中考数学图表信息题汇编

合集下载

中考数学常见的统计图表试题练习

中考数学常见的统计图表试题练习

中考数学常见的统计图表试题练习中考数学常见的统计图表试题练习一、选择题1.甲校女生占全校总人数的50%,乙校男生占全校总人数的50%,则女生人数( )(A)甲校多于乙校. (B)甲校与乙校一样多.(C)甲校少于乙校. (D)不能确定.2.某制鞋厂每日生产童鞋总量是生产成人鞋总量的,则每日生产童鞋的量占每日生产总量的( )(A) 66.6%. (B)60%. (C) 40%. (D) 33.3%.3.我国五座名山的海拔高度如下表:山名泰山华山黄山庐山峨眉山海拔(米) 1524 2019 1873 1500 3099根据表中的数据作成统计图,以便更清楚地对几座名山的高度进行比较应选用( )(A)扇形图. (B)条形图. (C)折线图. (D)直方图.4.甲、乙二人参加某体育项目训练,为了便于研究,把最近五次训练成绩分别用实线和虚线连接,如图,下面的结论错误的是( )(A)乙的第二次成绩与第五次成绩相同.(B)第三次测试甲的成绩与乙的成绩相同.(C)第四次测试甲的成绩比乙的成绩多2分.(D)五次测试甲的成绩都比乙的成绩高.二、填空题 (第4题)5.在整数112221112222111122222中,数字1和2出现的频率分别为____________.6.在一次三好学生的评选活动中,得票结果如下表所示(总票数为50)后选人小林小明小华小红唱票正字记录正正正得票数 21 14上表数据显示,小明的得票频数是 ;小林的得票频率是,得票频率最低的是 .7.甲校共有学生1200名,其中女生占40%,则女生有人;乙校共有学生1100名,其中男生占50%,则女生有人;甲校女生比乙校 .(填多或少)8.学校统计全校各年级人数及总人数,应选用统计图.9.××局统计一昼夜气温情况,应选用统计图.10.学生统计某一天中睡觉、学习、活动、吃饭及其他活动在一天中所占的百分比,应选用统计图.11.为了调查居民生活环境情况,××局对所辖的20户居民进行噪音水平调查,应选用___________统计图.12.根据频数分布直方图填空.(1)总共统计了名学生的心跳情况;(2) 次数段的学生数最多,约占 %;(3)如果每半分钟心跳30~39次属于正常范围,那么心跳次数属于正常范围的学生约占 %.三、解答题 (第12题)13.某班有50名学生,他们有的步行、有的骑自行车、有的乘车上学,根据以下信息完成统计表:上学方式步行骑自行车乘车正字法记录正正频数 15频率 50%14.观察地球陆地面积分布统计图,并回答问题:(1)全世界共有几大洲,哪个洲的面积最大?(2)哪两个洲的面积之和最接近地球陆地面积的一半?(3)图中每一个扇形分别代表了什么?所有的百分比之和是多少?(4)你能从图中知道地球陆地总面积是多少吗?(5)从图中你还能得到什么信息?15.如图是小明画出的雨季中某地某星期降雨量的条形图.(1)哪一天降雨量最多?(2)哪一天可能是晴天?(3)这个星期的总降雨量大概有多少?(4)如果日降雨量在25毫米以上为大雨,那么这个星期哪几天在下大雨?16.某晚报百姓热线一周内共接到热线电话80个,其中奇闻轶事占6.25%,交通道路占16.25%,日常消费投诉占21.25%,环境保护占31.25%,房屋建筑占8.75%,好人好事占16.25%.(1)列出百姓热线在这一星期中所接电话的统计表;(2)请绘制在这一星期中百姓热线所接各类电话的条形图.17.解放以来,我国的国内生产总值(GDP)一直呈递增趋势,1952年只有679亿元,1962年上升到1149.3亿元,1970年上升到2252.7亿元,1980年上升到4517.8亿元,1990年上升到18547.9亿元,2019年上升到89404亿元.(1)设计一张统计表,简明地表达这一段文字信息;(2)设计一张折线图,直观地表明这种递增趋势;(3)从上述两张图表中,你能得出哪些结论?18.如图,这是一幅中国城市数量统计图,请根据上面的数据制成折线图,并比较一下哪种图更能体现中国城市建设的发展情况.19.下图表示的是某班同学衣服上口袋的数目:(1)从图中是否能够得出以下信息?①只有4个人的衣服上有4个口袋;②只有1个人的衣服上有8个口袋;③只有3个人的衣服上有5个口袋;(2)根据上图填写下面的频数分布表,并绘制频数分布直方图.单元学习评价七(几种常见的统计图表)一、选择题1.D2.C3.B4.Dw二、填空题5.43%、57%(分数也可以)6.10,0.42,小华7.480,550,少8.条形9.折线 10.扇形 11.直方 12.(1)27 (2)30~33,25.9 (3)55.6三、解答题13.14.(1)7,亚洲.(2)亚洲和非洲.(3)代表各大洲陆地面积约占地球陆地面积的百分比,1.(4)不能.(5)大洋洲的面积最小等.15.(1)星期二.(2)星期六.(3)150mm.(4)星期一、星期二.16.统计表和条形图如下:17.(1)如下表.(2)如下图.解放后我国GDP统计表(3)从表和图中,我们能得出一些明显结论:我国国内生产总值总体上呈现增长的趋势,从1952年到1980年增长速度比较缓慢,从1980年以后,增长的速度明显加快,尤其在1990年到2019年,发展速度迅猛.18.图略,折线图更能体现中国城市建设的发展情况.19.(1)能得出①、③,不能得出②.(2)略.。

(中考数学专题)图表信息专题.doc

(中考数学专题)图表信息专题.doc

图表信息专题侯怀有图表信息指的是问题的呈现方式,具体来说,就是用文字、图形(图案)、图彖、表格 等手段来表达数学信息,设计问题悄境,让学生运用阅读、整理、分析、加工、处理等技能 搜集信息和处理信息,进而解决问题般地,可分为图象信息型、表格信息型、统计图信 息型等.一、图彖信息题 两数图象能直观地反映两数的性质和变化规律,解题时,需要观察所给图象,把所给的图象信息进行分类、提取和处理,进而解决问题.例1 (2014-绍兴)已知叩、乙两地相距90 km, A, B 两人沿同 一公路从甲地出发到乙地,A 骑摩托车,B 骑电动车,图1屮DE, OC 分别表示A, B离开甲地的路程s (km)与时间t (h)的函数关系的图 象,根据图象解答下列问题.(1)A 比B 后出发儿个小时? B 的速度 是多少? (2)在B 出发后儿小时,两人相遇?解析:(1)由图可知,A 比B 后出发1小时;B 的速度为604-3= 图1 20 (km/h).(2)由图可知点 D (1, 0), C (3, 60), E (3, 90).设OC 的解析式为s=kt,把C (3, 60)代入,得3k=60,解得k=20,所以OC 的解析 式为s=20t. I + 兀=0 设DE 的解析式为s=mt+n,把D(l, 0), E(3, 90)代入,得彳- 3m + = 90所以DE 的解析式为s=45t-45. 山题意得J s = 20t, 解得< s = 45t —45, 9 所以B 出发匕小时后两人相遇.5点评:止确理解函数图彖横纵坐标表示的意义,准确识图并获 取信息是解题的关键.跟踪练习1 • (2014*兰州)二次函数y=ax 2+bx+c ( aH 0)的图象如图所示,对称轴是x=l,则下列四个结论错误的是( )二、表格信息题表格信息题是以表格的形式呈现相关信息•解题时,要通过表格建立数据进行收集、整理、得出与解题有关的信息,建立相关的数学模型,从而解决问题.例2 (2014-广安)广安某水果点计划购进甲、乙两种新岀产的水果共140千克,这两 种水果的进价、售价如表所示:9 t =—, 5 s = 20.A. c>0B. 2a+b=0 第1题图C. b 2-4ac>0D. a-b+c> 0(1)若该水果店预计进货款为1000元,则这两种水果各购进多少千克?(2)若该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,应怎样安排进货才能使水果点在销售完这批水果时获利最多?此时利润为多少元?解析:(1)设购进甲种水果x千克,则购进乙种水果(140-x)千克.根据题意可得5兀+9 (140 - x) =1000,解得%=65.所以140 - x=75.答:购进甲种水果65千克,乙种水果75千克.(2)由图表可得:甲种水果每千克利润为3元,乙种水果每千克利润为4元,设总利润为W,由题意可得W=3x+4(140-x) =-x+560.因为-K0,所以x越小W越大.因为该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,所以140・疋3兀,解得总35.所以当尸35时,W城大=- 35+560=525 (元),故140・35=105 (千克).答:当购进甲种水果35千克,乙种水果105千克时,此时利润最大为525元.点评:解题的关键是读懂题目的要求和表格中的数据所表示的含义.跟踪训练:2.(2014-常州)某小商场以每件20元的价格购进一种服装,先试销一周,试销期间每天的销罐t (件)与每件的销售价x (元/件)如下表:假定试销中每天的销售量t (件)与销售价x (元/件)之间满足一次函数.(1)试求t与xZ间的函数关系式;(2)在商品不积压且不考虑其他因素的条件下,每件服装的销售定价为多少时,该小商场销售这种服装每犬获得的毛利润最大?每犬的最大毛利润是多少?(注:每件服装销售的毛利润=每件服装的销售价■每件服装的进货价)三、统计图信息题统计图信息型问题是以统计图表为载体的信息问题.例3 (201牛凉山州)州教育局为了解我州八年级学生参加社会实践活动情况,随机抽查了某县部分八年级学生第一学期参加社会实践活动的天数,并川得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图(如图1)请根据图屮提供的信息,回答下列问题:(1)a=_%,并写出该扇形所对圆心角的度数为—,请补全条形图.(2)在这次抽样调查中,众数和中位数分别是多少?(3)如果该县共冇八年级学生2000人,请你佔计“活动时间不少于7尺啲学生人数大约冇多少人?解析:(l)a=l・(40%+20%+25%+5%) =10%,所对的圆心角度数为360°x 10%=36°, 被抽查的学生人数为240一40%=600, 8天的人数为600“0%=60,补全统计图如图2所示:(2)参加社会实践活动5天的最多,所以,众数是5天.600人中,按照参加社会实践活动的天数从少到多排列,笫300人和301人都是6天,所以,中位数是6犬.(3)2000x (25%+10%+5%) =2000x40%=800.所以“活动时间不少于7天”的学生人数大约冇800人.点评:读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.跟踪训练:3.(2014-成都)在开展“国学诵读”活动中,某校为了解全校1300名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图•根据图中数据。

