因式分解与分式测试

合集下载

因式分解及分式的计算测验题(题型全)

因式分解及分式的计算测验题(题型全)

分式计算练习二周案序 总案序 审核签字一.填 空: 1.x 时,分式42-x x 有意义; 当x时,分式1223+-x x 无意义; 2.当x= 时,分式2152x x --的值为零;当x 时,分式xx --112的值等于零.3.如果ba=2,则2222b a b ab a ++-= 4.分式ab c 32、bc a 3、ac b 25的最简公分母是 ; 5.若分式231-+x x 的值为负数,则x 的取值范围是 .6.已知2009=x 、2010=y ,则()⎪⎪⎭⎫⎝⎛-+⋅+4422y x y x y x = .二.选 择: 1.在31x+21y, xy 1 ,a +51 ,—4xy , 2x x , πx 中,分式的个数有( )A 、1个B 、2个C 、3个D 、4个 2.如果把yx y322-中的x 和y 都扩大5倍,那么分式的值( )A 、扩大5倍B 、不变C 、缩小5倍D 、扩大4倍3.下列各式:()xx x x y x x x 2225,1,2 ,34 ,151+---π其中分式共有( )个。

A 、2 B 、3 C 、4 D 、54.下列判断中,正确的是( )A 、分式的分子中一定含有字母 B 、当B=0时,分式BA 无意义 C 、当A=0时,分式BA 的值为0(A 、B 为整式) D 、分数一定是分式5.下列各式正确的是( )A 、11++=++b a x b x a B 、22xy x y = C 、()0,≠=a ma na m n D 、a m a n m n --= 6.下列各分式中,最简分式是( )A 、()()y x y x +-8534B 、y x x y +-22C 、2222xy y x y x ++D 、()222y x yx +- 7.下列约分正确的是( ) A 、313m m m +=+ B 、212y x y x -=-+ C 、123369+=+a b a b D 、()()yx a b y b a x =-- 8.下列约分正确的是( )A 、326x x x = B 、0=++y x y x C 、x xy x y x 12=++ D 、214222=y x xy 9.(更易错题)下列分式中,计算正确的是( )A 、32)(3)(2+=+++a c b a c bB 、b a b a b a +=++122C 、1)()(22-=+-b a b a D 、x y y x xy y x -=---1222 10.若把分式xyyx 2+中的x 和y 都扩大3倍,那么分式的值( )A 、扩大3倍B 、不变C 、缩小3倍D 、缩小6倍 11.下列各式中,从左到右的变形正确的是( )A 、y x y x y x y x ---=--+-B 、y x y x y x y x +-=--+-C 、yx yx y x y x -+=--+- D 、y x y x y x y x +--=--+-12.若0≠-=y x xy ,则分式=-xy 11 ( ) A 、xy 1 B 、x y - C 、1 D 、-113. 若x 满足1=xx,则x 应为( )A 、正数 B 、非正数 C 、负数 D 、非负数14.已知0≠x ,xx x 31211++等于( ) A 、x 21 B 、1 C 、x 65 D 、x 61115、(多转单约分求值)已知113x y -=,则55x xy yx xy y+---值为( )A 、72-B 、72C 、27D 、72-三.化简:1.m m -+-3291222. a+2-a -243. 22221106532x yx y y x ÷⋅ 4.ac ac bc c b ab b a -+-++ 5.262--x x ÷4432+--x x x 6.224)2222(x x x x x x -⋅-+-+- 7. 22224421yxy x y x y x y x ++-÷+-- 8.1111-÷⎪⎭⎫ ⎝⎛--x xx 9. m n n n m m m n n m -+-+--210.⎪⎪⎭⎫⎝⎛++÷--ab b a b a b a 22222 11.⎪⎭⎫ ⎝⎛--+÷--13112x x x x 12.(22+--x x x x )24-÷x x 13. 1⎪⎭⎫⎝⎛⋅÷÷a b b a b a 32492314..()2211n m m n m n -⋅⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛+; 15.168422+--x x x x ,其中x =5.分式计算练习一1. 2234xy z ·(-28z y )等于( ) A .6xyz B .-23384xy z yz- C .-6xyz D .6x 2yz2. 下列各式中,计算结果正确的有( )①;2)1(2223n m mn n m =-∙ ②8b a b a b a 32326)43(-=-÷; ③(;1)()b a b a b a b a +=+∙-⋅+ ④(2232)()()ba b a b a b a =-÷-∙- A.1个 B.2个 C.3个 D.4个3. 下列公式中是最简分式的是( )A .21227b aB .22()a b b a --C .22x y x y ++D .22x y x y--4. (2008黄冈市)计算()ab a bb aa+-÷的结果为( ) A .a b b - B .a b b + C .a b a - D .a b a+5. 计算34x x y -+4x y y x +--74yx y-得( )A .-264x y x y +- B .264x yx y+- C .-2 D .2二 计算:(1)2223x y mn ·2254m n xy ÷53xym n . (2)2216168m m m -++÷428m m -+·22m m -+(3)(-2b a )2÷(b a -)·(-34b a )3. (4)21x x --x-1. 三、 先化简,再求值:1、232282x x x x x +-++÷(2x x -·41x x ++).2、22)11(yxy y x y y x -÷-++, 其中x=-45. 其中2-=x ,1=y .3、已知a=25,25-=+b ,4、已知3=a ,2-=b ,求2++b a a b 得值。

因式分解及分式25题精选

因式分解及分式25题精选

1.已知a b c ,,是ABC ∆的三边,且222a b c ab bc ca ++=++,则ABC ∆的形状是( )A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形2.分解因式:bx by ay ax -+-51023.分解因式:ay ax y x ++-224.分解因式:abc b a c c a b c b a 2)()()(222++++++5.已知0<a ≤5,且a 为整数,若223x x a ++能用十字相乘法分解因式,求符合条件的a6.分解因式:36152+-a a7.分解因式:101132+-x x8.分解因式2223y xy x +-9.因式分解:2)6)(3)(2)(1(x x x x x +++++10.因式分解:673676234+--+x x x x11.因式分解:4224)1()1()1(-+-++x x x12.分解因式613622-++-+y x y xy x13.如果823+++bx ax x 有两个因式为1+x 和2+x ,求b a +的值。

14.先化简112111122++-⋅--+x x x x x ,再求出x =21时的值.15.已知:222,053n m m n m m n m m n m ---++=-求的值.16.若()0322=++-b a ,求[12(a +b )3(b -a )]3÷[4(a +b )2(a -b )]2的值.17.已知方程0132=+-x x ,求①221x x +; ②2)1(x x +.18.111121212121-⎭⎬⎫⎩⎨⎧-⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-x19. ()()()3223332323223x x xy x xy y x x y ----++-+-的值,其中1,12x y ==-,小明把12x =错写 12x =-,但他的计算结果也是正确的,请你帮他找出原因。

20.某商店销售一种衬衫,4月份的营业额为5000元,为了扩大销售,在5月份将每件衬衫按原价的8折销售,销量比4月份增加了40件,营业额比4月份增加了600元,求4月份每件衬衫的售价。

2021年江西省九年级中考数学一轮复习课时训练: 因式分解和分式

2021年江西省九年级中考数学一轮复习课时训练: 因式分解和分式

因式分解和分式(答题时间:45分钟)【基础训练】1.(2019·黄石中考)若式子x -1x -2在实数范围内有意义,则x 的取值范围是( ) A .x ≥1且x ≠2 B .x ≤1C .x >1且x ≠2D .x <12.(2020·金华中考)分式x +5x -2的值是零,则x 的值为 ( ) A .2 B .5 C .-2 D .-53.(2020·河北中考)若a ≠b ,则下列分式化简正确的是( )A .a +2b +2 =a bB .a -2b -2 =a bC .a 2b 2 =a bD .12a 12b =a b 4.一辆货车送货上山,并按原路下山.上山速度为a km/h ,下山速度为b km/h.则货车上、下山的平均速度为( )A .12 (a +b ) km/hB .ab a +bkm/h C .a +b 2ab km/h D .2ab a +bkm/h 5.(2020·金华中考)下列多项式中,能运用平方差公式分解因式的是( )A .a 2+b 2B .2a -b 2C .a 2-b 2D .-a 2-b 26.(2020·河北中考)若(92-1)(112-1)k=8×10×12,则k 等于( ) A .12 B .10 C .8 D .6 7.计算a 2a -1-a -1的正确结果是( ) A .-1a -1 B .1a -1C .-2a -1a -1D .2a -1a -18.(2020·杭州中考)若分式1x +1的值等于1,则x =____. 9.(2020·常德中考)分解因式:xy 2-4x =____.10.(2020·铜仁中考)分解因式:a 2+ab -a =____.11.(2020·聊城中考)分解因式:x (x -2)-x +2=____.12.(2020·扬州中考)分解因式:a 3-2a 2+a =___.13.(2019·毕节中考)分解因式:x 4-16=____.14.(2020·聊城中考)计算:⎝⎛⎭⎫1+a 1-a ÷1a 2-a=____. 15.(2020·成都中考)已知a =7-3b ,则代数式a 2+6ab +9b 2的值为____.16.(2020·南充中考)先化简,再求值:⎝⎛⎭⎫1x +1-1 ÷x 2-x x +1 ,其中x =2 +1.【能力提升】17.(2019·河北中考)如图,若x 为正整数,则表示(x +2)2x 2+4x +4 -1x +1的值的点落在( )A .段①B .段②C .段③D .段④18.(2019·内江中考)若1m +1n =2,则分式5m +5n -2mn -m -n的值为____. 19.(2020·常德中考)阅读理解:对于x 3-(n 2+1)x +n 这类特殊的代数式可以按下面的方法分解因式: x 3-(n 2+1)x +n =x 3-n 2x -x +n =x (x 2-n 2)-(x -n )=x (x -n )(x +n )-(x -n )=(x -n )(x 2+nx -1).理解运用:如果x 3-(n 2+1)x +n =0,那么(x -n )(x 2+nx -1)=0,即有x -n =0或x 2+nx -1=0.因此,方程x -n =0和x 2+nx -1=0的所有解就是方程x 3-(n 2+1)x +n =0的解.解决问题:求方程x 3-5x +2=0的解为____.20.(2020·黔东南中考)先化简,再求值:⎝⎛⎭⎫3a +1-a +1 ÷a 2-4a 2+2a +1 ,其中a 从-1,2,3中取一个你认为合适的数代入求值.21.(2019·遂宁中考)先化简,再求值:a 2-2ab +b 2a 2-b 2 ÷a 2-ab a -2a +b,其中a ,b 满足(a -2)2+b +1 =0.22.(2020·青海中考)化简求值:⎝ ⎛⎭⎪⎫a -1a -a -2a +1 ÷2a 2-a a 2+2a +1 ,其中a 满足a 2-a -1=0.23.(2020·自贡中考)先化简,再求值:x +1x 2-4 ·⎝⎛⎭⎫1x +1+1 ,其中x 是不等式组⎩⎪⎨⎪⎧x +1≥0,5-2x >3 的整数解.答案因式分解和分式(答题时间:45分钟)【基础训练】1.(2019·黄石中考)若式子x -1x -2在实数范围内有意义,则x 的取值范围是( A )A .x ≥1且x ≠2B .x ≤1C .x >1且x ≠2D .x <12.(2020·金华中考)分式x +5x -2的值是零,则x 的值为 ( D ) A .2 B .5 C .-2 D .-53.(2020·河北中考)若a ≠b ,则下列分式化简正确的是( D )A .a +2b +2 =a bB .a -2b -2 =a bC .a 2b 2 =a bD .12a 12b =a b 4.一辆货车送货上山,并按原路下山.上山速度为a km/h ,下山速度为b km/h.则货车上、下山的平均速度为( D )A .12 (a +b ) km/hB .ab a +bkm/h C .a +b 2ab km/h D .2ab a +bkm/h 5.(2020·金华中考)下列多项式中,能运用平方差公式分解因式的是( C )A .a 2+b 2B .2a -b 2C .a 2-b 2D .-a 2-b 26.(2020·河北中考)若(92-1)(112-1)k=8×10×12,则k 等于( B ) A .12 B .10 C .8 D .6 7.计算a 2a -1-a -1的正确结果是( B ) A .-1a -1 B .1a -1C .-2a -1a -1D .2a -1a -18.(2020·杭州中考)若分式1x +1的值等于1,则x =__0__. 9.(2020·常德中考)分解因式:xy 2-4x =__x (y +2)(y -2)__.10.(2020·铜仁中考)分解因式:a 2+ab -a =__a (a +b -1)__.11.(2020·聊城中考)分解因式:x (x -2)-x +2=__(x -1)(x -2)__.12.(2020·扬州中考)分解因式:a 3-2a 2+a =__a (a -1)2__.13.(2019·毕节中考)分解因式:x 4-16=__(x 2+4)(x +2)(x -2)__.14.(2020·聊城中考)计算:⎝⎛⎭⎫1+a 1-a ÷1a 2-a=__-a __. 15.(2020·成都中考)已知a =7-3b ,则代数式a 2+6ab +9b 2的值为__49__.16.(2020·南充中考)先化简,再求值:⎝⎛⎭⎫1x +1-1 ÷x 2-x x +1 ,其中x =2 +1. 解:原式=1-(x +1)x +1 ·x +1x (x -1)=-x x (x -1) =11-x. 当x =2 +1时,原式=-22 .【能力提升】17.(2019·河北中考)如图,若x 为正整数,则表示(x +2)2x 2+4x +4 -1x +1的值的点落在( B )A .段①B .段②C .段③D .段④18.(2019·内江中考)若1m +1n =2,则分式5m +5n -2mn -m -n的值为__-4__. 19.(2020·常德中考)阅读理解:对于x 3-(n 2+1)x +n 这类特殊的代数式可以按下面的方法分解因式: x 3-(n 2+1)x +n =x 3-n 2x -x +n =x (x 2-n 2)-(x -n )=x (x -n )(x +n )-(x -n )=(x -n )(x 2+nx -1).理解运用:如果x 3-(n 2+1)x +n =0,那么(x -n )(x 2+nx -1)=0,即有x -n =0或x 2+nx -1=0. 因此,方程x -n =0和x 2+nx -1=0的所有解就是方程x 3-(n 2+1)x +n =0的解.解决问题:求方程x 3-5x +2=0的解为.20.(2020·黔东南中考)先化简,再求值:⎝⎛⎭⎫3a +1-a +1 ÷a 2-4a 2+2a +1 ,其中a 从-1,2,3中取一个你认为合适的数代入求值. 解:原式=3-(a -1)(a +1)a +1 ·(a +1)2(a +2)(a -2)=-(a +2)(a -2)a +1 ·(a +1)2(a +2)(a -2)=-a -1.要使原式有意义,则a ≠-1,-2,2.∴a 只能取3.当a =3时,原式=-3-1=-4.21.(2019·遂宁中考)先化简,再求值:a 2-2ab +b 2a 2-b 2 ÷a 2-ab a -2a +b,其中a ,b 满足(a -2)2+b +1 =0. 解:原式=(a -b )2(a +b )(a -b ) ·a a (a -b ) -2a +b=1a +b -2a +b=-1a +b. ∵a ,b 满足(a -2)2+b +1 =0,∴a -2=0,b +1=0,即a =2,b =-1.∴原式=-12-1=-1.22.(2020·青海中考)化简求值:⎝⎛⎭⎪⎫a -1a -a -2a +1 ÷2a 2-a a 2+2a +1 ,其中a 满足a 2-a -1=0. 解:原式=(a +1)(a -1)-a (a -2)a (a +1) ·(a +1)2a (2a -1)=2a -1a (a +1) ·(a +1)2a (2a -1)=a +1a 2 .∵a 2-a -1=0,∴a 2=a +1. ∴原式=a +1a +1 =1.23.(2020·自贡中考)先化简,再求值: x +1x 2-4 ·⎝⎛⎭⎫1x +1+1 ,其中x 是不等式组⎩⎪⎨⎪⎧x +1≥0,5-2x >3 的整数解.解:原式=x +1(x +2)(x -2) ·1+x +1x +1=x +2(x +2)(x -2)=1x -2 .解不等式组⎩⎪⎨⎪⎧x +1≥0,5-2x >3, 得-1≤x <1. ∴整数x =-1,0.∵当x =-1时,原式无意义,∴x =0. ∴当x =0时,原式=10-2 =-12 .。

