6分 2求()()cos 45sin 330tan 585sin 150︒︒︒︒--的值.6分解: 原式)2019(020170--++=………4分=4036 ………6分2原式cos 45sin(36030)tan(1360225)sin(18030)︒︒︒︒︒︒︒-⨯+=-- ………2分cos 45(sin 30)tan(18045)sin 30︒︒︒︒︒-+=- (4)分 cos 45tan 45︒︒= ………5分sin 45︒==………6分18、本小题满分12分 已知直线l 经过直线3210x y ++=与2340x y ++=的交点,且与直线112y x =+垂直. 1求直线l 的方程;4分2求经过()0,0O ,()0,1A ,()2,0B 三点的圆C 的标准方程;4分3判断直线l 与圆C 的位置关系.4分解:1解方程组32102340x y x y ++=⎧⎨++=⎩ 得 12x y =⎧⎨=-⎩故直线经l 经 过点1,-2 ………………2分 又直线112y x =+的斜率为12∴直线l 的斜率为-2 ………………3分∴直线l 的点斜式方程为22(1)y x +=--化为一般式为20x y += ……………4分2依题意知:圆C 的直径为|AB |,圆C 的圆心为线段AB 的中点线段AB 的中点为11,2⎛⎫ ⎪⎝⎭∴圆C 的圆心为11,2⎛⎫ ⎪⎝⎭…………2分 圆C 的半径1||2r AB ===………3分 ∴圆C 的标准方程为()2215124x y ⎛⎫-+-= ⎪⎝⎭………4分 另解:设圆的一般方程为022=++++F Ey Dx y x ,将点()0,0O ,()0,1A ,()2,0B 的坐标分别带入方程,求出1,2=-=E D ,求出圆心11,2⎛⎫ ⎪⎝⎭,进而求出半径;3 圆心C 11,2⎛⎫ ⎪⎝⎭到直线l :20x y +=的距离为1|21|d ⨯+==………2分 d=r∴圆C 与直线l 相切………4分。
2020年技能高考文化综合数学部分1-20套参考答案
2020年湖北省普通高等学校招生中职毕业生技能高考模拟试题数学部分(第一套)参考答案四、选择蛆(本大题共6小题,每小题6分,共30分)24. D 共20分)19.C 20. D 21.B 22.C 23.B 五、填空JB (本大息共4小题,每小题5分,25.101-526.(-l,0)U(0,2]27.10020^328. 3 cm?六、解答题(本大题共3小题,共40分)29.(1)解析:由任意角的直角函数的定义得m=-l.sin …乎,5土龙-1cos a-sin « ~4~-V3 sin a-cosasin ( - 2^- + — ) cos(3^- + —) tan(-2^- + —) sin —cos —tan — l ⑵原式=------------6-----------6—___= 6 6 4 = 一必cos(-2^- - y ) sin(6^- + cos-ysin-^-30. (1)设点 A (x,y)则 427=(l-x, 1-y)又 J27 = 3a - 2b = (-7, 10)所以 I 」* = — m\X = 8 点 A (8, -9)11 - y = 10 ly = -9(2) a + Ab = (-3 - A, A + 4)又(a + Ab) // AB2 所以一 30 - 102 = -72 一 28解得人=--3(3) 3 — pb = (// - 3,4 — //)因为(善-pb) ± AB所以(歹-泌)•泅=21 - 7〃 + 40 - 10〃 = 0解得〃=君31. (1)直线*的方程可化为4x - 2y + 2a = 0,则直线*与%的距离ba-(-1)17-75…d=I,!=—解得a=3或a=-4VF7F io⑵解析:设过点P的直线方程为Y-3=k(x-2)即kx-v-2k+3=O,圆心到该直线的距离等于半径即I k-\-2k+3|=1解得k=3求得切线方程为3x-4y+6=o或乂-2=07F7T42020年湖北省普通高等学校招生中职毕业生技能高考模拟试题数学部分(第二套)参考答案四、选择蛆(本大题共6小题,每小题6分,共30分)19.C20.B21.C22.C23.D24.C五、填空JS(本大题共4小息,每小题5分,共20分)2六、解答题(本大题共3小题,共40分)29.