2019-中考数学试题分类汇编解析阅读理解、图表信息题

2019-中考数学试题分类汇编解析阅读理解、图表信息题

2019-2020 年中考数学试题分类汇编解析阅读理解、图表信息题一、选择题1. ( 2014?山东潍坊,第 12 题 3 分)如图,已知正方形ABCD ,极点 A(1 ,3)、B(1,1)、C(3,1).规定“把正方形A BCD 先沿 x 轴翻折,再向左平移 1 个单位”为一次变换.这样这样,连续经过2014 次变换后,正方形ABCD 的对角线交点M 的坐标变为 ()A . (— 2012,2)B.(一 2012,一 2) C. (— 2013,— 2) D. ( — 2013,2)考点:坐标与图形变化-对称;坐标与图形变化-平移.专题:规律型.解析:第一求出正方形对角线交点坐标分别是( 2, 2),尔后依照题意求得第 1 次、 2 次、 3 次变换后的点 M 的对应点的坐标,即可得规律.解答:∵正方形 ABCD ,点 A(1, 3)、 B(1,1)、 C(3,1).∴ M 的坐标变为 (2,2) ∴依照题意得:第 1 次变换后的点 M 的对应点的坐标为( 2- 1,-2),即( 1,-2),第2 次变换后的点 M 的对应点的坐标为:( 2-2,2),即( 0, 2),第3 次变换后的点 M 的对应点的坐标为( 2- 3,-2),即(-1,-2),第 2014 次变换后的点 M 的对应点的为坐标为(2-2014 , 2),即(-2012, 2)故答案为A.谈论:此题观察了对称与平移的性质.此题难度较大,属于规律性题目,注意获取规律:第n 次变换后的点M 的对应点的坐标为:当n 为奇数时为(2- n,- 2),当 n 为偶数时为( 2-n, 2)是解此题的要点.2.( 2014 山东济南,第14 题, 3 分)现定义一种变换:关于一个由有限个数组成的序列S0,将其中的每个数换成该数在S0中出现的次数,可获取一个新序列.比方序列S0:(4,2,3,4, 2),经过变换可获取新序列S1:(2,2,1,2,2).若 S0能够为任意序列,则下面的序列能够作为 S1的是A.( 1, 2, 1, 2, 2)B.( 2,2, 2, 3,3)C.( 1,1, 2, 2, 3)D.( 1,2, 1, 1, 2)【解析】由于序列S0含5个数,于是新序列中不能够有 3 个 2,因此 A , B 中所给序列不能够作为 S1;又若是S1中有3,则S1中应有3个3,因此C中所给序列也不能够作为S1,应选D.二、填空题1.( 2014?四川宜宾,第16 题, 3 分)规定: sin(﹣ x)=﹣ sinx,cos(﹣ x)=cosx,sin( x+y)=sinx?cosy+cosx?siny.据此判断以低等式建立的是②③④(写出所有正确的序号)①cos(﹣ 60°)=﹣;② sin75°=;③sin2x=2 sinx?cosx;④sin( x﹣ y) =sinx?cosy﹣ cosx?siny.考点:锐角三角函数的定义;特别角的三角函数值.专题:新定义.解析:依照已知中的定义以及特别角的三角函数值即可判断.解答:解:① cos(﹣ 60°) =cos60°=,命题错误;② sin75°=sin( 30°+45°)=sin30°?cos45°+cos30°?sin45°=× + × =+ =,命题正确;③ sin2x=sinx?cosx+cosx?sinx═2sinx?cosx,故命题正确;④ sin( x﹣ y)=sinx?cos(﹣ y)+cosx?sin(﹣ y)=sinx?cosy﹣ cosx?siny,命题正确.故答案是:②③④.谈论:此题观察锐角三角函数以及特别角的三角函数值,正确理解题目中的定义是关键.三、解答题1. ( 2014?四川巴中,第 22 题 5 分)定义新运算:关于任意实数a,b 都有 a△ b=ab﹣ a﹣b+1,等式右边是平时的加法、减法及乘法运算,比方: 2△4=2×4﹣ 2﹣ 4+1=8 ﹣6+1=3 ,请依照上述知识解决问题:若 3△ x 的值大于 5 而小于 9,求 x 的取值范围.考点:新定义.解析:第一依照运算的定义化简3△x,则能够获取关于x 的不等式组,即可求解.解答: 3△ x=3 x﹣ 3﹣ x+1=2 x﹣ 2,依照题意得:,解得:<x<.谈论:此题观察了一元一次不等式组的解法,正确理解运算的定义是要点.2.( 2014?湖南张家界,第 23 题, 8 分)阅读资料:解分式不等式< 0解:依照实数的除法法规:同号两数相除得正数,异号两数相除得负数,因此,原不等式可转变为:①或②解①得:无解,解②得:﹣ 2< x < 1 因此原不等式的解集是﹣2< x < 1请模拟上述方法解以下分式不等式:( 1)≤0( 2)> 0.考点:一元一次不等式组的应用. 专题:新定义.解析:先把不等式转变为不等式组,尔后经过解不等式组来求分式不等式.解答:解:( 1)依照实数的除法法规:同号两数相除得正数,异号两数相除得负数,因此,原不等式可转变为:①或②解①得:无解, 解②得:﹣< x ≤4因此原不等式的解集是:﹣< x ≤4;( 2)依照实数的除法法规:同号两数相除得正数,异号两数相除得负数,因此,原不等式可转变为: ①或②解①得: x > 3, 解②得: x <﹣ 2. 因此原不等式的解集是:x > 3 或 x <﹣ 2.谈论:此题观察了一元一次不等式组的应用.此题经过资料解析,先求出不等式组中每个不等式的解集,再求其公共部分即可.3. (2014?江西抚州,第 24 题, 10 分)【试题背景】已知:∥m ∥ n ∥,平行线与 m 、 m 与 n 、 n 与之间的距离分别为 d 1、 d 2、d ,且 d1 = d 3= 1 , d2= 2 . 我们把四个极点分别在、m 、 n 、这四条平行线上的四边3形称为“格线四边形”.【研究 1】⑴如图 1,正方形ABCD为“格线四边形” ,BE l 于点E,BE的反向延长线交直线于点 F .求正方形ABCD 的边长.【研究 2】⑵矩形ABCD为“格线四边形” ,其长:宽= 2:1,则矩形ABCD的宽为37或 13 . (直接写出结果即可) 2【研究3】⑶ 如图2ABCD为“格线四边形”且∠ADC =60°,△ AEF 是等边,菱形三角形, AE k于点E ,∠ AFD =90°,直线 DF 分别交直线、于点G、M .求证: EC DF .【拓展】⑷如图 3,∥,等边三角形ABC的极点A、B分别落在直线、上,AB k 于点 B ,且 AB =4,∠ACD=90°,直线CD分别交直线、于点G、 M ,点 D 、 E 分别是线段GM、 BM 上的动点,且向来保持AD = AE ,DH l 于点H.猜想: DH 在什么范围内,BC∥ DE ?并说明此时BC ∥DE的原由.解析: (1)如图1,∵ BE⊥l , l ∥k,∴∠ AEB=∠ BFC=90° ,又四边形 ABCD是正方形,∴∠ 1+∠ 2=90°,AB=BC,∵∠2+∠3=90° , ∴ ∠ 1=∠3,∴⊿ ABE≌⊿ BCF(AAS),1222∴ AE=BF=1 , ∵ BE=d+d =3 ,∴ AB= 3110 ,∴正方形的边长是10 .(2)如图 2,3 ,⊿ABE∽⊿ BCF,BF BC2∴AB1或AEBF BC1AE AB2∵ BF=d3=1 ,1或 AE2∴ AE=2∴ AB=321237或22AB=322213∴矩形 ABCD的宽为3713 .或2(注意:要分 2 种情况谈论)(3)如图4,连接 AC,∵四边形ABCD是菱形,∴AD=DC,又∠ ADC=60° ,∴⊿ ADC是等边三角形,∴ AD=AC,∵ AE⊥ k ,∠AFD=90°,∴∠ AEC=∠ AFD=90°,∵⊿ AEF是等边三角形,∴AF=AE,∴⊿ AFD≌⊿ AEC(HL),∴EC=DF.(4)如图5,当2< DH< 4 时, BC∥ DE .原由以下:连接 AM,∵ AB⊥k , ∠ACD=90°,∴∠ ABE=∠ ACD=90° ,∵⊿ ABC是等边三角形,∴AB=AC ,已知 AE=AD,∴⊿ ABE≌⊿ ACD(HL),∴ BE=CD;在Rt ⊿ABM和 Rt⊿ ACM中,AB AC,∴ Rt ⊿ ABM≌ Rt ⊿ ACM(HL),AM AM∴BM=CM ;∴ME=MD,ME MD∴MB MC,∴ ED∥BC.4. ( 2014?浙江杭州,第23 题, 12 分)复习课中,教师给出关于x 的函数y=2kx 2﹣( 4kx+1 )x﹣ k+1 (k 是实数).教师:请独立思虑,并把研究发现的与该函数有关的结论(性质)写到黑板上.学生思虑后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选出以下四条:①存在函数,其图象经过(1, 0)点;② 函数图象与坐标轴总有三个不同样的交点;③当 x>1 时,不是y 随 x 的增大而增大就是y 随 x 的增大而减小;④ 若函数有最大值,则最大值比为正数,若函数有最小值,则最小值比为负数.教师:请你分别判断四条结论的真假,并给出原由.最后简单写出解决问题时所用的数学方法.考点 :二次函数 合解析: ① 将( 1,0)点代入函数,解出k 的 即可作出判断;② 第一考 ,函数 一次函数的情况,从而可判断 假; ③ 依照二次函数的增减性,即可作出判断;④ 当 k=0 ,函数 一次函数,无最大之和最小 ,当 k ≠0 ,函数 抛物 ,求出点的 坐 表达式,即可作出判断.解答:解: ① 真,将( 1,0)代入可得:2k ( 4k+1 ) k+1=0 ,解得: k=0. 运用方程思想;② 假,反例: k=0 ,只有两个交点.运用 反例的方法;③ 假,如 k=1 ,=,当 x > 1 ,先减后增;运用 反例的方法;④ 真,当 k=0 ,函数无最大、最小 ;k ≠0 , y 最 ==,∴ 当 k >0 ,有最小 ,最小 ;当 k < 0 ,有最大 ,最大 正.运用分 思想.点 :本 考 了二次函数的 合,立意新 , 合观察了数学解 程中 常用到的几种解 方法,同学 注意思虑、理解, 度一般.5. ( ( 2014 年河南 )21.10 分)某商店 售 10 台 A 型和 20 台 B 型 的利4000 元,售 20 台 A 型和 10 台 B 型 的利 3500 元.( 1)求每台 A 型 和 B 型 的 售利 ;( 2) 商店 划一次 两种型号的 共100 台,其中 B 型 的 量不超A 型的 2 倍。

中考数学知识点训练题(图表信息型题).

中考数学知识点训练题(图表信息型题).

中考数学图表信息型题【复习要点】1、图表信息题的类型有:(1图象信息型;(2图形信息型;(3统计信息型;(4生活情境型。

2、方法与技巧:(1观察图象,获取有用信息;(2对获得信息加以整合,弄清各量之间的关系;(3选择适当的数学工具;通过建模解决问题。

【实弹射击】1、二次函数2y ax bx c =++的图象如图1所示,点(,2Q n一点,且AQBQ ⊥,则a 的值是(A 、13-B 、12- C 、1- D 、2-2、如图2,惠州市某一天内的气温变化图,根据图,下列说法中错误的是( A 、这一天中最高气温是24℃.B 、这一天中最高气温与最低气温的差为16℃C 、这一天中2时至14时之间的气温在逐渐升高D 、这一天中只有14时至24时之间的气温在逐渐降低3、用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地板,则第(3个图形中有黑色瓷砖块,第n 个图形中需要黑色瓷砖________块(用含n 的代数式表示.(1 (2 (34、为参加电脑汉字输入比赛,甲和乙两位同学进行了6次测试,6次测试成绩(每分钟输入汉字个数及部分统计数据如下:则甲的方差乙的方差,所以的成绩比较稳定。

5、右边条形图描述了某班随机抽取的部分学生一周内阅读课外书籍的时间, 请找出这些学生阅读课外书籍所用时间的中位数是______________.6、七(1班学生参加学校组织的智力竞赛,老师将学生的成绩按10分的组距分段,统计出每个分数段出现的频数,填入频数分布表,并绘制分布直方图,如图示:(1频数分布表中 , 。

(2把频数分布直方图补充完整。

(3学校设定成绩在69.5分以上的学生获得一等奖或二等奖,一等奖奖励笔记本15本及奖金100元,二等奖奖励笔记本10本久奖金80元。

已知这部分学生共获得笔记本335本,请你求出他们共获的奖金。

7、扁记早茶店每天的利润y (元与售出的早点x (份之间的函数关系。

如图所示,当每天售出的早点超过150份,需要增加一名工人。

中考复习数学真题汇编15:统计图表(含答案)

中考复习数学真题汇编15:统计图表(含答案)

一、选择题1. (2015福建省福州市,5,3分)下列选项中,显示部分在总体中所占百分比的统计图是( ) A.扇形图 B.条形图 C.折线图 D.直方图 【答案】A2. (2015浙江省温州市,3,4分)某校学生参加体育兴趣小组情况的统计图如图所示,若参加人数最少的小组有25人,则参加人数最多的小组有( )A.25人B.35人C.40人D.100人【答案】C3. (2015内蒙古呼和浩特,8,3分)以下是某手机店1~4月份的两个统计图,分析统计图,对3、4月份三星手机的销售情况四个同学得出的以下四个结论,其中正确的为( )A. 4月份三星手机销售额为65万元B. 4月份三星手机销售额比3月份有所上升C. 4月份三星手机销售额比3月份有所下降D. 3月份与4月份的三星手机销售额无法比较,只能比较该店销售总额 【答案】B4. (2015年江苏扬州市)如图是某校学生参加课外兴趣小组的人数占总人数比例的统计图,则参加人数最多的课外兴趣小组是 ( )各月手机销售总额统计图三星手机销售额占该手机店 当月手机销售总额的百分比统计图A 、音乐组B 、美术组C 、体育组D 、科技组二、填空题 1.2. (2015四川省凉山州市,15,4分)小明同学根据全班同学的血型绘制了如图所示的扇形统计图,已知A 型血的有20人,则O 型血的有 人 【答案】10. 【解析】总人数为20÷40%=50人,O 型血的有50×(1﹣40%﹣30%﹣10%)=10人,故答案是10.3. (2015广东省广州市,12,3分)根据环保局公布的广州市2013年至2014年PM 2.5的主要来源的数据,制成扇形统计图(如图4),其中所占百分比最大的主要来源是 .(填主要来源的名称)【答案】机动车尾气【解析】用一个圆代表总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分在总体中所占百分比的大小,这样的统计图叫做扇形统计图.所以一看数据就知道是机动车尾气.4. (2015四川资阳,13,3分)某学校为了解本校学生课外阅读的情况,从全体学生中随机抽取了部分学生进行调查,并将调查结果绘制成右图统计表.已知该校全体学生人数为1200人,由此可以估计每周课外阅读时间在1~2(不含1)小时的学生有_________人.每周课外阅读时间(小时)0~11~2(不含1) 2~3(不含2)超过3 人 数 7 10 14 19【答案】240.21.7%11.5%20.6%19%8.2%8.6%10.4% 机动车尾气 工业工艺源 燃煤 其他 生物质燃烧 生活面源扬尘图41296301518181312b 3课时数 组)与 不等式(组)A一次方程 B 一次方程组C 不等式与不等式组 D二次方程 E分式方程图数与代数(内容) 课时数数与式 67 方程(组)与 不等式(组) a图实践与综合应用统计与概率空间与图形 数与代数 40%45%5%图5. (2014江苏省苏州市,13,3分)某学校在“你最喜爱的球类运动”调查中,随机调查了若干名学生(每名学生分别选了一项球类运动),并根据调查结果绘制了如图所示的扇形统计图.已知其中最喜欢羽毛球的人数比最喜欢乒乓球的人数少6人,则该校被调查的学生总人数为 ▲ 名.【答案】60【解析】最喜欢羽毛球的人数所占百分率比最喜欢乒乓球的人数所占百分率少10%,故被调查总人数为6÷105=60(人).6. (2015年湖南衡阳,22,6分)为了进一步了解义务教育阶段学生体质健康状况,教育部对我市某中学九年级的部分学生进行了体质抽测,体质抽测的结果分别为四个等级:优秀、良好、合格、不合格,根据调查结果绘制了下列两幅不完整的统计图,请你根据统计图提供的信息回答以下问题:(1)在扇形统计图中,“合格”的百分比为 ;(2)本次体质抽测中,抽测结果为“不合格”等级的学生有 人;(3)若该校九年级有400名学生,估计该校九年级体质为“不合格”等级的学生约有 人. 【答案】(1)40%;(2)16;(3)128【解析】解:(1)总人数=8÷16%=50人,合格百分比:20100%50=40%; (2)不合格的人数=50×32%=16人; (3)九年级不合格为数=400×32%=128人.三、解答题1. (2015浙江省丽水市,20,8分)某运动品牌店对第一季度A ,B 两款运动鞋的销售情况进行统计,两款运动鞋的销售量及总销售额如图所示:(第13题)20%30%40%乒乓球篮球羽毛球50606552销售量(双)A ,B 两款运动鞋销售量统计图6总销售额(万元)5A ,B 两款运动鞋总销售额统计图A B(1)一月份B款运动鞋的销售量是A款的45,则一月份B款运动鞋销售了多少双?(2)第一季度这两款运动鞋的销售单价保持不变,求三月份的总销售额(销售额=销售单价×销售量);(3)结合第一季度的销售情况,请你对这两款运动鞋的进货、销售等方面提出一条建议.【答案】解:(1)50×45=40(双).∴一月份B款运动鞋销售了40双.(2)设A,B两款运动鞋的销售单价分别为x元,y元.由题意可得504040000 605250000x yx y+⎧⎨+⎩==.解方程组得400500xy⎧⎨⎩==.∴三月份的总销售额为400×65+500×26=39000=3.9(万元).(3)答案不唯一,只要学生结合数据分析,言之有理即可.例如:从销售量来看,A款运动鞋销售量逐月增加,比B款运动鞋销售量大,建议多进A款运动鞋,少进或不进B款鞋.从总销售额来看,由于B款运动鞋销售量减少,导致总销售额减少,建议店里采取一些促销手段,增加B 款运动鞋的销售量.2.(2015四川省巴中市,26,10分)“中国梦”关系每个人的幸福生活,为展现巴中人追梦的风采,我市某中学举行“中国梦·我的梦”的演讲比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整.请你根据统计图解答下列问题.(1)参加比赛的学生人数共有名,在扇形统计图中,表示“D等级”的扇形的圆心角为度,图中m的值为;(2)补全条形统计图;(3)组委会决定从本次比赛中获得A等级的学生中,选出2名去参加市中学生演讲比赛.已知A等级中男生有1名,请用“列表”或“画树状图”的方法求出所选2名学生中恰好是一名男生和一名女生的概率.【答案】解:(1)根据统计图,可知A等级的有3人,占15%,∴参加比赛的共有3÷15%=20(人).∴C等级所占百分比为8=40%20,D等级所占百分比为4=20%20.∴m=40,D等级所占百分比为360°×20%=72°.(2)由题意,B等级所占百分比为1-15%-40%-20%=25%,∴B等级人数为20×25%=5(人),补全统计图如下所示.3.(2015山东省青岛市,17,6分)某中学为了了解学生每天完成家庭作业所用时间的情况,从每班抽取相同数量的学生进行调查,并将所得数据进行整理,制成条形统计图和扇形统计图如下:(1)补全条形统计图;(2)求扇形统计图中扇形D的圆心角的度数;(3)若该中学有2000名学生,请估计其中有多少名学生能在1.5小时内完成家庭作业?【答案】解:(1)∵10÷25%=40,∴B的人数为40-10-14-3-1=12.补全条形统计图如下:(2)∵1-25%-30%-35%-2.5%=7.5%,∴360°×7.5%=27°.∴扇形统计图中扇形D 的圆心角的度数为27°. (3)∵2000×35%=700,∴该中学有2000名学生中有700名学生能在1.5小时内完成家庭作业.4. (2015重庆B 卷,22,10分)某校七年级(1)班班主任对本班学生进行了“我最喜欢的课外活动”的调查,并将调查结果分为书法和绘画类(记为A )、音乐类(记为B )、球类(记为C )、其他类(记为D ).根据调查结果发现该班每个学生都进行了登记且只登记了一种自己最喜欢的课外活动.班主任根据调查情况把学生都进行了归类,并制作了如下两幅统计图,请你结合图中所给信息解答下列问题:(1)七年级(1)班学生总人数为_______人,扇形统计图中D 类所对应扇形的圆心角为_____度,请补全条形统计图;(2)学校将举行书法和绘画比赛,每班需派两名学生参加,A 类4名学生中有两名学生擅长书法,另两名擅长绘画.班主任现从A 类4名学生中随机抽取两名学生参加比赛,请你用列表或画树状图的方法求出抽到的两名学生恰好是一名擅长书法,另一名擅长绘画的概率.类别人数22题图”我最喜欢的课外活动“各类别人数占全班总人数的百分比的扇形统计图DCB25%A“我最喜欢的课外活动”各类别人数条形统计图141242018161412108642【答案】(1)48,105;(2)23【解析】解:(1)总人数=12÷25%=48人;D 类对应的圆心角的度数=360°×1448=105°. 类别人数18“我最喜欢的课外活动”各类别人数条形统计图141242018161412108642,则可列下表: A 1 A 1 A 2 A 2A 1 √ √ A 1 √ √ A 2 √ √ A 2√√∴由上表可得:82(123P =一名擅长书法一名擅长绘画)=5. 小军同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t ),并绘制了样本的频数分布表和频数分布直方图(如图). 月均用水量(单位:t )频数 百分比23x ≤<2 4% 34x ≤< 12 24% 45x ≤< 56x ≤< 10 20% 67x ≤< 12% 78x ≤<3 6% 89x ≤<24%(1)请根据题中已有的信息补全频数分布表和频数分布直方图;(2)如果家庭月均用水量“大于或等于4t 且小于7t ”为中等用水量家庭,请你通过样本估计总体中的中等用水量家庭大约有多少户?(3)从月均用水量在23x ≤<,89x ≤<这两个范围内的样本家庭中任意抽取2个,求抽取出的2个家庭来自不同范围的概率。

