黄冈市蕲春县2019-2020学年高一上期中数学试卷(有答案)(已纠错)
2019-2020学年高一数学上学期期中试题(含解析)_13
2019-2020学年高一数学上学期期中试题(含解析)考试时间:120分钟注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名和考生号、试室号、座位号填写在答题卡上,并用铅笔在答题卡上的相应位置填涂考生号。
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷(共60分)一、选择题:本小题共12题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合,则=A. B. C. D.【答案】C【解析】试题分析:由补集的概念,得,故选C.【考点】集合的补集运算【名师点睛】研究集合的关系,处理集合的交、并、补的运算问题,常用韦恩图、数轴等几何工具辅助解题.一般地,对离散的数集、抽象的集合间的关系及运算,可借助韦恩图,而对连续的集合间的运算及关系,可借助数轴的直观性,进行合理转化.2.函数的定义域为()A. [,3)∪(3,+∞)B. (-∞,3)∪(3,+∞)C. [,+∞)D. (3,+∞)【答案】A【解析】【分析】根据幂函数的定义域与分母不为零列不等式组求解即可.【详解】因为函数,解得且;函数的定义域为, 故选A.【点睛】定义域的三种类型及求法:(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解;(2) 对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解;(3) 若已知函数的定义域为,则函数的定义域由不等式求出.3. 下列函数中,既是奇函数又是增函数的为()A. B. C. D.【答案】D【解析】A是增函数,不是奇函数;B和C都不是定义域内的增函数,排除,只有D正确,因此选D.点评:该题主要考察函数的奇偶性和单调性,理解和掌握基本函数的性质是关键.4.设函数=则 ( )A. B. C. 1 D. 4【答案】D【解析】【分析】根据函数的解析式得到=,.【详解】函数=,=,.故答案为:D.【点睛】这个题目考查了分段函数的解析式和性质,求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值;求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.5.,,的大小关系是()A. B. C. D.【答案】D【解析】【分析】将、、均化为的指数幂,然后利用指数函数的单调性可得出、、的大小关系.【详解】,,,且指数函数在上是增函数,则,因此,.故选:D.【点睛】本题考查指数幂的大小比较,考查指数函数单调性的应用,解题的关键就是将三个数化为同一底数的指数幂,考查分析问题和解决问题的能力,属于中等题.6.函数的图象是()A. B.C. D.【答案】C【解析】【分析】根据函数的解析式,化简为,再根据图象的变换,即可得到答案.【详解】由题意,函数可化简得:则可将反比例函数的图象由左平移一个单位,再向上平移一个单位,即可得到函数的图象,答案为选项C.【点睛】本题主要考查了函数图象的识别与图象的变换,其中解答中正确化简函数的解析式,合理利用函数的图象变换是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.7.已知函数在区间上单调递减,则取值的集合为A. B. C. D.【答案】C【解析】分析:首先求出函数的对称轴,以及函数的单调递减区间,根据题意可知是函数单调递减区间的子集.详解:函数的对称轴是,因为是开口向下的抛物线,所以单调递减区间是,若函数在区间上单调递减,所以,即,解得,故选C.点睛:本题考查了利用函数的单调性求参数的取值范围,意在考查学生转化与化归的能力,属于基础题型.8.已知函数,且,则的值为A. -2017B. -3C. -1D. 3【答案】D【解析】【分析】设函数=g+2,其中g是奇函数,= -g +2,= g+2,故g,g是奇函数,故g,代入求值即可.【详解】函数=g+2,其中g是奇函数,= g+2= -g+2= g+2,故g g是奇函数,故g,故= g+2= 3.故答案:D.【点睛】这个题目考查了函数的奇偶性,奇偶函数常见的性质有:奇函数关于原点中心对称,在对称点处分别取得最大值和最小值;偶函数关于y轴对称,在对称点处的函数值相等,中经常利用函数的这些性质,求得最值.9.已知是定义在上的偶函数,那么的最大值是()A. B. C. D.【答案】C【解析】【分析】根据函数为偶函数,得出定义域关于原点对称,可求得的值,再由二次函数的对称轴为轴得出,然后由二次函数的单调性可得出函数的最大值.【详解】由于函数是定义在上的偶函数,则定义域关于原点对称,所以,,解得,,对称轴为直线,得,,定义域为.由二次函数的单调性可知,函数在上单调递减,在上单调递增.由于,因此,函数的最大值为.故选:C.【点睛】本题考查利用函数的奇偶性求参数,同时也考查了二次函数的最值问题,在考查函数的奇偶性时,需要注意定义域关于原点对称这一条件的应用,考查分析问题和解决问题的能力,属于中等题.10.函数是上的减函数,则的取值范围是( )A. (0,1)B.C.D.【答案】B【解析】【分析】当x<0时,函数f(x)是减函数,当x≥0时,若函数f(x)=ax是减函数,则0<a<1.要使函数f(x)在(﹣∞,+∞)上是减函数,还需满足0+3﹣3a≥a0,从而求得a的取值范围.【详解】当x<0时,函数f(x)=﹣x+3﹣3a是减函数,当x≥0时,若函数f(x)=ax是减函数,则0<a<1.要使函数f(x)在(﹣∞,+∞)上是减函数,需满足0+3﹣3a≥a0,解得a≤,故有即0<a≤.故答案为:B.【点睛】本题主要考查指数函数的单调性的应用,体现了分类讨论的数学思想,属于中档题.考查了分段函数已知单调性求参的问题,首先保证每一段上的单调性,之后再保证整个定义域上的单调性.11.已知偶函数在区间上单调递增,则满足的的取值范围是()A. B. C. D.【答案】D【解析】【分析】由偶函数性质可将不等式化为,由函数在区间上的单调性得出,解出该不等式即可.【详解】由于函数为偶函数,则,由可得,函数在区间上单调递增,则有,即,解得,因此,实数的取值范围是.故选:D.【点睛】本题考查利用奇偶性与单调性解函数不等式,在涉及到偶函数的问题时,可充分利用性质来将不等式进行等价转化,考查运算求解能力,属于中等题.12.已知是定义域为的奇函数,满足.若,则()A. B. C. D.【答案】C【解析】分析:先根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果.详解:因为是定义域为的奇函数,且,所以,因此,因为,所以,,从而,选C.点睛:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.第Ⅱ卷(共90分)二、填空题(每题5分,共4题20分)13.不论为何值,函数的图象一定经过点P,则点P的坐标为___________.【答案】【解析】【分析】函数过的定点,即需要指数的次数等于0即可.【详解】不论为何值,函数的图象过的定点为:x-2=0,x=2,代入解析式求得y=2,故点P(2,2).故答案为:.【点睛】本题考查了指数函数型函数所过的定点,即不受底数的影响,此时使得指数部分为0即可,形如的指数型函数过的定点是:.14.设函数,若,则实数 .【答案】-4,2.【解析】【分析】先根据自变量范围分类讨论,再根据对应解析式列方程,解出结果.【详解】当时,,所以;当时,,所以故 .【点睛】本题考查根据函数值求自变量,考查分类讨论思想以及基本分析求解能力.15.已知,则__________.【答案】【解析】【分析】先利用换元法求出函数的解析式,然后可计算出的值.【详解】令,得,,,因此,.故答案为:.【点睛】本题考查函数解析式的求解,同时也考查了函数值的计算,解题的关键就是利用换元法求出函数的解析式,考查运算求解能力,属于中等题.16.设a>0,且a≠1,函数y=a2x+2ax-1在[-1,1]上的最大值是14,则实数a的值为________.【答案】或3【解析】【分析】首先换元,设,函数变为,再分和两种情况讨论的范围,根据的范围求二次函数的最大值,求得实数的范围.【详解】令t=ax(a>0,且a≠1),则原函数化y=f(t)=(t+1)2-2(t>0).①当0<a<1,x∈[-1,1]时,t=ax∈,此时f(t)在上为增函数.所以f(t)max=f=-2=14.所以=16,解得a=- (舍去)或a=.②当a>1时,x∈[-1,1],t=ax∈,此时f(t)在上是增函数.所以f(t)max=f(a)=(a+1)2-2=14,解得a=3或a=-5(舍去).综上得a=或3.【点睛】本题考查了二次型函数求值域,考查了分类讨论的思想,属于中档题型.三、解答题:解答题应写出文字说明、证明过程或演算步骤。
2019-2020年高一期中考试数学试卷含答案
2019-2020年高一期中考试数学试卷含答案本试卷满分150分考试时间120分钟共60分,有一项是符合题目要求的。
1 •集合,集合,则等于(A. B. C. D.A. B. C. D.6•函数的单调递增区间为()A. B. C. D.7•定义运算若函数,则的值域是()A. B. C. D.&若函数f (x) = ax' ::;,blog2(x • ; x2• 1)■■■2在上有最小值-5,(为常数),则函数在上()A.有最大值 5B.有最小值 5C.有最大值 3D.有最大值99•已知是定义在上的偶函数,当时,,则不等式的解集为()A. B. C. D.10.函数f(x)=log2、x log2(2x)的最小值为()A. 0B.C.D.11. 已知函数,若方程有四个不同的解,,,,且,则的取值范围是()A. B. C. D.12. 设是定义在上的函数,对任意正实数,,且/(x>l-|x-2|, 1<^<3,则使得的最小实数为()2.已知幕函数的图象过点, 则的值为(D.C. 2A. B.-5.函数的图象向右平移个单位长度, )所得图象与曲线关于轴对称,则(王治洪在每小题给出的四个选项中,只、选择题:本大题共12小题,每小题A. 172B. 415C. 557D. 89二、填空题:本大题共4小题,每小题5分,共20分,把答案填在横线上13. 已知”若,则.14 ______________ .若函数满足,则. 15.的定义域是,则函数的定义域是."(3a —2)x +6a —1,x16 .已知函数f(x)=! 在上单调递减,则实数的取值范围0x,xQ是 ____ .三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤。
17. (本小题满分10分)计算下列各式:f 2 1、f 1 1 >/ 1 5 >(1)2a3b2-6a2b3-3a®b6(a > 0,b > 0 )< 丿< 丿< 丿(2) 2(lgU2f +lg +J(lg — lg2 + 118. (本小题满分12分)已知集合,集合.-(1)求;(2)若集合,且,求实数的取值范围19. (本小题满分12分)已知幕函数f (x)二(-2m2m ■ 2)x m 1为偶函数.(1)求的解析式;(2)若函数在区间(2, 3) 上为单调函数,求实数的取值范围.20. (本小题满分12分)]4 -x2|, x 兰0已知函数f(x)二22二0 ::: x _2 ,log 2 X , x 2(1)画出函数的图象;(2 )求的值;(3)求的最小值.21.(本小题满分12分)二次函数满足,且(1)求的解析式;(2)在区间[-1 , 1]上,的图象恒在的图象上方,试确定实数的范围22 (本小题满分12分)已知定义在上的函数有当时且对任意的有(1)求的值(2)证明在上为增函数(3 )若求的取值范围XX第一学期高一期中考试数学试题答案一•选择题:BABC DACD DCDB二. 填空题:13. 0,-1, 14. 15. 16.三. -计算题:17. (1) 4a (2) 1.18. 解:(1), ,•••,(2)时,2a _ a 1 I 3时,2a •-3 a :::-1 综上:或2 a 1 ::019. (1)由,得可知符合题意,(2)=,对称轴为,则,即20. 解:(1)作出函数图象如右图所示,(2)T f ( 3) =log 23,• 0v f (3)v 2,• f (f (3)) =f (log 23)=.…(3)由函数图象可知f (x)在[1 , 2]上是减函数,在(2, +8)上是增函数,:a 2+1> 1,•••当a2+1=2 时,21. 解:(1 )设f (x)=ax2+bx+c,由f (0) =1 _4 _2得c=1,故f (x) =ax+bx+1 .2 2…因为 f (x+1)- f (x) =2x,所以 a (x+1) +b (x+1) +1 -( ax +bx+1) =2x.即2ax+a+b=2x,所以,•,所以 f (x) =x2- x+1(2)由题意得x2- x+1> 2x+m在[-1, 1]上恒成立.J _____ I_____ X ____ I__________ I __ I __ I__ L-4 -3 -2 -1 O 12 3 4-1 -▼3 ■2即x - 3x+1 - m> 0在[-1, 1]上恒成立.设g (x) =x2- 3x+1 - m其图象的对称轴为直线,所以g (x)在[-1, 1]上递减.故只需g (1 )> 0,即12 - 3X 1+1 - m> 0,解得m<- 1.22.解:(1)令,则f(0) = f(0) f (0) = f2(0),又所以(2)设任意的且,则x^ x10 = f(x2-xj .1f (x )f(X2)= f[(X2 7)幻二f (X2 -xjf (xj 2f (X2 - 为)仁f(xj ::: f(X2)f(xj因此在上为增函数(3 )由f(x) f(2x-x2) 1 二f[x (2x — x2)] 仁f (3x-x2) f (0)在上为增函数23x -x 0 二x(x -3) : 0 二0 ::x 3故的取值范围是2019-2020年高一期中考试生物试卷含答案本试卷满分100分考试时间90分钟徐志宏-、选择题(共60分,每小题2分)1•在下列结构中,其成分不含磷脂分子的一组细胞器是①线粒体②核糖体③叶绿体④细胞核⑤内质网⑥中心体⑦高尔基体A. ①③B.④⑤C.⑤⑦D.②⑥2. 下图是用显微镜观察植物细胞实验中的两个视野,要把视野中的物像从图甲转为图乙,下列操作步骤正确的排序是①转动细准焦螺旋②转动粗准焦螺旋③移动装片④调节光圈(或转换反光镜)⑤转动转换器A. ③一⑤一④一①B. ④一③一②一⑤C. ③—①—④—⑤D. ③—⑤—②—①3. 在洋葱根细胞中,含有双层膜结构的细胞器是A .叶绿体B .叶绿体、线粒体C .线粒体D .线粒体、细胞核4. 细胞是最基本的生命系统,生命系统的各个层次既层层相依,又有各自的组成、结构和功能。
2019-2020学年高一数学上学期期中试题(含解析)_43
2019-2020学年高一数学上学期期中试题(含解析)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集为,集合A,,则()A. B. C. D.【答案】A【解析】试题分析:由的,所以,选A.考点:集合的运算2.设函数f(x)=则f(f(3))=( )A. B. 3 C. D.【答案】D【解析】【详解】,,故选D.【此处有视频,请去附件查看】3.函数的定义域为()A. B. C. D.【答案】A【解析】依题意有,解得.4.下列函数中,在区间上是增函数的是()A. B. C. D.【答案】D【解析】【详解】试题分析:在上是减函数,故A不对;在上是减函数,故B不对;在上是减函数,故C不对.;在上是增函数,故D对考点:函数的单调性.5.已知幂函数的图象过点,则的值为A. B. 2 C. 4 D.【答案】B【解析】【分析】根据幂函数的定义和待定系数法,求出幂函数的表达式,即可求值.【详解】设幂函数为,的图象过点,.,,故选B.【点睛】本题主要考查了利用待定系数法求函数解析式,同时考查了幂函数的概念,属于基础题.6.满足关系的集合B的个数()A. 5个B. 6个C. 7个D. 8个【答案】D【解析】【分析】根据题意得,B是{1,2,3,4}的一个包含元素1子集,一共有8个.【详解】满足关系式{1}⊆B⊆{1,2,3,4}的集合B有{1},{1,3},{1,2},{1,4},{1,2,3},{1,2,4},{1,3,4},{1,2,3,4}一共有8个.故选D.【点睛】本题考查元素与集合关系的判断和子集的应用,属于基本题.7.若2x=3,则x等于()A. B. C. D.【答案】D【解析】【分析】化指数式为对数式,再由换底公式得答案.【详解】由2x=3,得x.故选D.【点睛】本题考查指数式与对数式的互化,考查换底公式的应用,是基础题.8.已知,那么()A. B. C. D.【答案】B【解析】【分析】先令,则,即可求得函数解析式.【详解】解:设,则,则,即函数解析式为,故选:B.【点睛】本题考查了利用换元法求函数解析式,属基础题.9.已知,则a,b,c的大小关系()A. B. C. D.【答案】D【解析】【分析】利用指数函数的单调性与1作比较可以得出a与b的大小关系,通过对数函数的图像性质可以得到,得到最终的结果.【详解】由指数函数和对数函数图像可知:,则的大小关系是:.故选D.【点睛】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题.10.当时,在同一坐标系中与的图像大致是()A. B.C. D.【答案】B【解析】【详解】解析过程略11.如果奇函数在区间上是增函数,且最小值为,那么在区间上是( )A. 增函数且最小值为B. 增函数且最大值为C. 减函数且最小值为D. 减函数且最大值为【答案】B【解析】【分析】根据奇偶性和函数在上的单调性可知在上为增函数,由可知,由单调性确定为最大值.【详解】为奇函数图象关于原点对称在上为增函数在上为增函数在上的最小值为;最大值为又在上最小值为即在上为增函数且最大值为本题正确选项:【点睛】本题考查根据函数的奇偶性和单调性求解函数值的问题,关键是能够通过奇偶性得到对称区间内的单调性,从而确定最值点.12.若是偶函数,且对任意∈且,都有,则下列关系式中成立的是()A. B.C. D.【答案】A【解析】分析】由于对任意的x1,x2∈(0,+∞),都有,可得函数f(x)在(0,+∞)上单调递减,即可得出.【详解】∵对任意的x1,x2∈(0,+∞),都有,∴函数f(x)在(0,+∞)上单调递减,又∵,∴,又∵f(x)是偶函数,∴f(﹣)=f().∴.故选A.【点睛】本题考查了函数的奇偶性、单调性的应用,属于基础题.二、填空题(每小题5分,共20分)13.已知函数是定义在上奇函数,当时,,则__________.【答案】12【解析】【分析】由函数的奇偶性可知,代入函数解析式即可求出结果.【详解】函数是定义在上的奇函数,,则,.【点睛】本题主要考查函数的奇偶性,属于基础题型.14.若指数函数在区间上的最大值和最小值之和为,则的值为__【答案】3【解析】【分析】先由当时,指数函数为增函数,则在区间上,,,再结合已知条件运算即可得解.【详解】解:因为当时,指数函数为增函数,则在区间上,,,又指数函数在区间上的最大值和最小值之和为,则,即,又,即,故答案为:3.【点睛】本题考查了指数函数的单调性及最值的求法,属基础题.15.二次函数在上单调递增,则实数的取值范是____.【答案】[1,+∞)【解析】【分析】二次函数的开口向上,在上单调递增,所以对称轴要在区间的左边.【详解】二次函数的对称轴为,∵在上单调递增,∴,即.【点睛】研究二次函数的单调性时,要注意开口方向及对称轴与区间的位置关系.16.