因式分解经典测试题附答案

因式分解经典测试题附答案
19.下列等式从左到右的变形,属于因式分解的是()
A. B.
C. D.
【答案】B
【解析】
【分析】
根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.
【详解】
解:A.是整式乘法,故A错误;
B.是因式分解,故B正确;
C.左边不是多项式,不是因式分解,故C错误;
D.右边不是整式积的形式,故D错误.
【答案】D
【解析】
试题解析:∵(b﹣c)(a2+b2)=bc2﹣c3,
∴(b﹣c)(a2+b2)﹣c2(b﹣c)=0,
∴(b﹣c)(a2+b2﹣c2)=0,
∴b﹣c=0,a2+b2﹣c2=0,
∴b=c或a2+b2=c2,
∴△ABC是等腰三角形或直角三角形.
故选D.
13.下列各式中从左到右的变形,是因式分解的是()
6.已知a﹣b=2,则a2﹣b2﹣4b的值为()
A.2B.4C.6D.8
【答案】B
【解析】
【分析】
原式变形后,把已知等式代入计算即可求出值.
【详解】
∵a﹣b=2,
∴原式=(a+b)(a﹣b)﹣4b=2(a+b)﹣4b=2a+2b﹣4b=2(a﹣b)=4.
故选:B.
【点睛】
此题考查因式分解-运用公式法,熟练掌握完全平方公式是解题的关键.
7.多项式 与 的公因式是()
A. B. C. D.
【答案】B
【解析】
【分析】
直接将原式分别分解因式,进而得出公因式即可.
【详解】
解:∵a2-25=(a+5)(a-5),a2-5a=a(a-5),
∴多项式a2-25与a2-5a的公因式是a-5.

因式分解与分式综合复习测试题

因式分解与分式综合复习测试题

因式分解与分式综合检测一 选择题1. 下列变形正确的是 ( )A .22a ab b +=+ B .2a a b ab = C .a ax b ax = D .2a abb b =2、下列各式的分解因式:①()()2210025105105p q q q -=+- ②()()22422m n m n m n --=-+-③()()2632x x x -=+- ④221142x x x ⎛⎫--+=-- ⎪⎝⎭正确的个数有( ) A 、0 B 、1 C 、2 D 、33.下列多项式,不能运用平方差公式分解的是( )A.42+-mB.22y x --C.122-y x D.412-x 4.若4x 2-mxy +9y 2是一个完全平方式,则m 的值为( ) A.6 B.±6 C.12 D.±12 5. 下列因式分解错误的是( )A .22()()x y x y x y -=+- B .2269(3)x x x ++=+ C .2()x xy x x y +=+ D .222()x y x y +=+ 6.若()()26323----x x 有意义,则x 的取值范围是( )A .3>xB .2<xC .3≠x 或2≠xD .3≠x 且2≠x 7.下列各式中,能用完全平方公式分解因式的是( ).A.4x 2-2x +1B.4x 2+4x -1C.x 2-xy +y 2 D .x 2-x +128.把代数式269mx mx m -+分解因式,下列结果中正确的是A .2(3)m x +B .(3)(3)m x x +-C .2(4)m x -D .2(3)m x - 9、已知正方形的面积是()22168x x cm -+(x >4cm),则正方形的周长是( ) A 、()4x cm - B 、()4x cm - C 、()164x cm - D 、()416x cm -10、下列变形正确的是( ) A .x y x y x y x y -+--=-+ B .x y x y x y x y -+-=--+ C .x y x y x y x y -++=--- D .x y x yx y x y-+-=---+ 二、耐心填一填1.分解因式:244x x ---=_____________。

因式分解 和分式方程专项练习50题

因式分解 和分式方程专项练习50题

人教版 八年级数学寒假专项训练因式分解1,2441x x -+2,x 4-13,x -x 34,x 3-4x 2+4x5,x 2+6xy +9y 26,3223x x y xy y +--7,2a 2-4a +28,3x 3-12x9,4x 2-8x +410,x 2+2x (x -3y )+(x -3y )211,(m +1)(m -1)+(m -1)12,-4a 3+4a 2-16a13,(3a -4b )(7a -8b )-(11a -12b )(8b -7a ) 14,3223121824x y x y xy -+15,23(2)2(2)a a +-+16,22n n n a a a +++17,a (x +y -z )-b (z -x -y )-c (x -z +y )18,-49a 2bc -14ab 2c +7ab19,(2a +b )(2a -3b )-8a (2a +b )20,x 2-x +1421,(a -b)2-4b 222,ab(ab -6)+923,m 2-n 2+2m -2n24,-2a 3+12a 2-18a25,3x -12x 3分式方程26,321121x x +=-+27,25113x x x -+=--28,212x x --=129,12012032x x =--30,221269x x x x -++-=131,21239a a =+- 32,32322x x x +=+- 33,242111x x x ++=---34,35,5x =7x -236,1x -x -2x=1 37,12x -1=12-34x -238, 39,1412112-=-++x x x 40,21133x x x-+=-- 41,1617222-=-++x x x x x 42,214111x x x +--=-- 43,0)1(213=-+--x x x x 44,11222x x x-=--- 45,近年来,我国逐步完善养老金保险制度,甲、乙两人计划用相同的年数分别缴纳养老保险金15万元和10万元,甲计划比乙每年多缴纳养老保险金0.2万元.求甲、乙两人计划每年分别缴纳养老保险金多少万元?46,小明去离家2.4 km 的体育馆看球赛,进场时,发现门票还放在家中,此时离比赛还有45 min ,于是他立即步行(匀速)回家取票,在家取票用时2 min ,取到票后,他马上骑自行车211=+x x(匀速)赶往体育馆.已知小明骑自行车从家赶往体育馆比从体育馆步行回家所用时间少20 min,骑自行车的速度是步行速度的3倍.(1)小明步行的速度是多少?(2)小明能否在球赛开始前赶到体育馆?47,(12分)某开发商要建一批住房,经调查了解,若甲、乙两队分别单独完成,则乙队完成的天数是甲队的1.5倍;若甲、乙两队合作,则需120天完成.(1)甲、乙两队单独完成各需多少天?(2)施工过程中,开发商派两名工程师全程监督,需支付每人每天食宿费150元.已知乙队单独施工,开发商每天需支付施工费为10000元.现从甲、乙两队中选一队单独施工,若要使开发商选甲队支付的总费用不超过选乙队的,则甲队每天的施工费最多为多少元?(总费用=施工费+工程师食宿费)48,用价值为100元的甲种涂料与价值为200元的乙种涂料配制成一种新涂料,其每千克的售价比甲种涂料每千克的售价少3元,比乙种涂料每千克的售价多1元,求这种新涂料每千克售价是多少元?49,为加快西部大开发,某自治区决定新修一条公路,甲、乙两工程队承包此项工程.如果甲工程队单独施工,则刚好如期完成;如果乙工程队单独施工就要超过6个月才能完成.现在甲、乙两队先共同施工4个月,剩下的由乙队单独施工,则刚好如期完成.问原来规定修好这条公路需多长时间?50,为了更好适应和服务新农村下经济的快速发展,某乡镇决定对一段公路进行改造.已知这项工程由甲工程队单独做需要40天完成;如果由乙工程队先单独做10天,那么剩下的工程还需要两队合做20天才能完成.(1)求乙工程队单独完成这项工程所需的天数;(2)求两队合做完成这项工程所需的天数.。

2021年九年级数学中考专题复习小测《因式分解与分式》(Word版附答案)

2021年九年级数学中考专题复习小测《因式分解与分式》(Word版附答案)

因式分解与分式 (时间:45分钟)1.下列各选项中因式分解正确的是( ) A .x 2-1=(x -1)2 B .a 3-2a 2+a =a 2(a -2) C .-2y 2+4y =-2y (y +2) D .m 2n -2mn +n =n (m -1)22.(2020·衡阳中考)要使分式1x -1 有意义,则x 的取值范围是( )A .x >1B .x ≠1C .x =1D .x ≠03.化简(a -1)÷⎝ ⎛⎭⎪⎫1a -1 ·a 的结果是( ( ))A .-a 2B .1C .a 2D .-14.(2020·雅安中考)分式x 2-1x +1 =0,则x 的值是( )A .1B .-1C .±1D .05.(2020·威海中考)分式2a +2a 2-1 -a +11-a 化简后的结果为( )A .a +1a -1B .a +3a -1C.-aa-1 D.-a2+3a2-16.(2020·河北中考)若a≠b,则下列分式化简正确的是()A.a+2b+2=ab B.a-2b-2=abC.a2b2=ab D.12a12b=ab7.(2020·临沂中考)计算xx-1-yy-1的结果为()A.-x+y(x-1)(y-1)B.x-y(x-1)(y-1)C.-x-y(x-1)(y-1)D.x+y(x-1)(y-1)8.分解因式:(1)(2020·南通中考)xy-2y2=(2)(2020·丹东中考)mn3-4mn=.9.(2020·毕节模拟)分解因式:4ax2-4ax+a=.10.(2020·成都中考)已知a=7-3b,则代数式a2+6ab+9b2的值为.11.(2020·北京中考)若代数式1x-7有意义,则实数x的取值范围是.12.(2020·武汉中考)计算2m +n -m -3n m 2-n 2 的结果是 .13.已知:x ≠y ,y =-x +8,求代数式x 2x -y +y 2y -x 的值.14.(2020·雅安中考)先化简⎝ ⎛⎭⎪⎫x 2x +1-x +1 ÷x 2-1x 2+2x +1,再从-1,0,1中选择合适的x 值代入求值.15.(2020·潍坊中考)先化简,再求值:⎝ ⎛⎭⎪⎪⎫1-x +1x 2-2x +1 ÷x -3x -1 ,其中x 是16的算术平方根.16.已知:1a -1b =13 ,则abb -a 的值是( )A .13B .-13 C .3 D .-317.若多项式5x 2+17x -12可分解因式成(x +a )(bx +c ),其中a ,b ,c 均为整数,则a +c 的值为( )A .1B .7C .11D .1318.(2020·内江中考)分解因式:b 4-b 2-12= . 19.(2020·南充中考)若x 2+3x =-1,则x -1x +1= .20.(2020·济宁中考)已如m +n =-3,则分式m +n m ÷⎝ ⎛⎭⎪⎫-m 2-n 2m -2n 的值是 .21.先化简,再求值:(x -1)÷⎝ ⎛⎭⎪⎫2x +1-1 ,其中x 为方程x 2+3x +2=0的根.22.先化简,再求值:⎝ ⎛⎭⎪⎫2m -1n ÷⎝ ⎛⎭⎪⎫m 2+n 2mn -5n m ·⎝ ⎛⎭⎪⎫m 2n +2n m+2 ,其中m +1 +(n -3)2=0.23.(2020·黔西县模拟)先化简,再求值:x 2x 2-1 ÷⎝ ⎛⎭⎪⎫1x -1+1 ,其中x 为整数且满足不等式组⎩⎪⎨⎪⎧x -1>1,5-2x ≥2.因式分解与分式 (时间:45分钟)1.下列各选项中因式分解正确的是DA .x 2-1=(x -1)2B .a 3-2a 2+a =a 2(a -2)C .-2y 2+4y =-2y (y +2)D .m 2n -2mn +n =n (m -1)22.(2020·衡阳中考)要使分式1x -1 有意义,则x 的取值范围是BA .x >1B .x ≠1C .x =1D .x ≠03.化简(a -1)÷⎝ ⎛⎭⎪⎫1a -1 ·a 的结果是( A )A .-a 2B .1C .a 2D .-14.(2020·雅安中考)分式x 2-1x +1 =0,则x 的值是AA .1B .-1C .±1D .05.(2020·威海中考)分式2a +2a 2-1 -a +11-a 化简后的结果为BA .a +1a -1B .a +3a -1C .-a a -1D .-a 2+3a 2-16.(2020·河北中考)若a ≠b ,则下列分式化简正确的是D A .a +2b +2 =a b B .a -2b -2=a bC .a 2b 2 =ab D .12a 12b=a b7.(2020·临沂中考)计算x x -1 -yy -1 的结果为AA .-x +y (x -1)(y -1)B .x -y(x -1)(y -1)C .-x -y (x -1)(y -1)D .x +y (x -1)(y -1)8.分解因式:(1)(2020·南通中考)xy -2y 2=y (x -2y ).(2)(2020·丹东中考)mn 3-4mn =mn (n +2)(n -2). 9.(2020·毕节模拟)分解因式:4ax 2-4ax +a =a (2x -1)2.10.(2020·成都中考)已知a =7-3b ,则代数式a 2+6ab +9b 2的值为49. 11.(2020·北京中考)若代数式1x -7 有意义,则实数x 的取值范围是x ≠7.12.(2020·武汉中考)计算2m +n -m -3n m 2-n 2 的结果是1m -n .13.已知:x ≠y ,y =-x +8,求代数式x 2x -y +y 2y -x 的值.解:原式=x 2-y 2x -y=(x +y )(x -y )x -y=x +y .当x ≠y ,y =-x +8时, 原式=x +(-x +8)=8.14.(2020·雅安中考)先化简⎝ ⎛⎭⎪⎫x 2x +1-x +1 ÷x 2-1x 2+2x +1,再从-1,0,1中选择合适的x 值代入求值.解:原式=x 2-(x 2-1)x +1 ÷(x +1)(x -1)(x +1)2=1x +1 ·x +1x -1 =1x -1. ∵x ≠±1,∴只能取x =0. 当x =0时,原式=-1.15.(2020·潍坊中考)先化简,再求值:⎝ ⎛⎭⎪⎪⎫1-x +1x 2-2x +1 ÷x -3x -1 ,其中x 是16的算术平方根.解:原式=x 2-2x +1-(x +1)x 2-2x +1 ÷x -3x -1 =x 2-3x x 2-2x +1 ·x -1x -3=x (x -3)(x -1)2 ·x -1x -3 =x x -1. ∵x 是16的算术平方根,∴x =4. 当x =4时,原式=43 .16.已知:1a -1b =13 ,则abb -a 的值是( C )A .13B .-13 C .3 D .-317.若多项式5x 2+17x -12可分解因式成(x +a )(bx +c ),其中a ,b ,c 均为整数,则a +c 的值为AA .1B .7C .11D .1318.(2020·内江中考)分解因式:b 4-b 2-12=(b +2)(b -2)(b 2+3). 19.(2020·南充中考)若x 2+3x =-1,则x -1x +1=-2.20.(2020·济宁中考)已如m +n =-3,则分式m +n m ÷⎝ ⎛⎭⎪⎫-m 2-n 2m -2n 的值是13 .21.先化简,再求值:(x -1)÷⎝ ⎛⎭⎪⎫2x +1-1 ,其中x 为方程x 2+3x +2=0的根.解:原式=(x -1)÷2-x -1x +1 =(x -1)·x +1-(x -1) =-x -1.解x 2+3x +2=0,得x 1=-2,x 2=-1. ∵x =-1时,2x +1 无意义,∴x =-2.当x =-2时,原式=-(-2)-1=1.22.先化简,再求值:⎝ ⎛⎭⎪⎫2m -1n ÷⎝ ⎛⎭⎪⎫m 2+n 2mn -5n m ·⎝ ⎛⎭⎪⎫m 2n +2n m +2 ,其中m +1 +(n -3)2=0.解:原式=2n -m mn ÷m 2+n 2-5n 2mn ·m 2+4n 2+4mn2mn =2n -m mn ·mn (m +2n )(m -2n ) ·(m +2n )22mn=-m +2n 2mn .∵m +1 +(n -3)2=0,∴m +1=0,n -3=0,即m =-1,n =3. ∴-m +2n 2mn =--1+2×32×(-1)×3 =56 .∴原式的值为56 .23.(2020·黔西县模拟)先化简,再求值:x 2x 2-1 ÷⎝ ⎛⎭⎪⎫1x -1+1 ,其中x 为整数且满足不等式组⎩⎪⎨⎪⎧x -1>1,5-2x ≥2.解:原式=x 2x 2-1 ÷1+x -1x -1=x 2(x +1)(x -1) ·x -1x=x x +1. 解不等式组⎩⎪⎨⎪⎧x -1>1,5-2x ≥-2, 得2<x ≤72 .其整数解为x =3.当x =3时,原式=33+1 =34.。

