(完整word版)2018广东省高职高考数学试题.doc

合集下载

数学真题2018广东3+证书高职高考数学试题和参考答案解析

数学真题2018广东3+证书高职高考数学试题和参考答案解析

2017年广东省高等职业院校 招收中等职业学校毕业生考试数 学 试 题注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、考场号、座位号填写在答题卡上。

用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,在选涂其他答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上:如需改动,先画掉原来的答案,然后再写上新的答案:不能使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本大题共15小题,没小题5分,满分75分.在每小题给出的四个只有一项是符合题目要求的.1.已知集合}5,4,3{},4,3,2,1,0{==N M ,则下列结论正确的是A.N M ⊆ B. N M ⊇C. {}4,3=N M D. {}5,2,1,0=N M 2.函数xx f +=41)(的定义域是A. ]4,(--∞ B. ()4,-∞- C. ),4[+∞- D. ),4(+∞- 3.设向量a = )4,(x ,b = )3,2(-,若a .b ,则x= A. -5 B. -2 C. 2 D. 7 4.样本5,4,6,7,3的平均数和标准差为A. 5和2B. 5和2C. 6和3D. 6和3 设0>a 且y x a ,,1≠为任意实数,则下列算式错误..的是 A. 10=a B. yx yxaa a +=⋅C. yx y x a aa -= D. 22)(x x a a =5.设)(x f 是定义在R 上的奇函数,已知当324)(时,0x xx f x -=≥,则f(-1)=A. -5B. -3C. 3D. 56.已知角θ的顶点与原点重合,始边为x 轴的非负半轴,如果θ的终边与单位圆的交点为)54,53(-P ,则下列等式正确的是 A. 53sin =θ B. 54cos -=θ C. 34tan -=θ D. 43tan -=θ 7.“4>x ”是“0)4)(1(>--x x ”的A. 必要非充分条件B. 充分非必要条件C. 充分必要条件D. 非充分非必要条件 8.下列运算不正确的是 A. 1log log 52102=- B. 15252102log log log =+C.120= D. 422810=÷9.函数x x x x x f sin 3sin cos 3cos )(-=的最小正周期为 A.2πB. 32πC. πD. π210.抛物线x y 82-=的焦点坐标是A. (-2,0)B. (2,0)C. (0,-2)D. (0,2)11.已知双曲线16222=-y ax (a>0)的离心率为2,则a= A. 6 B. 3 C.3 D. 212.从某班的21名男生和20名女生中,任意选一名男生和一名女生代表班级参加评教座谈会,则不同的选派方案共有A. 41种B. 420种C. 520种D. 820种 13.已知数列}{n a 为等差数列,且1a =2,公差d=2,若k a a a ,,21成等比数列,则k= A. 4 B. 6 C. 8 D. 10 14.设直线l 经过圆02222=+++y x y x的圆心,且在y 轴上的截距1,则直线l 的斜率为A. 2B. -2C.21 D. 21- 15. 已知函数x e y =的图象与单调递减函数R)f(x)(x =y ∈的图象相交于(a ,b ),给出的下列四个结论:①b aln =,②a b ln =,③,b a f =)(④ 当x>a 时,xe xf <)(. 其中正确的结论共有A. 1个B. 2个C. 3个D. 4个二、填空题:本大题共5小题,每小题5分,满分25分.16.已知点)4,3(),10,7(),0,0(--B A O ,则设a =OB OA +,则a= . 17.设向量a =(2,3sin θ), b =(4,3cos θ),若a //b ,则tan θ= .18.从编号分别为1,2,3,4的4张卡片中随机抽取两张不同的卡片,它们的编号之和为5的概率是 . 19.已知点A (1,2)和点B (3,-4),则以线段AB 的中点为圆心,且与直线x+y=5相切的圆的标准方程是 .20.若等比数列{}n a 的前n 项和1n 313--=nS ,则{}n a 的公比q= .三、解答题:本大题共4小题,第21~23题各12分,第24题14分,满分50分. 解答须写出文字说明、证明过程和演算步骤. 21.(本小题满分12分)如图, 已知两点A (6,0)和点B (3,4),点C 在y 轴上,四边形OABC 为梯形,P 为线段OA 上异于端点的一点,设x OP =.(1)求点C 的坐标;(2)试问当x 为何值时,三角形ABP 的面积与四边形OPBC的面积相等? 22.(本小题满分12分)设ABC ∆的内角C B A ,,的对边分别为,,,c b a 已知a=2,b=3,c=5.(Ⅰ)求sinC 的值;(Ⅱ)求cos(A+B)+sin2C 的值.23.(本小题满分12分)已知数列{}n a 是等差数列,n S 是{}n a 的前n 项和,若26,16127==a a . (1)求n a 和n S ; (2)设2S 1+=n n b ,求数列{}n b 的前n 项和为n T .24.(本小题满分14分)如图,设21,F F 分别为椭圆C :1a 16a 2222=-+y x (a>0)的左、右焦点,且22F F 21=.(1)求椭圆C 的标准方程;(2)设P 为第一象限内位于椭圆C 上的一点,过点P 和2F 的直线交y 轴于点Q ,若21QF QF ⊥,求线段PQ 的长.参考答案一、选择题(共15小题,每小题5分,共75分.)CDDBC CBBAA DBAAC二、填空题(共5小题,每小题5分,共25分.)16、 5;17、61 ; 18、31 ; 19、 8)1()2(22=++-Y x ; 20、 31.。

最新广东省高职高考数学模拟试卷资料

最新广东省高职高考数学模拟试卷资料

2018年广东省高职高考数学模拟试卷1、(2018)已知集合{}0,12,4,5A =,,{}0,2B =,则A B =( )A. {}1B. {}0,1,2C. {}3,4,5D. {}0,22.(2018)函数()f x = )A 、3,4⎡⎫+∞⎪⎢⎣⎭B 、4,3⎡⎫+∞⎪⎢⎣⎭C 、 3,4⎛⎤-∞ ⎥⎝⎦D 、4,3⎛⎤-∞ ⎥⎝⎦ 3.(2018)下列等式正确的是( )A 、lg5lg3lg 2-=B 、1lg =2100- C 、lg10lg 5lg 5=D 、lg5lg3lg8+= 4.(2018)指数函数()01x y a a =<<的图像大致是( )5.(2018)“3x <-”是 “29x >”的( )A 、必要非充分条件B 、充分非必要条件C 、充分必要条件D 、非充分非必要条件6.(2018)抛物线24y x =的准线方程是( )A 、1y =-B 、1x =C 、1x =-D 、1y =7.(2018)已知ABC ∆,90BC AC C ==∠=︒,则( )A 、sin 2A =B 、cos A =C 、cos()1A B +=D 、tan A =/28.(2018)y=sin2x cos2最小正周期是( )A 、2π B 、23π C 、 π D 、2π 9.(2018)若向量()()1,2,3,4AB AC ==,则BC =( )A 、()4,6B 、()2,2C 、()1,3D 、()2,2--10.(2018)现有3000棵树,其中400棵松树,现在提取150做样本,其中抽取松树做样本的有( )棵A 、 20B 、 15C 、25D 、3011.(2018)()23,01,0x x f x x x -≥⎧=⎨-<⎩,则()()2f f =( ) A 、1 B 、0 C 、1- D 、2-12.(2018)一个硬币抛两次,至少一次是正面的概率是( )A 、13B 、12C 、 34D 、2313.(2018)已知点()()1,4,5,2A B -,则AB 的垂直平分线是( )A 、 380x y +-=B 、390x y +-=C 、3100x y --=D 、330x y --=14.(2018)已知数列{}n a 为等比数列,前n 项和13n n S a +=+,则a =( )A 、0B 、3-C 、6-D 、315. 函数中,既是偶函数,又在区间(0,)+∞上单调递减的函数是( )(A )1y x -= (B ) 2y x -= (C )2y x = (D )13y x = 二、填空题(共5小题,每题5分,共25分)16、(2018)双曲线221432x y -=的离心率e = ;17、(2018)已知向量()()43,4a b x ==,,,若a b ⊥,则b = ;18、(2018)已知数据10,,11,,12,x y z 的平均数为10,则,,x y z 的平均数为 ;19、(2018)以两直线0x y +=和230x y --=的交点为圆心,且与直线220x y -+=相切的圆的标准方程是 ;20已知数列=+=n nn a n n S n a 则项和为的前,23}{2 三、解答题(50分)21、某电影院有520个座位,票价为60元时可完全售罄,后考虑提价,调查发现每涨价1元,则会少售出4张票,问当票价为几元时,电影院的盈利最大?22、(2018)已知数列{}n a 是等差数列,123566,25a a a a a ++=+=(1)求n a 的通项公式; (2)若 =n a 2 ,求数列{}n b 的前n 项和为n T .23、(2018)已知()()()sin ,0,0,0f x A x A ωϕωϕπ=+>><<,最小值为3-,最小正周期为π。