(1)解析:原式=sin(2)+—)-tan(-3^-+—)cos(2^+—)sin(-^+—)6436cos(-12^-+—)+tan(7^--—)tan(-^-—)344・7T7171,7T y.sin---tan—cos—(-sin—)6436,,一—兀*兀.兀4cos---tan—-tan—344,.4sin a+2cos a4tan a+I(2)原式=--------------------=--------------sin a-cos a tan a-15由已知得tan a=-3代入原式=230.⑴S6=匝尹=匝y=18解得为=4⑵2Sq=为一1①2S5=%-1②由②@得2%=&一为即%=3选因为札}为等比数列,所以q=—=3为31.⑴联立*与】2的方程可得交点坐标(-1.3)由题意可设直线1的方程为3x-尸+a=0将交点坐标代入即可得a=6即所求直线方程为3x-*+6=0(2)因为直线与圆相切,所以圆心P(-3,4)到直线的距离等于半径3+4-5|厂即d===i-----=——L=2V2故圆的标准方程为(x+3)2+(*-4)2=8转化为一般方程为/+*2+6*-8*+17=02020年湖北省普通高等学校招生中职毕业生技能高考模拟试题数学部分(第三套)参考答案四、选择题(本大题共6小题,每小题5分,共30分)19.A2O.C21.B22.B23.C24.A五、填空题(本大题共4小题,每小题6分,共20分)125.-j--|26.(-2,-l)U(-l,0]27.(2,-6)28.1°六、解答题(本大题共3小题,共40分)29.(1)原式=sin(3a+—)-V2cos(-4^+—)+tan(-4^)=-sin—-V2cos—-tan—343343 3够1=24,4-334(2)解析由sin(4+a)=;得sin q=—^•又a c(勿,3))「•cosa=-—,tana=y3原式=--cos a=20tan-a30.⑴因为&,}为等差数列,所以卜+,=4丹+为=1°a.+2d= 2[a,=—4可转化为71解得[|q+3d=5"=310x9故§0=10.+—~d=952•a6⑵因为如}为等比数列,2=所以。
职高数学高三模拟试卷答案
一、选择题(每题5分,共50分)1. 下列各数中,无理数是()A. √2B. 0.1010010001...C. 3.14159D. -1/3答案:A2. 函数 y = -2x + 1 的图像是()A. 一次函数图像B. 二次函数图像C. 反比例函数图像D. 指数函数图像答案:A3. 已知 a、b 是实数,且 a + b = 0,则 a^2 + b^2 的值是()A. 1B. 0C. -1D. 无法确定答案:B4. 下列各对数式中,相等的是()A. log2(8) = 3B. log3(27) = 2C. log4(16) = 2D. log5(25) = 1答案:D5. 已知函数 y = 2x - 3,当 x = 2 时,y 的值为()A. 1B. 3C. 5D. 7答案:C6. 下列各数中,属于等差数列的是()A. 1, 3, 5, 7, 9B. 2, 4, 8, 16, 32C. 1, 2, 4, 8, 16D. 3, 6, 9, 12, 15答案:A7. 已知等比数列的前三项分别为 2, 6, 18,则该数列的公比是()A. 1B. 2C. 3D. 6答案:B8. 在直角坐标系中,点 P(2, 3) 关于直线 y = x 的对称点坐标是()A. (3, 2)B. (2, 3)C. (-3, -2)D. (-2, -3)答案:A9. 下列各函数中,奇函数是()A. y = x^2B. y = |x|C. y = x^3D. y = x^4答案:C10. 已知等差数列的前三项分别为 3, 7, 11,则该数列的通项公式是()A. an = 4n - 1B. an = 2n + 1C. an = 4n + 1D. an = 2n - 1答案:A二、填空题(每题5分,共25分)11. 函数 y = x^2 - 4x + 4 的最小值是 ________。
答案:012. 已知 a、b 是实数,且 |a| = |b|,则 a + b 的值是 ________。
技能高考数学模拟试题(一)答案和解析
考纲知识点:点到直线的距离公式、直线与原的位置关系
解析:①错②错③错④错
答案:A
难易度:中等题
考纲知识点:函数的概念、函数的两个要素、函数的单调性
22.下列函数在定义域内为减函数且为奇函数的是()
