初中数学图表信息复习专题

合集下载

中考数学复习常考图表信息类题型解析(题目类型解析+真题反馈)(共19张PPT)

中考数学复习常考图表信息类题型解析(题目类型解析+真题反馈)(共19张PPT)

2019/3/9
请根据图中提供的信息,解答下列问题: (1) 在这次抽样调查中,共调查了___________名学生; (2) 补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的 度数; (3) 根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与” 的人数。
2019/3/9
各类情况条形统计图 人数 240 200 160 120 80 40 240
2019/3/9
a元,蓝色地砖每块b元, 解: (1)设红色地砖每块 4000a 6000b 0.9 86000,
答:红色地砖每块8元,蓝色地砖每块10元. (2)设购置蓝色地砖x块,则购置红色地砖(12000-x)块,所需的总费用为 y元. 由题意知x≥(12000-x),得x≥4000,又x≤6000, ∴ 4000≤x≤6000. 当4000≤x<5000时,y=10x+8×0.8(12000-x),即y=76800+3.6x, ∴ x=4000时,y有最小值91200; 当5000≤x≤6000时,y=0.9×10x+8×0.8(12000-x)=2.6x+76800. ∴ x=5000时,y有最小值89800. ∵89800<91200,∴购买蓝色地砖5000块,红色地砖7000块,费用最少,
2019/3/9
典例选讲
例1 实数a,b,c在数轴上的对应点的位置如图所示,则正确 的结论是 (B )
A. a>4
B.c-b>0
C.ac>0
D.a+c>0
2019/3/9
典例选讲
例2 利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系 统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表 示0.将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生 所在班级序号,其序号为a×23+b×22+c×21+d×20.如图2第一行数字从 左到右依次为0,1,0,1,序号为0×23+1×22+0×21+1×20=5,表示 该生为5班学生.表示6班学生的识别图案是 ( B )

七年级数学上册图表知识点

七年级数学上册图表知识点

七年级数学上册图表知识点图表是数学中必不可少的形式之一,它们可以通过可视化的方式帮助学生理解和分析大量的数据。

在这篇文章中,我们将介绍一些七年级数学上册中常见的图表类型及其用途。

1. 条形图条形图是用于比较不同项目或分类之间数量关系的图表。

它们通常以垂直或水平的条形为主要形式,每个条形代表一个项目或分类。

在七年级数学上册中,学生将学习如何创建和解读条形图,以及如何使用它们来比较数据。

2. 饼图饼图是一种表示数据占比的图表,它们通常以圆形的形式呈现。

在七年级数学上册中,学生将学习如何创建和解读饼图,并了解如何使用它们来表示不同分类或项目的比例。

3. 折线图折线图是一种用于表示连续数据的图表,它们通常以线段的形式呈现。

在七年级数学上册中,学生将学习如何创建和解读折线图,并使用它们来分析和比较连续的数据,例如天气变化或股票价格。

4. 散点图散点图是一种用于表示数据之间关联性的图表,它们通常将数据点以二维坐标的形式呈现。

在七年级数学上册中,学生将学习如何创建和解读散点图,并了解如何使用它们来研究和分析数据之间的关系。

5. 直方图直方图是一种用于表示数值分布的图表,它们以连续的范围或组为主要形式,每个范围或组都具有一定数量的数据。

在七年级数学上册中,学生将学习如何创建和解读直方图,并使用它们来表示数据的分布情况,例如测试分数。

总结:在七年级数学上册中,学生将学习各种图表类型及其用途。

这些图表包括条形图,饼图,折线图,散点图和直方图。

通过这些图表的学习,学生将能够更好地理解和分析大量的数据,同时提高数学技能和数据解读能力。

2019年中考数学复习课件专题1 图表信息

2019年中考数学复习课件专题1 图表信息

因此,完整的扇形统计图如图.
(2)由(1)知,顾客每转动一次转盘获得购物券金额的平均数是
60×12.5%+20×25%+0×25%+0× 12.5%+25%+25%+37.5%
37.5%=12.5(元).
16
考向一 考向二 考向三 考向四
专题名师解读
热点考向例析
17
专题名师解读
热点考向例析
考向一 考向二 考向三 考向四
考向一 图象信息问题 图象信息题是指题目给出相关图象,通过观察图象,从中捕捉信 息进行计算或推理的一类题.
4
考向一 考向二 考向三 考向四
专题名师解读
热点考向例析
【例1】 小翔在如图①所示的场地上匀速跑步,他从点A出发,沿
箭头所示方向经过点B跑到点C,共用时30 s.他的教练选择了一个固 定的位置观察小翔的跑步过程.设小翔跑步的时间为t(单位:s),他与
(1)小亮行走的总路程是
m,他途中休息了
min;
(2)①当50≤x≤80时,求y与x的函数关系式;
②当小颖到达缆车终点时,小亮离缆车终点的路程是多少? 8
考向一 考向二 考向三 考向四
专题名师解读
热点考向例析
解:(1)3 600 20
(2)①当50≤x≤80时,设y与x的函数关系式为y=kx+b(k≠0),
专题名师解读
考向二 图形信息题
【例3】 观察图形,解答问题:
热点考向例析
(1)按下表已填写的形式补全表格:
图①
图②
图③
三个角上三个数的积 1×(-1)×2=-2 (-3)×(-4)(-5)=-60
三个角上三个数的和 1+(-1)+2=2 (-3)+(-4)+(-5)=-12

中考数学专题复习《图表与信息》课件+教案中考数学模拟试题

中考数学专题复习《图表与信息》课件+教案中考数学模拟试题

中考数学专题复习《图表与信息》课件+教案中考数学模拟试题一、教学目标:1. 让学生掌握图表与信息的基本概念和作用。

2. 培养学生分析图表、获取信息、解决问题的能力。

3. 通过对中考数学模拟试题的训练,提高学生的应试能力。

二、教学内容:1. 图表的种类及特点2. 图表与信息的关系3. 获取图表信息的方法和技巧4. 图表在数学解题中的应用5. 中考数学模拟试题训练三、教学重点与难点:1. 教学重点:图表与信息的关系,获取图表信息的方法和技巧,图表在数学解题中的应用。

2. 教学难点:图表的种类及特点,图表与信息的深入分析。

四、教学方法:1. 采用案例分析法,让学生通过实际案例理解图表与信息的关系。

2. 采用任务驱动法,引导学生主动探究获取图表信息的方法和技巧。

3. 采用练习法,对学生进行中考数学模拟试题训练,提高学生的应试能力。

五、教学过程:1. 导入:通过展示一组图表,引导学生思考图表与信息的关系,激发学生的学习兴趣。

2. 新课导入:介绍图表的种类及特点,讲解图表与信息的关系。

3. 案例分析:分析一组实际案例,让学生理解图表与信息的关系。

4. 方法讲解:讲解获取图表信息的方法和技巧,引导学生主动探究。

5. 练习环节:发放中考数学模拟试题,让学生运用所学知识解决问题。

6. 总结与反思:对本节课的内容进行总结,让学生分享自己的学习心得。

7. 课后作业:布置相关练习题,巩固所学知识。

8. 课后辅导:针对学生存在的问题进行个别辅导,提高学生的学习效果。

六、教学评价:1. 评价学生对图表与信息基本概念的理解程度。

2. 评价学生分析图表、获取信息、解决问题的能力。

3. 评价学生在中考数学模拟试题中的表现,了解其应试能力。

七、教学准备:1. 准备各种类型的图表案例,用于教学演示和练习。

2. 准备中考数学模拟试题,用于课堂练习和评价。

3. 准备教学PPT,用于展示图表案例和知识点。

八、教学延伸:1. 邀请专业人士进行讲座,介绍图表在实际工作中的应用。

中考数学二轮专题复习(专题二 图表信息问题)

中考数学二轮专题复习(专题二  图表信息问题)

500(1+10%)=550套,即可得出答案.

(1)∵1 500÷24%=6 250,
6 250×7.6%=475, ∴经济适用房的套数有475套. 补全频数分布直方图如下:
(2)老王被摇中的概率为:
475 1 = ; 950 2
(3)2011年廉租房共有6 250×8%=500套, 500(1+10%)=550套, ∴2012年新开工廉租房550套.
三、图文信息题
这类试题往往以图文形式提供一定的数学情景,让学 生通过对图画中的情景(或对话等)的分析和理解,抽象出 数学本质,建立合理的数学模型解决问题.
【例题3】 (2013· 宁波改编)阅读下面的情景对话,然后解答问题:
(1)根据“奇异三角形”的定义,请你判断小华提出 的命题:“等边三角形一定是奇异三角形”是真命 题还是假命题? (2)在Rt△ABC中,∠C=90°,AB=c,AC=b, BC=a,且b>a,若Rt△ABC是奇异三角形,求 a∶b∶c; 分析 (1)根据“奇异三角形”的定义与等边三角形
(2)妈妈驾车速度:20×3=60(km/h)
如图,设直线BC解析式为y=20x+ b1,
把点 B(1,10)代入得 b1=-10. ∴直线 BC 解析式为 y=20x-10 ①. 设直线 DE 解析式为 y=60x+b2, 4 把点 D3,0代入得 b2=-80. ∴直线 DE 解析式为 y=60x-80 ②. 联立①②,得 x=1.75,y=25. ∴交点 F(1.75,25). ∴小明出发 1.75 小时(105 分钟)被妈妈追上, 此时离家 25 km.
的性质,求证即可;
(2)根据勾股定理与奇异三角形的性质,可得a2+b2 =c2与a2+c2=2b2,用a表示出b与c,即可求得答 案.

2019年安徽数学中考二轮复习专题三:图表信息问题课件(39张PPT)

2019年安徽数学中考二轮复习专题三:图表信息问题课件(39张PPT)

解、处理数据的能力.
【例 2】
(2018·温州 )温州某企业安排 65名工人生产甲、乙两种产
品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需
求和生产经验,乙产品每天产量不少于 5件,当每天生产5件时,每件可 获利120元,每增加1件,当天平均每件获利减少 2元.设每天安排x人生 产乙产品. (1)根据信息填表. 产品种类 每天工人数/人 每天产量/件 x 每件产品可获利润/元
【解析】
(1) 方法一 : 设 AE = a , 分别用含 a 的代数式表示 BE ,
AB,根据题意建立y关于x的函数表达式;方法二:先分别用含x,y的代
数式表示CF和DF,再根据2BC+2CF+3DF=80,确定y与x之间的函数 表达式,并写出自变量的取值范围;(2)用配方法把二次函数配成顶点形 式,结合抛物线的开口方向和自变量取值范围确定二次函数的最值 .
【点拨】 此类问题容易出错的地方是:(1)由于不能用含x,y代数 式表示线段长 , 导致无法求解 ; (2)在配方时 ,对于二次项系数不是 1的
容易与解一元二次方程相混淆 ,导致错误;(3)求二次函数的最值时,由
于没有考虑自变量取值范围导致错误.
●类型二
表格类信息型
用表格呈现数据信息,比较直观、简洁,在日常生活中使用极为普 遍,工厂的产值、股市的行情、话费的计算等,表格信息型问题近年来 成为了中考数学试题的一道亮丽风景.解答这类问题关键是分析表格数 据,抽取有效信息,找出内在规律,需要同学们具备一定的分析、理
2x(元 ); (2) 每天生产甲产品可获得的利润比生产乙产品可获得的利润多 550 元 , 所以 15×2(65 - x) = x(130 - 2x) + 550 , 得一元二次方程 x2 - 80x + 700=0,解得x1=10,x2=70(不合题意,舍去),所以130-2x=110,每