至2018年广东省高职高考数学试题分章节汇编

至2018年广东省高职高考数学试题分章节汇编

2011至2018年高职高考数学试题分章节汇编前四章真题练习1、(2011)已知集合{}2M x x ==,{}3,1N =-,则M N =( )A. φB. {}3,2,1--C. {}3,1,2-D. {}3,2,1,2--2、(2011)下列不等式中,正确的是( )A 、()322327-=- B 、()322327⎡⎤-=-⎣⎦ C 、lg 20lg 21-= D 、lg5lg 21⋅=3、(2011)函数=y )A 、[]1,1-B 、()1,1-C 、(),1-∞D 、()1,-+∞4、(2011)已知函数()y f x =是函数x y a =的反函数,若()83f =,则a =() A 、2 B 、3 C 、4 D 、 85、(2011)不等式211x ≥+的解集是( )A 、{}11x x -<≤B 、{}1x x ≤C 、{}1x x >-D 、{}11x x x ≤>-或6、(2011)“7=x ”是“7≤x ”的( )A 、充分非必要条件B 、必要非充分条件C 、充要条件D 、既非充分也非必要条件7、(2011)设函数12log ,1()sin ,01,03x x f x x x xx ⎧>⎪⎪=≤≤⎨⎪⎪<⎩,则下列结论中正确的是( )A 、()f x 在区间()1,+∞上时增函数B 、()f x 在区间(],1-∞上时增函数C 、()12f π= D 、 (2)1f =8、(2012)已知集合{}1,3,5M =,{}1,2,5N =,则M N =( )A. {}1,3,5B. {}1,2,5C. {}1,2,3,5D. {}1,59、(2012)函数lg(1)y x =-的定义域是( )A 、()1,+∞B 、()1,-+∞C 、(),1-∞-D 、(),1-∞10、(2012)不等式312x -<的解集是( )A 、1,13⎛⎫- ⎪⎝⎭B 、1,13⎛⎫ ⎪⎝⎭C 、()1,3-D 、()1,3 11、(2012)“21x =”是“1x =”的( )A 、充分条件B 、必要条件C 、充要条件D 、既非充分也非必要条件12、(2012)已知函数()log a f x x =,其中01a <<,则下列各式中成立的是( )A 、11(2)()()34f f f >> B 、11()(2)()43f f f >>C 、11()(2)()34f f f >> D 、11()()(2)43f f f >>13、(2012)()f x 是定义在(0,)+∞上的增函数,则不等式()()23f x f x >-的解集是 ;14、(2013)设集合{}1,1M =-,{}0,1,2N =,则M N =( )A. {}0B. {}1C. {}0,1,2D. {}1,0,1,2-15、(2013)函数y = )A 、()2,2-B 、[]2,2-C 、(),2-∞-D 、()2,+∞16、(2013)设,a b 是任意实数,且a b >,则下列式子正确的是( )A 、22a b >B 、1ba < C 、()lg 0ab -> D 、22a b >17、(2013)下列函数为偶函数的是( )A 、x y e =B 、lg y x =C 、sin y x =D 、 cos y x =18、(2013)设函数()21,12,1x x f x x x ⎧+≤⎪=⎨>⎪⎩,则()()2f f =( )A 、1B 、2C 、3D 、419、(2013)在ABC ∆中,“30A ∠>︒”是“1sin 2A >”的( )A 、充分非必要条件B 、必要非充分条件C 、充要条件D 、既非充分也非必要条件20、(2013)对任意x R ∈,下列式子恒成立的是( )A 、2210x x -+>B 、10x ->C 、210x +>D 、()22log 10x +>21、(2013)不等式2230x x --<的解集为 ;22、(2014)已知集合{}2,0,1M =-,{}1,0,2N =-,则M N =( )A. {}0B. {}2,1-C. φD. {}2,1,0,1,2--23、(2014)函数()f x = ) A 、(),1-∞ B 、()1,-+∞ C 、[]1,1- D 、()1,1-24、(2014)下列不等式中,正确的是( )A 、lg 7lg31+=B 、7lg 7lg 3lg 3=C 、3lg 3log 7lg 7= D 、7lg 37lg 3= 25、(2014)下列函数在其定义域内单调递减的是( )A 、12y x =B 、2x y =C 、12xy ⎛⎫= ⎪⎝⎭ D 、2y x = 26、(2014)“()()120x x -+>”是“102x x ->+”的( ) A 、充分非必要条件 B 、必要非充分条件C 、充分必要条件D 、非充分非必要条件27、(2014)已知()f x 是偶函数,且0x ≥时,()3x f x =,则()2f -= ;28、(2014)若函数()22()f x x x k x R =-++∈的最大值为1,则k = ; 29、(2015)已知集合{}1,4M =,{}1,3,5N =,则M N =( )A. {}1B. {}4,5C. {}1,4,5D. {}1,3,4,530、(2015)函数()f x = )A 、(],1-∞-B 、[)1,-+∞C 、(],1-∞D 、(),-∞+∞31、(2015)不等式2760x x -+>的解集是( )A 、()1,6B 、()(),16,-∞+∞C 、∅D 、(),-∞+∞32、(2015)设0a >且1,,a x y ≠为任意实数,则下列算式错误的是( )A 、01a =B 、x y x y a a a +⋅=C 、xx y y a a a-= D 、()22x x a a =33、(2015)已知函数()f x 是奇函数,且()21f =,则()32f -=⎡⎤⎣⎦( )A 、8-B 、1-C 、1D 、834、(2015)“01a <<”是“log 2log 3a a >”的( )A 、充分非必要条件B 、必要非充分条件C 、充分必要条件D 、非充分非必要条件35、(2015)当0x >时,下列不等式正确的是( )A 、44x x +≤ B 、44x x +≥ C 、48x x +≤ D 、48x x +≥36、(2016)已知集合{}2,3,A a =,{}1,4B =,且{}4A B =,则a =( )A. 1B. 2C. 3D. 437、(2016)函数y = )A 、(),-∞+∞B 、3,2⎡⎫-+∞⎪⎢⎣⎭C 、3,2⎛⎤-∞- ⎥⎝⎦ D 、()0,+∞38、(2016)设,a b 为实数,则 “3b =”是“()30a b -=”的( )A 、充分条件B 、必要条件C 、充分必要条件D 、非充分非必要条件39、(2016)不等式2560x x --≤的解集是( )A 、{}23x x -≤≤B 、{}16x x -≤≤C 、{}61x x -≤≤D 、{}16x x x ≤-≥或40、(2016)下列函数在其定义域内单调递增的是( )A 、2y x =B 、13xy ⎛⎫= ⎪⎝⎭ C 、32xx y = D 、3log y x =-41、(2016)已知()f x 是偶函数,且()y f x =的图像经过点()2,5-,则下列等式恒成立的是()A 、()52f -=B 、()52f -=-C 、()25f -=D 、()25f -=-42、(2017)已知集合{}0,12,3,4M =,,{}3,4,5N =,则下列结论正确的是( )A. M N ⊆B. N M ⊆C. {}3,4M N =D. {}0,1,2,5M N =43、(2017)函数y = )A 、(],4-∞-B 、(),4-∞-C 、[)4,-+∞D 、()4,-+∞44、(2017)设()f x 是定义在R 上的奇函数,已知当0x ≥时,()234f x x x =-,则()1f -=( )A 、5-B 、3-C 、3D 、545、(2017)“4x >”是 “()()140x x -->”的( )A 、必要非充分条件B 、充分非必要条件C 、充分必要条件D 、非充分非必要条件46、(2017)下列运算不正确的是( )A 、22log 10log 51-=B 、222log 10+log 5log 15=C 、02=1D 、10822=4÷47、(2017)已知函数x y e =的图像与单调递减函数())y f x x R =∈(的图像相交于点(,)a b 给出下列四个结论:①ln a b = ②ln b a = ③()f a b = ④当x a >时,()x f x e <A 、1个B 、2个C 、3个D 、4个48、(2018)已知集合{}0,12,4,5A =,,{}0,2B =,则A B =( )A. {}1B. {}0,2C. {}3,4,5D. {}0,1,249、(2018)函数()f x )A 、3,4⎡⎫+∞⎪⎢⎣⎭B 