初三中考数学复习资料-能力加速度(专题-图表信息综合题)

初三中考数学复习资料-能力加速度(专题-图表信息综合题)

能力加速度一、精心选一选——慧眼识金1。

(2006江苏扬州中考,12)观察表一,寻找规律.表二、表三、表四分别是从表一中截取的一部分,其中a、b、c的值分别为1234…2468…36912…481216………………表一A。

20、29、30 B。

18、30、26C。

18、20、26 D。

18、30、28解析:本题实际是一个表格数字规律推理的题目。

(1)横等差、竖等差;(2)行与列的积得到表内的数.答案:B2.(2006四川重庆中考,8)观察市统计局公布的“十五"时期重庆市农村居民人均收入每年比上一年增长率的统计图(图2—7-3),下列说法正确的是()图2-7-3A。

2003年农村居民人均收入低于2002年B。

农村居民人均收入比上年增长率低于9%的有2年C。

农村居民人均收入最多是2004年D。

农村居民人均收入每年比上一年的增长率有大有小,但农村居民人均收入在持续增加解析:总体是在增长,A不对;B应当有三年;最多的应是2005年,C不对。

答案:D3.(2006江苏江阴中考,13)如图2-7-4,圆柱形开口杯底部固定在长方体水池底,向水池匀速注入水(倒在杯外),水池中水面高度是h,注水时间为t,则h与t之间的关系大致为图2—7-5中的( )图2—7—4图2-7—5解析:小杯子满时肯定有一段时间水面高度不变,变时先上升得快,后上升得慢。

答案:C4.(2006江苏扬州中考,8)图2—7—6四个统计图中,用来表示不同品种的奶牛的平均产奶量最为合适的是()图2—7—6解析:饼图不明显最好表示占的比例;折线表示增长好;B答案不易看、画.答案:D5。

(2006四川重庆中考,9)免交农业税,大大提高了农民的生产积极性,镇政府引导农民对生产的耨中土特产进行加工后,分为甲、乙、丙三种不同包装推向市场进行销售,其相关信息如下表:质量(克/袋)销售价(元/袋)包装成本费用(元/袋)甲400 4.80.5乙3003。

中考数学专项训练——图表信息

中考数学专项训练——图表信息

《图表信息型》专题图表信息问题主要考查学生收集信息和处理信息的能力,解答这类试题的关键是对图表信息认真分析、合理利用,按照题意要求,准确地输出信息。

图表信息型题目大致包括以下四种:表格信息题、图形图象信息题、统计图信息题、图画信息题,这些题型在《全程导航》134—137页里都有提及,本专题主要是补充下图象信息类型的题目。

例2、(07无锡)某人从甲地出发,骑摩托车去乙地,途中因车出现故障而停车修理,到达乙地时正好用了2小时,已知摩托车行驶的路程(S 千米)与行驶的时间t (小时)之间的函数关系由如图6—1的图象ABCD 给出,若这辆摩托车平均每行驶100千米的耗油量为2升,根据图中给出的信息,从甲地到乙地,这辆摩托车共耗油 升.1、近一个月来漳州市遭受暴雨袭击,九龙江水位上涨,小明以警戒水位为0点,用折线统计图表示某一天江水水位情况(如图)。

请你结合折线统计图判断一步下列叙述不正确的是〔 〕 A 、8时水位最高 B P 点表示12时水位高于警戒水位0.6米 C 、8时到16时水位都在下降 D 、、这一天水位均高于警戒水位2、假定甲、乙两人在一次赛跑中路程s 与时间t 的关系如图,那么(1)这是一次 米赛跑;(2)甲、乙两人中先到达终点的是 ;(3)乙在这次赛跑中的速度为 .3、小李以每千克0.8元的价格从批发市场购进若干千克西瓜到市场上销售,在销售了部分西瓜之后,余下的每千克降价0.4元,全部售完,销售金额与卖瓜的千克数之间的关系如图所示,那么小李赚了〔 〕A 、32元B 、36元C 、38元D 、44元4、如图,直角梯形ABCD 中,∠A=450,底边AB =5,高AD =3,点E 由点B 沿折线BCD向点D 移动,EM ⊥AB 于M ,EN ⊥AD 于N ,设BM =x ,矩形AMEN 的面积为y ,那么y 与x 之间的函数关系的图象大致是〔 〕5、下图(1)是某市6月上旬一周的天气情况,图(2)是根据这一周中每天的最高气 温绘制的折线统计图。

中考数学试题分类汇编(统计图表)

中考数学试题分类汇编(统计图表)

6.(2008福建福州)下列调查中,适合用全面调查方式的是()A.了解某班学生“50米跑”的成绩B.了解一批灯泡的使用寿命C.了解一批炮弹的杀伤半径D.了解一批袋装食品是否含有防腐剂18.(2008福建福州)(本题满分12分)某校为了了解九年级学生体育测试成绩情况,以九年(1)班学生的体育测试成绩为样本,按A B C D,,,四个等级进行统计,并将统计结果绘制如下两幅统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)(1)求出D级学生的人数占全班总人数的百分比;(2)求出扇形统计图中C级所在的扇形圆心角的度数;(3)该班学生体育测试成绩的中位数落在哪个等级内;(4)若该校九年级学生共有500人,请你估计这次考试中A级和B级的学生共有多少人?以下是河北省柳超的分类(2008年贵阳市)17.(本题满分10分)某校八年级(1)班50名学生参加2007年贵阳市数学质量监控考试,全班学生成绩71 74 78 80 82 83 85 86 88 90 91 92 94(分)人数 1 2 3 5 4 5 3 7 8 4 3 3 2(1)该班学生考试成绩的众数是.(3分)(2)该班学生考试成绩的中位数是.(4分)(3)该班张华同学在这次考试中的成绩是83分,能不能说张华同学的成绩处于全班中游偏上水平?试说明理由.(3分)(茂名)某文具店王经理统计了2008年1月至5月A、B、C这三种型号的钢笔平均每月的销售量,并绘制图1(不完整),销售这三种型号钢笔平均每月获得的总利润为600元,每种型号钢笔获得的利润分布情况如图2.已知A 、B 、C 这三种型号钢笔每支的利润分别是0.5元、0.6元、1.2元,请你结合图中的信息,解答下列问题:(1)求出C 种型号钢笔平均每月的销售量,并将图1补充完整;(4分)(2)王经理计划6月份购进A 、B 、C 这三种型号钢笔共900支,请你结合1月至5月平均每月的销售情况(不考虑其它因素),设计一个方案,使获得的利润最大,并说明理由.(4分)2.(2008年大连市)某鞋店试销一款女鞋,试销期间对不同颜色鞋的销售情况( )A .平均数B .众数C .中位数D .方差 3.(2008年大连市)随机从甲、乙两块试验田中各抽取100株麦苗测量高度,计算平均数和方差的结果为:13=甲x ,13=乙x ,6.3S 2=甲,8.15S 2=乙,则小麦长势比较整齐的试验田是4.(2008年南昌市)某次射击训练中,一小组的成绩如下表所示:若该小组的平均成绩为7.7环,则成绩为8环的人数是 .5.(2008年南昌市)为了了解甲、乙两同学对“字的个数”的估计能力,现场对他们进行了5次测试,测试方法是:拿出一张报纸,随意用笔画一个圈,让他们看了一眼后迅速说出圈内有多少个汉字,但不同的是:甲同学每次估计完字数后不告诉他圈内的实际字数,乙同学每次估计完字数后告诉他圈内的实际字数.根据甲、乙两同学5次估计情况可绘制统计图如下:(1)结合上图提供的信息,就甲、乙两同学分别写出两条不同类型......的正确结论; (2)若对甲、乙两同学进行第6次测试,当所圈出的实际字数为100个时,请你用统计知识分别预测他们估计字数的偏差率,并根据预测的偏差率,推算出他们估计的字数所在的范围.6.(2008年沈阳市)在学校组织的“喜迎奥运,知荣明耻,文明出行”的知识竞赛中,每班参加比赛的人数相同,成绩分为A B C D ,,,四个等级,其中相应等级的得分依次记为100分,90分,80分,70分,学校将某年级的一班和二班的成绩整理并绘制成如下的统计图:第23题图一班竞赛成绩统计二班竞赛成绩统计图请你根据以上提供的信息解答下列问题:(1)此次竞赛中二班成绩在C级以上(包括C级)的人数为;(2(3①从平均数和中位数的角度来比较一班和二班的成绩;②从平均数和众数的角度来比较一班和二班的成绩;③从B级以上(包括B级)的人数的角度来比较一班和二班的成绩.解析:本题主要考察统计知识。

2020年九年级数学中考复习——图表信息题专题训练(一)(有答案)

2020年九年级数学中考复习——图表信息题专题训练(一)(有答案)