代数式、整式、分式、因式分解精选训练题

代数式、整式、分式、因式分解精选训练题

代数式、整式、分式、因式分解精选训练题一、选择题1.计算12-的值为( ) A .2B .12C .2-D .1-2.计算:11()(6-= ) A .6-B .6C .16-D .163.下列各式从左到右的变形为分解因式的是( ) A .32321836x y x y =B .2(2)(3)6m m m m +-=--C .289(3)(3)8x x x x x +-=+-+D .26(2)(3)m m m m --=+-4.计算211x xx x--÷的结果是( ) A .2x B .2x -C .xD .x -5.如果1(0.1)a -=-,0(2022)b =-,23()2c -=-,那么a 、b 、c 三个数的大小为()A .b c a >>B .c b a >>C .b a c >>D .c a b >>6.单项式232x y-的系数和次数分别是( )A .3-,2B .12-,3C .32-,2D .32-,37.下列计算正确的是( ) A .22(3)9a a +=+ B .222(9)189x y x xy y -=-+ C .22(23)469a a a +=++D .222()2x y x xy y -+=-+8.若关于x 的多项式2(2)(24)x ax x ++-展开合并后不含2x 项,则a 的值是( ) A .0B .12C .2D .2-9.已知多项式2ax bx c ++,其因式分解的结果是(1)(4)x x +-,则abc 的值为()A .12B .12-C .6D .6-10.下列等式中,从左到右的变形是因式分解的是( ) A .2(2)2x x x x +=+ B .22(3)69x x x -=-+ C .211()x x x x+=+D .29(3)(3)x x x -=+-11.下列四个式子中在有理数范围内能因式分解的是( ) A .21x +B .2x x +C .221x x +-D .21x x -+12.下列从左边到右边的变形,属于因式分解的是( ) A .2(2)(3)6x x x x -+=+- B .2(2)24x x -=- C .24414(1)1x x x x -+=-+D .3(1)(1)x x x x x -=-+13.下列各式中.是因式分解的是( ) A .292(9)2m m m m -+=-+ B .3()33m n m n +=+ C .2244(2)m m m ++=+D .2223623(2)m m m m --=-+14.下列分式的变形正确的是( )A .33a ab b +=+B .22a a b b=C .2a ab b b =D .a aa b a b-=-++ 15.如果分式1xx +有意义,那么x 的取值范围( ) A .0x ≠ B .1x ≠ C .1x =- D .1x ≠-16.若分式中22aba W+的a 和b 都扩大3倍,且分式的值不变,则W 可以是( ) A .3B .bC .2bD .3b17.下列分式是最简分式的是( ) A .93b aB .22aba bC .a ba b+- D .2aa ab- 18.计算32(3)x y -的结果是( ) A .329x yB .629x yC .326x yD .626x y -19.若2(3)(5)15x x x mx -+=+-,则m 的值为( )A .8-B .2C .2-D .5-20.在下列计算中,正确的是( ) A .4482a a a ⋅=B .236(2)8a a -=-C .347a a a +=D .623a a a ÷=21.下列计算正确的是( ) A .2221x x -= B .22234a a a -+=-C .3(1)31a a +=+D .2(1)22x x -+=--22.若29x mx ++是完全平方式,则m 的值是( ) A .3±B .6-C .6D .6±23.单项式24m n-的系数和次数是( )A .系数是14,次数是3B .系数是14-,次数是3C .系数是14-,次数是2D .系数是3,次数是14-24.一个多项式与221x x +-的和是32x +,则这个多项式为( ) A .251x x -++B .23x x -++C .251x x ++D .23x x --25.下列多项式中,能进行因式分解的是( ) A .22x y +B .32x y x y +C .x y +D .1y +26.下列多项式,能用平方差公式分解的是( ) A .224x y -+B .2294x y +C .22(2)x y +-D .224x y --27.下列等式中,从左到右的变形是因式分解的是( ) A .2(3)(3)9x x x +-=- B .22(2)44x x x +=++ C .2(3)(5)215x x x x -+=+-D .222469(23)x xy y x y -+=-28.将下列多项式因式分解,结果中不含有3x +因式的是( ) A .29x -B .23x x +C .269x x -+D .269x x ++29.多项式2224333126x y x y x y --的公因式是( )A .223x y zB .22x yC .223x yD .323x y z30.下列式子运算结果为1x +的是( )A .2211x x x x -⋅+ B .11x- C .2211x x x +++D .111x x x +÷- 31.下列选项中最简分式是( )A .23x x x+B .224x C .211x x +- D .211x + 32.若234a b c ==,且0abc ≠,则32a bc a+-的值是( ) A .2B .2-C .3D .3-33.下列式子:33,,,21x y a xx a π++,其中是分式的是( ) A .4个 B .3个 C .2个 D .1个34.下列各式中,运算正确的是( )A .11223x x x +=B .2112111x x x +=+-- C .2642142y x x y y⋅=D .221323y xy x y÷=35.下列运算正确的是( ) A .222a a a +=B .235a a a ⋅=C .236(2)8a a -=D .222()a b a b +=+36.下列计算正确的是( ) A .2222a a a ⋅= B .321a a a-⋅= C .235()a a =D .222()a b a ab b -=++37.下列变形中,从左到右不是因式分解的是( ) A .22(2)x x x x -=- B .2221(1)x x x ++=+ C .24(2)(2)x x x -=+-D .22(1)x x x+=+38.若多项式2x bx c ++因式分解的结果为(2)(3)x x -+,则b c +的值为( ) A .5-B .1-C .5D .639.已知223A x x =--,2234B x x =-+,则A B -等于( ) A .21x x --B .21x x -++C .2357x x --D .27x x -+-40.已知23x y -=,则代数式221744x xy y -++的值为( ) A .434B .134C .3D .4二、填空题41.多项式23223x y xy y --+的次数是 .42.已知2b a=,则2222444a ab b a b ++=- .43.若210y y m ++是一个完全平方式,则m = . 44.单项式232x y -的系数为 . 45.若分式2xx-有意义,则x 的取值范围是 . 46.计算:223()2a b ---= . 47.若分式242a a -+的值为零,则a 的值是 .48.因式分解22mx mx m ++= .49.若2610x x -+=,则242461x x x =++ .50.分解因式:2327a -= . 三、解答题51.计算:2213[4.5(3)2]2x x x x ---+.52.先化简,再求值:23(2)[15(2)]a a b a b -----,其中1a =,5b =-.53.因式分解:(1)2()6()m a b n a b ---;(2)222(91)36a a +-;(3)222(5)8(5)16x x -+-+.54.因式分解: (1)229a b -;(2)22242a ab b -+.55.计算:(1)22()()x x y x y -++;(2)[(2)2()()]y x y x y x y x --+-÷;56.先化简,再求值:228(2)22x xx x x x +÷+---,其中1x =.57.先化简,再求值:23211(1)x x x x---÷,其中20x x -.。

初中:分式、因式分解

初中:分式、因式分解

复习1、(2019湖北随州,第25题,3分)【答案】【思路分析】观察F-t图像和v-t图像,找出在这三个两秒当中,物体的运动状态和受到的推力,再根据当物体处于静止状态或匀速直线运动状态时受平衡力,可得出摩擦力的大小。

利用公式W= Fs计算做功的大小,利用P=W/t计算功率的大小。

【解题过程】A. 由v-t图像可知,在第一个2s内木箱处于静止状态;再由F-t图像可知,第一个2s内木箱受到的推力为1N,因此,推力与摩擦力平衡,则摩擦力也为1N,故A错误;B. 由v-t图像可知,在第三个2s内木箱处于匀速直线状态;再由F-t图像可知,第三个2s内木箱受到的推力为2N,因此,推力与摩擦力平衡,则摩擦力也为2N。

在第二个2s 内,木箱处于加速状态,但压力和接触面的粗糙程度不变,所以摩擦力不变,仍为2N,故B错误;C. 在第一个2s内木箱处于静止状态,有力无距离,因此,推力F不做功;D. 在第三个2s内,木箱移动的距离:s=vt=4m/s×2s=8m,F对木箱做的功为:W=Fs=2N×8m=16J,F做功的功率:P=W/t=16J/2s=8W, 故D正确。

【知识点】力与图像的结合,功的计算,功率的计算,速度公式的运用,摩擦力的影响因素,二力平衡的运用2.(2019山东省潍坊市,题号25,分值11)庆祝中国人民解放军海军成立70周年海上阅兵活动在青岛附近海域举行,图中093改进型攻击核潜艇于2019年4月27日公开亮相,进行了战略巡航。

该潜艇最大核动力功率为2.8×104kW,完全下潜到海面下后的排水量为6.8×103t(取海水密度ρ=1×103kg/m3、g=10N/kg)。

问:(1)该潜艇悬浮时,其上一面积为0.05m2的整流罩距海面深度为200m,此时整流罩受到海水的压力为多少?(2)若最大核动力功率转化为水平推力功率的效率为80%,该潜艇在海面下以最大核动力功率水平巡航时,受到的水平推力为1.6×106N,此时潜艇的巡航速度为多少?(3)该潜艇浮出海面处于漂浮时,露出海面的体积为1.5×103m3,此时潜艇的总重量是多少?【答案】(1)1×105N;(2)14m/s;(3)5.3×107N。

分解因式分式练习题

分解因式分式练习题

分解因式是代数学中非常重要的一个概念,也是解题的基础。

在分解因式的过程中,我们将一个复杂的分式表达式拆分为简单的因式相乘形式,以便更好地进行计算和理解。

在这篇文档中,我们将提供一些分解因式分式的练习题,帮助你巩固对分解因式的理解和运用。

1. 分解下列分式:a) (x+2)/(x^2-4)解答:首先,我们可以将分子和分母分别进行因式分解。

分子x+2不可约,而分母可以分解成(x+2)(x-2)。

因此,原式可以写为:(x+2)/[(x+2)(x-2)]最后,我们可以约去相同的因子(x+2),得到简化后的分式:1/(x-2)b) (4x^3-8)/(x^2-x)解答:对于分子,我们可以提取公因子4,得到4(x^3-2)。

