应用数学基础(下册)第27章 拉普拉斯变换

合集下载

laplace变换的原理和方法

laplace变换的原理和方法

其中 a 1, a 2 , a n 及 b 0, b1 b m 均为实数,
A ( s ) ( s s 1 )( s s 2 ) ( s s n ) s i ( i 1, , n ) 是 A ( s ) 0 的根。
1、 A ( s ) 0 无重根 F (s) C1 s s1 C2 s s2 Ci s si Cn s sn
e
( s j ) t
) dt
1
2 j s j
[
1
s j
]

s
2 2
余弦函数
通理可得: F ( s ) L [cos t ] s s
2 2
6、单位脉冲函数
0 f (t ) (t ) t 0 t 0
(t )
且有




'
一般地,有 F
(n)
( s ) L [( t ) f ( t )], Re( s ) c
n
(3)积分性质
设 L [ f ( t )] F ( s ),则有 L [ f ( t ) dt ]
0 t
1 s
F (s)

t t t
L [ dt

dt
n

f ( t ) dt ]
m

C m 1 ( s s1 )
m 1

C1 s s1

C m 1 s s m 1

Cn s sn
C m 1 , C n 的计算同单根部分,
C 1 , C m 的计算公式:
C m lim ( s s 1 )

拉普拉斯变换公式

拉普拉斯变换公式

拉普拉斯变换公式拉普拉斯变换是一种在信号和系统分析中广泛应用的数学工具。

它将一个函数从时域转换到频率域,可以用于解决微分方程、计算系统的冲激响应和频率响应等问题。

拉普拉斯变换公式是拉普拉斯变换的基本公式之一,用于将函数从时域表示转换为频域表示。

F(s) = L{f(t)} = ∫[0,∞]e^(-st)f(t)dt其中,F(s)表示拉普拉斯变换后的函数,s是一个复数,而f(t)是原始函数。

在上述公式中,∫[0,∞]表示对t从0到正无穷之间的所有值进行积分。

e^(-st)是指数函数,s是一个复数参数,t是自变量。

f(t)是原始函数,也被称为拉普拉斯变换的原函数。

通过拉普拉斯变换公式,我们可以将一个函数从时域转换到频域。

这意味着我们将原始函数用复指数函数(e^(-st))的积分来表示。

在复平面上,s可以表示为s = a + jb,其中a和b都是实数,a是实部,b是虚部。

拉普拉斯变换公式可以用于解决许多信号和系统分析的问题。

例如,我们可以使用拉普拉斯变换来解决线性微分方程。

通过将微分方程转换为拉普拉斯域,我们可以将微分方程转换为代数方程,从而更容易地解决。

此外,利用拉普拉斯变换可以方便地计算系统的冲激响应和频率响应。

在应用拉普拉斯变换时,有几点需要注意。

首先,原始函数f(t)必须满足一定的条件,如函数在一个有界的时间段内存在或函数在正向无穷大时的极限存在。

其次,拉普拉斯变换是线性的,即对于给定的常数a和b,拉普拉斯变换遵循以下性质:L{af(t) + bg(t)} = aF(s) + bG(s)。

此外,拉普拉斯变换公式还有许多相关的性质和定理,如初始值定理、最终值定理、微分定理和频移定理等。

这些性质和定理为我们在实际应用中提供了方便和灵活性。

总结起来,拉普拉斯变换公式是将一个函数从时域表示转换到频域表示的基本公式之一、它在信号和系统分析中广泛应用,用于解决微分方程、计算系统的冲激响应和频率响应等问题。

应用数学基础下课件第二十七章拉普拉斯变换

应用数学基础下课件第二十七章拉普拉斯变换

1; p2 p 2
(3)
F
(
p)
(
p
1 1)( p
2)2

(2)
F( p)
1; p2 ( p 1)
(4)
F( p)
p(
1 p2 1)2
.
7

(1)

F( p)
p2
1 p
2
p
2 1 2 2
7 4
2, 7
£ £ 则 f (t)
1[F ( p)] 2 7
7
1
2
p
1 2
2
7 4
f (t) dt
F ( p)dp.
利用该结论,有
0t
0
sin t dt 0t
0
1 p2 1 dp
arctan
p
0
2
.
二、拉氏逆变换的方法
拉氏逆变换即已知象函数 F (P),求象原函数 f (t),可借 助拉氏变换表及拉氏变换的性质来解决。
例5 求下列函数的拉氏逆变换
(1)
F( p)
[( p 2)2 32 ]2 ( p2 4 p 13)2 ( p 2).
例3 求函数 f (t) t te2t cos 3tdt 的拉氏积分变换。 0
解 由例2及拉氏变换的积分性质,便可直接写出结果:
£ £ [ f (t)]
t te2t cos 3tdt
0
1 p
p2 4p 5 ( p2 4 p 13)2

f (t) dt 存在,则
f (t) dt
F ( p)dp.
0t
0t
0
£ 这里F ( p) [ f (t)] F ( p) ( p 0).

拉普拉斯变换及其性质课件

拉普拉斯变换及其性质课件
信号重建
对于损坏的信号,可以利用拉普拉斯变换进行重 建,恢复出原始信号。
在图像处理中的应用
图像去噪
利用拉普拉斯变换,可以对图像进行去噪处理,去除图像中的噪 声和干扰。
图像增强
通过拉普拉斯变换,可以将图像从空间域转换到频域,对图像进 行增强处理。
图像压缩
利用拉普拉斯变换的稀疏性,可以对图像进行压缩处理,减少存法规则
拉普拉斯变换的加法规则可以表 示为f(t)+g(t)的拉普拉斯变换等 于f(t)的拉普拉斯变换和g(t)的拉
普拉斯变换之和。
乘法规则
拉普拉斯变换的乘法规则可以表 示为f(t)g(t)的拉普拉斯变换等于 f(t)的拉普拉斯变换和g(t)的拉普拉 斯变换之积。
微分规则
拉普拉斯变换的微分规则可以表示 为df(t)/dt的拉普拉斯变换等于f(t) 的拉普拉斯变换乘以s。
迭代法的优点是计算速度快, 适用于大规模数据的处理。
直接计算法
直接计算法是一种直接根据定义 进行计算的方法。
在拉普拉斯变换的数值计算中, 直接计算法通常采用定义式进行
计算。
直接计算法的优点是原理简单易 懂,但计算量较大,适用于小规
模数据的处理。
数值计算误差分析
误差分析是数值计算中非常重要的一个环节。
在物理学、工程学、经济学等领域中,许多偏微分方程的求解都可 以借助拉普拉斯变换得到解决。
优点
通过拉普拉斯变换,可以将偏微分方程的求解转化为简单的代数问 题,使得求解更加简便。
在信号处理中的应用
定义与公式
01
在信号处理中,拉普拉斯变换被用于分析信号的稳定性和系统
的稳定性。
应用场景
02
在通信、自动控制、图像处理等领域中,许多信号处理问题都