A. B. C. D.
解析:A既不是奇函数又不是偶函数B正确C错误D错误
答案:B
难易度:中等题
考纲知识点:函数的奇偶性、指数函数、三角函数的性质
23.已知向量 ,且 则一定三点共线的是()
A.A,B,D B. A,B,C C. B,C,D D. A,C,D
解析:根据共线向量的定义解答
答案:A
难易度:基础题
考纲知识点:共线向量
24.小明抛一块质地均匀的硬币两次,出现正反各一次的概率是()
A B C D 1
解析:总量为正正、正反、反正、正正
答案:B
难易度:基础题
考纲知识点:古典概型
二、填空(5分×4=20分)
A. B. C. D.
解析:原不等式可化为:
答案:C
难易度:基础题
考纲知识点:一元二次不等式的求解
21.下列说法正确个数的是()
① 表示一个函数② 表示同一函数③设函数 在区间 上有意义.如果有 ,当 时, 成立,那么函数 叫作区间 上的增函数④如果函数 是增函数,则a的取值范围是
A.0 B. 1 Cቤተ መጻሕፍቲ ባይዱ 2 D. 3
25.计算
答案:27
难易度:基础题
考纲知识点:实数指数幂的运算
26.函数 的定义域是
答案:
难易度:基础题
考纲知识点:函数的定义域
27.在等差数列 中,已知 ,则
答案:210
湖北省技能高考模拟卷数学
湖北省技能高考模拟卷数学一、单项选择题1.给出下列四个命题词:①若全集U={1,2,3,4},集合A={2,3,4},则C U A={1};②空集是任何一个集合的真子集;③若A∩B=∅,则A=B=∅④若全集U=N,则C U N∗={0};其中假命题的个数为A.1B.2C.3D.42.不等式x2+4x−21≤0的解集为A.(−∞,−7]∪[3,+∞)B.[−7,3]C.[−3,7]D.(−∞,−3]∪[7,+∞)3.已知函数f(x)=ax+2x2在其定义域上是偶函数,则a的值为A.1B.−1C.0D.3(x−1)的定义域是4.函数y=√log12A.(1,+∞)B.(2,+∞)C.(−∞,2)D.(1,2]5.经过4小时,时针旋转了radA.π3radB.−π3radC.2π3radD.−2π36.下列说法中,正确的是x的图像关于轴对称A.y=log2x与y=log12B.log2x2与2log2x是同一函数C.若函数y=log a(x−2)过点(4,1),则a=2D.若函数y=log(a−1)x在(0,+∞)内为增函数,则a>17.下列四组数据:①12,14,18 ②2,−2√2,4③a 2,a 4,a 8④lg 2,lg 4,lg 8下列说法中,正确的是A.①和②是等比数列B.②和③是等比数列C.③是等比数列,④是等差数列D.②和④是等差数列8.已知一个正三棱锥的底面边长为4cm ,其侧面积为60cm 2,则它的斜高为A.10cmB.8cmC.6cmD.4cm二、填空题9.中国目前有四个直辖市,分别是北京、天津、上海、重庆。
小红暑假准备从中挑选一个城市旅游,则北京被选中的概率是10.计算:(49)12−(−2022)0+0.125−13=11.在等差数列{a n }中,若公差d =2,a 1+a 3+a 5=30,则a 5+a 7+a 9=12.与向量a ⃗=(3,4)垂直的单位向量的坐标为三、解答题13.解答下列问题:(1)已知角α的终边经过点P (−3t,4t )(t <0),求sin α+cos α的值(2)已知sin (π+α)=−√32且f (α)=sin (3π−α)cos (2π−α)tan (−α+π)−tan (α−π)sin (−α),若α是第二象限角,求f (α)的值14.已知直线l 1:3x −4y −12=0,直线l 2垂直于直线l 1,且过点P (1,−1),圆C:x 2+y 2−4x −6y +4=0(1)求直线l 1的横截距、纵截距和斜率(2)求直线l 2的方程(3)判断直线l 2与圆C 的位置关系。