对于分母,我们可以将其分解成x(x-1)。

因此,原式可以写为:4(x^3-2)/(x(x-1))在这个分式中,我们无法进一步约分。

2. 分解下列分式为部分分式的形式:a) (3x^2+5)/(x^3-x)解答:首先,我们需要确保分子的次数小于分母的次数。

在这种情况下,我们需要进行长除法的运算:(3x^2+5)/(x^3-x) = 0 + (3x^2+5)/(x^3-x)接下来,我们将分子进行因式分解,可得:(3x^2+5)/(x^3-x) = 0 + (3x^2+5)/(x(x-1))将这个分式拆分成两个部分分式:(3x^2+5)/(x(x-1)) = A/x + B/(x-1)其中A和B是待定系数。

使用通分的方法,化简上述等式,可得:(3x^2+5)/(x(x-1)) = (A(x-1) + Bx)/(x(x-1))比较等式两边的系数,我们可以得到下面的方程组:3x^2 + 5 = (A(x-1) + Bx)3x^2 + 5 = (A + B)x - Ax + A通过比较系数,我们可以得到:3x^2 = Ax + Bx (系数相等)5 = -Ax + A (常数项相等)解这个方程组,我们可以得到A = 5/2 和 B = -3/2。

专题4因式分解与分式-2021年中考数学真题分项汇编(解析版)【全国通用】(第02期) (1)

专题4因式分解与分式-2021年中考数学真题分项汇编(解析版)【全国通用】(第02期) (1)

2021年中考数学真题分项汇编【全国通用】(第02期)专题4因式分解与分式姓名:__________________ 班级:______________ 得分:_________________一、单选题1.(2021·广西贺州市·中考真题)多项式32242x x x -+因式分解为( ) A .()221x x - B .()221x x +C .()221x x -D .()221x x +【答案】A 【分析】先提取公因式2x ,再利用完全平方公式将括号里的式子进行因式分解即可 【详解】解:32242x x x -+()()2222121x x x x x =-+=-故答案选:A . 【点睛】本题考查了提公因式法和公式法进行因式分解.正确应用公式分解因式是解题的关键. 2.(2021·内蒙古呼伦贝尔市·中考真题)下列等式从左到右变形,属于因式分解的是( ) A .1212a a a ⎛⎫-=-⎪⎝⎭B .22()()a b a b a b +-=-C .2221(1)x x x -+=-D .268(6)8x x x x ++=++【答案】C 【分析】根据因式分解的定义解答. 【详解】解:1212a a a ⎛⎫-=-⎪⎝⎭中1a不是整式,故A 选项不符合题意; 22()()a b a b a b +-=-是整式乘法计算,故B 选项不符合题意; 2221(1)x x x -+=-是因式分解,故C 选项符合题意;268(6)8x x x x ++=++不是分解为整式的乘积形式,故D 选项不符合题意;故选:C . 【点睛】此题考查因式分解的定义:将一个多项式写成几个整式的积的形式叫做将多项式分解因式,熟记定义是解题的关键.3.(2021·广西玉林市·中考真题)观察下列树枝分杈的规律图,若第n 个图树枝数用n Y 表示,则94Y Y -=( )A .4152⨯B .4312⨯C .4332⨯D .4632⨯【答案】B 【分析】根据题目中的图形,可以写出前几幅图中树枝分杈的数量,从而可以发现树枝分杈的变化规律,进而得到规律21nn Y =-,代入规律求解即可.【详解】 解:由图可得到:11223344211213217211521n n Y Y Y Y Y =-==-==-==-==-则:9921Y =-,∴944942121312Y Y -=--+=⨯,故答案选:B . 【点睛】本题考查图形规律,解答本题的关键是明确题意,利用数形结合的思想解答. 4.(2021·内蒙古中考真题)下列运算结果中,绝对值最大的是( )A .1(4)+-B .4(1)-C .1(5)--D【答案】A 【分析】计算各个选项的结果的绝对值,比较即知. 【详解】∴1+(−4)=−3,(-1)4=1,(-5)-1=15-2= 而33-=,11=,1155-=,22=,且13215>>> ∴1(4)+-的绝对值最大 故选:A . 【点睛】本题考查了实数的运算、实数的绝对值等知识,掌握实数的运算法则是关键. 5.(2021·内蒙古呼和浩特市·中考真题)下列计算正确的是( )A .224347a a a +=B 11a= C .31812()42-+÷-=D .21111a a a a --=-- 【答案】D 【分析】根据有理数、整式、分式、二次根式的运算公式运算验证即可. 【详解】222347a a a +=,故A 错;当a >011a =,当a <011a=-,故B 错; 31812()262-+÷-=-,故C 错;21111a a a a --=--,D 正确;故选:D . 【点睛】本题主要考查了有理数、整式、分式、二次根式的运算,熟记运算定理和公式是解决问题的额关键. 6.(2021·黑龙江大庆市·中考真题)已知0b a >>,则分式a b 与11a b ++的大小关系是( ) A .11a ab b +<+ B .11a ab b +=+ C .11a ab b +>+ D .不能确定【答案】A 【分析】将两个式子作差,利用分式的减法法则化简,即可求解. 【详解】解:()()()()111111a b b a a a a bb b b b b b +-++--==+++,∴0b a >>,∴()1011a a a b b b b b +--=<++, ∴11a ab b +<+, 故选:A . 【点睛】本题考查分式的大小比较,掌握作差法是解题的关键.7.(2021·山东济宁市·中考真题)计算2454(1)a a a a a--÷+-的结果是( )A .22a a +-B .22a a -+C .()()222a a a-+ D .2a a+ 【答案】A 【分析】根据分式的混合运算法则进行计算,先算小括号里面的加减,后算乘除,即可求得结果. 【详解】解:2454(1)a a a a a--÷+-24(1)(54)a a a a a a -+--=÷()()22254a a a a a aa+-+-+=÷()()()2222a a aa a +-=⋅-22a a +=-. 故选:A . 【点睛】本题考查了分式的混合运算,熟练掌握分式的混合运算的运算顺序和计算法则是解题的关键.8.(2021·黑龙江绥化市·中考真题)定义一种新的运算:如果0a ≠.则有2||a b a ab b -=++-▲,那么1()22-▲的值是( ) A .3- B .5C .34-D .32【答案】B 【分析】根据题意列出算式,求解即可 【详解】2||a b a ab b -=++-▲2111()2=()()2|2|222-∴--+-⨯+-▲412=-+=5.故选B . 【点睛】本题考查了新定义运算、负指数幂的运算,绝对值的计算,解决本题的关键是牢记公式与定义,本题虽属于基础题,但其计算中容易出现符号错误,因此应加强符号运算意识,提高运算能力与技巧等.9.(2021·河北中考真题)由1122c c +⎛⎫- ⎪+⎝⎭值的正负可以比较12c A c +=+与12的大小,下列正确的是( )A .当2c =-时,12A =B .当0c时,12A ≠C .当2c <-时,12A > D .当0c <时,12A <【答案】C 【分析】 先计算1122c c +⎛⎫-⎪+⎝⎭的值,再根c 的正负判断1122c c +⎛⎫- ⎪+⎝⎭的正负,再判断A 与12的大小即可.【详解】 解:11=224+2c cc c+-+, 当2c =-时,20c +=,A 无意义,故A 选项错误,不符合题意;当0c时,04+2c c=,12A =,故B 选项错误,不符合题意;当2c <-时,04+2c c>,12A >,故C 选项正确,符合题意; 当20c -<<时,04+2c c <,12A <;当2c <-时,04+2c c>,12A >,故D 选项错误,不符合题意; 故选:C . 【点睛】本题考查了分式的运算和比较大小,解题关键是熟练运用分式运算法则进行计算,根据结果进行准确判断.10.(2021·黑龙江绥化市·0在实数范围内有意义,则x 的取值范围是( )A .–1x >B .1x ≥-且0x ≠C .1x >-且0x ≠D .0x ≠【答案】C 【分析】在实数范围内有意义,必须保证根号下为非负数,分母不能为零,零指数幂的底数也不能为零,满足上述条件即可. 【详解】在实数范围内有意义,必须同时满足下列条件:10x +≥0≠,0x ≠,综上:1x >-且0x ≠, 故选:C . 【点睛】本题主要考查分式有意义的条件,二次根式有意义的条件,零指数幂有意义的条件,当上述式子同时出现则必须同时满足.11.(2021·江苏南京市·中考真题)计算()323a a -⋅的结果是( )A .2aB .3aC .5aD .9a【答案】B 【分析】直接利用幂的乘方和同底数幂的乘法法则进行计算即可. 【详解】解:原式=633·a a a -=; 故选:B . 【点睛】本题考查了幂的乘方和同底数幂的运算法则,其中涉及到了负整数指数幂等知识,解决本题的关键是牢记相应法则,并能够按照正确的运算顺序进行计算即可,本题较为基础,考查了学生的基本功.二、填空题12.(2021·山东东营市·中考真题)因式分解:244a b ab b -+=________. 【答案】()221b a - 【分析】先提取公因式b ,再利用完全平方公式将括号里的式子进行因式分解即可. 【详解】解:()()2224444121a b ab b b a a b a -+=-+=-故答案为:()221b a - 【点睛】本题考查了提公因式法和公式法进行因式分解.正确应用公式分解因式是解题的关键.13.(2021·内蒙古中考真题)因式分解:24ax ax a ++=_______.【答案】2(1)2x a + 【分析】首先将公因式a 提出来,再根据完全平方公式进行因式分解即可. 【详解】222(1)(1)442ax x xax a a x a ++=++=+, 故填:2(1)2xa +. 【点睛】本题考查提公因式因式分解,公式法因式分解,解题关键是掌握因式分解的方法:提公因式因式分解和公式法因式分解.14.(2021·广东中考真题)若1136x x +=且01x <<,则221x x-=_____. 【答案】6536- 【分析】 根据1136x x +=,利用完全平方公式可得2125()36x x -=,根据x 的取值范围可得1x x-的值,利用平方差公式即可得答案. 【详解】∴1136x x +=, ∴2211125()()436x x x x x x -=+-⋅=,∴01x <<, ∴1x x<,∴1x x -=56-,∴221x x -=11()()x x x x +-=135()66⨯-=6536-,故答案为:6536- 【点睛】本题考查了完全平方公式及平方差公式,准确运用公式是解题的关键.15.(2021·山东威海市·中考真题)分解因式:32218x xy -=________________.【答案】()()233x x y x y +- 【分析】先提公因式,再利用平方差公式即可分解. 【详解】解:()()()322221829=233x xy x x yx x y x y -=-+-.故答案为:()()233x x y x y +- 【点睛】本题考查了整式的因式分解,因式分解的一般步骤是“一提二看三检查”,熟知提公因式法和乘法公式是解题关键.16.(2021·湖北中考真题)分解因式:4255x x -=________. 【答案】25(1)(1)x x x +- 【分析】先提取公因式25x ,再利用平方差公式进行因式分解即可得. 【详解】解:原式225(1)x x -=,25(1)(1)x x x +=-,故答案为:25(1)(1)x x x +-. 【点睛】本题考查了综合利用提公因式法和公式法进行因式分解,熟练掌握因式分解的方法是解题关键.17.(2021·黑龙江绥化市·中考真题)在实数范围内分解因式:22ab a -=_________.【答案】(a b b +. 【分析】利用平方差公式22()()a b a b a b -=+-分解因式得出即可. 【详解】 解:22ab a - =2(2)a b -=(a b b +-故答案为:(a b b +-. 【点睛】此题主要考查了利用平方差公式22()()a b a b a b -=+-分解因式,熟练应用平方差公式是解题关键. 18.(2021·浙江温州市·中考真题)分解因式:2218m -=______. 【答案】()()233m m +- 【分析】原式提取2,再利用平方差公式分解即可. 【详解】 解:2218m - =2(m 2-9) =2(m +3)(m -3).故答案为:2(m +3)(m -3). 【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.19.(2021·北京中考真题)分解因式:2255x y -=______________.【答案】()()5x y x y +- 【分析】根据提公因式法及平方差公式可直接进行求解.解:()()()22225555x y x yx y x y -=-=+-;故答案为()()5x y x y +-. 【点睛】本题主要考查因式分解,熟练掌握因式分解的方法是解题的关键. 20.(2021·贵州铜仁市·中考真题)要使分式1xx +有意义,则x 的取值范围是______________; 【答案】1x ≠- 【分析】根据分式有意义的条件:分母不等于0,即可求得 【详解】 要使分式1xx +有意义 则10x +≠ 1x ∴≠-故答案为:1x ≠-. 【点睛】本题考查了分式有意义的条件,分式有意义的条件:分母不等于0,理解分式有意义的条件是解题的关键.21.(2021·湖北荆州市·中考真题)已知:(1012a -⎛⎫=+ ⎪⎝⎭,b ==_____________. 【答案】2 【分析】利用负整数指数幂和零指数幂求出a 的值,利用平方差公式,求出b 的值,进而即可求解. 【详解】解:∴(112213a -⎛⎫=+ =⎪+⎝=⎭,221b ==-=,=2=,故答案是:2.本题主要考查二次根式求值,熟练掌握负整数指数幂和零指数幂以及平方差公式,是解题的关键.22.(2021·黑龙江绥化市·中考真题)当3x =时,代数式22319()369x x x x x x x x+---÷--+的值是____. 【答案】12021【分析】先根据分式的加减乘除运算法则化简,然后再代入x 求值即可. 【详解】 解:由题意可知: 原式231()9(33)x x x xx x x ⎡⎤+-=-⨯⎢⎥--⎣⎦- 22(3)(3)((1)(3))93x x x x xx x x x x ⎡⎤+--=-⨯⎢⎥--⎣⎦- ()222993x x x xx x x --+=⨯-- 2(3)99x xx x x =⨯--- 21(3)x =-,当3x =时,原式12021==, 故答案为:12021. 【点睛】本题考查了分式的加减乘除混合运算,属于基础题,运算过程中细心即可求解. 23.(2021·福建中考真题)已知非零实数x ,y 满足1xy x =+,则3x y xy xy-+的值等于_________. 【答案】4 【分析】由条件1xy x =+变形得,x -y =xy ,把此式代入所求式子中,化简即可求得其值. 【详解】 由1xy x =+得:xy +y =x ,即x -y =xy ∴3344x y xy xy xy xyxy xy xy-++===故答案为:4 【点睛】本题是求代数式的值,考查了整体代入法求代数式的值,关键是根据条件1xy x =+,变形为x -y =xy ,然后整体代入.三、解答题24.(2021·四川宜宾市·中考真题)(1)计算:11(3)4sin 602π-⎛⎫-- ⎪⎝⎭; (2)化简:2221121a aa a a ⎛⎫++÷ ⎪-⎝⎭-+. 【答案】(1)-1;(2)1a a- 【分析】(1)先算零指数幂,化简二次根式,锐角三角函数以及负整数指数幂,再算加减法即可求解; (2)先算分式的加法,再把除法化为乘法,进行约分,即可求解. 【详解】解:(1)原式=1422-⨯-=12- =-1;(2)原式=()a a a a a -+-⋅-+21211(1)=()a a a a a -+⋅-+2111(1)=1a a-. 【点睛】本题主要考查实数的混合运算,分式的混合运算,熟练掌握负整数指数幂,零指数幂,二次根式的性质,锐角三角函数值以及分式的运算法则,是解题的关键.25.(2021·黑龙江鹤岗市·中考真题)先化简,再求值:22211a a a a a ⎫⎛-÷⎪ +-⎝⎭,其中2cos601a =︒+. 【答案】1a a -;12【分析】根据分式的混合运算法则进行化简,再结合特殊角的三角函数值求出a 的值,再代入求解即可. 【详解】解:原式22(1)1(1)(1)a a a a a a a +-=÷++- 2(1)(1)1a a a a a +-=⨯+ 1a a-=;当12cos6012122a =︒+=⨯+=时, 原式121122a a --===. 【点睛】本题主要考查分式的化简求值问题,掌握运算法则与顺序,熟记特殊角的三角函数值是解题关键.26.(2021·黑龙江齐齐哈尔市·中考真题)(1)计算:()201 3.144cos 4512π-⎛⎫-+-+︒-- ⎪⎝⎭.(2)因式分解:3312xy xy -+.【答案】(1)6+(2)3(2)(2)xy y y -+- 【分析】(1)先计算乘方、特殊三角函数值、绝对值的运算,再利用四则运算法则计算即可; (2)先提取公因式,再利用平方差公式分解因式即可. 【详解】(1)解:原式4141)=++-411=++6=(2)解:原式23(4)xy y =--3(2)(2)xy y y =-+-【点睛】本题考查的是实数的运算、因式分解,熟练运用乘方公式、特殊三角函数值、绝对值、正确提取公因式等是解题的关键.27.(2021·江苏盐城市·中考真题)先化简,再求值:21111m m m -⎛⎫+ ⎪-⎝⎭,其中2m =. 【答案】1m +,3 【分析】先通分,再约分,将分式化成最简分式,再代入数值即可. 【详解】 解:原式11(1)(1)1m m m m m-+-+=⋅- (1)(1)1m m m m m-+=⋅- 1m =+.∴2m =∴原式213=+=. 【点睛】本题考查分式的化简求值、分式的通分、约分,正确的因式分解将分式化简成最简分式是关键.28.(2021·湖北中考真题)(1)计算:0(346)-⨯-++(2)解分式方程:212112xx x+=--. 【答案】(1)8;(2)1x =. 【分析】(1)先计算零指数幂、去括号、立方根、化简二次根式,再计算实数的混合运算即可得;(2)先将分式方程化成整式方程,再解一元一次方程即可得. 【详解】解:(1)原式1462⨯--+=44=+,8=;(2)212112xx x+=--, 方程两边同乘以21x -得:221x x -=-, 移项、合并同类项得:33x -=-, 系数化为1得:1x =,经检验,1x =是原分式方程的解, 故方程的解为1x =. 【点睛】本题考查了零指数幂、立方根、化简二次根式、解分式方程,熟练掌握各运算法则和方程的解法是解题关键.29.(2021·山东威海市·中考真题)先化简2211(1)369a a a a a a -+--÷--+,然后从1-,0,1,3中选一个合适的数作为a 的值代入求值.【答案】2(a -3),当a =0时,原式=-6;当a =1时,原式=-4. 【分析】先根据分式的混合运算顺序和运算法则化简原式,再根据分式有意义的条件确定a 的值,继而代入计算可得答案. 【详解】2211(1)369a a a a a a -+--÷--+ =()()()221311333a a a a a a a +-⎡⎤-+-÷⎢⎥---⎣⎦ =()2223123331a a a a a a a -⎛⎫----⋅ ⎪--+⎝⎭=()222312331a a a a a a ---++⋅-+ =()()221331a a a a +-⋅-+=2(a -3), ∴a ≠3且a ≠-1, ∴a =0,a =1,当a =0时,原式=2×(0-3)=-6; 当a =1时,原式=2×(1-3)=-4. 【点睛】本题考查了分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.30.(2021·黑龙江中考真题)先化简,再求值:22211a a a a a ⎫⎛-÷⎪ +-⎝⎭,其中2tan45a =︒+1. 【答案】1a a -,23【分析】先去括号,然后再进行分式的化简,最后代值求解即可. 【详解】解:原式=2222111a a a a a a a a+---⨯=+, ∴2tan45a =︒+1, ∴2113a =⨯+=, 代入得:原式=31233-=. 【点睛】本题主要考查分式的化简求解及特殊三角函数值,熟练掌握分式的化简求解及特殊三角函数值是解题的关键.31.(2021·江苏无锡市·中考真题)计算: (1)31(2)sin 302;(2)482a a a. 【答案】(1)9;(2)12- 【分析】(1)先算绝对值,乘方和特殊角三角函数值,再算加减法,即可求解; (2)先通分化成同分母减法,进而即可求解. 【详解】 解:(1)原式=11(8)22=9; (2)原式=8822a a a=882a a =2a a - =12-.【点睛】本题主要考查实数的混合运算以及分式的减法运算,掌握特殊角三角函数以及分式的通分,是解题的关键. 32.(2021·内蒙古通辽市·中考真题)先化简,再求值:2212(1)121x x x x x x +++-÷+++,其中x 满足220x x --=. 【答案】x (x +1);6 【分析】先求出方程220x x --=的解,然后化简分式,最后选择合适的x 代入计算即可. 【详解】解:∴220x x --= ∴x =2或x =-1 ∴2212(1)121x x x x x x +++-÷+++ =()221212()111x x x x x x +++÷+++-=()2()11x x ÷++ =()()22112x x x x x ++⨯++=x (x +1)∴x =-1分式无意义,∴x =2当x =2时,x (x +1)=2×(2+1)=6. 【点睛】本题主要考查了分式的化简求值、分式有意义的条件以及解一元二次方程等知识点,化简分式是解答本题的关键,确定x 的值是解答本题的易错点.33.(2021·山东东营市·中考真题)(1()()202120213tan 302π180.125︒--+⨯-.(2)化简求值:2224224n m mn m n n m n m +++--,其中15m n =.【答案】(1)2;(2)211,29n m n m +-. 【分析】(1)先化简二次根式、特殊角的正切三角函数、化简绝对值、零指数幂、积的乘方的逆用,再计算实数的混合运算即可得;(2)先计算分式的加法运算,再根据15m n =得出5n m =代入求值即可得. 【详解】解:(1)原式(20211321838⎛⎫=⨯-++-⨯ ⎪⎝⎭,211=+-,2=;(2)原式()()()()222422n n m m n m mnn m n m -+++=+-,()()22422422n mn mn m mn n m n m -+++=+-,()()22n m n m =+-, ()()()2222n m n m n m +=+-, 22n mn m +=-,∴15m n =, ∴5n m =, ∴原式1010119m m m m +=-=.【点睛】本题考查了化简二次根式、特殊角的正切三角函数、零指数幂、分式的化简求值等知识点,熟练掌握各运算法则是解题关键.34.(2021·湖南中考真题)先化简,再求值:23219aa a ⎛⎫+⋅ ⎪-⎝⎭,其中2a =. 【答案】23a -,2-. 【分析】先计算括号内的分式加法,再计算分式的乘法,然后将2a =代入求值即可得. 【详解】 解:原式32(3)(3)a a a a a a ⎛⎫+⋅+=⎪-⎝⎭, 32(3)(3)a a a a a +=+⋅-, 23a =-, 将2a =代入得:原式222323a ===---. 【点睛】本题考查了分式的化简求值,熟练掌握分式的运算法则是解题关键. 35.(2021·湖南娄底市·中考真题)先化简,再求值:23210119x x x x --⎛⎫⋅- ⎪--⎝⎭,其中x 是1,2,3中的一个合适的数. 【答案】13x x -+,15. 【分析】先计算括号内的异分母分式减法,再计算乘法,最后将可选取的x 值代入计算即可. 【详解】 解:23210119x x x x --⎛⎫⋅- ⎪--⎝⎭2392101(3)(3)(3)(3)x x x x x x x x ⎡⎤---=⋅-⎢⎥-+-+-⎣⎦23211(3)(3)x x x x x x --+=⋅-+- 23(1)1(3)(3)x x x x x --=⋅-+- 13x x -=+, ∴1x ≠,3x ≠±, ∴2x =, 原式211235-==+. 【点睛】本题考查了分式的化简求值,正确掌握分式的混合运算法则及确定字母的可取数值是解题的关键.36.(2021·湖南娄底市·中考真题)计算:101)2cos 452π-⎛⎫+-︒ ⎪⎝⎭. 【答案】2 【分析】直接利用零指数幂,二次根式分母有理化、负整数指数幂、特殊角的三角函数值计算即可. 【详解】解:11)2cos 452π-⎛⎫+-︒ ⎪⎝⎭1222=+-⨯112=++2=.【点睛】本题考查了零指数幂,二次根式分母有理化、负整数指数幂、特殊角的三角函数值的运算法则,解题的关键是:掌握相关的运算法则.37.(2021·湖南张家界市·中考真题)先化简2222424421a a a aa a a a a ---++++-÷,然后从0,1,2,3中选一个合适的a 值代入求解. 【答案】2a ,6 【分析】将分子、分母因式分解除法转化为乘法,约分、合并同类项,选择合适的值时,a 的取值不能使原算式的分母及除数为0. 【详解】 解:原式()2(2)(2)(2)(1)212a a a a a a a a a -++-=⨯+--+ 2a =因为a =0,1,2时分式无意义,所以3a = 当3a =时,原式6= 【点睛】本题考查了分式的化简求值,关键是先化简,后代值,注意a 的取值不能使原算式的分母及除数为0.38.(2021·湖北鄂州市·中考真题)先化简,再求值:2293411x x x x x x-+÷+--,其中2x =.【答案】1x x +,32【分析】先通过约分、通分进行化简,再把给定的值代入计算即可. 【详解】 解:原式()()()313341x x x x x xx -=⨯++--+1x x+=, 当2x =时,原式32=. 【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握因式分解,正确进行约分、通分.39.(2021·广西玉林市·中考真题)先化简再求值:()2112a a a a -⎛⎫-+÷ ⎪⎝⎭,其中a 使反比例函数a y x =的图象分别位于第二、四象限. 【答案】1- 【分析】由题意易得0a <,然后对分式进化简,然后再求解即可. 【详解】解:∴a 使反比例函数ay x=的图象分别位于第二、四象限, ∴0a <,∴()2112a a a a -⎛⎫-+÷ ⎪⎝⎭=()22211a a a a a -+-⨯- =1-. 【点睛】本题主要考查反比例函数的图象与性质及分式的化简求值,熟练掌握反比例函数的图象与性质及分式的运算是解题的关键.40.(2021·山东聊城市·中考真题)先化简,再求值:22212211111a a a a a a a a +--⎛⎫+÷-- ⎪+--⎝⎭,其中a =﹣32. 【答案】21aa +;6 【分析】先把分式化简后,再把a 的值代入求出分式的值即可. 【详解】解:原式=22212(21)(1)(1)111a a a a a a a a a +---+-+÷+-- 2222122111a a a a aa a a +--+=+÷+-- 21111a a a +=-++ 21a a =+, 当32a =-时,原式=6.【点睛】本题考查了分式的化简求值,熟练分解因式是解题的关键.41.(2021·湖北荆州市·中考真题)先化简,再求值:2221211a a a a a ++⎛⎫÷+ ⎪--⎝⎭,其中a =【答案】1a a +,6【分析】先计算括号内的加法,然后化除法为乘法进行化简,继而把a =【详解】解:原式=()()21111a a a a a ++⎛⎫÷ ⎪--⎝⎭()()211=1+1a a a a a +-⎛⎫ ⎪-⎝⎭1=a a+当a =6 【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则.42.(2021·浙江衢州市·中考真题)先化简,再求值:2933x x x+--,其中1x =. 【答案】3x +;4 【分析】先将这两个分式转化为同分母的分式,再将分母不变,分子相加减,最后化简即可. 【详解】解:原式29(3)(3)333x x x x x x +-=-=--- 3x =+当1x =时,原式4=. 【点睛】本题考查了分式的化简求值问题,涉及到了分式的通分和约分,解决本题的关键是牢记相关概念与法则,并灵活运用,最后的结果记得化简即可.。