拉普拉斯变换公式

拉普拉斯变换公式

拉普拉斯变换公式拉普拉斯变换是一种在信号处理和控制系统中常用的数学工具,广泛应用于电路分析、线性系统分析、图像处理等领域。

拉普拉斯变换将一个时间域函数转换为一个复频域函数,从而方便对信号进行分析和处理。

在数学上,拉普拉斯变换可以理解为傅里叶变换的一种推广形式。

设函数f(t)在t≥0上有定义且满足一些条件,拉普拉斯变换定义为:F(s) = L{f(t)} = ∫[0,∞] e^(-st) f(t) dt,其中,s为复频域变量,F(s)为f(t)的拉普拉斯变换。

拉普拉斯变换的主要特点是将常微分方程和时间域中的卷积运算变换为代数运算和复频域中的乘法运算,从而简化了分析和求解的过程。

1. 线性性质:对于任意常数a和b,有L{af(t) + bg(t)} = aF(s)+ bG(s);2. 平移性质:若F(s)为f(t)的拉普拉斯变换,则e^(-at) f(t)的拉普拉斯变换为F(s+a);3. 倍增性质:若F(s)为f(t)的拉普拉斯变换,则f(at)的拉普拉斯变换为F(s/a);4. 初值定理:若f(t)在t=0时有界且存在有限初值f(0),则F(s)= lim(s→∞) sF(s) + f(0);5. 终值定理:若f(t)在t→∞时有界,则lim(t→∞) f(t) =lim(s→0) sF(s)。

1.线性系统分析:通过拉普拉斯变换可以将微分方程转换成代数方程,从而便于对系统的稳定性、传递函数等进行分析;2.电路分析:拉普拉斯变换可以方便地求解电路的电压、电流等时间域特性,进一步可用于电路的设计和优化;3.信号处理:通过拉普拉斯变换,可以对信号的频域特性进行分析和滤波处理,如频率响应、系统传递函数等;4.控制系统设计:拉普拉斯变换可用于控制系统的传递函数分析、稳定性判断和控制器设计等方面;5.通信系统分析:拉普拉斯变换在调制、解调和信道等方面有广泛应用。

f(t) = L^(-1){F(s)} = (1/2πj) ∫[γ-j∞, γ+j∞] e^(st) F(s) ds,其中,γ为收敛路径,j为虚数单位。

《拉普拉斯变换 》课件

《拉普拉斯变换 》课件
详细描述
对于线性时不变控制系统,通过拉普拉斯变换分析其极点和零点,可以判断系 统的稳定性。如果所有极点都位于复平面的左半部分,则系统稳定;否则系统 不稳定。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
05
总结与展望
拉普拉斯变换的重要性和应用前景
拉普拉斯变换在数学、物理和工程领域中具有广泛的应用,是解决线性常微分方程 、积分方程、偏微分方程等数学问题的有力工具。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
03
拉普拉斯变换的运算技 巧
积分性质的运用
积分性质
如果函数f(t)的拉普拉斯变换为F(s), 那么对于任意常数a,函数f(at)的拉普 拉斯变换为aF(as)。
应用场景
在求解某些物理问题时,可能需要将 时间变量乘以常数,此时可以利用积 分性质简化拉普拉斯变换的运算。
REPORT
《拉普拉斯变换》 PPT课件
CATALOG
DATE
ANALYSIS
SUMMARY
目录
CONTENTS
• 拉普拉斯变换的基本概念 • 拉普拉斯变换的应用 • 拉普拉斯变换的运算技巧 • 拉普拉斯变换的实例分析 • 总结与展望
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
随着科学技术的发展,拉普拉斯变换的应用 领域也在不断拓展,例如在人工智能、机器 学习、数据科学等领域中的应用前景值得关 注。
未来需要进一步加强拉普拉斯变换 的理论研究,提高其在实际问题中 的应用效果,同时探索新的应用领 域,推动科学技术的发展。

拉普拉斯变换详解

拉普拉斯变换详解

s2 s2
s
例3 求周期函数的拉氏变换

设f1(t)为第一周函数
[ f1(t )] F1(s)
f(t) 1
T/2 T
... t
则:
1 [ f (t )] 1 esT F1(s)
证:f (t) f1(t) f1(t T )ε(t T )
f1(t 2T )ε(t 2T )
[ f (t )] F1(s) esT F1(s) e2sT F1(s)
S
校验:
U(S)
1
S(1 SRC )
u(0
)
lim
s
S
S(1
1 SRC
)
lim
s
(1
1 SRC
)
0
u() lim 1 1 s0 (1 SRC )
小结: 积分
(t) (t)
t (t ) t n (t)
1
1
1
n!
S
S2 S n1
微分
sint (t)
S2 2
e-tt n (t )
)
例3 求 : f (t) teat的象函数

[te αt ] d ( 1 ) 1
ds s α (s α)2
3.积分性质
设: [ f (t)] F (s)
则:
t
1
[ 0
f
(t)dt]
s
F(s)
证:令
t
[ 0
f
(t)dt]
φ( s )
[ f (t)]
d dt
t
0
f
(t )dt
(s
p
)
kn
s pn
f