已知函数是定义在上的偶函数,当时,是增函数,且,则不等式的解集为___________【答案】【解析】【分析】根据函数的奇偶性和单调性之间的关系,将不等式进行转化,即可得到不等式的解集.【详解】∵偶函数f(x)在[0,+∞)上增函数,f(﹣1)=0,∴f(﹣1)=f(1)=0,则函数f(x)对应的图象如图:则f(x)<0的解为﹣1<x<1,即不等式的解集为(﹣1,1),故答案为.【点睛】本题主要考查不等式的解法,利用函数的奇偶性和单调性之间的关系是解决本题的关键,综合考查函数性质的应用.三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.计算:(1)(2)【答案】(1)101 (2)4【解析】【分析】(1)由分数指数幂的运算性质运算即可得解;(2)由对数的运算性质运算即可得解.【详解】解:(1);(2).【点睛】本题考查了分数指数幂的运算及对数的运算,属基础题.18.已知集合A={x|2≤x<7},B={x|3<x<10},C={x|}.(1)求A∪B,(∁RA)∩B;(2)若A∩C,求a的取值范围.【答案】(1) {x|2≤x<10},{x|7≤x<10};(2)【解析】【分析】(1)根据交、并、补集的运算分别求出A∪B,(∁RA)∩B;(2)根据题意和A∩C≠∅,即可得到a的取值范围.【详解】解:(1)因为A={x|2≤x<7},B={x|3<x<10},所以A∪B={x|2≤x<10}.因为A={x|2≤x<7},所以∁RA={x|x<2,或x≥7},则(∁RA)∩B={x|7≤x<10}.(2)因为A={x|2≤x<7},C={x|},且A∩C≠∅,所以所以a的取值范围为.【点睛】高考对集合知识的考查要求较低,均是以小题的形式进行考查,一般难度不大,要求考生熟练掌握与集合有关的基础知识.纵观近几年的高考试题,主要考查以下两个方面:一是考查具体集合的关系判断和集合的运算.解决这类问题的关键在于正确理解集合中元素所具有属性的含义,弄清集合中元素所具有的形式以及集合中含有哪些元素.二是考查抽象集合的关系判断以及运算.19.已知函数f(x)=,(1)判断函数在区间[1,+∞)上的单调性,并用定义证明你的结论.(2)求该函数在区间[1,4]上的最大值与最小值.【答案】(1)增函数,证明见解析 (2),【解析】【分析】(1)设,再利用作差法判断的大小关系即可得证;(2)利用函数在区间上为增函数即可求得函数的最值.【详解】解:(1)函数f(x)=在区间[1,+∞)上为增函数,证明如下:设,则,即,故函数f(x)=在区间[1,+∞)上为增函数;(2)由(1)可得:函数f(x)=在区间上为增函数,则,,故函数f(x)在区间上的最小值为,最大值为.【点睛】本题考查了利用定义法证明函数的单调性及利用函数单调性求函数的最值,属基础题.20.已知函数,求.判断并证明函数的奇偶性;已知,求a的值.【答案】(1)1;(2);(3)100【解析】【分析】将x=1代入计算即可;先求定义域并判断是否关于原点对称,然后用奇偶性定义判断;先计算f(lga),再解方程可得.【详解】;要使函数有意义,则,解得,函数的定义域为;,函数奇函数.,,且,解得..【点睛】本题考查了函数奇偶性定义证明及对数的运算性质,属基础题.21.已知定义在上的奇函数,当时.(1)求函数的表达式;(2)请画出函数的图象;【答案】(1)(2)函数的图像见解析【解析】【分析】(1)先设,则,再结合函数的奇偶性求函数解析式即可;(2)结合函数解析式作图像即可得解.【详解】解:(1)设,则,又函数为奇函数,则,又函数为上的奇函数,则,故;(2)由(1)可得:函数的图象如图所示:【点睛】本题考查了利用函数的奇偶性求函数解析式,重点考查了函数图像的作法,属基础题.22.已知二次函数f(x)满足条件f(0)=1,及f(x+1)﹣f (x)=2x.(1)求函数f(x)的解析式;(2)在区间[﹣1,1]上,y=f(x)的图象恒在y=2x+m的图象上方,试确定实数m的取值范围.【答案】(1)(2)m<﹣1【解析】【分析】(1)根据二次函数f(x)满足条件f(0)=1,及f(x+1)﹣f (x)=2x,可求f(1)=1,f(﹣1)=3,从而可求函数f (x)的解析式;(2)在区间[﹣1,1]上,y=f(x)的图象恒在y=2x+m的图象上方,等价于x2﹣x+1>2x+m在[﹣1,1]上恒成立,等价于x2﹣3x+1>m在[﹣1,1]上恒成立,求出左边函数的最小值,即可求得实数m的取值范围.【详解】解:(1)令x=0,则∵f(x+1)﹣f(x)=2x,∴f(1)﹣f(0)=0,∴f(1)=f(0)∵f(0)=1∴f(1)=1,∴二次函数图象的对称轴为.∴可令二次函数的解析式为f(x).令x=﹣1,则∵f(x+1)﹣f(x)=2x,∴f(0)﹣f(﹣1)=﹣2∵f(0)=1∴f(﹣1)=3,∴∴a=1,∴二次函数的解析式为(2)∵在区间[﹣1,1]上,y=f(x)的图象恒在y=2x+m的图象上方∴x2﹣x+1>2x+m在[﹣1,1]上恒成立∴x2﹣3x+1>m在[﹣1,1]上恒成立令g(x)=x2﹣3x+1,则g(x)=(x)2∴g(x)=x2﹣3x+1在[﹣1,1]上单调递减,∴g(x)min=g(1)=﹣1,∴m<﹣1.【点睛】本题重点考查二次函数解析式的求解,考查恒成立问题的处理,解题的关键是将在区间[﹣1,1]上,y=f(x)的图象恒在y=2x+m的图象上方,转化为x2﹣3x+1>m在[﹣1,1]上恒成立.2019-2020学年高一数学上学期期中试题(含解析)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集为,集合A,,则()A. B. C. D.【答案】A【解析】试题分析:由的,所以,选A.考点:集合的运算2.设函数f(x)=则f(f(3))=( )A. B. 3 C. D.【答案】D【解析】【详解】,,故选D.【此处有视频,请去附件查看】3.函数的定义域为()A. B. C. D.【答案】A【解析】依题意有,解得.4.下列函数中,在区间上是增函数的是()A. B. C. D.【答案】D【解析】【详解】试题分析:在上是减函数,故A不对;在上是减函数,故B不对;在上是减函数,故C不对.;在上是增函数,故D对考点:函数的单调性.5.已知幂函数的图象过点,则的值为A. B. 2 C. 4 D.【答案】B【解析】【分析】根据幂函数的定义和待定系数法,求出幂函数的表达式,即可求值.【详解】设幂函数为,的图象过点,.,,故选B.【点睛】本题主要考查了利用待定系数法求函数解析式,同时考查了幂函数的概念,属于基础题.6.满足关系的集合B的个数()A. 5个B. 6个C. 7个D. 8个【答案】D【解析】【分析】根据题意得,B是{1,2,3,4}的一个包含元素1子集,一共有8个.【详解】满足关系式{1}⊆B⊆{1,2,3,4}的集合B有{1},{1,3},{1,2},{1,4},{1,2,3},{1,2,4},{1,3,4},{1,2,3,4}一共有8个.故选D.【点睛】本题考查元素与集合关系的判断和子集的应用,属于基本题.7.若2x=3,则x等于()A. B. C. D.【答案】D【解析】【分析】化指数式为对数式,再由换底公式得答案.【详解】由2x=3,得x.故选D.【点睛】本题考查指数式与对数式的互化,考查换底公式的应用,是基础题.8.已知,那么()A. B. C. D.【答案】B【解析】【分析】先令,则,即可求得函数解析式.【详解】解:设,则,则,即函数解析式为,故选:B.【点睛】本题考查了利用换元法求函数解析式,属基础题.9.已知,则a,b,c的大小关系()A. B. C. D.【答案】D【解析】【分析】利用指数函数的单调性与1作比较可以得出a与b的大小关系,通过对数函数的图像性质可以得到,得到最终的结果.【详解】由指数函数和对数函数图像可知:,则的大小关系是:.故选D.【点睛】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题.10.当时,在同一坐标系中与的图像大致是()A. B.C. D.【答案】B【解析】【详解】解析过程略11.如果奇函数在区间上是增函数,且最小值为,那么在区间上是( )A. 增函数且最小值为B. 增函数且最大值为C. 减函数且最小值为D. 减函数且最大值为【答案】B【解析】【分析】根据奇偶性和函数在上的单调性可知在上为增函数,由可知,由单调性确定为最大值.【详解】为奇函数图象关于原点对称在上为增函数在上为增函数在上的最小值为;最大值为又在上最小值为即在上为增函数且最大值为本题正确选项:【点睛】本题考查根据函数的奇偶性和单调性求解函数值的问题,关键是能够通过奇偶性得到对称区间内的单调性,从而确定最值点.12.若是偶函数,且对任意∈且,都有,则下列关系式中成立的是()A. B.C. D.【答案】A【解析】分析】由于对任意的x1,x2∈(0,+∞),都有,可得函数f(x)在(0,+∞)上单调递减,即可得出.【详解】∵对任意的x1,x2∈(0,+∞),都有,∴函数f(x)在(0,+∞)上单调递减,又∵,∴,又∵f(x)是偶函数,∴f(﹣)=f().∴.故选A.【点睛】本题考查了函数的奇偶性、单调性的应用,属于基础题.二、填空题(每小题5分,共20分)13.已知函数是定义在上奇函数,当时,,则__________.【答案】12【解析】【分析】由函数的奇偶性可知,代入函数解析式即可求出结果.【详解】函数是定义在上的奇函数,,则,.【点睛】本题主要考查函数的奇偶性,属于基础题型.14.若指数函数在区间上的最大值和最小值之和为,则的值为__【答案】3【解析】【分析】先由当时,指数函数为增函数,则在区间上,,,再结合已知条件运算即可得解.【详解】解:因为当时,指数函数为增函数,则在区间上,,,又指数函数在区间上的最大值和最小值之和为,则,即,又,即,故答案为:3.【点睛】本题考查了指数函数的单调性及最值的求法,属基础题.15.二次函数在上单调递增,则实数的取值范是____.【答案】[1,+∞)【解析】【分析】二次函数的开口向上,在上单调递增,所以对称轴要在区间的左边.【详解】二次函数的对称轴为,∵在上单调递增,∴,即.【点睛】研究二次函数的单调性时,要注意开口方向及对称轴与区间的位置关系.16.已知函数是定义在上的偶函数,当时,是增函数,且,则不等式的解集为___________【答案】【解析】【分析】根据函数的奇偶性和单调性之间的关系,将不等式进行转化,即可得到不等式的解集.【详解】∵偶函数f(x)在[0,+∞)上增函数,f(﹣1)=0,∴f(﹣1)=f(1)=0,则函数f(x)对应的图象如图:则f(x)<0的解为﹣1<x<1,即不等式的解集为(﹣1,1),故答案为.【点睛】本题主要考查不等式的解法,利用函数的奇偶性和单调性之间的关系是解决本题的关键,综合考查函数性质的应用.三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.计算:(1)(2)【答案】(1)101 (2)4【解析】【分析】(1)由分数指数幂的运算性质运算即可得解;(2)由对数的运算性质运算即可得解.【详解】解:(1);(2).【点睛】本题考查了分数指数幂的运算及对数的运算,属基础题.18.已知集合A={x|2≤x<7},B={x|3<x<10},C={x|}.(1)求A∪B,(∁RA)∩B;(2)若A∩C,求a的取值范围.【答案】(1) {x|2≤x<10},{x|7≤x<10};(2)【解析】【分析】(1)根据交、并、补集的运算分别求出A∪B,(∁RA)∩B;(2)根据题意和A∩C≠∅,即可得到a的取值范围.【详解】解:(1)因为A={x|2≤x<7},B={x|3<x<10},所以A∪B={x|2≤x<10}.因为A={x|2≤x<7},所以∁RA={x|x<2,或x≥7},则(∁RA)∩B={x|7≤x<10}.(2)因为A={x|2≤x<7},C={x|},且A∩C≠∅,所以所以a的取值范围为.【点睛】高考对集合知识的考查要求较低,均是以小题的形式进行考查,一般难度不大,要求考生熟练掌握与集合有关的基础知识.纵观近几年的高考试题,主要考查以下两个方面:一是考查具体集合的关系判断和集合的运算.解决这类问题的关键在于正确理解集合中元素所具有属性的含义,弄清集合中元素所具有的形式以及集合中含有哪些元素.二是考查抽象集合的关系判断以及运算.19.已知函数f(x)=,(1)判断函数在区间[1,+∞)上的单调性,并用定义证明你的结论.(2)求该函数在区间[1,4]上的最大值与最小值.【答案】(1)增函数,证明见解析 (2),【解析】【分析】(1)设,再利用作差法判断的大小关系即可得证;(2)利用函数在区间上为增函数即可求得函数的最值.【详解】解:(1)函数f(x)=在区间[1,+∞)上为增函数,证明如下:设,则,即,故函数f(x)=在区间[1,+∞)上为增函数;(2)由(1)可得:函数f(x)=在区间上为增函数,则,,故函数f(x)在区间上的最小值为,最大值为.【点睛】本题考查了利用定义法证明函数的单调性及利用函数单调性求函数的最值,属基础题.20.已知函数,求.判断并证明函数的奇偶性;已知,求a的值.【答案】(1)1;(2);(3)100【解析】【分析】将x=1代入计算即可;先求定义域并判断是否关于原点对称,然后用奇偶性定义判断;先计算f(lga),再解方程可得.【详解】;要使函数有意义,则,解得,函数的定义域为;,函数奇函数.,,且,解得..【点睛】本题考查了函数奇偶性定义证明及对数的运算性质,属基础题.21.已知定义在上的奇函数,当时.(1)求函数的表达式;(2)请画出函数的图象;【答案】(1)(2)函数的图像见解析【解析】【分析】(1)先设,则,再结合函数的奇偶性求函数解析式即可;(2)结合函数解析式作图像即可得解.【详解】解:(1)设,则,又函数为奇函数,则,又函数为上的奇函数,则,故;(2)由(1)可得:函数的图象如图所示:【点睛】本题考查了利用函数的奇偶性求函数解析式,重点考查了函数图像的作法,属基础题.22.已知二次函数f(x)满足条件f(0)=1,及f(x+1)﹣f(x)=2x.(1)求函数f(x)的解析式;(2)在区间[﹣1,1]上,y=f(x)的图象恒在y=2x+m的图象上方,试确定实数m的取值范围.【答案】(1)(2)m<﹣1【解析】【分析】(1)根据二次函数f(x)满足条件f(0)=1,及f(x+1)﹣f(x)=2x,可求f(1)=1,f (﹣1)=3,从而可求函数f(x)的解析式;(2)在区间[﹣1,1]上,y=f(x)的图象恒在y=2x+m的图象上方,等价于x2﹣x+1>2x+m在[﹣1,1]上恒成立,等价于x2﹣3x+1>m在[﹣1,1]上恒成立,求出左边函数的最小值,即可求得实数m的取值范围.【详解】解:(1)令x=0,则∵f(x+1)﹣f(x)=2x,∴f(1)﹣f(0)=0,∴f(1)=f(0)∵f(0)=1∴f(1)=1,∴二次函数图象的对称轴为.∴可令二次函数的解析式为f(x).令x=﹣1,则∵f(x+1)﹣f(x)=2x,∴f(0)﹣f(﹣1)=﹣2∵f(0)=1∴f(﹣1)=3,∴∴a=1,∴二次函数的解析式为(2)∵在区间[﹣1,1]上,y=f(x)的图象恒在y=2x+m的图象上方∴x2﹣x+1>2x+m在[﹣1,1]上恒成立∴x2﹣3x+1>m在[﹣1,1]上恒成立令g(x)=x2﹣3x+1,则g(x)=(x)2∴g(x)=x2﹣3x+1在[﹣1,1]上单调递减,∴g(x)min=g(1)=﹣1,∴m<﹣1.【点睛】本题重点考查二次函数解析式的求解,考查恒成立问题的处理,解题的关键是将在区间[﹣1,1]上,y=f(x)的图象恒在y=2x+m的图象上方,转化为x2﹣3x+1>m在[﹣1,1]上恒成立.。
2019年黄冈市高一数学上期中试卷带答案
2019年黄冈市高一数学上期中试卷带答案一、选择题1.设常数a ∈R ,集合A={x|(x ﹣1)(x ﹣a )≥0},B={x|x≥a ﹣1},若A ∪B=R ,则a 的取值范围为( ) A .(﹣∞,2)B .(﹣∞,2]C .(2,+∞)D .[2,+∞)2.若35225a b ==,则11a b+=( ) A .12B .14C .1D .23.三个数0.32,20.3,0.32log 的大小关系为( ).A .20.30.3log 20.32<< B .0.320.3log 220.3<<C .20.30.30.3log 22<<D .20.30.30.32log 2<<4.设函数()2010x x f x x -⎧≤=⎨>⎩,,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,5.设log 3a π=,0.32b =,21log 3c =,则( ) A .a c b >>B .c a b >>C .b a c >>D .a b c >>6.若01a b <<<,则b a , a b , log b a , 1log ab 的大小关系为( )A .1log log bab aa b a b >>>B .1log log abb ab a b a >>>C .1log log b ab aa ab b >>> D .1log log a bb aa b a b >>> 7.若0.23log 2,lg0.2,2a b c ===,则,,a b c 的大小关系为A .c b a <<B . b a c <<C . a b c <<D .b c a << 8.若函数6(3)3,7(),7x a x x f x a x ---≤⎧=⎨>⎩单调递增,则实数a 的取值范围是( ) A .9,34⎛⎫⎪⎝⎭ B .9,34⎡⎫⎪⎢⎣⎭C .()1,3D .()2,39.已知函数21,0,()|log ,0,x x f x x x ⎧+≤⎪=⎨⎪⎩若函数()y f x a =-有四个零点1x ,2x ,3x ,4x ,且12x x <3x <4x <,则312342()x x x x x ++的取值范围是( ) A .(0,1)B .(1,0)-C .(0,1]D .[1,0)-10.已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B I 中元素的个数为( ) A .3B .2C .1D .011.设0.13592,ln ,log 210a b c ===,则,,a b c 的大小关系是 A .a b c >>B .a c b >>C .b a c >>D .b c a >>12.设函数3()f x x x =+ ,. 若当02πθ<< 时,不等式(sin )(1)0f m f m θ+-> 恒成立,则实数m 的取值范围是( ) A .1(,1]2B .1(,1)2C .[1,)+∞D .(,1]-∞二、填空题13.若不等式|3|4x b -<的解集中的整数有且仅有1,2,3,则b 的取值范围是 14.下列各式:(1)122[(2)]2---=- ;(2)已知2log 13a〈 ,则23a 〉 . (3)函数2xy =的图象与函数2x y -=-的图象关于原点对称;(4)函数()f x =21mx mx ++的定义域是R ,则m 的取值范围是04m <≤; (5)函数2ln()y x x =-+的递增区间为1,2⎛⎤-∞ ⎥⎝⎦.正确的...有________.(把你认为正确的序号全部写上) 15.已知函数()(),y f x y g x ==分别是定义在[]3,3-上的偶函数和奇函数,且它们在[]0,3上的图象如图所示,则不等式()()0f x gx ≥在[]3,3-上的解集是________.16.若函数()f x 满足()3298f x x +=+,则()f x 的解析式是_________.17.函数()f x =__________. 18.已知2a =5b =m ,且11a b+=1,则m =____. 19.已知()21f x x -=,则()f x = ____.20.2017年国庆期间,一个小朋友买了一个体积为a 的彩色大气球,放在自己房间内,由于气球密封不好,经过t 天后气球体积变为kt V a e -=⋅.若经过25天后,气球体积变为原来的23,则至少经过__________天后,气球体积小于原来的13. (lg30.477,lg 20.301≈≈,结果保留整数)三、解答题21.已知函数()2xf x =,1()22xg x =+.(1)求函数()g x 的值域;(2)求满足方程()()0f x g x -=的x 的值.22.2019年某开发区一家汽车生产企业计划引进一批新能源汽车制造设备,通过市场分析,全年需投入固定成本3000万元,每生产x (百辆),需另投入成本()f x 万元,且210200,050()100006019000,50x x x f x x x x ⎧+<<⎪=⎨+-≥⎪⎩,由市场调研知,每辆车售价6万元,且全年内生产的车辆当年能全部销售完.(1)求出2019年的利润()L x (万元)关于年产量x (百辆)的函数关系式;(利润=销售额-成本)(2)2019年产量为多少(百辆)时,企业所获利润最大?并求出最大利润.23.设集合222{|40},{|2(1)10}A x x x B x x a x a =+==+++-=,若A ∩B=B ,求a 的取值范围.24.国庆期间,某旅行社组团去风景区旅游,若旅行团人数在30人或30人以下,每人需交费用为900元;若旅行团人数多于30人,则给予优惠:每多1人,人均费用减少10元,直到达到规定人数75人为止.旅行社需支付各种费用共计15000元. (1)写出每人需交费用y 关于人数x 的函数; (2)旅行团人数为多少时,旅行社可获得最大利润?25.设集合2{|40,}A x x x x R =+=∈,22{|2(1)10,}B x x a x a x R =+++-=∈. (1)若A B B ⋃=,求实数a 的值; (2)若A B B =I ,求实数a 的范围.26.已知()221g x x ax =-+在区间[]13, 上的值域为[]0,4。