初中数学图表信息复习专题

初中数学图表信息复习专题

图表信息复习专题图表信息题是近几年中考热点内容之一,也是今后中考的出题方向.这类题常以实际生活为背景,将相关的数学知识信息巧无声息的隐含在创设的生活素材、图象、图表中,我们只有通过对生活素材、图象、图表等相关信息的分析、观察、猜想、抽象、概括,从中获取图表中隐含的解题信息和思路、方法,然后再进行推理、探究、发现和计算的一种题型.图表信息的内容大多取材于现实生活,主要包括生活图景、表格信息、图象信息、统计图表、几何图形等各种类型.解决图表信息题的核心是“分析识别图表”和“用图表”.即通过观察、分析图象和图表,捕捉有效信息,并对已获得的信息进行加工、处理和整理,分清变量之间的关系,选择适当的数学工具,将实际问题转化为相应的数学模型来解决问题.一、在生活情境、素材中提炼与构建图像例1(2010年湖南益阳)如图,火车匀速通过隧道(隧道长大于火车长)时,火车进入隧道的时间x与火车在隧道内的长度y之间的关系用图象描述大致是()A. B. C.D.解析:随着火车进入隧道的时间x的增加,火车在隧道内的长度y从0开始,逐渐增长,当火车完全进入隧道时,在隧道内的长度y不变;当火车出隧道时,长度y逐渐减小,最后隧道内的长度为0.根据以上x、y的变化情况,并结合函数图象可选A.点评:数学来源于生活,从现实生活中的某个片断、情境或素材取材,进而酝酿数学,构建数学,是近年的中考亮点与趋势.为此要求我们在平时多用数学的眼光生活,发现数学影子,从数学的角度运用有关知识酝酿与构建数学模型,进而分析与解决现实问题.解决此类问题的关键是要从素材、图象提供的已知条件出发,弄清变量之间的内在关系、含义(x,y)及其中蕴含的数学模型.二、从生活图景中体验与获取例2(2010年吉林)在课间活动中,小英、小丽和小敏在操场上画出两个区域,一起玩投沙包游戏.沙包落在区域所得分值与落在区域所得分值不同.当每人各投沙包四次时,其落点和四次总分如图所示.请求出小敏的四次总分.解析:设沙包落在区域得分,落在区域得分,根据小英、小丽的得分图,可以找到两个相等关系,从而得到解得答:小敏的四次总分为30分.点评:从同学日常游戏中取材、立意,创设熟悉的生活图景,是近年的中考热点.主要是考查从中获取信息,分析和处理数据的能力,能将实际问题转化为数学问题,进行有关知识的构建与建模,进而分析和解决日常生活中的实际问题.三、从统计图中体验与获取例3(2010福建福州)近日从省家电下乡联席办获悉,自2009年2月20日我省家电下乡全面启动以来,最受农户热捧的四种家电是冰箱、彩电、洗衣机和空调,其销售量比为5:4:2:1,其中空调已销售了15万台.根据上述销售情况绘制了两个不完整的统计图:请根据以上信息解答问题:(1)补全条形统计图;(2)四种家电销售总量为_______万台;(3)扇形统计图中彩电部分所对应的圆心角是_______度;(4)为跟踪调查农户对这四种家电的使用情况,从已销售的家电中随机抽取一台家电,求抽到冰箱的概率.思路点拨:结合销售量比,可设每份为x,根据条件可得x=15,从而可得各种家电的数量,完成条形图的制作及家电总销量;计算出彩电所占比例,进而得出它所对应的圆心角的度数.解:(1)如图所示;(2)180;(3)120;(4)解:P(抽到冰箱)==.答:抽到冰箱的概率是.点评:以当前的家电下乡为背景设置的一道统计知识的综合运用题,读题与读图时,一定要彼此图文对照,找出数据之间的内在联系,明确各种统计图都有各自的特征和作用,条形统计图可清楚地表示出每个项目的具体数目,扇形统计图能直观地反映各部分的百分比的大小,两种统计图的合用,各个项目的具体数目和百分比都可从其相互关系,通过计算得出,正确理解各种统计图的含义及作用,是综合应用统计图进行数据分析和整理的前提.四、从函数图象中体验与获取例4(2010浙江湖州)一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶.设行驶的时间为x(时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地过程中y与x之间的函数关系.(1)根据图中信息,求线段AB所在直线的函数解析式和甲乙两地之间的距离;(2)已知两车相遇时快车比慢车多行驶40千米,若快车从甲地到达乙地所需时间为t时,求t的值;(3)若快车到达乙地后立刻返回甲地,慢车到达甲地后停止行驶,请你在图中画出快车从乙地返回到甲地过程中y关于x的函数的大致图像.思路点拨:结合直线上两点(1.5,70)、(2,0),运用待定系数法求解出直线的解析式,进而求出点A的坐标,即甲乙两地之间的距离;借助有关两车的路程问题构建方程组求解两车的速度和时间;通过分析可知y关于x的函数的图像还存在两段:两车同时行驶两车的距离和慢车到达甲地后快车继续行驶时两车的距离与x的关系.解析:(1)线段AB所在直线的函数解析式为:y=kx+b,将(1.5,70)、(2,0)代入得:,解得:,所以线段AB所在直线的函数解析式为:y=-140x+280,当x=0时,y=280,所以甲乙两地之间的距离280千米.(2)设快车的速度为m千米/时,慢车的速度为n千米/时,由题意得:,解得:,所以快车的速度为80千米/时,所以.(3)如图所示.点评:函数图象与实际问题结合是近年中考的热点问题,这类问题通常是从函数图象中得出需要的信息,然后利用待定系数法求出一次函数解析式,再利用解析式解决问题.由图象提供解题信息,需要将“图形、图象语言”转化成“符号语言”,这要求同学具有多方位观察、多角度思维及触类旁通的能力.在本题中函数图象是自变量与函数值变化的最直观,最形象的反映,通过图象的特征确定函数的自变量与函数值之间的变化规律,其中最重要的环节是利用数形结合思想分析图象,理解图象,获取信息,理清各种量之间的关系,建立函数模型最终将问题解决.五、从表格中体验与获取例5(2010年辽宁本溪)自2010年6月1日起我省开始实施家电以旧换新政策,政府100台.这批货的进价若购进的电视和洗衣机数量相同,均为x台,这100台家电政府补贴为y元,商场所获利润为w元(利润=售价-进价).(1)请分别求出y与x、w与x的函数表达式.(2)若商场决定购进每种商品不少于30台,则有几种进货方案?怎样安排进货,才能获得最大利润,同时政府需要支付补贴多少钱?解析:(1)y=400x+1800×10%x +2400×10%(100-2x)=400x+180x +24000-480x=100x+24000.w=400x+300x +400(100-2x)=-100x+40000.(2)根据题意,得解得,30≤x≤35.又为x整数,故x=30,31,32,33,34,35 因此共有6种进货方案.对于w=-100x+40000,∵k=-100<0,30≤x≤35,∴当x取最小值30时,w有最大值.所以当购进30台电视,30台洗衣机,40台冰箱时商场将获得最大利润.因此,政府补贴为y=100×30+24000=27000(元).点评:此类题材往往取材于日常家电以旧换新政策的事件,由表格中的信息通过分析整理得到相关数据和函数关系式,并运用它解决一定的实际问题,解题的关键是读懂题目的要求和表格中数据的层次性,注意思考的层次性及其中蕴含的数量关系.六、从几何图形的运动中体验与获取例6(2010福建龙岩)如图,A、B、C、D为⊙O的四等分点,若动点P从点C出发,沿C→D→O→C路线作匀速运动,设运动时间为t,∠APB的度数为y,则y与t之间函数关系的大致图象是()A BC D解析:因为A、B、C、D为⊙O的四等分点,所以∠AOB=90°,当点P在弧CD上运动时,根据圆周角定理,知∠APB=∠AOB=45°,P在DO上运动时,∠APB逐渐增大到90°(此时P与O重合),之后在OC上运动时又逐渐减小.故选C.点评:近年来,有关数学元素(点、线、图、学具等)的运动变化(点P沿C→D→O →C路线运动,引起∠APB的变化),导致问题的结论或者改变,或者保持不变的几何问题,是中考数学的“亮点”,解这类试题需要发挥自己的想象力,整体地把握命题条件及相关几何图形的变换与操作,抓住在运动变化过程中暂时静止的某一瞬间(点O、点C、点D),不被“动”所迷,化动为静,进行观察联想,猜测,分析,归纳,运用数学眼光审视、分析、概括在动态中所出现的现象(∠APB的度数变化),运用数形结合的思想,揭示其数学本质及内在联系,构建出变量关系式及相应的函数图象.2011-01-11 人教网。

初三数学图表信息专题知识精讲 北师大版

初三数学图表信息专题知识精讲 北师大版

初三数学图表信息专题知识精讲 北师大版一. 本周教学内容: 图表信息专题1. 表式信息题他共用116元钱从市场上批发了红辣椒和西红柿共44公斤到菜市场去卖,当天卖完,请你计算出小熊能赚多少钱?(2006年乐山市)解:设小熊在市场上批发了红辣椒x 公斤,西红柿y 公斤。

根据题意,得⎩⎨⎧=+=+116y 6.1x 444y x解这个方程组,得29116519225,25y ,19x =-⨯+⨯==(元)答:他卖完这些西红柿和红辣椒能赚29元钱。

例2. 某校的一间阶梯教室,第1排的座位数为a ,从第2排开始,每一排都比前一排增加b 个座位。

(2)已知第4排有18个座位,第15排座位数是第5排座位数的2倍,求第21排有多少个座位?(2006年福建省) 解:(1)b 3a +(2)依题意得⎩⎨⎧+=+=+)b 4a (2b 14a 18b 3a解得⎩⎨⎧==2b 12a5222012=⨯+∴答:第21排有52个座位。

2. 图形信息题例3. 2006年“五·一”节,小华、小颖、小明相约到“心连心”超市调查“农夫山泉”矿泉水的日销售情况。

下图是调查后三位同学进行交流的情景。

请你根据上述对话,解答下列问题。

(1)该超市的每瓶“农夫山泉”矿泉水的标价为多少元; (2)该超市今天销售了多少瓶“农夫山泉”矿泉水。

(温馨提示:利润=售价-进价 利润率%100⨯=进价利润) (2006年邵阳市)解:(1)设超市对每瓶“农夫山泉”矿泉水的标价为x 元。

根据题意,得1%201x 108⨯=-。

解之得5.1x =。

答:(略) (2)售价为2.15.1108=⨯(元),即有3002.1360=÷(瓶)。

答:(略)3. 图象信息题 例4. 某农机公司为更好地服务于麦收工作,按如图1所示给出的比例,从甲、乙、丙三个工厂共购买了150台同种农机,公司技术人员对购买的这批农机全部进行了检验,绘制了如图2所示的统计图。

初中数学综合复习统计图表部分1

初中数学综合复习统计图表部分1

初中数学综合复习统计图表部分1一、选择题1.小红同学将自己五月份的各项消费情况制作成扇形统计图(如图),从图中可看出()(A)各项消费金额占消费总金额的百分比(B)各项消费的金额(C)消费的总金额(D)各项消费金额的增减变化情况【答案】A2.下图是交警在一个路口统计的某个时段来往车辆的车速(单位:千米/小时)情况,则下列关于车速描述错误的是()A. 平均数是23B. 中位数是25C. 众数是30D. 方差是129【答案】D3.小红同学将自己5月份的各项消费情况制作成扇形统计图(如图),从图中可看出()A.各项消费金额占消费总金额的百分比40 车速第5题图B.各项消费的金额C.消费的总金额D.各项消费金额的增减变化情况考点:扇形统计图.菁优网版权所有分析:利用扇形统计图的特点结合各选项利用排除法确定答案即可.解答:解:A、能够看出各项消费占总消费额的百分比,故选项正确;B、不能确定各项的消费金额,故选项错误;C、不能看出消费的总金额,故选项错误;D、不能看出增减情况,故选项错误.故选A二、填空题1.在《中国梦·我的梦》演讲比赛中,将5个评委对某选手打分情况绘成如图所示的统计图,则该选手得分的中位数是_____分.【答案】92.某校九年级有560名学生参加了教育局举行的读书活动,现随机调查了70名学生读书的数量,根据所得数据绘制了如图所示的条形统计图,请估计该校九年级学生在此次读书活动中共读书______本.第16题图【答案】20403.为了解某校1800名学生对新闻、体育、动画、娱乐四类电视节目的喜欢情况,随机抽取部分学生进行调查,结果如图,则该校喜爱体育节目的学生大约有名.人数【答案】360 三、解答题1. 某县为了解七年级学生对篮球、羽毛球、乒乓球、足球(以下分别用A 、B 、C 、D 表示)这四种球类运动的喜爱情况(每人只能选一种),对全县七年级学生进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).DCBA类型人数 10%40%C B AD请根据以上信息回答:(1)本次参加抽样调查的学生有 人;(2)若全县七年级学生有4000人,估计喜爱足球(D )运动的人数是 人;(3)在全县七年级学生中随机抽查一位,那么该学生喜爱乒乓球(C )运动的概率是 . 【答案】解:(1)根据题意得:60÷10% = 600(人); (2)4000×40% = 1600(人);(3)600-(180+60+240)=120,而120÷600×100% = 20%.2. 某市体育中考共设跳绳、立定跳远、仰卧起坐三个项目,要求毎位学生必须且只需选考其中一项,该市东风中学初三(2)班学生选考三个项目的人数分布的条形统计图和扇形统计图如图所示. (1)求该班的学生人数;(2)若该校初三年级有1 000人,估计该年级选考立定跳远的人数.【答案】解:(1)该班的学生人数为3060%50÷= (2)503015100010050--⨯=第14题图项目 起坐跳远 1530 人数 仰卧起坐 立定 跳远跳绳 60% 第17题图该年级选考立定跳远的人数大约是100人3. 某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味,草莓味,菠萝味,香橙味,核桃味五种口味的牛奶供学生饮用,海马中学为了了解学生对不同味的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同.,绘制了如下两张不完整的人数统计图)(1)本次被调查的学生有 名(2)[补全上面的条形统计图,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图中所占圆心角的度数.(3)该校共有1200名学生订购了该品牌的牛奶。

