《统计学》名词解释及公式
统计学名词解释
1、统计包括三方面的涵义:统计活动、统计资料、统计学;2、统计活动:是在一定的理论指导下,采用适宜的科学方法搜集、处理统计资料的一系列调查研究过程。
3、统计资料:即统计信息,它集中、全面、综合地反应国民经济和社会发展的现象和过程4、统计学:即统计理论,是一门独立的方法论科学,它根据自己的研究对象,系统的阐述统计理论的方法5、统计总体:是根据一定的目的和要求所确定的研究事物的全体,它是由客观存在的,具有某种共同性质的许多个别单位构成的整体。
6、总体单位:是指构成总体的个体单位,它是总体的基本单位。
(又称个体)7、同质性:指总体各单位在某一标志上的共同性8、变异性:指总体所有单位至少有一个以上的可变品质标志或数量标志9、大量性:指统计总体中的单位应有足够的数量,如果总体单位应有足够的数量,如果总体单位数量很少,就难以揭示总体的规律性10、标志:是指统计总体中各单位所具同具有的属性和特征11、品质标志:表明总体单位属性方面的特征,用文字表示12、数量标志:数量方面的特征13、指标:是反映社会经济现象总体数量特征的概念和数值。
14、变异:统计中的标志和指标都是可变的15、变量:可以取不同值得量,在社会经济统计学中,各种数量标志和全部统计指标都是变量16、连续变量:数值是连续不断的,相邻两值之间可作无限分割,即可去无限数值17、离散变量:数值都是以整数位断开的,其数值要用计算的方法取得18、确定性变量:变量值的变动受制于某种决定性因素,致使其沿着一定的方向变动19、随机变量:影响变量值变动的因素有很多,作用不同,因而变量值变动无确定方向20、统计法:国家制定和认可的调整参与统计活动的各方面——统计主体、客体、宿体在统计活动中形成的社会关系的法律规范的总称21、统计设计:对一个完整的统计工作涉及各个方面和各个环节的通盘考虑和适当安排22、统计指标体系:将反映社会经济现象数量特征的一系列相互依存、相互联系的统计指标有机结合所组成的整体;23、指标名称:指标质的规定,它反映一定的社会经济范畴24、指标数值:根据指标的内容所计算出来的具体数值25、数量指标:反映总体总规模、总水平或总工作量的统计指标,又称总量指标26、质量指标:反映总体内部数量关系、单位一般水平、工作质量的统计指标27、描述指标:对总体及其组成部分的规模水平和数量关系进行客观描述的统计指标28、评价指标:反映社会经济总体的结构、比例、速度以及利用状况和效益、效果的统计指标29、监测指标:对社会经济总体运行进行跟踪监测,看其是否偏离既定目标,是否保持平衡的统计指标30、预警指标:可以对总体运行中出现的偏离进行及时的调控31、统计调查:是按照统计的任务和调查的目的要求,运用科学的方法搜集或者收集被研究对象的各个标志值的过程。
统计学名词解释
名词解释1.备择假设(alternative hypothesis):与原假设逻辑上反面的假设。
2.标准分数(standard score):也称标准化值或分数,它是变量值与其平均数的离差除以标准差后的值。
3.残值(residual):因变量的观测值y i与根据估计的回归方程求出的预测值y i之差,用e表示。
对于第i个观测值,残差为e i=y i-y i。
4.α错误(αerror):原假设为真却在检验中将原假设被拒绝,又称弃真错误或者第一类错误(type I error),用α表示其概率。
5.β错误(βerror)原假设为伪却在检验中未拒绝的原假设,又称取伪错误或者第二类错误(type II error),用β表示其概率。
6.对照组(control group):随记选取的实验对象的子集。
在这个子集中,每个单元不接受实验组成员所接受的某种特别的处理。
7.多重共线性(multicollinearity)回归模型中两个或两个以上的自变量彼此相关。
8.多重判定系数(multiple coefficient of determination)回归平方和占总平方和的比例,反映因变量y取值的变差中,能被估计的多元回归方程所解释的比例。
9.峰态(kurtosis)对数据分布平峰或尖峰的程度的测度。
10.假设检验(hypothesis testing)根据样本信息,对提出的命题进行检验的一套程序和方法。
11.离散系数(coefficient variation)也称变异系数,一组数据的标准差与其相对应的平均数之比,是测度数据离散程度的相对值。
12.拟合优度实验(goodness of fit test)对多个总体比例是否等于其期望概率的检验。
当期望概率相同时,表现为对多个总体的比例是否相等的检验。
13.偏态(skewness)对数据分布对称性的测度。
14.异众比率(variation ratio)非众数组的频数占总频数的比例。
统计学名词解释
17.相对指标:也称相对数,就是将两个有联系指标的数值进行对比的结果;
18.时期数列:是由时期指标形成的,数列中的每个指标数值都是反映某种社会经济现象在一段时期内发展过程的总量;
29.简单随机抽样:这是按随机原则从总体N个单位中直接抽取n个单位做样本,使总体中每一个单位都有同等的可能性被抽中;
30.简单相关表:是资料未经分组的相关表,它是相关因素的标志值按照大小顺序并配合结果标志值一一对应而平行排列起来的统计表;
31.常住单位:是指在我国的经济领土上具有经济利益中心的经济单位;
88.组中值:指本组的上限与下限之间的中点值。它代表组内所有单位的标准值的平均水平。
89.次数分布:是指在统计分组的基础上,将总体的所有单位按组归类整理,并按一定顺序排列,形成总体单位在各组间的分布。
90.总体:按数量标志分组就形成变量分配数列,简称变量数列。
91.统计表就是用来表现统计资料汇总整理结果的汇总表。
92.累计次数:是指数列中高于或低于某一变量值的次数总和。
93.强度相对指标:是两个性质不同但是存在一定联系的指标的对比,用来反映事物的强度、密度和普遍程度的指标。
94.众数:是指总体中出现次数最多的标志值。
95.平均发展水平:将不同时期的发展水平加以平均而得的平均数叫平均发展水平,在统计上又称为序时平均数或动态平均数。