黄冈市蕲春县2019-2020学年高一上期中数学试卷有答案
蕲春县2019年秋高一期中教学质量检测数 学 试 题蕲春县教研室命制 2019年11月17日 下午1:30—3:30温馨提示:本试卷共4页。
考试时间120分钟。
请将答案填写在答题卡上。
一、本大题共12个小题,每小题5分,共60分.在每小题列出的四个选项中,选出符合题目要求的一项.把正确答案选项的标号填涂在答题卡上.1.已知集合{1,2,3,4},{2,2}M N ==-,下列结论成立的是( ). A .N M ⊆B .MN N = C . {2}M N = D .M N N =2.已知集合R U =,}054{2≤--=x x x P ,}1{≥=x x Q , 则)(Q C P U ⋂等于( ). A .}51{<≤-x x B .}51{<<x x C .}51{<≤x x D .{}11<≤-x x3.下列函数中表示同一函数的是( )A .y =4y = B .y =与xx y 2=C .y =与y =D .1yx =与y =4.已知⎩⎨⎧<+≥-=)6()1()6(5)(x x f x x x f ,则)3(f 为( )A .3B .4C . 1D .25.函数22)(-+=x x f x的零点所在区间可以是( ).A .(-1,0)B .(0,1)C .(1,2)D .(2,3)6.函数m x g x+=2015)(图象不过第二象限,则m 的取值范围是( ) A .1-≤m B .1-<mC .2015-≤mD .2015-<m7.设9.0log 5.0=a ,9.0log 1.1=b ,9.01.1=c ,则c b a , ,的大小关系为( ) A .c b a << B .b c a <<C .a c b <<D .c a b <<8.函数()f x =的值域是( ) A .]2,0[B .]2,(-∞C .),2[+∞D .),0(+∞9.一高为H 、满缸水量为V 的鱼缸截面如右下图所示,其底部破了一个小洞,缸中水从洞中流出.若鱼缸水深为h 时的水的体积为v ,则函数v =f (h ))的大致图象可能是下图中四个选项中的( )10.定义在R 上的偶函数)(x f 满足:对任意的)](0,(,2121x x x x ≠-∞∈,有2121()()0f x f x x x -<-,且(2)0f =,则不等式0)1(5)()(2<--+x x f x f 解集是( )A .),2()2,(+∞⋃--∞B .)2,1()2,(⋃--∞C .),2()1,2(+∞⋃-D .)2,1()1,2(⋃-11.已知实数0≠a ,函数⎩⎨⎧≥--<+=1,21,2)(x a x x a x x f ,若)1()1(a f a f +=-,则a 的值为( )A .43-B .23-C .43-或23-D .1-12.设奇函数f (x )在[-1,1]上是增函数,且f (-1)=-1,若对所有的x ∈[-1,1]及任意的a ∈[-1,1]都满足f (x )≤t 2-2at +1,则t 的取值范围是 A .[-2,2] B .{t |t ≤-21或t ≥21或t =0} C .[-21,21]D .{t |t ≤-2或t ≥2或t =0}二、填空题(本大题共4小题,每小题5分,共20分。
黄冈市蕲春县2019-2020学年高一上期中数学模拟试卷有参考答案
蕲春县2019年秋高一期中教学质量检测数 学 试 题蕲春县教研室命制 2019年11月17日 下午1:30—3:30温馨提示:本试卷共4页。
考试时间120分钟。
请将答案填写在答题卡上。
一、本大题共12个小题,每小题5分,共60分.在每小题列出的四个选项中,选出符合题目要求的一项.把正确答案选项的标号填涂在答题卡上.1.已知集合{1,2,3,4},{2,2}M N ==-,下列结论成立的是( ). A .N M ⊆B .MN N = C . {2}M N = D .M N N =2.已知集合R U =,}054{2≤--=x x x P ,}1{≥=x x Q , 则)(Q C P U ⋂等于( ). A .}51{<≤-x x B .}51{<<x x C .}51{<≤x x D .{}11<≤-x x3.下列函数中表示同一函数的是( )A .y =4y = B .y = 与xx y 2=C .y =与y =.1yx =与y =4.已知⎩⎨⎧<+≥-=)6()1()6(5)(x x f x x x f ,则)3(f 为( )A .3B .4C . 1D .25.函数22)(-+=x x f x的零点所在区间可以是( ).A .(-1,0)B .(0,1)C .(1,2)D .(2,3)6.函数m x g x+=2015)(图象不过第二象限,则m 的取值范围是( ) A .1-≤m B .1-<mC .2015-≤mD .2015-<m7.设9.0log 5.0=a ,9.0log 1.1=b ,9.01.1=c ,则c b a , ,的大小关系为( ) A .c b a << B .b c a <<C .a c b <<D .c a b <<8.函数()f x =的值域是( ) A .]2,0[B .]2,(-∞C .),2[+∞D .),0(+∞9.一高为H 、满缸水量为V 的鱼缸截面如右下图所示,其底部破了一个小洞,缸中水从洞中流出.若鱼缸水深为h 时的水的体积为v ,则函数v =f (h ))的大致图象可能是下图中四个选项中的( )10.定义在R 上的偶函数)(x f 满足:对任意的)](0,(,2121x x x x ≠-∞∈,有2121()()0f x f x x x -<-,且(2)0f =,则不等式0)1(5)()(2<--+x x f x f 解集是( )A .),2()2,(+∞⋃--∞B .)2,1()2,(⋃--∞C .),2()1,2(+∞⋃-D .)2,1()1,2(⋃-11.已知实数0≠a ,函数⎩⎨⎧≥--<+=1,21,2)(x a x x a x x f ,若)1()1(a f a f +=-,则a 的值为( )A .43-B .23-C .43-或23-D .1-12.设奇函数f (x )在[-1,1]上是增函数,且f (-1)=-1,若对所有的x ∈[-1,1]及任意的a ∈[-1,1]都满足f (x )≤t 2-2at +1,则t 的取值范围是 A .[-2,2]B .{t |t ≤-21或t ≥21或t =0} C .[-21,21]D .{t |t ≤-2或t ≥2或t =0}二、填空题(本大题共4小题,每小题5分,共20分。
湖北省黄冈市2019-2020学年高一上学期数学期中考试试卷(I)卷
湖北省黄冈市2019-2020学年高一上学期数学期中考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2020·江门模拟) 复数的共轭复数是()A .B .C .D .2. (2分) (2019高一上·宜昌期中) 图中阴影表示的集合是().A .B .C .D .3. (2分) (2019高一上·宜昌期中) 下列各组函数中,与相等的是()A .B .C .D .4. (2分) (2019高一上·宜昌期中) 若函数,则()A .B .C .D .5. (2分) (2019高一上·宜昌期中) 已知,且,则等于()A .B .C .D .6. (2分) (2019高一上·宜昌期中) 若,则的值为()A . 0B . 1C . -1D . 27. (2分)已知函数,则()A . 是奇函数,且在R上是增函数B . 是偶函数,且在R上是增函数C . 是奇函数,且在R上是减函数D . 是偶函数,且在R上是减函数8. (2分) (2019高一上·宜昌期中) 设,则的大小关系是()A .B .C .D .9. (2分) (2019高二上·延吉月考) 已知,若在上是增函数,则实数的取值范围是()A .B .C .D .10. (2分) (2019高三上·梅州月考) 函数的图象大致为()A .B .C .D .11. (2分)已知奇函数在上单调递减,且,则不等式的解集为()A .B .C .D .12. (2分) (2019高一上·宜昌期中) 当时,不等式恒成立,则实数m的取值范围是()A . (−1,2)B . (−4,3)C . (−2,1)D . (−3,4)二、填空题 (共4题;共5分)13. (1分)(2020·普陀模拟) 不等式的解集是________14. (1分) (2019高一上·宜昌期中) 函数的最小值为________.15. (2分)函数的单调递增区间是________.16. (1分) (2019高一上·宜昌期中) 已知函数,则满足的实数的取值范围是________.三、解答题 (共6题;共65分)17. (10分)已知函数(1)求函数的值域;(2)若时,函数的最小值为-7,求a的值和函数的最大值。
2019-2020学年高一数学上学期期中试题(含解析)_27
2019-2020学年高一数学上学期期中试题(含解析)一、选择题1. 设U={1,2,3,4,5},A={1,2,3},B={2,3,4},则下列结论中正确的是()A. A⊆BB. A∩B={2}C. A∪B={1,2,3,4,5}D. A∩()={1}【答案】D【解析】试题分析:因为但,所以A不对,因为,所以B不对,因为,所以C不对,经检验,D是正确的,故选D.考点:集合的运算.2.设函数,则的值为A. 0B. 1C. 2D. 3【答案】C【解析】因为f(x)=,则f[f(2)]=f(1)=2,选C3.当且时,函数的图象一定过点( )A. B. C. D.【答案】C【解析】【分析】计算当时,得到答案.【详解】函数,当时,故函数图像过点故选:【点睛】本题考查了函数过定点问题,意在考查学生的观察能力.4.设,且,则 ( )A. B. 10 C. 20 D. 100【答案】A【解析】【分析】将指数式化为对数值,然后利用对数运算公式化简,由此求得值.【详解】由得,所以,,故选A.【点睛】本小题主要考查指数式和对数式互化,考查对数运算,属于基础题.【此处有视频,请去附件查看】5.若,则的取值范围是( )A. B. C. D.【答案】B【解析】【分析】根据题目条件得到不等式计算得到答案.【详解】,则满足:解得故选:【点睛】本题考查了解不等式,意在考查学生对于函数定义域和单调性的应用.6.函数f(x)=ax+loga(x+1)(a>0,且a≠1)在[0,1]上的最大值和最小值之和为a,则a的值为()A. B. C. 2 D. 4【答案】B【解析】【分析】由,且在上单调性相同,可得函数在的最值之和为,解方程即可得结果.【详解】因为,且在上单调性相同,所以函数在的最值之和为,即有,解得,故选B.【点睛】本题考查指数函数和对数函数的单调性及应用,考查运算能力,意在考查灵活应用所学知识解答问题的能力,属于中档题.【此处有视频,请去附件查看】7.设a=,b=,c=,则a,b,c的大小关系是( )A. a>c>bB. a>b>cC. c>a>bD. b>c>a【答案】A【解析】试题分析:∵函数是减函数,∴;又函数在上是增函数,故.从而选A考点:函数的单调性.【此处有视频,请去附件查看】8.已知函数,则关于的不等式的解集为( )A. B. C. D.【答案】C【解析】【分析】先判断函数为奇函数和增函数,化简得到不等式解得答案.【详解】,函数为奇函数.均为单调递增函数,故函数单调递增.即故选:【点睛】本题考查了利用函数的单调性和奇偶性解不等式,意在考查学生对于函数性质的灵活运用.9.函数f(x)=ln(x+1)-的零点所在的大致区间是()A. (3,4)B. (2,e)C. (1,2)D. (0,1)【解析】【详解】单调递增所以零点所在的大致区间是(1,2),选C.10.函数的零点个数为()A. 0B. 1C. 2D. 3【答案】B【解析】函数的零点,即令,根据此题可得,在平面直角坐标系中分别画出幂函数和指数函数的图像,可得交点只有一个,所以零点只有一个,故选B【考点定位】本小题表面上考查的是零点问题,实质上考查的是函数图象问题,该题涉及到的图像为幂函数和指数函数【此处有视频,请去附件查看】11.函数的值域是( )A. B. C. D.【答案】C【解析】换元,变换得到,根据函数的单调性得到函数值域.【详解】,设变换得到函数在单调递增.故,即故选:【点睛】本题考查了函数的值域,利用换元法再判断函数的单调性是解题的关键.12.已知函数.若g(x)存在2个零点,则a的取值范围是A. [–1,0)B. [0,+∞)C. [–1,+∞)D. [1,+∞)【答案】C【解析】分析:首先根据g(x)存在2个零点,得到方程有两个解,将其转化为有两个解,即直线与曲线有两个交点,根据题中所给函数解析式,画出函数的图像(将去掉),再画出直线,并将其上下移动,从图中可以发现,当时,满足与曲线有两个交点,从而求得结果.详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果.二、填空题13.设,则=__________.【答案】【解析】【分析】换元变换得到得到答案.【详解】设,则,,即故答案为:【点睛】本题考查了换元法求函数表达式,忽略掉定义域是容易发生的错误.14.函数f(x)=log5(2x+1)的单调增区间是.【答案】(﹣,+∞)【解析】【详解】因为函数u=2x+1,y=log5u在定义域上都是递增函数,所以函数f(x)=log5(2x+1)的单调增区间,即为该函数的定义域,即2x+1>0,解得x>-,所以所求单调增区间是,故答案为.【此处有视频,请去附件查看】15.已知且,则___________.【答案】26【解析】【分析】代入计算得到,再计算得到答案.【详解】,故答案为:【点睛】本题考查了函数值的计算,意在考查学生的计算能力.16.若函数是偶函数,是奇函数,则________.【答案】【解析】【分析】根据是偶函数得到,根据是奇函数得到,计算得到答案.【详解】是偶函数,则.是奇函数,则,故答案为:【点睛】本题考查了函数的奇偶性,意在考查学生对于函数性质的灵活运用.三、解答题17.设A={x|2x2+ax+2=0},B={x|x2+3x+2a=0},A∩B={2}.(1)求a的值及A、B;(2)设全集I=A∪B,求(∁IA)∪(∁IB);(3)写出(∁IA)∪(∁IB)的所有子集.【答案】(1)(2)(3)【解析】试题分析:(1)将代入即可求出,再分别代入即可求得 .(2)根据并集定义即求根据补集定义求出,再由并集定义求出.(3)根据子集定义写出所求子集.试题解析:(1)因为,所以,得,所以,.(2)因为,所以,所以 .(3) 的所有子集为 .18.已知函数.(1)求函数的单调区间;(2)求函数的值域.【答案】(1)函数在上是减函数;在上是单调递增函数;(2)函数的值域为【解析】【分析】(1)根据定义域得到,化简得到,根据函数的单调性得到函数的单调区间.(2)先计算,计算得到值域.【详解】(1) ,定义域满足解得考虑函数,函数在是单调递减,在上单调递增.故在单调递减,在上单调递增.(2)根据(1),故的值域为【点睛】本题考查了函数的单调性和值域,意在考查学生对于复合函数的性质和方法的应用.19.解答下列各题(1)(2)解方程: (a>0且a≠1)【答案】(1);(2)【解析】【分析】(1)直接利用对数运算法则得到答案.(2)先求对应函数定义域得到,再解方程得到答案.【详解】(1)(2),定义域满足:解得即解得或(舍去),故【点睛】本题考查了对数的运算和对数方程,忽略定义域是容易发生的错误.20.函数的定义域为且满足对任意,都有.(1)求的值;(2)如果,且在上是增函数,求的取值范围.【答案】(1); (2)且【解析】【分析】(1)取和解得答案.(2)先计算,再判断函数为偶函数,根据函数的单调性解得答案.【详解】(1),取得到取得到(2),取得到取得到函数为偶函数,在上是增函数且解得且【点睛】本题考查了抽象函数的函数值,利用函数的奇偶性和单调性解不等式,意在考查学生对于抽象函数知识方法的掌握情况.21.已知函数.(1)若的一根大于,另一根小于,求实数的取值范围;(2)若在内恒大于,求实数的取值范围.【答案】(1);(2)【解析】【分析】(1)确定二次函数开口向上,只需满足即可,计算得到答案.(2)化简得到,函数最值在端点处,代入计算得到答案.【详解】(1)开口向上,的一根大于,另一根小于只需满足:即可,即(2),看作为变量函数,恒大于,即最小值大于0.最值在端点处取得,则解得【点睛】本题考查了根据函数的零点求参数,恒成立问题,将恒成立问题转化为最值问题是解题的关键.22.已知函数,(且).()求函数的定义域.()判断的奇偶性,并说明理由.()确定为何值时,有.【答案】(1);(2)奇函数;(3)见解析【解析】试题分析:(1)根据题意可得,解不等式组得到函数定义域;(2)经计算可得,故其为奇函数;(3)对底数分为和进行讨论,根据对数函数单调性得不等式解.试题解析:(),定义域为,解得,∴,∴定义域为.()定义域关于对称,,∴奇函数.(),即,当时,,即,∴,当时,,即,∴,∴综上,当时,的解为,当时,的解为.2019-2020学年高一数学上学期期中试题(含解析)一、选择题1. 设U={1,2,3,4,5},A={1,2,3},B={2,3,4},则下列结论中正确的是()A. A⊆BB. A∩B={2}C. A∪B={1,2,3,4,5}D. A∩()={1}【答案】D【解析】试题分析:因为但,所以A不对,因为,所以B不对,因为,所以C不对,经检验,D是正确的,故选D.考点:集合的运算.2.设函数,则的值为A. 0B. 1C. 2D. 3【答案】C【解析】因为f(x)=,则f[f(2)]=f(1)=2,选C3.当且时,函数的图象一定过点( )A. B. C. D.【答案】C【解析】【分析】计算当时,得到答案.【详解】函数,当时,故函数图像过点故选:【点睛】本题考查了函数过定点问题,意在考查学生的观察能力.4.