、4,3⎡⎫+∞⎪⎢⎣⎭C 、 3,4⎛⎤-∞ ⎥⎝⎦D 、4,3⎛⎤-∞ ⎥⎝⎦ 50、(2018)下列等式正确的是( )A 、lg5lg3lg 2-=B 、lg5lg3lg8+=C 、lg10lg 5lg 5=D 、1lg =2100- 51、(2018)指数函数()01x y a a =<<的图像大致是( )A B C D52、(2018)“3x <-”是 “29x >”的( )A 、必要非充分条件B 、充分非必要条件C 、充分必要条件D 、非充分非必要条件53、(2018)()23,01,0x x f x x x -≥⎧=⎨-<⎩,则()()2f f =( ) A 、1 B 、0 C 、1- D 、2-54、(2018)设()f x 是定义在R 上的奇函数,且对于任意实数x ,有()()4f x f x +=, 若()13f -=,则()()45f f +=( )A 、3-B 、3C 、4D 、62011至2018年高职高考数学试题第五章数列真题练习1、(2011)在等差数列{}n a 中,若630a =,则39a a +=( )A 、20B 、40C 、60D 、 802、(2012)在等比数列{}n a 中,11a =,公比q =n a =n =( )A 、6B 、7C 、8D 、93、(2012)设n a 是等差数列,2a 和3a 是方程2560x x -+=的两个根,则14a a +=( )A 、2B 、3C 、5D 、64、(2013)若,,,a b c d 均为正实数,且c 是a 和b 的等差中项,d 是a 和b 的等比中项,则有()A 、ab cd >B 、ab cd ≥C 、ab cd <D 、ab cd ≤5、(2013)已知{}n a 为等差数列,且13248,12a a a a +=+=,则n a = ;6、(2014)已知数列{}n a 的前n 项和1n nS n =+,则5a =( )A 、142 B 、130 C 、45 D 、567、(2014)已知等比数列{}n a 满足*0()n a n N >∈,且579a a =,则6a = ;8、(2015)在各项为正数的等比数列{}n a 中,若1413a a ⋅=则3233log log a a +=( )A 、1-B 、1C 、3-D 、 39、(2015)若等比数列{}n a 满足124,20a a ==,则{}n a 的前n 项和n S = ;10、(2016)在等比数列{}n a 中,已知367,56a a ==,则该等比数列的公比是( )A 、2B 、3C 、4D 、 811、(2016)已知{}n a 为等差数列,且481050a a a ++=,则2102a a += ;12、(2017)已知数列{}n a 为等差数列,且12a =,公差2d =,若12,,k a a a 成等比数列,则k =( )A 、4B 、6C 、8D 、 1013、(2017)设等比数列{}n a 的前n 项和1133n n S -=-,则{}n a 的公比q = ; 14、(2018)234111111122222n -++++++=( )A 、()212n -B 、()212n --C 、()1212n --D 、()1212n --15、(2018)已知数列{}n a 为等比数列,前n 项和13n n S a +=+,则a =() A 、6- B 、3- C 、0 D 、32011至2018年高职高考数学试题第六章三角函数真题练习1、(2011)设α为任意角,在下列等式中,正确的是( )A 、sin cos 2παα⎛⎫-= ⎪⎝⎭B 、cos sin 2παα⎛⎫-= ⎪⎝⎭C 、()sin sin απα+=D 、()cos cos απα+=2、(2011)已知角θ终边上一点为()()0x x <,则tan cos θθ⋅=( )A 、B 、2-C 、3D 、23、(2011)函数()()2sin 2cos 2f x x x =-的最小正周期及最大值分别是() A 、,1π B 、,2π C 、,22πD 、,32π4、(2012)sin390︒=( )A 、12 B 、2 C 、2 D 、15、(2012)函数2sin cos y x x =最小正周期为 ;6、(2013)sin330︒=( )A 、12-B 、12 C 、 D 、7、(2013)函数()3cos2f x x =的最小正周期为 ;8、(2013)若4sin ,tan 05θθ=>,则cos θ= ; 9、(2014)函数()4sin cos ()f x x x x R =∈的最大值是( )A 、1B 、2C 、4D 、810、(2014)已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若()4,3P 是角θ终边上的一点,则tan θ=( )A 、35B 、45C 、43D 、3411、(2015)函数()2sin f x x ω=的最小正周期为3π,则ω=( )A 、13B 、23C 、1D 、2 12、(2015)在ABC ∆中,内角A ,B ,C ,所对应的边分别为,,.a b c 已知13,1,cos 3a c B ===,则b = ; 13、(2016)函数cos 2y x π⎛⎫=- ⎪⎝⎭在区间5,36ππ⎡⎤⎢⎥⎣⎦上的最大值是( )A 、12B 、2C 、2D 、1 14、(2016)函数()2sin 2cos 2y x x =-的最小正周期是( )A 、2π B 、π C 、2π D 、4π 15、(2016)已知1sin cos 62παα⎛⎫-=- ⎪⎝⎭,则tan α= ; 16、(2017)已知角θ的顶点与原点重合,始边为x 轴的非负半轴,如果θ的终边与单位圆的交点为34,55P ⎛⎫- ⎪⎝⎭,则下列等式正确的是( ) A 、3sin 5θ= B 、4cos 5θ=- C 、4tan 3θ=- D 、3tan 4θ=- 17、(2017)函数()cos3cos sin3sin f x x x x x =-的最小正周期是( )A 、2π B 、23π C 、 π D 、2π18、(2018)已知ABC ∆,90BC AC C ==∠=︒,则( )A 、sin A =B 、cos A =C 、tan A =D 、cos()1A B += 19、(2018)已知ABC ∆对应边分别为的内角C B A ,,的对边分别为,,a b c ,已知34,2b a B A == ,则cos A = ;2011至2018年高职高考数学试题第七章向量真题练习1、(2011)已知三点()()(0,0),,2,3,4O A k B -,若OA AB ⊥,则k =( )A 、173-B 、83C 、7D 、11 2、(2011)已知向量()1,4AB =-,向量()3,1BC =,则AC =( )A 、B 、CD 、53、(2011)在边长为2的等边ABC ∆中,AB BC ⋅= ;4、(2012)已知向量()()3,5,2,a b x ==,且a b ⊥,则x =( ) A 、65 B 、65- C 、56 D 、56- 5、(2012)将函数()21y x =+的图像按向量a 经过一次平移后,得到2y x =的图像,则向量a =( )A 、()0,1B 、()0,1-C 、()1,0-D 、()1,06、(2012)已知向量()()1,2,2,3a b ==,则向量3a b -= ;7、(2013)若()()2,4,4,3AB BC ==,则AC =( )A 、()6,7B 、()2,1-C 、()2,1-D 、()7,68、(2013)若向量,a b 满足a b a b +=-,则必有( )A 、0a =B 、0b =C 、0a b ⋅=D 、a b =9、(2014)已知向量()2sin ,2cos a θθ=,则a =( )A 、 8B 、 4C 、 2D 、 110、(2014)设向量()()()4,5,1,0,2,a b c x ===,且()a b +∥c ,则x =( )A 、2-B 、12- C 、12 D 、211、(2014)在右图所示的平行四边形ABCD 中,下列等式不正确的是( )A 、AC AB AD =+ B 、AC AD DC =+C 、AC BA BC =-D 、AC BC BA =-12、(2015)在平面直角坐标系中,已知三点()()()1,2,2,1,0,2A B C ---,则AB BC +=() A 、1 B 、2 C 、3 D 、413、(2015)已知向量()()sin ,2,1,cos a b θθ==,若a b ⊥,则tan θ=( )A 、12- B 、12 C 、2- D 、214、(2015)已知向量a 和b 夹角为34π,且2,3a b ==,则 a b ⋅= ;15、(2016)设三点()()()1,2,1,3,1,5A B C x --,若AB 与BC 共线,则x =( )A 、4-B 、1-C 、 1D 、 416、(2016)设向量()()3,1,0,5a