因式分解与认识分式测试题

因式分解与认识分式测试题

2023-2023学年度第一学期初三数学第4周测试(考试时间40分钟,总分值100分)班级姓名成绩一、选择题(每题3分,共18分.将你的答案填在后面的答题栏内)I.以下由左边到右边的变形,哪个是因式分解?()A.2πR+2πr=2π(R+r)B.a(a-b)=a2-abC.x+1=x(1÷-)D.-2«+1=a(a-2)+1X2 .假设多项式f一皿一35因式分解为(%-5)(尤+7),那么加的值是()A.2B.-2C.12D.-123 .以下各个分解因式中正确的选项是()A. 1Oab2C+6ac2+2ac=2ac(5b2+3c)B. (a-b)y-(b-a)2=(a-b)2(a-b+∖)C. x(bc-a)-y(a-b-c)-a+b-c=(b+c-a)(x+y-I)D. (a-2b)(3a+/?)-5(2b-a)2=(a-2b)(∖∖b-2d)4 .假设(-4+勿/=储一/,那么P等于()A.一α-Z?B.—a+bC.ci-bD.α+Z?-X+Z=(X-')2成立,那么女的值是(5.假设等式一A.1 B1 C1 D.±-2 4 44.把分式邛中的小〃都扩大到原来的3倍,那么分式的值()abC.缩小到原来的JD.不变二、填空题(每题3分,共12分)6 .如果二次三项式χ2+aγ-i 可分解为(无一2)(χ+Z?),那么4+力的值是.7 .(x 2-y 2),(x+y)2,(-2x-2y)的公因式是.8 .当机=时,关于X 的多项式4d +侬+J ■是完全平方式 49 .X=I 时分式叶殳无意义,x=4时分式的值为零,那么々+6=.x-a三、解答题(共70分)10 .用简便方法计算(每题5分,共20分):(1) 6.12+12.2×3.9+3.92;(2)5×20232-5×20232;⑶2023+20232-20232; (4)4.7×11.3+53×1.13-0.9×113.12.(1)22∞5+22(XM -22∞3能被5整除吗?为什么?(5分).(2) 20232+2×2023+1能被2023整除吗?为什么?(5分)13.把以下各式因式分解(每题5分,共20分):(1)(X-y)4+x(x-yf-y(x-y)3 (2)-√+8x 2-16;(3)(/??+2n)2-6m -12π+9;(4)(x+A)(x+G+1)+1 4 14.化简以下分式(每题5分,共10分):MX+3y)+y(y-x)(1) 4-x 2X 2-2X6(5分)JT二5+d+2χ+ι=o,求一二2'的值2y-xy 16.15分)x÷-=3,求f+,■的值.X X"。