设,且,则 ( )A. B. 10 C. 20 D. 100【答案】A【解析】【分析】将指数式化为对数值,然后利用对数运算公式化简,由此求得值.【详解】由得,所以,,故选A.【点睛】本小题主要考查指数式和对数式互化,考查对数运算,属于基础题.【此处有视频,请去附件查看】5.若,则的取值范围是( )A. B. C. D.【答案】B【解析】【分析】根据题目条件得到不等式计算得到答案.【详解】,则满足:解得故选:【点睛】本题考查了解不等式,意在考查学生对于函数定义域和单调性的应用.6.函数f(x)=ax+loga(x+1)(a>0,且a≠1)在[0,1]上的最大值和最小值之和为a,则a 的值为()A. B. C. 2 D. 4【答案】B【解析】【分析】由,且在上单调性相同,可得函数在的最值之和为,解方程即可得结果.【详解】因为,且在上单调性相同,所以函数在的最值之和为,即有,解得,故选B.【点睛】本题考查指数函数和对数函数的单调性及应用,考查运算能力,意在考查灵活应用所学知识解答问题的能力,属于中档题.【此处有视频,请去附件查看】7.设a=,b=,c=,则a,b,c的大小关系是( )A. a>c>bB. a>b>cC. c>a>bD. b>c>a【答案】A【解析】试题分析:∵函数是减函数,∴;又函数在上是增函数,故.从而选A考点:函数的单调性.【此处有视频,请去附件查看】8.已知函数,则关于的不等式的解集为( )A. B. C. D.【答案】C【解析】【分析】先判断函数为奇函数和增函数,化简得到不等式解得答案.【详解】,函数为奇函数.均为单调递增函数,故函数单调递增.即故选:【点睛】本题考查了利用函数的单调性和奇偶性解不等式,意在考查学生对于函数性质的灵活运用.9.函数f(x)=ln(x+1)-的零点所在的大致区间是()A. (3,4)B. (2,e)C. (1,2)D. (0,1)【解析】【详解】单调递增所以零点所在的大致区间是(1,2),选C.10.函数的零点个数为()A. 0B. 1C. 2D. 3【答案】B【解析】函数的零点,即令,根据此题可得,在平面直角坐标系中分别画出幂函数和指数函数的图像,可得交点只有一个,所以零点只有一个,故选B【考点定位】本小题表面上考查的是零点问题,实质上考查的是函数图象问题,该题涉及到的图像为幂函数和指数函数【此处有视频,请去附件查看】11.函数的值域是( )A. B. C. D.【答案】C【解析】【分析】换元,变换得到,根据函数的单调性得到函数值域.【详解】,设变换得到函数在单调递增.故,即【点睛】本题考查了函数的值域,利用换元法再判断函数的单调性是解题的关键.12.已知函数.若g(x)存在2个零点,则a的取值范围是A. [–1,0)B. [0,+∞)C. [–1,+∞)D. [1,+∞)【答案】C【解析】分析:首先根据g(x)存在2个零点,得到方程有两个解,将其转化为有两个解,即直线与曲线有两个交点,根据题中所给函数解析式,画出函数的图像(将去掉),再画出直线,并将其上下移动,从图中可以发现,当时,满足与曲线有两个交点,从而求得结果.详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果.13.设,则=__________.【答案】【解析】【分析】换元变换得到得到答案.【详解】设,则,,即故答案为:【点睛】本题考查了换元法求函数表达式,忽略掉定义域是容易发生的错误.14.函数f(x)=log5(2x+1)的单调增区间是.【答案】(﹣,+∞)【解析】【详解】因为函数u=2x+1,y=log5u在定义域上都是递增函数,所以函数f(x)=log5(2x+1)的单调增区间,即为该函数的定义域,即2x+1>0,解得x>-,所以所求单调增区间是,故答案为.【此处有视频,请去附件查看】15.已知且,则___________.【答案】26【解析】【分析】代入计算得到,再计算得到答案.【详解】,故答案为:【点睛】本题考查了函数值的计算,意在考查学生的计算能力.16.若函数是偶函数,是奇函数,则________.【答案】【解析】【分析】根据是偶函数得到,根据是奇函数得到,计算得到答案.【详解】是偶函数,则.是奇函数,则,故答案为:【点睛】本题考查了函数的奇偶性,意在考查学生对于函数性质的灵活运用.三、解答题17.设A={x|2x2+ax+2=0},B={x|x2+3x+2a=0},A∩B={2}.(1)求a的值及A、B;(2)设全集I=A∪B,求(∁IA)∪(∁IB);(3)写出(∁IA)∪(∁IB)的所有子集.【答案】(1)(2)(3)【解析】试题分析:(1)将代入即可求出,再分别代入即可求得 .(2)根据并集定义即求根据补集定义求出,再由并集定义求出 .(3)根据子集定义写出所求子集.试题解析:(1)因为,所以,得,所以,.(2)因为,所以,所以 .(3) 的所有子集为 .18.已知函数.(1)求函数的单调区间;(2)求函数的值域.【答案】(1)函数在上是减函数;在上是单调递增函数;(2)函数的值域为【解析】【分析】(1)根据定义域得到,化简得到,根据函数的单调性得到函数的单调区间.(2)先计算,计算得到值域.【详解】(1) ,定义域满足解得考虑函数,函数在是单调递减,在上单调递增.故在单调递减,在上单调递增.(2)根据(1),故的值域为【点睛】本题考查了函数的单调性和值域,意在考查学生对于复合函数的性质和方法的应用.19.解答下列各题(1)(2)解方程: (a>0且a≠1)【答案】(1);(2)【解析】【分析】(1)直接利用对数运算法则得到答案.(2)先求对应函数定义域得到,再解方程得到答案.【详解】(1)(2),定义域满足:解得即解得或(舍去),故【点睛】本题考查了对数的运算和对数方程,忽略定义域是容易发生的错误.20.函数的定义域为且满足对任意,都有.(1)求的值;(2)如果,且在上是增函数,求的取值范围.【答案】(1); (2)且【解析】【分析】(1)取和解得答案.(2)先计算,再判断函数为偶函数,根据函数的单调性解得答案.【详解】(1),取得到取得到(2),取得到取得到函数为偶函数,在上是增函数且解得且【点睛】本题考查了抽象函数的函数值,利用函数的奇偶性和单调性解不等式,意在考查学生对于抽象函数知识方法的掌握情况.21.已知函数.(1)若的一根大于,另一根小于,求实数的取值范围;(2)若在内恒大于,求实数的取值范围.【答案】(1);(2)【解析】【分析】(1)确定二次函数开口向上,只需满足即可,计算得到答案.(2)化简得到,函数最值在端点处,代入计算得到答案.【详解】(1)开口向上,的一根大于,另一根小于只需满足:即可,即(2),看作为变量函数,恒大于,即最小值大于0.最值在端点处取得,则解得【点睛】本题考查了根据函数的零点求参数,恒成立问题,将恒成立问题转化为最值问题是解题的关键.22.已知函数,(且).()求函数的定义域.()判断的奇偶性,并说明理由.()确定为何值时,有.【答案】(1);(2)奇函数;(3)见解析【解析】试题分析:(1)根据题意可得,解不等式组得到函数定义域;(2)经计算可得,故其为奇函数;(3)对底数分为和进行讨论,根据对数函数单调性得不等式解.试题解析:(),定义域为,解得,∴,∴定义域为.()定义域关于对称,,∴奇函数.(),即,当时,,即,∴,当时,,即,∴,∴综上,当时,的解为,当时,的解为.。
黄冈市蕲春县2019-2020学年高一上期中数学试卷(有答案)
2019-2020学年湖北省黄冈市蕲春县高一(上)期中数学试卷一、选择题(共12小题,每小题5分,满分60分)1.已知集合M={1,2,3,4},N={﹣2,2},下列结论成立的是()A.N⊆M B.M∪N=M C.M∩N=N D.M∩N={2}2.已知集合U=R,P={x|x2﹣4x﹣5≤0},Q={x|x≥1},则P∩(∁U Q)()A.{x|﹣1≤x<5} B.{x|1<x<5} C.{x|1≤x<5} D.{x|﹣1≤x<1}3.下列函数中表示同一函数的是()A.y=与y=()4B.y=与y=C.y=与y=•D.y=与y=4.已知f(x)=,则f(3)为()A.3 B.4 C.1 D.25.函数f(x)=2x+x﹣2的零点所在的一个区间是()A.(﹣2,﹣1)B.(﹣1,0)C.(0,1)D.(1,2)6.函数g(x)=2015x+m图象不过第二象限,则m的取值范围是()A.m≤﹣1 B.m<﹣1 C.m≤﹣2015 D.m<﹣20157.设a=log0.50.9,b=log1.10.9,c=1.10.9,则a,b,c的大小关系为()A.a<b<c B.b<a<c C.b<c<a D.a<c<b8.()A.(﹣∞,2] B.(0,+∞)C.[2,+∞)D.[0,2]9.一高为H,满缸水量为V的鱼缸截面如图所示,其底部破了一个小洞,缸中水从洞中流出,若鱼缸水深为h时水的体积为v,则函数v=f(h)的大致图象可能是图中四个选项中的()A.B.C.D.10.定义在R上的偶函数f(x)满足:对任意的x1,x2∈(﹣∞,0](x1≠x2),有,且f(2)=0,则不等式<0的解集是()A.(﹣∞,﹣2)∪(2,+∞) B.(﹣∞,﹣2)∪(1,2)C.(﹣2,1)∪(2,+∞)D.(﹣2,1)∪(1,2)11.已知实数a≠0,函数,若f(1﹣a)=f(1+a),则a的值为()A. B.C. D.12.设奇函数f(x)在[﹣1,1]上是增函数,且f(﹣1)=﹣1,若对所有的x∈[﹣1,1]及任意的a∈[﹣1,1]都满足f(x)≤t2﹣2at+1,则t的取值范围是()A.[﹣2,2] B.{t|t≤﹣或t或=0}C.[﹣,] D.{t|t≤﹣2或t≥2或t=0}二、填空题(共4小题,每小题5分,满分20分)13.函数y=|x﹣a|的图象关于直线x=2对称,则a= .14.设函数f(x)满足,则f(2)= .15.已知函数f(x)=在区间(﹣2,+∞)上为增函数,则实数a的取值范围是.16.若∃x1,x2∈R,x1≠x2,使得f(x1)=f(x2)成立,则实数a的取值范围是.三、解答题(共6小题,满分70分)17.(1)若xlog32=1,试求4x+4﹣x的值;(2)计算:(2)﹣(﹣9.6)0﹣(3)+(1.5)﹣2+(×)4.18.已知集合M={x|x2﹣3x≤10},N={x|a+1≤x≤2a+1}.(1)若a=2,求M∩(∁R N);(2)若M∪N=M,求实数a的取值范围.19.已知函数f(x)是定义域在R上的奇函数,当x>0时,f(x)=x2﹣2x.(1)求出函数f(x)在R上的解析式;(2)写出函数的单调区间.20.电信局为了配合客户不同需要,设有A,B两种优惠方案.这两种方案应付话费(元)与通话时间x(min)之间的关系如图所示,其中D的坐标为(,230).(1)若通话时间为2小时,按方案A,B各付话费多少元?(2)方案B从500分钟以后,每分钟收费多少元?(3)通话时间在什么范围内,方案B比方案A优惠?21.已知函数f(x)=(a,b,c∈Z)是奇函数,且f(1)=2,f(2)<3.(1)求a,b,c的值.(2)判断函数f(x)在[1,+∞)上的单调性,并用定义证明你的结论.(3)解关于t的不等式:f(﹣t2﹣1)+f(|t|+3)>0.22.定义在D上的函数f(x),如果满足对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界,已知函数f(x)=1+x+ax2(1)当a=﹣1时,求函数f(x)在(﹣∞,0)上的值域,判断函数f(x)在(﹣∞,0)上是否为有界函数,并说明理由;(2)若函数f(x)在x∈[1,4]上是以3为上界的有界函数,求实数a的取值范围.2019-2020学年湖北省黄冈市蕲春县高一(上)期中数学试卷参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.已知集合M={1,2,3,4},N={﹣2,2},下列结论成立的是()A.N⊆M B.M∪N=M C.M∩N=N D.M∩N={2}【考点】集合的包含关系判断及应用.【专题】集合.【分析】由M={1,2,3,4},N={﹣2,2},则可知,﹣2∈N,但是﹣2∉M,则N⊄M,M∪N={1,2,3,4,﹣2}≠M,M∩N={2}≠N,从而可判断.【解答】解:A、由M={1,2,3,4},N={﹣2,2},可知﹣2∈N,但是﹣2∉M,则N⊄M,故A错误;B、M∪N={1,2,3,4,﹣2}≠M,故B错误;C、M∩N={2}≠N,故C错误;D、M∩N={2},故D正确.故选D.【点评】本题主要考查了集合的包含关系的判断,解题的关键是熟练掌握集合的基本运算.2.已知集合U=R,P={x|x2﹣4x﹣5≤0},Q={x|x≥1},则P∩(∁U Q)()A.{x|﹣1≤x<5} B.{x|1<x<5} C.{x|1≤x<5} D.{x|﹣1≤x<1}【考点】交、并、补集的混合运算.【专题】计算题;对应思想;定义法;集合.【分析】先化简集合P,求出∁U Q,再计算P∩(∁U Q)的值.【解答】解:∵集合U=R,P={x|x2﹣4x﹣5≤0}={x|﹣1≤x≤5},Q={x|x≥1},∴∁U Q={x|x<1}∴P∩(∁U Q)={x|﹣1≤x<1}.故选:D.【点评】本题考查了集合的化简与运算问题,是基础题目.3.下列函数中表示同一函数的是()A.y=与y=()4B.y=与y=C.y=与y=•D.y=与y=【考点】判断两个函数是否为同一函数.【专题】函数思想;分析法;函数的性质及应用.【分析】根据两个函数的定义域相同,对应关系也相同,即可判断它们是同一函数.【解答】解:对于A,函数y==x2(x∈R),与函数y==x2(x≥0)的定义域不同,所以不是同一函数;对于B,函数y==x(x∈R),与函数y==x(x≠0)的定义域不同,所以不是同一函数;对于C,函数y==(x≤﹣1或x≥0),与函数y=•=(x≥0)的定义域不同,所以不是同一函数;对于D,函数y=(x≠0),与函数y==(x≠0)的定义域相同,对应关系也相同,所以是同一函数.故选:D.【点评】本题考查了判断两个函数是否为同一函数的应用问题,是基础题目.4.已知f(x)=,则f(3)为()A.3 B.4 C.1 D.2【考点】分段函数的应用.【专题】计算题;函数的性质及应用.【分析】由分段函数的解析式,先运用第二段,再由第一段,即可得到所求值.【解答】解:f(x)=,可得f(3)=f(4)=f(5)=f(6)=6﹣5=1.故选:C.【点评】本题考查分段函数的运用:求函数值,考查运算能力,属于基础题.5.函数f(x)=2x+x﹣2的零点所在的一个区间是()A.(﹣2,﹣1)B.(﹣1,0)C.(0,1)D.(1,2)【考点】函数零点的判定定理.【专题】计算题.【分析】利用函数的零点判定定理,先判断函数的单调性,然后判断端点值的符合关系.【解答】解:∵f(x)=2x+x﹣2在R上单调递增又∵f(0)=﹣1<0,f(1)=1>0由函数的零点判定定理可知,函数的零点所在的一个区间是(0,1)故选C【点评】本题主要考查函数零点区间的判断,判断的主要方法是利用根的存在性定理,判断函数在给定区间端点处的符号是否相反.6.函数g(x)=2015x+m图象不过第二象限,则m的取值范围是()A.m≤﹣1 B.m<﹣1 C.m≤﹣2015 D.m<﹣2015【考点】指数函数的图像变换.【专题】数形结合;转化法;函数的性质及应用.【分析】根据指数函数的图象和性质进行求解即可.【解答】解:函数g(x)=2015x+m为增函数,若g(x)=2015x+m图象不过第二象限,则满足g(0)≤0,即g(0)=1+m≤0,则m≤﹣1,故选:A.【点评】本题主要考查指数函数的图象和性质,根据条件建立不等式关系是解决本题的关键.比较基础.7.设a=log0.50.9,b=log1.10.9,c=1.10.9,则a,b,c的大小关系为()A.a<b<c B.b<a<c C.b<c<a D.a<c<b【考点】对数值大小的比较.【专题】函数的性质及应用.【分析】利用对数函数和指数函数的性质求解.【解答】解:∵0=log0.51<a=log0.50.9<log0.50.5=1,b=log1.10.9<log1.11=0,c=1.10.9>1.10=1,∴b<a<c,故选:B.【点评】本题考查对数值大小的比较,是基础题,解题时要注意对数函数和指数函数的性质的合理运用.8.()A.(﹣∞,2] B.(0,+∞)C.[2,+∞)D.[0,2]【考点】函数的值域.【专题】函数的性质及应用.【分析】根据函数≥0,而且﹣x2﹣2x+3=﹣(x+1)2+4≤4,从而求得函数的值域.【解答】解:∵函数≥0,而且﹣x2﹣2x+3=﹣( x2+2x﹣3)=﹣(x+1)2+4≤4,∴≤2,∴0≤f(x)≤2,故选D.【点评】本题主要考查求函数的值域,属于基础题.9.一高为H,满缸水量为V的鱼缸截面如图所示,其底部破了一个小洞,缸中水从洞中流出,若鱼缸水深为h时水的体积为v,则函数v=f(h)的大致图象可能是图中四个选项中的()A.B.C.D.【考点】函数的图象.【专题】函数的性质及应用.【分析】水深h越大,水的体积v就越大,故函数v=f(h)是个增函数,一开始增长越来越快,后来增长越来越慢,图象是先凹后凸的.【解答】解:由图得水深h越大,水的体积v就越大,故函数v=f(h)是个增函数.据四个选项提供的信息,当h∈[O,H],我们可将水“流出”设想成“流入”,这样每当h增加一个单位增量△h时,根据鱼缸形状可知,函数V的变化,开始其增量越来越大,但经过中截面后则增量越来越小,故V关于h的函数图象是先凹后凸的,曲线上的点的切线斜率先是逐渐变大,后又逐渐变小,故选:B.【点评】本题考查了函数图象的变化特征,函数的单调性的实际应用,体现了数形结合的数学思想和逆向思维,属于中档题.10.定义在R上的偶函数f(x)满足:对任意的x1,x2∈(﹣∞,0](x1≠x2),有,且f(2)=0,则不等式<0的解集是()A.(﹣∞,﹣2)∪(2,+∞) B.(﹣∞,﹣2)∪(1,2)C.(﹣2,1)∪(2,+∞)D.(﹣2,1)∪(1,2)【考点】奇偶性与单调性的综合.【专题】数形结合;转化法;函数的性质及应用.【分析】根据条件判断函数的单调性,根据函数奇偶性和单调性之间的关系,作出函数f(x)的图象,利用数形结合将不等式进行转化即可解不等式即可.【解答】解:∵任意的x1,x2∈(﹣∞,0](x1≠x2),有,∴此时函数f(x)在(﹣∞,0]上为减函数,∵f(x)是偶函数,∴函数在[0,+∞)上为增函数,∵f(2)=0,∴f(﹣2)=﹣f(2)=0,作出函数f(x)的图象如图:则不等式<0等价为<0,即<0,即或,即或,即x<﹣2或1<x<2,故不等式的解集为(﹣∞,﹣2)∪(1,2).故选:B.【点评】本题主要考查不等式的解集,利用函数奇偶性和单调性之间的关系是解决本题的关键.11.已知实数a≠0,函数,若f(1﹣a)=f(1+a),则a的值为()A. B.C. D.【考点】分段函数的解析式求法及其图象的作法.【专题】计算题;分类讨论.【分析】由a≠0,f(1﹣a)=f(1+a),要求f(1﹣a),与f(1+a),需要判断1﹣a与1+a与1的大小,从而需要讨论a与0的大小,代入可求【解答】解:∵a≠0,f(1﹣a)=f(1+a)当a>0时,1﹣a<1<1+a,则f(1﹣a)=2(1﹣a)+a=2﹣a,f(1+a)=﹣(1+a)﹣2a=﹣1﹣3a∴2﹣a=﹣1﹣3a,即a=﹣(舍)当a<0时,1+a<1<1﹣a,则f(1﹣a)=﹣(1﹣a)﹣2a=﹣1﹣a,f(1+a)=2(1+a)+a=2+3a∴﹣1﹣a=2+3a即综上可得a=﹣故选A【点评】本题主要考查了分段函数的函数值的求解,解题的关键是把1﹣a与1+a与1的比较,从而确定f (1﹣a)与f(1+a),体现了分类讨论思想的应用.12.设奇函数f(x)在[﹣1,1]上是增函数,且f(﹣1)=﹣1,若对所有的x∈[﹣1,1]及任意的a∈[﹣1,1]都满足f(x)≤t2﹣2at+1,则t的取值范围是()A.[﹣2,2] B.{t|t≤﹣或t或=0}C.[﹣,] D.{t|t≤﹣2或t≥2或t=0}【考点】函数恒成立问题.