职高高考模拟数学试卷答案
一、选择题(每题5分,共50分)1. 下列各数中,有理数是()A. √2B. πC. √9D. 无理数答案:C2. 已知 a < b,下列不等式中正确的是()A. a - b < 0B. a + b > 0C. a - b > 0D. a + b < 0答案:A3. 下列函数中,定义域为全体实数的是()A. y = √(x - 1)B. y = 1/xC. y = x^2D. y = log2x答案:C4. 已知等差数列 {an} 的前n项和为 Sn,若 S5 = 25,S10 = 75,则 a1 = ()A. 1B. 2C. 3D. 4答案:A5. 下列命题中,正确的是()A. 若 a > b,则 a^2 > b^2B. 若 a > b,则 a - b > 0C. 若 a > b,则 ac > bcD. 若 a > b,则 a/c > b/c答案:B6. 已知等比数列 {an} 的前三项为 a1, a2, a3,若 a1 + a2 + a3 = 12,a1 a2 a3 = 64,则 a1 = ()A. 1B. 2C. 4D. 8答案:C7. 已知函数 y = ax^2 + bx + c,若 a ≠ 0,且函数图象开口向上,则()A. a > 0, b > 0, c > 0B. a > 0, b < 0, c > 0C. a < 0, b > 0, c >0 D. a < 0, b < 0, c > 0答案:B8. 已知正方形的对角线长为2√2,则其面积是()A. 4B. 6C. 8D. 10答案:A9. 下列各数中,绝对值最小的是()A. -1/2B. -1C. 1/2D. 1答案:C10. 已知函数 y = x^3 - 3x,求该函数的极值点。
中职数学 2023年湖北省技能高考数学模拟冲刺试卷(1)
E
6
C、G
F
6
A
G
2
F
H
3
G
I
3
B、G
J
5
D、H、E
4.(10分)怎样调整与优化计划.
5.(20分)在平面直角坐标系内画出下列二元一次不等式组的解集所表示的区域.
( 1 ) VYYW
0≤X≤10 0≤Y≤15
;
YYX X+Y≤12
( 2 ) VYYW
X X
−Y+5≥0 +Y≥0
.
YYX X≤3
6.(20分)某投资人打算投资甲、已两个项目。根据预测,甲、乙两个项目可能的最大盈利率为100%和50%,可能的最大损率 为30%和10%。投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元.问投资人对甲乙两个项目如何投 资,才能使可能盈利最大?试建立线性规划模型,并用图解法求解.
空调
彩电
冰箱
饮水机
许文
10
9
6
5
辛奇
8
8
9
7
刘涛
6
9
7
6
(1)制作营业员许文销售商品的柱形图; (2)制作营业员辛奇销售商品的饼图; (3)制作营业员刘涛销售商品的折线图.
电脑 10 12 8
3.(20分)据下表绘制工作流程图,并求出关键路径以及所用最短时间.
工序
工期
紧前工作
A
3_Bຫໍສະໝຸດ 2AC4
A
D
4
I
2023年湖北省技能高考数学模拟冲刺试卷(1)
一、解答题(共6小题,满分100分)
1.(10分)设a=(1,2,3),b=(2,0,4),c=(2,3,5).试计算: (1)a+b-c; (2)a•b; (3)(a+b)-c; (4)a-2b+3c.