(整理版)九年级数学专题复习三图表信息

(整理版)九年级数学专题复习三图表信息

分九年级数学专题复习三——图表信息一、题型特点图象信息题是指由图形、图象〔表〕及易懂的文字说明来提供问题情景的一类问题,它是近几年所展示的一种新的题型。

这类问题题型多样,取材广泛,形式灵活,突出对考生收集、整理和加工信息能力的考查.是近几年中考的热点.解图象信息题的关键是“识图〞和“用图〞.解这类题的一般步骤是:〔1〕观察图象,获取有效信息;〔2〕对已获信息进行加工、整理,理清各变量之间的关系;〔3〕选择适当的数学工具,通过建模解决问题. 二、典型例题例1:2010年5月1日,举世瞩目的世界博览会在上海隆重开园,开幕式前,某旅行社组织甲、乙两个公司的部门主管赴上海观摩开幕式的盛况,其中预订的一类门票,二类门票的数量和所花费用如下表:根据上表给出的信息,分别求出一类门票和二类门票的单价.例2:因南方旱情严重,乙水库的蓄水量以每天相同的速度持续减少.为缓解旱情,北方甲水库立即以管道运输的方式给予以支援以下图是两水库的蓄水量y 〔万米3〕与时间x 〔天〕之间的函数图象.在时间内,甲水库的放水量与乙水库的进水量相同〔水在排放、接收以及输送过程中的损耗不计〕.通过分析图象答复以下问题: 〔1〕甲水库每天的放水量是多少万立方米?〔2〕在第几天时甲水库输出的水开始注入乙水库?此时乙水库的蓄水量为多少万立方米? 〔3〕求直线AD 的解析式.例3:一辆经营长途运输的货车在高速公路的A 处加满油后,以每小时80千米的速度匀速行驶,前往与A 处相距636千米的B 地,下表记录的是货车一次加满油后油箱内余油量y 〔升〕与行驶时间x 〔时〕之间的关系:〔1〕请你认真分析上表中所给的数据,用你学过的一次函数、反比例函数和二次函数中的一种来表示y 与x 之间的变化规律,说明选择这种函数的理由,并求出它的函数表达式;〔不要求写出自变量的取值范围〕〔2〕按照〔1〕中的变化规律,货车从A C 处,求此时油箱内余油多少升?〔3〕在〔2〕的前提下,C 处前方18千米的D 处有一加油站,根据实际经验此货车在行驶中油箱内至少保证有10升油,如果货车的速度和每小时的耗油量不变,那么在D 处至少加多少升油,才能使货车到达B 地.〔货车在D 处加油过程中的时间和路程忽略不计〕例4:s (千米)和小王从县城出发后所用的时间t (分)之间的函数关系如图,假设二人之间交流的时间忽略不计,求:〔1〕小王和李明第一次相遇时,距县城多少千米?请直接写出答案. 〔2〕小王从县城出发到返回县城所用的时间. 〔3〕李明从A 村到县城共用多长时间?随堂演练:1.某人从某处出发,匀速地前进一段时间后,由于有急事,接着更快地、匀速地沿原路返回原处,这一情境中,速度V 与时间t 的函数图象〔不考虑图象端点情况〕大致为( )2..在一次自行车越野赛中,甲乙两名选手行驶的路程y 〔千米〕 随时间x 〔分〕变化的图象〔全程〕如图,根据图象判定以下结 论不正确的选项是.......( ) A .甲先到达终点 B .前30分钟,甲在乙的前面 C .第48分钟时,两人第一次相遇 D .这次比赛的全程是28千米 3.某移动通讯公司提供了A 、B 两种方案的通讯费用y(元)与通话 时间x(分)之间的关系,如下图,那么以下说法错误的选项是......〔 〕 A.假设通话时间少于120分,那么A 方案比B 方案廉价20元 B.假设通话时间超过200分,那么B 方案比A 方案廉价C.假设通讯费用为了60元,那么方案比A 方案的通话时间多D.假设两种方案通讯费用相差10元,那么通话时间是145分或185分4. 某物流公司的甲、乙两辆货车分别从A 、B 两地同时相向而行,并以各自的速度匀速行驶,途径配货站C ,甲车先到达C 地,并在C 地用1小时配货,然后按原速度开往B 地,乙车从B 地直达A 地,图是甲、乙两车间的距离y 〔千米〕与乙车出发x 〔时〕的函数的局部图像〔1〕A 、B 两地的距离是 千米,甲车出发 小时到达C 地;〔2〕求乙车出发2小时后直至到达A 地的过程中,y 与x 的函数关系式及x 的取值范围,并在图中补全函数图像;〔3〕乙车出发多长时间,两车相距150千米5.某企业在生产甲、乙两种节能产品时需用A 、B 两种原料,生产每吨节能产品所需原料的数量如下表所示:销售甲、乙两种产品的利润m 〔万元〕与销售量n (吨)之间的函数关系如下图.该企业生产了甲种产品x 吨 和乙种产品y 吨,共用去A 原料200吨. 〔1〕写出x 与y 满足的关系式;〔2〕为保证生产的这批甲种、乙种产品售后的总利润不少于220万元,那么至少要用B 原料多少吨?6.国家决定对购置彩电的农户实行政府补贴.规定每购置一台彩电,政府补贴假设干元,经调查某商场销售彩电台数y 〔台〕与补贴款额x 〔元〕之间大致满足如图①所示的一次函数关系.随着补贴款额x 的不断增大,销售量也不断增加,但每台彩电的收益Z 〔元〕会相应降低且Z 与x 之间也大致满足如图②所示的一次函数关系.〔1〕在政府未出台补贴措施前,该商场 销售彩电的总收益额为多少元? 〔2〕在政府补贴政策实施后,分别求出该商场 销售彩电台数y 和每台家电的收益Z 与政府补 贴款额x 之间的函数关系式;〔3〕要使该商场销售彩电的总收益w 〔元〕最大, 政府应将每台补贴款额x 定为多少?并求出总收益 w 的最大值.〔第2题图〕 乙 甲 )图②。

图表信息问题-初中三年级数学试题练习、期中期末试卷-初中数学试卷

图表信息问题-初中三年级数学试题练习、期中期末试卷-初中数学试卷

图表信息问题-初中三年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试卷下载图表信息问题解图表问题的一般步骤:(1)观察图象,捕捉有效信息;(2)对已获信息进行加工,分清变量之间的关系;(3)处理信息,作出合理的推断,并加以解决。

一、用方程知识解题:毛时间收盘价(元/股)名称星期一星期二星期三星期四星期五甲1212.512.912.4512.75乙13.513.313.913.413.15例题1 下表是某一周甲、乙两种股票每天的收盘价:(收盘价是指股票每天交易结束时的价格)某人在该周内持有若干股甲、乙两种股票,若按照两种股票每天的收盘价计算(不计手续费、税费等),该人账户上星期二比星期一多获利200元,星期三比星期二多获利1300元。

试问该人持有甲、乙股票各多少股?二、用不等式知识解题:例题2 某公司决定组织48名员工双休日到附近一水上公园坐船游园,公司先派一人去了解船只的租金情况。

这个人看到的租金价格如下:那么怎样设计方案才能使所付租金最少?(严禁超载)船型每只限载人数(人)租金(元)大船53小船32三、用函数知识解题:例题3 某公司欲请汽车运输公司或火车货运站将60吨火果从A地运到B地。

已知汽车和火车从A地到B地的运输路程均为s千米。

这两家运输单位在运输过程中,除都要收取运输途中每吨5元的冷藏费外,要收取的其它费用及有关运输资料由下表给出:(1)请分别写出这两家运输单位运送这批水果所要的总费用y1(元)和y2(元)(用含s的代数表示)。

(2)为减少费用,你认为果品公司应选择哪家运输单位运送这批水果更为分理合算?(说明:“1元/(吨·千米)”表示“每吨每千米1元”)运输工具行驶速度(千米/时)运费单价[元/(吨·千米)]装卸总费用(元)汽车5023000火车801.74620四、用统计知识解题:例题4 有两种药品A和B,已经在甲、乙两家医院做过了临床试验结果如表一所示:表一:甲医院乙医院A药品B药品A药品B药品试验人数201080990有效人数6240478有效率(%)(1)计算表一中的有效率(直接在表中填出结果)。

数学中考复习《图表信息题》课件(14张ppt)

数学中考复习《图表信息题》课件(14张ppt)
km,并在图中标出其相遇点。 相遇点为A
练习3 某气象研究中心观测一场沙尘暴从发生到结
束的全过程,开始时风速平均每小时增加2 千米/时,4小时后,沙尘暴经过开阔荒漠地,风速变为平 均每小时增加4千米/时,一段时间,风速保持不变,当沙 尘暴遇到绿色植被区时 ,其风速平均每小时减少1千米/时, 最终停止,结合风速y与时间x的图象如图,回答下列问题:
运输公司的甲、乙两种货车,已知过去两次租用这 种货车情况如下表(两种货车均为满载)
甲种货车辆数(辆) 乙种货车辆数(辆) 累计运输吨数(吨)
第一次 第二次
2
5
3
6
15.5 35
现租用该公司甲种货车5辆及乙种货车一辆刚好 运完这批货物,如果按每吨运费30元计算,货主应 付运费多少元?
解:设甲乙两种货车满载时的载重量分别
y(千米/时)
(32)
(1)在y轴( ) 内填入相应的数值;
(8)
O 4 10
25
x(小时)
(2)沙尘暴从发生到结束,共经过了多少小时?
(2)沙尘暴从发生到结束,共经过了多少小时?
(3)求出当x≥25时,风速y(千米/时)与时间
x(小时)之间的函数关系式。
解3:2÷(12=)32由(题小意时得)(:32)y(千米B/时) C(25,32)
1 2
x+2
(2)观察图象,当x>-4 时,y> 0;
当x =-4 时,y=0;当x <-4 时,y<0;
(3)观察图象,当x=2时,y= 3 , y
当y=1时x= -2 ; 3
(4)不解方程,求
2 1
1 2
x+2=0的解;x=-4
1
-4 -3 -2 -1-1 o 1 2 3 x

数学中考冲刺:图表信息型问题--知识讲解(提高)

数学中考冲刺:图表信息型问题--知识讲解(提高)