【专题】函数的性质及应用.【分析】先由函数为奇函数求出f(1)=﹣f(﹣1)=1,然后由x∈[﹣1,1]时f(x)是增函数,f(x)≤f (1)=1得f(x)≤t2﹣2at+1即为1≤t2﹣2at+l,即2at≤t2恒成立,分类讨论求解即可.【解答】解:奇函数f(x)在[﹣1,1]上是增函数,且f(﹣1)=﹣1,则f(1)=1,又∵x∈[﹣1,1]时f(x)是增函数,∴f(x)≤f(1)=1,故有1≤t2﹣2at+l,即2at≤t2,①t=0时,显然成立,②t>0时,2a≤t要恒成立,则t≥2,③t<0时,t≤2a要恒成立,则t≤﹣2,故t≤﹣2或t=0或t≥2,.故选:D.【点评】本题解题的关键是综合利用函数的性质化简f(x)≤t2﹣2at+1,然后转化为恒成立问题求解,分类讨论求解.二、填空题(共4小题,每小题5分,满分20分)13.函数y=|x﹣a|的图象关于直线x=2对称,则a= 2 .【考点】函数的图象.【专题】转化思想;综合法;函数的性质及应用.【分析】结合题意根据函数y=|x﹣a|的图象关于直线x=a对称,可得a的值.【解答】解:由于函数y=|x﹣a|的图象关于直线x=a 对称,再根据它的图象关于直线x=2对称,可得a=2,故答案为:2.【点评】本题主要考查函数的图象的对称性,属于基础题.14.设函数f(x)满足,则f(2)= .【考点】函数的值.【专题】计算题.【分析】通过表达式求出f(),然后求出函数的解析式,即可求解f(2)的值.【解答】解:因为,所以.,∴.∴=.故答案为:.【点评】本题考查函数的解析式的求法,函数值的求法,考查计算能力,灵活赋值的能力及观察判断的能力.15.已知函数f(x)=在区间(﹣2,+∞)上为增函数,则实数a的取值范围是{a|a>} .【考点】函数单调性的性质.【专题】函数的性质及应用.【分析】把函数f(x)解析式进行常数分离,变成一个常数和另一个函数g(x)的和的形式,由函数g(x)在(﹣2,+∞)为增函数得出1﹣2a<0,从而得到实数a的取值范围.【解答】解:∵函数f(x)==a+,结合复合函数的增减性,再根据f(x)在(﹣2,+∞)为增函数,可得g(x)=在(﹣2,+∞)为增函数,∴1﹣2a<0,解得a>,故答案为:{a|a>}.【点评】本题考查利用函数的单调性求参数的范围,属于基础题.16.若∃x1,x2∈R,x1≠x2,使得f(x1)=f(x2)成立,则实数a的取值范围是(﹣∞,2).【考点】特称命题.【专题】函数的性质及应用.【分析】若∃x1,x2∈R,x1≠x2,使得f(x1)=f(x2)成立,则f(x)不是单调函数,结合二次函数和一次函数的图象和性质,分类讨论不同情况下函数的单调性,综合讨论结果可得答案.【解答】解:由题意得,即在定义域内,f(x)不是单调的.分情况讨论:(1)若x≤1时,f(x)=﹣x2+ax不是单调的,即对称轴在x=满足<1,解得:a<2(2)x≤1时,f(x)是单调的,此时a≥2,f(x)为单调递增.最大值为f(1)=a﹣1故当x>1时,f(x)=ax﹣1为单调递增,最小值为f(1)=a﹣1,因此f(x)在R上单调增,不符条件.综合得:a<2故实数a的取值范围是(﹣∞,2)故答案为:(﹣∞,2)【点评】本题考查的知识点是函数的性质及应用,其中根据已知分析出函数f(x)不是单调函数,是解答的关键.三、解答题(共6小题,满分70分)17.(1)若xlog32=1,试求4x+4﹣x的值;(2)计算:(2)﹣(﹣9.6)0﹣(3)+(1.5)﹣2+(×)4.【考点】有理数指数幂的化简求值;根式与分数指数幂的互化及其化简运算.【专题】计算题;转化思想;综合法;函数的性质及应用.【分析】(1)由已知得x=log23,由此利用对数换底公式能求出4x+4﹣x.(2)利用有理数指数幂性质、运算法则求解.【解答】解:(1)∵xlog32=1,∴x=log23,∴4x+4﹣x=+=+=9+=.…(2)(2)﹣(﹣9.6)0﹣(3)+(1.5)﹣2+(×)4=++4×3=.…【点评】本题考查对数式、指数式化简求值,是基础题,解题时要认真审题,注意对数换底公式、有理数指数幂性质、运算法则的合理运用.18.已知集合M={x|x2﹣3x≤10},N={x|a+1≤x≤2a+1}.(1)若a=2,求M∩(∁R N);(2)若M∪N=M,求实数a的取值范围.【考点】并集及其运算;交、并、补集的混合运算.【专题】集合.【分析】(Ⅰ)a=2时,M={x|﹣2≤x≤5},N={3≤x≤5},由此能求出M∩(C R N).(Ⅱ)由M∪N=M,得N⊂M,由此能求出实数a的取值范围.【解答】(本小题满分8分)解:(Ⅰ)a=2时,M={x|﹣2≤x≤5},N={3≤x≤5},C R N={x|x<3或x>5},所以M∩(C R N)={x|﹣2≤x<3}.(Ⅱ)∵M∪N=M,∴N⊂M,①a+1>2a+1,解得a<0;②,解得0≤a≤2.所以a≤2.【点评】本题考查交集、实集的应用,考查实数的取值范围的求法,是基础题.19.已知函数f(x)是定义域在R上的奇函数,当x>0时,f(x)=x2﹣2x.(1)求出函数f(x)在R上的解析式;(2)写出函数的单调区间.【考点】函数解析式的求解及常用方法;函数奇偶性的性质.【专题】数形结合;函数思想;转化法;函数的性质及应用.【分析】(1)根据函数f(x)为定义域为R的奇函数,当x>0时,f(x)=x2﹣2x,我们根据定义域为R 的奇函数的图象必过原点,则f(﹣x)=﹣f(x),即可求出函数f(x)在R上的解析式;(2)根据(1)中分段函数的解析式,我们易画出函数f(x)的图象,利用数形结合进行求解即可.【解答】解:(1)∵函数f(x)是定义域在R上的奇函数,∴当x=0时,f(0)=0;当x<0时,﹣x>0,则f(﹣x)=x2+2x.∵f(x)是奇函数,∴f(﹣x)=﹣f(x)∴f(﹣x)=x2+2x=﹣f(x),即f(x)=﹣x2﹣2x.综上:f(x)=.(2)函数f(x)=的图象如下图所示:则函数的单调递增区间为为[1,+∞),(﹣∞,﹣1],函数的单调递减区间为为[﹣1,1].【点评】本题主要考查函数解析式的求解,以及函数单调区间的判断,其中根据函数奇偶性的性质,求出函数的解析式是解答本题的关键.20.电信局为了配合客户不同需要,设有A,B两种优惠方案.这两种方案应付话费(元)与通话时间x(min)之间的关系如图所示,其中D的坐标为(,230).(1)若通话时间为2小时,按方案A,B各付话费多少元?(2)方案B从500分钟以后,每分钟收费多少元?(3)通话时间在什么范围内,方案B比方案A优惠?【考点】分段函数的应用.【专题】计算题;转化思想;综合法;函数的性质及应用.【分析】(1)设这两种方案的应付话费与通话时间的函数关系为f A(x)和f B(x),由图知M(60,98),N,C,MN∥C,分别求出f A(x)和f B(x),由此能求出通话时间为2小时,按方案A,B各付话费多少元.(2)求出f B(n+1)﹣f B(n),n>500,由此能求出方案B从500分钟以后,每分钟收费多少元.(3)由图知,当0≤x≤60时,f A(x)f B(x).由此能求出通话时间在什么范围内,方案B比方案A优惠.【解答】解:(1)设这两种方案的应付话费与通话时间的函数关系为f A(x)和f B(x),由图知M(60,98),N,C,MN∥C,则,.∴通话2小时,方案A应付话费:元,方案B应付话费:168元.(2)∵﹣()=0.3,n>500,∴方案B从500分钟以后,每分钟收费0.3元.(3)由图知,当0≤x≤60时,f A(x)<f B(x),当60<x≤500时,由f A(x)>f B(x),得,解得x>,∴,当x>500时,f A(x)>f B(x).综上,通话时间在(,+∞)内,方案B比方案A优惠.【点评】本题考查函数知识在生产生活中的实际应用,是中档题,解题时要认真审题,注意分段函数的性质的合理运用.21.已知函数f(x)=(a,b,c∈Z)是奇函数,且f(1)=2,f(2)<3.(1)求a,b,c的值.(2)判断函数f(x)在[1,+∞)上的单调性,并用定义证明你的结论.(3)解关于t的不等式:f(﹣t2﹣1)+f(|t|+3)>0.【考点】函数奇偶性的性质;函数单调性的判断与证明.【专题】综合题;转化思想;数学模型法;函数的性质及应用.【分析】(1)由f(x)为奇函数,可得f(﹣x)+f(x)=0,解得c=0,又f(1)==2,化为2b=a+1.f (2)=<3,即可得出.(2)f(x)=,函数f(x)在[1,+∞)上为增函数.利用证明单调函数的方法即可证明.(3)利用函数的奇偶性与单调性即可解出.【解答】解:(1)∵f(x)为奇函数,∴f(﹣x)+f(x)=+=0,得﹣bx+c=﹣bx﹣c,解得c=0,又f(1)==2,化为2b=a+1.∵f(2)=<3,∴,化为<0,⇔(a+1)(a﹣2)<0,解得﹣1<a<2,∵a∈Z,∴a=0或1.当a=0时,解得b=,与b∈Z矛盾,舍去.当a=1时,b=1,综上:a=b=1,c=0.(2)f(x)=,函数f(x)在[1,+∞)上为增函数.任取x1,x2∈[1,+∞),且x1<x2.则f(x1)﹣f(x2)=﹣=,∵x1,x2∈[1,+∞),且x1<x2.∴x1﹣x2<0,x1x2>1,∴f(x1)﹣f(x2)<0,即f(x1)<f(x2).∴函数f(x)在[1,+∞)上为增函数.(3)∵f(﹣t2﹣1)+f(|t|+3)>0,∴f(|t|+3)>﹣f(﹣t2﹣1)=f(t2+1).∵函数f(x)在[1,+∞)上为增函数,∴t2+1<|t|+3,化为(|t|﹣2)(|t|+1)<0,解得0≤|t|<2,解得﹣2<t<2.【点评】本题考查了函数的奇偶性与单调性、不等式的解法,考查了推理能力与计算能力,属于中档题.22.定义在D上的函数f(x),如果满足对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界,已知函数f(x)=1+x+ax2(1)当a=﹣1时,求函数f(x)在(﹣∞,0)上的值域,判断函数f(x)在(﹣∞,0)上是否为有界函数,并说明理由;(2)若函数f(x)在x∈[1,4]上是以3为上界的有界函数,求实数a的取值范围.【考点】函数的最值及其几何意义;函数单调性的性质.【专题】计算题;综合题.【分析】(1)当a=﹣1时,函数表达式为f(x)=1+x﹣x2,可得f(x)在(﹣∞,0)上是单调增函数,它的值域为(﹣∞,1),从而|f(x)|的取值范围是[0,+∞),因此不存在常数M>0,使|f(x)|≤M成立,故f(x)不是(﹣∞,0)上的有界函数.(2)函数f(x)在x∈[1,4]上是以3为上界的有界函数,即﹣3≤f(x)≤3在[1,4]上恒成立,代入函数表达式并化简整理,得﹣﹣≤a≤﹣在[1,4]上恒成立,接下来利用换元法结合二次函数在闭区间上最值的求法,得到(﹣﹣)max=﹣,(﹣)min=﹣,所以,实数a的取值范围是[﹣,﹣].【解答】解:(1)当a=﹣1时,函数f(x)=1+x﹣x2=﹣(x﹣)2+∴f(x)在(﹣∞,0)上是单调增函数,f(x)<f(0)=1∴f(x)在(﹣∞,0)上的值域为(﹣∞,1)因此|f(x)|的取值范围是[0,+∞)∴不存在常数M>0,使|f(x)|≤M成立,故f(x)不是(﹣∞,0)上的有界函数.(2)若函数f(x)在x∈[1,4]上是以3为上界的有界函数,则|f(x)|≤3在[1,4]上恒成立,即﹣3≤f(x)≤3∴﹣3≤ax2+x+1≤3∴≤a≤,即﹣﹣≤a≤﹣在[1,4]上恒成立,∴(﹣﹣)max≤a≤(﹣)min,令t=,则t∈[,1]设g(t)=﹣4t2﹣t=﹣4(t+)2+,则当t=时,g(t)的最大值为﹣再设h(t)=2t2﹣t=2(t﹣)2﹣,则当t=时,h(t)的最小值为﹣∴(﹣﹣)max=﹣,(﹣)min=﹣所以,实数a的取值范围是[﹣,﹣].【点评】本题以一个特定的二次函数在闭区间上有界的问题为例,考查了函数单调性的性质和二次函数在闭区间上值域等知识点,属于中档题.请同学们注意解题过程中变量分离和换元法求值域的思想,并学会运用.2020学年2月21日。
黄冈市蕲春县2019-2020学年高一上期中模拟数学试卷(有配套答案)
2019-2020学年湖北省黄冈市蕲春县高一(上)期中数学试卷一、选择题(共12小题,每小题5分,满分60分)1.已知集合M={1,2,3,4},N={﹣2,2},下列结论成立的是()A.N⊆M B.M∪N=M C.M∩N=N D.M∩N={2}2.已知集合U=R,P={x|x2﹣4x﹣5≤0},Q={x|x≥1},则P∩(∁U Q)()A.{x|﹣1≤x<5} B.{x|1<x<5} C.{x|1≤x<5} D.{x|﹣1≤x<1}3.下列函数中表示同一函数的是()A.y=与y=()4B.y=与y=C.y=与y=•D.y=与y=4.已知f(x)=,则f(3)为()A.3 B.4 C.1 D.25.函数f(x)=2x+x﹣2的零点所在的一个区间是()A.(﹣2,﹣1)B.(﹣1,0)C.(0,1)D.(1,2)6.函数g(x)=2015x+m图象不过第二象限,则m的取值范围是()A.m≤﹣1 B.m<﹣1 C.m≤﹣2015 D.m<﹣20157.设a=log0.50.9,b=log1.10.9,c=1.10.9,则a,b,c的大小关系为()A.a<b<c B.b<a<c C.b<c<a D.a<c<b8.()A.(﹣∞,2] B.(0,+∞)C.[2,+∞)D.[0,2]9.一高为H,满缸水量为V的鱼缸截面如图所示,其底部破了一个小洞,缸中水从洞中流出,若鱼缸水深为h时水的体积为v,则函数v=f(h)的大致图象可能是图中四个选项中的()A.B.C.D.10.定义在R上的偶函数f(x)满足:对任意的x1,x2∈(﹣∞,0](x1≠x2),有,且f(2)=0,则不等式<0的解集是()A.(﹣∞,﹣2)∪(2,+∞) B.(﹣∞,﹣2)∪(1,2)C.(﹣2,1)∪(2,+∞)D.(﹣2,1)∪(1,2)11.已知实数a≠0,函数,若f(1﹣a)=f(1+a),则a的值为()A. B.C. D.12.设奇函数f(x)在[﹣1,1]上是增函数,且f(﹣1)=﹣1,若对所有的x∈[﹣1,1]及任意的a∈[﹣1,1]都满足f(x)≤t2﹣2at+1,则t的取值范围是()A.[﹣2,2] B.{t|t≤﹣或t或=0}C.[﹣,] D.{t|t≤﹣2或t≥2或t=0}二、填空题(共4小题,每小题5分,满分20分)13.函数y=|x﹣a|的图象关于直线x=2对称,则a= .14.设函数f(x)满足,则f(2)= .15.已知函数f(x)=在区间(﹣2,+∞)上为增函数,则实数a的取值范围是.16.若∃x1,x2∈R,x1≠x2,使得f(x1)=f(x2)成立,则实数a的取值范围是.三、解答题(共6小题,满分70分)17.(1)若xlog32=1,试求4x+4﹣x的值;(2)计算:(2)﹣(﹣9.6)0﹣(3)+(1.5)﹣2+(×)4.18.已知集合M={x|x2﹣3x≤10},N={x|a+1≤x≤2a+1}.(1)若a=2,求M∩(∁R N);(2)若M∪N=M,求实数a的取值范围.19.已知函数f(x)是定义域在R上的奇函数,当x>0时,f(x)=x2﹣2x.(1)求出函数f(x)在R上的解析式;(2)写出函数的单调区间.20.电信局为了配合客户不同需要,设有A,B两种优惠方案.这两种方案应付话费(元)与通话时间x(min)之间的关系如图所示,其中D的坐标为(,230).(1)若通话时间为2小时,按方案A,B各付话费多少元?(2)方案B从500分钟以后,每分钟收费多少元?(3)通话时间在什么范围内,方案B比方案A优惠?21.已知函数f(x)=(a,b,c∈Z)是奇函数,且f(1)=2,f(2)<3.(1)求a,b,c的值.(2)判断函数f(x)在[1,+∞)上的单调性,并用定义证明你的结论.(3)解关于t的不等式:f(﹣t2﹣1)+f(|t|+3)>0.22.定义在D上的函数f(x),如果满足对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界,已知函数f(x)=1+x+ax2(1)当a=﹣1时,求函数f(x)在(﹣∞,0)上的值域,判断函数f(x)在(﹣∞,0)上是否为有界函数,并说明理由;(2)若函数f(x)在x∈[1,4]上是以3为上界的有界函数,求实数a的取值范围.湖北省黄冈市蕲春县高一(上)期中数学试卷参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.已知集合M={1,2,3,4},N={﹣2,2},下列结论成立的是()A.N⊆M B.M∪N=M C.M∩N=N D.M∩N={2}【考点】集合的包含关系判断及应用.【专题】集合.【分析】由M={1,2,3,4},N={﹣2,2},则可知,﹣2∈N,但是﹣2∉M,则N⊄M,M∪N={1,2,3,4,﹣2}≠M,M∩N={2}≠N,从而可判断.【解答】解:A、由M={1,2,3,4},N={﹣2,2},可知﹣2∈N,但是﹣2∉M,则N⊄M,故A错误;B、M∪N={1,2,3,4,﹣2}≠M,故B错误;C、M∩N={2}≠N,故C错误;D、M∩N={2},故D正确.故选D.【点评】本题主要考查了集合的包含关系的判断,解题的关键是熟练掌握集合的基本运算.2.已知集合U=R,P={x|x2﹣4x﹣5≤0},Q={x|x≥1},则P∩(∁U Q)()A.{x|﹣1≤x<5} B.{x|1<x<5} C.{x|1≤x<5} D.{x|﹣1≤x<1}【考点】交、并、补集的混合运算.【专题】计算题;对应思想;定义法;集合.【分析】先化简集合P,求出∁U Q,再计算P∩(∁U Q)的值.【解答】解:∵集合U=R,P={x|x2﹣4x﹣5≤0}={x|﹣1≤x≤5},Q={x|x≥1},∴∁U Q={x|x<1}∴P∩(∁U Q)={x|﹣1≤x<1}.故选:D.【点评】本题考查了集合的化简与运算问题,是基础题目.3.下列函数中表示同一函数的是()A.y=与y=()4B.y=与y=C.y=与y=•D.y=与y=【考点】判断两个函数是否为同一函数.【专题】函数思想;分析法;函数的性质及应用.【分析】根据两个函数的定义域相同,对应关系也相同,即可判断它们是同一函数.【解答】解:对于A,函数y==x2(x∈R),与函数y==x2(x≥0)的定义域不同,所以不是同一函数;对于B,函数y==x(x∈R),与函数y==x(x≠0)的定义域不同,所以不是同一函数;对于C,函数y==(x≤﹣1或x≥0),与函数y=•=(x≥0)的定义域不同,所以不是同一函数;对于D,函数y=(x≠0),与函数y==(x≠0)的定义域相同,对应关系也相同,所以是同一函数.故选:D.【点评】本题考查了判断两个函数是否为同一函数的应用问题,是基础题目.4.已知f(x)=,则f(3)为()A.3 B.4 C.1 D.2【考点】分段函数的应用.【专题】计算题;函数的性质及应用.【分析】由分段函数的解析式,先运用第二段,再由第一段,即可得到所求值.【解答】解:f(x)=,可得f(3)=f(4)=f(5)=f(6)=6﹣5=1.故选:C.【点评】本题考查分段函数的运用:求函数值,考查运算能力,属于基础题.5.函数f(x)=2x+x﹣2的零点所在的一个区间是()A.(﹣2,﹣1)B.(﹣1,0)C.(0,1)D.(1,2)【考点】函数零点的判定定理.【专题】计算题.【分析】利用函数的零点判定定理,先判断函数的单调性,然后判断端点值的符合关系.【解答】解:∵f(x)=2x+x﹣2在R上单调递增又∵f(0)=﹣1<0,f(1)=1>0由函数的零点判定定理可知,函数的零点所在的一个区间是(0,1)故选C【点评】本题主要考查函数零点区间的判断,判断的主要方法是利用根的存在性定理,判断函数在给定区间端点处的符号是否相反.6.函数g(x)=2015x+m图象不过第二象限,则m的取值范围是()A.m≤﹣1 B.m<﹣1 C.m≤﹣2015 D.m<﹣2015【考点】指数函数的图像变换.