因式分解与分式试卷(含答案)

因式分解与分式试卷(含答案)

因式分解及分式与分式方程测试题⒈下列约分正确的是( )A 、326x xx = B 、0=++y x y x C 、x xy x y x 12=++ D 、214222=y x xy2、下列各式中,不是分式方程的是( )111..(1)1111.1.[(1)1]110232x A B x x x xxx x C D x x x-=-+=-+=--=+-3.若对于3±=x 以外的一切数98332-=--+x xx n x m 均成立,则mn 的值是( ) (A )8 (B )8- (C )16 (D )16-A. 3B. 3C. 2 D .-25 (2012山东威海3分)化简22x 1+x 93x--的结果是( ) A. 1x 3- B. 1x+3 C. 13x - D. 23x+3x 9-6(2013年深圳市)小朱要到距家1500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,且在距离学校60米的地方追上了他。

已知爸爸比小朱的速度快100米/分,求小朱的速度。

若设小朱速度是x 米/分,则根据题意所列方程正确的是( )A.1014401001440=--x x B. 1010014401440++=x xC. 1010014401440+-=x xD. 1014401001440=-+xx7 (2012广西钦州3分)如果把5xx+y的x 与y 都扩大10倍,那么这个代数式的值( ) A .不变 B .扩大50倍 C .扩大10倍 D .缩小到原来的1108、已知0634=--z y x ,072=-+z y x (0≠xyz ),则22222275632zy x z y x ++++的值为( ) A 、0 B 、1 C 、2 D 、不能确定4.9、已知x 是整数,且918232322-++-++x x x x 为整数,则所有符合条件的x 的值的和为( )A 、12B 、15C 、18D 、2010 (2012湖北武汉3分)一列数a 1,a 2,a 3,…,其中a 1= 1 2,a n = 11+a n -1(n 为不小于2的整数),则a 4=( )A . 5 8B . 8 5C . 13 8D . 813选择题11、分式:1x-1 、1x-2的最简公分母为:____________________;12、若04322=--b ab a ,则ba的值是 。

因式分解与分式练习

因式分解与分式练习

专项训练:分式与因式分解1若16)3(22+-+x m x 是完全平方式,则m 的值等于_____,2 22)(n x m x x -=++则m =____n =____分解因式:1 、234352x x x --2 、 1144-+--n n n x x x3 、 22)2(4)2(25x y y x ---4、22414y xy x +--5、x x -56、)21(2)(222----x x x x7、2ax a b ax bx bx -++--2 8、16)4)(2(22-++-+x x x x9、24)4)(3)(2)(1(-++++x x x x 10、yz z y x z y x 4))((-+--+11、 122232++++-n n n x x x12、 2222224)(b a c b a --+ 13、2232xy y x x ---14、222912425b ab a y --- 15、 149422+--m n m 16、3223b ab b a a --+17、 y y x x ---2224 18、 15)7)(5)(2)(1(+++++x x x x19、 16)25)(65(22+-+++x x x x 20、 233222++-+-y x y xy x代数式求值1、 已知312=-y x ,2=xy ,求 43342y x y x -的值。

2、 若051294422=+-+-y y x x 求 y x 326+的值3、 已知2=+b a ,求)(8)(22222b a b a +--的值4、如果b a =2,则2222b a b ab a ++-=5、422-+y y = 6、若x+x 1=3 ,则x 2+21x = 7、)1(1--x x x =x1成立的条件是 8、已知2+x a 与2-x b 的和等于442-x x ,则a= , b = 9、分式方程3-x x +1=3-x m 有增根,则m= 10、已知a,b,c,d 是成比例线段,且a=4cm, b=3cm, d=8cm , 则c= cm11、若4y -3x=0 ,则(x+y):y=解方程(1)、164412-=-x x (2)、0)1(213=-+--x x x x (3)、33132=-+--x x x应用题(1)、甲、乙两地相距360km ,新修的高速公路开通后,在甲、乙两地间行驶的长途客运车平均车速提高了50%,而从甲地到乙地的时间缩短了2h 。

最新初中数学因式分解经典测试题含答案解析

最新初中数学因式分解经典测试题含答案解析

最新初中数学因式分解经典测试题含答案解析一、选择题1.已知a ,b ,c 满足3a b c ++=,2224a b c ++=,则222222222a b b c c a c a b+++++=---( ). A .0B .3C .6D .9【答案】D【解析】【分析】将等式变形可得2224+=-a b c ,2224+=-b c a ,2224+=-a c b ,然后代入分式中,利用平方差公式和整体代入法求值即可.【详解】解:∵2224a b c ++=∴2224+=-a b c ,2224+=-b c a ,2224+=-a c b∵3a b c ++= ∴222222222+++++---a b b c c a c a b=222444222---++---c a b c a b=()()()()()()222222222-+-+-+++---c c a a b b c ab=222+++++c a b=()6+++c a b=6+3=9故选D .【点睛】 此题考查的是分式的化简求值题和平方差公式,掌握分式的基本性质和平方差公式是解决此题的关键.2.已知实数a 、b 满足等式x=a 2+b 2+20,y =a(2b -a ),则x 、y 的大小关系是( ). A .x ≤ yB .x ≥ yC .x < yD .x > y【答案】D【解析】【分析】判断x 、y 的大小关系,把x y -进行整理,判断结果的符号可得x 、y 的大小关系.【详解】解:22222202()x y a b ab a a b a -=++-+=-++20,2()0a b -≥Q ,20a ≥,200>,0x y ∴->,x y ∴>,故选:D .【点睛】本题考查了作差法比较大小、配方法的应用;进行计算比较式子的大小;通常是让两个式子相减,若为正数,则被减数大;反之减数大.3.把32a 4ab -因式分解,结果正确的是( )A .()()a a 4b a 4b ?+-B .()22a a 4b ?-C .()()a a 2b a 2b +-D .()2a a 2b - 【答案】C【解析】【分析】当一个多项式有公因式,将其分解因式时应先提取公因式a ,再对余下的多项式继续分解.【详解】a 3-4ab 2=a (a 2-4b 2)=a (a+2b )(a-2b ).故选C .【点睛】本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.4.设a ,b ,c 是ABC V 的三条边,且332222a b a b ab ac bc -=-+-,则这个三角形是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形【答案】D【解析】【分析】把所给的等式能进行因式分解的要因式分解,整理为整理成多项式的乘积等于0的形式,求出三角形三边的关系,进而判断三角形的形状.【详解】解:∵a 3-b 3=a 2b-ab 2+ac 2-bc 2,∴a 3-b 3-a 2b+ab 2-ac 2+bc 2=0,(a 3-a 2b )+(ab 2-b 3)-(ac 2-bc 2)=0,a 2(a-b )+b 2(a-b )-c 2(a-b )=0,(a-b )(a 2+b 2-c 2)=0,所以a-b=0或a 2+b 2-c 2=0.所以a=b 或a 2+b 2=c 2.故选:D.【点睛】本题考查了分组分解法分解因式,利用因式分解最后整理成多项式的乘积等于0的形式是解题的关键.5.已知:3a b +=则2225a a b b ab -+-+-的值为( )A .1B .1-C .11D .11- 【答案】A【解析】【分析】将2225a a b b ab -+++-变形为(a+b )2-(a+b )-5,再把a+b=3代入求值即可.【详解】∵a+b=3,∴a 2-a+b 2-b+2ab-5=(a 2+2ab+b 2)-(a+b )-5=(a+b )2-(a+b )-5=32-3-5=9-3-5=1,故选:A .【点睛】本题考查因式分解的应用,解答本题的关键是明确题意,利用完全平方公式解答.6.将多项式x 2+2xy+y 2﹣2x ﹣2y+1分解因式,正确的是( )A .(x+y )2B .(x+y ﹣1)2C .(x+y+1)2D .(x ﹣y ﹣1)2 【答案】B【解析】【分析】此式是6项式,所以采用分组分解法.【详解】解:x 2+2xy+y 2﹣2x ﹣2y+1=(x 2+2xy+y 2)﹣(2x+2y )+1=(x+y )2﹣2(x+y )+1=(x+y ﹣1)2.故选:B7.下列各式中,能用完全平方公式分解因式的是( )A .2161x +B .221x x +-C .2224a ab b +-D .214x x -+ 【答案】D【解析】【分析】根据完全平方公式的结构特点:必须是三项式,其中有两项能写成两个数的平方和的形式,另一项是这两个数的积的2倍,对各选项分析判断后利用排除法求解.【详解】A. 2161x +只有两项,不符合完全平方公式;B. 221x x +-其中2x 、-1不能写成平方和的形式,不符合完全平方公式;C. 2224a ab b +-,其中2a 与24b - 不能写成平方和的形式,不符合完全平方公式;D. 214x x -+符合完全平方公式定义, 故选:D.【点睛】此题考查完全平方公式,正确掌握完全平方式的特点是解题的关键.8.下列因式分解正确的是( )A .x 2﹣y 2=(x ﹣y )2B .a 2+a+1=(a+1)2C .xy ﹣x=x (y ﹣1)D .2x+y=2(x+y )【答案】C【解析】【分析】【详解】解:A 、x 2﹣y 2=(x+y )(x ﹣y ),故此选项错误;B 、a 2+a+1无法因式分解,故此选项错误;C 、xy ﹣x=x (y ﹣1),故此选项正确;D 、2x+y 无法因式分解,故此选项错误.故选C .【点睛】本题考查因式分解.9.若a b +=1ab =,则33a b ab -的值为( )A .±B .C .±D .【答案】C【解析】【分析】将原式进行变形,3322()()()a b ab ab a b ab a b a b -=-=+-,然后利用完全平方公式的变形22()()4a b a b ab -=+-求得a-b 的值,从而求解.【详解】解:∵3322()()()a b ab ab a b ab a b a b -=-=+-∴33)a b b ab a =--又∵22()()4a b a b ab -=+-∴22()414a b -=-⨯=∴2a b -=±∴33(2)a b ab =±=±-故选:C .【点睛】本题考查因式分解及完全平方公式的灵活应用,掌握公式结构灵活变形是解题关键.10.下列因式分解中:①32(2)x xy x x x y ++=+;②2244(2)x x x ++=+;③22()()x y x y y x -+=+-;④329(3)x x x x -=-,正确的个数为( )A .1个B .2个C .3个D .4个 【答案】B【解析】【分析】将各项分解得到结果,即可作出判断.【详解】①322(2+1)x xy x x x y ++=+,故①错误;②2244(2)x x x ++=+,故②正确;③2222()()x y y x x y y x -+=-=+-,故③正确;④39(+3)(3)x x x x x -=-故④错误.则正确的有2个.故选:B.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.11.下列各式中不能用平方差公式分解的是( )A .22a b -+B .22249x y m -C .22x y --D .421625m n -【答案】C【解析】A 选项-a 2+b 2=b 2-a 2=(b+a )(b-a );B 选项49x 2y 2-m 2=(7xy+m )(7xy-m );C 选项-x 2-y 2是两数的平方和,不能进行分解因式;D 选项16m 4-25n 2=(4m)2-(5n)2=(4m+5n )(4m-5n ),故选C .【点睛】本题考查了利用平方差公式进行因式分解,解题的关键是要熟记平方差公式的特征.12.若实数x 满足2210x x --=,则322742017x x x -+-的值为( )A .2019B .2019-C .2020D .2020-【答案】D【解析】【分析】根据2210x x --=推出x 2-2x=1,然后把-7x 2分解成-4x 2-3x 2,然后把所求代数式整理成用x 2-2x 表示的形式,然后代入数据计算求解即可.【详解】解:∵x 2-2x-1=0,∴x 2-2x=1,2x 3-7x 2+4x-2017=2x 3-4x 2-3x 2+4x-2017,=2x (x 2-2x )-3x 2+4x-2017,=6x-3x 2-2017,=-3(x 2-2x )-2017=-3-2017=-2020故选D.【点睛】本题考查了提公因式法分解因式,利用因式分解整理出已知条件的形式是解题的关键,整体代入思想的利用比较重要.13.下面式子从左边到右边的变形中是因式分解的是( )A .()2212x x x x --=--B .()()22a b a b a b +-=-C .()()2422x x x -=+-D .()2222a b a b ab +=++ 【答案】C【解析】【分析】根据把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解进行分析即可.【详解】A 选项:等式右边不是乘积的形式,故不是因式分解,不符合题意.B 选项:等式右边不是乘积的形式,故不是因式分解,不符合题意.C 选项:等式右边是乘积的形式,故是因式分解,符合题意.D 选项:等式右边不是乘积的形式,故不是因式分解,不符合题意.故选:C.【点睛】考查了因式分解的意义,关键是掌握因式分解的定义(把一个多项式化为几个整式的积的形式).14.下列各因式分解正确的是( )A .﹣x 2+(﹣2)2=(x ﹣2)(x+2)B .x 2+2x ﹣1=(x ﹣1)2C .4x 2﹣4x+1=(2x ﹣1)2D .x 3﹣4x=2(x ﹣2)(x+2)【答案】C【解析】【分析】分别根据因式分解的定义以及提取公因式法和公式法分解因式得出即可.【详解】A .﹣x 2+(﹣2)2=(2+x)(2﹣x),故A 错误;B .x 2+2x ﹣1无法因式分解,故B 错误;C.4x 2﹣4x+1=(2x ﹣1)2,故C 正确;D 、x 3﹣4x= x(x ﹣2)(x+2),故D 错误.故选:C .【点睛】此题主要考查了提取公因式法与公式法分解因式以及分解因式的定义,熟练掌握相关公式是解题关键.15.下列因式分解正确的是( )A .()2211x x +=+B .()22211x x x +-=- C .()()22x 22x 1x 1=-+- D .()2212x x x x -+=-+ 【答案】C【解析】【分析】依据因式分解的定义以及提公因式法和公式法,即可得到正确结论.【详解】解:D 选项中,多项式x 2-x+2在实数范围内不能因式分解;选项B ,A 中的等式不成立;选项C 中,2x 2-2=2(x 2-1)=2(x+1)(x-1),正确.故选C .【点睛】本题考查因式分解,解决问题的关键是掌握提公因式法和公式法的方法.16.若x 2+mxy+y 2是一个完全平方式,则m=( )A .2B .1C .±1D .±2【答案】D【解析】根据完全平方公式:(a +b )2=a 2+2ab +b 2与(a -b )2=a 2-2ab +b 2可知,要使x 2+mxy +y 2符合完全平方公式的形式,该式应为:x 2+2xy +y 2=(x +y )2或x 2-2xy +y 2=(x -y )2. 对照各项系数可知,系数m 的值应为2或-2.故本题应选D.点睛:本题考查完全平方公式的形式,应注意完全平方公式有(a +b )2、(a -b )2两种形式. 考虑本题时要全面,不要漏掉任何一种形式.17.已知a 、b 、c 为ABC ∆的三边长,且满足222244a c b c a b -=-,则ABC ∆是( )A .直角三角形B .等腰三角形或直角三角形C .等腰三角形D .等腰直角三角形【答案】B【解析】【分析】移项并分解因式,然后解方程求出a 、b 、c 的关系,再确定出△ABC 的形状即可得解.【详解】移项得,a 2c 2−b 2c 2−a 4+b 4=0,c 2(a 2−b 2)−(a 2+b 2)(a 2−b 2)=0,(a 2−b 2)(c 2−a 2−b 2)=0,所以,a 2−b 2=0或c 2−a 2−b 2=0,即a =b 或a 2+b 2=c 2,因此,△ABC 等腰三角形或直角三角形.故选B .【点睛】本题考查了因式分解的应用,提取公因式并利用平方差公式分解因式得到a 、b 、c 的关系式是解题的关键.18.把多项式3(x -y)-2(y -x)2分解因式结果正确的是( )A .()()322x y x y ---B .()()322x y x y --+C .()()322x y x y -+-D .()()322y x x y -+-【答案】B【解析】【分析】-,即可进行因式分解.提取公因式x y【详解】()()2---32x y y x()()=--+322x y x y故答案为:B.【点睛】本题考查了因式分解的问题,掌握因式分解的方法是解题的关键.19.把x2-y2-2y-1分解因式结果正确的是().A.(x+y+1)(x-y-1) B.(x+y-1)(x-y-1)C.(x+y-1)(x+y+1) D.(x-y+1)(x+y+1)【答案】A【解析】【分析】由于后三项符合完全平方公式,应考虑三一分组,然后再用平方差公式进行二次分解.【详解】解:原式=x2-(y2+2y+1),=x2-(y+1)2,=(x+y+1)(x-y-1).故选A.20.已知a﹣b=1,则a3﹣a2b+b2﹣2ab的值为()A.﹣2 B.﹣1 C.1 D.2【答案】C【解析】【分析】先将前两项提公因式,然后把a﹣b=1代入,化简后再与后两项结合进行分解因式,最后再代入计算.【详解】a3﹣a2b+b2﹣2ab=a2(a﹣b)+b2﹣2ab=a2+b2﹣2ab=(a﹣b)2=1.故选C.【点睛】本题考查了因式分解的应用,四项不能整体分解,关键是利用所给式子的值,将前两项先分解化简后,再与后两项结合.。