中考冲刺:图表信息型问题—知识讲解(提高)责编:常春芳【中考展望】图表信息题是指通过图形、图象或图表及一定的文字说明来提供问题情景的一类试题,它是近几年全国各省市中考所展示的一种新题型,这类试题形式多样,取材广泛,可增加试题的灵活性和趣味性,其发展前景非常广阔.用好题中提供的信息,有利于提高学生分析、解决简单实际问题的能力,同时也是培养现代公民素质的一条重要途径.【方法点拨】1.图象信息题题型特点:这类题是中考试卷中出现频率较高的题型之一,它是通过图象呈现问题中两个变量之间的数量关系,主要考查学生对函数思想和数形结合思想的掌握程度.解题策略:解答这类问题,在弄清题意的基础上,弄清两坐标轴所代表的含义,并对图象的形状、位置、发展变化趋势等捕捉提炼有效信息,解决相关问题.2.图表信息题图表信息题是指通过图表的形式提供信息,这些信息一般以数据形式居多,其主要考查学生对图表数据的分析、比较、判断和结论的归纳能力,要求学生有较强的定量分析和定性概括能力.图表信息题是中考常见的一种题型,它是通过图象、图形及表格等形式给出信息的一种新题型,在解决图表信息题的时候要注意以下几点:1、细读图表:(1)注重整体阅读.先对材料或图表资料等有一个整体的了解,把握大体方向.要通过整体阅读,搜索有效信息;(2)重视数据变化.数据的变化往往说明了某项问题,而这可能正是这个材料的重要之处;(3)注意图表细节.图表中一些细节不能忽视,它往往起提示作用,如图表下的“注”“数字单位”等.2、审清要求:图表题往往对答题有一定的要求,根据考题要求进行回答,才能有的放矢.题目要求包往往括字数句数限制、比较对象、变化情况等.3、准确表达解答图表题需要用简明的语言进行概括.解答前,要正确分析图表中所列内容的相互联系,从中找出规律性的东西,再归纳概括为一个结论.在表述时要有具体的数据比较、分析,要客观地反映图表包含的信息,特别要注意题目中的特殊限制.【典型例题】类型一、图象信息题1.(2016•烟台)如图,⊙O的半径为1,AD,BC是⊙O的两条互相垂直的直径,点P从点O出发(P 点与O点不重合),沿O→C→D的路线运动,设AP=x,sin∠APB=y,那么y与x之间的关系图象大致是()A.B. C.D.【思路点拨】根据题意分1<x<与≤x<2两种情况,确定出y与x的关系式,即可确定出图象.【答案】C.【答案与解析】解:当P在OC上运动时,根据题意得:sin∠APB=,∵OA=1,AP=x,sin∠APB=y,∴xy=1,即y=(1<x≤),当P在上运动时,∠APB=∠AOB=45°,此时y=(<x≤2),图象为:故选C.【总结升华】此题考查了动点问题的函数图象,列出y与x的函数关系式是解本题的关键.2.(福鼎市期中)甲、乙两人骑车前往A地,他们距A地的路程S(km)与行驶时间t(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)甲、乙两人的速度各是多少?(2)求甲距A地的路程S与行驶时间t的函数关系式.(3)直接写出在什么时间段内乙比甲距离A地更近?(用不等式表示)【思路点拨】(1)分别利用利用总路程除以总时间求出速度即可;(2)利用待定系数法求出函数解析式即可;(3)利用函数图象确定乙比甲距离A地更近时的时间即可.【答案与解析】解:(1)v甲==30(km/h),v乙==20(km/h);(2)设甲的函数关系式为S=kt+b,把(0,50),(2.5,0)代入解得:,解得:,∴关系式为:S=﹣20t+50;(3)由图象可得出:当1<t<2.5时,乙比甲距离A地更近.【总结升华】此题考查了学生从图象中读取信息的能力.学会利用数形结合来解答问题.举一反三:【高清课堂:图表信息型问题例4】【变式】如图,已知抛物线P:y=ax2+bx+c(a≠0) 与x轴交于A、B两点(点A在x轴的正半轴上),与y轴交于点C,矩形DEFG的一条边DE在线段AB上,顶点F、G分别在线段BC、AC上,抛物线P上部分点的横坐标对应的纵坐标如下:(1) 求A、B、C三点的坐标;(2) 若点D的坐标为(m,0),矩形DEFG的面积为S,求S与m的函数关系,并指出m的取值范围;(3) 当矩形DEFG的面积S取最大值时,连接DF并延长至点M,使FM=k·DF,若点M不在抛物线P 上,求k的取值范围.【答案】 解:⑴ 解法一:设 2(0)y ax bx c a =++≠,任取x,y 的三组值代入,求出解析式2142y x x =+-, 令y=0,求出124,2x x =-=;令x=0,得y=-4,∴ A 、B 、C 三点的坐标分别是A(2,0),B(-4,0),C(0,-4) .解法二:由抛物线P 过点(1,-52),(-3,52-)可知, 抛物线P 的对称轴方程为x=-1,又∵ 抛物线P 过(2,0)、(-2,-4),则由抛物线的对称性可知,点A 、B 、C 的坐标分别为 A(2,0),B(-4,0),C(0,-4) .⑵ 由题意,AD DG AO OC=,而AO=2,OC=4,AD=2-m ,故DG=4-2m , 又 BE EF BO OC=,EF=DG ,得BE=4-2m ,∴ DE=3m , ∴S DEFG =DG·DE=(4-2m) 3m=12m-6m 2 (0<m <2) .注:也可通过解Rt△BOC 及Rt △AOC ,或依据△BOC 是等腰直角三角形建立关系求解.⑶ ∵S DEFG =12m-6m 2 (0<m <2),∴m=1时,矩形的面积最大,且最大面积是6 .当矩形面积最大时,其顶点为D(1,0),G(1,-2),F(-2,-2),E(-2,0),设直线DF 的解析式为y=kx+b ,易知,k=23,b=-23,∴2233y x =-, 又可求得抛物线P 的解析式为:2142y x x =+-, 令2233x -=2142x x +-,可求出x=1613-±. 设射线DF 与抛物线P 相交于点N , 则N 的横坐标为1613--,过N 作x 轴的垂线交x 轴于H ,有 FN HE DF DE ==161233----=5619-+, 点M 不在抛物线P 上,即点M 不与N 重合时,此时k 的取值范围是 k≠5619-+且k >0. 类型二、图表信息题3.为减少环境污染,自2008年6月1日起,全国的商品零售场所开始实行“塑料购物袋有偿使用制度”(以下简称“限塑令”).某班同学于6月上旬的一天在某超市门口采用问卷调查的方式,随机调查了“限塑令”实施前后,顾客在该超市用购物袋的情况,以下是根据100位顾客的100份有效答卷画出的统计图表的一部分:请你根据以上信息解答下列问题:(1)补全图,“限塑令”实施前,如果每天约有2000人次到该超市购物.根据这100位顾客平均一次购物使用塑料购物袋的平均数,估计这个超市每天需要为顾客提供多少个塑料购物袋?(2)补全图,并根据统计图和统计表说明,购物时怎样选用购物袋,塑料购物袋使用后怎样处理,能对环境保护带来积极的影响.【思路点拨】(1)根据调查的总人数100人,结合其它部分数据即可计算出5个对应的频数是100-90=10;然后首先计算样本平均数,再进一步计算2000人需要的塑料袋;(2)根据总百分比是1即可计算收费塑料购物袋占:1-75%=25%;结合两个统计图中的数据进行合理分析,提出合理化建议即可.【答案与解析】解:(1)如图所示.“限塑令”实施前,平均一次购物使用不同数量塑料购物袋的人数统计图9137226311410546373003100100⨯+⨯+⨯+⨯+⨯+⨯+⨯== 这100位顾客平均一次购物使用塑料购物袋的平均数为3个.2000×3=6000(个).估计这个超市每天需要为顾客提供6000个塑料购物袋.(2)图中,使用收费塑料购物袋的人数所占百分比为25%.由上图和统计表可知,购物时应尽量使用自备袋和押金式环保袋,少用塑料购物袋;塑料购物袋应尽量循环使用,以便减少塑料购物袋的使用量,为环保做贡献.【总结升华】此题是社会上的热门话题与统计相结合的一道考题,考查了学生对图表绘制过程的理解、阅读图表并提取有用信息的技能,借助数据处理结果做合理推测的能力.4.在某次人才交流会上,应聘人数和招聘人数分别居前5位的行业列表如下:如果用同一行业应聘人数与招聘人数比值的大小来衡量该行业的就业情况,那么根据表中数据,对上述行业的就业情况判断正确的是( )A.计算机行业好于其他行业B.贸易行业好于化工行业C.机械行业好于营销行业D.建筑行业好于物流行业【思路点拨】本题综合考查统计部分的有关知识,通过统计表可以得到应聘人数与招聘人数,进而通过计算应聘人数与招聘人数的比值大小来衡量该行业的就业情况,比值越小越容易就业,比值越大越不容易就业,通过计算即可求解.【答案与解析】解:计算机行业比值为1.83;机械行业比值为2.29;营销行业比值为1.50;建筑行业为0;化工行业为0;而物流行业与贸易行业的比值为无穷大,所以此题应选D.【总结升华】本题综合考查统计部分的有关知识,通过统计表可以得到应聘人数与招聘人数,进而通过计算应聘人数与招聘人数的比值大小来衡量该行业的就业情况,比值越小越容易就业,比值越大越不容易就业.举一反三:【变式】下表为抄录北京奥运会官方票务网公布的三种球类比赛的部分门票价格,某公司购买的门票种类、数量绘制的条形统计图如下图.依据上列图、表,回答下列问题:(1)其中观看男篮比赛的门票有 张;观看乒乓球比赛的门票占全部门票的 %;(2)公司决定采用随机抽取的方式把门票分配给100名员工,在看不到门票的条件下,每人抽取一张(假设所有的门票形状、大小、质地等完全相同且充分洗匀),问员工小亮抽到男篮门票的概率是 ;(3)若购买乒乓球门票的总款数占全部门票总款数的81,试求每张乒乓球门票的价格. 【答案】(1)30,20;(2)310; (3)解法一:依题意,有x x 205080030100020+⨯+⨯= 18 . 解得x =500 .经检验,x =500是原方程的解.答:每张乒乓球门票的价格为500元.解法二:依题意,有x 2050800301000+⨯+⨯= x 208⨯.解得x =500 .答:每张乒乓球门票的价格为500元.类型三、从表格、数字中寻求规律5.我市某工艺厂为配合北京奥运,设计了一款成本为20元/件的工艺品投放市场进行试销.经过调查,得到如下数据:(1)把上表中x 、y 的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y 与x 的函数关系,并求出函数关系式;(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得利润最大?最大利润多少?(利润=销售总价-成本总价)(3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得利润最大?【思路点拨】从表格中的数据我们可以看出当x增加10时,对应y的值减小100,所以y与x之间可能是一次函数的关系,我们可以根据图象发现这些点在一条直线上,所以y与x之间是一次函数的关系,然后设出一次函数关系式,求出其关系式.【答案与解析】(1)画图如图;由图可猜想y与x是一次函数关系,设这个一次函数为y= k x+b(k≠0)∵这个一次函数的图象经过(30,500)、(40,400)这两点,∴5003040040k bk b=+⎧⎨=+⎩解得10800kb=-⎧⎨=⎩∴函数关系式是:y=-10x+800(2)设工艺厂试销该工艺品每天获得的利润是W元,依题意得W=(x-20)(-10x+800)=-10x2+1000x-16000=-10(x-50)2+9000∴当x=50时,W有最大值9000.所以,当销售单价定为50元∕件时,工艺厂试销该工艺品每天获得的利润最大,最大利润是9000元.(3)对于函数 W=-10(x-50)2+9000,当x≤45时,W的值随着x值的增大而增大,销售单价定为45元∕件时,工艺厂试销该工艺品每天获得的利润最大.【总结升华】能从表格、数字中发现两个量之间存在规律,归纳出相应的关系式是关键.举一反三:【高清课堂:图表信息型问题例3】【变式】某绿色无公害蔬菜基地有甲、乙两种植户,他们种植了A、B两类蔬菜,两种植户种植的两类蔬菜的种植面积与总收入如下表:说明:不同种植户种植的同类蔬菜每亩平均收入相等.⑴求A、B两类蔬菜每亩平均收入各是多少元?⑵某种植户准备租20亩地用来种植A、B两类蔬菜,为了使总收入不低于63000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积(两类蔬菜的种植面积均为整数),求该种植户所有租地方案.【答案】解:(1)设A、B两类蔬菜每亩平均收入分别是x元,y元.由题意得:解得:答:A、B两类蔬菜每亩平均收入分别是3000元,3500元.(2)设用来种植A类蔬菜的面积a亩,则用来种植B类蔬菜的面积为(20-a)亩.由题意得:解得:10<a≤14.∵a取整数为:11、12、13、14.∴租地方案为:类别种植面积单位:(亩)A 11 12 13 14B 9 8 7 6。

2020年中考数学热点冲刺3 图表信息问题(含解析)

2020年中考数学热点冲刺3 图表信息问题(含解析)