【专题】数形结合;转化法;函数的性质及应用.【分析】根据指数函数的图象和性质进行求解即可.【解答】解:函数g(x)=2015x+m为增函数,若g(x)=2015x+m图象不过第二象限,则满足g(0)≤0,即g(0)=1+m≤0,则m≤﹣1,故选:A.【点评】本题主要考查指数函数的图象和性质,根据条件建立不等式关系是解决本题的关键.比较基础.7.设a=log0.50.9,b=log1.10.9,c=1.10.9,则a,b,c的大小关系为()A.a<b<c B.b<a<c C.b<c<a D.a<c<b【考点】对数值大小的比较.【专题】函数的性质及应用.【分析】利用对数函数和指数函数的性质求解.【解答】解:∵0=log0.51<a=log0.50.9<log0.50.5=1,b=log1.10.9<log1.11=0,c=1.10.9>1.10=1,∴b<a<c,故选:B.【点评】本题考查对数值大小的比较,是基础题,解题时要注意对数函数和指数函数的性质的合理运用.8.()A.(﹣∞,2] B.(0,+∞)C.[2,+∞)D.[0,2]【考点】函数的值域.【专题】函数的性质及应用.【分析】根据函数≥0,而且﹣x2﹣2x+3=﹣(x+1)2+4≤4,从而求得函数的值域.【解答】解:∵函数≥0,而且﹣x2﹣2x+3=﹣( x2+2x﹣3)=﹣(x+1)2+4≤4,∴≤2,∴0≤f(x)≤2,故选D.【点评】本题主要考查求函数的值域,属于基础题.9.一高为H,满缸水量为V的鱼缸截面如图所示,其底部破了一个小洞,缸中水从洞中流出,若鱼缸水深为h时水的体积为v,则函数v=f(h)的大致图象可能是图中四个选项中的()A.B.C.D.【考点】函数的图象.【专题】函数的性质及应用.【分析】水深h越大,水的体积v就越大,故函数v=f(h)是个增函数,一开始增长越来越快,后来增长越来越慢,图象是先凹后凸的.【解答】解:由图得水深h越大,水的体积v就越大,故函数v=f(h)是个增函数.据四个选项提供的信息,当h∈[O,H],我们可将水“流出”设想成“流入”,这样每当h增加一个单位增量△h时,根据鱼缸形状可知,函数V的变化,开始其增量越来越大,但经过中截面后则增量越来越小,故V关于h的函数图象是先凹后凸的,曲线上的点的切线斜率先是逐渐变大,后又逐渐变小,故选:B.【点评】本题考查了函数图象的变化特征,函数的单调性的实际应用,体现了数形结合的数学思想和逆向思维,属于中档题.10.定义在R上的偶函数f(x)满足:对任意的x1,x2∈(﹣∞,0](x1≠x2),有,且f(2)=0,则不等式<0的解集是()A.(﹣∞,﹣2)∪(2,+∞) B.(﹣∞,﹣2)∪(1,2)C.(﹣2,1)∪(2,+∞)D.(﹣2,1)∪(1,2)【考点】奇偶性与单调性的综合.【专题】数形结合;转化法;函数的性质及应用.【分析】根据条件判断函数的单调性,根据函数奇偶性和单调性之间的关系,作出函数f(x)的图象,利用数形结合将不等式进行转化即可解不等式即可.【解答】解:∵任意的x1,x2∈(﹣∞,0](x1≠x2),有,∴此时函数f(x)在(﹣∞,0]上为减函数,∵f(x)是偶函数,∴函数在[0,+∞)上为增函数,∵f(2)=0,∴f(﹣2)=﹣f(2)=0,作出函数f(x)的图象如图:则不等式<0等价为<0,即<0,即或,即或,即x<﹣2或1<x<2,故不等式的解集为(﹣∞,﹣2)∪(1,2).故选:B.【点评】本题主要考查不等式的解集,利用函数奇偶性和单调性之间的关系是解决本题的关键.11.已知实数a≠0,函数,若f(1﹣a)=f(1+a),则a的值为()A. B.C. D.【考点】分段函数的解析式求法及其图象的作法.【专题】计算题;分类讨论.【分析】由a≠0,f(1﹣a)=f(1+a),要求f(1﹣a),与f(1+a),需要判断1﹣a与1+a与1的大小,从而需要讨论a与0的大小,代入可求【解答】解:∵a≠0,f(1﹣a)=f(1+a)当a>0时,1﹣a<1<1+a,则f(1﹣a)=2(1﹣a)+a=2﹣a,f(1+a)=﹣(1+a)﹣2a=﹣1﹣3a∴2﹣a=﹣1﹣3a,即a=﹣(舍)当a<0时,1+a<1<1﹣a,则f(1﹣a)=﹣(1﹣a)﹣2a=﹣1﹣a,f(1+a)=2(1+a)+a=2+3a∴﹣1﹣a=2+3a即综上可得a=﹣故选A【点评】本题主要考查了分段函数的函数值的求解,解题的关键是把1﹣a与1+a与1的比较,从而确定f (1﹣a)与f(1+a),体现了分类讨论思想的应用.12.设奇函数f(x)在[﹣1,1]上是增函数,且f(﹣1)=﹣1,若对所有的x∈[﹣1,1]及任意的a∈[﹣1,1]都满足f(x)≤t2﹣2at+1,则t的取值范围是()A.[﹣2,2] B.{t|t≤﹣或t或=0}C.[﹣,] D.{t|t≤﹣2或t≥2或t=0}【考点】函数恒成立问题.【专题】函数的性质及应用.【分析】先由函数为奇函数求出f(1)=﹣f(﹣1)=1,然后由x∈[﹣1,1]时f(x)是增函数,f(x)≤f (1)=1得f(x)≤t2﹣2at+1即为1≤t2﹣2at+l,即2at≤t2恒成立,分类讨论求解即可.【解答】解:奇函数f(x)在[﹣1,1]上是增函数,且f(﹣1)=﹣1,则f(1)=1,又∵x∈[﹣1,1]时f(x)是增函数,∴f(x)≤f(1)=1,故有1≤t2﹣2at+l,即2at≤t2,①t=0时,显然成立,②t>0时,2a≤t要恒成立,则t≥2,③t<0时,t≤2a要恒成立,则t≤﹣2,故t≤﹣2或t=0或t≥2,.故选:D.【点评】本题解题的关键是综合利用函数的性质化简f(x)≤t2﹣2at+1,然后转化为恒成立问题求解,分类讨论求解.二、填空题(共4小题,每小题5分,满分20分)13.函数y=|x﹣a|的图象关于直线x=2对称,则a= 2 .【考点】函数的图象.【专题】转化思想;综合法;函数的性质及应用.【分析】结合题意根据函数y=|x﹣a|的图象关于直线x=a对称,可得a的值.【解答】解:由于函数y=|x﹣a|的图象关于直线x=a 对称,再根据它的图象关于直线x=2对称,可得a=2,故答案为:2.【点评】本题主要考查函数的图象的对称性,属于基础题.14.设函数f(x)满足,则f(2)= .【考点】函数的值.【专题】计算题.【分析】通过表达式求出f(),然后求出函数的解析式,即可求解f(2)的值.【解答】解:因为,所以.,∴.∴=.故答案为:.【点评】本题考查函数的解析式的求法,函数值的求法,考查计算能力,灵活赋值的能力及观察判断的能力.15.已知函数f(x)=在区间(﹣2,+∞)上为增函数,则实数a的取值范围是{a|a>} .【考点】函数单调性的性质.【专题】函数的性质及应用.【分析】把函数f(x)解析式进行常数分离,变成一个常数和另一个函数g(x)的和的形式,由函数g(x)在(﹣2,+∞)为增函数得出1﹣2a<0,从而得到实数a的取值范围.【解答】解:∵函数f(x)==a+,结合复合函数的增减性,再根据f(x)在(﹣2,+∞)为增函数,可得g(x)=在(﹣2,+∞)为增函数,∴1﹣2a<0,解得a>,故答案为:{a|a>}.【点评】本题考查利用函数的单调性求参数的范围,属于基础题.16.若∃x1,x2∈R,x1≠x2,使得f(x1)=f(x2)成立,则实数a的取值范围是(﹣∞,2).【考点】特称命题.【专题】函数的性质及应用.【分析】若∃x1,x2∈R,x1≠x2,使得f(x1)=f(x2)成立,则f(x)不是单调函数,结合二次函数和一次函数的图象和性质,分类讨论不同情况下函数的单调性,综合讨论结果可得答案.【解答】解:由题意得,即在定义域内,f(x)不是单调的.分情况讨论:(1)若x≤1时,f(x)=﹣x2+ax不是单调的,即对称轴在x=满足<1,解得:a<2(2)x≤1时,f(x)是单调的,此时a≥2,f(x)为单调递增.最大值为f(1)=a﹣1故当x>1时,f(x)=ax﹣1为单调递增,最小值为f(1)=a﹣1,因此f(x)在R上单调增,不符条件.综合得:a<2故实数a的取值范围是(﹣∞,2)故答案为:(﹣∞,2)【点评】本题考查的知识点是函数的性质及应用,其中根据已知分析出函数f(x)不是单调函数,是解答的关键.三、解答题(共6小题,满分70分)17.(1)若xlog32=1,试求4x+4﹣x的值;(2)计算:(2)﹣(﹣9.6)0﹣(3)+(1.5)﹣2+(×)4.【考点】有理数指数幂的化简求值;根式与分数指数幂的互化及其化简运算.【专题】计算题;转化思想;综合法;函数的性质及应用.【分析】(1)由已知得x=log23,由此利用对数换底公式能求出4x+4﹣x.(2)利用有理数指数幂性质、运算法则求解.【解答】解:(1)∵xlog32=1,∴x=log23,∴4x+4﹣x=+=+=9+=.…(2)(2)﹣(﹣9.6)0﹣(3)+(1.5)﹣2+(×)4=++4×3=.…【点评】本题考查对数式、指数式化简求值,是基础题,解题时要认真审题,注意对数换底公式、有理数指数幂性质、运算法则的合理运用.18.已知集合M={x|x2﹣3x≤10},N={x|a+1≤x≤2a+1}.(1)若a=2,求M∩(∁R N);(2)若M∪N=M,求实数a的取值范围.【考点】并集及其运算;交、并、补集的混合运算.【专题】集合.【分析】(Ⅰ)a=2时,M={x|﹣2≤x≤5},N={3≤x≤5},由此能求出M∩(C R N).(Ⅱ)由M∪N=M,得N⊂M,由此能求出实数a的取值范围.【解答】(本小题满分8分)解:(Ⅰ)a=2时,M={x|﹣2≤x≤5},N={3≤x≤5},C R N={x|x<3或x>5},所以M∩(C R N)={x|﹣2≤x<3}.(Ⅱ)∵M∪N=M,∴N⊂M,①a+1>2a+1,解得a<0;②,解得0≤a≤2.所以a≤2.【点评】本题考查交集、实集的应用,考查实数的取值范围的求法,是基础题.19.已知函数f(x)是定义域在R上的奇函数,当x>0时,f(x)=x2﹣2x.(1)求出函数f(x)在R上的解析式;(2)写出函数的单调区间.【考点】函数解析式的求解及常用方法;函数奇偶性的性质.【专题】数形结合;函数思想;转化法;函数的性质及应用.【分析】(1)根据函数f(x)为定义域为R的奇函数,当x>0时,f(x)=x2﹣2x,我们根据定义域为R 的奇函数的图象必过原点,则f(﹣x)=﹣f(x),即可求出函数f(x)在R上的解析式;(2)根据(1)中分段函数的解析式,我们易画出函数f(x)的图象,利用数形结合进行求解即可.【解答】解:(1)∵函数f(x)是定义域在R上的奇函数,∴当x=0时,f(0)=0;当x<0时,﹣x>0,则f(﹣x)=x2+2x.∵f(x)是奇函数,∴f(﹣x)=﹣f(x)∴f(﹣x)=x2+2x=﹣f(x),即f(x)=﹣x2﹣2x.综上:f(x)=.(2)函数f(x)=的图象如下图所示:则函数的单调递增区间为为[1,+∞),(﹣∞,﹣1],函数的单调递减区间为为[﹣1,1].【点评】本题主要考查函数解析式的求解,以及函数单调区间的判断,其中根据函数奇偶性的性质,求出函数的解析式是解答本题的关键.20.电信局为了配合客户不同需要,设有A,B两种优惠方案.这两种方案应付话费(元)与通话时间x(min)之间的关系如图所示,其中D的坐标为(,230).(1)若通话时间为2小时,按方案A,B各付话费多少元?(2)方案B从500分钟以后,每分钟收费多少元?(3)通话时间在什么范围内,方案B比方案A优惠?【考点】分段函数的应用.【专题】计算题;转化思想;综合法;函数的性质及应用.【分析】(1)设这两种方案的应付话费与通话时间的函数关系为f A(x)和f B(x),由图知M(60,98),N,C,MN∥C,分别求出f A(x)和f B(x),由此能求出通话时间为2小时,按方案A,B各付话费多少元.(2)求出f B(n+1)﹣f B(n),n>500,由此能求出方案B从500分钟以后,每分钟收费多少元.(3)由图知,当0≤x≤60时,f A(x)f B(x).由此能求出通话时间在什么范围内,方案B比方案A优惠.【解答】解:(1)设这两种方案的应付话费与通话时间的函数关系为f A(x)和f B(x),由图知M(60,98),N,C,MN∥C,则,.∴通话2小时,方案A应付话费:元,方案B应付话费:168元.(2)∵﹣()=0.3,n>500,∴方案B从500分钟以后,每分钟收费0.3元.(3)由图知,当0≤x≤60时,f A(x)<f B(x),当60<x≤500时,由f A(x)>f B(x),得,解得x>,∴,当x>500时,f A(x)>f B(x).综上,通话时间在(,+∞)内,方案B比方案A优惠.【点评】本题考查函数知识在生产生活中的实际应用,是中档题,解题时要认真审题,注意分段函数的性质的合理运用.21.已知函数f(x)=(a,b,c∈Z)是奇函数,且f(1)=2,f(2)<3.(1)求a,b,c的值.(2)判断函数f(x)在[1,+∞)上的单调性,并用定义证明你的结论.(3)解关于t的不等式:f(﹣t2﹣1)+f(|t|+3)>0.【考点】函数奇偶性的性质;函数单调性的判断与证明.【专题】综合题;转化思想;数学模型法;函数的性质及应用.【分析】(1)由f(x)为奇函数,可得f(﹣x)+f(x)=0,解得c=0,又f(1)==2,化为2b=a+1.f (2)=<3,即可得出.(2)f(x)=,函数f(x)在[1,+∞)上为增函数.利用证明单调函数的方法即可证明.(3)利用函数的奇偶性与单调性即可解出.【解答】解:(1)∵f(x)为奇函数,∴f(﹣x)+f(x)=+=0,得﹣bx+c=﹣bx﹣c,解得c=0,又f(1)==2,化为2b=a+1.∵f(2)=<3,∴,化为<0,⇔(a+1)(a﹣2)<0,解得﹣1<a<2,∵a∈Z,∴a=0或1.当a=0时,解得b=,与b∈Z矛盾,舍去.当a=1时,b=1,综上:a=b=1,c=0.(2)f(x)=,函数f(x)在[1,+∞)上为增函数.任取x1,x2∈[1,+∞),且x1<x2.则f(x1)﹣f(x2)=﹣=,∵x1,x2∈[1,+∞),且x1<x2.∴x1﹣x2<0,x1x2>1,∴f(x1)﹣f(x2)<0,即f(x1)<f(x2).∴函数f(x)在[1,+∞)上为增函数.(3)∵f(﹣t2﹣1)+f(|t|+3)>0,∴f(|t|+3)>﹣f(﹣t2﹣1)=f(t2+1).∵函数f(x)在[1,+∞)上为增函数,∴t2+1<|t|+3,化为(|t|﹣2)(|t|+1)<0,解得0≤|t|<2,解得﹣2<t<2.【点评】本题考查了函数的奇偶性与单调性、不等式的解法,考查了推理能力与计算能力,属于中档题.22.定义在D上的函数f(x),如果满足对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界,已知函数f(x)=1+x+ax2(1)当a=﹣1时,求函数f(x)在(﹣∞,0)上的值域,判断函数f(x)在(﹣∞,0)上是否为有界函数,并说明理由;(2)若函数f(x)在x∈[1,4]上是以3为上界的有界函数,求实数a的取值范围.【考点】函数的最值及其几何意义;函数单调性的性质.【专题】计算题;综合题.【分析】(1)当a=﹣1时,函数表达式为f(x)=1+x﹣x2,可得f(x)在(﹣∞,0)上是单调增函数,它的值域为(﹣∞,1),从而|f(x)|的取值范围是[0,+∞),因此不存在常数M>0,使|f(x)|≤M成立,故f(x)不是(﹣∞,0)上的有界函数.(2)函数f(x)在x∈[1,4]上是以3为上界的有界函数,即﹣3≤f(x)≤3在[1,4]上恒成立,代入函数表达式并化简整理,得﹣﹣≤a≤﹣在[1,4]上恒成立,接下来利用换元法结合二次函数在闭区间上最值的求法,得到(﹣﹣)max=﹣,(﹣)min=﹣,所以,实数a的取值范围是[﹣,﹣].【解答】解:(1)当a=﹣1时,函数f(x)=1+x﹣x2=﹣(x﹣)2+∴f(x)在(﹣∞,0)上是单调增函数,f(x)<f(0)=1∴f(x)在(﹣∞,0)上的值域为(﹣∞,1)因此|f(x)|的取值范围是[0,+∞)∴不存在常数M>0,使|f(x)|≤M成立,故f(x)不是(﹣∞,0)上的有界函数.(2)若函数f(x)在x∈[1,4]上是以3为上界的有界函数,则|f(x)|≤3在[1,4]上恒成立,即﹣3≤f(x)≤3∴﹣3≤ax2+x+1≤3∴≤a≤,即﹣﹣≤a≤﹣在[1,4]上恒成立,∴(﹣﹣)max≤a≤(﹣)min,令t=,则t∈[,1]设g(t)=﹣4t2﹣t=﹣4(t+)2+,则当t=时,g(t)的最大值为﹣再设h(t)=2t2﹣t=2(t﹣)2﹣,则当t=时,h(t)的最小值为﹣∴(﹣﹣)max=﹣,(﹣)min=﹣所以,实数a的取值范围是[﹣,﹣].【点评】本题以一个特定的二次函数在闭区间上有界的问题为例,考查了函数单调性的性质和二次函数在闭区间上值域等知识点,属于中档题.请同学们注意解题过程中变量分离和换元法求值域的思想,并学会运用.。
2019-2020学年上学期高一级期中考试数学试题答案
2019-2020学年上学期高一级期中考试数学试题答案一、选择题 1 2 3 4 5 6 7 8 9 10 11 12C CD B C A D D B A BD BCD三、填空题13.1314. 4 15.2[0,)3 16. y =2500×0.8x 7.2 12.【解析】A .由2x ﹣1=1得x =1,此时f (1)=log a 1﹣1=0﹣1=﹣1,即函数f (x )过定点(1,﹣1),故A 错误;B .若x >0,则﹣x <0,则f (﹣x )=﹣x (﹣x +1)=x (x ﹣1)=x 2﹣x ,∵f (x )是偶函数,∴f (﹣x )=x 2﹣x =f (x ),即f (x )=x 2﹣x ,即f (x )的解析式为f (x )=x 2﹣|x |,故B 正确;C .若,则log a >log a a ,若a >1,则>a ,此时a 不成立,若0<a <1,则<a ,此时<a <1,即a 的取值范围是,故C 正确; D .若2﹣x ﹣2y >ln x ﹣ln (﹣y ),则2﹣x ﹣ln x >2y ﹣ln (﹣y ),令f (x )=2﹣x ﹣ln x (x >0),则函数f (x )在(0,+∞)单调递减,则不等式2﹣x ﹣ln x >2y ﹣ln (﹣y )等价为f (x )>f (﹣y )(y <0),则x <﹣y ,即x +y <0,故D 正确.17. 【解答】解:(1)由260x x -,得0x 或6x ,{|0P x x ∴=或6}x ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(2分){|06}U P x x ∴=<<.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(4分) (2){|06}U P x x =<<.{|24}M x a x a =<<+,U M P M =U M P ∴⊆,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(5分)∴当M =∅时,24a a +,解得4a -符合题意.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(7分) 当M ≠∅时,4a >-,且0246a a <+,解得01a ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(9分) 综上:a 的取值范围为(-∞,4][0-,1].⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(10分)18. 