44.资本形成
:是指各机构单位通过经济交易获得或处理生产资产的行为;
45.因素分析法:它是利用指数体系,对现象的综合变动从数量上分析其受各因素影响的一种分析方法。
统计学名词解释 (超全)
统计学:是一门搜集、整理、显示和分析统计数据的方法论科学。
总体:就是统计所要研究的事物或现象的全体,即由客观存在的,具有某种共同特征的许多个别事物构成的整体。
参数:是描述总体数量特征的指标,又称总体指标。
样本:是指从统计总体中抽取出来作为代表这一总体的、由部分个体组成的集合体。
变量:指给所要研究的事物起的名字,包括可变的标志和所有的统计指标。
总体参数:描述总体数量特征的指标,又称总体指标。
样本统计量:是根据样本数据计算出来的样本指标,用来描述样本的数量特征。
普查:为某一特定目的而专门组织的一次性全面调查。
抽样调查:是按随机原则,从总体中抽选部分单位进行观察,并根据部分单位(样本)的调查数据,从数量方面推断总体参数的一种非全面调查。
统计分组:根据被研究现象总体的内在特点以及统计研究的目的,将总体按照一定的标志分为若干个性质不同的组成部分的一种统计方法。
统计表:指显示统计整理结果的表格,就是把通过整理的调查数据,使其成为得以说明现象总体数量特征的分组数据,并按一定顺序排列而形成的表格。
时期数据:反映现象总体在一段时期内发展变化总结果的总量指标。
时点指标:反映现象总体在某一的点(瞬间)上所处状况的总量指标。
众数:是一组数据中出现次数最多的变量值。
时间序列:将反映某种现象的统计指标在不同时间上的数值,按时间顺序排列而成的序列。
发展水平:时间序列中的每一项指标数值,都称为发展水平,它反映了某种现象在一定时期或时点所达到的规模和水平。
平均发展水平:将不同时间的发展水平加以平均而得到的平均数。
发展速度:是反映现象发展变化快慢程度的动态相对指标,是根据两个不同时期的发展水平对比求得的。
环比发展速度:是时间序列中报告期发展水平与前期发展水平之比,表明现象逐期发展变化的方向和程度。
定基发展速度:是报告期发展水平与某一固定时期发展水平(最初发展水平)之比,说明现象在较长时期内总的发展变动方向与程度。
年距发展速度:反映报告期发展水平对于上年同期发展水平的变化方向与程度。
统计学名词解释
名词解释:1、分类数据:是只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,是用文字来表示的。
(P5)2、四分位数:也称四分位点,它是一组数据排序后处于25%和75%位置上的值。
(P89)3、方差分析:是通过检验个总体的均值是否相等来判断分类型自变量对数值型因变量是否有显著影响。
(P264)4、相关系数:是根据样本数据计算的度量两个变量之间线性关系强度的统计量。
(P304)5、居民消费价格指数:是度量居民消费品和服务项目价格随时间变动的相对数,反映居民家庭购买的消费品和服务价格水平的变动情况。
(420)6、顺序数据:是只能归于某一有序类别的非数字型数据。
(P6)7、抽样误差:是由于抽样的随机性引起的样本结果与总体真值之间的误差。
(P33)8、离散系数:也称变异系数,它是一组数据的标准差与其相应的平均数之比。
计算公式为:(P103)1.v s= s/⎺x9、置信区间:在区间估计中,由样本统计量所构成的总体参数的估计区间。
(P177)10、点估计:用样本统计量^θ的某个取值直接作为总体参数θ的估计值。
(P176)11、系统抽样:将总体中的所有单位(抽样单位)按一定的顺序排列,在规定的范围内随机地抽取一个单位作为初始单位,然后按后按事先规定好的规则确定其他样本单位。
(P19)12、中心极限定理:设从均值为μ、方差为σ2(有限)的任意一个总体中抽取样本量为n的样本,当n充分大时,样本均值⎺X的抽样分布近似服从均值为μ、方差为σ2/n的正态分布。
(P165)13、回归模型:描述因变量y如何依赖于自变量x和误差项的方程。
对于只涉及一个自变量的一元线性回归模型可表示为y=β0+β1x+ε。
(P308)14、指数平滑法:是通过对过去的观察值加权平均进行预测的一种方法,该方法是t+1期的预测值等于t期的实际观察值与t期的预测值的加权平均值。
(P378)15、非概率抽样:是相对于概率抽样而言的,指抽取样本时不是依据随机原则,而是根据研究目的对数据的要求,采用某种方式从总体中抽出部分单位对其实施调查。
统计学名词解释
抽样平均误差:是指所有可能出现的样本的样本指标的标准差,也可以说是所有可能出现的样本指标和总体指标的平均离差。
总量指标:是反映社会经济现象在一段时间、地点、条件下的总规模或总水平的统计指标。
也称绝对指标或绝对数。
平均指标:平均指标是说明同质总体内某一数量标志在一定历史条件下一般水平的综合指标。
不变价格:是在综合不同的产品产量并反映他们的总动态时,为了消除不同时期价格变动的影响所用的固定价格。
指数:广义:指一切说明社会经济现象数量变动或差异程度的相对数。
狭义:指一种特殊相对数,也即专指不能直接相加和对比的复杂社会经济现象综合变动程度的相对数。
置信区间:统计上把这个给定的抽样误差范围叫做抽样极限误差,也称置信区间(抽样误差范围:变动的的抽样指标与确定的全及指标之间离差的可能范围)发展水平:在动态数列中,各项具体的指标数值叫发展水平或动态数列水平。
它反映社会经济现象在不同时期所达到的水平,是计算其他动态分析指标的基础。
长期趋势:就是研究某种现象在一个相当长的时期内持续向上或向下发展变动的趋势。
抽样推断:按已经抽定的样本指标(样本平均数或样本成数)来估计总体指标(总体平均数或总体成数),或其所在的区间范围。
抽样调查:按照随机原则从总体中抽取一部分单位进行观察,并运用数理统计的原理,以被抽取的那部分单位的数量特征为代表,对总体作出数量上的推断分析。
质量指标:指反映现象总体的社会经济效益和工作质量的各种相对指标和平均指标。
标准差系数:根据标准差与算术平均数对比的离散系数。
数量指标:指说明总体规模和水平的各种总量指标。
相对指标:又称相对数,它是两个有联系的指标数值对比的结果。
用来对比的两个数,既可以是绝对数,也可以是平均数和相对数。