热点专题3 图表信息问题考向1平均数、中位数、众数、方差的概念及计算1.(2019 江苏省常州市)在“慈善一日捐”活动中,为了解某校学生的捐款情况,抽样调查了该校部分学生的捐款数(单位:元),并绘制成下面的统计图.(1)本次调查的样本容量是,这组数据的众数为元;(2)求这组数据的平均数;(3)该校共有600名学生参与捐款,请你估计该校学生的捐款总数.【答案】(1)30,10(2)12;(3)7200【解析】(1)本次调查的样本容量是6+11+8+5=30,这组数据的众数为10元;故答案为:30,10;(2)这组数据的平均数为=12(元);(3)估计该校学生的捐款总数为600×12=7200(元).点评此题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.本题也考查了平均数、中位数、众数的定义以及利用样本估计总体的思想.2. (2019 江苏省南京市)如图是某市连续5天的天气情况.(1)利用方差判断该市这5天的日最高气温波动大还是日最低气温波动大;(2)根据如图提供的信息,请再写出两个不同类型的结论.【解析】(1)方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差;(2)用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,通常用s2来表示,计算公式是:s2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2](可简单记忆为“方差等于差方的平均数”).解答解:(1)这5天的日最高气温和日最低气温的平均数分别是==24,==18,方差分别是==0.8,==8.8,∴<,∴该市这5天的日最低气温波动大;(2)25日、26日、27日的天气依次为大雨、中雨、晴,空气质量依次良、优、优,说明下雨后空气质量改善了.【点评】本题考查了方差,正确理解方差的意义是解题的关键.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.3. (2019 江苏省淮安市)某企业为了解员工安全生产知识掌握情况,随机抽取了部分员工进行安全生产知识测试,测试试卷满分100分.测试成绩按A、B、C、D四个等级进行统计,并将统计结果绘制了如下两幅不完整的统计图.(说明:测试成绩取整数,A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)请解答下列问题:(1)该企业员工中参加本次安全生产知识测试共有人;(2)补全条形统计图;(3)若该企业共有员工800人,试估计该企业员工中对安全生产知识的掌握能达到A级的人数.【解析】解:(1)20÷50%=40,所以该企业员工中参加本次安全生产知识测试共有40人;故答案为40;(2)C等级的人数为40﹣8﹣20﹣4=8(人),补全条形统计图为:(3)800×=160,4. (2019 江苏省连云港市)为了解某地区中学生一周课外阅读时长的情况,随机抽取部分中学生进行调查,根据调查结果,将阅读时长分为四类:2小时以内,2~4小时(含2小时),4~6小时(含4小时),6小时及以上,并绘制了如图所示尚不完整的统计图.(1)本次调查共随机抽取了名中学生,其中课外阅读时长“2~4小时”的有人;(2)扇形统计图中,课外阅读时长“4~6小时”对应的圆心角度数为°;(3)若该地区共有20000名中学生,估计该地区中学生一周课外阅读时长不少于4小时的人数.【解析】(1)本次调查共随机抽取了:50÷25%=200(名)中学生,其中课外阅读时长“2~4小时”的有:200×20%=40(人),故答案为:200,40;(2)扇形统计图中,课外阅读时长“4~6小时”对应的圆心角度数为:360°×(1﹣﹣20%﹣25%)=144°,故答案为:144;(3)20000×(1﹣﹣20%)=13000(人),答:该地区中学生一周课外阅读时长不少于4小时的有13000人.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.5. (2019 江苏省泰州市) PM2.5是指空气中直径小于或等于2.5μm的颗粒物,它对人体健康和大气环境造成不良影响,下表是根据《全国城市空气质量报告》中的部分数据制作的统计表.根据统计表回答下列问题,2017年、2018年7~12月全国338个地级及以上市PM2.5平均浓度统计表(单位:μg/m3)(1)2018年7~12月PM2.5平均浓度的中位数为μg/m3;(2)“扇形统计图”和“折线统计图”中,更能直观地反映2018年7~12月PM2.5平均浓度变化过程和趋势的统计图是;(3)某同学观察统计表后说:“2018年7~12月与2017年同期相比,空气质量有所改善”,请你用一句话说明该同学得出这个结论的理由.【解析】(1)2018年7~12月PM2.5平均浓度的中位数为=μg/m3;故答案为:;(2)可以直观地反映出数据变化的趋势的统计图是折线统计图,故答案为:折线统计图;(3)2018年7~12月与2017年同期相比PM2.5平均浓度下降了.点评本题考查了统计图的选择,利用统计图的特点选择是解题关键.6. (2019 江苏省无锡市)《国家学生体质健康标准》规定:体质测试成绩达到90.0分及以上的为优秀;达到80.0分至89.9分的为良好;达到60.0分至79.9分的为及格;59.9分及以下为不及格.某校为了了解九年级学生体质健康状况,从该校九年级学生中随机抽取了10%的学生进行体质测试,测试结果如下面的统计表和扇形统计图所示.各等级学生平均分统计表(1)扇形统计图中“不及格”所占的百分比是;(2)计算所抽取的学生的测试成绩的平均分;(3)若所抽取的学生中所有不及格等级学生的总分恰好等于某一个良好等级学生的分数,请估计该九年级学生中约有多少人达到优秀等级.【解析】(1)4%(2)92.1×52%+85.0×26%+69.2×18%+41.3×4%=84.1(3)设总人数为n个由题意得:80.0 ≤ 41.3×n×4%≤89.9所以48<n<54又因为4%n为整数所以n=50即优秀的学生有52%×50÷10%=260 人考向2统计图1. (2019 江苏省宿迁市)为了解学生的课外阅读情况,七(1)班针对“你最喜爱的课外阅读书目”进行调查(每名学生必须选一类且只能选一类阅读书目),并根据调查结果列出统计表,绘制成扇形统计图.男、女生所选类别人数统计表根据以上信息解决下列问题(1)m=,n=;(2)扇形统计图中“科学类”所对应扇形圆心角度数为°;(3)从选哲学类的学生中,随机选取两名学生参加学校团委组织的辩论赛,请用树状图或列表法求出所选取的两名学生都是男生的概率.【解析】解:(1)抽查的总学生数是:(12+8)÷40%=50(人),m=50×30%﹣5=10,n=50﹣20﹣15﹣11﹣2=2;故答案为:20,2;(2)扇形统计图中“科学类”所对应扇形圆心角度数为360°×=79.2°;故答案为:79.2;(3)列表得:由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中所选取的两名学生都是男生的有2种可能,∴所选取的两名学生都是男生的概率为=.【点评】此题主要考查了列表法与树状图法,以及扇形统计图、统计表的应用,要熟练掌握.2. (2019 江苏省徐州市)某户居民2018年的电费支出情况(每2个月缴费1次)如图所示:根据以上信息,解答下列问题:(1)求扇形统计图中“910月”对应扇形的圆心角度数;(2)补全条形统计图.【解析】解:(1)补全表格如下:(2)由表知,共有12种等可能结果,其中积为9的有1种,积为偶数的有8种结果,所以积为9的概率为112;积为偶数的概率为82123=,故答案为:112,23.(3)从1~12这12个整数中,随机选取1个整数,该数不是(1)中所填数字的有5和7这2种,∴此事件的概率为21 126=,故答案为:16.点评此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.3. (2019 江苏省徐州市)某户居民2018年的电费支出情况(每2个月缴费1次)如图所示:根据以上信息,解答下列问题:(1)求扇形统计图中“910-月”对应扇形的圆心角度数; (2)补全条形统计图.【解析】解:(1)全年的总电费为:24010%2400÷=元 910-月份所占比:7280240060÷=, ∴扇形统计图中“910-月”对应扇形的圆心角度数为:73604260︒⨯=︒ 答:扇形统计图中“910-月”对应扇形的圆心角度数是42︒(2)78-月份的电费为:2400300240350280330900-----=元, 补全的统计图如图:点评考查条形统计图、扇形统计图的特点及反应数据的变化特征,两个统计图联系在一起,可以发现数据之间关系,求出在某个统计图中缺少的数据.4. (2019 江苏省盐城市)某公司共有400名销售人员,为了解该公司销售人员某季度商品销售情况,随机抽取部分销售人员该季度的销售数量,并把所得数据整理后绘制成如下统计图表进行分析.频数分布表请根据以上信息,解决下列问题:(1)频数分布表中,a=、b=;(2)补全频数分布直方图;(3)如果该季度销量不低于80件的销售人员将被评为“优秀员工”,试估计该季度被评为“优秀员工”的人数.【解析】解:(1)根据题意得:b=3÷0.06=50,a==0.26;故答案为:0.26;50;(2)根据题意得:m=50×0.46=23,补全频数分布图,如图所示:(3)根据题意得:400×(0.46+0.08)=216,则该季度被评为“优秀员工”的人数为216人.【点评】此题考查了频数分布直方图,用样本估计总体,以及频数分布图,弄清题中的数据是解本题的关键.5. (2019 江苏省扬州市)扬州市“五个一百工程“在各校普遍开展,为了了解某校学生每天课外阅读所用的时间情况,从该校学生中随机抽取了部分学生进行问卷调查,并将结果绘制成如图不完整的频数分布表和频数分布直方图.根据以上信息,回答下列问题:(1)表中a=,b=;(2)请补全频数分布直方图;(3)若该校有学生1200人,试估计该校学生每天课外阅读时间超过1小时的人数.【解析】解:(1)a=36÷0.3=120,b=12÷120=0.1,故答案为:120,0.1;(2)1<t≤1.5的人数为120×0.4=48,补全图形如下:(3)估计该校学生每天课外阅读时间超过1小时的人数为1200×(0.4+0.1)=600(人).【点评】本题主要考查频率分布直方图和频率分布表的知识和分析问题以及解决问题的能力,解题的关键是能够读懂统计图,并从中读出有关信息.6. (2019 江苏省镇江市)陈老师对他所教的九(1)、九(2)两个班级的学生进行了一次检测,批阅后对最后一道试题的得分情况进行了归类统计(各类别的得分如下表),并绘制了如图所示的每班各类别得分人数的条形统计图(不完整).各类别的得分表已知两个班一共有50%的学生得到两个正确答案,解答完全正确,九(1)班学生这道试题的平均得分为3.78分.请解决如下问题:(1)九(2)班学生得分的中位数是;(2)九(1)班学生中这道试题作答情况属于B类和C类的人数各是多少?【解析】解:(1)由条形图可知九(2)班一共有学生:3+6+12+27=48人,将48个数据按从小到大的顺序排列,第24、25个数据都在D类,所以中位数是6分.故答案为6分;(2)两个班一共有学生:(22+27)÷50%=98(人),九(1)班有学生:98﹣48=50(人).设九(1)班学生中这道试题作答情况属于B类和C类的人数各是x人、y人.由题意,得,解得.答:九(1)班学生中这道试题作答情况属于B类和C类的人数各是6人、17人.【点评】本题考查的是统计图表与条形图的综合运用.读懂统计图表,从统计图表中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.也考查了中位数与平均数.。

初三数学图表信息专题总复习

初三数学图表信息专题总复习

初三数学图表信息专题总复习专题一图表信息图表信息问题主要考查收集信息和处理信息的能力.解答这类问题时要把图表信息和相应的数学知识、数学模型相联系,要结合问题提供的信息,灵活运用数学知识进行联想、探索、发现和综合处理,准确地使用数学模型来解决问题.这种题型命题广泛,应用知识多,是中考的一种新题型,也是今后命题的热点,考查形式有选择题、填空题、解答题.考向一表格信息问题表格信息问题涉及知识点比较广泛,主要有统计、方程(组)、不等式(组)、函数等.解答时关键要根据表格提供的信息,建立相应的数学模型.【例1】2011年4月25日,全国人大常委会公布《中华人民共和国个人所得税法修正案(草案)》,向社会公开征集意见.草案规定,公民全月工薪不超过3000元的部分不必纳税,超过3000元的部分为全月应纳税所得额.此项税款按下表分段累进计算.级数全月应纳税所得额税率1不超过1500元的部分5%2超过1500元至4500元的部分10%3超过4500元至9000元的部分20%………………依据草案规定,解答下列问题:(1)李工程师的月工薪为8000元,则他每月应当纳税多少元?(2)若某纳税人的月工薪不超过10000元,他每月的纳税金额能超过月工薪的8%吗?若能,请给出该纳税人的月工薪范围;若不能,请说明理由.分析:(1)由于当工资为8000元时,应该纳税,而且应该按照三个级别分别纳税;(2)由于工资为10000元时,要分三种情况进行讨论:①工资小于等于4500元;②工资大于4500元但小于等于7500元;③工资大于7500元小于10000元.解:(1)李工程师每月纳税:1500×5%+3000×10%+(8000-7500)×20%=75+300+100=475(元)(2)设该纳税人的月工薪为x元,则当x≤4500时,显然纳税金额达不到月工薪的8%.当4500<x≤7500时,由1500×5%+(x-4500)×10%>8%x,得x>18750,不满足条件.当7500<x≤10000时,由1500×5%+3000×10%+(x -7500)×20%>8%x,解得x>9375,故9375<x≤10000.答:若该纳税人月工薪大于9375元且不超过10000元时,他的纳税金额能超过月工薪的8%.方法归纳本题涉及的数学思想是分类思想.解题时分类讨论是解决问题的关键.考向二图象信息问题图象信息问题涉及的知识点主要是函数问题.解答时要注意分析图象中特殊“点”反映的信息.【例2】在一条直线上依次有A,B,c三个港口,甲、乙两船同时分别从A,B港口出发,沿直线匀速驶向c港,最终达到c港.设甲、乙两船行驶x(h)后,与B港的距离分别为y1,y2(),y1,y2与x的函数关系如图所示.(1)填空:A,c两港口间的距离为__________,a=__________;(2)求图中点P的坐标,并解释该点坐标所表示的实际意义;(3)若两船的距离不超过10时能够相互望见,求甲、乙两船可以相互望见时x的取值范围.分析:根据函数图象,容易发现A,B,c三港口位置示意图如下:图象中点P表示当甲到达B港口后再经过一段时间,甲、乙二船与B港口的距离相等,因此可以有两种解法,一种是利用函数解析式来求交点坐标;另一种则是利用追及问题一般方法来解,设甲船追上乙船时,用了t小时,则可知甲船t小时比乙船多行了30,由图容易知道甲、乙两船的速度分别是60/h,30/h,于是可列方程60t=30t+30轻松求解.对于第(3)小题,应该通过分类讨论来解决问题.解:(1)120 2(2)由点(3,90)求得,y2=30x.当x>0.5时,由点(0.5,0),(2,90)求得y1=60x-30.当y1=y2时,60x-30=30x,解得x=1.此时y1=y2=30.所以点P的坐标为(1,30).该点坐标的意义为:两船出发1h后,甲船追上乙船,此时两船离B港的距离为30.求点P的坐标的另一种方法:由图可得,甲的速度为300.5=60(/h),乙的速度为903=30(/h).则甲追上乙所用的时间为3060-30=1(h).此时乙船行驶的路程为30×1=30().所以点P的坐标为(1,30).(3)①当x≤0.5时,由点(0,30),(0.5,0)求得,y1=-60x+30.依题意,(-60x+30)+30x≤10.解得x≥23,不合题意.②当0.5<x≤1时,依题意,30x-(60x-30)≤10.解得x≥23.所以23≤x≤1.③当x>1时,依题意,(60x-30)-30x≤10.解得x≤43.所以1<x≤43.综上所述,当23≤x≤43时,甲、乙两船可以相互望见.方法归纳本题涉及数形结合、分类讨论的数学思想.解题的关键是确定三个港口的位置.难点是对P点的含义理解.考向三图表综合问题图表综合问题主要分布于统计之中.解题时注意将图表中的信息综合在一起分析解答.【例3】某市“希望”中学为了了解学生“大间操”的活动情况,在七、八、九年级的学生中,分别抽取相同数量的学生对“你最喜欢的运动项目”进行调查(每人只能选一项).调查结果的部分数据如下表(图)所示,其中七年级最喜欢跳绳的人数比八年级多5人,九年级最喜欢排球的人数为10.七年级学生最喜欢的运动项目人数统计表项目排球篮球跳绳踢毽其他人数/人78146八年级学生最喜欢的运动项目人数统计图九年级学生最喜欢的运动项目人数统计图请根据统计表(图)解答下列问题:(1)本次调查抽取了多少名学生?(2)补全统计表和统计图,并求出“最喜欢跳绳”的学生占抽样总人数的百分比;(3)该校共有学生1800人,学校想对“最喜欢踢毽”的学生每4人提供一个毽子,那么学校在“大间操”时至少应提供多少个毽子?分析:(1)因为三个年级都抽取了相同数量的学生,所以只需算出一个年级抽取的学生数即可;(2)根据(1)补充完整表格与统计图;(3)至少应提供的毽子个数=该校学生总人数乘以最喜欢踢毽人数所占的比例再除以4.解:(1)10÷20%=50(人),50×3=150(人).(2)七年级学生最喜欢的运动项目人数统计表项目排球篮球跳绳踢毽其他人数/人7815146八年级学生最喜欢的运动项目人数统计图九年级学生最喜欢的运动项目人数统计图“最喜欢跳绳”的学生占抽样总人数的百分比为22%.(3)14+13+15150×1800÷4=126(个).方法归纳本题考查了统计图、统计表及根据样本估计总体,也是考查统计知识常见题型.解题时读懂图表并将图表信息综合考虑是关键.一、选择题1.某住宅小区6月份1日至5日每天用水量变化情况如图所示,那么这5天平均每天的用水量是( )A.30吨B.31吨c.32吨D.33吨2.(2011浙江台州)如图,反比例函数y=x的图象与一次函数y=x+b的图象交于点,N,已知点的坐标为(1,3),点N的纵坐标为-1,根据图象信息可得关于x的方程x=x +b的解为( )A.-3,1B.-3,3c.-1,1D.3,-1二、填空题3.上、下底面为全等的正六边形礼盒,其主视图与左视图均由矩形构成,主视图中大矩形边长如图所示,左视图中包含两全等的矩形,如果用彩色胶带如图包扎礼盒,所需胶带长度至少为____________.4.某村分给小慧家一套价格为12万元的住房.按要求,需首期(第一年)付房款3万元,从第二年起,每年应付房款0.5万元与上一年剩余房款的利息的和.假设剩余房款年利率为0.4%,小慧列表推算如下:第一年第二年第三年…应还款(万元)30.5+9×0.4%0.5+8.5×0.4%…剩余房款(万元)98.58…若第n年小慧家仍需还款,则第n年应还款__________万元(n>1).三、解答题5.2012年5月20日是第23个中国学生营养日,某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如图).根据信息,解答下列问题.(1)求这份快餐中所含脂肪质量;(2)若碳水化合物占快餐总质量的40%,求这份快餐所含蛋白质的质量;(3)若这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%,求其中所含碳水化合物质量的最大值.6.如图①,A,B,c三个容积相同的容器之间有阀门连接,从某一时刻开始,打开A容器阀门,以4升/分的速度向B容器内注水5分钟,然后关闭,接着打开B容器阀门,以10升/分的速度向c容器内注水5分钟,然后关闭.设A,B,c三个容器内的水量分别为yA,yB,yc(单位:升),时间为t(单位:分).开始时,B容器内有水50升,yA,yc 与t的函数图象如图②所示.请在0≤t≤10的范围内解答下列问题:(1)求t=3时,yB的值;(2)求yB与t的函数关系式,并在图②中画出其函数图象;(3)求yA∶yB∶yc=2∶3∶4时t的值.图①图②7.某企业为重庆计算机产业基地提供电脑配件.受美元走低的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格y1(元)与月份x(1≤x≤9,且x取整数)之间的函数关系如下表:月份x123456789价格y1(元/件)560580600620640660680700720随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格y2(元)与月份x(10≤x≤12,且x取整数)之间存在如图所示的变化趋势:(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;(2)若去年该配件每件的售价为1000元,生产每件配件的人力成本为50元,其他成本30元,该配件在1至9月的销售量p1(万件)与月份x满足关系式p1=0.1x+1.1(1≤x ≤9,且x取整数),10至12月的销售量p2(万件)与月份x 满足关系式p2=-0.1x+2.9(10≤x≤12,且x取整数),求去年哪个月销售该配件的利润最大,并求出这个最大利润;(3)今年1至5月,每件配件的原材料价格均比去年12月上涨60元,人力成本比去年增加20%,其他成本没有变化,该企业将每件配件的售价在去年的基础上提高a%,与此同时每月销售量均在去年12月的基础上减少0.1a%.这样,在保证每月上万件配件销量的前提下,完成1至5月的总利润1700万元的任务,请你参考以下数据,估算出a的整数值.(参考数据:992=9801,982=9604,972=9409,962=9216,952=9025)参考答案专题提升演练1.c 根据平均数公式可得这5天平均每天的用水量是30+32+36+28+345=32(吨).2.A 把点的坐标代入y=x,求得=3,所以得y=3x,再把y=-1代入y=3x求得x=-3,故关于x的方程x=x +b的解为x=-3,或1.3.431.76c 由图可知,正六边形的对角线长为60c,则其半径为30c,边心距为153c,故所需胶带长度至少为153×12+20×6≈431.76(c).4.0.54-0.002n(填0.5+[9-(n-2)×0.5]×0.4%) 关键是要理解付款的方式,第一年还掉3万元后,第二年付0.5万元和剩下的9万元的利息,第三年还0.5万元和剩下的(9-0.5)万元的利息,第四年则要还0.5万元和剩下的(9-2×0.5)万元的利息,…,所以除了第一年以外,第n 年都是要还0.5万元和剩下的[9-(n-2)•0.5]万元的利息,可列式:0.5+[9-(n-2)×0.5]×0.4%,化简可知第n年应还款(0.54-0.002n)万元.5.解:(1)400×5%=20(克).答:这份快餐中所含脂肪质量为20克.(2)设所含矿物质的质量为x克,由题意得:x+4x+20+400×40%=400,∴x=44,∴4x=176.答:所含蛋白质的质量为176克.(3)解法一:设所含矿物质的质量为y克,则所含碳水化合物的质量为(380-)克,∴4y+(380-)≤400×85%,∴y≥40,∴380-≤180,∴所含碳水化合物质量的最大值为180克.解法二:设所含矿物质的质量为n克,则n≥(1-85%-5%)×400,∴n≥40,∴4n≥160,∴400×85%-4n≤180,∴所含碳水化合物质量的最大值为180克.6.解:(1)当t=3时,yB=50+4×3=62(升).(2)根据题意,当0≤t≤5时,yB=50+4t.当5<t≤10时,yB=70-10(t-5)=-10t+120.yB与t的函数图象如图所示.图②(3)根据题意,设yA=2x,yB=3x,yc=4x.2x+3x+4x=50+60+70.解得x=20.∴yA=2x=40,yB=3x=60,yc=4x=80.由图象可知,当yA=40时,5≤t≤10,此时yB=-10t +120,yc=10t+20.∴-10t+120=60,解得t=6.10t+20=80,解得t=6.∴当t=6时,yA∶yB∶yc=2∶3∶4.7.解:(1)y1与x之间的函数关系式为y1=20x+540, y2与x之间满足的一次函数关系式为y2=10x+630.(2)去年1至9月时,销售该配件的利润w=p1(1000-50-30-y1)=(0.1x+1.1)(1000-50-30-20x-540)=(0.1x+1.1)(380-20x)=-2x2+16x+418=-2(x-4)2+450,(1≤x≤9,且x取整数)∵-2<0,1≤x≤9,∴当x=4时,w最大=450(万元);去年10至12月时,销售该配件的利润w=p2(1000-50-30-y2)=(-0.1x+2.9)(1000-50-30-10x-630)=(-0.1x+2.9)(290-10x)=(x-29)2,(10≤x≤12,且x取整数)当10≤x≤12时,∵x<29,∴自变量x增大,函数值w 减小,∴当x=10时,w最大=361(万元),∵450>361,∴去年4月份销售该配件的利润最大,最大利润为450万元.(3)去年12月份销售量为:-0.1×12+2.9=1.7(万件),今年原材料的价格为:750+60=810(元),今年人力成本为:50×(1+20%)=60(元),由题意,得5×[1000(1+a%)-810-60-30]×1.7(1-0.1a%)=1700,设t=a%,整理,得10t2-99t+10=0,解得t=99±940120,∵972=9409,962=9216,而9401更接近9409,∴9401≈97.∴t1≈0.1或t2≈9.8,∴a1≈10或a2≈980.∵1.7(1-0.1a%)≥1,∴a2≈980舍去,∴a≈10.答:a的整数值为10.。