【解答】解:(1)由()f x 的图象经过点(4,2),可得log 42a =,即24a =,解得2a =,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1分)则24,0(),0x x f x log x x +⎧=⎨>⎩, 函数()f x 的图象如右图:⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(3分)(2)()1f x <即为041x x ⎧⎨+<⎩或201x log x >⎧⎨<⎩, 即3x <-或02x <<,则解集为(-∞,3)(0-⋃,2);⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(7分)(3)()20f x m -=有两个不相等的实数根,即有()y f x =的图象和直线2y m =有两个交点,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(8分) 由图象可得24m ,即2m ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(10分)可得m 的取值范围是(-∞,2].⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(12分)19. 解:(1).对任意12,)x x ∈+∞,且12x x <⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1分) 则:12121211()()2211f x f x x x x x -=-+--+ ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(2分) 2112122()x x x x x x -=-+ 12121221()x x x x x x -=-⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(3分) 12121,20x x x x -><⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(4分) 12121221()0x x x x x x -∴-<⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(5分) ()f x ∴在()2+∞为单调递增函数 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(6分) (2) 方法一:即1[,)2x ∈+∞上有()t f x x≥恒成立,所以 221t x x ≤-+⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(7分)2172()48t x ≤-+,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(9分) 令2172(),48y x =-+时,1[2∞在,+)上单调递增, 12=x 当,1min y = 所以 (,1]t ∴∈-∞⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(12分)20.解:(1)由甲的数据表结合模型P ax b =+代入两点可得(20,33)(40,36)代入有20334036a b a b +=⎧⎨+=⎩得3,3020a b == 即330,020P x x =+≥⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(3分)由乙的数据图结合模型Q b ax α=+代入三个点可得(0,40),(36,58),(100,70)可得 04013658,3,40,210070b b a a b b a ααα+=⎧⎪+====⎨⎪+=⎩即0x ≥⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(6分)(2)根据题意,对乙种产品投资m (万元),对甲种产品投资(300)m -(万元),那么总利润33(300)30401152020y m m =-+++-+,⋯⋯⋯⋯(8分) 由7530075m m ⎧⎨-⎩,解得75225m ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(9分)所以311520y m =-+,令t =[75m ∈,225],故t ∈15], 则22333115(10)1302020y t t t =-++=--+, 所以当10t =时,即100x =时,130max y =,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(11分) 答:当甲产品投入200万元,乙产品投入100万元时,总利润最大为130万元⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(12分)21解:(1)当10x -<<时,01x <-<,41()=42124x x x f x ---=++⋅, ……………………………….1分因为()f x 是()1,1-上的奇函数,所以1()()=124xf x f x -=--+⋅, ...............................2分 当=0x 时,(0)=0f , ...............................3分 所以,()f x 在()1,1-上的解析式为1,10124()=0,04,0142x x x x f x x x ⎧--<<⎪+⋅⎪=⎨⎪⎪<<⎩+; .....................4分(2)当10x -<<时,131214(,1),124(,3),(,)4212433x x x -∈+⋅∈∈--+⋅,......5分 当01x <<时,21244222124(1,4),(,),1(,)423342424233x x x x x x x +-∈∈==-∈++++,..........7分 所以,()f x 在()1,1-上的值域为{}2112(,)0(,)3333--; ................................8分 (3)当01x <<时,4()=42xx f x +,114444()+(1)=1424242424x x x x x x x f x f x ---+=+=++++⋅,10分 所以120173201552013+=+=+==201820182018201820182018f f f f f f ()()()()()()1.........11分 故135********++++=20182018201820182f f f f ()()()(). ................................12分 22.【解答】解:(Ⅰ)令x =1,y =0得g (1)﹣g (0)=﹣1, ∵g (1)=0,∴g (0)=1,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(2分) 令y =0得g (x )﹣g (0)=x (x ﹣2),即g (x )=x 2﹣2x +1.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(5分)(2)当x =0时,2x ﹣1=0则x =0不是方程的根, 方程f (|2x ﹣1|)3k =0可化为:|2x ﹣1|2﹣(2+3k )|2x ﹣1|+(1+2k )=0,|2x ﹣1|≠0,⋯⋯⋯⋯⋯⋯⋯⋯⋯(7分) 令|2x ﹣1|=t ,则方程化为t 2﹣(2+3k )t +(1+2k )=0,(t >0),⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(8分) ∵方程f (|2x ﹣1|)3k ﹣1=0有三个不同的实数解,∴由t =|2x ﹣1|的图象知,t 2﹣(2+3k )t +(1+2k )=0,(t >0),有两个根t 1、t 2, 且0<t 1<1<t 2或0<t 1<1,t 2=1.⋯⋯⋯⋯⋯⋯⋯⋯⋯(9分) 记h (t )=t 2﹣(2+3k )t +(1+2k ),则,此时k>0,⋯⋯⋯⋯⋯⋯⋯⋯⋯(10分)或,此时k无解,⋯⋯⋯⋯⋯⋯⋯⋯⋯(11分)综上实数k的取值范围是(0,+∞).⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(12分)。
湖北省黄冈市2019-2020年度高一上学期数学期中考试试卷A卷
湖北省黄冈市2019-2020年度高一上学期数学期中考试试卷A卷姓名:________ 班级:________ 成绩:________一、填空题 (共12题;共13分)1. (2分) (2019高一上·嘉兴期中) 已知全集,,,则________, ________.2. (1分) (2018高一上·临河期中) 若,则集合A的子集的个数是________.3. (1分)关于的不等式ax﹣b>0的解集是(1,+∞),则关于x的不等式的解集用区间表示为________.4. (1分)设命题p:,命题q:x2﹣(2a+1)x+a(a+1)≤0,若p是q的充分不必要条件,则实数a的取值范围是________5. (1分) (2018高二上·河北月考) 命题“ ”是假命题,则m 的取值范围为________。
6. (1分) (2017高一下·衡水期末) 实数x,y满足x2+y2+xy=1,则x+y的最小值为________.7. (1分) (2017高二下·邢台期末) 已知全集,集合,则图中阴影部分所表示的集合为________.8. (1分)若△ABC的三个内角A,B,C所对的边a,b,c满足a+c=2b,则称该三角形为“中庸”三角形.已知△ABC为“中庸”三角形,给出下列结论:① ∈(,2);② + ≥ ;③B≥ ;④若 = • + • + • ,则sinB= .其中正确结论的序号是________.(写出所有正确结论的序号)9. (1分) (2015高二下·九江期中) 函数f(x)的定义域为R,f(﹣1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为________.10. (1分)设函数f(x)= ,则不等式f(x)≤2的解集为________.11. (1分) (2016高一上·虹口期中) 若集合M={x|y=2x+1},N={(x,y)|y=﹣x2},则M∩N=________.12. (1分)(2017高一上·建平期中) 用M[A]表示非空集合A中的元素个数,记|A﹣B|=,若A={1,2,3},B={x||x2﹣2x﹣3|=a},且|A﹣B|=1,则实数a的取值范围为________.二、选择题 (共4题;共8分)13. (2分) (2016高二上·枣阳开学考) 已知a、b为非零实数,且a<b,则下列不等式成立的是()A . a2<b2B .C .D .14. (2分)当0<x<1时,则下列大小关系正确的是()A . <<B . <<C . <<D . <<15. (2分) (2017高二下·深圳月考) 若不等式对一切恒成立,那么实数的取值范围是()A .B .C .D .16. (2分) (2019高三上·长春月考) “ ”是“关于的不等式的解集为”的()A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件三、解答题 (共5题;共45分)17. (10分) (2016高一下·无锡期末) 已知函数f(x)= (a∈R).(1)若不等式f(x)<1的解集为(﹣1,4),求a的值;(2)设a≤0,解关于x的不等式f(x)>0.18. (10分) (2016高一上·唐山期中) 已知A={x|﹣1<x<2},B={x|log2x>0}.(1)求A∩B和A∪B;(2)定义A﹣B={x|x∈A且x∉B},求A﹣B和B﹣A.19. (5分)如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求M在AB的延长线上,N在AD的延长线上,且对角线MN过C点.已知AB=3米,AD=2米.(I)设AN=x(单位:米),要使花坛AMPN的面积大于32平方米,求x的取值范围;(Ⅱ)若x∈[3,4)(单位:米),则当AM,AN的长度分别是多少时,花坛AMPN的面积最大?并求出最大面积.20. (10分) (2016高一上·南通期中) 设全集为实数集R,A={x|3≤x<7},B={x| ≤2x≤8},C={x|x <a}.(1)求∁R(A∪B)(2)如果A∩C≠∅,求a的取值范围.21. (10分) (2019高一上·遵义期中) 二次函数满足,且方程有两个相等的实数根.(1)求函数的解析式及值域;(2)是否存在实数,使得在区间上的值域是 .若存在,求出、的值;若不存在,请说明理由.参考答案一、填空题 (共12题;共13分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、选择题 (共4题;共8分)13-1、14-1、15-1、16-1、三、解答题 (共5题;共45分) 17-1、17-2、18-1、18-2、19-1、20-1、20-2、21-1、21-2、。
2019-2020年高一期中考试数学试卷含答案
2019-2020 年高一期中考试数学试卷含答案本试卷满分 150 分考试时间 120 分钟王治洪一、选择题:本大题共12 小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.集合,集合,则等于()A. B. C. D.2. 已知幂函数的图象过点,则的值为()A. B.- C. 2 D. -23.函数的图象大致是()y y y yx x x x0 1 2 -1 0 -1 0 0 1 2A B C D4. 已知函数,则()A. B. C. D.5. 函数的图象向右平移个单位长度,所得图象与曲线关于轴对称,则()A. B. C. D.6.函数的单调递增区间为()A. B. C. D.7.定义运算若函数 ,则的值域是( )A. B. C. D.8.若函数 f ( x)ax 3blog2 (x x 21) 2 在上有最小值﹣5,(为常数),则函数在上( )A.有最大值 5 B.有最小值 5 C.有最大值 3 D.有最大值 99.已知是定义在上的偶函数,当时,,则不等式的解集为()A. B. C. D.10. 函数 f( x) log 2x log 2 (2 x) 的最小值为 ( )A.0B.C.D.11. 已知函数,若方程有四个不同的解,, , ,且,则的取值范围是( )A. B. C. D.Ziyuanku.12. 设是定义在上的函数,对任意正实数,,且,则使得的最小实数为()A. 172 B. 415C. 557 D. 89二、填空题:本大题共4 小题,每小题 5 分,共 20 分,把答案填在横线上13.已知 ,, 若 ,则. 14 .若函数满足,则.15.的定义域是,则函数的定义域是.(3a 2) x 6a 1, x116 .已知函数 f ( x) 在上单调递减,则实数的取值范围a x ,x 1是.三、解答题:本大题共 6 小题,共70 分,解答应写出文字说明,证明过程或演算步骤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年湖北省黄冈市蕲春县高一(上)期中数学试卷一、选择题(共12小题,每小题5分,满分60分)1.已知集合M={1,2,3,4},N={﹣2,2},下列结论成立的是()A.N⊆M B.M∪N=M C.M∩N=N D.M∩N={2}2.已知集合U=R,P={x|x2﹣4x﹣5≤0},Q={x|x≥1},则P∩(∁U Q)()A.{x|﹣1≤x<5} B.{x|1<x<5} C.{x|1≤x<5} D.{x|﹣1≤x<1}3.下列函数中表示同一函数的是()A.y=与y=()4B.y=与y=C.y=与y=•D.y=与y=4.已知f(x)=,则f(3)为()A.3 B.4 C.1 D.25.函数f(x)=2x+x﹣2的零点所在的一个区间是()A.(﹣2,﹣1)B.(﹣1,0)C.(0,1)D.(1,2)6.函数g(x)=2015x+m图象不过第二象限,则m的取值范围是()A.m≤﹣1 B.m<﹣1 C.m≤﹣2015 D.m<﹣20157.设a=log0.50.9,b=log1.10.9,c=1.10.9,则a,b,c的大小关系为()A.a<b<c B.b<a<c C.b<c<a D.a<c<b8.()A.(﹣∞,2]B.(0,+∞)C.[2,+∞)D.[0,2]9.一高为H,满缸水量为V的鱼缸截面如图所示,其底部破了一个小洞,缸中水从洞中流出,若鱼缸水深为h时水的体积为v,则函数v=f(h)的大致图象可能是图中四个选项中的()A.B.C.D.10.定义在R上的偶函数f(x)满足:对任意的x1,x2∈(﹣∞,0](x1≠x2),有,且f(2)=0,则不等式<0的解集是()A.(﹣∞,﹣2)∪(2,+∞)B.(﹣∞,﹣2)∪(1,2)C.(﹣2,1)∪(2,+∞)D.(﹣2,1)∪(1,2)11.已知实数a≠0,函数,若f(1﹣a)=f(1+a),则a的值为()A. B.C. D.12.设奇函数f(x)在[﹣1,1]上是增函数,且f(﹣1)=﹣1,若对所有的x∈[﹣1,1]及任意的a∈[﹣1,1]都满足f(x)≤t2﹣2at+1,则t的取值范围是()A.[﹣2,2]B.{t|t≤﹣或t或=0}C.[﹣,] D.{t|t≤﹣2或t≥2或t=0}二、填空题(共4小题,每小题5分,满分20分)13.函数y=|x﹣a|的图象关于直线x=2对称,则a=.14.设函数f(x)满足,则f(2)=.15.已知函数f(x)=在区间(﹣2,+∞)上为增函数,则实数a的取值范围是.16.若∃x1,x2∈R,x1≠x2,使得f(x1)=f(x2)成立,则实数a的取值范围是.三、解答题(共6小题,满分70分)17.(1)若xlog32=1,试求4x+4﹣x的值;(2)计算:(2)﹣(﹣9.6)0﹣(3)+(1.5)﹣2+(×)4.18.已知集合M={x|x2﹣3x≤10},N={x|a+1≤x≤2a+1}.(1)若a=2,求M∩(∁R N);(2)若M∪N=M,求实数a的取值范围.19.已知函数f(x)是定义域在R上的奇函数,当x>0时,f(x)=x2﹣2x.(1)求出函数f(x)在R上的解析式;(2)写出函数的单调区间.20.电信局为了配合客户不同需要,设有A,B两种优惠方案.这两种方案应付话费(元)与通话时间x(min)之间的关系如图所示,其中D的坐标为(,230).(1)若通话时间为2小时,按方案A,B各付话费多少元?(2)方案B从500分钟以后,每分钟收费多少元?(3)通话时间在什么范围内,方案B比方案A优惠?21.已知函数f(x)=(a,b,c∈Z)是奇函数,且f(1)=2,f(2)<3.(1)求a,b,c的值.(2)判断函数f(x)在[1,+∞)上的单调性,并用定义证明你的结论.(3)解关于t的不等式:f(﹣t2﹣1)+f(|t|+3)>0.22.定义在D上的函数f(x),如果满足对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界,已知函数f(x)=1+x+ax2(1)当a=﹣1时,求函数f(x)在(﹣∞,0)上的值域,判断函数f(x)在(﹣∞,0)上是否为有界函数,并说明理由;(2)若函数f(x)在x∈[1,4]上是以3为上界的有界函数,求实数a的取值范围.湖北省黄冈市蕲春县高一(上)期中数学试卷参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.已知集合M={1,2,3,4},N={﹣2,2},下列结论成立的是()A.N⊆M B.M∪N=M C.M∩N=N D.M∩N={2}【考点】集合的包含关系判断及应用.【专题】集合.