b =-=,则a b -=( )A 、1B 、3C 、4D 、517、(2016)在ABC ∆中,若2AB =,则()AB CA CB ⋅-= ;18、(2017)设向量()(),4,2,3a x b ==-,若2a b =,则x =( )A 、5-B 、2-C 、2D 、719、(2017)已知点()()()0,07,10,3,4O A B --,,设a OA OB =+,则a = ;20、(2017)设向量()()23sin ,4cos a b θθ==,,,若a b ∥,则tan θ= ;21、(2018)若向量()()1,2,3,4AB AC ==,则BC =( )A 、()4,6B 、()2,2--C 、()1,3D 、()2,222、(2018)已知向量()()43,4a b x ==,,,若a b ⊥,则b =;2011至2018年高职高考数学试题第八章解析几何真题练习1、(2011)垂直于x 轴的直线l 交抛物线24y x =交于A 、B 两点,且AB =点到直线l 的距离是( )A 、1B 、2C 、3D 、 42、(2011)设l 是过点(0,及过点(的直线,则点1,22⎛⎫⎪⎝⎭到l 的距离是 ;3、(2011)经过点(0,1)-和(1,0),且圆心在直线1y x =+上的圆的方程是 ;4、(2012)以点()(1,3),5,1P Q -为端点的线段的垂直平分线的方程为( ) A 、1220x y ++= B 、340x y ++= C 、380x y -+= D 、260x y --=5、(2012)椭圆2213625x y +=的两焦点坐标是( )A 、((0,,B 、()()6,0,6,0-C 、()()0,5,0,5-D 、()),6、(2012)圆2240x x y -+=的圆心到直线40x +-=的距离是 ;7、(2013)若直线l 过点()1,2,在y 轴上的截距为1,则l 的方程为( ) A 、310x y --= B 、310x y -+= C 、10x y --= D 、10x y -+=8、(2013)抛物线28x y =-的准线方程是( ) A 、4y = B 、4y =- C 、2y = D 、2y =-9、(2014)下列抛物线中,其方程形式为()220y px p =>的是( )A B C D 10、(2014)若圆2222432x y x y k k +-+=--与直线250x y ++=相切, 则k =( )A 、3或1-B 、3-或1C 、2或1-D 、2-或111、(2014)已知点(1,3)A 和点(3,1)B -,则线段AB 的垂直平分线的方程是 ; 12、(2015)下列方程的图像为双曲线的是( )A 、220x y -=B 、22x y =C 、22341x y +=D 、2222x y -=13、(2015)若圆()()22112x y -++=与直线0x y k +-=相切,则k =( )A 、2±B 、2±C 、22±D 、4±14、(2015)已知点(2,1)A 和点(4,3)B -,则线段AB 的垂直平分线在y 轴上的截距为 ; 15、(2016)抛物线24x y =的准线方程是( )A 、1y =-B 、1y =C 、1x =-D 、1x = 16、(2016)已知直线l 的倾斜角为4π,在y 轴上的截距为2,则l 的方程是( ) A 、20y x +-= B 、20y x ++= C 、20y x --= D 、20y x -+=17、(2016)已知直角三角形的顶点()(4,4),1,7A B --和(2,4)C ,则该三角形外接圆的方程是 ;18、(2017)抛物线28y x =-的焦点坐标是( )A 、()2,0-B 、()2,0C 、()02-,D 、()02,19、(2017)已知双曲线2221(0)6x y a a -=>的离心率为2,则a =( ) A 、6 B 、3 C 、3 D 220、(2017)设直线l 经过圆22+220x y x y ++=的圆心,且在y 轴上的截距为1,则直线l 的斜率为( )A 、2B 、2-C 、12 D 、12- 21、(2017)已知点(1,2)A 和(3,4)B -,则以线段AB 的中点为圆心,且与直线5x y +=相切的圆的标准方程是 ; 22、(2018)抛物线24y x =的准线方程是( )A 、1x =-B 、1x =C 、1y =-D 、1y =23、(2018)已知点()()1,4,5,2A B -,则AB 的垂直平分线是( ) A 、330x y --= B 、390x y +-=C 、3100x y --=D 、380x y +-=24、(2018)双曲线221432x y -=的离心率e = ; 25、(2018)以两直线0x y +=和230x y --=的交点为圆心,且与直线220x y -+=相切的圆的标准方程是 ;2011至2018年高职高考数学试题第九章概率统计真题练习1、(2011)一个容量为n 的样本分成若干组,若其中一组的频数和频率分别是40和0.25,则n =( )A 、10B 、40C 、100D 、 160 2、(2011)袋中装有6只乒乓球,其中4只是白球,2只是黄球,先后从袋中无放回地取出两球,则取到的两球都是白球的概率是 ; 3、(2012)现有某家庭某周每天用电量(单位:度)依次为:8.6、7.4、 8.0、6.0、8.5、8.5、9.0,则此家庭该周平均每天的用电量为( )A 、6.0B 、8.0C 、8.5D 、9.0 4、(2012则样本在区间[]60,100的频率为( )A 、0.6B 、0.7C 、0.8D 、0.9 5、(2012)从1,2,3,4,5五个数中任取一个数,则这个数是奇数的概率是 ; 6、(2013)已知x 是1210,,,x x x 的平均值,1a 为1234,,,x x x x 的平均值,2a 为5610,,,x x x 的平均值,则x =( )A 、12235a a + B 、12325a a + C 、12a a + D 、122a a+则样本数据落在区间[)10,40的频率为 ( )A 、0.35B 、0.45C 、0.55D 、0.65 8、(2013)设袋内装有大小相同,颜色分别为红、白、黑的球共100个,其中红球45个,从袋内任取1个球,若取出白球的概率为0.23,则取出黑球的概率为 ;9、(2014)在样本12345,,,,x x x x x 中,若123,,x x x 的均值为80,45,x x 的均值为90,则12345,,,,x x x x x 的均值是( )A 、80B 、84C 、85D 、90A 、44123B 、40123C 、59123D 、6412311、(2014)在1,2,3,4,5,6,7七个数中任取一个数,则这个数为偶数的概率是 ; 12、(2015)七位顾客对某商品的满意度(满分为10分)打出的分数为:8,5,7,6,9,6,8.去掉一个最高分和最低分后,所剩数据的平均值为( ) A 、6 B 、7 C 、8 D 、9 13、(2015)甲班和乙班各有两名男羽毛球运动员,从这四人中任意选出两人配对参加双打比赛,则这对运动员来自不同班的概率是( )A 、 13B 、 12C 、 23D 、 4314、(2015)质检部门从某工厂生产的同一批产品中随机抽取100件进行质检,发现其中有5件不合格品,由此估计这批产品中合格品的概率是 ;15、(2016)若样本数据3,2,,5x 的均值为3,则该样本的方差是( )A 、1B 、1.5C 、2.5D 、6 16、(2016)同时抛三枚硬币,恰有两枚硬币正面朝上的概率是( )A 、18B 、14C 、38D 、5817、(2016)某高中学校三个年级共有学生2000名,若在全校学生中随机抽取一名学生,抽到高二年级女生的概率为0.19,则高二年级的女生人数为 ;18、(2017)若样本5,4,6,73,的平均数和标准差分别为( )A 、5和2B 、5C 、6和3D 、619、(2017)从某班的21名男生和20名女生中,任意选派一名男生和一名女生代表班级参加评教座谈会,则不同的选派方案共有( )A 、41种B 、420种C 、520种D 、820种 20、(2017)从编号为1,2,3,4的4张卡片中随机抽取两张不同的卡片,它们的编号之和为5的概率是 ; 21、(2018)现有3000棵树,其中400棵松树,现在提取150做样本,其中抽取松树做样本的有( )棵A 、15B 、20C 、25D 、30 22、(2018)一个硬币抛两次,至少一次是正面的概率是( )A 、13B 、12C 、23D 、3423、(2018)已知数据10,,11,,12,x y z 的平均数为8,则,,x y z 的平均数为 ;2011至2018年高职高考数学试题解答题真题练习一、函数部分解答题1、(2011)设()f x 既是R 上的减函数,也是R 上的奇函数,且()12f =,(1)求()1f -的值;若()2312f t t -+>-,求t 的取值范围。