拉普拉斯变换公式总结

拉普拉斯变换公式总结

拉普拉斯变换、连续时间系统的S 域分析基本要求通过本章的学习,学生应深刻理解拉普拉斯变换的定义、收敛域的概念:熟练掌握拉普拉斯变换的性质、卷积定理的意义及它们的运用;能根据时域电路模型画出S 域等效电路模型,并求其冲激响应、零输入响应、零状态响应和全响应;能根据系统函数的零、极点分布情况分析、判断系统的时域与频域特性;理解全通网络、最小相移网络的概念以及拉普拉斯变换与傅里叶变换的关系;会判定系统的稳定性;知识要点1. 拉普拉斯变换的定义及定义域 (1) 定义单边拉普拉斯变换:正变换0[()]()()stf t F s f t dt e ζ∞--==⎰ 逆变换 1[()]()()2j stj F s f t F s ds j e σσζπ+∞-∞==⎰双边拉普拉斯变换: 正变换 ()()stB s f t dt e F ∞--∞=⎰逆变换1()()2j stB j f t s ds j e F σσπ+∞-∞=⎰(2) 定义域 若0σσ>时,lim ()0tt f t eσ-→∞=则()tf t eσ-在0σσ>的全部范围内收敛,积分0()stf t dte +∞--⎰存在,即()f t 的拉普拉斯变换存在;0σσ>就是()f t 的单边拉普拉斯变换的收敛域;0σ与函数()f t 的性质有关;2. 拉普拉斯变换的性质 (1) 线性性 若11[()]()f t F S ζ=,22[()]()f t F S ζ=,1κ,2κ为常数时,则11221122[()()]()()f t f t F s F s ζκκκκ+=+(2) 原函数微分 若[()]()f t F s ζ=则()[]()(0)df t sF s f dtζ-=- 式中()(0)r f-是r 阶导数()r rd f t dt 在0-时刻的取值;(3) 原函数积分 若[()]()f t F s ζ=,则(1)(0)()[()]tf F s f t dt s sζ---∞=+⎰式中0(1)(0)()f f t dt ---∞=⎰(4) 延时性若[()]()f t F s ζ=,则000[()()]()st f t t u t t e F s ζ---=(5) s 域平移若[()]()f t F s ζ=,则[()]()at f t e F s a ζ-=+ (6) 尺度变换若[()]()f t F s ζ=,则1[()]()s f at F a aζ=a >0 (7) 初值定理lim ()(0)lim ()t o s f t f sF s ++→→∞==(8) 终值定理lim ()lim ()t s f t sF s →+∞→∞=(9) 卷积定理若11[()]()f t F s ζ=,22[()]()f t F s ζ=,则有1212[()()]()()f t f t F s F s ζ*=12121[()()][()()]2f t f t F s F s jζπ=*=121()()2j j F p F s p dp j σσπ+∞-∞-⎰3. 拉普拉斯逆变换(1) 部分分式展开法首先应用海维赛展开定理将()F s 展开成部分分式,然后将各部分分式逐项进行逆变换,最后叠加起来即得到原函数()f t ; 2留数法留数法是将拉普拉斯逆变换的积分运算转化为求被积函数()st F s e 在围线中所有极点的留数运算,即(1)11[()]()()[()]22j st st st j cF s F s e ds F s e ds F s e j jσσζππ+∞--∞===∑⎰⎰极点的留数若i p 为一阶级点,则在极点i s p =处的留数21[()()]insti i i s p i r s p F s e X ===-∑若i p 为k 阶级点,则111[()()](1)!ik k st i i s p k d r s p F s e k ds-=-=--4. 系统函数网络函数Hs (1) 定义系统零状态响应的拉普拉斯变换与激励的拉普拉斯变换之比称为系统函数,即()()()zs R s H s E s =冲激响应()h t 与系统函数()H s 构成变换对,即()[()]H s h t ζ=系统的频率响应特性()()()()j w s jwH jw H s H jw e ϕ===式中,()H jw 是幅频响应特性,()w ϕ是相频响应特性; (2) 零极点分布图1212()()()()()()()()()m n K s z s z s z N s H s D s s p s p s p ---==--- 式中,K 是系数;1z ,2z ,m z 为()H s 的零点;1p ,2p ,,n p 为()H s 的极点;在s 平面上,用“”表示零点,“X ”表示极点;将()H s 的全部零点和极点画在s 平面上得到的图称为系统的零极点分布图;对于实系统函数而言,其零极点要么位于实轴上,要么关于实轴成镜像对称分布; (3) 全通函数如果一个系统函数的极点位于左半平面,零点位于右半平面,而且零点与极点对于jw 轴互为镜像,那么这种系统函数称为全通函数,此系统则为全通系统或全通网络;全通网络函数的幅频特性是常数; (4) 最小相移函数如果系统函数的全部极点和零点均位于s 平面的左半平面或jw 轴,则称这种函数为最小相移函数;具有这种网络函数的系统为最小相移网络; (5) 系统函数()H s 的求解方法 ①由冲激响应()h t 求得,即()[()]H s h t ζ=;②对系统的微分方程进行零状态条件下的拉普拉斯变换,然后由()()()zs R s H s E s =获得;③根据s 域电路模型,求得零状态响应的像函数与激励的像函数之比,即为()H s ; 5. 系统的稳定性若系统对任意的有界输入,其零状态响应也是有界的,则此系统为稳定系统; 1稳定系统的时域判决条件()h t dt M +∞-∞≤⎰充要条件 ① 若系统是因果的,则①式可改写为0()h t dt M +∞≤⎰ (2) 对于因果系统,其稳定性的s 域判决条件①若系统函数()H s 的全部极点落于s 左半平面,则该系统稳定;②若系统函数()H s 有极点落于s 右半平面,或在虚轴上具有二阶以上的极点,则该系统不稳定;③若系统函数()H s 没有极点落于s 右半平面,但在虚轴上有一阶极点,则该系统临界稳定;内容摘要例题·求拉氏变换·求拉氏变换,拉氏变换的性质 ·拉氏变换的微分性质 ·系统函数,求解系统的响应 ·用拉氏变换法分析电路·例4-1求下列函数的拉氏变换 ()()1-=t tu t f 分析拉氏变换有单边和双边拉氏变换,为了区别起见,本书以()s F 表示()t f 单边拉氏变换,以 ()s F B 表示()t f 双边拉氏变换;若文字中未作说明,则指单边拉氏变换;单边拉氏变换只研究0≥t 的时间函数,因此,它和傅里叶变换之间有一些差异,例如在拉氏变换的和典型信号的拉氏变换二.单边拉氏变换逆变换的求法围线积分法 三.拉氏变换的 四.五.系统函数一.拉普拉斯时移定理,微分定理和初值定理等方面;本例只讨论时移定理;请注意本例各函数间的差异和时移定理的正确应用; 解答例4-2求三角脉冲函数)(f t 如图4-2a 所示的象函数 分析和傅里叶变换类似,求拉氏变换的时,的性质,; 解答方法一:按定义式求解方法二:利用线性叠加和时移性质求解 方法三:利用微分性质求解 方法四:利用卷积性质求解 方法一:按定义式求解方法二:利用线性叠加和时移性质求解 由于于是 方法三:利用微分性质求解 分析信号的波形仅由直线组成,信号导数的象函数容易求得,或者信号经过几次微分后出现原信号,这时利用微分性质比较简单; 将()t f 微分两次,所得波形如图4-2b 所示;()()()2222e 11e e 211s s s sss F ----=+-=根据微分性质 由图4-2b 可以看出 于是方法四:利用卷积性质求解()t f 可看作是图4-2c 所示的矩形脉冲()t f 1自身的卷积于是,根据卷积性质 而所以例4-3应用微分性质求图4-3a 中 的象函数下面说明应用微分性质应注f()1t f 因而这是应用微分性质应特别注意的问题;由图4-3b 知例4-4某线性时不变系统,在非零状条件不变的情况下,三种不同的激励信号作用于系()()s s s F --=e 111()()22e 11sss F --=图4-2c()()t f t f t f 321),(,(),1t f ()()()t f t f t f 321,,'''图4-4(b)为图中所示的矩形脉冲时,求此时系统的输出阶跃响应则 例4-5电路如图4-5a 所示 1求系统的冲激响应; 2求系统的起始状态使系统的零输入响应等于冲激响应; 3求系统的起始状态, 解答1求系统的冲激响应;系统冲激响应()t h 与系统函数()s H 是一对拉氏变换的关系;对()s H 求逆变换可求得()t h ,这种方法比在时域求解微分方程简便;利用s 域模型图4-5b 可直写出图4-5a 电路的系统函数 冲激响应2求系统的起始状态为求得系统的零输入响应,应写出系统的微分方程或给出带有初值的s 域模型;下面我们用s 域模型求解;图4-5a 电路的s 域模型如图4-5b; 由图4-5b 可以写出上式中第二项只和系统起始状态有关,因此该项是零输入响应的拉氏变换;依题意的要求,该项应和()s H 相等,从而得()t x 3当输入()。