北师大中考数学复习专题 图表信息题专题

北师大中考数学复习专题 图表信息题专题

图表信息题专题图象(表)信息类试题是题设条件或结论中包含有图象(表)的试题,这类题目的解题条件主要靠图象(表)给出,在解答这类试题的过程中,要仔细观察、挖掘图象(表)所含的信息,并对所得到的信息进行分类、合成、提取、加工,最终求得问题的解答.它主要表现在数轴、直角坐标系、点的坐标、一次函数、二次函数、反比例函数的图象、实用统计图象及部分几何图形等,所提供的形状特征、位置特征、变化趋势等的数学基础知识很好的考查了学生的观察分析问题的能力.这类题目的图象(表)信息量大,大多数条件不是直接告诉,而是以图象(表)形式映射出来,较为隐蔽,解答它不仅要有扎实的数学基础知识,而且要有较强的读图(表)、识图(表)、分析图(表)的能力.发现挖掘出题目所隐含的条件来达到解题的目的,这类题目还会有升温的趋势.图象信息题是指由图象(表)来获取信息.从而达到解题目的的题型,这类问题来源广泛,形式灵活,突出对考生收集、整理和加工信息能力的考查.是近几年中考的热点.解图象信息题的关键是“识图”和“用图”.解这类题的一般步骤是:(1)观察图象,获取有效信息;(2)对已获信息进行加工、整理,理清各变量之间的关系;(3)选择适当的数学工具,通过建模解决问题.题型1表达信息题此类题目一般以表格的形式出现,通过表格对数据进行收集、整理,得出与解题相关的信息,从而解决实际应用问题.题型2图形、图象信息题此类题目以图形、图象的形式出现,在图形的形式出现时,题型新颖,给出的形式有形象的人物及各自的语言表述,在活泼的氛围里,给出题目具体内容,在考查学生的建模能力,有时候用不等式,有时候用方程;在图象的形式出现时,有时用函数图象的形式出现,有时以统计图的形式出现,它要把所给的图象或图形的信息进行分类、提取加工,再合成.1.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图3-1、图3-2.图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.把图3-1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是3219,423.x y x y ⎧⎨⎩+=+=类似地,图3-2所示的算筹图我们可以表述为( A )A .211,4327.x y x y ⎧⎨⎩+=+= B .211,4322.x y x y ⎧⎨⎩+=+= C .3219,423.x y x y ⎧⎨⎩+=+= D .26,4327.x y x y ⎧⎨⎩+=+=2.以下是2002年3月12日《南国早报》刊登的南宁市自来水价格调整表:南宁市自来水价格调整表(部分) 单位:元/立方米用水类别现行水价 拟调整水价 一、居民生活用水0.72 1.一户一表第一阶梯:月用水量在0.820~30立方米/户1.23第二阶梯:月用水量超过30立方米/户2.集体表略则调整水价后某户居民月用水量x(立方米)与应交水费y(元)的函数图像是(C):A.B.C.D.3.2006年春季,我市部分地区腮腺炎流行,党和政府采取果断措施,防治结合,很快使病情得到控制.下图是某同学记载的5月1日到30日每天我市腮腺炎新增确诊病例数据图.将图中记载的数据每5天作为一组,从左至右分为第一组至第六组,下列说法:①第一组的平均数最大,第六组的平均数最小;②第二组的中位数为138;③第四组的众数为28.其中正确的有(C)A.0个B.l个C.2个D.3个y 例2(05广东佛山)如图,表示甲骑电动自行车和乙驾驶汽车均行驶90km的过程中,行使的路程与经过的时间x之间的函数关系.请根据图象填空:____________出发的早,早了___________小时,____________先到达,先到_________小时,电动自行车的速度为_________km / h,汽车的速度为_________km / h.知识点:本题考查是学生从图中获取信息的能力,及有条理的进行语言表述的能力.精析:通过观察可以得出电动自行车与汽车都行驶了90(km),而电动自行车用了5个小时,汽车却用了一个小时,由此便可求出两车的速度.解:甲(或电动自行车),2,乙(或汽车),2,18,90 .例3.(05衢州)改革开放以来,衢州的经济得到长足发展近来,衢州市委市政府又提出“争创全国百强城市"的奋斗目枥己下面是衢州市1999--2004年的生产总值与人均生产总值的统计资料:请你根据上述统计资料回答下列问题:(1)1999—2004年间,衢州市人均生产总值增长速度最快的年份是________.这一年的增长率为________.(2)从1999年至2004年衢州市的总人口增加了约________万人(精确到O.01).(3)除以上两个统计图中直接给出的数据以外,你还能从中获取哪些信息?请写出两条.解:(1)2004,21.03%(2)4.51(3)参考信息例举:①②③④跨年度比较的增长度和增长率的数据;⑤从增长趋势分析的数据.点拨:此题属于图表信息题,读懂两图的区别与联系,是解决此题的关键.例4(05河北课改区)在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧时剩余部分的高度y(cm)与燃烧时间x(h)的关系如图2-1-2所示.请根据图象所提供的信息解答下列问题:⑴甲、乙两根蜡烛燃烧前的高度分别是_____,从点燃到燃尽所用的时间分别是_____;⑵分别求甲、乙两根蜡烛燃烧时y与x之间的函数关系式;⑶当x为何值时,甲、乙两根蜡烛在燃烧过程中的高度相等?解:⑴30cm,25cm;2h,h;⑵设甲蜡烛燃烧时y 与x 之间的函数关系式为11y k x b =+,由图可知,函数的图象过点(2,0),(0,30),∴1112030k b b +=⎧⎨=⎩ 解得111530k b =-⎧⎨=⎩ 1530y x =-+ 设乙蜡烛燃烧时y 与x 之间的函数关系式为22y k x b =+,由图可知,函数的图象过点(,0),(0,25),∴2222.5025k b b +=⎧⎨=⎩解得221025k b =-⎧⎨=⎩ 1025y x =-+⑶由题意得25103015+-=+-x x ,解得1=x∴ 当甲、乙两根蜡烛燃烧1h 的时候高度相等.点拨:要想求出一次函数解析式,关键是要找出图象上的两个关键点的坐标.这样我们就可以用待定系数法求出此函数的解析式了.例5(01宁波)一次时装表演会预算中,票价定为每张 100元,容纳观众人数不超过2000人,毛利润y(百元)关于观众人数x (百人)之间的函数图象如图2-1-3所示,当观众人数超过1000人时,表演会组织者需向保险公司缴纳定额平安保险费5000元(不列人成本费用人请解答下列问题:(1)求当观众人数不超过1000人时,毛利润y 关于观众人数的函数解析式和成本费用S (百元)关于观众人数x 的函数解析式;(2)若要使这次表演会获得36000.元的毛利润,那么需售出多少张门票?需支付成本费用多少元?注:当观众人数不超过1000人时,表演会的毛利润一门票收人一成本费用;当观众人数超过1000人时,表演会的毛利润=门票收入-成本费用-平安保险费.解:(1)由图2-1-3知,当 0≤x ≤10与10<x ≤20时,y 都是x 的一次函数.当0≤x ≤10时,设y 关于x 的函数解析式为y =kx +b ,把点(0,-100),(10,400)代入函数解析式,得10050 10400100b k k b b =-=⎧⎧⎨⎨+==-⎩⎩,解得:所以y =50x -100(0≤x ≤10),S =100x -(50x -100)=50x +100(0≤x ≤10)(2)当10<x ≤20时,由题意,知 50x -100=360.所以x =9.2,S =50x +100 =50×9.2+100=560.当10<x ≤2 0时,设y =mx +n .把点(10,350)(20,850)代入函数解析式,得1035050 20850150m n m m n n +==⎧⎧⎨⎨+==-⎩⎩,解得:所以y =50x -150(10<x ≤20),S =100x -(50x -150)-50=50x +100(10<x ≤20)当y =360时,50x -150=360,解得x =10.2.所以S =50×+100=610.答:需售门票920张或1020张,相应地需支付成本费用分别为56000元或61000元.点拨:正确理解题意,注意单位的统一.练习一、(恩施自治州)路在山腹行是沪蓉西高速公路的显著特点之一,全线共有隧道37座,共计长达米.下图是正在修建的庙垭隧道的截面,截面是由一抛物线和一矩形构成,其行车道CD总宽度为8米,隧道为单行线2车道.(1).建立恰当的平面直角坐标系,并求出隧道拱抛物线的解析式;(2)在隧道拱的两侧距地面3米高处各安装一盏路灯,在(1)的平面直角坐标系中用坐标表示其中一盏路灯的位置;(3)为了保证行车安全,要求行驶车辆顶部(设为平顶)与隧道拱在竖直方向上高度之差至少有米.现有一辆汽车,装载货物后,其宽度为4米,车载货物的顶部与路面的距离为米,该车能否通过这个隧道?请说明理由.二.(06年济宁市)某农机公司为更好地服务于麦收工作,按图1给出的比例,从甲、乙、丙三个工厂共购买了150台同种农机,•公司技术人员对购买的这批农机全部进行了检验,绘制了如图2所示的统计图.请你根据图中提供的信息,解答下列问题:(1)求该农机公司从丙厂购买农机的台数;(2)求该农机公司购买的150台农机中优等品的台数;(3)如果购买的这批产品质量能代表各厂的产品质量状况,那么:①从优等品的角度考虑,哪个工厂的产品质量较好些?为什么?②甲厂2005年生产的360台产品中的优等品有多少台?y(千克)与市场价三、(07泰州)通过市场调查,一段时间内某地区某一种农副产品的需求数量格x (元/千克)(030x <<)存在下列关系:x (元/千克)5 10 15 20 y (千克) 4500 4000 3500 3000又假设该地区这种农副产品在这段时间内的生产数量z (千克)与市场价格x (元/千克)成正比例关系:400z x =(030x <<).现不计其它因素影响,如果需求数量y 等于生产数量z ,那么此时市场处于平衡状态.(1)请通过描点画图探究y 与x 之间的函数关系,并求出函数关系式;(2)根据以上市场调查,请你分析:当市场处于平衡状态时,该地区这种农副产品的市场价格与这段时间内农民的总销售收入各是多少?(3)如果该地区农民对这种农副产品进行精加工,此时生产数量z 与市场价格x 的函数关系发生改变,而需求数量y 与市场价格x 的函数关系未发生变化,那么当市场处于平衡状态时,该地区农民的总销售收入比未精加工市场平衡时增加了17600元.请问这时该农副产品的市场价格为多少元?四、(07日照)容积率t 是指在房地产开发中建筑面积与用地面积之比,即t =用地面积建筑面积S M ,为充分利用土地资源,更好地解决人们的住房需求,并适当的控制建筑物的高度,一般地容积率t 不小于1且不大于8.一房地产开发商在开发某小区时,结合往年开发经验知,建筑面积M (m 2)与容积率t 的关系可近似地用如图(1)中的线段l 来表示;1 m 2建筑面积上的资金投入Q (万元)与容积率t 的关系可近似地用如图(2)中的一段抛物线段c 来表示.(Ⅰ)试求图(1)中线段l 的函数关系式,并求出开发该小区的用地面积;(Ⅱ)求出图(2)中抛物线段c 的函数关系式.五。