2020中考复习——图表信息题专题训练(一)班级:___________姓名:___________ 得分:___________一、选择题1.某校八(1)班全体同学喜欢的球类运动如图所示,下列说法正确的是()A. 从图中可以直接看出喜欢各种球类的具体人数B. 从图中可以直接看出全班的总人数C. 从图中可以直接看出全班同学一学期来喜欢各种球类的变化情况D. 从图中可以直接看出全班同学现在喜欢各种球类人数的百分比2.某校机器人社团共有30名学生,他们的年龄分布如下表:年龄/岁13141516人数613由于表格污损,部分数据无法识别.在30名学生年龄这组数据中,可以确定的是()A. 平均数、中位数B. 平均数、方差C. 中位数、方差D. 众数、中位数3.某中学就周一早上学生到校的方式问题,对七年级的所有学生进行了一次调查,并将调查结果制作成了如下表格,则步行到校的学生频率为()七年级学生人数步行人数骑车人数乘公交人数其他方式人数30060913299A. 0.2B. 0.3C. 0.4D. 0.54.如图,利用相同的两块长方体木块测量一张桌子的高度,首先按图①方式放置,再交换两块木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是()1/ 15A. 73cmB. 74cmC. 75cmD. 76cm5.小明根据演讲比赛中8位评审所给的分数制作了如下表格:平均分中位数众数方差8.58.38.10.15如果去掉一个最高分和一个最低分,那么表格中数据一定不发生变化的是()A. 平均数B. 中位数C. 众数D. 方差6.某省受台风袭击,大部分地区发生强降雨,某河受暴雨袭击,一天的水位记录如下表所示:时间(时04812162024 )水位(m)2 2.534568观察表中数据,水位上升最快的时段是().A. 8~12时B. 12~16时C. 16~20时D. 20~24时7.某天小明骑自行车上学,途中因自行车发生故障,修车耽误一段时间后继续骑行,按时赶到了学校.下图描述了他上学时的情景,下列说法错误的是()A. 用了5分钟来修车B. 自行车发生故障时离家的距离为1000米C. 学校离家的距离为2000米D. 到达学校时的骑行时间为20分钟8.某烤鸡店在确定烤鸡的烤制时间时,主要依据的是下面表格的数据:A. 140B. 138C. 148D. 1609.已知A、B两地相距4千米,上午8:00,甲从A地出发步行到B地,上午8:20乙从B地出发骑自行车到A地,甲、乙两人离A地的距离(千米)与甲所用的时间(分)之间的关系如图所示.由图中的信息可知,乙到达A地的时间为()A. 上午8:30B. 上午8:35C. 上午8:40D. 上午8:4510.小明打算购买气球装扮“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图,则第三束气球的价格为()A. 16B. 16C. 14D. 13二、填空题11.新吴区举行迎五一歌咏比赛,组委会规定:任何一名参赛选手的成绩ⅹ需满足60≤ⅹ<100,赛后整理所有参赛选手的成绩如下表.根据表中提供的信息得到n=_________.3/ 1512.记录某足球队全年比赛结果(“胜”、“负”、“平”)的条形统计图和扇形统计图(不完整)如下:根据图中信息,该足球队全年比赛胜了______场.13.为监测某河道水质,进行了6次水质检测,绘制了如图的氨氮含量的折线统计图.若这6次水质检测氨氮含量平均数为1.5mg/L,则第3次检测得到的氨氮含量是______ mg/L.14.一次函数y=kx+b的图象如图所示,其中b=____,k=____.15.从1984年起,我国参加了多届夏季奥运会,取得了骄人的成绩.如图是根据第23届至30届夏季奥运会我国获得的金牌数绘制的折线统计图,观察统计图可得:与上一届相比增长量最大的是第________届夏季奥运会.小张和小李练习射击,两人10次射击训练成绩(环数)的统计结果如下表所示,平均数中位数众数方差小张7.27.57 1.2小李7.17.58 5.4通常新手的成绩不稳定,根据表格中的信息,估计小张和小李两人中新手是______.17.数学课本上,用“描点法”画二次函数y=ax2+bx+c的图象时,列了如下表格:x…−2−1012…y…−612−4−212−2−212…根据表格上的信息回答问题:该二次函数y=ax2+bx+c在x=3时,y=________.18.下表列出了国外几个城市与北京的时差.如果现在北京时间是10:00,现在巴黎时间是________5/ 1519.在平面镜里看到背后墙上,电子钟示数如图所示,这时的实际时间应该是________.20.如图,射线OA、BA分别表示甲、乙两人骑自行车运动过程的一次函数的图象,s、t分别表示行驶距离和时间,则这两人骑自行车的速度相差________km/ℎ.三、解答题21.为迎接“六一”儿童节,某学校准备举办绘画比赛.为了了解学生对不同颜色的喜欢情况,从不同年级随机抽取部分学生进行了调查,针对红色、黄色、绿色、蓝色和其他五个选项,每人选择一种自己最喜欢的颜色,并把统计数据制成了如下统计图表:喜欢不同颜色的人数调查结果统计表喜欢颜色频数频率红色240.30黄色m0.15绿色160.20蓝色20n其他80.10合计1喜欢不同颜色的人数调查结果条形统计图请根据统计图表中的信息解答下列问题:(1)填空:m=________,n=________,这次活动一共调查了________名学生;(2)补全条形统计图;(3)小明同学根据统计表中的数据进一步制作了扇形统计图,发现自己喜欢的颜色所在扇形的圆心角度数为72°,请你通过计算说明小明喜欢的是哪种颜色;(4)若把喜欢红色和蓝色的同学组成“紫色团队”,已知该学校共有学生1800人,请你估计“紫色团队”的人数.22.某校从初二(1)班和(2)班各选拔10名同学组成甲队和乙队,参加数学竞赛活动,此次竞赛共有10道选择题,答对8题(含8题)以上为优秀,两队选手答对题数统计如下:答对题数5678910平均数(x)7/ 15(1)上述表格中,a =________,b =_______,c =________,m =________; (2)请根据表格中的平均数、中位数、众数、方差,对甲、乙两队选手进行评价.23. 我们将d b c a&这样的式子称为二阶行列式,它的运算法则用公式表示就是:bdac d bc a-=&例如2-32-41423&1=⨯⨯=(1)请你依此法则计算二阶行列式324&3(2)请化简二阶行列式422&32+-x x ,并求当x =4时此二阶行列式的值.24. 如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中所给的数据信息,解答下列问题.9 /15(1)求整齐摆放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式. (2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?25. 春、秋季节,由于冷空气的入侵,地面气温急剧下降到0℃以下的天气现象称为“霜冻”.由霜冻导致植物生长受到影响或破坏的现象称为霜冻灾害.某种植物在气温是0℃以下持续时间超过3小时,即遭受霜冻灾害,需采取预防措施.如图是气象台某天发布的该地区气象信息,预报了次日0时~8时气温随时间变化情况,其中0时~5时,5时~8时的图象分别满足一次函数关系.请你根据图中信息,针对这种植物判断次日是否需要采取防霜冻措施,并说明理由.答案和解析1.D解:因为总体的具体数量短缺,所以A、C错误,又因为在扇形统计图中,所占的百分比越大它对应的具体数量就越多,但看不出全班的总人数,所以B错误,D正确.2.D解:因为共有30位同学,14岁有13人,所以14为众数,第15个数和第16个数都是14,所以数据的中位数为14.3.A解:60÷300=0.2.4.C解:设桌子的高度为hcm,第一个长方体的长为xcm,第二个长方体的宽为ycm,由第一个图形可知桌子的高度为:ℎ−y+x=80,由第二个图形可知桌子的高度为:ℎ−x+y=70,两个方程相加得:(ℎ−y+x)+(ℎ−x+y)=150,解得:ℎ=75cm.5.B解:由题意可知:去掉一个最高和一个最低分,只有中位数一定不发生变化.6.D解:由表可以看出:在相等的时间间隔内,20时至24时水位上升最快.11 / 15解:A.由图可知,修车时间为15−10=5分钟,正确;B .自行车发生故障时离家距离为1000米,正确;C .学校离家的距离为2000米,正确;D .到达学校时的骑行时间为20−5=15分钟,故D 错误.8. C解:从表中可以看出,烤鸭的质量每增加0.5千克,烤制的时间增加20分钟,由此可知烤制时间是烤鸭质量的一次函数.设烤制时间为t 分钟,烤鸭的质量为x 千克,t 与x 的一次函数关系式为:t =kx +b , 解得所以t =40x +20.当x =3.2千克时,t =40×3.2+20=148.9. C解:因为甲60分走完全程4千米,所以甲的速度是4千米/时,由图中看出两人在走了2千米时相遇,那么甲此时用了0.5小时,则乙用了(0.5−13)小时, 所以乙的速度为:2÷16=12,所以乙走完全程需要时间为:4÷12=13(时)=20分,此时的时间应加上乙先前迟出发的20分,现在的时间为8点40.10. C解:设笑脸形的气球x 元一个,爱心形的气球y 元一个,由题意,得:{3x +y =12x +3y =16, 解得:2x +2y =14.k +b =60 2k +b =100, k =40 b =20,解:n =1−0.45−0.15−0.1=0.3.12. 27解:由统计图可得,比赛场数为:10÷20%=50,胜的场数为:50×(1−26%−20%)=50×54%=27,13. 1解:由题意可得,第3次检测得到的氨氮含量是:1.5×6−(1.6+2+1.5+1.4+1.5)=9−8=1mg/L ,14. 3,−32解:由函数的图象可知,图象与两坐标轴的交点坐标为(0,3),(2,0),设函数的解析式为y =kx +b(k ≠0),把(0,3),(2,0)代入得,{b =32k +b =0,解得b =3,k =−32;15. 29解:观察统计图可得:与上一届相比增长量最大的是第29届夏季奥运会.16. 小李解:∵小李的平均数为7.1,小张的平均数为7.2,7.1<7.2,小张的方差为1.2,小李的方差为5.4,5.4>1.2,∴小李的成绩不稳定,∴小李是新手.17. −413 / 15解:观察表格可知,当x =0或2时,y =−212,根据二次函数图象的对称性,(0,−212),(2,−212)是抛物线上两对称点, 对称轴为x =0+221,顶点(1,−2),根据对称性,x =3与x =−1时,函数值相等,都是−4.18. 3:00解:∵巴黎与北京的时差−7, 北京时间为10:00,∴巴黎时间为10−7=3(时),19. 21:05解:由图分析可得题中所给的“20:15”与“21:05”成轴对称,这时的时间应是21:05.20. 4解:根据图象可得:∵甲行驶距离为100千米,行驶时间为5小时;乙行驶距离为80千米,行驶时间为5小时,∴甲的速度是:100÷5=20(千米/时);乙的速度是:80÷5=16(千米/时); 故这两人骑自行车的速度相差:20−16=4(千米/时).21. 解:(1)12,0.25,80;(2)条形统计图如图所示:(3)∵小明发现自己喜欢的颜色所在扇形的圆心角度数为72°,=0.2,频率0.2是在绿色的范围中,则小明喜欢的是绿色;∴72360(4))样本中“紫色团队”的人数为24+20=44(人),×1800=990(人).则4480故该学校“紫色团队”的人数约为990人.解:(1)因为红色的频数为24,所占的频率为0.30,=80,所以抽取的学生人数为:240.30=0.25,则m=80×0.15=12人,n=2080故答案为12,0.25,80;22.解:(1)8;8;7;60%(2)甲乙两队的平均数都为8,说明两队的平均水平相同,甲队的众数为8,乙队的众数为7,说明出现人数最多的答对题数中,甲队大于乙队,若仅从平均数和众数分析,甲队优于乙队等.解:(1)由表格可得,=8,a=7×4+8×3+9×2+10×110b=8,c=7,×100%=60%,m=3+2+110故答案为8;8;7;60%.(2)甲乙两队的平均数都为8,说明两队的平均水平相同,甲队的众数为8,乙队的众数15 / 15 为7,说明出现人数最多的答对题数中,甲队大于乙队,若仅从平均数和众数分析,甲队优于乙队.23. 解:(1)根据题意得:∣∣∣3243∣∣∣=3×3−2×4=9−8=1.∴ 二阶行列式∣∣∣3243∣∣∣的值为1 .(2)∣∣∣2x −3x +224∣∣∣=4(2x −3)−2(x +2) =8x −12−2x −4=6x −16将x =4代入上式,原式=8.24. 解:(1)设y =kx +b , 则解得∴y =1.5x +4.5;(2)当x =11时,y =1.5×11+4.5=21(cm).25. 解:根据图象可知:0时~5时的一次函数关系式为y 1=−65x +3,5时~8时的一次函数关系式y 2=83x −493,当y 1、y 2分别为0时, x 1=52,x 2=498.而|x 2−x 1|=298>3,∴应采取防霜冻措施.。

中考数学专题复习图表信息问题【含解析】

中考数学专题复习图表信息问题【含解析】

图表信息问题【专题点拨】图表信息题关键是“识图”和“用图”,主要是通过图形及表格信息,考查学生收集信息和处理信息的能力.解题时,要充分审视图形、表格,全面掌握其提供的信息,理解其实质,把握其方法规律,从而解决问题。