拉普拉斯变换

拉普拉斯变换

拉普拉斯变换拉普拉斯变换是一种在信号与系统领域中广泛应用的数学工具。

它将一个时间域函数转换为一个复频域函数,从而可以方便地进行信号的分析和处理。

拉普拉斯变换不仅在电子工程、通信工程领域得到广泛应用,还在物理学、控制论、图像处理等领域有重要应用。

一、拉普拉斯变换的定义拉普拉斯变换的定义如下:对于给定函数f(t),它的拉普拉斯变换F(s)定义为:F(s) = L{f(t)} = ∫{0,∞} f(t)e^(-st)dt其中,s是复变量,表示变换域的频率。

f(t)是定义在非负实数轴上的函数。

拉普拉斯变换有一个重要的性质是可逆的,即给定F(s),可以通过逆变换求得原函数f(t)。

二、拉普拉斯变换的性质拉普拉斯变换有一系列的性质,这些性质可以帮助我们简化计算或者分析信号的特性。

下面介绍几个常用的性质:1. 线性性质:对于任意常数a和b,以及两个函数f(t)和g(t),有线性性质成立:L{af(t) + bg(t)} = aF(s) + bG(s)其中,F(s)和G(s)分别是函数f(t)和g(t)的拉普拉斯变换。

2. 积分性质:对于函数f(t)的积分,有以下性质成立:L{∫{0,t} f(τ)dτ} = 1/(s)F(s)其中,F(s)是函数f(t)的拉普拉斯变换。

3. 正比例性质:如果一个函数f(t)等于另一个函数g(t)乘以常数a,那么它们的拉普拉斯变换也有类似的关系:L{ag(t)} = aG(s)其中,G(s)是函数g(t)的拉普拉斯变换。

三、拉普拉斯变换的应用1. 信号系统分析:拉普拉斯变换广泛应用于信号与系统的分析。

通过将差分方程或微分方程转换成拉普拉斯域,可以简化对系统的分析和建模。

根据拉普拉斯变换的性质,可以求解系统的频域响应、稳定性、传输函数等重要特性。

2. 控制系统设计:在控制论中,拉普拉斯变换是设计和分析控制系统的重要工具。

通过将系统的传递函数转换成拉普拉斯域,可以方便地调整系统的稳定性、响应速度、抗干扰能力等参数,并进行频域设计和系统优化。

拉普拉斯变换表

拉普拉斯变换表

拉普拉斯变换表第一篇:拉普拉斯变换基础拉普拉斯变换是一种重要的数学工具,在工程、物理、经济等领域都有重要的应用。

拉普拉斯变换可以将一个复杂的函数转换成另一个更易于处理的函数,从而为解决实际问题提供了便利。

1. 拉普拉斯变换定义拉普拉斯变换是一种线性运算,它将一个函数f(t)转换成另一个函数F(s),数学上可以表示成:F(s)=∫0^∞e^(-st)f(t)dt其中,s 是一个复数,称为变换参数。

实际上,s 的实部和虚部分别对应于指数函数e^(-st)中的衰减因子和频率。

2. 拉普拉斯变换性质拉普拉斯变换有很多重要的性质,这些性质可以帮助我们更好地理解和使用拉普拉斯变换。

(1) 线性性质拉普拉斯变换是一种线性运算,即对于任意常数a和b,有:L{af(t)+bg(t)}=aF(s)+bG(s)(2) 平移性质拉普拉斯变换具有平移性质,即:L{f(t-a)}=e^(-as)F(s)(3) 尺度变换性质拉普拉斯变换还具有尺度变换性质,即:L{f(at)}=1/aF(s/a)(4) 求导性质拉普拉斯变换对时间的一阶和二阶导数的变换分别为:L{f'(t)}=sF(s)-f(0)L{f''(t)}=s^2F(s)-sf(0)-f'(0)(5) 初值定理和终值定理拉普拉斯变换有两个重要的极限定理,分别是初值定理和终值定理。

初值定理描述了原函数在t=0 时的值与拉普拉斯变换之间的关系,可以表示为:lim_(s→+∞)sF(s)=f(0)终值定理则描述了原函数在t 趋近于无穷时的极限值与拉普拉斯变换之间的关系,可以表示为:lim_(s→0)sF(s)=lim_(t→∞)f(t)3. 常见函数的拉普拉斯变换下面是几种常见函数的拉普拉斯变换:(1) 矩形波函数rect(t)L{rect(t)}=1/s(2) 单位阶跃函数u(t)L{u(t)}=1/s(3) 指数衰减函数e^(-at)L{e^(-at)}=1/(s+a)(4) 三角函数sin(at)L{sin(at)}=a/(s^2+a^2)(5) 三角函数cos(at)L{cos(at)}=s/(s^2+a^2)第二篇:拉普拉斯变换表1下面是一份拉普拉斯变换表,其中包含了一些常见函数的拉普拉斯变换。

拉普拉斯变换公式

拉普拉斯变换公式

拉普拉斯变换公式对于一个定义在t≥0的实函数f(t),如果存在一阶导数和一个充分快速下降函数g(t),使得积分F(s) = L{f(t)} = ∫[0,∞]e^(-st)f(t)dt存在,那么我们称F(s)是f(t)的拉普拉斯变换,其中s是一个复变量。