中考数学专项训练:因式分解与分式

中考数学专项训练:因式分解与分式

中考数学专项训练:因式分解与分式1.(遵义航中一模)函数y =23-x中自变量x 的取值范围是( C )A .x >3B .x <3C .x ≠3D .x ≠-32.(原创)若分式2a 2a +b中,a,b 的值同时扩大到原来的10倍,则此分式的值( B )A .是原来的20倍B .是原来的10倍C .是原来的5倍D .不变3.(常德中考)下列各式由左到右的变形中,属于分解因式的是( C )A .a(m +n)=am +anB .a 2-b 2-c 2=(a -b)(a +b)-c 2C .10x 2-5x =5x(2x -1)D .x 2-16+6x =(x +4)(x -4)+6x4.(高密三模)将下列多项式因式分解,结果中不含有因式(x -2)的是( B )A .x 2-4B .x 3-4x 2-12xC .x 2-2xD .(x -3)2+2(x -3)+15.(海南中考)若分式x 2-1x -1的值为0,则x 的值为( A )A .-1B .0C .1D .±16.(河北中考)若3-2x x -1=______+1x -1,则____中的数是( B )A .-1B .-2C .-3D .任意实数7.(沈阳一模)把多项式m 2-9m 分解因式,结果正确的是( A )A .m(m -9)B .(m +3)(m -3)C .m(m +3)(m -3)D .(m -3)28.(开县一模)当a,b 互为相反数时,代数式a 2+ab -4的值为( D )A .4B .0C .-3D .-49.(南平中考模拟)把多项式分解因式,正确的结果是( A )A .4a 2+4a +1=(2a +1)2B .a 2-4b 2=(a -4b)(a +b)C .a 2-2a -1=(a -1)2D .(a -b)(a +b)=a 2-b 210.若4x 2-12xy +9y 2=0,则x -yx +y的值是( C )A .-15 B .-1 C .15 D .15y11.(眉山中考)已知14m 2+14n 2=n -m -2,则1m -1n的值等于( C )A .1B .0C .-1D .-1412.(临沂中考)当a =2时,a 2-2a +1a 2÷⎝ ⎛⎭⎪⎫1a -1的结果是( D )A .32B .-32C .12D .-1213.(安徽中考)已知实数a,b,c 满足a +b =ab =c,有下列结论: ①若c≠0,则1a +1b =1;②若a =3,则b +c =9; ③若a =b =c,则abc =0;④若a,b,c 中只有两个数相等,则a +b +c =8.其中正确的是__①③④__.(把所有正确结论的序号都选上) 14.(黔东南中考)先化简,再求值: ⎝⎛⎭⎪⎫x -1-x -1x ÷x 2-1x 2+x ,其中x =3+1.解:原式=x 2-2x +1x ·x (x +1)(x +1)(x -1)=(x -1)2x ·x (x +1)(x +1)(x -1)=x -1,当x =3+1时,原式= 3. 15.(常德中考)先化简,再求值:⎝ ⎛⎭⎪⎫x 2+xx 2-1-11-x ÷⎝⎛⎭⎪⎫x 2+3x x -1-1,其中x =2. 解:原式=⎣⎢⎡⎦⎥⎤x (x +1)(x +1)(x -1)+1x -1÷⎝ ⎛⎭⎪⎫x 2+3x x -1-x -1x -1 =x +1x -1÷x 2+3x -x +1x -1 =x +1x -1÷x 2+2x +1x -1 =x +1x -1·x -1(x +1)2 =1x +1,当x =2时,原式=12+1=13.16.(北京中考)如果a 2+2a -1=0,那么代数式⎝⎛⎭⎪⎫a -4a ·a 2a -2的值是( C )A .-3B .-1C .1D .317.(西宁中考)下列分解因式正确的是( B )A .3x 2-6x =x(3x -6)B .-a 2+b 2=(b +a)(b -a)C .4x 2-y 2=(4x +y)(4x -y)D .4x 2-2xy +y 2=(2x -y)218.(绵阳中考)如图所示,将形状、大小完全相同的“”和线段按照一定规律摆成下列图形,第1幅图形中“”的个数为a 1,第2幅图形中“”的个数为a 2,第3幅图形中“”的个数为a 3,…,以此类推,则1a 1+1a 2+1a 3+…+1a 19的值为( C )A .2021B .6184C .589840 D .43176019.(内江中考)若实数x 满足x 2-2x -1=0,则2x 3-7x 2+4x -2 017=__-2__020__. 20.(孝感中考)如图所示,图①是一个边长为a 的正方形剪去一个边长为1的小正方形,图②是一个边长为(a -1)的正方形,记图①,图②中阴影部分的面积分别为S 1,S 2,则S 1S 2可化简为__a +1a -1__.21.(内江中考)化简:⎝ ⎛⎭⎪⎫a 2a -3+93-a ÷a +3a =__a__.22.(西宁中考)化简:2x x +1-2x +4x 2-1÷x +2x 2-2x +1,然后在不等式x≤2的非负整数解中选择一个适当的数代入求值.解:原式=2x x +1-2(x +2)(x +1)(x -1)·(x -1)2x +2=2x x +1-2x -2x +1=2x -2x +2x +1=2x +1, ∵不等式x≤2的非负整数解是0,1,2, ∵(x +1)(x -1)≠0,x +2≠0, ∴x ≠±1,x ≠-2,∴把x =0代入得2x +1=2. 23.(哈尔滨中考)先化简,再求代数式⎝ ⎛2a +1-⎭⎪⎫2a -3a 2-1÷1a +1的值,其中a =2sin 60°+tan 45°.解:原式=⎣⎢⎡⎦⎥⎤2a +1-2a -3(a +1)(a -1)·(a+1) =2(a -1)-2a +3(a +1)(a -1)·(a+1)=2a -2-2a +3(a +1)(a -1)·(a+1)=1(a +1)(a -1)·(a+1)=1a -1. 当a =2sin 60°+tan 45°=2×32+1=3+1时, 原式=13+1-1=33.24.(遵义十六中三模)已知a 是方程a 2-2a -3=0的解,求代数式⎝⎛⎭⎪⎫a a -1-1a +1÷1a 2-1的值.解:原式=a (a +1)-a +1(a +1)(a -1)·(a+1)(a -1)=a 2+1. ∵a 2-2a -3=0,∴a 1=3,a 2=-1(不符合题意,应舍去), ∴当a =3时,原式=32+1=10.。