【解题策略】抓住图形或表格中的关键数据,筛选出有价值的信息,利用数据反映出的信息、规律、性质等建立数学模型解决。

【典例解析】类型一:图像信息题例题1:.(2016广东省贺州市第10题)抛物线y=ax2+bx+c的图象如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系内的图象大致为()A. B. C. D.【答案】B【解析】(1)、二次函数的图象;(2)、一次函数的图象;(3)、反比例函数的图象【解答】根据二次函数图象与系数的关系确定a>0,b<0,c<0,根据一次函数和反比例函数的性质确定答案.由抛物线可知,a>0,b<0,c<0,∴一次函数y=ax+b的图象经过第一、三、四象限,反比例函数y=的图象在第二、四象限,变式训练1:(2016湖南张家界第8题)在同一平面直角坐标系中,函数y=ax+b与y=ax2﹣bx的图象可能是()A. B. C.D.类型二:表格信息题例题2:(2016·湖北武汉·10分)某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x件.已知产销两种产品的有关信息如下表:其中a为常数,且3≤a≤5.(1)若产销甲、乙两种产品的年利润分别为y1万元、y2万元,直接写出y1、y2与x的函数关系式;(2)分别求出产销两种产品的最大年利润;(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.【考点】二次函数的应用,一次函数的应用【答案】(1)y1=(6-a)x-20(0<x≤200),y2=-0.05x²+10x-40(0<x≤80);(2)产销甲种产品的最大年利润为(1180-200a)万元,产销乙种产品的最大年利润为440万元;(3)当3≤a<3.7时,选择甲产品;当a=3.7时,选择甲乙产品;当3.7<a≤5时,选择乙产品【解析】解:(1)y1=(6-a)x-20(0<x≤200),y2=-0.05x²+10x-40(0<x≤80);(2)甲产品:∵3≤a≤5,∴6-a>0,∴y1随x的增大而增大.∴当x=200时,y1max=1180-200a(3≤a≤5)乙产品:y2=-0.05x²+10x-40(0<x≤80)∴当0<x≤80时,y2随x的增大而增大.当x=80时,y2max=440(万元).∴产销甲种产品的最大年利润为(1180-200a)万元,产销乙种产品的最大年利润为440万元;(3)1180-200>440,解得3≤a<3.7时,此时选择甲产品;1180-200=440,解得a=3.7时,此时选择甲乙产品;1180-200<440,解得3.7<a≤5时,此时选择乙产品.∴当3≤a<3.7时,生产甲产品的利润高;当a=3.7时,生产甲乙两种产品的利润相同;当3.7<a≤5时,上产乙产品的利润高.变式训练2:(2016·四川眉山)“世界那么大,我想去看看”一句话红遍网络,骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场.顺风车行经营的A型车2015年6月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A型车数量相同,则今年6月份A型车销售总额将比去年6月份销售总额增加25%.(1)求今年6月份A型车每辆销售价多少元(用列方程的方法解答);(2)该车行计划7月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?A、B两种型号车的进货和销售价格如表:类型三:图文信息题例题3:(2016·湖北黄石·3分)如图所示,向一个半径为R、容积为V的球形容器内注水,则能够反映容器内水的体积y与容器内水深x间的函数关系的图象可能是()A. B. C. D.【解析】水深h越大,水的体积v就越大,故容器内水的体积y与容器内水深x间的函数是增函数,根据球的特征进行判断分析即可.【解答】解:根据球形容器形状可知,函数y的变化趋势呈现出,当0<x<R时,y增量越来越大,当R<x<2R时,y增量越来越小,曲线上的点的切线斜率先是逐渐变大,后又逐渐变小,故y关于x的函数图象是先凹后凸.故选(A)【点评】本题主要考查了函数图象的变化特征,解题的关键是利用数形结合的数学思想方法.解得此类试题时注意,如果把自变量与函数的每一对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形就是这个函数的图象.变式训练3:(2016·黑龙江龙东·3分)如图,直角边长为1的等腰直角三角形与边长为2的正方形在同一水平线上,三角形沿水平线从左向右匀速穿过正方形.设穿过时间为t,正方形与三角形不重合部分的面积为s(阴影部分),则s与t的大致图象为()A. B. C. D.类型四:综合创新类信息题例题4:(2016·湖北随州·9分)九年级(3)班数学兴趣小组经过市场调查整理出某种商品在第x天(1≤x≤90,且x为整数)的售价与销售量的相关信息如下.已知商品的进价为30元/件,设该商品的售价为y(单位:元/件),每天的销售量为p(单位:件),每天的销售利润为w(单位:元).(1)求出w与x的函数关系式;(2)问销售该商品第几天时,当天的销售利润最大?并求出最大利润;(3)该商品在销售过程中,共有多少天每天的销售利润不低于5600元?请直接写出结果.【解析】二次函数的应用;一元一次不等式的应用.(1)当0≤x≤50时,设商品的售价y与时间x的函数关系式为y=kx+b,由点的坐标利用待定系数法即可求出此时y关于x的函数关系式,根据图形可得出当50<x≤90时,y=90.再结合给定表格,设每天的销售量p与时间x的函数关系式为p=mx+n,套入数据利用待定系数法即可求出p关于x的函数关系式,根据销售利润=单件利润×销售数量即可得出w关于x的函数关系式;(2)根据w关于x的函数关系式,分段考虑其最值问题.当0≤x≤50时,结合二次函数的性质即可求出在此范围内w的最大值;当50<x≤90时,根据一次函数的性质即可求出在此范围内w的最大值,两个最大值作比较即可得出结论;(3)令w≥5600,可得出关于x的一元二次不等式和一元一次不等式,解不等式即可得出x的取值范围,由此即可得出结论.【解答】解:(1)当0≤x≤50时,设商品的售价y与时间x的函数关系式为y=kx+b(k、b为常数且k≠0),∵y=kx+b经过点(0,40)、(50,90),∴,解得:,∴售价y与时间x的函数关系式为y=x+40;当50<x≤90时,y=90.∴售价y与时间x的函数关系式为y=.由书记可知每天的销售量p与时间x成一次函数关系,设每天的销售量p与时间x的函数关系式为p=mx+n(m、n为常数,且m≠0),∵p=mx+n过点(60,80)、(30,140),∴,解得:,∴p=﹣2x+200(0≤x≤90,且x为整数),当0≤x≤50时,w=(y﹣30)•p=(x+40﹣30)(﹣2x+200)=﹣2x2+180x+2000;当50<x≤90时,w=(90﹣30)(﹣2x+200)=﹣120x+12000.综上所示,每天的销售利润w与时间x的函数关系式是w=.(2)当0≤x≤50时,w=﹣2x2+180x+2000=﹣2(x﹣45)2+6050,∵a=﹣2<0且0≤x≤50,∴当x=45时,w取最大值,最大值为6050元.当50<x≤90时,w=﹣120x+12000,∵k=﹣120<0,w随x增大而减小,∴当x=50时,w取最大值,最大值为6000元.∵6050>6000,∴当x=45时,w最大,最大值为6050元.即销售第45天时,当天获得的销售利润最大,最大利润是6050元.(3)当0≤x≤50时,令w=﹣2x2+180x+2000≥5600,即﹣2x2+180x﹣3600≥0,解得:30≤x≤50,50﹣30+1=21(天);当50<x≤90时,令w=﹣120x+12000≥5600,即﹣120x+6400≥0,解得:50<x≤53,∵x为整数,∴50<x≤53,53﹣50=3(天).综上可知:21+3=24(天),故该商品在销售过程中,共有24天每天的销售利润不低于5600元.变式训练4:(2016·四川南充)已知正方形ABCD的边长为1,点P为正方形内一动点,若点M在AB上,且满足△PBC∽△PAM,延长BP交AD于点N,连结CM.(1)如图一,若点M在线段AB上,求证:AP⊥BN;AM=AN;(2)①如图二,在点P运动过程中,满足△PBC∽△PAM的点M在AB的延长线上时,AP ⊥BN和AM=AN是否成立?(不需说明理由)②是否存在满足条件的点P,使得PC=?请说明理由.【能力检测】1.(2016广西南宁3分)下列各曲线中表示y是x的函数的是()A. B. C. D.2.(2016·湖北荆门·3分)如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是()A. B. C. D.3.(2016·山东省德州市·4分)某中学组织学生到商场参加社会实践活动,他们参与了某种品牌运动鞋的销售工作,已知该运动鞋每双的进价为120元,为寻求合适的销售价格进行了4天的试销,试销情况如表所示:(1)观察表中数据,x,y满足什么函数关系?请求出这个函数关系式;(2)若商场计划每天的销售利润为3000元,则其单价应定为多少元?4.(2016·浙江省绍兴市·10分)课本中有一个例题:有一个窗户形状如图1,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6m,如何设计这个窗户,使透光面积最大?这个例题的答案是:当窗户半圆的半径约为0.35m时,透光面积最大值约为1.05m2.我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图2,材料总长仍为6m,利用图3,解答下列问题:(1)若AB为1m,求此时窗户的透光面积?(2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.5.(2016·重庆市B卷·12分)如图1,二次函数y=x2﹣2x+1的图象与一次函数y=kx+b (k≠0)的图象交于A,B两点,点A的坐标为(0,1),点B在第一象限内,点C是二次函数图象的顶点,点M是一次函数y=kx+b(k≠0)的图象与x轴的交点,过点B作轴的垂线,垂足为N,且S△AMO:S四边形AONB=1:48.(1)求直线AB和直线BC的解析式;(2)点P是线段AB上一点,点D是线段BC上一点,PD∥x轴,射线PD与抛物线交于点G,过点P作PE⊥x轴于点E,PF⊥BC于点F.当PF与PE的乘积最大时,在线段AB上找一点H(不与点A,点B重合),使GH+BH的值最小,求点H的坐标和GH+BH的最小值;(3)如图2,直线AB上有一点K(3,4),将二次函数y=x2﹣2x+1沿直线BC平移,平移的距离是t(t≥0),平移后抛物线上点A,点C的对应点分别为点A′,点C′;当△A′C′K′是直角三角形时,求t的值.【参考答案】变式训练1:(2016湖南张家界第8题)在同一平面直角坐标系中,函数y=ax+b与y=ax2﹣bx的图象可能是()A. B. C.D.【答案】C.【解析】考点:1一次函数图像;2二次函数图像.【解答】:选项A:一次函数图像经过一、二、三象限,因此a>0,b>0,对于二次函数y=ax2﹣bx图像应该开口向上,对称轴在y轴右侧,不合题意,此选项错误;选项B:一次函数图像经过一、二、四象限,因此a<0,b>0,对于二次函数y=ax2﹣bx图像应该开口向下,对称轴在y轴左侧,不合题意,此选项错误;选项C:一次函数图像经过一、二、三象限,因此a>0,b>0,对于二次函数y=ax2﹣bx 图像应该开口向上,对称轴在y轴右侧,符合题意,此选项正确;选项D:一次函数图像经过一、二、三象限,因此a>0,b>0,对于二次函数y=ax2﹣bx图像应该开口向上,对称轴在y轴右侧,不合题意,此选项错误.故选C.变式训练2:(2016·四川眉山)“世界那么大,我想去看看”一句话红遍网络,骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场.顺风车行经营的A型车2015年6月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A型车数量相同,则今年6月份A型车销售总额将比去年6月份销售总额增加25%.(1)求今年6月份A型车每辆销售价多少元(用列方程的方法解答);(2)该车行计划7月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?A、B两种型号车的进货和销售价格如表:【解析】(1)设去年A型车每辆x元,那么今年每辆(x+400)元,列出方程即可解决问题.(2)设今年7月份进A型车m辆,则B型车(50﹣m)辆,获得的总利润为y元,先求出m的范围,构建一次函数,利用函数性质解决问题.【解答】解:(1)设去年A型车每辆x元,那么今年每辆(x+400)元,根据题意得,解之得x=1600,经检验,x=1600是方程的解.答:今年A型车每辆2000元.(2)设今年7月份进A型车m辆,则B型车(50﹣m)辆,获得的总利润为y元,根据题意得50﹣m≤2m解之得m≥,∵y=(2000﹣1100)m+(2400﹣1400)(50﹣m)=﹣100m+50000,∴y随m 的增大而减小,∴当m=17时,可以获得最大利润.答:进货方案是A型车17辆,B型车33辆.【点评】不同考查一次函数的应用、分式方程等知识,解题的关键是设未知数列出方程解决问题,注意分式方程必须检验,学会构建一次函数,利用一次函数性质解决实际问题中的最值问题,属于中考常考题型.变式训练3:(2016·黑龙江龙东·3分)如图,直角边长为1的等腰直角三角形与边长为2的正方形在同一水平线上,三角形沿水平线从左向右匀速穿过正方形.设穿过时间为t,正方形与三角形不重合部分的面积为s(阴影部分),则s与t的大致图象为()A. B. C. D.【解析】动点问题的函数图象.根据直角边长为1的等腰直角三角形与边长为2的正方形在同一水平线上,三角形沿水平线从左向右匀速穿过正方形可知,当0≤t≤时,以及当<t≤2时,当2<t≤3时,求出函数关系式,即可得出答案.【解答】解:∵直角边长为1的等腰直角三角形与边长为2的正方形在同一水平线上,三角形沿水平线从左向右匀速穿过正方形.设穿过时间为t,正方形与三角形不重合部分的面积为s,∴s关于t的函数大致图象应为:三角形进入正方形以前s增大,当0≤t≤时,s=×1×1+2×2﹣=﹣t2;当<t≤2时,s=×12=;当2<t≤3时,s=﹣(3﹣t)2=t2﹣3t,∴A符合要求,故选A.变式训练4:(2016·四川南充)已知正方形ABCD的边长为1,点P为正方形内一动点,若点M在AB上,且满足△PBC∽△PAM,延长BP交AD于点N,连结CM.(1)如图一,若点M在线段AB上,求证:AP⊥BN;AM=AN;(2)①如图二,在点P运动过程中,满足△PBC∽△PAM的点M在AB的延长线上时,AP ⊥BN和AM=AN是否成立?(不需说明理由)②是否存在满足条件的点P,使得PC=?请说明理由.【分析】(1)由△PBC∽△PAM,推出∠PAM=∠PBC,由∠PBC+∠PBA=90°,推出∠PAM+∠PBA=90°即可证明AP⊥BN,由△PBC∽△PAM,推出==,由△BAP∽△BNA,推出=,得到=,由此即可证明.(2)①结论仍然成立,证明方法类似(1).②这样的点P不存在.利用反证法证明.假设PC=,推出矛盾即可.【解答】(1)证明:如图一中,∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠DAB=∠ABC=∠BCD=∠D=90°,∵△PBC∽△PAM,∴∠PAM=∠PBC, ==,∴∠PBC+∠PBA=90°,∴∠PAM+∠PBA=90°,∴∠APB=90°,∴AP⊥BN,∵∠ABP=∠ABN,∠APB=∠BAN=90°,∴△BAP∽△BNA,∴=,∴=,∵AB=BC,∴AN=AM.(2)解:①仍然成立,AP⊥BN和AM=AN.理由如图二中,∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠DAB=∠ABC=∠BCD=∠D=90°,∵△PBC∽△PAM,∴∠PAM=∠PBC, ==,∴∠PBC+∠PBA=90°,∴∠PAM+∠PBA=90°,∴∠APB=90°,∴AP⊥BN,∵∠ABP=∠ABN,∠APB=∠BAN=90°,∴△BAP∽△BNA,∴=,∴=,∵AB=BC,∴AN=AM.②这样的点P不存在.理由:假设PC=,如图三中,以点C为圆心为半径画圆,以AB为直径画圆,CO==>1+,∴两个圆外离,∴∠APB<90°,这与AP⊥PB矛盾,∴假设不可能成立,∴满足PC=的点P不存在.【点评】本题考查相似三角形综合题、正方形的性质、圆的有关知识,解题的关键是熟练应用相似三角形性质解决问题,最后一个问题利用圆的位置关系解决问题,有一定难度,属于中考压轴题.【能力检测】1.(2016广西南宁3分)下列各曲线中表示y是x的函数的是()A. B. C. D.【解析】函数的概念.根据函数的意义求解即可求出答案.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.【点评】主要考查了函数的定义.注意函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.2.(2016·湖北荆门·3分)如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是()A. B. C. D.【解析】动点问题的函数图象.△ADP的面积可分为两部分讨论,由A运动到B时,面积逐渐增大,由B运动到C时,面积不变,从而得出函数关系的图象.【解答】解:当P点由A运动到B点时,即0≤x≤2时,y=×2x=x,当P点由B运动到C点时,即2<x<4时,y=×2×2=2,符合题意的函数关系的图象是A;故选:A.3.(2016·山东省德州市·4分)某中学组织学生到商场参加社会实践活动,他们参与了某种品牌运动鞋的销售工作,已知该运动鞋每双的进价为120元,为寻求合适的销售价格进行了4天的试销,试销情况如表所示:(1)观察表中数据,x,y满足什么函数关系?请求出这个函数关系式;(2)若商场计划每天的销售利润为3000元,则其单价应定为多少元?【解析】一次函数的应用.(1)由表中数据得出xy=6000,即可得出结果;(2)由题意得出方程,解方程即可,注意检验.【解答】解:(1)由表中数据得:xy=6000,∴y=,∴y是x的反比例函数,故所求函数关系式为y=;(2)由题意得:(x﹣120)y=3000,把y=代入得:(x﹣120)•=3000,解得:x=240;经检验,x=240是原方程的根;答:若商场计划每天的销售利润为3000元,则其单价应定为240元.【点评】本题考查了反比例函数的应用、列分式方程解应用题;根据题意得出函数关系式和列出方程是解决问题的关键.4.(2016·浙江省绍兴市·10分)课本中有一个例题:有一个窗户形状如图1,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6m,如何设计这个窗户,使透光面积最大?这个例题的答案是:当窗户半圆的半径约为0.35m时,透光面积最大值约为1.05m2.我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图2,材料总长仍为6m,利用图3,解答下列问题:(1)若AB为1m,求此时窗户的透光面积?(2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.【分析】二次函数的应用.(1)根据矩形和正方形的周长进行解答即可;(2)设AB为xcm,利用二次函数的最值解答即可.【解答】解:(1)由已知可得:AD=,则S=1×m2,(2)设AB=xm,则AD=3﹣m,∵,∴,设窗户面积为S,由已知得:,当x=m时,且x=m在的范围内,,∴与课本中的例题比较,现在窗户透光面积的最大值变大.5.(2016·重庆市B卷·12分)如图1,二次函数y=x2﹣2x+1的图象与一次函数y=kx+b (k≠0)的图象交于A,B两点,点A的坐标为(0,1),点B在第一象限内,点C是二次函数图象的顶点,点M是一次函数y=kx+b(k≠0)的图象与x轴的交点,过点B作轴的垂线,垂足为N,且S△AMO:S四边形AONB=1:48.(1)求直线AB和直线BC的解析式;(2)点P是线段AB上一点,点D是线段BC上一点,PD∥x轴,射线PD与抛物线交于点G,过点P作PE⊥x轴于点E,PF⊥BC于点F.当PF与PE的乘积最大时,在线段AB上找一点H(不与点A,点B重合),使GH+BH的值最小,求点H的坐标和GH+BH的最小值;(3)如图2,直线AB上有一点K(3,4),将二次函数y=x2﹣2x+1沿直线BC平移,平移的距离是t(t≥0),平移后抛物线上点A,点C的对应点分别为点A′,点C′;当△A′C′K′是直角三角形时,求t的值.【解析】二次函数综合题.(1)根据S△AMO:S四边形AONB=1:48,求出三角形相似的相似比为1:7,从而求出BN,继而求出点B的坐标,用待定系数法求出直线解析式.(2)先判断出PE×PF最大时,PE×PD也最大,再求出PE×PF最大时G(5,),再简单的计算即可;(3)由平移的特点及坐标系中,两点间的距离公式得A′C′2=8,A′K2=5m2﹣18m+18,C′K2=5m2﹣22m+26,最后分三种情况计算即可.【解答】解:(1)∵点C是二次函数y=x2﹣2x+1图象的顶点,∴C(2,﹣1),∵PE⊥x轴,BN⊥x轴,∴△MAO∽△MBN,∵S△AMO:S四边形AONB=1:48,∴S△AMO:S△BMN=1:49,∴OA:BN=1:7,∵OA=1∴BN=7,把y=7代入二次函数解析式y=x2﹣2x+1中,可得7=x2﹣2x+1,∴x1=﹣2(舍),x2=6∴B(6,7),∵A的坐标为(0,1),∴直线AB解析式为y=x+1,∵C(2,﹣1),B(6,7),∴直线BC解析式为y=2x﹣5.(2)如图1,设点P(x0,x0+1),∴D(,x0+1),∴PE=x0+1,PD=3﹣x0,∵△PDF∽△BGN,∴PF:PD的值固定,∴PE×PF最大时,PE×P D也最大,PE×PD=(x0+1)(3﹣x0)=﹣x02+x0+3,∴当x0=时,PE×PD最大,即:PE×PF最大.此时G(5,)∵△MNB是等腰直角三角形,过B作x轴的平行线,∴BH=B1H,GH+BH的最小值转化为求GH+HB1的最小值,∴当GH和HB1在一条直线上时,GH+HB1的值最小,此时H(5,6),最小值为7﹣=(3)令直线BC与x轴交于点I,∴I(,0)∴IN=,IN:BN=1:2,∴沿直线BC平移时,横坐标平移m时,纵坐标则平移2m,平移后A′(m,1+2m),C′(2+m,﹣1+2m),∴A′C′2=8,A′K2=5m2﹣18m+18,C′K2=5m2﹣22m+26,当∠A′KC′=90°时,A′K2+KC′2=A′C′2,解得m=,此时t=m=2±;当∠KC′A′=90°时,KC′2+A′C′2=A′K2,解得m=4,此时t=m=4;当∠KA′C′=90°时,A′C′2+A′K2=KC′2,解得m=0,此时t=0.【点评】此题是二次函数综合题,主要考查了相似三角形的性质,待定系数法求函数解析式,两点间的结论公式,解本题的关键是相似三角形的性质的运用.21。