根据定义,拉普拉斯变换公式可以写成如下形式:L{αf(t)+βg(t)}=αF(s)+βG(s)其中α和β是任意常数,而F(s)和G(s)分别是f(t)和g(t)的拉普拉斯变换。

1.线性性质:L{αf(t)+βg(t)}=αF(s)+βG(s)2. 平移性质:L{f(t-a)} = e^(-as)F(s)3.尺度变换:L{f(αt)}=F(s/α),其中α是一个正常数4. 导数性质:L{d^n/dt^n[f(t)]} = s^nF(s) - s^(n-1)f(0) -s^(n-2)f'(0) - ... - f^(n-1)(0),其中f^(n)(t)是f(t)的n阶导数除此之外,还有拉普拉斯变换中的一些常见函数的变换公式:1.常数函数:L{1}=1/s2.t的幂函数:L{t^n}=n!/s^(n+1),其中n是一个非负整数3. e^(-at):L{e^(-at)} = 1 / (s+a)4. sin(bt)和cos(bt):L{sin(bt)} = b / (s^2 + b^2)拉普拉斯变换在信号和系统分析中有广泛的应用。

通过拉普拉斯变换可以将微分方程转化为代数方程,从而简化求解过程。

它还可以帮助我们分析系统的稳定性、响应和频率特性。

拉普拉斯变换在控制系统、通信系统、信号处理等领域都有重要的应用。

f(t) = L^{-1}{F(s)} = 1/2πj∫[-j∞,+j∞]e^(st)F(s)ds其中F(s)是一个复变量函数,j是虚数单位。

逆变换的求解通常需要使用复数积分或留数定理等数学工具。

总之,拉普拉斯变换是信号和系统分析中一种重要的数学工具。

拉普拉斯变换法

拉普拉斯变换法

3.导函数
df (t ) F (t ) dt

df (t ) df (t ) L dt e df (t ) e dt dt
st

st
0
0
df (t ) L f (0) s e f (t )dt dt

st
0
二、 简单函数L氏变换
1. 常数
f(t)=A
A L( A) e Adt S

st
0
2. 指数函数 f(t)= e-at
L(e ) e (e )dt e
at

st
at

( s a ) t
0
0
1 dt sa
A L( Ae ) sa
at

则 LF ' (t ) sf ( S ) F (0) sLF (t ) F (0)
一些常用函数的Laplace变换表
函数,F(t) A t Ae-at L氏变换,f(s) A/s 1/s2 A/(s+a) A/s(s+a)
A at bt (e e ) ba
Ate-at
方程终解 X k (1 e ) K
0 k t
2.
静脉注射
dX kX dt
( t=0,
X=X0)
sL[ X (t )] X (0) kL[ X (t )]
s X X (0) k X
Hale Waihona Puke X0 X sk kt X X 0e
A/(s+a)(s+b) A/(s+a)2
四、L氏变换解线性微分方程