估计标准误差:就是用来说明回归方程推算结果的准确程度的统计分析指标,或者说是反映回归直线代表性大小的统计分析指标。
指数体系:是由三个或三个以上有联系的指数所组成的数学关系式。
统计学名词解释
总体:总体是指客观存在的,在同一性质基础上结合起来的许多个别事务的整体,亦称统计总体。
总体单位:总体单位是指构成统计总体的个别事物的总称。
指标:指标是反映总体现象数量特征的概念。
标志:标志是说明总体单位特征的名称。
统计调查:是按照预定的目的和任务,运用科学的统计调查方法,有计划有组织地向客观实际搜集统计资料的过程。
调查对象:是根据调查目的、任务确定的调查的范围,即所要调查的总体,它是由某些性质上相同的许多调查单位所组成的。
调查单位:是所要调查的现象总体中的个体,即调查对象中的一个一个具体单位,它是调查中要调查登记的各个调查项目的承担者。
报告单位:是负责向统计调查机关提交调查资料的单位。
普查:是专门组织的一次性的全面调查,用来调查属于一定时点上或时期内的现象的总量。
复合分组:对同一总体选择两个或两个以上的标志重叠起来进行分组。
复合分组体系:多个复合分组组成的分组体系。
频数:是指分配数列中各组的单位数,也称次数。
频率:是将跟组的单位数(频数)与总体单位数相比,求得的用百分比表示的相对数,也称比率或比重。
统计指标:是反映总体现象数量特征的基本概念及其具体数值的总称。
总量指标:是反映总体规模的统计指标,表明现象总体发展的结果。
平均指标:是总体各单位某一数量标志一般水平的统计指标。
是将一个总体内各个单位在某个数量标志上的差异抽象化,以反映总体的一般水平的综合指标。
标志变异指标:是表明总体各个单位标志值的差异程度(离散程度)的指标。
强度相对指标:是不属于同一总体的两个性质不同但相互间有联系的总量指标对比的比值,是用来反映现象的强度、密度和普遍程度、利用程度的综合指标。
加权算数平均数:是在总体经过分组形成变量数列(包括单项数列和组距数列),有变量值和次数的情况下,将各组变量值分别与其次数相乘后加总求得标志总量,再除以总体单位数(即次数总和)而求得的数值。
标准差:是总体各单位变量值与其平均数的离差平方的算术平均数的平方根。
统计学名词解释
统计学名词解释
①Ⅰ类错误:当拒绝H0时,可能犯错误;拒绝一个正确的H0所犯的
错误,称为Ⅰ类错误,其概率为α。
(拒真错误)
②Ⅱ类错误:当接受H0时,可能犯错误;接受一个错误的H0所犯的错
误,称为Ⅱ类错误,其概率为β。
(存伪错误)
③独立事件:一个事件是否发生不影响另一事件的发生。
④概率:是描述随机事件出现可能性的大小的统计指标。
⑤小概率事件:概率小于或等于5%的随机事件;通常情况下,在一
次随机抽样中不可能出现。
⑥随机样本:按照概率的规律抽取的样本。
(不由个人意志所决定的,)
⑦抽样误差:样本统计量与总体参数之间总会存在一定差距,而这种
差距是由于抽样的随机性所引起的。
⑧标准误:是样本统计量分布的标准差,用来衡量抽样误差的大小。
⑨参数检验:根据样本统计量去估计对应总体的参数
⑩假设检验:又称显著性检验,是用样本差异大小去估计总体之间是否存在差异。
区间估计:根据估计量以一定可靠程度推断总体参数所在的区间范围。
四分位差:
完全随机化设计:被试通过随机抽取并被随机分配到各个实验条件下进行实验的设计形式。
随机区组设计:将特征相似的被试分为一组,称为区组。
随机让每个区组接受一种实验的设计形式。
相关系数:表示两列量数之间的线性相互关系(程度)
决定系数:回归分析中衡量回归方程有效性高低指标,是回归平方和在离差平方和所占的比例。
(完整版)统计学名词解释
统计学名词解释第一章绪论1.随机变量:在统计学上,把取值之间不能预料到什么值的变量。
2.总体:又称母全体、全域,指具有某种特征的一类事物的全体。
3.个体:构成总体的每个基本单元称为个体。
4.样本:从总体中抽取的一部分个体,称为总体的一个样本。
5.次数:指某一事件在某一类别中出现的数目,又称为频数。
6.频率:又称相对次数,即某一事件发生的次数被总的事件数目除,亦即某一数据出现的次数被这一组数据总个数去除。
7.概率:某一事物或某一情在某一总体中出现的比率。
8.观测值:一旦确定了某个值。
就称这个值为某一变量的观测值。
9.参数:又称为总体参数,是描述一个总体情况的统计指标。
10.统计量:样本的那些特征值叫做统计量,又称特征值。
第二章统计图表1.统计表:是由纵横交叉的线条绘制,并将数据按照一定的要求整理、归类、排列、填写在内的一种表格形式。
一般由表号、名称、标目、数字、表注组成。
2.统计图:一般采用直角坐标系,通常横轴表示事物的组别或自变量x,称为分类轴。
纵轴表示事物出现的次数或因变量,称为数值轴。
一般由图号及图题、图目、图尺、图形、图例、图组成。
3.简单次数分布表:依据每一个分数值在一列数据中出现的次数或总计数资料编制成的统计表,适合数据个数和分布范围比较小的时候用。
4.分组次数分布表:数据量很大时,应该把所有的数据先划分在若干区间,然后将数据按其数值大小划归到相应区域的组别内,分别统计各个组别中包括的数据个数,再用列表的形式呈现出来,适合数据个数和分布范围比较大的时候用。
5.分组次数分布表的编制步骤:(1)求全距(2)定组距和组数(3)列出分组组距(4)登记次数(5)计算次数6.分组次数分布的意义:(1)优点:A.可将杂乱无章数据排列成序,以发现各数据的出现次数及分布状况。
B.可显示一组数据的集中情况和差异情况等。
(2)缺点:原始数据不见了,从而依据这样的统计表算出的平均值会与用原始数据算出的值有出入,出现误差,即归组效应。
统计学名词解释