【分析】由M={1,2,3,4},N={﹣2,2},则可知,﹣2∈N,但是﹣2∉M,则N⊄M,M∪N={1,2,3,4,﹣2}≠M,M∩N={2}≠N,从而可判断.【解答】解:A、由M={1,2,3,4},N={﹣2,2},可知﹣2∈N,但是﹣2∉M,则N⊄M,故A错误;B、M∪N={1,2,3,4,﹣2}≠M,故B错误;C、M∩N={2}≠N,故C错误;D、M∩N={2},故D正确.故选D.【点评】本题主要考查了集合的包含关系的判断,解题的关键是熟练掌握集合的基本运算.2.已知集合U=R,P={x|x2﹣4x﹣5≤0},Q={x|x≥1},则P∩(∁U Q)()A.{x|﹣1≤x<5} B.{x|1<x<5} C.{x|1≤x<5} D.{x|﹣1≤x<1}【考点】交、并、补集的混合运算.【专题】计算题;对应思想;定义法;集合.【分析】先化简集合P,求出∁U Q,再计算P∩(∁U Q)的值.【解答】解:∵集合U=R,P={x|x2﹣4x﹣5≤0}={x|﹣1≤x≤5},Q={x|x≥1},∴∁U Q={x|x<1}∴P∩(∁U Q)={x|﹣1≤x<1}.故选:D.【点评】本题考查了集合的化简与运算问题,是基础题目.3.下列函数中表示同一函数的是()A.y=与y=()4B.y=与y=C.y=与y=•D.y=与y=【考点】判断两个函数是否为同一函数.【专题】函数思想;分析法;函数的性质及应用.【分析】根据两个函数的定义域相同,对应关系也相同,即可判断它们是同一函数.【解答】解:对于A,函数y==x2(x∈R),与函数y==x2(x≥0)的定义域不同,所以不是同一函数;对于B,函数y==x(x∈R),与函数y==x(x≠0)的定义域不同,所以不是同一函数;对于C,函数y==(x≤﹣1或x≥0),与函数y=•=(x≥0)的定义域不同,所以不是同一函数;对于D,函数y=(x≠0),与函数y==(x≠0)的定义域相同,对应关系也相同,所以是同一函数.故选:D.【点评】本题考查了判断两个函数是否为同一函数的应用问题,是基础题目.4.已知f(x)=,则f(3)为()A.3 B.4 C.1 D.2【考点】分段函数的应用.【专题】计算题;函数的性质及应用.【分析】由分段函数的解析式,先运用第二段,再由第一段,即可得到所求值.【解答】解:f(x)=,可得f(3)=f(4)=f(5)=f(6)=6﹣5=1.故选:C.【点评】本题考查分段函数的运用:求函数值,考查运算能力,属于基础题.5.函数f(x)=2x+x﹣2的零点所在的一个区间是()A.(﹣2,﹣1)B.(﹣1,0)C.(0,1)D.(1,2)【考点】函数零点的判定定理.【专题】计算题.【分析】利用函数的零点判定定理,先判断函数的单调性,然后判断端点值的符合关系.【解答】解:∵f(x)=2x+x﹣2在R上单调递增又∵f(0)=﹣1<0,f(1)=1>0由函数的零点判定定理可知,函数的零点所在的一个区间是(0,1)故选C【点评】本题主要考查函数零点区间的判断,判断的主要方法是利用根的存在性定理,判断函数在给定区间端点处的符号是否相反.6.函数g(x)=2015x+m图象不过第二象限,则m的取值范围是()A.m≤﹣1 B.m<﹣1 C.m≤﹣2015 D.m<﹣2015【考点】指数函数的图像变换.【专题】数形结合;转化法;函数的性质及应用.【分析】根据指数函数的图象和性质进行求解即可.【解答】解:函数g(x)=2015x+m为增函数,若g(x)=2015x+m图象不过第二象限,则满足g(0)≤0,即g(0)=1+m≤0,则m≤﹣1,故选:A.【点评】本题主要考查指数函数的图象和性质,根据条件建立不等式关系是解决本题的关键.比较基础.7.设a=log0.50.9,b=log1.10.9,c=1.10.9,则a,b,c的大小关系为()A.a<b<c B.b<a<c C.b<c<a D.a<c<b【考点】对数值大小的比较.【专题】函数的性质及应用.【分析】利用对数函数和指数函数的性质求解.【解答】解:∵0=log0.51<a=log0.50.9<log0.50.5=1,b=log1.10.9<log1.11=0,c=1.10.9>1.10=1,∴b<a<c,故选:B.【点评】本题考查对数值大小的比较,是基础题,解题时要注意对数函数和指数函数的性质的合理运用.8.()A.(﹣∞,2]B.(0,+∞)C.[2,+∞)D.[0,2]【考点】函数的值域.【专题】函数的性质及应用.【分析】根据函数≥0,而且﹣x2﹣2x+3=﹣(x+1)2+4≤4,从而求得函数的值域.【解答】解:∵函数≥0,而且﹣x2﹣2x+3=﹣(x2+2x﹣3)=﹣(x+1)2+4≤4,∴≤2,∴0≤f(x)≤2,故选D.【点评】本题主要考查求函数的值域,属于基础题.9.一高为H,满缸水量为V的鱼缸截面如图所示,其底部破了一个小洞,缸中水从洞中流出,若鱼缸水深为h时水的体积为v,则函数v=f(h)的大致图象可能是图中四个选项中的()A.B.C.D.【考点】函数的图象.【专题】函数的性质及应用.【分析】水深h越大,水的体积v就越大,故函数v=f(h)是个增函数,一开始增长越来越快,后来增长越来越慢,图象是先凹后凸的.【解答】解:由图得水深h越大,水的体积v就越大,故函数v=f(h)是个增函数.据四个选项提供的信息,当h∈[O,H],我们可将水“流出”设想成“流入”,这样每当h增加一个单位增量△h时,根据鱼缸形状可知,函数V的变化,开始其增量越来越大,但经过中截面后则增量越来越小,故V关于h的函数图象是先凹后凸的,曲线上的点的切线斜率先是逐渐变大,后又逐渐变小,故选:B.【点评】本题考查了函数图象的变化特征,函数的单调性的实际应用,体现了数形结合的数学思想和逆向思维,属于中档题.10.定义在R上的偶函数f(x)满足:对任意的x1,x2∈(﹣∞,0](x1≠x2),有,且f(2)=0,则不等式<0的解集是()A.(﹣∞,﹣2)∪(2,+∞)B.(﹣∞,﹣2)∪(1,2)C.(﹣2,1)∪(2,+∞)D.(﹣2,1)∪(1,2)【考点】奇偶性与单调性的综合.【专题】数形结合;转化法;函数的性质及应用.【分析】根据条件判断函数的单调性,根据函数奇偶性和单调性之间的关系,作出函数f(x)的图象,利用数形结合将不等式进行转化即可解不等式即可.【解答】解:∵任意的x1,x2∈(﹣∞,0](x1≠x2),有,∴此时函数f(x)在(﹣∞,0]上为减函数,∵f(x)是偶函数,∴函数在[0,+∞)上为增函数,∵f(2)=0,∴f(﹣2)=﹣f(2)=0,作出函数f(x)的图象如图:则不等式<0等价为<0,即<0,即或,即或,即x<﹣2或1<x<2,故不等式的解集为(﹣∞,﹣2)∪(1,2).故选:B.【点评】本题主要考查不等式的解集,利用函数奇偶性和单调性之间的关系是解决本题的关键.11.已知实数a≠0,函数,若f(1﹣a)=f(1+a),则a的值为()A. B.C. D.【考点】分段函数的解析式求法及其图象的作法.【专题】计算题;分类讨论.【分析】由a≠0,f(1﹣a)=f(1+a),要求f(1﹣a),与f(1+a),需要判断1﹣a与1+a与1的大小,从而需要讨论a与0的大小,代入可求【解答】解:∵a≠0,f(1﹣a)=f(1+a)当a>0时,1﹣a<1<1+a,则f(1﹣a)=2(1﹣a)+a=2﹣a,f(1+a)=﹣(1+a)﹣2a=﹣1﹣3a∴2﹣a=﹣1﹣3a,即a=﹣(舍)当a<0时,1+a<1<1﹣a,则f(1﹣a)=﹣(1﹣a)﹣2a=﹣1﹣a,f(1+a)=2(1+a)+a=2+3a∴﹣1﹣a=2+3a即综上可得a=﹣故选A【点评】本题主要考查了分段函数的函数值的求解,解题的关键是把1﹣a与1+a与1的比较,从而确定f (1﹣a)与f(1+a),体现了分类讨论思想的应用.12.设奇函数f(x)在[﹣1,1]上是增函数,且f(﹣1)=﹣1,若对所有的x∈[﹣1,1]及任意的a∈[﹣1,1]都满足f(x)≤t2﹣2at+1,则t的取值范围是()A.[﹣2,2]B.{t|t≤﹣或t或=0}C.[﹣,] D.{t|t≤﹣2或t≥2或t=0}【考点】函数恒成立问题.【专题】函数的性质及应用.【分析】先由函数为奇函数求出f(1)=﹣f(﹣1)=1,然后由x∈[﹣1,1]时f(x)是增函数,f(x)≤f(1)=1得f(x)≤t2﹣2at+1即为1≤t2﹣2at+l,即2at≤t2恒成立,分类讨论求解即可.【解答】解:奇函数f(x)在[﹣1,1]上是增函数,且f(﹣1)=﹣1,则f(1)=1,又∵x∈[﹣1,1]时f(x)是增函数,∴f(x)≤f(1)=1,故有1≤t2﹣2at+l,即2at≤t2,①t=0时,显然成立,②t>0时,2a≤t要恒成立,则t≥2,③t<0时,t≤2a要恒成立,则t≤﹣2,故t≤﹣2或t=0或t≥2,.故选:D.【点评】本题解题的关键是综合利用函数的性质化简f(x)≤t2﹣2at+1,然后转化为恒成立问题求解,分类讨论求解.二、填空题(共4小题,每小题5分,满分20分)13.函数y=|x﹣a|的图象关于直线x=2对称,则a=2.【考点】函数的图象.【专题】转化思想;综合法;函数的性质及应用.【分析】结合题意根据函数y=|x﹣a|的图象关于直线x=a对称,可得a的值.【解答】解:由于函数y=|x﹣a|的图象关于直线x=a 对称,再根据它的图象关于直线x=2对称,可得a=2,故答案为:2.【点评】本题主要考查函数的图象的对称性,属于基础题.14.设函数f(x)满足,则f(2)=.【考点】函数的值.【专题】计算题.【分析】通过表达式求出f(),然后求出函数的解析式,即可求解f(2)的值.【解答】解:因为,所以.,∴.∴=.故答案为:.【点评】本题考查函数的解析式的求法,函数值的求法,考查计算能力,灵活赋值的能力及观察判断的能力.15.已知函数f(x)=在区间(﹣2,+∞)上为增函数,则实数a的取值范围是{a|a>}.【考点】函数单调性的性质.【专题】函数的性质及应用.【分析】把函数f(x)解析式进行常数分离,变成一个常数和另一个函数g(x)的和的形式,由函数g(x)在(﹣2,+∞)为增函数得出1﹣2a<0,从而得到实数a的取值范围.【解答】解:∵函数f(x)==a+,结合复合函数的增减性,再根据f(x)在(﹣2,+∞)为增函数,可得g(x)=在(﹣2,+∞)为增函数,∴1﹣2a<0,解得a>,故答案为:{a|a>}.【点评】本题考查利用函数的单调性求参数的范围,属于基础题.16.若∃x1,x2∈R,x1≠x2,使得f(x1)=f(x2)成立,则实数a的取值范围是(﹣∞,2).【考点】特称命题.【专题】函数的性质及应用.【分析】若∃x1,x2∈R,x1≠x2,使得f(x1)=f(x2)成立,则f(x)不是单调函数,结合二次函数和一次函数的图象和性质,分类讨论不同情况下函数的单调性,综合讨论结果可得答案.【解答】解:由题意得,即在定义域内,f(x)不是单调的.分情况讨论:(1)若x≤1时,f(x)=﹣x2+ax不是单调的,即对称轴在x=满足<1,解得:a<2(2)x≤1时,f(x)是单调的,此时a≥2,f(x)为单调递增.最大值为f(1)=a﹣1故当x>1时,f(x)=ax﹣1为单调递增,最小值为f(1)=a﹣1,因此f(x)在R上单调增,不符条件.综合得:a<2故实数a的取值范围是(﹣∞,2)故答案为:(﹣∞,2)【点评】本题考查的知识点是函数的性质及应用,其中根据已知分析出函数f(x)不是单调函数,是解答的关键.三、解答题(共6小题,满分70分)17.(1)若xlog32=1,试求4x+4﹣x的值;(2)计算:(2)﹣(﹣9.6)0﹣(3)+(1.5)﹣2+(×)4.【考点】有理数指数幂的化简求值;根式与分数指数幂的互化及其化简运算.【专题】计算题;转化思想;综合法;函数的性质及应用.【分析】(1)由已知得x=log23,由此利用对数换底公式能求出4x+4﹣x.(2)利用有理数指数幂性质、运算法则求解.【解答】解:(1)∵xlog32=1,∴x=log23,∴4x+4﹣x=+=+=9+=.…(2)(2)﹣(﹣9.6)0﹣(3)+(1.5)﹣2+(×)4=++4×3=.…【点评】本题考查对数式、指数式化简求值,是基础题,解题时要认真审题,注意对数换底公式、有理数指数幂性质、运算法则的合理运用.18.已知集合M={x|x2﹣3x≤10},N={x|a+1≤x≤2a+1}.(1)若a=2,求M∩(∁R N);(2)若M∪N=M,求实数a的取值范围.【考点】并集及其运算;交、并、补集的混合运算.【专题】集合.【分析】(Ⅰ)a=2时,M={x|﹣2≤x≤5},N={3≤x≤5},由此能求出M∩(C R N).(Ⅱ)由M∪N=M,得N⊂M,由此能求出实数a的取值范围.【解答】(本小题满分8分)解:(Ⅰ)a=2时,M={x|﹣2≤x≤5},N={3≤x≤5},C R N={x|x<3或x>5},所以M∩(C R N)={x|﹣2≤x<3}.(Ⅱ)∵M∪N=M,∴N⊂M,①a+1>2a+1,解得a<0;②,解得0≤a≤2.所以a≤2.【点评】本题考查交集、实集的应用,考查实数的取值范围的求法,是基础题.19.已知函数f(x)是定义域在R上的奇函数,当x>0时,f(x)=x2﹣2x.(1)求出函数f(x)在R上的解析式;(2)写出函数的单调区间.【考点】函数解析式的求解及常用方法;函数奇偶性的性质.【专题】数形结合;函数思想;转化法;函数的性质及应用.【分析】(1)根据函数f(x)为定义域为R的奇函数,当x>0时,f(x)=x2﹣2x,我们根据定义域为R 的奇函数的图象必过原点,则f(﹣x)=﹣f(x),即可求出函数f(x)在R上的解析式;(2)根据(1)中分段函数的解析式,我们易画出函数f(x)的图象,利用数形结合进行求解即可.【解答】解:(1)∵函数f(x)是定义域在R上的奇函数,∴当x=0时,f(0)=0;当x<0时,﹣x>0,则f(﹣x)=x2+2x.∵f(x)是奇函数,∴f(﹣x)=﹣f(x)∴f(﹣x)=x2+2x=﹣f(x),即f(x)=﹣x2﹣2x.综上:f(x)=.(2)函数f(x)=的图象如下图所示:则函数的单调递增区间为为[1,+∞),(﹣∞,﹣1],函数的单调递减区间为为[﹣1,1].【点评】本题主要考查函数解析式的求解,以及函数单调区间的判断,其中根据函数奇偶性的性质,求出函数的解析式是解答本题的关键.20.电信局为了配合客户不同需要,设有A,B两种优惠方案.这两种方案应付话费(元)与通话时间x(min)之间的关系如图所示,其中D的坐标为(,230).(1)若通话时间为2小时,按方案A,B各付话费多少元?(2)方案B从500分钟以后,每分钟收费多少元?(3)通话时间在什么范围内,方案B比方案A优惠?【考点】分段函数的应用.【专题】计算题;转化思想;综合法;函数的性质及应用.【分析】(1)设这两种方案的应付话费与通话时间的函数关系为f A(x)和f B(x),由图知M(60,98),N,C,MN∥C,分别求出f A(x)和f B(x),由此能求出通话时间为2小时,按方案A,B各付话费多少元.(2)求出f B(n+1)﹣f B(n),n>500,由此能求出方案B从500分钟以后,每分钟收费多少元.(3)由图知,当0≤x≤60时,f A(x)f B(x).由此能求出通话时间在什么范围内,方案B比方案A优惠.【解答】解:(1)设这两种方案的应付话费与通话时间的函数关系为f A(x)和f B(x),由图知M(60,98),N,C,MN∥C,则,.∴通话2小时,方案A应付话费:元,方案B应付话费:168元.(2)∵﹣()=0.3,n>500,∴方案B从500分钟以后,每分钟收费0.3元.(3)由图知,当0≤x≤60时,f A(x)<f B(x),当60<x≤500时,由f A(x)>f B(x),得,解得x>,∴,当x>500时,f A(x)>f B(x).综上,通话时间在(,+∞)内,方案B比方案A优惠.【点评】本题考查函数知识在生产生活中的实际应用,是中档题,解题时要认真审题,注意分段函数的性质的合理运用.21.已知函数f(x)=(a,b,c∈Z)是奇函数,且f(1)=2,f(2)<3.(1)求a,b,c的值.(2)判断函数f(x)在[1,+∞)上的单调性,并用定义证明你的结论.(3)解关于t的不等式:f(﹣t2﹣1)+f(|t|+3)>0.【考点】函数奇偶性的性质;函数单调性的判断与证明.【专题】综合题;转化思想;数学模型法;函数的性质及应用.【分析】(1)由f(x)为奇函数,可得f(﹣x)+f(x)=0,解得c=0,又f(1)==2,化为2b=a+1.f (2)=<3,即可得出.(2)f(x)=,函数f(x)在[1,+∞)上为增函数.利用证明单调函数的方法即可证明.(3)利用函数的奇偶性与单调性即可解出.【解答】解:(1)∵f(x)为奇函数,∴f(﹣x)+f(x)=+=0,得﹣bx+c=﹣bx﹣c,解得c=0,又f(1)==2,化为2b=a+1.∵f(2)=<3,∴,化为<0,⇔(a+1)(a﹣2)<0,解得﹣1<a<2,∵a∈Z,∴a=0或1.当a=0时,解得b=,与b∈Z矛盾,舍去.当a=1时,b=1,综上:a=b=1,c=0.(2)f(x)=,函数f(x)在[1,+∞)上为增函数.任取x1,x2∈[1,+∞),且x1<x2.则f(x1)﹣f(x2)=﹣=,∵x1,x2∈[1,+∞),且x1<x2.∴x1﹣x2<0,x1x2>1,∴f(x1)﹣f(x2)<0,即f(x1)<f(x2).∴函数f(x)在[1,+∞)上为增函数.(3)∵f(﹣t2﹣1)+f(|t|+3)>0,∴f(|t|+3)>﹣f(﹣t2﹣1)=f(t2+1).∵函数f(x)在[1,+∞)上为增函数,∴t2+1<|t|+3,化为(|t|﹣2)(|t|+1)<0,解得0≤|t|<2,解得﹣2<t<2.【点评】本题考查了函数的奇偶性与单调性、不等式的解法,考查了推理能力与计算能力,属于中档题.22.定义在D上的函数f(x),如果满足对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界,已知函数f(x)=1+x+ax2(1)当a=﹣1时,求函数f(x)在(﹣∞,0)上的值域,判断函数f(x)在(﹣∞,0)上是否为有界函数,并说明理由;(2)若函数f(x)在x∈[1,4]上是以3为上界的有界函数,求实数a的取值范围.【考点】函数的最值及其几何意义;函数单调性的性质.【专题】计算题;综合题.【分析】(1)当a=﹣1时,函数表达式为f(x)=1+x﹣x2,可得f(x)在(﹣∞,0)上是单调增函数,它的值域为(﹣∞,1),从而|f(x)|的取值范围是[0,+∞),因此不存在常数M>0,使|f(x)|≤M成立,故f(x)不是(﹣∞,0)上的有界函数.(2)函数f(x)在x∈[1,4]上是以3为上界的有界函数,即﹣3≤f(x)≤3在[1,4]上恒成立,代入函数表达式并化简整理,得﹣﹣≤a≤﹣在[1,4]上恒成立,接下来利用换元法结合二次函数在闭区间上最值的求法,得到(﹣﹣)max=﹣,(﹣)min=﹣,所以,实数a的取值范围是[﹣,﹣].【解答】解:(1)当a=﹣1时,函数f(x)=1+x﹣x2=﹣(x﹣)2+∴f(x)在(﹣∞,0)上是单调增函数,f(x)<f(0)=1∴f(x)在(﹣∞,0)上的值域为(﹣∞,1)因此|f(x)|的取值范围是[0,+∞)∴不存在常数M>0,使|f(x)|≤M成立,故f(x)不是(﹣∞,0)上的有界函数.(2)若函数f(x)在x∈[1,4]上是以3为上界的有界函数,则|f(x)|≤3在[1,4]上恒成立,即﹣3≤f(x)≤3∴﹣3≤ax2+x+1≤3∴≤a≤,即﹣﹣≤a≤﹣在[1,4]上恒成立,∴(﹣﹣)max≤a≤(﹣)min,令t=,则t∈[,1]设g(t)=﹣4t2﹣t=﹣4(t+)2+,则当t=时,g(t)的最大值为﹣再设h(t)=2t2﹣t=2(t﹣)2﹣,则当t=时,h(t)的最小值为﹣∴(﹣﹣)max=﹣,(﹣)min=﹣所以,实数a的取值范围是[﹣,﹣].【点评】本题以一个特定的二次函数在闭区间上有界的问题为例,考查了函数单调性的性质和二次函数在闭区间上值域等知识点,属于中档题.请同学们注意解题过程中变量分离和换元法求值域的思想,并学会运用.。