拉普拉斯变换讲解

拉普拉斯变换讲解

拉普拉斯变换拉普拉斯(Laplace)变换是分析和求解常系数线性微分方程的一种简便的方法,而且在自动控制系统的分析和综合中也起着重要的作用.本章将扼要地介绍拉普拉斯变换(以下简称拉氏变换)的基本概念、主要性质、逆变换以及它在解常系数线性微分方程中的应用.1拉氏变换的基本概念在代数中,直接计算是很复杂的,而引用对数后,可先把上式变换为,然后通过查常用对数表和反对数表,就可算得原来要求的数.这是一种把复杂运算转化为简单运算的做法,而拉氏变换则是另一种化繁为简的做法.1.1 拉氏变换的基本概念定义 设函数当时有定义,若广义积分在的某一区域内收敛,则此积分就确定了一个参量为的函数,记作,即(7-1)称(1-1)式为函数的拉氏变换式,用记号表示.函数称为的拉氏变换(Laplace) (或称为的象函数).函数称为的拉氏逆变换(或称为象原函数),记作,即.关于拉氏变换的定义,在这里做两点说明:(1) 在定义中,只要求在时有定义.为了研究拉氏变换性质的方便,以后总假定在时,.(2)在较为深入的讨论中,拉氏变换式中的参数是在复数范围内取值.为了方便起见,本章我们把作为实数来讨论,这并不影响对拉氏变换性质的研究和应用.(3)拉氏变换是将给定的函数通过广义积分转换成一个新的函数,它是一种积分变换.一般来说,在科学技术中遇到的函数,它的拉氏变换总是存在的.例7-1 求一次函数(为常数)的拉氏变换.解.1.2 单位脉冲函数及其拉氏变换在研究线性电路在脉冲电动势作用后所产生的电流时,要涉及到我们要介绍的脉冲函数,在原来电流为零的电路中,某一瞬时(设为)进入一单位电量的脉冲,现要确定电路上的电流,以表示上述电路中的电量,则由于电流强度是电量对时间的变化率,即328.957812028.6⨯⨯=N 53)164.1(⨯164.1lg 53)20lg 28.9lg 5781(lg 3128.6lg lg ++-+=N N )(t f 0≥t dte tf pt ⎰∞+-0)(P P )(P F dte tf P F pt ⎰∞+-=)()()(t f )()]([P F t f L =)(P F )(t f )(t f )(t f )(P F )(P F )()]([1t f P F L =-)]([)(1P F L t f -=)(t f 0≥t 0<t 0)(=t f P P at t f =)(a t ,0≥⎰⎰⎰∞+-∞+-∞+-∞+-+-=-==00][)(][dte pa e p at etd pa dt ateat L pt pt ptpt2020][0p a e p a dt e papt pt =-=+=∞+-∞+-⎰)0(>p 0=t )(t i )(t Q ⎩⎨⎧=≠=.0,1,0,0)(t t t Q,所以,当时,;当时,.上式说明,在通常意义下的函数类中找不到一个函数能够用来表示上述电路的电流强度.为此,引进一个新的函数,这个函数称为狄拉克函数.定义设,当0时,的极限称为狄拉克(Dirac )函数,简称为函数.当时,的值为;当时,的值为无穷大,即.和的图形如图7-1和图7-2所示.显然,对任何,有,所以.工程技术中,常将函数称为单位脉冲函数,有些工程书上,将函数用一个长度等于的有向线段来表示(如图7-2所示),这个线段的长度表示函数的积分,叫做函数的强度.例1-2 求的拉氏变换.解 根据拉氏变换的定义,有,即.例1-3 求单位阶梯函数的拉氏变换.解,.t t Q t t Q dt t dQ t i t ∆∆∆)()(lim )()(0-+==→0≠t 0)(=t i 0=t ∞=-=-+=→→)1(lim )0()0(lim)0(00t t Q t Q i t t ∆∆∆∆∆⎪⎩⎪⎨⎧>≤≤<=εεεδεt t t t ,,,00100)(ε→)(t εδ)(lim )(0t t εεδδ→=-δ0≠t )(t δ00=t )(t δ⎩⎨⎧=∞≠=0,0,0)(t t t δ)(t εδ)(t δ0>ε11)(0==⎰⎰∞+∞-dt dt t εεεδ1)(=⎰∞+∞-dt t δ-δ-δ1-δ-δ)(t δdte dt edt edt et t L pt ptptpt-→∞+-→-→∞+-⎰⎰⎰⎰=⋅+==εεεεεεεεδδ01lim0lim)1lim()()]([11lim 1)()1(lim 11lim 1][1lim 00000==''-=-=-=-→-→-→-→εεεεεεεεεεεp p p pt pe p e p e p p e 1)]([=t L δ⎩⎨⎧≥<=0,10,0)(t t t u p e p dt e dt et u t u L pt pt pt1]1[1)()]([00=-=⋅==∞+-∞+-∞+-⎰⎰)0(>p例1-4求指数函数(为常数)的拉氏变换. 解 ,即.类似可得;.习题1–1求1-4题中函数的拉氏变换1..2..3.4.是常数).1.2 拉氏变换的性质拉氏变换有以下几个主要性质,利用这些性质,可以求一些较为复杂的函数的拉氏变换. 性质1 (线性性质) 若 ,是常数,且,,则. (7-2)证明.例7-5 求下列函数的拉氏变换:(1); (2).解(1).(2). 性质2(平移性质) 若,则(为常数). (7-3)证明.位移性质表明:象原函数乘以等于其象函数左右平移个单位.ate tf =)(a dt e dt e e e L t a p ptat at ⎰⎰∞+--∞+-=⋅=0)(0][)(1a p a p >-=)(1][a p a p e L at >-=)0(][sin 22>+=p p t L ωωω)0(][cos 22>+=p p pt L ωωte tf 4)(-=2)(t t f =atte t f =)(ϕωϕω,()sin()(+=t t f 1a 2a )()]([11p F t f L =)()]([22p F t f L =)]([)]([)]()([22112211t f L a t f L a t f a t f a L +=+)()(2211p F a P F a +=dte tf a dt et f a dt et f a t f a t f a t f a L pt ptpt-∞+-∞+-∞+⎰⎰⎰+=+=+)()()]()([)]()([02211221102211)()()]([)]([22112211p F a p F a t f L a t f L a +=+=)1(1)(at e a t f --=t t t f cos sin )(=)(1}11{1]}[]1[{1]1[1)]1(1[a p p a p p a e L L a e L a e a L at at at +=+-=-=-=----412221]2sin 21[]cos [sin 222+=+⋅==p p t L t t L )()]([p F t f L =)()]([a p F t f e L at -=a ⎰⎰∞+--∞+--===)(0)()()()]([a p F dt e t f dt et f e t f e L t a p ptat atat e a例1-6 求 ,和. 解 因为,,,由位移性质即得性质3(滞后性质) 若,则. (7-4)证明=,在拉氏变换的定义说明中已指出,当时,.因此,对于函数,当(即)时,,所以上式右端的第一个积分为,对于第二个积分,令,则滞后性质指出:象函数乘以等于其象原函数的图形沿轴向右平移个单位(如图1-3所示).由于函数是当时才有非零数值.故与相比,在时间上滞后了一个值,正是这个道理,我们才称它为滞后性质.在实际应用中,为了突出“滞后”这一特点,常在这个函数上再乘,所以滞后性质也表示为.例1-7 求.解 因为,由滞后性质得. 例1-8 求.解 因为,所以.例1-9 求下列函数的拉氏变换:(1) (2)解 (1)由图7-4容易看出,当时,的值是在的基础上加上了(),][at te L ]sin [t e L atω-]cos [t e L at ω-21][p t L =22][sin ωωω+=p t L 22][cos ωω+=p p t L 。

拉普拉斯变换公式

拉普拉斯变换公式

拉普拉斯变换公式拉普拉斯变换是一种常用于处理连续时间系统的数学工具,它将一个函数从时域(时间域)转换到频域(复频域),使得用复频率来研究连续时间系统变得更加方便。