2009-2018年广东高职高考数学《第一章 集合与充要条件》 十年真题汇总

2009-2018年广东高职高考数学《第一章 集合与充要条件》 十年真题汇总

2009-2018年广东高职高考数学《第一章 集合与充要条件》十年真题汇总第一部分 集合1.【2010年】已知集合}11{,-=M ,}31{,-=N ,则=N M ( )A. }11{,-B.}31{,-C. }1{-D.}311{,,-2.【2011年】设集合}2|||{==x x M ,}13{,-=N ,则=N M ( )A.φB.{-3,-2,1}C. {-3,1,2}D. {-3,-2,1,2}3.【2012年】设集合M = {1,3,5},N = {1,2,5},则=N M ( )A. {1,3,5}B. {1,2,5}C. {1,2,3,5}D. {1, 5}4.【2013年】设集合M = {-1,1},N = {0,1,2},则M ∩ N =( )A. {0}B. {1}C. {0,1,2}D. {-1,0,1,2}5.【2014年】设集合{}2,0,1M =-,{}1,0,2N =-,则=M N ( )A.{}0B.}{1,2-C.φD.}{2,1,0,1,2--6.【2015年】已知集合}41{,=M ,}531{,,=N ,则=N M ( ) A. }1{ B.}54{, C. }541{,, D.}5431{,,,7.【2016年】若集合},3,2{a A =,}4,1{=B ,且}4{=B A ,则=a ( )A. 1B.2C. 3D.48.【2017年】已知集合}43210{,,,,=M ,}543{,,=N ,则下列结论正确的是( ) A. N M ⊆ B.N M ⊇ C. }43{,=N M D. }5210{,,,=N M 9.【2018年】已知集合A={0,1,2,4,5},B={0,2},则A∩B=( )A. {1}B. {0,2}C. {3,4,5}D. {0,1,2}第二部分 充要条件1.【2009年】设 a ,b ,c 均为实数,则“a > b ”是“a + c > b + c ”的( ).A.充分非必要条件B.必要非充分条件C.充分必要条件D.既非充分也非必要条件2.【2010年】“22>>b a 且”是“4>+b a ”的( )A. 必要非充分条件B. 充分非必要条件C. 充要条件D. 非充分非必要条件3.【2011年】“7x =”是 “7x ≤”的( )A. 充分非必要条件B. 必要非充分条件C. 充分必要条件D. 既非充分也非必要条件4.【2012年】“x 2 = 1”是“x = 1”的( )A. 充分必要条件B. 充分非必要条件C. 非充分非必要条件D. 必要非充分条件5.【2013年】.在ABC ∆中,“ 30>∠A ”是“21sin >A ”的( )A. 充分非必要条件B. 充分必要条件C. 必要非充分条件D. 非充分非必要条件6.【2014年】 “0)2)(1(>+-x x ”是“021>+-x x ”的( ).A.必要非充分条件B.充分非必要条件C.充分必要条件D. 非充分非必要条件7.【2015年】“10<<a ”是“3log 2log a a >”的( ).A.充分非必要条件B. 必要非充分条件C.充分必要条件D. 非充分非必要条件8.【2016年】设a ,b 为实数,则“3=b ”是“0)3(=-b a ”的(). A.充分非必要条件 B. 必要非充分条件C.充分必要条件D. 非充分非必要条件9.【2017年】“4>x ”是“0)4)(1(>--x x ”的( ).A.必要非充分条件B. 充分非必要条件C.充分必要条件D. 非充分非必要条件10.【2018年】“3-<x ”是“92>x ”的( ).A.充分非必要条件B. 必要非充分条件C.充分必要条件D. 非充分非必要条件。

广东省2018年高考数学

广东省2018年高考数学

2018年普通高等学招生全国统一考试理科数学一、选择题:本题有12小题,每小题5分,共60分。

1、设z=,则|z|=A、0B、C、1D、2A、B、C、D、3ABCD4、记SnA、5A、6、在ABC=A、--B、--C、-+D、-7、某圆柱的高为2,底面周长为16,其三视图如右图,圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为A、B、C、3D、28.设抛物线C:y2=4x的焦点为F,过点(-2,0)且斜率为的直线与C交于M,N两点,则·=A.5B.6C.7D.89.已知函数f(x)=g(x)=f(x)+x+a,若g(x)存在2个零点,则a的取值范围是A.[-1,0B.[0,+C.[-1,+D.[1,+10.p1,p2A.p1B.p1C.p2D.p111.若△OMNA.B.3C.D.412.A.二、填空题:本题共4小题,每小题5分,共20分。

13.若x,y满足约束条件则z=3x+2y的最大值为.14.记Sn 为数列{an}的前n项和.若Sn=2an+1,则S6=.15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有种.(用数字填写答案)16.已知函数f(x)=2sinx+sin2x,则f(x)的最小值是.三.解答题:共70分。