名词解释●统计工作:是从数量方面对社会经济现象做调查研究的一种工作,是人们为认识客观事物而进行的搜集、整理、分析和提供统计资料的工作过程;●统计资料:是统计工作的成果,是指在统计实践活动中所取得的,反映统计研究对象有关特征的各种综合性的数字资料和分析报告;●统计学:是阐述统计理论与方法的系统性科学,是统计工作实践的理论概括和科学总结,是研究、整理、分析统计资料的理论和方法的科学;●总体:是指客观存在的,在某一相同性质基础上结合起来的许多个别事物的整体●总体单位:构成总体的个别事物●样本:从总体当中抽取出来,用从代表这一总体的部分个体组成的集合●标志:是说明总体单位属性或特征的名称●统计指标:说明总体数量特征的,简称指标;有俩种理解,一是指反映现象总体数量特征的概念;二是指反映现象总体数量特征的概念及其数量表现;●普查:是专门组织的一次性的全面调查;这种调查,主要用来搜集一些比较全面而又不能或不宜从经常调查中得出的统计资料;●重点调查:是一种非全面调查,它是从所要调查的单位中选择一部分重点单位进行调查●抽样调查:也是一种非全面调查,它是按照随机原则从被研究总体中抽取出一定数量的单位样本进行调查,根据样本指标数值来推算总体指标数值的一种调查●典型调查:是一种十分重要的、行之有效的非全面调查方法;它是从研究总体中有意识地选取若干具有代表性单位典型单位进行调查,用来了解总体的详细情况●统计调查:根据统计工作任务和统计设计的要求,用科学的方法,有计划有组织地向调查单位搜集调查资料的过程●统计分组:根据统计研究的需要,将统计总体按照一定的标志区分为若干组成部分的一种统计方法●分配数列:又称分布数列、次数数列,是在统计分组的基础上形成的,用来反映总体单位在各组中分布状况的统计数列●总量指标:是反映社会经济现象的总体规模和水平的统计指标;总量指标通常是将总体单位数相加或总体单位某一数量标志值相加得到的,大多数是统计整理的直接成果,是用绝对数的形式表示的,因此也称统计绝对数●相对指标:是将两个有联系的反映社会经济现象的统计指标相互对比得到的一种抽象的比值,是反映社会经济现象间数量对比关系的综合指标●平均指标:是反映总体各单位某一数量标志值一般水平的综合指标,又称统计平均数●标志变异指标:是反映总体各单位标志值的差异程度的,即反映分配数列中各标志值的变动范围或离差程度的综合指标,也叫标志变动度,简称变异指标●成数:具有某种表现或不具有某种表现的单位数占全部总体单位数的比重●时间数列:是将说明社会经济象在各个不同时期或时点上某种数量特征的指标数值,按时间的先后顺序排列起来而形成的统计数列; 时间数列中每项数值是与时间相对应的,所以又称动态数列●时期数列:在绝对数动态数列中,各项指标都是反映某种现象在一段时间内发展过程的总量●时点数列:在绝对数动态数列中,每个指标所反映的事现象在某一时点上瞬间所处状态的数量水平●发展水平:社会经济现象在某时期或某时点达到的指标数值●统计指数:广义指同类社会经济现象数量对比的相对数,包括动态相对数、比较相对数、计划完成程度相对数等;狭义指用来反映由不能直接加总的多要素所构成的复杂社会经济现象综合变动程度的特殊相对数●抽样误差:指在遵守随机原则的条件下,用抽样指标代表总体所产生的不可避免的误差;●简单随机抽样:又称纯随机抽样;它是对全及总体的所有单位不进行任何分类或排队处理,而是完全按照随机原则从总体中抽出样本单位加以观察,以保证总体中每个单位有相等被抽中的机会●类型抽样:也称分层抽样或分类抽样;它首先把全及总体按某一标志分成若干组,然后分别在各组内按随机原则抽取一定数目的样本单位构成样本的抽样方式●等距抽样:又称机械抽样或系统抽样,它是先将总体各单位按某一标志排队,然后按固定的顺序和间隔来抽选样本单位的一种抽样组织形式●整群抽样:将总体各单位划分成若干群或组,然后以群或组为单位从中随机抽取一些群,对中选群的所有单位进行全面调查的抽样组织形式●相关关系:是现象之间确实存在有数量上的依存关系,但这种数量上的关系式不确定的●相关表:指按照相关现象的数量对应关系以及一定的逻辑顺序编制成的一种统计表。
《统计学》名词解释及公式
《统计学》名词解释及公式-CAL-FENGHAI.-(YICAI)-Company One1第1章统计与统计数据一、学习指导统计学是处理和分析数据的方法和技术,它几乎被应用到所有的学科检验领域。
本章首先介绍统计学的含义和应用领域,然后介绍统计数据的类型及其来源,最后介绍统计中常用的一些基本概念。
本章各节的主要内容和学习要点如下表所示。
概念:统计学,描述统计,推断统计。
统计在工商管理中的应用。
统计的其他应用领域。
概念:分类数据,顺序数据,数值型数据。
不同数据的特点。
概念:观测数据,实验数据。
概念:截面数据,时间序列数据。
统计数据的间接来源。
二手数据的特点。
概念:抽样调查,普查。
数据的间接来源。
数据的收集方法。
调查方案的内容。
概念。
抽样误差,非抽样误差。
统计数据的质量。
概念:总体,样本。
概念:参数,统计量。
概念:变量,分类变量,顺序变量,数值型变量,连续型变量,离散型变量。
二、主要术语1.统计学:收集、处理、分析、解释数据并从数据中得出结论的科学。
2.描述统计:研究数据收集、处理和描述的统计学分支。
3.推断统计:研究如何利用样本数据来推断总体特征的统计学分支。
4.分类数据:只能归于某一类别的非数字型数据。
5.顺序数据:只能归于某一有序类别的非数字型数据。
6.数值型数据:按数字尺度测量的观察值。
7.观测数据:通过调查或观测而收集到的数据。
8.实验数据:在实验中控制实验对象而收集到的数据。
9.截面数据:在相同或近似相同的时间点上收集的数据。
10.时间序列数据:在不同时间上收集到的数据。
11.抽样调查:从总体中随机抽取一部分单位作为样本进行调查,并根据样本调查结果来推断总体特征的数据收集方法。
12.普查:为特定目的而专门组织的全面调查。
13.总体:包含所研究的全部个体(数据)的集合。
14.样本:从总体中抽取的一部分元素的集合。
15.样本容量:也称样本量,是构成样本的元素数目。
16.参数:用来描述总体特征的概括性数字度量。
统计学名词解释
加权算数平均数指数:加权算术平均指数是以基期总量为权数对个体数量指标指数进行加权算术平均,以此计算的加权平均数指数等于数量指标综合指数,其公式为:K q=(∑k q p o q o)/(∑p o q o)加权调和平均数指数:加权调和平均数指数是以报告期总量为权数对个体质量指标指数进行加权调和平均,据此计算的加权平均数指数等于质量指标综合指数。
其公式为:K p=(∑p1q1)/[∑(1/k p)p o q o]统计量:也称为样本统计量,它是反映抽样总体数量特征的指标,即样本指标。