拉普拉斯变换在信号处理、控制工程、通信系统等领域中都有广泛的应用。

设时域函数为f(t),其中0≤t≤∞,则其拉普拉斯变换为F(s),其中s为复变量。

拉普拉斯变换公式如下:F(s) = ∫[0,∞]f(t)e^(-st)dt通过拉普拉斯变换,我们可以将函数从时域转换到频域,可以得到函数在复频率域的频谱表示。

例如,对于一个连续时间系统的单位阶跃响应函数h(t),我们可以通过拉普拉斯变换将其变换为H(s),即H(s)=L[h(t)]。

1.时间平移定理:如果f(t)的拉普拉斯变换为F(s),则e^(at)f(t)的拉普拉斯变换为F(s-a)。

这个定理表示,如果时域函数f(t)右移或者左移a个单位,则其拉普拉斯变换在复频域中左移或者右移a个单位。

2.频率平移定理:如果f(t)的拉普拉斯变换为F(s),则e^(st)f(t)的拉普拉斯变换为F(s-a)。

这个定理表示,如果时域函数f(t)乘以指数函数e^(st),则其拉普拉斯变换在复频域中右移s个单位。

3.初值定理:如果f(t)的拉普拉斯变换为F(s),则f(0+)的值等于F(∞)。

这个定理表示,拉普拉斯变换函数在复频域中的极限为时域函数在时刻t=0+的值。

4.终值定理:如果f(t)的拉普拉斯变换为F(s),则lim(s→0)sF(s) =lim(t→∞)f(t)。

这个定理表示,拉普拉斯变换函数在复频域中的极限为时域函数在过去无限远到未来无限远的时刻t=∞处的值。

5.单位脉冲响应函数与系统频率响应函数的关系:设h(t)为系统的单位脉冲响应函数,即系统在输入为单位脉冲信号时的响应。

如果H(s)为系统的拉普拉斯变换,即H(s)=L[h(t)],则系统的频率响应函数为H(jω),即将变量s替换为jω,其中j为虚数单位,ω为频率。

拉普拉斯变换的基本定理

拉普拉斯变换的基本定理

拉普拉斯变换的基本定理
拉普拉斯变换的基本定理
本节介绍拉普拉斯变换(也称为拉⽒变换)的基本性质,了解掌握了这些性质,可以更加⽅便地求解各种拉普拉斯正反变换。

⼀、线性定理
设则:
(式9-2-1)
式中为常系数。

例9-2-1 求、和的拉⽒变换。

解:
同理:
⼆、微分定理
设,则:
(式9-2-1)
同理可推⼴得到的⾼阶导数的拉⽒变换式:
例9-2-2:
已知,求。

解:由于,由(式9-2-2)得:
同理:
三、积分定理
设,则:
求。

解:斜坡函数是单位阶跃函数的积分,由(式
设,则:
(式
所⽰函数的拉普拉斯变换式。

设,则:
求:和的拉普拉斯反变换。

设,则:
(式9-2-6)
例9-2-6.求的拉普拉斯反变换式。

解:已知,利⽤卷积定理得:
同理可推得:
七、初值定理
设,则
例9-2-7.设,验证初值定理。

解:
⼜:
,所以,得证!
⼋、终值定理:
设,则
例9-2-8.仍设,验证终值定理。

解:
,⼜
所以,得证!
注意:利⽤终值定理求的前提条件是必须存在,且是唯⼀确定的值。

拉普拉斯变换公式总结

拉普拉斯变换公式总结

拉普拉斯变换公式总结拉普拉斯变换是一种傅里叶变换的扩展,广泛应用于信号处理和控制系统的分析。

它将时间域中的函数转换到复平面的变换域中,可以有效地处理复杂的微分和积分方程。

拉普拉斯变换有许多重要的性质和公式,下面将对其中的一些进行总结。

1.拉普拉斯变换定义F(s) = L[f(t)] = ∫[0,∞) e^(-st) f(t) dt其中,s为复变量,t为时间,e为自然常数。

2.拉普拉斯变换的收敛条件要使拉普拉斯变换存在,函数f(t)必须满足一定的收敛条件。

常见的收敛条件为:函数f(t)是因果(即f(t)在t<0时为零)和指数增长边界条件(即函数f(t)e^(-αt)在t趋于正无穷时有界)。

3.常见的拉普拉斯变换公式3.1常函数的拉普拉斯变换:L[1]=1/s3.2单位阶跃函数的拉普拉斯变换:L[u(t)]=1/s3.3单位冲激函数的拉普拉斯变换:L[δ(t)]=13.4指数函数的拉普拉斯变换:L[e^(at)] = 1/(s-a),其中a为常数3.5高斯函数的拉普拉斯变换:L[e^(-at^2)] = sqrt(π/a) × e^(s^2/4a)3.6正弦和余弦函数的拉普拉斯变换:L[sin(at)] = a/(s^2+a^2)L[cos(at)] = s/(s^2+a^2)3.7常见微分和积分公式的拉普拉斯变换:L[df(t)/dt] = sF(s) - f(0)L[∫[0,t]f(τ)dτ]=1/s×F(s)4.拉普拉斯反变换公式f(t) = L^(-1)[F(s)] = 1/(2πj) × ∫[-j∞,j∞] e^(st)F(s) ds5.拉普拉斯变换的性质5.1线性性:L[af(t) + bg(t)] = aF(s) + bG(s),其中a、b为常数5.2微分性:L[df(t)/dt] = sF(s) - f(0)5.3积分性:L[∫[0,t]f(τ)dτ]=1/s×F(s)5.4积分定理:∫[0,∞) f(t) dt = F(0+)5.5初值定理:lim(s→∞) sF(s) = f(0+)5.6终值定理:lim(t→0+) f(t) = lim(s→0) sF(s)6.拉普拉斯变换在信号处理中的应用拉普拉斯变换在信号处理领域有广泛的应用。

拉普拉斯积分变换

拉普拉斯积分变换
§ 拉普拉斯(Laplace) 积分变换
1
一、拉氏变换
1. 拉氏变换的概念
定义 设函数 f (t)当 t 0 时有定义,而且积分
f (t)est dt
(s是一个复参量)
0
在s的某一域内收敛,则由此积分所确定的函数
F (s) f (t)est dt 0
称为函数 f (t) 的拉普拉斯变换式(简称拉氏变换式)
34
此公式是一个复变函数的积分,通常计算起来 比较困难,但当F(s)满足一定条件时,可以用 留数学方法来计算这个反演积分,特别当F(s) 为有理函数时更为简单。
35
定理
若 s1, s2 , sn 是函数 F(s) 的所有奇点(适当选
取 使这些奇点全在 Re(s) 的范围内), 且当 s 时,F(s) 0 ,则有
根据定义,利用积分性质就可推出这个性质。 此性质表明:函数线性组合的拉氏变换等于各 函数拉氏变换的线性组合。
13
b. 微分性质 L f (t) sF (s) f (0)
证 由定义并利用分部积分法得
L f (t) f (t)estdt 0
f (t)est
0
s
0
f (t)estdt
s L f (t) f (0)
L (t)
(t) est dt
0
(t) est dt 0
(t) est dt est
t0 1
10
例7 求函数 f (t) e t (t) e tu(t)( 0)
的拉氏变换。
解 L f (t) f (t) estdt 0 e t (t) e tu(t) estdt 0
(Re(s) c)
这个性质表明:一个函数求导后取拉氏变换 等于这个函数的拉氏变换乘以参变数s,再减 去函数的初值。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、本章重点
1、拉普拉斯变换的概念及其性质。 2、拉普拉斯变换在求解微分方程组中的应用。
三、本章难点
用定义求拉氏变换时,广义积分的计算是一难点。
四、本章关键词
拉普拉斯变换 拉氏逆变换 微分方程
(二) 常见问题分类及解法
一、拉普拉斯积分变换的方法
(1) 一些简单函数 f (t ) 的拉氏积分变换可用定义直接求出,即 用广义积分∫
即原方程的解为 y (t ) =
£
£
−1
[Y ( p )] = 6
£
−1
1 3 −t ( p + 1) 4 = t e .
例7
y′′ − x′′ + x′ − y = et − 2 求方程组 ,满足初始条件 2 y′′ − x′′ − 2 y′ + x = −t y (0) = y′(0) = 0 的解。 x(0) = x′(0) = 0
F ( n ) ( p ) = [(−t ) n f (t )].
(5) 积分性质 设 [ f (t )] = F ( p ),( p ≠ 0)且f (t )连续,则 t f (t )dt = 1 F ( p ) ∫0 p t dt t dt L t f (t )dt = 1 F ( p) ∫ 3 ∫ ∫1402440 pn 0 4
£
£ £ 设£[ f (t )] = F ( p),则£[ f (t − a )] = e
若 [ f (t )] = F ( p ),则
F ( p ),
£
£[ f
(n)
(t )] = p n F ( p ) − p n −1 f (0) − p n − 2 f ′(0) − L − f ( n −1) (0);
t
则 f (t ) =
£
−1
[ F ( p)] =
£
−1
1 1 1 − p + p2 + p + 1
= −1 + t + e − t (t ≥ 0,p > 0);
1 1 1 1 1 1 1 (3) 因 F ( p ) = = × − × + × , 2 2 9 p + 1 9 p − 2 3 ( p − 2) ( p + 1)( p − 2)
例2