解答应写出文字说明、证明过程或演算步骤。

第17~21题为必考题,每个试题考生都必须作答。

第22、23题为选考题,考生根据要求作答。

(一)必考题:共60分。

17.(12分)在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=,求BC.18.(12分)如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把?DFC折起,使点C到达点P的位置,且PF⊥BP.((19.(12设椭圆C+y2=1两点,点的坐标为(的方程;(2)设20、(12如检验出(1)记(2的值,已25元(i),求EX:(ii)21、(12已知函数.(1)讨论的单调性;(2)若(二)选考题:共10分。

广东省高职高中高考数学试卷试题有包括答案.docx

广东省高职高中高考数学试卷试题有包括答案.docx

2018 年广东省普通高校高职考试数学试题一、 选择题(共15 小题,每题 5 分,共 75 分)1、(2018)已知集合 A 0,12,4,5, , B 0,2 ,则 A I B ()A. 1B. 0,2C.3,4,5D.0,1,22.(2018)函数 f x3 4 x 的定义域是()A 、 3,B 、 4,C 、,3D 、,4434 33.(2018)下列等式正确的是()A 、 lg5 lg3lg 2B 、 lg5lg3lg8C 、 lg 5lg101 lg 5D 、 lg = 21004.( 2018)指数函数 y a x 0a 1 的图像大致是( )AB C D5.(2018)“ x3 ”是 “ x 2 9 ”的()A 、必要非充分条件B 、充分非必要条件C 、充分必要条件D 、非充分非必要条件6.(2018)抛物线 y 24x 的准线方程是()A 、 x1B 、 x 1C 、 y 1D 、 y17. ( 2018)已知 ABC , BC3, AC6, C90 ,则( )A 、 sin A2 B 、coA=62D 、 cos( A B)12C 、 tan A311 1 1L1()8.(2018) 12223 24 2n 12A 、 2 ( 12 n ) B 、 2 ( 121 n )C 、 2 ( 12n 1 )D 、 2 ( 12n )uuuruuur 3,4uuur9.(2018)若向量 AB 1,2 , AC,则 BC ()A 、 4,6B 、 2, 2C 、 1,3D 、 2,210.(2018)现有 3000 棵树,其中 400 棵松树,现在提取 150 做样本,其中抽取松树 做样本的有( )棵A 、15B 、 20C 、25D 、 30 11.(2018) f xx3 , x 0,则 ff 2()x 21, x 0A 、1B 、0C 、 1D 、 212. (2018)一个硬币抛两次,至少一次是正面的概率是()A 、1B 、1C 、2D 、3323 413.(2018)已知点 A 1,4 , B 5,2 ,则 AB 的垂直平分线是()A 、 3x y 3B 、 3xy 9 0C 、 3x y 100 D 、 3x y 8 0 14.(2018)已知数列 a n 为等比数列,前 n 项和 S n3n 1a ,则 a()A 、 6B 、 3C 、0D 、315.(2018)设 f x 是定义在 R 上的奇函数,且对于任意实数 x ,有 fx 4f x ,若 f 1 3 ,则 f 4f 5( )A 、 3B 、3C 、 4D 、6二、二、填空题(共 5 小题,每题 5 分,共25 分)16、(2018)双曲线x2y21的离心率 e;432r r r r r17、(2018)已知向量 a,,,若 a b ,则 b;4 3 , b x 418、(2018)已知数据10, x,11, y,12, z的平均数为8,则 x, y, z 的平均数为;19、(2018)以两直线x y0 和 2x y 3 0 的交点为圆心,且与直线 2x y 2 0相切的圆的标准方程是;20 已知ABC对应边分别为的内角A B,C的对边分别为a, b, c ,已知 3b 4a, B 2 A,,则 cosA;三、解答题( 50 分)21、( 2018)矩形周长为10,面积为 A ,一边长为x。

(完整word版)2018年高职高考数学模拟试卷(一)

(完整word版)2018年高职高考数学模拟试卷(一)

试卷类型:A2018年高职高考第一次模拟考试数 学 试 题注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。

用2B 铅笔将试卷类型填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的,答案无效。

4.考生必须保持答题卡的整洁。

考试结束后,将答题卡交回。

一、选择题:本大题共15小题,每小题5分,满分75分.在每小题给出的四个选项中,只有一项符合题目要求.1.已知集合{}2,A a =,{}4B =,且{}1,2,4A B =U 则a =( )A .4B .3C .2D .12.函数0.2log (1)x -的定义域为( )A (1,2)B ](1,2C []1,2D )1,2⎡⎣3.已知,a b 是实数,则“0a =”是“()30a b -=”的( )A .充分非必要条件B .必要非充分条件C .充分必要条件D .非充分非必要条件4.不等式2560x x --≤的解集是( )A . {}23x x -≤≤B .{}61x x -≤≤C . {}16x x -≤≤D .{}16x x x ≥≤或5.下列函数中,在区间(0,+∞)上为增函数的是( )A .y =x +1B .y =(x -1)2C .y =2-xD .y =log 0.5(x +1)6.函数cos 2y x ⎛⎫=- ⎪⎝⎭π在区间,43ππ⎡⎤⎢⎥⎣⎦上的最大值是( ) A .1 B .3 C .2 D .127.已知向量a r =(3,1),b r =(-2,1),则2a b -r r =( )。

数学真题2018广东3+证书高职高考数学试题及参考答案解析

数学真题2018广东3+证书高职高考数学试题及参考答案解析

2017年广东省高等职业院校 招收中等职业学校毕业生考试数 学 试 题注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、考场号、座位号填写在答题卡上。