山东省中考数学真题分类汇编(解析版)——图表信息型

山东省中考数学真题分类汇编(解析版)——图表信息型

图表信息型【答案】C.【点评】本题考查的是函数图象,正确理解函数图象横纵坐标表示的意义,把张强的活动和图象对应起来是解决此题的关键.2.(2014山东聊城)如图,一次函数y1=k1x+b的图象和反比例函数y2=的图象交于A(1,2),B(﹣2,﹣1)两点,若y1<y2,则x的取值范围是()A.x<1B.x<-2C.-2<x<0或x>1D.x<-2或0<x<1【考点】反比例函数与一次函数的交点问题.【解析】由图象知当x<﹣2,或0<x<1时,一次函数图象位于反比例函数图象的下方.故x<﹣2,或0<x<1时y1<y2.【答案】D. 【点评】本题考查了反比例函数与一次函数的交点问题,解答此题时注意数形结合思想的应用.3.(2014山东济南)二次函数y=2x bx +的图象如图,对称轴为1=x .若关于x 的一元二次方程02=-+t bx x (t 为实数)在41<<-x 的范围内有解, 则t 的取值范围是A .1-≥tB .31<≤-tC .81<≤-tD .83<<t【考点】二次函数与一元二次方程的关系;二次函数图象与系数的关系. 【解析】由对称轴为1x =,得2b =-,所以当x=1时,y 有最小值-1,,x=4时,y=8, 所以当-1<x<4时,-1≤y<8因为一元二次方程220x x t --=在14x -<<的范围内有解, 即当-1<x<4函数y=2x bx +与直线y=t 有交点, 所以18t -≤<. 【答案】C .【点评】本题考查了二次函数图象与系数的关系,二次函数与一元二次方程的关系,解答此题首先由对称轴,求出b 的值,从而确定在-1<x<4时,y 的取与方程的范围,再根据函数与方程的关系即可求出t 的范围,解题注意数形结合思想的运用.4.(2014山东莱芜)已知二次函数y=ax 2+bx+c 的图象如图所示。

中考数学辅导 图表信息专题练习(一)

中考数学辅导 图表信息专题练习(一)

辅导:图表信息专题(一)班级 姓名◆专题说明图表信息题,是通过图形、图象、图表及一定的文字说明给出信息提供问题情境,来探求多个变量之间的关系,再综合运用有关函数等知识加以分析,以达到解决实际问题的题型,是中考命题的热点之一它主要表现在数轴、直角坐标系、点的坐标、一次函数、二次函数、反比例函数的图像、实用统计图及部分几何图形等所提供的形状特征、位置特征、变化趋势等数学基础知识,考查了观察问题、分析问题、解决问题的能力。

主要的类型有:图象类、图形类、表格类和统计类。

解这类题的一般步骤是:(1)观察图象,获取有效信息;(2)对已获信息进行加工、整理,理清各变量之间的关系;(3)选择适当的数学工具,通过建模解决问题.◆例题选讲【考点一】图景信息题图景信息题是通过图画提供一定的数学背景,再对图画中的情景分析,抽象出数学本质的问题,或得出规律,或建立方程、函数模型例1如图,夜晚,小亮从点A 经过路灯C 的正下方沿直线走到点B ,他的影长随他与点A 之间的距离的变化而变化,那么表示与之间的函数关系的图象大致为【 】例2小明家有一块长8m 、宽6m 的矩形空地,妈妈准备在该空地上建造一个花园,并使花园面积为空地面积的一半,小明设计了如下的四种方案供妈妈挑选,请你选择其中的一种..方案帮小明求出图中的值。

方案一 方案二 方案三 方案四E1:均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h 随时间t 的变化规律如图所示(图中OABC 为一折线),则这个容器的形状为【 】E2:如图①,在第一个天平上,砝码A 的质量等于ht CB A O A BCD 888686砝码B 加上砝码C 的质量;如图②,在第二个天平上,砝 码A 加上砝码B 的质量等于3个砝码C 的质量.请你判断: 1个砝码A 与 个砝码C 的质量相等.E3:在长为10m ,宽为8m 的矩形空地上,沿平行于矩形各边的方向 分割出三个全等的小矩形花圃,其示意图如图所示.求其中一个小矩形花圃 的长和宽.【考点二】表格信息题题目将已知条件的数据信息直观、简捷呈现在表格中(表头、表行和表列中都有不同信息),表格从各方面反映被研究对象、所涉及到的数量关系解决这类问题的关键是要读懂表格中的信息含义,了解表格中数据间的相互关系例3某校为了了解九年级女生的体能情况,随机抽查了部分女生,测试了1分钟仰卧起坐的次数,并绘制成如图所示的频数分布直方图和不完整的统计表(每个分组包括左端点,不包括右端点) 请你根据图中提供的信息,解答以下问题:1 分别把统计图与统计表补充完整;2被抽查的女生小敏说:“我的仰卧起坐次数是被抽查的所有同学的仰卧起坐次数的中位数”,请你写出小敏仰卧起坐次数所在的范围E4:某学校在开展“节约每一滴水”的活动中,从七年级的200名同学中任选出十名同学汇报了各自家庭一个月的节水情况,将有关数据整理如下表:节水量(单位:吨) 0.5 1 1.5 2 同学数(人)2341请你估计这200名同学的家庭一个月节约用水的总量大约是【 】A .180吨B .200吨C .240吨D .360吨E5:惠民新村分给小慧家一套价格为12万元的住房.按要求,需首期(第一年)付房款3万元,从第二年起,每年应付房款万元与上一年剩余房款的利息的和.假设剩余房款年利率为%,小慧列表推算如下:若第n 年小慧家仍需还款,则第n 年应还款 万元(n >1).例4剃须刀由刀片和刀架组成某时期,甲`乙两厂家分别生产老式剃须刀(刀片不可更换)和新式剃须刀(刀片可更换),有关销售策略与售价等信息如下表所示仰卧起坐次数的范围(单位:次)15~20 20~25 25~30 30~35频数 3 10 12 频率 101 3161第一年 第二年第三年… 应还款(万元) 3 %4.095.0⨯+0.58.50.4%+⨯… 剩余房款(万元) 98…某段时间内,甲厂家销售了8400把剃须刀,乙厂家销售的刀片数量是刀架数量的50倍,乙厂家获得的利例5某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:注:获利=售价-进价 (1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件 (2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案 并直接写出其中获利最大的购货方案例6今年我国多个省市遭受严重干旱,受旱灾的影响,4月份,我市某蔬菜价格呈上升趋势,其前四/千克)从5月第1周的元/千克下降至第2周的元/千克,且与周数的变化情况满足二次函数=201 2+b +c .(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识直接写出4月份与 的函数关系式,并求出5月份与的函数关系式;(2)若4月份此种蔬菜的进价m (元/千克)与周数所满足的函数关系为m =41+,5月份此种蔬菜的进价m (元/千克)与周数所满足的函数关系为m =51+2.试问4月份与5月份分别在哪一周销售此种蔬菜一千克的利润最大且最大利润分别是多少(3)若5月份的第2周共销售100吨此种蔬菜.从5月份的第3周起,由于受暴雨的影响,此种蔬菜的可供销量将在第2周销量的基础上每周减少a %,政府为稳定蔬菜价格,从外地调运2吨此种蔬菜,刚好满足本地市民的需要,且使此种蔬菜的销售价格比第2周仅上涨0.8 a %.若在这一举措下,此种蔬菜在第3周的总销售额与第2周刚好持平,请你参考以下数据,通过计算估算出a 的整数值.(参考数据:372=1369,382=1444,392=1521,402=1600,412=1681)。