样本:从总体中抽取的部分单位组成的的集合成为样本参数:参数也称为总体参数,它是反映全及总体数量特征的指标推断统计学:是研究如何根据样本数据去判断总体数量特征的方法,它是在对样本数据进行描述的基础上,对统计总量的未知数量特征作出概念形式表述的判断。
调查方式:1、统计报表制度2、专门调查:(1)普查(2)重点调查(3)典型调查(4)抽样调查抽样调查原则:1、按随机性原则抽取样本2、根据部分调查的实际资料对调对象总体数量的数量特征作出估计3、抽样误差可以计算并可以控制标准差:是方差的平方根,它表示一组数据关于平均数的平均离散程度。
拒绝域:当检验统计量取某个区域C中的值时,我们拒绝原假设,则称区域C为拒绝域四分位差:也称中点分布,是一组75%位置上的四分位数与25%位置上的四分位数之差,也就是上四分位数(Q u)和下四分位数(Q I)的差,记为Q d,其计算公式为:Q d=Q u-Q t离散系数:也称为变异系数或标准差系数,通常表示为Vσ=σ/ x置信区间:置信区间是指由样本统计量所构造的总体参数的估计区间。
在统计学中,一个概率样本的置信区间是对这个样本的某个总体参数的区间估计。
置信区间展现的是这个参数的真实值有一定概率落在测量结果的周围的程度。
描述统计学:研究如何如何取得反映客观现象的数据,并通过图表形式对所收集的数据进行加工处理和显示,进而通过综合、概括与分析客观现象的规律性数量特征。
统计学名词解释
10、统计整理:根据统计研究目的和统计分析的要求,使统计调查所获得的原始资料进行科学的分类和汇总,或对简单加工过的资料进行再加工,使之系统化、条理化,从而得出能够反映事物总体特征资料的工作过程。
11、统计分组:根据研究任务的需要和事物内在的特点,将统计总体按照一定的标志划分为若干组成部分的一种统计方法。
A60----70分这一组B70----80分这一组C60---70或70---80两组都可以D作为上限的那一组
4、2003年-----2004年间,甲单位的商品销售额平均增长速度是乙单位的103%,这是(B)
A比例相对指标 B比较相对指标 C强度相对指标 D动态相对指标
5、变量数列中的各组(单位数)表示我们所要考察(标志值)在各组中出现的次数,所以称为次数。
6、变量数列中各组标志值出现的次数称(频数),各组单位数占单位总数的比重称(频率)。
7、所谓同度量因素,就是在计算综合指数时,吧不能直接相加的(指标)过渡到可以总的指标的那个(媒介因素)。
8、编制时间序列应遵循的基本原则就是保证构成时间数列的(各个指标值)具有(可比)性
统计整理:根据统计研究的目的,把统计调查所搜集到的资料(原始资料、次级资料)进行科学的加工,使之系统化、条理化、科学化,从而得出能够反映事物总体特 征的资料的工作过程
统计分组:根据研究的目的和现象的内在特点,按某个标志(或几个标志)把被研究的总体分为若干不同性质的组。
抽样调查:是一种非全面,按随机原则从全部研究对象中抽取部分单位进行观察,并根据样本的实际数据对总体的数量特征作出具有一定可靠程度的估计和判断的一种统计调查方法。。
A相对数时间序列 B时期数列 C平均数时间数列 D时点数列
10、“首末折半法”适用于(B)
统计学名词解释
备择假设:与原假设逻辑相反的假设。
比例:一个样本中各个部分的数据占全部数据之比。
比率:样本中各不同类别数值之间的比值。
必然事件:在同一组条件下,每次试验一定出现的事件。
变量:说明现象某种特征的概念。
标准差:方差的平方根。
标准分数:也称标准化值或分数,它是变量值与其平均数的离差除以标准差后的值。
标准化残差:残差除以它的标准差后得到的数值。
不规则波动:称为随机波动,指序列中的偶然性波动。
不可能事件:在同一组条件下,每次试验一定不出现的事件。
参数:用来描述总体特征的概括性数字度量,是研究者想要了解的总体的某种特征值。
残差:因变量的观测值y i与根据估计的回归方程求出的预测值y i之差,用e表示。
对于第i 个观测值,残差为e i=y i-y i。
充分统计量:在样本加工统计量的过程中不损失任何信息的统计量。
抽样分布:样本统计量的分量。
抽样框:用于抽选样本的总体单位信息,是概率抽样中所不可缺少的。
抽样误差:由抽样的随机性引起的样本结果与总体真值之间的差异。
处理:不同的因子水平。
次序统计量:设有样本,若有满足如下条件的函数:每当样本得到一组观察值x1,x2,…x n时,其由小到大的排序x(1)<=x(2)<=…<=x(n)中,第i个值x(i)就作为统计量X(i)的观测值,而X(1),X(2),…,X(n)称为次序统计量。
β错误:原假设为伪却在检验中未拒绝原假设,又称取伪错误错误或第Ⅱ类错误,用β表示其概率。
а错误:原假设为真却在检验中原假设放弃,又称弃真错误或第Ⅰ类错误,用а表示其概率。
单因素方差分析:研究一个分类型自变量同数值型因变量之间关系的一种统计方法。
点估计:用样本估计量θ的取值直接作为总体参数θ的估计值。
独立性:两个事件中不论哪一个事件发生与否并不影响另一个事件发生的概率,则称这两个事件具有相互独立性。
独立性检验:对两个分类型变量是否存在相依关系的检验。
如果存在相依关系,有必要对这种相关性进行进一步测定。
统计学名词解释
标准差英文名称:standard deviation定义1:真误差平方和的平均数的平方根,作为在一定条件下衡量测量精度的一种数值指标。
所属学科:测绘学(一级学科);测绘学总类(二级学科)定义2:真误差平方和的平均数的平方根,作为在一定条件下衡量测量精度的一种数值指标,也是一系列观测值离散情况的度量。
所属学科:大气科学(一级学科);大气探测(二级学科)定义3:方差的平方根。
表示一组数据的变异程度的参数。
所属学科:遗传学(一级学科);群体、数量遗传学(二级学科)本内容由全国科学技术名词审定委员会审定公布百科名片标准差(Standard Deviation),也称均方差(mean square error),是各数据偏离平均数的距离的平均数,它是离均差平方和平均后的方根,用σ表示。
标准差是方差的算术平方根。