用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,在选涂其他答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上:如需改动,先画掉原来的答案,然后再写上新的答案:不能使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本大题共15小题,没小题5分,满分75分.在每小题给出的四个只有一项是符合题目要求的.1.已知集合}5,4,3{},4,3,2,1,0{==N M ,则下列结论正确的是A.N M ⊆ B. N M ⊇C. {}4,3=N M D. {}5,2,1,0=N M 2.函数xx f +=41)(的定义域是A. ]4,(--∞ B. ()4,-∞- C. ),4[+∞- D. ),4(+∞- 3.设向量a = )4,(x ,b = )3,2(-,若a .b ,则x= A. -5 B. -2 C. 2 D. 7 4.样本5,4,6,7,3的平均数和标准差为A. 5和2B. 5和2C. 6和3D. 6和3 设0>a 且y x a ,,1≠为任意实数,则下列算式错误..的是 A. 10=a B. yx yxaa a +=⋅C. yx y x a aa -= D. 22)(x x a a =5.设)(x f 是定义在R 上的奇函数,已知当324)(时,0x xx f x -=≥,则f(-1)=A. -5B. -3C. 3D. 56.已知角θ的顶点与原点重合,始边为x 轴的非负半轴,如果θ的终边与单位圆的交点为)54,53(-P ,则下列等式正确的是A. 53sin =θ B. 54cos -=θ C. 34tan -=θ D. 43tan -=θ 7.“4>x ”是“0)4)(1(>--x x ”的A. 必要非充分条件B. 充分非必要条件C. 充分必要条件D. 非充分非必要条件 8.下列运算不正确的是 A. 1log log 52102=- B. 15252102log log log =+C.120= D. 422810=÷9.函数x x x x x f sin 3sin cos 3cos )(-=的最小正周期为A.2πB. 32πC. πD. π210.抛物线x y 82-=的焦点坐标是A. (-2,0)B. (2,0)C. (0,-2)D. (0,2)11.已知双曲线16222=-y ax (a>0)的离心率为2,则a= A. 6 B. 3 C.3 D. 212.从某班的21名男生和20名女生中,任意选一名男生和一名女生代表班级参加评教座谈会,则不同的选派方案共有A. 41种B. 420种C. 520种D. 820种 13.已知数列}{n a 为等差数列,且1a =2,公差d=2,若k a a a ,,21成等比数列,则k= A. 4 B. 6 C. 8 D. 10 14.设直线l 经过圆02222=+++y x y x的圆心,且在y 轴上的截距1,则直线l 的斜率为A. 2B. -2C. 21D. 21- 15. 已知函数x e y =的图象与单调递减函数R)f(x)(x =y ∈的图象相交于(a ,b ),给出的下列四个结论:①b aln =,②a b ln =,③,b a f =)(④ 当x>a 时,xe xf <)(. 其中正确的结论共有A. 1个B. 2个C. 3个D. 4个二、填空题:本大题共5小题,每小题5分,满分25分.16.已知点)4,3(),10,7(),0,0(--B A O ,则设a =OB OA +,则a= . 17.设向量a =(2,3sin θ), b =(4,3cos θ),若a //b ,则tan θ= .18.从编号分别为1,2,3,4的4张卡片中随机抽取两张不同的卡片,它们的编号之和为5的概率是 . 19.已知点A (1,2)和点B (3,-4),则以线段AB 的中点为圆心,且与直线x+y=5相切的圆的标准方程是 .20.若等比数列{}n a 的前n 项和1n 313--=nS ,则{}n a 的公比q= .三、解答题:本大题共4小题,第21~23题各12分,第24题14分,满分50分. 解答须写出文字说明、证明过程和演算步骤. 21.(本小题满分12分)如图, 已知两点A (6,0)和点B (3,4),点C 在y 轴上,四边形OABC 为梯形,P 为线段OA 上异于端点的一点,设x OP =.(1)求点C 的坐标;(2)试问当x 为何值时,三角形ABP 的面积与四边形OPBC 的面积相等? 22.(本小题满分12分)设ABC ∆的内角C B A ,,的对边分别为,,,c b a 已知a=2,b=3,c=5.(Ⅰ)求sinC 的值;(Ⅱ)求cos(A+B)+sin2C 的值.23.(本小题满分12分)已知数列{}n a 是等差数列,n S 是{}n a 的前n 项和,若26,16127==a a . (1)求n a 和n S ; (2)设2S 1+=n n b ,求数列{}n b 的前n 项和为n T .24.(本小题满分14分)如图,设21,F F 分别为椭圆C :1a 16a 2222=-+y x (a>0)的左、右焦点,且22F F 21=.(1)求椭圆C 的标准方程;(2)设P 为第一象限内位于椭圆C 上的一点,过点P 和2F 的直线交y 轴于点Q ,若21QF QF ⊥,求线段PQ 的长.参考答案一、选择题(共15小题,每小题5分,共75分.)CDDBC CBBAA DBAAC二、填空题(共5小题,每小题5分,共25分.)16、 5;17、61 ; 18、31 ; 19、 8)1()2(22=++-Y x ; 20、 31.。

2018广东省高职高考数学试题

2018广东省高职高考数学试题

2018年广东省普通高校高职考试数学试题一、选择题(共15小题,每题5分,共75分)1、(2018)已知集合,,则()A.B. C. D.2.(2018)函数的定义域是()A、B、C、D、3.(2018)下列等式正确的是()A、B、C、D、4.(2018)指数函数的图像大致是()5.(2018)“”是“”的()A、必要非充分条件B、充分非必要条件C、充分必要条件D、非充分非必要条件6.(2018)抛物线的准线方程是()A、B、C、D、7.(2018)已知,,则()A、B、C、D、8.(2018)()A、B、C、D、9.(2018)若向量,则()A、B、C、D、10.(2018)现有3000棵树,其中400棵松树,现在提取150做样本,其中抽取松树做样本的有()棵A、15B、20C、25D、3011.(2018),则()A、1B、0C、D、12.(2018)一个硬币抛两次,至少一次是正面的概率是()A、B、C、D、13.(2018)已知点,则的垂直平分线是()A、B、C、D、14.(2018)已知数列为等比数列,前项和,则()A、B、C、0 D、315.(2018)设是定义在R上的奇函数,且对于任意实数,有,若,则()A、B、3C、4 D、6二、二、填空题(共5小题,每题5分,共25分)16、(2018)双曲线的离心率;17、(2018)已知向量,若,则;18、(2018)已知数据的平均数为8,则的平均数为;19、(2018)以两直线和的交点为圆心,且与直线相切的圆的标准方程是;20已知对应边分别为的内角的对边分别为,已知,则;三、解答题(50分)21、(2018)矩形周长为10,面积为,一边长为。

(1)求与的函数关系式;(2)求的最大值;(2)设有一个周长为10的圆,面积为,试比较与的大小关系。

22、(2018)已知数列是等差数列,(1)求的通项公式;(2)若,求数列的前n项和为.23、(2018)已知,最小值为,最小正周期为。

广东省2018年高考数学

广东省2018年高考数学

2018年普通高等学招生全国统一考试理科数学一、选择题:本题有12小题,每小题5分,共60分。

1、设z=,则|z|=A、0B、C、1D、2、已知集合A={x|x2-x-2>0},则A=A、{x|-1<x<2}B、{x|-1x2}C、{x|x<-1}∪{x|x>2}D、{x|x-1}∪{x|x2}3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是:A、新农村建设后,种植收入减少。

B、新农村建设后,其他收入增加了一倍以上。

C、新农村建设后,养殖收入增加了一倍。

D、新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半。

4、记S n为等差数列{a n}的前n项和,若3S3=S2+S4,a1=2,则a5=A、-12B、-10C、10D、125、设函数f(x)=x3+(a-1)x2+ax,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为:A、y=-2xB、y=-xC、y=2xD、y=x6、在ABC中,AD为BC边上的中线,E为AD的中点,则=A、--B、--C、-+D、-7、某圆柱的高为2,底面周长为16,其三视图如右图,圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的A 、B 、C 、3D 、28.设抛物线C :y ²=4x 的焦点为F ,过点(-2,0)且斜率为的直线与C 交于M ,N 两点,则·=A.5B.6C.7D.89.已知函数f (x )=g (x )=f (x )+x+a ,若g (x )存在2个零点,则a 的取值范围是A. [-1,0)B. [0,+∞)C. [-1,+∞)D. [1,+∞)10.下图来自古希腊数学家希波克拉底所研究的几何图形。

此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC. △ABC 的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ。