湖北技能高考数学模拟试题及解答大全
湖北技能高考数学模拟试题及解答一、 选择题:(共6小题,每小题5分,共计30分)1、下列结论中正确的个数为( )①自然数集的元素,都是正整数集的元素;②a 能被3整除是a 能被9整除的必要条件;③不等式组{ 3−x <1 x +3<5的解集是空集; ④不等式|2x-1|≤3的解集为(-∞,2〕A 、4B 、3C 、2D 、1 答案、C2、函数f (x )=√x+3x—2的定义域为( ) A 、⦋-3,+∞) B 、( -∞,2)∪(2,+ ∞)C 、⦋-3,2)∪(2,+ ∞ )D 、⦋-3,2)答案、C3、下列函数在定义域内为偶函数的是( )1,2A 、f (x )=(x +1)(x −1)B 、f (x )=x 12C 、f (x )=2x 2-x +1D 、f (x )=x −1答案、A4、下列结论中正确的个数为( )①函数f(x)=(12)−x为指数函数②函数f(x)=x3在⦋0,+∞)内为增函数③函数f(x)=log12x在(0,+∞)内为减函数④若log12x<0则x的取值范围为( -∞,1 )A、4B、3C、2D、1答案、B5、角382o15'的终边落在第()象限。
A、四B、三 C 、二 D、一答案、D6、等差数列{an}中,若a1=14且an+1-an=则a7=( )A、74 B、94C、114D、134答案、D二、填空题(共4小题,每小题6分,共计24分)7、已知︱a⃗︱=2, ︱b⃗ ︱=1,〈a⃗ ,b⃗ 〉=60 o,则a⃗·b⃗ = 。
答案、1 。
8、已知点A(2,3),点B(x,-3)且|A B|=62,则x=________,线段AB的中点坐标为________。
答案、8或-4 (5,0)或(-1,0)。
职中高考数学试卷含答案
一、选择题(每题4分,共20分)1. 已知函数f(x) = x^2 - 4x + 4,其图像的对称轴为:A. x = -2B. x = 2C. y = -2D. y = 22. 在△ABC中,∠A = 60°,∠B = 45°,则∠C的度数为:A. 75°B. 120°C. 45°D. 90°3. 若a、b、c是等差数列的前三项,且a + b + c = 12,则该数列的公差为:A. 2B. 3C. 4D. 64. 下列函数中,在定义域内单调递增的是:A. y = -2x + 1B. y = 2x - 3C. y = x^2D. y = |x|5. 已知等比数列{an}的前三项分别为2,6,18,则该数列的公比为:A. 2B. 3C. 6D. 9二、填空题(每题5分,共25分)6. 已知一元二次方程x^2 - 5x + 6 = 0的两个根为x1和x2,则x1 + x2 =________,x1 x2 = ________。
7. 在直角坐标系中,点A(2, 3)关于y轴的对称点为_______。
8. 若sinθ = 0.5,且θ在第二象限,则cosθ = ________。
9. 下列数列中,第10项为24的是:1,3,5,7,9,11,……(用数列的通项公式表示)10. 已知圆的半径为5cm,圆心坐标为(3, 4),则圆的方程为_______。
三、解答题(每题10分,共30分)11. 解一元二次方程:x^2 - 6x + 9 = 0。
12. 已知函数f(x) = 2x - 3,求f(2x + 1)的解析式。
13. 在△ABC中,已知a = 5,b = 7,c = 8,求sinA的值。
四、应用题(15分)14. 小明骑自行车从家出发去图书馆,已知家到图书馆的距离为10km,小明骑车的速度为15km/h,休息时间为每次0.5小时。
求小明从家到图书馆所需的总时间。
技能高考数学试题及答案
技能高考数学试题及答案一、选择题(每题3分,共30分)1. 若函数f(x)=2x+3,则f(-1)的值为:A. -1B. 1C. 5D. -5答案:A2. 已知等差数列{an}的首项a1=1,公差d=2,则该数列的第5项a5为:A. 9B. 10C. 11D. 12答案:B3. 计算复数z=3+4i的模长|z|:A. 5B. √41C. 7D. √49答案:A4. 若直线l的方程为3x+4y-5=0,则l的斜率为:A. 3/4B. -3/4C. 4/3D. -4/3答案:B5. 已知圆C的方程为(x-2)^2+(y+1)^2=9,圆心C的坐标为:A. (2, -1)B. (-2, 1)C. (-2, -1)D. (2, 1)答案:A6. 函数y=x^3-3x^2+2在x=1处的导数为:A. 0B. 1C. -1D. 2答案:B7. 