求函数 f (t ) = te −2t cos 3t 的拉氏积分变换。 p 因 (cos 3t ) = 2 2 ( p > 0), p +3 p ′ p 2 − 32 则 (t cos 3t ) = − 2 2 = 2 2 2 . p +3 p (p +3 )
£
£

£[ f (t )] = £(te
例6 求微分方程 y′′′ + 3 y′′ + 3 y′ + y = 6e − t 满足初始条件 y (0) = y′(0) = y′′(0) = 0的解。

设 [ y (t )] = Y ( p),方程两端进行拉氏变换有 [ p 3Y ( p ) − p 2 y (0) − py ′(0) − y ′′(0)] + 3[ p 2Y ( p ) − py (0) − y ′(0)] 1 1 +3[ pY ( p ) − y (0)] + Y ( p ) = 6 . 则 Y ( p) = 6 , 4 p +1 ( p + 1)
£
意的常数α,β 有 [α f1 (t ) + β f 2 (t )] = α F1 ( p) + β F2 ( p ). (2) 位移性质 设 [ f (t )] = F ( p),则 [e at f (t )] = F ( p − a). (3) 延滞性质 (a > 0). (4) 微分性质
− ap
设 [ x(t )] = X ( p ), [ y (t )] = Y ( p ),

£
£
方程两边取拉氏变换,并注意到已知条件,则得方程组
1 2 2 2 p Y ( p) − p X ( p ) + pX ( p ) − Y ( p ) = p − 1 − p , 2 p 2Y ( p ) − p 2 X ( p) − 2 pY ( p ) + X ( p) = − 1 p2
+∞ 0
f (t )e − pt dt来求,将其作为公式来用。
(2) 对于一般函数 f (t ),f (t )满足拉氏积分变换存在定理的条件, 确定函数f (t )的拉氏积分变换要根据函数 f (t ) 的特点,灵活 应用拉氏变换的性质及公式来进行积分变换。于是要求牢记 一些常用的积分变换公式、性质及已知结论。

7 1 2 2 (1) 因 F ( p ) = 2 = × , 2 p + p+2 7 1 7 p+ + 2 4
则Hale Waihona Puke f (t ) =£−1
2 [ F ( p)] = 7
£
7 −1 2 2 1 7 p + + 2 4
2 −2 7 1 = e sin t (t ≥ 0,p > − ); 2 2 7 1 1 1 1 (2) 因 F ( p ) = 2 =− + 2 + , p p p +1 p ( p + 1)
则 f (t ) =
£
−1
[ F ( p )] =
£
−1
1 p p p − p 2 + 1 − ( p 2 + 1) 2
1 = 1 − cos t − t sin t (t ≥ 0,p > 0). 2
三、应用拉氏积分变换、求解微分方程的方法 应用拉氏积分变换、
由拉氏积分变换的微分性质知道,拉氏变换能把函数 f (t ) 的导数变为代数式,把微分方程化成代数方程,进而把较复杂 的问题变为较为简单的问题。下面举例说明。
积分n次
£
£
£
3、拉氏逆变换
+∞ f (t ) t = ∫p F ( p )dp.
4、拉氏变换在求解微分方程中的应用 求解微分方程的步骤: (1) 方程两边取拉氏变换,得未知函数象函数方程;
(2) 将初始条件代入求得象函数 F ( p );
(3) 对象函数取拉氏逆变换,求得未知函数。
£
−1
[ X ( p )] = [Y ( p)] =
£ £
−1
1 1 − 2+ = −t + tet p ( p − 1) 2 1 1 1 − + = 1 − et + tet p p − 1 ( p − 1) 2
£
.
−1
−1
例1 求函数 f (t ) = (t − 1) 2 et 的拉氏积分变换。


£[(t − 1) ] = £(t
2
− 2t + 1) 2! 1 1 2 − 2 p + p2 = 3 −2 2 + = ( p > 0) 3 p p p p
2
则 [ f (t )] = [(t − 1) 2 et ]
2 − 2( p − 1) + ( p − 1) 2 5 − 4 p + p 2 = = ( p > 1) 3 3 ( p − 1) ( p − 1)
* 第二十七章 (一) (二)
拉普拉斯变换
本章内容小结 常见问题分类及解法
(一) 本章内容小结
一、本章主要内容
1、拉普拉斯变换的概念
设函数 f (t ) 在 [0, +∞] 内有定义,如果广义积分: F ( p) = ∫
+∞ 0
f (t )e − pt dt对于参数p的某一取值范围收敛,则称此表
达式为 f (t ) 的拉普拉斯变换,简称拉氏变换,记为 为 F ( p ) 的拉普拉斯逆变换,记为
则 f (t ) =
£
−1
[ F ( p )] =
£
−1
1 1 1 1 1 1 9 × p + 1 − 9 × p − 2 + 3 × ( p − 2) 2
1 1 1 = e − t − e 2t + te 2t (t ≥ 0, p > 2); 9 9 3
1 1 p p (4) 因 F ( p ) = = − 2 − 2 , 2 2 2 p p + 1 ( p + 1) p ( p + 1)
£(∫ e
t 0
−2 t
1 p+2 cos 3t = × p ( p + 2) 2 + 32 1 2 = 2 + 3 . 2 p + 4 p + 13 p + 4 p + 13 p
−2 t
)
£[ f (t )] = £ ( t ∫ e
t 0
cos 3tdt
)
2p+4 3 p 2 + 8 p + 13 = 2 +2 3 2 ( p + 4 p + 13) ( p + 4 p 2 + 13 p) 2 2 p 3 + 10 p 2 + 16 p + 26 = ( p > 0). 3 2 2 ( p + 4 p + 13 p )
£[ f (t )] = £ (
因 则
1 p2 + 4 p − 5 te −2t cos 3tdt = × 2 ( p > 0). 2 ∫0 p ( p + 4 p + 13)
相关文档
最新文档