标准差能反映一个数据集的离散程度。
平均数相同的,标准差未必相同。
目录简介标准差的意义离散度标准差与平均值之间的关系标准差公式几何学解释标准差与标准误的区别Excel函数简介标准差的意义离散度标准差与平均值之间的关系标准差公式几何学解释标准差与标准误的区别Excel函数∙外汇术语∙样本标准差∙应用实例简介公式标准差也被称为标准偏差,或者实验标准差,公式如图。
简单来说,标准差是一组数据平均值分散程度的一种度量。
一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。
例如,两组数的集合{0, 5, 9, 14} 和{5, 6, 8, 9} 其平均值都是7 ,但第二个集合具有较小的标准差。
标准差可以当作不确定性的一种测量。
例如在物理科学中,做重复性测量时,测量数值集合的标准差代表这些测量的精确度。
当要决定测量值是否符合预测值,测量值的标准差占有决定性重要角色:如果测量平均值与预测值相差太远(同时与标准差数值做比较),则认为测量值与预测值互相矛盾。
这很容易理解,因为如果测量值都落在一定数值范围之外,可以合理推论预测值是否正确。
统计学名词解释
一、名词解释总体:指在同一组条件下所有成员的某种状态变量的集合;或者说是某一变数的全部可能值的集合;或性质相同的个体组成的整个集团。
样本:从总体中取出来用作分析、研究的个体称样本。
随机样本:总体中的每个总体单位都有同等的机会被抽取为样本单位,由这种方法抽得的样本叫随机样本。
(用随机抽样的方法,从总体中抽出一个部分;等概率抽取的样本。
)随机抽样:保证总体中的每一个体在每一次抽样中都有同等的机会被取为样本。
复置抽样:保证总体中的每个个体在每次抽样中都有同等的概率被取为样本。
样本容量:样本中包含的单位数称为样本容量。
(样本中变量的个数。
) 观察值:每一个体的某一性状测定值叫做观察值。
变数:若干有变异的观察值叫随机变数,简称变数。
连续性变数:指在任意两个变量之间都有可能存在只有微量差异的第三个变量存在,这样一类变数称为连续性变数。
间断性变数:只能取整数的一类变数。
参数:由总体获得的代表总体的特征数。
(描述总体的特征数,如μσ 。
)统计数:由样本获得的代表样本的特征数。
(描述样本的特征数。
)数量资料(数量性状资料):以测量或称重的方式获取的试验资料称为数量资料。
计量资料、质量性状资料次数资料:凡是试验结果以次数表示的资料称为次数资料。
算术平均数、众数几何平均数:变量对数的算术平均数的反对数,(lg )lg Y G n=∑调和平均数:变量倒数的算术平均数的反倒数,1()nH Y =∑中位数:将变量顺序排列,处在中间的变量称中位数,计作M d 。
极差:一组资料中最大值与最小值的差值为极差。
方差:变数变异程度的度量,对于总体()22i Y Nμσ-=∑,对于样本22()1Y y s n -=-∑。
(描述变量平均变异程度的统计量。
定义为212()1njj Yy s n =-=-∑。
)EMS :期望均方,是对均方MS 的期望值。
标准差:变数变异程度的度量,总体标准差:()NY ∑-=2μσ,样本标准差:()12--=∑n y Y s 。
统计学名词解释
7、抽样估计和假设检验
抽样估计是指根据所抽取的样本特征来估计总体特征的统计方法。假设检验是先对总体的某一数据提出假设,然后抽取样本,运用样本数据来检验假设成立与否。
8、变量和变异
标志的具体表现和指标的具体数值会有差别,这种差别就称为变异。数量标志和指标在统计中称为变量。
1
9、"时间序列的最初水平、处水平,最后一个观察值称为最末水平,其余各个观察值称为中间水平。
20、"调查对象、调查单位和填报单位
调查对象是所要研究对象的总体。调查单位是所要研究对象的个体。填报单位是提交调查资料的单位。调查单位和填报单位有时相同,有时不同。
4、统计调查
统计调查是根据统计研究的目的和要求、采用科学的方法,有组织有计划的搜集统计资料的工作过程。它是取得统计数据的重要手段。
5、统计绝对数和统计相对数
反映总体规模的绝对数量值,在社会经济统计中称为总量指标。统计相对数是两个有联系的指标数值之比,用以反映现象间的联系和对比关系。
6、时期指标和时点指标
总体单位总量和总体标志总量。
(2)按其反映不同的时间状况不同分:
时期指标和时点指标。
(3)按其采用的计量单位的不同分:
实物指标、价值指标和劳动指标。
5、时期指标和时点指标的区别
时期指标:
(1)连续记数,其值可以相加
(2)具有时间xx,与时间长短有关
(3)是流量时点指标:
(1)间断记数,其值不可以相加,相加无实际意义
算总体相应指标
了解被研究对象的特征及发展变化
趋势,可近似推算总体数量,无法估计误差用样本指标数值推断总体指标数值,
统计学名词解释
统计学名词解释总体:统计总体的简称,是根据一定的目的确定的索要研究的事物的全体,它是由客观存在的,具有某种共同性的许多个别事物构成的整体。
样本:是总体中抽出的一部分总体单位构成的集合。
标志:是说明总体单位特征的名称,有品质标志和数量标志两种。
指标:统计学是反映统计总体数量特征的概念和数值。
变异:是指在选定的标志下,总体单位的表现不完全相同,而是存在差异的,这种差异叫变异。
统计设计:就是根据统计研究对象的性质和研究目的,对统计工作各个方面和各个环节的通盘考虑和安排。
统计数据:是统计活动过程中所取得的反映社会经济现象的数字资料以及与之相联系的其他资料的总称,是对客观现象进行计量的结果。
统计调查:是指统计部门按照法定的程序,依据科学的统计指标体系和科学的调查方法,有组织、有计划地向被调查者搜集统计资料的工作过程。
回归分析:通过一个变量或一些变量的变化解释另一变量的变化。
时间数列:是指将同类指标在不同时间上的数值按时间的先后顺序排列起来形成的统计数列。
平均发展水平:是不同时间上发展水平的平均数,它可以消除不同时间上数量的差异,说明现象在一段时期的一般水平。
发展速度:是用相对数表示的报告期发展水平与基期发展水平之比,用于描述现象在观察期内相对的发展变化程度,常用百分数或者倍数表示。