已知三角形ABC的三边长分别为a、b、c,且满足a^2+b^2=c^2,该三角形为:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定答案:B8. 计算定积分∫₀¹x^2dx的值:A. 1/3B. 1/2C. 1D. 2答案:A9. 已知矩阵A=\[\begin{bmatrix}1 & 2\\ 3 & 4\end{bmatrix}\],则矩阵A的行列式det(A)为:A. -2B. 2C. -5D. 5答案:A10. 若随机变量X服从正态分布N(2, 4),则P(X<2)的概率为:A. 0.5B. 0.25C. 0.75D. 0.9答案:A二、填空题(每题4分,共20分)1. 已知双曲线x^2/a^2 - y^2/b^2 = 1的焦点在x轴上,若a=2,则b的值为____。
答案:√32. 计算极限lim(x→0) (sin(x)/x)的值为____。
答案:13. 已知向量v=(3, -4),w=(-2, 1),则向量v与w的点积v·w为____。
湖北中职对口升学高考数学冲刺模拟试题:解答题01
对口升学高考数学冲刺模拟试题解答题9.一个盒子里装有7张卡片,其中有红色卡片4张,编号分别为1,2,3,4;白色卡片3张,编号分别为2,3,4.从盒子中任取4张卡片(假设取到任何一张卡片的可能性相同).(1)求取出的4张卡片中,含有编号为3的卡片的概率;(2)在取出的4张卡片中,红色卡片编号的最大值设为X,求随机变量X的分布列和数学期望.【解】(1)设“取出的4张卡片中,含有编号为3的卡片”为事件A,则P(A)=C12C35+C22C25C47=67.所以取出的4张卡片中,含有编号为3的卡片的概率为67.(2)随机变量X的所有可能取值为1,2,3,4.P(X=1)=C33C47=135,P(X=2)=C34C47=435,P(X=3)=C35C47=27,P(X=4)=C36C47=47.所以随机变量X的分布列是故随机变量X的数学期望EX=1×135+2×435+3×27+4×47=175.10.根据以往的经验,某工程施工期间的降水量X(单位:mm)对工期的影响如下表:为0.3,0.7,0.9.求:(1)工期延误天数Y的均值与方差;(2)在降水量X至少是300的条件下,工期延误不超过6天的概率.【解】(1)由已知条件和概率的加法公式有:P(X<300)=0.3,P(300≤X<700)=P(X<700)-P(X<300)=0.7-0.3=0.4,P(700≤X<900)=P(X<900)-P(X<700)=0.9-0.7=0.2,P(X≥900)=1-P(X<900)=1-0.9=0.1.所以Y的分布列为:于是,E(Y)=0×0.3+2×0.4+6×0.2+10×0.1=3;D(Y)=(0-3)2×0.3+(2-3)2×0.4+(6-3)2×0.2+(10-3)2×0.1=9.8.故工期延误天数Y的均值为3,方差为9.8.(2)由概率的加法公式,得P(X≥300)=1-P(X<300)=0.7,又P(300≤X<900)=P(X<900)-P(X<300)=0.9-0.3=0.6.由条件概率,得P(Y≤6|X≥300)=P(X<900|X≥300)=P(300≤X<900)P(X≥300)=0.6 0.7=67.故在降水量X至少是300 mm的条件下,工期延误不超过6天的概率是67.11.设袋子中装有a个红球,b个黄球,c个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.(1)当a=3,b=2,c=1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,求ξ的分布列;(2)从该袋子中任取(每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若Eη=53,Dη=59,求a ∶b ∶c .【解】 (1)由题意得ξ=2,3,4,5,6. 故P (ξ=2)=3×36×6=14, P (ξ=3)=2×3×26×6=13, P (ξ=4)=2×3×1+2×26×6=518,P (ξ=5)=2×2×16×6=19, P (ξ=6)=1×16×6=136. 所以ξ的分布列为(2)由题意知η的分布列为所以Eη=a a +b +c +2b a +b +c +3c a +b +c=53,Dη=(1-53)2·a a +b +c +(2-53)2·b a +b +c +(3-53)2·c a +b +c =59,化简得⎩⎪⎨⎪⎧2a -b -4c =0,a +4b -11c =0.解得a=3c,b=2c,故a∶b∶c=3∶2∶1.。