新人教版初中数学[中考冲刺:图表信息型问题--知识点整理及重点题型梳理](基础)

新人教版初中数学[中考冲刺:图表信息型问题--知识点整理及重点题型梳理](基础)

新人教版初中数学中考总复习重难点突破知识点梳理及重点题型巩固练习中考冲刺:图表信息型问题—知识讲解(基础)【中考展望】图表信息题是指通过图形、图象或图表及一定的文字说明来提供问题情景的一类试题,它是近几年全国各省市中考所展示的一种新题型,这类试题形式多样,取材广泛,可增加试题的灵活性和趣味性,其发展前景非常广阔.用好题中提供的信息,有利于提高学生分析、解决简单实际问题的能力,同时也是培养现代公民素质的一条重要途径.【方法点拨】1.图象信息题题型特点:这类题是中考试卷中出现频率较高的题型之一,它是通过图象呈现问题中两个变量之间的数量关系,主要考查学生对函数思想和数形结合思想的掌握程度.解题策略:解答这类问题,在弄清题意的基础上,弄清两坐标轴所代表的含义,并对图象的形状、位置、发展变化趋势等捕捉提炼有效信息,解决相关问题.2.图表信息题图表信息题是指通过图表的形式提供信息,这些信息一般以数据形式居多,其主要考查学生对图表数据的分析、比较、判断和结论的归纳能力,要求学生有较强的定量分析和定性概括能力.【典型例题】类型一、图象信息题1.容积率t是指在房地产开发中建筑面积与用地面积之比,即MtS建筑面积用地面积,为充用地面积分利用土地资源,更好地解决人们的住房需求,并适当的控制建筑物的高度,一般容积率t不小于1且不大于8.一房地产开发商在开发某小区时,结合往年开发经验知,建筑面积M(m2)与容积率t的关系可近似地用如图(1)中的线段l来表示;1 m2建筑面积上的资金投入Q(万元)与容积率t的关系可近似地用如图(2)中的一段抛物线c来表示.(1)试求图(1)中线段l 的函数关系式,并求出开发该小区的用地面积; (2)求出图(2)中抛物线段c 的函数关系式. 【思路点拨】(1)因为图象过点(2,28000)和(6,80000),所以易求l 的表达式,注意t 的取值范围,当t=1时,S 用地面积=M 建筑面积;(2)根据图象经过点(1,0.18)和(4,0.09)且(4,0.09)为顶点可求c 的函数关系式. 【答案与解析】解:(1)设M =kt+b ,由图象上两点的坐标(2,28000)、(6,80000),可求得是k =13000,b =2000.所以线段l 的函数关系式为: M =13000t+2000(1≤t ≤8).由M t S =建筑面积用地面积知,当t =1时,S M =用地面积建筑面积.把t =1代入M =13000t+2000中,可得 M =15000.即开发该小区的用地面积是15 000 m 2.(2)根据图象特征可设抛物线段c 的函数关系式为Q =a(t-4)2+0.09,把点(1,0.18)的坐标代入,可求得1100a =. 所以219(4)100100Q t =-+2121(18)100254t t t =-+≤≤.【总结升华】图象信息题一般需要先由图象提供的条件确定出相应的函数关系式,然后再运用函数的性质解决问题,因而可以有效考查对函数思想和数形结合思想方法的掌握和应用情况.举一反三:【变式】甲、乙两人骑自行车前往A 地,他们距A 地的路程s(km)与行驶时间t(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)甲、乙两人的速度各是多少?(2)写出甲、乙两人距A 地的路程s 与行驶时间t 之间的函数关系式(任写一个). (3)在什么时间段内乙比甲离A 地更近? 【答案】 解:(1)50202.5v ==甲(km/h), 60302v ==乙(km/h).(2)5020s t =-甲或6030s t =-乙(答对一个即可); (3)1<t <2.5.2.(2016•长春模拟)甲、乙两名自行车运动员在同一条直线公路上进行骑自行车训练,他们同时同地同向出发,乙在行驶过程中改变了一次速度,甲、乙两人各自在公路上训练时行驶路程y (千米)与行驶时间x (时)(0≤x ≤4)之间的函数图象如图所示. (1)求甲行驶的速度.(2)求直线AB 所对应的函数表达式. (3)直接写出甲、乙相距5千米时x 的值.【思路点拨】(1)由速度=路程÷时间,可得出甲行驶的速度;(2)设直线AB 所对应的函数表达式为y=kx+b ,将A 、B 点的坐标代入解析式可得出关于k 、b 的二元一次方程组,解出方程组即可得出结论;(3)找出各段线段所对应的函数表达式,根据图象做差可得出关于x 的一元一次方程,解方程即可得出结论. 【答案与解析】解:(1)120÷3=40(千米/时).∴甲行驶的速度为40千米/时.(2)设直线AB 所对应的函数表达式为y=kx+b ,把A (1,50)、B (3,120)代入,得,解得:.故直线AB 所对应的函数表达式为y=35x+15(1≤x ≤4). (3)设直线OA 所对应的函数表达式为y=k 1x ,把A (1,50)代入,得50=k 1,故直线OA 所对应的函数表达式为y=50x (0≤x ≤1),设直线OB所对应的函数表达式为y=k2x,把B(3,120)代入,得120=3k2,解得:k2=40.故直线OB所对应的函数表达式为y=40x(0≤x≤4).当0≤x≤4时,令50x﹣40x=5,解得x=0.5;当1<x≤3时,令35x+15﹣40x=5,解得x=2;当3<x≤4时,令40x﹣(35x+15)=5,解得x=4.综上可知:甲、乙相距5千米时x的值为0.5,2和4.故还需要0.2小时时间才能再次与小李相遇.【总结升华】本题考查了一次函数的应用、待定系数法求函数解析式以及解一元一次方程.举一反三:【变式】(讷河市校级期末)甲、乙两同学骑自行车从A地沿同一条路到B地,已知如图,甲做匀速运动,乙比甲先出发,他们离出发地距离s(km)和骑车行驶时间t(h)之间的函数关系如图,给出下列说法:(1)他们都骑车行驶了20km;(2)乙在途中停留了0.5h;(3)甲、乙两人同时到达目的地;(4)相遇后,甲的速度小于乙的速度.根据图象信息,以上说法错误的有()A.1个B.2个C.3个D.4个【答案】B;【解析】解:甲乙都是骑自行车从A地沿同一路线到离A地20千米的B地,所以(1)正确;乙出发0.5小时后停留了0.5小时,所以(2)正确;乙出发2.5小时到达目的地,而甲比乙早到0.5小时,所以(3)不正确;图象相交后甲的图象都在乙的上方,说明甲的速度比乙的要大,所以(4)不正确.故以上说法错误的有(3)、(4)2个.故选:B.类型二、图表信息题3.某市为了进一步改善居民的生活环境,园林处决定增加公园A和公园B的绿化面积.已知公园A、B分别有如图(1)(2)所示的阴影部分需铺设草坪,在甲、乙两地分别有同种草皮1608 m2和1200 m2出售,且售价一样.若园林处向甲、乙两地购买草皮,其路程和运费单价见下表:(注:运费单价指将每平方米草皮运送1千米所需的人民币)(1)分别求出公园A 、B 需铺设草坪的面积;(结果精确到1m 2)(2)请设计出总运费最省的草皮运送方案,并说明理由.【思路点拨】(1)公园A 草坪的面积=大矩形的面积-两条小道的面积+两条小道重叠部分的面积.公园B 草坪的面积=大矩形的面积-两个扇形的面积-扇形所夹的两个三角形的面积.(2)本题可根据总运费=公园A 向甲,乙两地购买草坪所需的费用+公园B 向甲乙两地购买草坪所需的费用,如果设总运费为y 元,公园A 向甲地购买草皮xm 2,那么根据上面的等量关系可得出y 与x 的关系式,然后根据甲乙两地出售的草坪的面积和公园A ,B 所需的草坪面积得出x 的取值范围,再根据函数的性质得出花钱最少的方案. 【答案与解析】解:(1)公园A 需铺设草坪的面积为S 1=62×32-62×2-32×2+2×2=1800(m 2).设图(4)中圆的半径为R ,易知,圆心到距形长边的距离为252,所以25cos302R =°,R =.公园B 需铺设草坪的面积为2221201256525221008(m )36022S π=⨯-⨯⨯-⨯≈. (2)设总运费为y 元,公园A 向甲地购买草皮x m 2,向乙地购买草皮(1800-x)m 2. 由于园林处需要购买的草皮面积总数为1800+1008=2808(m 2),甲、乙两地出售的草皮面积总数为:1608+1200=2808(m 2),所以,公园B向甲地购买草皮(1608-x)m2,向乙地购买草皮1200-(1800-x)=(x-600)m2.则01608,018001200,xx≤≤⎧⎨≤-≤⎩求得600≤x≤1608.由题意,得y=30×0.25x+22×0.3×(1800-x)+32×0.25×(1608-x)+30×0.3×(x-600)=1.9x+19344.因为k=1.9>0,所以y随x的增大而增大,所以,当x=600时,y=最小值1.9×600+19344=20484(元).即公园A在甲地购买600 m2,在乙地购买1800-600=1200(m2);公园B在甲地购买1608-600=1008(m2),运送草皮的总运费最省.【总结升华】本题是一个图表信息类的实际应用题,将代数知识、几何知识巧妙地融为一体,通过解答,可以有效考查圆的有关计算、一元一次不等组、一次函数等知识的综合运用,难度不大但涉及知识点丰富、技巧性强,是不可多得的一道好题.举一反三:【图表信息型问题例1】【变式】今年我省干旱灾情严重,甲地急需要抗旱用水15万吨,乙地13万吨.现有A、B两水库各调出14万吨水支援甲、乙两地抗旱.从A地到甲地50千米,到乙地30千米;从B地到甲地60千米,到乙地45千米.⑴设从A水库调往甲地的水量为x万吨,完成下表:⑵请设计一个调运方案,使水的调运量尽可能小.(调运量=调运水的重量×调运的距离,单位:万吨•千米)【答案】⑴(从左至右,从上至下)14-x ;15-x ;x-1 .⑵ y=50x+(14-x)30+60(15-x)+(x-1)45=5x+1275解不等式1≤x≤14所以x=1时y取得最小值y=5+1275=1280∴调运方案为A往甲调1吨,往乙调13吨;B往甲调14吨,不往乙调.4.某商场对今年端午节这天销售A、B、C三种品牌粽子的情况进行了统计,绘制了如图所示的统计图.根据图中信息解答下列问题:(1)哪一种品牌粽子的销售量最大?(2)补全图中的条形统计图.(3)写出A品牌粽子在图(2)中所对应的圆心角的度数.(4)根据上述统计信息,明年端午节期间该商场对A、B、C三种品牌的粽子如何进货?请你提一条合理化的建议.【思路点拨】(1)从扇形统计图中得出C品牌的销售量最大,为50%;(2)总销售量=1200÷50%=2400个,B品牌的销售量=2400-1200-400=800个,补全图形即可;(3)A品牌粽子在图中所对应的圆心角的度数=360°×(400÷2400)=60°;(4)由于C品牌的销售量最大,所以建议多进C种.【答案与解析】解:(1)从扇形统计图中得出C品牌的销售量最大,为50%;(2)总销售量=1200÷50%=2400个,B品牌的销售量=2400-1200-400=800个,(3)A品牌粽子在图中所对应的圆心角的度数=360°×(400÷2400)=60°;(4)建议:多进一些C品牌的粽子.【总结升华】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.类型三、信息综合题5.如图,A ,B ,C ,D 为圆O 的四等分点,动点P 从圆心O 出发,沿O-C-D-O 路线作匀速运动,设运动时间为x (s ),∠APB=y (°),右图函数图象表示y 与x 之间函数关系,则点M 的横坐标应为( )A.2B.2π C. 12π+ D. 无法确定 【思路点拨】通过图象得到函数是随自变量的增大,知道函数值是增大还是减小. 【答案与解析】解:根据题意,可知点P 从圆心O 出发,运动到点C 时,∠APB 的度数由90°减小到45°,C 点的横坐标为1,CD 弧的长度为12π. 点M 是∠APB 由稳定在45°,保持不变到增大的转折点; 另点O 的运动有周期性;结合图象,可得答案为C . 故选C 【总结升华】正确理解函数图象横纵坐标表示的意义,理解问题的过程.。