中考数学图表信息专题

中考数学图表信息专题

专题6 图表信息问题【考点透视】所谓图表信息问题,就是根据实际问题中所呈现出来的图像、图表信息,要求考生依据这些给出的信息通过整理、分析、加工等手段解决的一类问题,主要考查同学们识图看表的能力以及处理信息的能力.解答这类试题的关键是对图表信息认真分析、合理利用,按照题意要求,准确地输出信息.信息时代的到来,呼唤信息型的中考试题.由于此类问题命题背景广泛、蕴含知识丰富,突出对考生获取、整理与加工信息能力的考查,因而倍受命题者青睐,近年来在各地的中考试题中出现的频率越来越高. 【典型例题】例1(2003年四川省重庆市中考试题)A 、618B 、638 C 、658D 、678分析:由表中数据可知,其输出数据有如下特征:其分子就是输入数据,而其分母则恰好比输入数据的平方大1,因此应为658.解:选C .说明:本题就是利用给出的表格信息,通过观察、归纳、推理等过程,寻求到输出数据的一般规律,进而得到正确的答案.例2.某人从甲地出发,骑摩托车去乙地,途中因车出现故障而停车修理,到达乙地时正好用了2小时,已知摩托车行驶的路程(S 千米)与行驶的时间t (小时)之间的函数关系由如图6—1的图象ABCD 给出,若这辆摩托车平均每行驶100千米的耗油量为2升,根据图中给出的信息,从甲地到乙地,这辆摩托车共耗油 升.(2001年江苏省无锡市中考试题)分析:由题意知,摩托车的耗油量与从甲地到乙地所用时间无关,而只与所行驶的路程有关;而由图像可以得到信息,从甲地到乙地的路程为45千米.故耗油量应为45100×2=0.9(升).解:0.9升.说明:本题中摩托车的耗油量与所用时间无关,故从甲地到乙地的行驶时间2小时则属于过剩信息,在解题中要学会合理地排除.例3.下面是甲商场电脑产品的进货单,其中进价一栏被墨迹污染,读了进货单后,图6—1时)(2003年山东省济南市中考试题)分析:解决本题的关键是从表格中提取出有效信息,即利润=标价×折扣-进价,再利用相关数据即可得出答案.解:设进价为x元.根据题意,得5850×0.8-x=210,解得x=4470.答:略.说明:本题提供的是实际生活中常见的一个表格,它提供了多种信息,但关键是必须从中找出解题所需的有效信息,排除其它信息的干扰,构建相应的数学模型加以解决.例4.甲、乙两人(甲骑自行车,乙骑摩托车)从A城出发到B城旅行。

部分地区中考数学图表信息试题(附答案)

部分地区中考数学图表信息试题(附答案)

部分地区中考数学图表信息试题(附答案)之间的关系.难度较大.24.(2019黑龙江省绥化市,24,7分)学生的学习兴趣如何是每位教师非常关注的问题.为此,某校教师对该校部分学生的学习兴趣进行了一次抽样调查(把学生的学习兴趣分为三个层次,A层次:很感兴趣;B层次:较感兴趣;C层次:不感兴趣),并将调查结果绘制成了图①和图②的统计图(不完整).请你根据图中提供的信息,解答下列问题:⑴ 此次抽样调查中,共调查了名学生;⑵ 将图①、图②补充完整;⑶ 求图②中C层次所在扇形的圆心角的度数;⑷根据抽样调查结果,请你估算该校1200名学生中大约有多少名学生对学习感兴趣(包括A层次和B层次).【解析】解:(1)此次抽样调查中,共调查了5025%=200(人);故答案为:200. (2)C层次的人数为:200-120-50=30(人);所占的百分比是:30 200 100%=15%;B层次的人数所占的百分比是1-25%-15%=60%;(3)C层次所在扇形的圆心角的度数是:36015%=54(4)根据题意得:(25%+60%)1200=1020(人)答:估计该校1200名学生中大约有1020名学生对学习感兴趣..【答案】⑴200;⑵如图所示;⑶540;⑷1020.【点评】本题主要考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.难度中等. 专项九图表信息(43)14.(2019四川省资阳市,14,3分)某果园有苹果树100棵,为了估计该果园的苹果总产量,小王先按长势把苹果树分成了A、B、C三个级别,其中A级30棵, B级60棵, C级10棵,然后从A、B、C三个级别的苹果树中分别随机抽取了3棵、6棵、1棵,测出其产量,制成了如下的统计表.小李看了这个统计表后马上正确估计出了该果园的苹果总产量,那么小李的估计值是千克.苹果树长势 A级 B级 C级随机抽取棵数(棵)所抽取果树的平均产量(千克)【解析】由表格中各种等级果树的平均产量可估算果园的总产量为:8030+7560+7010=7600【答案】7600【点评】本题主要考查了由样本估计总体的估算,解决本题的关键是分清样本、总体具体所表示的意义.难度较小. 20. (2019山东省聊城,20,8分)为进一步加强中学生近视眼的防控工作,市××局近期下发了有关文件,将学生视力保护工作纳入学校和教师的考核内容.为此,某县××局主管部门对今年初中毕业生的视力进行了一次抽样调查,并根据调查结果绘制了如下频数分布表和频数分布直方图的一部分.请根据图表信息回答下列问题:(1)求表中a、b的值,并补充完频数分布直方图;(2)若视力在4.9以上(含4.9)均为正常,估计该县5600名初中毕业生视力正常的有多少人?解析:(1)要求a的值,只需用其中一组已知视力范围的频数与频率关系求出频数总数;再结合根据该栏的频率、数据总次数求出a.(2)找出4.9以上(含4.9)的频率和,进行估计总体.解:(1)由150.05=300(人),所以a=3000.25=75(人). .b=60300=0.20.(2)因为视力在4.9以上(含4.9)的频率为0.25+0.20=0.45. 所以56000.45=2520(人)22. (2019江苏盐城,22,8分)第三十届夏季奥林匹克运动会将于2019年7月27日至8月12日在英国伦敦举行,目前正在进行火炬传递活动.某校学生会为了确定近期宣传专刊的主题,想知道学生对伦敦奥运火炬传递路线的了解程度,决定随机抽取部分学生进行一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅尚不完整的统计图。

中考数学冲刺:图表信息型问题--巩固练习(提高)-【含解析】

中考数学冲刺:图表信息型问题--巩固练习(提高)-【含解析】

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】中考冲刺:图表信息型问题—巩固练习(提高)【巩固练习】一、选择题1.(兰州模拟)如图,平行四边形ABCD的边长AD为8,面积为32,四个全等的小平行四边形对称中心分别在平行四边形ABCD的顶点上,它们的各边与平行四边形ABCD的各边分别平行,且与平行四边形ABCD相似.若平行四边形的一边长为x,且0<x≤8,阴影部分的面积和为y,则y与x之间的函数关系的大致图象是().A.B.C.D.2.物理知识告诉我们,一个物体所受到的压强P与所受压力F及受力面积S之间的计算公式为FPS .当一个物体所受压力为定值时,那么该物所受压强P与受力面积S之间的关系用图象表示大致为( ).3.某蓄水池的横断面示意图如图1所示,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出.下面的图象能大致表示水的深度h和放水时间t之间的关系的是 ( ).二、填空题4.(2016秋•太仓市校级期末)将一个三角形纸板按如图所示的方式放置一个破损的量角器上,使点C 落在半圆上,若点A、B处的读数分别为65°、20°,则∠ACB的大小为°.第4题第5题5.如图是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,依此递推,第8层中含有正三角形个数是 .6.(平谷区期末)如图1反映的过程是:矩形ABCD中,动点P从点A出发,依次沿对角线AC、边CD、边DA运动至点A停止,设点P的运动路程为x,S△ABP=y.则矩形ABCD的周长是.三、解答题7. 小亮家最近购买了一套住房.准备在装修时用木质地板铺设居室,用瓷砖铺设客厅.经市场调查得知:用这两种材料铺设地面的工钱不一样.小亮根据地面的面积,对铺设居室和客厅的费用(购买材料费和工钱)分别做了预算,通过列表,并用x(m2)表示铺设地面的面积,用y(元)表示铺设费用,制成如图.请你根据图中所提供的信息,解答下列问题:(1)预算中铺设居室的费用为元/ m2,铺设客厅的费用为元/ m2.(2)表示铺设居室的费用y(元)与面积 x(m2)之间的函数关系式为,表示铺设客厅的费用y(元)与面积x(m2)之间的函数关系式为 .(3)已知在小亮的预算中,铺设1 m2的瓷砖比铺设1m2的木质地板的工钱多5元;购买1m2的瓷砖是购买1m2木质地板费用的34.那么,铺设每平方米木质地板、瓷砖的工钱各是多少元?购买每平方米的木质地板、瓷砖的费用各是多少元?8. (2016春•黄岛区期末)如图所示,A,B两地相距50千米,甲于某日下午1时骑自行车从A地出发驶往B地,乙也于同日下午骑摩托车按同路从A地出发驶往B地,如图所示,图中的折线OPQ和线段MN 分别表示甲、乙所行驶的路程S与该日下午时间t之间的关系.根据图象回答下列问题:(1)甲和乙出发的时间相差小时?(2)(填写“甲”或“乙”)更早到达B城?(3)乙出发大约小时就追上甲?(4)描述一下甲的运动情况;(5)请你根据图象上的数据,求出甲骑自行车在全程的平均速度.9.行驶中的汽车,在刹车后由于惯性的作用,还要继续向前滑行一段距离才停止,这段距离称为“刹车距离”.为了测定某种型号汽车的刹车性能(车速不超过140km/h),对这种汽车进行测试,测得数据如下表:刹车时车速(km/h) 0 10 20 30 40 50 60 刹车距离(m) 0 0.3 1.0 2.1 3.6 5.5 7.8这些点,得到函数的大致图象;(2)观察图象,估计函数的类型,并确定一个满足这些数据的函数解析式;(3)该型号汽车在国道上发生了一次交通事故,现场测得刹车距离为46.5m,请推测刹车时的速度是多少?请问在事故发生时,汽车是超速行驶还是正常行驶?10.某果品公司急需将一批不易存放的水果从A市运到B市销售.现有三家运输公司可供选择,这三家运运输单位运输速度(千米/小时)运输费用(元/千米)包装与装卸时间(小时)包装与装卸费用(元)甲公司60 6 4 1500乙公司50 8 2 1000丙公司100 10 3 700(1)若乙、丙两家公司的包装与装卸及运输的费用总和恰好是甲公司的2倍,求A、B两市的距离(精确到个位);(2)如果A、B两市的距离为S千米,且这批水果在包装与装卸以及运输过程中的损耗为300元/小时,那么要使果品公司支付的总费用(包装与装卸费用、运输费用及损耗三项之和)最小,应选择哪家运输公司?【答案与解析】一、选择题1.【答案】B;【解析】∵四个全等的小平行四边形对称中心分别在▱ABCD的顶点上,∴阴影部分的面积等于一个小平行四边形的面积,∵小平行四边形与▱ABCD相似,∴=()2,整理得y=x2,又0<x≤8,只有B选项图象符合y与x之间的函数关系的大致图象.故选:B.2.【答案】C;【解析】当F一定时,P与S之间成反比例函数,则函数图象是双曲线,同时自变量是正数.故选C.3.【答案】A;【解析】由图知蓄水池上宽下窄,深度h和放水时间t的比不一样,前者慢后者快,即前者的斜率小,后者斜率大,分析各选项知只有A正确.B斜率一样,C前者斜率大,后者小,D也是前者斜率大,后者小,因此B、C、D排除.故选A.二、填空题4.【答案】22.5;【解析】连结OA、OB,如图,∵点A、B的读数分别为65°,20°,∴∠AOB=65°﹣20°=45°,∴∠ACB=∠AOB=22.5°.5.【答案】102;【解析】阅读题意可得规律:第1层:1×6;第2层:3×6;第3层:5×6;第4层:7×6……第8层:15×6=90;还可推广:第n层:(2n-1)×6,所以第8层中含有正三角形个数是102.6.【答案】14;【解析】由图2可以看出x=5时,点P到达C点,x=9时,点P到达D点,∴AC=5,CD=9﹣5=4,根据勾股定理,BC=3,∴矩形ABCD的周长=2(BC+CD)=2×(3+4)=14.三、解答题7.【答案与解析】解:(1)135,110.(2)y=135x ,y=110x.(3)设铺设木质地板的工钱为每平方米x元,购买木质地板每平方米的费用为y元,则铺设瓷砖的工钱为每平方米(x+5)元,购买瓷砖每平方米的费用为34y 元.根据题意,得30()4050325(5)27504x yx y+=⎧⎪⎨++=⎪⎩,解这个方程组,得15120xy=⎧⎨=⎩. 由此得x +5=20 ,34y=90.答:铺设木质地板和瓷砖每平方米的工钱分别为15元和20元;购买木质地板和瓷砖每平方米的费用分别为120元和90元.8.【答案与解析】解:(1)由图象可得,甲和乙出发的时间相差1小时,故答案为:1;(2)由图象可知乙先到达B城,故答案为:乙;(3)设MN对应的函数解析式为y=kx+b,,得,故MN对应的函数解析式为y=25x﹣25;设PQ对应的函数解析式为y=mx+n,,得,即PQ对应的函数解析式为y=10x+10,∴,得,,即乙出发小时追上甲,故答案为:;(4)甲开始以较快的速度骑自行车前进,2点后速度减慢,但仍保持这一速度于下午5时抵达B城;(5)由图可知,甲全程的平均速度是:=12.5千米/时,即甲骑自行车在全程的平均速度是12.5千米/时. 9.【答案与解析】 (1)603010204050yx(2)依据图象,设函数解析式为y=ax 2+bx+c ,将表中的前三组数值代入,得⎪⎩⎪⎨⎧=++=++=0.120400,3.010100,0c b a c b a c 解得⎪⎩⎪⎨⎧===0,01.0,002.0c b a ∴函数的解析式为y=0.002x 2+0.01x (0≤x ≤140) . 经检验,表中的其他各组值也符合此解析式.(3)当y=46.5时,即0.002x 2+0.01x=46.5,∴ x 2+5x -23250=0.解得 x 1=150,x 2=-155(舍去) .∴推测刹车时的速度为150km/h . ∵150>140,∴发生事故时,汽车超速行驶.10.【答案与解析】(1)设A 、B 两市的距离为x 千米,则三家运输公司包装与装卸及运输的费用分别为: 甲公司(6x +1500)元,乙公司(8x +1000)元,丙公司为(10x +700)元. 依据题意,得(8x +1000)+(10x +700)=2(6x +1500).解得x ≈217(米). (2)设选择三家运输公司所需的总费用分别为y 1,y 2,y 3. 由于三家运输公司包装与装卸及运输所需的时间分别为:甲公司460S ⎛⎫+⎪⎝⎭小时,乙公司250S ⎛⎫+ ⎪⎝⎭小时,丙公司3100S ⎛⎫+ ⎪⎝⎭小时, ∴161500430011270060S y S S ⎛⎫=+++⨯=+⎪⎝⎭, 281000230014160050S y S S ⎛⎫=+++⨯=+⎪⎝⎭,3107003300131600100S y S S ⎛⎫=+++⨯=+⎪⎝⎭. ∵S >0, ∴y 2>y 3恒成立,所以只要比较y 1与y 3的大小.∵y 1-y 3=-2S +1100,∴①当S <550千米时,y 1>y 3.又y 2>y 3,故此时选择丙公司较好; ②当S =550千米时,y 2>y 1= y 3,此时选择甲公司或丙公司; ③当S >550千米时,y 2>y 3>y 1,此时选择甲公司较好.中考数学知识点代数式一、 重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