湖北中职对口升学高考数学冲刺模拟试题:选择题01
对口升学高考数学冲刺模拟试题选择题1.在长为12 cm 的线段AB 上任取一点C .现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积小于32 cm 2的概率为( )A.16B.13C.23D.45【解析】 设AC =x ,CB =12-x ,所以x (12-x )<32,解得x <4或x >8.所以P =4+412=23.【答案】 C2.连掷两次骰子得到的点数分别为m 和n ,记向量a =(m ,n )与向量b =(1,-1)的夹角为θ,则θ∈⎝ ⎛⎦⎥⎤0,π2的概率是( ) A.512B.12C.712D.56 【解析】 ∵cos θ=m -n m 2+n 2·2,θ∈⎝ ⎛⎦⎥⎤0,π2, ∴m ≥n 满足条件.m =n 的概率为636=16,m >n 的概率为12×56=512,∴θ∈⎝ ⎛⎦⎥⎤0,π2的概率为16+512=712. 【答案】 C3假设每天从甲地去乙地的旅客人数X 是服从正态分布N (800,502)的随机变量.记一天中从甲地去乙地的旅客人数不超过900的概率为p 0.则p 0的值为( )(参考数据:若X ~N (μ,σ2),有P (μ-σ<X ≤μ+σ)=0.682 6,P (μ-2σ<X ≤μ+2σ)=0.954 4,P (μ-3σ<X ≤μ+3σ)=0.997 4)A .0.954 4B .0.682 6C .0.997 4D .0.977 2【解析】 由X ~N (800,502),知μ=800,σ=50.依题设,P (700<x ≤900)=0.954 4.由正态分布的对称性,可得p 0=P (X ≤900)=P (X ≤800)+P (800<X ≤900) =12+12P (700<X ≤900)=0.977 2.【答案】 D4.如图6-2-2所示,在边长为1的正方形OABC 中任取一点P ,则点P 恰好取自阴影部分的概率为( )图6-2-2A.14B.15C.16D.17【解析】 ∵S 阴影=⎠⎛01(x -x )d x =(23x 32-12x 2)|10=23-12=16,又S 正方形OABC =1,∴由几何概型知,P 恰好取自阴影部分的概率为161=16.【答案】 C5.如图6-2-3,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X ,则X 的均值E (X )=( )图6-2-3A.126125 B.65 C.168125 D.75【解析】依题意得X的取值可能为0,1,2,3,且P(X=0)=33125=27125,P(X=1)=9×6125=54125,P(X=2)=3×12125=36125,P(X=3)=8125.故E(X)=0×27125+1×54125+2×36125+3×8125=65.【答案】 B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖北中职技能高考数学模拟试题及解答一
TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】
湖北中职技能高考数学模拟试题及解答(一)
一、选择题(本大题共6小题,每小题分,共30分)
在每小题给出的四个备选项中,只有一项是符合题目要求的,请将其选出。
未选,错选或多选均不得分。
1.下列三个结论中正确的个数为
①所有的直角三角形可以构成一个集合;
②两直线夹角的范围为(0°,90°);
③若ac>bc,则a>b.
A、0
B、1
C、2
D、3
答案:B 考查集合的定义,夹角的定义,不等式的乘法性质。
2.直线3x+√3y−5=0的倾斜角为
A、π
6B、π
3
C、5π
6
D、2π
3
答案:D考查直线一般式求斜率,特殊角的三角函数。
3.下列三个结论中正确的为
①零向量与任意向量垂直;
②数列{3n+5}是以5为公差的等差数列;
③(−x+2)(2x−3)>0的解集为(3
2
,2).
A、①②
B、①③
C、②③
D、①②③
答案:B考查零向量定义,等差数列通项公式,一元二次不等式的解法。
4.下列函数中为幂函数的是
①y=x2;②y=2x;③y=x−1
2;④y=−
1
x
;⑤ y=1
x2
.