(河北)中考数学总复习【专题2】图表信息问题ppt课件

(河北)中考数学总复习【专题2】图表信息问题ppt课件
专题二 图表信息问题
数学
命题解读
图表信息题关键是“识图”和“用图”,主要是通过图形 及表格信息,考查学生收集信息和处理信息的能力.解题时 ,要充分审视图形、表格,全面掌握其提供的信息,理解其 实质,把握其方法规律,从而解决问题,培养学生运用数学 知识,合理建构,以及迁移新知识,解决实际问题的能力.
情景语言类信息问题,以图形加文字说明的 形式出现,图文并茂,将已知条件自然地融入于图形情景 之中,题型新颖,设计独特.此类问题的解决需全方位审视 情景和语言,掌握其蕴含的信息,并加以分析、提炼、选择 和构建合理的数学模型. 表格类信息问题是指将已知条件或结论呈现在表格中,通 过阅读表格,捕捉解题信息,解题的关键是仔细观察表格, 根据数据特征找出数量关系,推理计算使问题得以解
(2)表二是该地A,B,C三位居民2013年治病所花费的医疗费和个人 实际承担的医疗费用,根据表中的数据,求出n,k的值.
居民
ABC
某次治病所花费 的治疗费用x(元)
400
80 0
1500
个人实际承担的 医疗费用y(元)
70
19 0
470
2020/7/21
6
解:(2)由表二易知:n≥400,且 x=800 时,y=190,x=1500 时,
2020/7/21
2
情景语言类信息问题
【例1】星期天,小明、小亮等同学随家长一同到某公园游玩,下面 是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答 下列问题:
(1)小明他们一共去了几个成人、几个学生? (2)请你帮助小明算一算,用哪种方式购票更省钱?请说明理由.
2020/7/21
根据题意确定等量关系、不等关系、函数关系―→ 列方程组、不等式组、函数关系式―→解决问题.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图表信息复习专题
图表信息题是近几年中考热点内容之一,也是今后中考的出题方向.这类题常以实际生活为背景,将相关的数学知识信息巧无声息的隐含在创设的生活素材、图象、图表中,我们只有通过对生活素材、图象、图表等相关信息的分析、观察、猜想、抽象、概括,从中获取图表中隐含的解题信息和思路、方法,然后再进行推理、探究、发现和计算的一种题型.图表信息的内容大多取材于现实生活,主要包括生活图景、表格信息、图象信息、统计图表、几何图形等各种类型.
解决图表信息题的核心是“分析识别图表”和“用图表”.即通过观察、分析图象和图表,捕捉有效信息,并对已获得的信息进行加工、处理和整理,分清变量之间的关系,选择适当的数学工具,将实际问题转化为相应的数学模型来解决问题.
一、在生活情境、素材中提炼与构建图像
例1(2010年湖南益阳)如图,火车匀速通过隧道(隧道长大于火车长)时,火车进入隧道的时间x与火车在隧道内的长度y之间的关系用图象描述大致是()
A. B. C.
D.
解析:随着火车进入隧道的时间x的增加,火车在隧道内的长度y从0开始,逐渐增长,当火车完全进入隧道时,在隧道内的长度y不变;当火车出隧道时,长度y逐渐减小,最后隧道内的长度为0.根据以上x、y的变化情况,并结合函数图象可选A.
点评:数学来源于生活,从现实生活中的某个片断、情境或素材取材,进而酝酿数学,构建数学,是近年的中考亮点与趋势.为此要求我们在平时多用数学的眼光生活,发现数学影子,从数学的角度运用有关知识酝酿与构建数学模型,进而分析与解决现实问题.解决此类问题的关键是要从素材、图象提供的已知条件出发,弄清变量之间的内在关系、含义(x,y)及其中蕴含的数学模型.
二、从生活图景中体验与获取
例2(2010年吉林)在课间活动中,小英、小丽和小敏在操场上画出两个区域,一起玩投沙包游戏.沙包落在区域所得分值与落在区域所得分值不同.当每人各投沙包四次时,其落点和四次总分如图所示.请求出小敏的四次总分.
解析:设沙包落在区域得分,落在区域得分,根据小英、小丽的得分图,可
以找到两个相等关系,从而得到解得
答:小敏的四次总分为30分.
点评:从同学日常游戏中取材、立意,创设熟悉的生活图景,是近年的中考热点.主要是考查从中获取信息,分析和处理数据的能力,能将实际问题转化为数学问题,进行有关知识的构建与建模,进而分析和解决日常生活中的实际问题.
三、从统计图中体验与获取
例3(2010福建福州)近日从省家电下乡联席办获悉,自2009年2月20日我省家电下乡全面启动以来,最受农户热捧的四种家电是冰箱、彩电、洗衣机和空调,其销售量比为5:4:2:1,其中空调已销售了15万台.根据上述销售情况绘制了两个不完整的统计图:
请根据以上信息解答问题:
(1)补全条形统计图;
(2)四种家电销售总量为_______万台;
(3)扇形统计图中彩电部分所对应的圆心角是_______度;
(4)为跟踪调查农户对这四种家电的使用情况,从已销售的家电中随机抽取一台家电,求抽到冰箱的概率.
思路点拨:结合销售量比,可设每份为x,根据条件可得x=15,从而可得各种家电的数量,完成条形图的制作及家电总销量;计算出彩电所占比例,进而得出它所对应的圆心角的度数.解:(1)如图所示;
(2)180;
(3)120;
(4)解:P(抽到冰箱)==.
答:抽到冰箱的概率是.
点评:以当前的家电下乡为背景设置的一道统计知识的综合运用题,读题与读图时,一定要彼此图文对照,找出数据之间的内在联系,明确各种统计图都有各自的特征和作用,条形统计图可清楚地表示出每个项目的具体数目,扇形统计图能直观地反映各部分的百分比的大小,两种统计图的合用,各个项目的具体数目和百分比都可从其相互关系,通过计算得出,正确理解各种统计图的含义及作用,是综合应用统计图进行数据分析和整理的前提.
四、从函数图象中体验与获取
例4(2010浙江湖州)一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶.设行驶的时间为x(时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地过程中y与x之间的函数关系.
(1)根据图中信息,求线段AB所在直线的函数解析式和甲乙两地之间的距离;
(2)已知两车相遇时快车比慢车多行驶40千米,若快车从甲地到达乙地所需时间为t时,求t的值;
(3)若快车到达乙地后立刻返回甲地,慢车到达甲地后停止行驶,请你在图中画出快车从乙地返回到甲地过程中y关于x的函数的大致图像.
思路点拨:结合直线上两点(1.5,70)、(2,0),运用待定系数法求解出直线的解析式,进而求出点A的坐标,即甲乙两地之间的距离;借助有关两车的路程问题构建方程组求解两车的速度和时间;通过分析可知y关于x的函数的图像还存在两段:两车同时行驶两车的距离和慢车到达甲地后快车继续行驶时两车的距离与x的关系.
解析:(1)线段AB所在直线的函数解析式为:y=kx+b,
将(1.5,70)、(2,0)代入得:,解得:,
所以线段AB所在直线的函数解析式为:y=-140x+280,当x=0时,
y=280,所以甲乙两地之间的距离280千米.
(2)设快车的速度为m千米/时,慢车的速度为n千米/时,由题意得:
,解得:,所以快车的速度为80千米/时,所以.(3)如图所示.
点评:函数图象与实际问题结合是近年中考的热点问题,这类问题通常是从函数图象中得出需要的信息,然后利用待定系数法求出一次函数解析式,再利用解析式解决问题.由图象提供解题信息,需要将“图形、图象语言”转化成“符号语言”,这要求同学具有多方位观察、多角度思维及触类旁通的能力.在本题中函数图象是自变量与函数值变化的最直观,最形象的反映,通过图象的特征确定函数的自变量与函数值之间的变化规律,其中最重要的环节是利用数形结合思想分析图象,理解图象,获取信息,理清各种量之间的关系,建立函数模型最终将问题解决.
五、从表格中体验与获取
例5(2010年辽宁本溪)自2010年6月1日起我省开始实施家电以旧换新政策,政府
100台.这批货的进价
若购进的电视和洗衣机数量相同,均为x台,这100台家电政府补贴为y元,商场所获利润为w元(利润=售价-进价).
(1)请分别求出y与x、w与x的函数表达式.
(2)若商场决定购进每种商品不少于30台,则有几种进货方案?怎样安排进货,才能获得最大利润,同时政府需要支付补贴多少钱?
解析:(1)y=400x+1800×10%x +2400×10%(100-2x)
=400x+180x +24000-480x=100x+24000.
w=400x+300x +400(100-2x)=-100x+40000.
(2)根据题意,得解得,30≤x≤35.又为x整数,故x=30,31,32,33,34,35 因此共有6种进货方案.对于w=-100x+40000,
∵k=-100<0,30≤x≤35,∴当x取最小值30时,w有最大值.
所以当购进30台电视,30台洗衣机,40台冰箱时商场将获得最大利润.
因此,政府补贴为y=100×30+24000=27000(元).
点评:此类题材往往取材于日常家电以旧换新政策的事件,由表格中的信息通过分析整理得到相关数据和函数关系式,并运用它解决一定的实际问题,解题的关键是读懂题目的要求和表格中数据的层次性,注意思考的层次性及其中蕴含的数量关系.
六、从几何图形的运动中体验与获取
例6(2010福建龙岩)如图,A、B、C、D为⊙O的四等分点,若动点P从点C出发,沿C→D→O→C路线作匀速运动,设运动时间为t,∠APB的度数为y,则y与t之间函数关系的大致图象是()
A B
C D
解析:因为A、B、C、D为⊙O的四等分点,所以∠AOB=90°,当点P在弧CD上运动时,
根据圆周角定理,知∠APB=∠AOB=45°,P在DO上运动时,∠APB逐渐增大到90°(此时P与O重合),之后在OC上运动时又逐渐减小.故选C.
点评:近年来,有关数学元素(点、线、图、学具等)的运动变化(点P沿C→D→O →C路线运动,引起∠APB的变化),导致问题的结论或者改变,或者保持不变的几何问题,是中考数学的“亮点”,解这类试题需要发挥自己的想象力,整体地把握命题条件及相关几何图形的变换与操作,抓住在运动变化过程中暂时静止的某一瞬间(点O、点C、点D),不被“动”所迷,化动为静,进行观察联想,猜测,分析,归纳,运用数学眼光审视、分析、概括在动态中所出现的现象(∠APB的度数变化),运用数形结合的思想,揭示其数学本质及内在联系,构建出变量关系式及相应的函数图象.
2011-01-11 人教网。

相关文档
最新文档