平均发展速度:是各个时期环比发展速度的平均数,用于描述现象在整个观察期内平均发展变化的程度。
指数:是一种对比分析的指标,是统计指数的简称,广义凡事两个数值对比而形成的相对数都可称为指数,狭义的指数是一种特殊的相对数,它反映的是由上不能直接加总的多个个体组成的现象总体的综合变动程度。
综合指数的一般编制原则:找到能够使全部个体的数量得以综合起来的因素、固定同度量因素。
指标和标志的区别:标志反映总体单位的属性和特征,而指标则是反映总体的数量特征,标志和指标的关系是个别和整体的关系,需要通过对各单位标志的具体表现进行汇总和计算才能得到相应的指标计划完成相对指标=实际完成数/计划任务数×100%结构相对指标=总体的部分数值/总体的全部数值×100%比例相对指标=总体的一部分数值/总体的另一部分数值×100%比较相对指标=甲总体的某一指标数据/乙总体的同一指标数值×100%强度相对指标=某一总量指标数值/另一有联系的总量指标数量×100%动态相对指标=报告期水平/基期水平×100%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章统计与统计数据一、学习指导统计学是处理和分析数据的方法和技术,它几乎被应用到所有的学科检验领域。
本章首先介绍统计学的含义和应用领域,然后介绍统计数据的类型及其来源,最后介绍统计中常用的一些基本概念。
本章二、主要术语1. 统计学:收集、处理、分析、解释数据并从数据中得出结论的科学。
2. 描述统计:研究数据收集、处理和描述的统计学分支。
3. 推断统计:研究如何利用样本数据来推断总体特征的统计学分支。
4. 分类数据:只能归于某一类别的非数字型数据。
5. 顺序数据:只能归于某一有序类别的非数字型数据。
6. 数值型数据:按数字尺度测量的观察值。
7. 观测数据:通过调查或观测而收集到的数据。
8. 实验数据:在实验中控制实验对象而收集到的数据。
9. 截面数据:在相同或近似相同的时间点上收集的数据。
10. 时间序列数据:在不同时间上收集到的数据。
11. 抽样调查:从总体中随机抽取一部分单位作为样本进行调查,并根据样本调查结果来推断总体特征的数据收集方法。
12. 普查:为特定目的而专门组织的全面调查。
13. 总体:包含所研究的全部个体(数据)的集合。
14. 样本:从总体中抽取的一部分元素的集合。
15. 样本容量:也称样本量,是构成样本的元素数目。
16. 参数:用来描述总体特征的概括性数字度量。
17. 统计量:用来描述样本特征的概括性数字度量。
18. 变量:说明现象某种特征的概念。
19. 分类变量:说明事物类别的一个名称。
20. 顺序变量:说明事物有序类别的一个名称。
21. 数值型变量:说明事物数字特征的一个名称。
22. 离散型变量:只能取可数值的变量。
23. 连续型变量:可以在一个或多个区间中取任何值的变量。
四、习题答案1. D2. D3. A4. B5. A6. D7. C8. B9. A10.A11.C、12.C13.B14.A15.C16.D17.C18.A19.C20.D21.A22.C23.C24.B25.D26.C27.B28.D29.A30.D31.A32.B33.C34.A35.A36.A37.D38.B39.B40.C41.C42.D43.C44.D45.A46.B47.C48.A49.C50.D51.A52.C53.D54.A55.B 第2章数据的图表展示一、学习指导数据的图表展示是应用统计的基本技能。
本章首先介绍数据的预处理方法,然后介绍不同类型数据的整理与图示方法,最后介绍图表的合理使用问题。
本章各节的主要内容和学习要点如下表所示。
二、主要术语24. 频数:落在某一特定类别(或组)中的数据个数。
25. 频数分布:数据在各类别(或组)中的分配。
26. 比例:一个样本(或总体)中各个部分的数据与全部数据之比。
27. 比率:样本(或总体)中各不同类别数值之间的比值。
28. 累积频数:将各有序类别或组的频数逐级累加起来得到的频数。
29. 数据分组:根据统计研究的需要,将原始数据按照某种标准划分成不同的组别。
30. 组距分组:将全部变量值依次划分为若干个区间,并将这一区间的变量值作为一组。
31. 组距:一个组的上限与下限的差。
32. 组中值:每一组的下限和上限之间的中点值,即组中值=(下限值+上限值)/2。
33. 直方图:用矩形的宽度和高度(即面积)来表示频数分布的图形。
34. 茎叶图:由“茎”和“叶”两部分组成的、反应原始数据分布的图形。
35. 箱线图:由一组数据的最大值、最小值、中位数和两个四分位数5个特征值绘制而成的、反应原始数据分布的图形。
四、习题答案1. C2. A3. B4. C5. D6. B7. C 8. B9. B10.C11.A12.B13.B14.C15.C16.B17.D18.D19.C20.B21.C22.D23.D24.B25.D26.B27.B28.D29.D30.C31.B32.C33.C34.A35.B第3章数据的概括性度量一、学习指导数据分布的特征可以从三个方面进行描述:一是分布的集中趋势,反映各数据向其中心值靠拢或聚集的程度;二是分布的离散程度,反映各数据远离其中心值的趋势;三是分布的形状,反映数据分布偏斜程度和峰度。
本章将从数据的不同类型出发,分别介绍集中趋势测度值的计算方法、特点及其应用场合。
本章各节的主要内容和学习要点如下表所示。
二、主要术语和公式(一)主要术语M表示。
1. 众数:一组数据中出现频数最多的变量值,用oM表示。
2. 中位数:一组数据排序后处于中间位置上的变量值,用e3. 四分位数:一组数据排序后处于25%和75%位置上的值。
4. 平均数:一组数据相加后除以数据的个数而得到的结果。
G表示。
5. 几何平均数:n个变量值乘积的n次方根,用m6. 异众比率:非众数组的频数占总频数的比率。
7. 四分位差:也称为内距或四分间距,上四分位数与下四分位数之差。
8. 极差:也称全距,一组数据的最大值与最小值之差。
9. 平均差:也称平均绝对离差,各变量值与其平均数离差绝对值的平均数。
10. 方差:各变量值与其平均数离差平方的平均数。