A、①②⑤
B、①③⑤
C、①④⑤
D、②③④
答案:B考查幂函数的定义。
5.下列函数中既是奇函数,又在区间(0,+∞)是增函数的是
A、y=x2
B、y=−1
x C、y=sinx D、y=1
x
答案:B考查函数奇偶性和单调性的判断。
6.等差数列{a n}中,a3=8,a16=34,则S18=
A、84
B、378
C、189
D、736
答案:B考查等差数列通项公式及前n项和公式的运用。
二、填空题(本大题共4小题,每小题6分,共24分)
把答案填在答题卡相应题号的横线上。
7.计算:[(−5)2]1
2−log3√9
3+√2√2
3√2
6=
答案:19
3
考查指数、对数的运算法则及计算能力。
8.函数f(x)=√−x2+5x
x−3+lg?(2x−4)的定义域用区间表示为
答案:(2,3)∪(3,5]考查函数定义域的求法,不等式的解法及集合交集。
9.若数列{a n}是等差数列,其中a2,a5,a11成等比数列,则公比q=
答案:2 考查等比中项,等差数列通项公式,等比数列定义。
10.与向量a⃗=(−3,4)垂直的单位向量坐标为
答案:(4
5,3
5
)或(−4
5
,−3
5
)考查向量垂直的充要条件,单位向量的定义。
三、解答题(本大题共3小题,每小题12分,共36分 )
应写出文字说明,证明过程或演算步骤。
11.平面内给定三个向量a ⃗ =(3,2),b ⃗ =(−1,2),c =(4,1),解答下列问题:
(I )求满足a ⃗ =mb ⃗ +nc 的实数m,n ; (6分)
(II )设(a ⃗ +kc )//(2b ⃗⃗⃗⃗ −a ⃗ ),求实数k 的值. (6分)
答案:(I )mb ⃗ +nc =(−m,2m )+(4n,n)=(4n −m,2m +n )
∴ {4n −m =32m +n =2 得:{m =59n =89
考查向量的线性运算
(II )a ⃗ +kc =(3,2)+(−k ,2k )=(3−k ,2+2k )
2b ⃗⃗⃗⃗ −a ⃗ =(−2,4)−(3,2)=(−5,2) 由(a ⃗ +kc )//(2b ⃗⃗⃗⃗ −a ⃗ )可得:−5(2+2k)−2(3−k )=0
得:k =-2
考查向量的线性运算,向量平行的充要条件。
12.解答下列问题:
(I )求sin(−150°)cos (600°)tan (−405°)
cos (−180)sin (−690)的; (6分) (II )设θ为第三象限的角,且cos (2π−θ)=−45,求
2sin (θ−3π)+3cos (9π−θ)tan (7π+θ)−cos (−θ)
的值. (6分) 答案:(I )原式=
−sin 30°(−cos 60°)(−tan 45°)−cos 180°sin 30° =12×√32×1−1×12=−√32
考查诱导公式,特殊角的三角函数值。
(II )cos (2π−θ)=cos θ=−45
sin 2θ=1−(−45)2=916 因为θ为第三象限的角,∴sin θ=−35,tan θ=34
2sin (θ−3π)+3cos (9π−θ)tan (7π+θ)−cos (−θ)=−2sin θ−3cos θtan θ−cos θ
=−2×(−35)−3×(−45)
34+45=7231 考查诱导公式,同角三角函数基本关系式,象限角三角函数值的符号。
13.已知直线l 1:x +y −3=0与l 2:x −2y −6=0相交于点P ,求解下列问题: (I )过点P 且横截距是纵截距两倍的直线l 的方程; (6分)
(II )圆心在点P 与直线4x −3y +1=0相切的圆的一般方程. (6分)
答案:(I ){x +y −3=0x −2y −6=0得{x =4y =−1
所以P 点坐标为(4,-1)
设l 的方程为y +1=k(x −4)即kx −y −4k +1=0
令x =0,得纵截距为y 0=−4k +1
令y =0,得横截距为x 0=4k−1k
由题知4k−1
k =2(−4k+1),得k=−2或1
4
所以直线方程为:2x+y−9=0或x−4y=0
考查交点坐标、截距的求法,直线的点斜式方程、一般式方程。
(II)圆心坐标为P(4,-1)
半径为r=
22
=4
所以圆的标准方程为:(x−4)2+(y+1)2=16
一般方程为:x2+y2−8x+2y+1=0
考查点到直线的距离公式,圆的标准方程,一般方程。