中考数学专题复习三图表信息试题(共4页)

中考数学专题复习三图表信息试题(共4页)

510x (天)九年级数学专题(zhu ānt í)复习三——图表信息一、题型特点图象信息题是指由图形、图象〔表〕及易懂的文字说明来提供问题情景的一类问题,它是近几年所展示的一种新的题型。

这类问题题型多样,取材广泛,形式灵敏,突出对考生搜集、整理和加工信息才能的考察.是近几年中考的热点.解图象信息题的关键是“识图〞和“用图〞.解这类题的一般步骤是:〔1〕观察图象,获取有效信息;〔2〕对已获信息进展加工、整理,理清各变量之间的关系;〔3〕选择适当的数学工具,通过建模解决问题. 二、典型例题例1:2010年5月1日,举世瞩目的世界博览会在隆重开园,开幕式前,某旅行社组织甲、乙两个公司的部门主管赴观摩开幕式的盛况,其中预订的一类门票,二类门票的数量和所花费用如下表:根据上表给出的信息,分别求出一类门票和二类门票的单价.例2:因南方旱情严重,乙水库的蓄水量以每天一样的速度持续减少.为缓解旱情,北方甲水库立即以管道运输的方式给予以支援以下图是两水库的蓄水量y 〔万米3〕与时间是x 〔天〕之间的函数图象.在单位时间是内,甲水库的放水量与乙水库的进水量一样〔水在排放、接收以及输送过程中的损耗不计〕.通过分析图象答复以下问题:〔1〕甲水库每天的放水量是多少万立方米?〔2〕在第几天时甲水库输出的水开场注入乙水库?此时乙水库的蓄水量为多少万立方米?〔3〕求直线AD 的解析式. 例3:一辆经营长途运输的货车在高速公路的处加满油后,以每小时80千米的速度匀速行驶,前往与A处相距636千米的地,下表记录的是货车一次加满油后油箱内余油量y〔升〕与行驶时间是x〔时〕之间的关系:〔1〕请你认真(rèn zhēn)分析上表中所给的数据,用你学过的一次函数、反比例函数和二次函数中的一种来表示y与x之间的变化规律,说明选择这种函数的理由,并求出它的函数表达式;〔不要求写出自变量的取值范围〕〔2〕按照〔1〕中的变化规律,货车从A处,求此时油箱内余油多少升?〔3〕在〔2〕的前提下,C处前方18千米的处有一加油站,根据实际经历此货车在行驶中油箱内至少保证有10升油,假如货车的速度和每小时的耗油量不变,那么在D处至少加多少升油,才能使货车到达B地.〔货车在D处加油过程中的时间是和路程忽略不计〕例4:邮递员小王从县城出发,骑自行车到A村投递,途中遇到县城中学的学生李明从A村步行返校.小王在A村完成投递工作后,返回县城途中又遇到李明,便用自行车载上李明,一起到达县城,结果小王比预计时间是晚到1分钟.二人与县城间的间隔(千米)和小王从县城出发后所用的时间是(分)之间的函数关系如图,假设二人之间交流的时间是忽略不计,求:〔1〕小王和李明第一次相遇时,距县城多少千米?请直接写出答案.〔2〕小王从县城出发到返回县城所用的时间是.〔3〕李明从A村到县城一共用多长时间是?随堂演练:1.某人从某处出发,匀速地前进一段时间是后,由于有急事,接着更快地、匀速地沿原路返回原处,这一情境中,速度与时间是t的函数图象〔不考虑图象端点情况〕大致为( )2..在一次自行车越野赛中,甲乙两名选手行驶的路程y随时间是x〔分〕变化的图象〔全程〕如图,根据图象断定以下结论不.正确的选项是......( )O96866630 x/分〔第2题图〕乙甲A.甲先到达终点 B.前30分钟,甲在乙的前面C.第48分钟时,两人第一次相遇(xiānɡ yù) D.这次比赛的全程是28千米3.某挪动通讯公司提供了A、B两种方案的通讯费用y(元)与通话时间是x(分)之间的关系,如下图,那么以下说法错误的选项是......〔〕A.假设通话时间是少于120分,那么A方案比B方案廉价20元B.假设通话时间是超过200分,那么B方案比A方案廉价C.假设通讯费用为了60元,那么方案比A方案的通话时间是多D.假设两种方案通讯费用相差10元,那么通话时间是是145分或者185分4.某物流公司的甲、乙两辆货车分别从A、B两地同时相向而行,并以各自的速度匀速行驶,途径配货站C,甲车先到达C地,并在C地用1小时配货,然后按原速度开往B地,乙车从B地直达A地,图是甲、乙两车间的间隔y〔千米〕与乙车出发x 〔时〕的函数的局部图像〔1〕A、B两地的间隔是千米,甲车出发小时到达C地;〔2〕求乙车出发2小时后直至到达A地的过程中,y与x的函数关系式及x的取值范围,并在图中补全函数图像;〔3〕乙车出发多长时间是,两车相距150千米5.某企业在消费甲、乙两种节能产品时需用A、B两种原料,消费每吨节能产品所需原料的数量如下表所示:销售甲、乙两种产品的利润〔万元〕与销售量(吨)之间的函数关系如下图.该企业消费了甲种产品x吨和乙种产品y吨,一共用去A原料200吨.〔1〕写出x与y满足的关系式;〔2〕为保证消费的这批甲种、乙种产品售后的总利润不少于220万元,那么至少要用B原料多少吨?6.国家决定对购置彩电的农户实行政府补贴.规定每购置一台彩电,政府补贴假设干元,经调查某商场销售彩电台数y 〔台〕与补贴款额x 〔元〕之间大致满足如图①所示的一次函数关系.随着补贴款额x收益〔元〕会相应降低且Z 与x 〔1〕在政府(zh èngf ǔ)销售彩电的总收益额为多少元?〔2〕在政府补贴政策施行后,分别求出该商场 销售彩电台数y 和每台家电的收益Z 与政府补 贴款额x 之间的函数关系式; 〔3〕要使该商场销售彩电的总收益〔元〕最大,政府应将每台补贴款额x 定为多少?并求出总收益w 的最大值.内容总结(1)九年级数学专题复习三——图表信息 一、题型特点图象信息题是指由图形、图象〔表〕及易懂的文字说明来提供问题情景的一类问题,它是近几年所展示的一种新的题型(2)〔2〕在第几天时甲水库输出的水开场注入乙水库))图①图②。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学图表信息题汇编
图表信息题是中考常见的一种题型,它是通过图象、图形及表格等形式给出信息的一种新题型,在解决图表信息题的时候要注意以下几点:
1、细读图表:(1)注重整体阅读。

先对材料或图表资料等有一个整体的了解,把握大体方向。

要通过整体阅读,搜索有效信息;(2)重视数据变化。

数据的变化往往说明了某项问题,而这可能正是这个材料的重要之处;(3)注意图表细节。

图表中一些细节不能忽视,他往往起提示作用。

如图表下的“注”“数字单位”等。

2、审清要求:图表题往往对答题有一定的要求,根据考题要求进行回答,才能有的放矢。

题目要求包往往括字数句数限制、比较对象、变化情况等。

3、准确表达解答图表题需要用简明的语言进行概括。

解答前,要正确分析图表中所列内容的相互联系,从中找出规律性的东西,再归纳概括为一个结论。

在表述时要有具体的数据比较、分析,要客观地反映图表包含的信息,特别要注意题目中的特殊限制。

类型之一图形信息题
找规律是解决数学问题的一种重要手段,找规律既需要敏锐的观察力,又需要一定的逻辑推理能力。

在解决图形问题的时候应从图形的个数、形状以及图形的简单性质入手。

1.(沈阳市)观察下列图形的构成规律,根据此规律,第8个图形中有个圆.
2.(聊城市)如下左图是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,依此递推,第8层中含有正三角形个数是()A.54个B.90个C.102个D.114个
3.(•桂林市)如上右图,矩形A1B1C1D1的面积为4,顺次连结各边中点得到四边形A2B2C2D2,再顺次连结四边形A2B2C2D2四边中点得到四边形A3B3C3D3,依此类推,求四边形AnBnCnDn,的面积是。

4(•襄樊市)如图,在锐角内部,画1条射线,可得3个锐角;画2条不同射线,可得6个锐角;画3条不同射线,可得10个锐角;……照此规律,画10条不同射线,可得锐角个.
类型之二图象信息题
此类题目以图象的形式出现,有时用函数图象的形式出现,有时以统计图的形式出现,需要要把所给的图象信息进行分类、提取加工,再合成.
5.(•莆田市)如图表示一艘轮船和一艘快艇沿相同路线从甲港出发到乙港行驶过程随时间变化的图象,根据图象下列结论错误的是()
A.轮船的速度为20千米/小时
C.轮船比快艇先出发2小时
B.快艇的速度为40千米/小时
D.快艇不能赶上轮船
6.(•滨州市)如图,在矩形ABCD中,动点P从点B出发,沿BC、CD、DA运动至点A 停止,设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图2所示,则△ABC的面积是()
A.10
B.16
C.18
D.20
7.(•龙岩市)下表为抄录北京奥运会官方票务网公布的三种球类比赛的部分门票价格,某公司购买的门票种类、数量绘制的条形统计图如下图.
依据上列图、表,回答下列问题:
(1)其中观看男篮比赛的门票有张;观看乒乓球比赛的门票占全部门票的%;(2)公司决定采用随机抽取的方式把门票分配给100名员工,在看不到门票的条件下,每人抽取一张(假设所有的门票形状、大小、质地等完全相同且充分洗匀),问员工小亮抽到足球门票的概率是;
(3)若购买乒乓球门票的总款数占全部门票总款数的,试求每张乒乓球门票的价格。

类型之三从表格、数字中寻求规律
能从表格、数字中发现两个量之间存在规律,归纳出相应的关系式.在探索规律的时候,如对于数字问题,可以把等式横向、纵向进行比较,找到其中的数字与其式子的序号之间的关系,然后找到其中的变化规律.
8.(•内江市) 根据图中数字的规律,在最后一个图形中填空.
9.(•恩施自治州)将杨辉三角中的每一个数都换成分数,得到一个如图4所示的分数三角形,称莱布尼茨三角形.若用有序实数对(m,n)表示第m行,从左到右第n个数,如(4,3)表示分数.那么(9,2)表示的分数是.
10.(•茂名)我市某工艺厂为配合北京奥运,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:
(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式;
(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价-成本总价)
(3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?
参考答案
1.【解析】观察图形,第1个图形中“○”的个数为2=1+1;第2个图形中“○”的个数为5=4+1= ;第3个图形中“○”的个数为10=9+1= ;第4个图形中“○”的个数为17=16+1= ;…第n个图形中“○”的个数为.
【答案】65.
2.【解析】阅读题意可得规律:第1层:1×6;第2层:3×6;第3层:5×6;第4层:7×6……第8层:15×6=90;还可推广:第层:(2n-1)×6,所以第8层中含有正三角形个数是10 2.
【答案】B
【解析】由中点四边形性质得:四边形A2B2C2D2,的面积是矩形A1B1C1D1的一半,四边形A3B3C3D3的面积是四边形A2B2C2D2的面积的一半,依此类推,得到四边形AnBnCnDn的面积是。

【答案】
4.【解析】按如图这样画n条射线得到的锐角个数为
【答案】66
5.【解析】由图象可以知道快艇用时4个小时路程160千米,速度每小时40千米,同样可以得到轮船速度每小时20千米,快艇比轮船晚出发2小时,早到2小时,中间在4小时的时候追上轮船.
【答案】D
6.【解析】由图可知点P运动路程在4和9之间时三角形ABP面积不变,说明这时点P在CD 边上,因此可知CD=5,BC=4,三角形ABC面积为10
【答案】A
7.【解析】此题为统计与概率知识的综合题,由条形统计图可以判断出三种比赛项目的具体人数,就可以解决第一、二两问.第三问乒乓球门票的价格需要根据统计表中所示的各门票的价格与购买乒乓球门票的总款数占全部门票总款数的,构造方程从而求出乒乓球门票的价格.
【答案】(12分)(1)30,20
(3)解法一:依题意,有= 18 .
解得x =500 .
经检验,x = 500是原方程的解.
答:每张乒乓球门票的价格为500元.
解法二:依题意,有= .
解得x =500 .
答:每张乒乓球门票的价格为500元.
8.【解析】寻求图形与图形之间数字蕴含的规律是解题的关键所在.图形的第一行的数是连续正奇数;第二行左边的数是连续正偶数;把每个图形第一行的数乘以第二行左边的数,再加上第一行的数,便得到第二行右边的数.
【答案】
9.【解析】观察分数的排列发现其分布有轴对称性,且(n,1)表示,(n,2)表示
【答案】
10.【解析】从表格中的数据我们可以看出当x增加10时,对应y的值减小100,所以y与x之间可能是一次函数的关系,我们可以根据图象发现这些点在一条直线上,所以y与x之间是一次函数的关系,然后设出一次函数关系式,求出其关系式.
【答案】(1)画图如图;
由图可猜想与是一次函数关系,
设这个一次函数为= + (k≠0)
∵这个一次函数的图象经过(30,500)、(40,400)这两点,
∴解得
∴函数关系式是:=-10 +800
(2)设工艺厂试销该工艺品每天获得的利润是W元,依题意得
W=(-20)(-10 +800)=-10 +1000 -16000
=-10(-50)+9000
∴当=50时,W有最大值9000.
所以,当销售单价定为50元∕件时,工艺厂试销该工艺品每天获得的利润最大,最大利润是9000元.
(3)对于函数W=-10(-50)+9000,
当≤45时,W的值随着x值的增大而增大,销售单价定为45元∕件时,工艺厂试销该工艺品每天获得的利润最大.。

相关文档
最新文档