11. 标准差:方差的平方根。
12. 标准分数:变量值与其平均数的离差除以标准差后的值。
13. 离散系数:也称为变异系数,一组数据的标准差与其相应的平均数之比。
14. 偏态:数据分布的不对称性。
15. 偏态系数:对数据分布不对称性的度量值。
16. 峰态:数据分布的平峰或尖峰程度。
17. 峰态系数:对数据分布峰态的度量值。
(二)主要公式四、习题答案1. A2. C3. B4. C5. D6. B7. D8. A9. A10.C11.B12.C13.A14.B15.A16.B17.A18.B 19.C20.A21.B22.C23.C24.C25.C26.D27.A28.A29.B30.B31.A32.A33.B34.B35.A36.B37.A38.C39.B40.A41.A42.B43.B44.A45.B46.A47.C48.D49.B50.A51.C52.D53.B54.D55.B56.A57.B58.D59.A60.B61.C62.D63.A64.C65.D66.D67.C68.B69.D70.D71.A72.B73.D74.C75.A76.D77.D78.A79.A80.C81.D82.D83.A84.A85.A86.D第4章抽样与参数估计一、学习指导参数估计是推断统计的重要内容之一,它是在抽样及抽样分布的基础上,根据样本统计量来推断我们所关心的总体参数。
本章首先介绍抽样分布的有关知识,然后讨论参数估计的一般问题,最后介绍一个总体参数估计的基本方法和参数估计中样本容量的确定问题。
本章各节的主要内容和学习要点如下表所示。
二、主要术语和公式(一)主要术语36. 简单随机抽样:也称纯随机抽样,它是从含有N个元素的总体中,抽取n个元素作为样本,使得总体中的每一个元素都有相同的机会(概率)被抽中。
37. 简单随机样本:从含有N个元素的总体中,抽取n个元素作为样本,使得总体中每一个样本量为n的样本都有相同的机会(概率)被抽中。
38. 重复抽样:从总体中抽取一个元素后,把这个元素放回到总体中再抽取第二个元素,直至抽取n个元素为止。
39. 不重复抽样:一个元素被抽中后不再放回总体,而是从所剩元素中抽取第二个元素,直到抽取n个元素为止。
40. 分层抽样:也称分类抽样,它是在抽样之前先将总体的元素划分为若干层(类),然后从各个层中抽取一定数量的元素组成一个样本。
41. 系统抽样:也称等距抽样或机械抽样,它是先将总体中的各元素按某种顺序排列,并按某种规则确定一个随机起点;然后,每隔一定的间隔抽取一个元素,直至抽取n个元素形成一个样本。
42. 整群抽样:先将总体划分成若干群,然后以群作为抽样单位从中抽取部分群,随后再对抽中的各个群中所包含的所有元素进行观察。
43. 抽样分布:在重复选取样本量为n的样本时,由样本统计量的所有可能取值形成的相对频数分布。
44. 样本均值的抽样分布:在重复选取样本量为n的样本时,由样本均值的所有可能取值形成的相对频数分布。
45. 样本比例抽样分布:在重复选取样本量为n的样本时,由样本比例的所有可能取值形成的相对频数分布。
46. 标准误差:也称为标准误,它是样本统计量的抽样分布的标准差。
47. 估计标准误差:若计算标准误时所涉及的总体参数未知,可用样本统计量代替计算的标准误。
48. 估计量:用来估计总体参数的统计量的名称,用符号θˆ表示。
49. 估计值:用来估计总体参数时计算出来的估计量的具体数值。
50. 点估计:用样本统计量θˆ的某个取值直接作为总体参数θ的估计值。
51. 区间估计:在点估计的基础上,给出总体参数估计的一个范围。
52. 置信区间:由样本统计量所构造的总体参数的估计区间。
53. 置信水平:也称为置信系数,它是将构造置信区间的步骤重复多次后,置信区间中包含总体参数真值的次数所占的比率。
(二)主要公式四、习题答案87.A88.B89.A90.B91.B92.C93.D94.C95.A96.C97.A98.A99.C 100. A 101. D 102. B 103. D 104. B 105. B 106. B 107. A 108. A 109. A 110. D 111. D 112. B 113. C 114. C 115. B 116. B 117. B 118. D 119. D 120. C 121. B122. A123. B124. D125. B126. A127. C128. A129. B130. A131. C132. D133. C134. B135. D136. C137. A138. A139. D140. A141. B142. C143. A144. C145. B146. A147. A148. A149. A150. A151. A152. A153. B154. A155. A156. B157. C158. C159. D160. B161. D162. D163. C164. C165. B166. C167. D168. D169. A170. B171. C172. A173. A174. C175. C176. C177. B178. A179. B180. B181. A182. D183. C184. A185. B186. B187. C188. B189. C190. A191. B192. C193. A194. D195. A196. B197. C198. A199. A200. A201. A202. A203. C204. B205. B206. A207. C208. C209. B210. C211. C212. B213. C214. B215. A216. B217. A218. A219. A220. C221. C222. D223. B224. A225. A226. D227. C228. B229. A230. A231. B232. B233. B234. C235. B236. B237. D238. A239. B240. B241. C242. D第5章假设检验一、学习指导假设检验是推断统计的另一项重要内容,它是利用样本信息判断假设是否成立的一种统计方法。