因式分解50题

因式分解50题

因式分解50题一.解答题(共50小题)1.因式分解:3(x+y)(x﹣y)﹣(x﹣y)2.2.分解分式:m2﹣3m.3.因式分解:2x2﹣4x.4.因式分解:(x﹣1)(x+4)+4.5.分解因式:(1)3m(b﹣c)﹣2n(c﹣b)(2)(a﹣b)(a﹣4b)+ab.6.(1)计算:(﹣2x2y3)2•(x﹣1y)3(2)分解因式:(a﹣b)(x﹣y)﹣(b﹣a)(x+y)7.因式分解:(1)2m(a﹣b)﹣3n(b﹣a);(2)8x2﹣2(x﹣y)2.8.因式分解:(2a﹣b)(3a﹣2)+b(2﹣3a)9.因式分解:(a﹣3)2+(3﹣a)10.分解因式:(2m+3n)(2m﹣n)﹣n(2m﹣n)11.已知:x+y=6,xy=4,求下列各式的值(1)x2+y2;(2)(x﹣y)2;(3)x2y+xy2.12.(1)分解因式x(x﹣a)+y(a﹣x)(2)分解因式x3y﹣10x2y+25xy13.分解因式:x2﹣9+3x(x﹣3)14.ax2+2a2x+a3.15.因式分解:9(a﹣b)(a+b)﹣3(a﹣b)216.把下列各式因式分解(1)a(x﹣y)+b(x﹣y)(2)(x+1)(x﹣1)﹣317.因式分解:(1)x2﹣10x(2)﹣8ax2+16axy﹣8ay218.因式分解:4a(x﹣y)﹣2b(y﹣x)19.因式分解:2x3﹣24x2+54x.20.因式分解:(1)3a(x﹣y)﹣5b(y﹣x)(2)x6﹣x2y4.21.将下列各式分解因式(1)x4+x3+x(2)x(x﹣y)+2y(y﹣x)22.分解因式:3x(a﹣b)﹣6y(b﹣a)23.因式分解:6p(p+q)﹣4q(p+q).24.因式分解(1)x2﹣9;(2)(x2+4)2﹣16x2.25.分解因式:(3m﹣1)2﹣(2m﹣3)2.26.分解因式:x4﹣(3x﹣2)2.27.分解因式:(m+1)(m﹣9)+8m.28.因式分解:2m(2m﹣3)+6m﹣1.29.因式分解:(1)16x2﹣9y2(2)(x2+y2)2﹣4x2y2.30.(2x+5)2﹣(2x﹣5)2.31.分解因式:(Ⅰ)4a2﹣b2(Ⅱ)4+12(x﹣y)+9(x﹣y)2 32.分解因式:(1)﹣x2﹣4y2+4xy(2)(x﹣1)2+2(x﹣5)33.分解因式:9(x+y)2﹣(x﹣y)2.34.因式分解:(x﹣y)2+6(y﹣x)+9=.35.因式分解(x2+4y2)2﹣16x2y236.分解因式:m2﹣(2m+3)2.37.因式分解:4+12(x﹣y)+9(x﹣y)2.38.分解因式:(x+2y)2﹣6x(x+2y)+9x2.39.分解因式:(x﹣1)2+2(x﹣5).40.(1)2x2+2y2﹣6xy(2)x2﹣y241.把下列多项式因式分解:(1)x2﹣9;(2)4x2﹣3y(4x﹣3y).42.分解因式:(1)16x2﹣8xy+y2;(2)a2(x﹣y)﹣b2(x﹣y).43.因式分解:25x2﹣9(x﹣2y)244.因式分解:a2+2a(a+1)+(a+1)245.分解因式:(x+2)(x﹣6)+16.46.因式分解:(1)x2﹣6x+9;(2)m2﹣n2+(m﹣n).47.因式分解:(1)(x+3)2﹣16;(2)x4﹣18x2+81.48.因式分解:9x2﹣6x+1.49.因式分解:(x+y)2﹣4(x+y﹣1)50.因式分解:(2a+b)2﹣(a+2b)2因式分解二一.解答题(共50小题)1.分解因式:(1)2x2﹣8.(2)(y+1)(y+2)+.2.因式分解:(1)a3﹣2a2+a;(2)4a2(2x﹣y)+b2(y﹣2x).3.因式分解:(1)ax2﹣4a;(2)x(x﹣6)+9.4.因式分解:(1)3a2﹣27;(2)(x﹣1)(x﹣3)+1.5.因式分解(1)x3﹣4x2+4x(2)a2(x﹣y)﹣4(x﹣y)6.分解因式:(1)9x2﹣1.(2)4xy2﹣4x2y﹣y3.7.分解因式:(1)4x2﹣12x+9;(2)x2(3y﹣6)+x(6﹣3y).8.分解因式:(1)3x2﹣27y2;(2)4x2y+y3﹣4xy2.9.把下列各式分解因式:(1)4x2y﹣4xy2+y3;(2)x4﹣1.(1)36﹣25x2;(2)x2y﹣4xy﹣5y.11.因式分解:(1)a2﹣ab;(2)2x2﹣2.12.因式分解:(1)2x2﹣4xy+2y2(2)(m﹣n)3+4(n﹣m)13.因式分解:(1)﹣2x2+4x﹣2;(2)x2(x﹣2)+4(2﹣x).14.因式分解:(1)4a2﹣9;(2)2x2y﹣8xy+8y.15.因式分解:(1)x3﹣2x2y+xy2;(2)(x+2y)2﹣x2.16.分解因式:(1)4x2﹣36;(2)(x﹣2)2﹣2x+4.17.分解因式:(1)a3b﹣ab3;(2)3a2﹣12a+12.18.分解因式:(1)a2+2a;(2)x2﹣16.19.分解因式:(1)2x2﹣18;(2)a2﹣4ab+4b2﹣9.(1)xy﹣x+y﹣1;(2)a(a﹣2b)+(b﹣1)(b+1).21.因式分解:x2﹣4xy+4y2﹣1 22.因式分解:2x2﹣4xy+3x﹣6y 23.因式分解:(1)1﹣x2+2xy﹣y2(2)25(x+y)2﹣36(x﹣y)2 24.3ax﹣18by+6bx﹣9ay25.分解因式:x3﹣2x2﹣3x26.因式分解:(1)x2﹣4x﹣12(2)a3﹣4a2+4a27.(1)因式分解:x3﹣4x;(2)x2﹣4x﹣1228.因式分解(1)x2﹣x﹣6;(2)ax2﹣2axy+ay229.分解因式:x2﹣2xy﹣8y2.30.因式分解:x2﹣2x+(x﹣2)31.因式分解(1)2mx2﹣8my2(2)a2﹣6a﹣2732.因式分解:x2+x﹣233.分解因式:(1)2a2﹣8(2)(x﹣1)2﹣2(x﹣1)﹣3 34.因式分解:3x2﹣12x+935.3x3﹣24x2+48x.36.(m2﹣2m)2﹣3(m2﹣2m)﹣4.37.因式分解:(1)a4﹣5a2﹣36;(2)x2﹣4x+4﹣4y2 38.因式分解(1)2x2﹣7x+3;(2)6x2﹣7x﹣5(3)5x2+6xy﹣8y239.分解因式:a3+7a2b﹣18ab2.40.分解因式:x+12﹣x2.41.因式分解:x4﹣3x2+1.42.因式分解:2a4﹣20a2+18.43.分解因式:(x+y)2﹣5(x+y)﹣644.因式分解(a)y2﹣3y﹣18(b)(x﹣1)2﹣3x﹣15.45.把下列各式因式分解:(1)x2+3x﹣130;(2)6y2+19y+15;(3)x2﹣9xy﹣36y2;(4)2a2x2﹣abxy﹣3b2y2;(5)10(x+2)2﹣29(x+2)+10;(6)(a2﹣a)2﹣14(a2﹣a)+24.46.(a)因式分解x2+8x+15(b)由此因式分解(a﹣100)2+8(a﹣100)+15.47.因式分解(1)6x2﹣7x+2;(2)x4﹣13x2+36;(3)(x2+7x+6)(x2+5x+6)+x2.48.分解因式:(1)x2+3x+2;(2)x2﹣x﹣20;(3)2x2﹣5x+2;(4)6x2﹣5x+1.49.分解因式:(1)x2+6x+8;(2)8a3﹣b3;(3)x2﹣2x﹣1;(4)4(x﹣y+1)+y(y﹣2x)50.分解因式:(1)x2y2+5xy﹣6;(2)x4+11x2y2﹣12y4;(3)x2+4xy+x+2y+4y2﹣6;(4)(x2+4x+8)2+3x(x2+4x+8)+2x2;(5)(x2+x+1)(x2+x+2)﹣12;(6)(2x2﹣3x+1)2﹣22x2+33x﹣1;(7)(x+1)(x+2)(x+3)(x+4)﹣8;(8)(a2﹣2a)2﹣7(a2﹣2a)﹣8.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因式分解与分式测试因式分解与分式测试题一、选择题1.下列各式:(1﹣x),,,,其中分式共有()A.1个B.2个C.3个D.4个2.下列分式中,最简分式是()A. B.C. D.3.多项式mx2﹣m与多项式x2﹣2x+1的公因式是()A.x﹣1 B.x+1 C.x2﹣1 D.(x﹣1)24.下列各式从左到右的变形错误的是()A.(y﹣x)2=(x﹣y)2 B.﹣a﹣b=﹣(a+b)C.(a﹣b)3=﹣(b﹣a)3D.﹣m+n=﹣(m+n)5.使分式有意义的x的取值范围是()A.x>2 B.x<2 C.x≠2 D.x≥26.当x=()时,与互为相反数.A.x=2 B.x=6 C.x=﹣6 D.x=37.把多项式2x2+8x+8分解因式,结果正确的是()A.(2x+4)2B.2(x+4)2C.2(x﹣2)2D.2(x+2)28.若关于x的分式方程+=2有增根,则m的值是()A.m=﹣1 B.m=0 C.m=3 D.m=0或m=39.如果9x2+kx+25是一个完全平方式,那么k的值是()A.15 B.±5 C.30 D.±3010.化简的结果是()A.x+1 B.x﹣1 C.﹣x D.x11.如图甲,在边长为a的正方形中挖去一个边长为b的小正方形(a>b),把余下的部分剪拼成一个矩形如图乙,通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是()A.(a+2b)(a﹣b)=a2+ab﹣2b2 B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣b2=(a+b)(a﹣b)12.将m2(a﹣2)+m(2﹣a)分解因式,正确的是()A.(a﹣2)(m2﹣m)B.m(a﹣2)(m+1)C.m(a﹣2)(m﹣1)D.m(2﹣a)(m﹣1)13.A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程()A.B.C.+4=9 D.14.如图,一个瓶身为圆柱体的玻璃瓶内装有高a厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h厘米,则瓶内的墨水的体积约占玻璃瓶容积的()A.B.C.D.二、填空题15.若代数式的值为零,则x= .16.计算:(﹣)÷= .17.若x﹣y=5,xy=6,则xy2﹣x2y= .18.关于x的分式方程=﹣1的解是负数,则m的取值范围是.19.若(m+n)人完成一项工程需要m天,则n个人完成这项工程需要天.三、解答题20.把下列各式因式分解:(1)m(m﹣5)﹣2(5﹣m)2;(2)﹣4x3+8x2﹣4x.(3)9(m+n)2﹣(m﹣n)2(4)81a4﹣72a2b2+16b4.21.(1)1﹣)÷(+)÷(﹣x﹣1);(2)先化简,再求值:÷(﹣),其中a=﹣1.22.解方程:﹣3.+=﹣1.23.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?参考答案与试题解析一、选择题(共20小题,满分60分)1.下列各式:(1﹣x),,,,其中分式共有()A.1个B.2个C.3个D.4个【解答】解:(1﹣x)是整式,不是分式;,的分母中均不含有字母,因此它们是整式,而不是分式.分母中含有字母,因此是分式.故选:A.2.下列分式中,最简分式是()A.B.C.D.【解答】解:A、原式为最简分式,符合题意;B、原式==,不合题意;C、原式==,不合题意;D、原式==,不合题意,故选:A.3.多项式mx2﹣m与多项式x2﹣2x+1的公因式是()A.x﹣1 B.x+1 C.x2﹣1 D.(x﹣1)2【解答】解:mx2﹣m=m(x﹣1)(x+1),x2﹣2x+1=(x﹣1)2,多项式mx2﹣m与多项式x2﹣2x+1的公因式是(x﹣1).故选:A.6.下列各式从左到右的变形错误的是()A.(y﹣x)2=(x﹣y)2 B.﹣a﹣b=﹣(a+b)C.(a﹣b)3=﹣(b﹣a)3 D.﹣m+n=﹣(m+n)【解答】解:A、(y﹣x)2=(x﹣y)2,正确;B、﹣a﹣b=﹣(a+b),正确;C、(a﹣b)3=﹣(b﹣a)3,正确;D、﹣m+n=﹣(m﹣n)而不是﹣(m+n),故本选项错误;故选:D.7.使分式有意义的x的取值范围是()A.x>2 B.x<2 C.x≠2 D.x≥2【解答】解:根据题意得:x﹣2≠0,解得:x≠2.故选:C.8.当x=()时,与互为相反数.A.x=2 B.x=6 C.x=﹣6 D.x=3【解答】解:根据题意得:+=0,去分母得:6﹣3x+2x=0,解得:x=6,经检验x=6是分式方程的解,故选:B.9.把多项式2x2+8x+8分解因式,结果正确的是()A.(2x+4)2B.2(x+4)2C.2(x﹣2)2D.2(x+2)2【解答】解:2x2+8x+8=2(x2+4x+4)=2(x+2)2.故选:D.10.若关于x的分式方程+=2有增根,则m的值是()A.m=﹣1 B.m=0 C.m=3 D.m=0或m=3【解答】解:方程两边都乘以(x﹣3)得,2﹣x﹣m=2(x﹣3),∵分式方程有增根,∴x﹣3=0,解得x=3,∴2﹣3﹣m=2(3﹣3),解得m=﹣1.故选:A.13.如果9x2+kx+25是一个完全平方式,那么k的值是()A.15 B.±5 C.30 D.±30【解答】解:∵(3x±5)2=9x2±30x+25,∴在9x2+kx+25中,k=±30.故选:D.14.化简的结果是()A.x+1 B.x﹣1 C.﹣x D.x【解答】解:=﹣===x,故选:D.16.如图甲,在边长为a的正方形中挖去一个边长为b的小正方形(a>b),把余下的部分剪拼成一个矩形如图乙,通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是()A.(a+2b)(a﹣b)=a2+ab﹣2b2 B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣b2=(a+b)(a﹣b)【解答】解:图甲的面积=大正方形的面积﹣空白处正方形的面积=a2﹣b2;图乙中矩形的长=a+b,宽=a﹣b,图乙的面积=(a+b)(a﹣b).所以a2﹣b2=(a+b)(a﹣b).故选:D.18.将m2(a﹣2)+m(2﹣a)分解因式,正确的是()A.(a﹣2)(m2﹣m)B.m(a﹣2)(m+1)C.m(a﹣2)(m﹣1)D.m(2﹣a)(m﹣1)【解答】解:m2(a﹣2)+m(2﹣a),=m2(a﹣2)﹣m(a﹣2),=m(a﹣2)(m﹣1).故选:C.19.A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程()A.B.C.+4=9 D.【解答】解:顺流时间为:;逆流时间为:.所列方程为:+=9.故选:A.20.如图,一个瓶身为圆柱体的玻璃瓶内装有高a厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h厘米,则瓶内的墨水的体积约占玻璃瓶容积的()A.B.C.D.【解答】解:设规则瓶体部分的底面积为S平方厘米.倒立放置时,空余部分的体积为bS立方厘米,正立放置时,有墨水部分的体积是aS立方厘米,因此墨水的体积约占玻璃瓶容积的=.故选:A.二、填空题(共4小题,共12分)21.若代数式的值为零,则x= 3 .【解答】解:由题意得,=0,解得:x=3,经检验的x=3是原方程的根.故答案为:3.22.计算:(﹣)÷= .【解答】解:(﹣)÷=[﹣]×=[﹣]×=×=.故答案为:.23.若x﹣y=5,xy=6,则xy2﹣x2y= ﹣30 .【解答】解:∵x﹣y=5,xy=6,∴xy2﹣xy2=﹣xy(x﹣y)=﹣6×5=﹣30,故答案为:﹣30.16.关于x的分式方程=﹣1的解是负数,则m的取值范围是m>﹣1,m≠0 .14.(3.00分)若(m+n)人完成一项工程需要m天,则n个人完成这项工程需要天.三、解答题(本大题共5小题,45分)25.(8.00分)把下列各式因式分解:(1)m(m﹣5)﹣2(5﹣m)2;(2)﹣4x3+8x2﹣4x.【解答】解:(1)原式=m(m﹣5)﹣2(m﹣5)2=(m﹣5)(m﹣2m+10)=﹣(m﹣5)(m﹣10)(2)原式=﹣4x(x2﹣2x+1)=﹣4x(x﹣1)2【解答】解:(1)9(m+n)2﹣(m﹣n)2=[3(m+n)]2﹣(m﹣n)2=[3(m+n)+(m﹣n)][3(m+n)+(m﹣n)]=4(2m+n)(m+2n);(2)81a4﹣72a2b2+16b4=(9a2﹣4b2)2=(3a+2b)2(3a﹣2b)2.26.(11.00分)(1)计算:(1﹣)÷(2)先化简,再求值:÷(﹣),其中a=﹣1.【解答】解:(1)原式=•=x+1;(2)原式=•=,当a=﹣1时,原式=﹣.(2)原式=÷=•(x﹣1)=;27.(5.00分)解方程:﹣3.【解答】解1=﹣(1﹣x)﹣3(x﹣2)1=﹣1+x﹣3x+62x=4x=2经检验,x=2不是原分式方程的解.(2)去分母得:4﹣(x+2)(x+1)=﹣x2+1,即4﹣x2﹣3x﹣2=﹣x2+1,移项合并得:3x=1,解得:x=,经检验x=是分式方程的解.29.(13.00分)某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?【解答】解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得:﹣=4,解得:x=50,经检验x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)设应安排甲队工作y天,根据题意得:0.4y+×0.25≤8,解得:y≥10,答:至少应安排甲队工作10天.。

相关文档
最新文档