历届广东省高职高考数学试题

历届广东省高职高考数学试题

广东高职高考第一至九章考题精选第一章 集合与逻辑用语1.(05年)设}7,6,5,4,3{=A ,}9,7,5,3,1{=B ,则B A 的元素个数为( )A. 1B. 2C. 3D. 4 2.(06年)已知}2,1,1{-=A ,}02{2=-=x x x B ,则=B A ( )A. ∅B. }2{C. }2,0{D. }2,1,0,1{- 3.(07年)已知集合}3,2,1,0{=A ,}11{<-=x x B ,则=B A ( )A. }1,0{B. }2,1,0{C. }3,2{D. }3,2,1,0{ 4. (08年)设集合{}3,2,1,1-=A ,{}3<=x x B ,则=B A ( )A.)1,1(-B.{}1,1-C.{}2,1,1-D.{}3,2,1,1-5. (09年)设集合=M {}432,,,=N {}452,, ,则=N M ( ) A .{}5432,,,B .{}42,C .{}3D .{}5 6.(10年)设集合=M {}1,1- ,=N {}3,1- ,则=N M ( )A .{}1,1-B .{}3,1-C .{}1-D .{}3,1,1- 7.(11年)已知集合{}2|==x x M ,{}1,3-=N ,则=N M ( )A .∅B .{}1,2,3--C .{}2,1,3-D .{}2,1,2,3-- 8.(12年)设集合{1,3,5}M =,{1,2,5}N =,则=N M ( )A.{1,3,5}B. {1,2,5}C. {1,2,3,5}D. {1,5} 9.(13年)设集合{}1,1-=M ,{}2,1,0=N ,则=N M ( ) A . {}0 B . {}1 C . {}2,1,0 D . {}2,1,0,1-10.(14年)已知集合{}1,0,2-=M ,{}2,0,1-=N ,则=N M ( ) A .{}0 B .{}1,2- C .∅ D .{}2,1,0,1,2--11. (05年)“042>-ac b ”是“方程02=++c bx ax ,0≠a 有实数解”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既非充分又非必要条件 12. (06年)设G 和F 是两个集合,则G 中元素都在F 中是F G =的( )A. 充分条件B. 充要条件C. 必要条件D. 既非充分又非必要条件 13. (08年)R x ∈,“3<x ”是“3<x ”的( )A .充分必要条件 B.充分不必要条件 C.既不必要也不充分条件 D.必要不充分条件 14.(09年)设c b a ,,均为实数,则“b a >”是“c b c a +>+”的( )A .充分非必要条件B .必要非充分条件C .充分必要条件D .既非充分也非必要条件 15.(10年)“2>a 且2>b ”是“4>+b a ”的( )A. 必要非充分条件B. 充分非必要条件C. 充要条件D. 非充分非必要条件 16.(11年)“7=x ”是“7≤x ”的( )A .充分非必要条件B .必要非充分条件C .充分必要条件D .既非充分,也非必要条件 17.(12年)“12x =”是 “1x =”的 ( )A. 充分必要条件B. 充分非必要条件C. 非充分也非必要条件D. 必要非充分条件 18.(13年)在ABC ∆中,“ 30>∠A ”是“21sin >A ”的( ) A. 充分非必要条件 B. 充分必要条件 C. 必要非充分条件 D. 非充分非必要条件 19.(14年)“0)2)(1(>+-x x ”是“021>+-x x ”的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充分必要条件 D. 非充分非必要条件第二章 不等式1.(06年)若a ,R b ∈,且b a >,则下列不等式成立的是( )A. 22b a >2B. b a >C. 0)lg(>-b aD. b a )21()21(<2. (08年)若c b a ,,是实数,且,b a >则下列不等式中正确的是( )A. bc ac >B. bc ac <C. 22bc ac >D. 22bc ac ≥ 3.(13年)设b a ,是任意实数,且b a >,则下列式子正确的是( ) A . 22b a > B . 1<abC . 0)lg(>-b aD . b a 22>4.(07年)不等式0432>--x x 的解为___ ____.5.(09年)已知集合=A ⎭⎬⎫⎩⎨⎧≥-+032x x x ,则=A ( )A .(]2,-∞-B .()+∞,3C .[)3,2-D .]3,2[- 19.(09年)不等式)13(log )5(log 22+<-x x 的解是6.(10年)不等式11<-x 的解集是( )A .{}0<x xB .{}20<<x xC . {}2>x xD .{}20><x x x 或 7.(11年)不等式112≥+x 的解集是( ) A .{}11≤<-x x B .{}1≤x x C . {}1->x x D .{}11->≤x x x 或 8. (12年)不等式312x -<的解集是( )A . 113,⎛⎫- ⎪⎝⎭B . 113,⎛⎫⎪⎝⎭C . ()13,-D . ()13,9.(13年)对任意R x ∈,下列式子恒成立的是( )A . 0122>+-x xB . 01>-xC . 012>+xD . 0)1(log 22>+x 10.(13年)不等式0322<--x x 的解集为 . 11.(05年)解不等式:)24(log )34(log 222->-+x x x12.(06年)解不等式:2445≤+-x x13. (08年)解不等式21692<++x x第三章 函数1.(05年)下列四组函数中,)(x f ,)(x g 表示同一个函数的是( )A. x x f =)(,2)(x x g = B. 1)(+=x x f ,11)(2--=x x x gC. 2)(x x f =,4)()(x x g =D. x x f lg 2)(=,2lg )(x x g =2.(10年)设函数⎪⎩⎪⎨⎧≤>=0,20,log )(3x x x x f x ,则[])1(f f ( )A. 0B. 2log 3C. 1D. 23.(13年)设函数⎪⎩⎪⎨⎧>≤+=1,21,1)(2x xx x x f ,则=))2((f f ( )A . 1B . 2C . 3D . 44.(05年)函数13)(+-=x x x f 的定义域为( ) A. )1,(--∞ B. ),1(+∞- C. ),3(+∞ D. ),3[+∞ 5.(06年)函数xx y --=2)1(log 2 的定义域是( )A. )2,(-∞B. )2,1(C. ]2,1(D. ),2(+∞ 6.(08年)函数)10(log 123x x y -+-=的定义域是( )A. )10,(-∞B. )10,21(C. )10,21[D. ),21[+∞7.(10年)函数xx x f -+=21)(的定义域为( )A. )2,(-∞B. ),2(+∞C. ),1()1,(+∞---∞D. ),2()2,(+∞-∞ 8.(11年)函数xx y +-=1)1lg(的定义域是( )A .[]1,1-B .()1,1-C .()1,∞-D .()+∞-,1 9.(12年) 函数lg(1)y x =-的定义域是 ( )A . ()1,+∞B . ()1,-+∞C . ()1,-∞-D . ()1,-∞10.(13年)函数24x y -=的定义域是( ) A . ()2,2- B . []2,2- C . ()2,-∞- D . ()+∞,2 11.(14年)函数xx f -=11)(的定义域是( )A .)1,(-∞B .),1(+∞-C .]1,1[-D .)1,1(-12.(06年)函数242+-=x x y ,]3,0[∈x 的最大值为( )A. 2-B. 1-C. 2D. 3 13.(10年)函数182)(++=x xx f 在区间),0(+∞内的最小值( ) A. 5 B. 7 C. 9 D. 1114.(05年)下列在R 上是增函数的为( )A. x y 2=B. 2x y =C. x y cos =D. x y sin = 15.(05年)设x ax x f sin )1()(2+=,其中a 为常数,则)(x f 是( )A. 既是奇函数又是偶函数B. 奇函数C. 非奇非偶函数D. 偶函数 16.(06年)下列函数中,为偶函数的是( )A. x x f cos )(=,),0[+∞∈xB. x x x f sin )(+=,R x ∈C. x x x f sin )(2+=,R x ∈D. x x x f sin )(⋅=,R x ∈ 17.(07年)下列函数中,在其定义域上为奇函数的是( )A. x x y cos 2sin +=B. x x y 33+=C. x x y -+=22D. x x y cot tan +=18.(09年))内是减函数,,在区间(∞+=0)(x f y 则)3(sin ),4(sin ),6(sin πf c πf b πf a ===的 大小关系是( )A .a b c >>B .a c b >>C .c a b >>D .c b a >> 19.(09年)函数)1lg()(2x x x f +=是( )A .奇函数B .既是奇函数也是偶函数C .偶函数D .既不是奇函数也不是偶函数 20.(10年)若函数)(x f y =满足:对区间[]b a ,上任意两点1x 、2x ,当21x x <时,有)()(21x f x f >,且0)()(<b f a f ,则)(x f y =对区间[]b a ,上的图像只可能是( )x x x x21.(11年)已知函数⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤≤>=,31,sin1,log)(21xxxxxxxf,则下列结论中,正确的是()A.)(xf在区间),1(+∞上是增函数 B.)(xf在区间]1,(-∞上是增函数C.1)2(=πf D.1)2(=f22.(12年)下列函数为奇函数的是( )A.2y x=B.2siny x=C.2cosy x=D.2lny x=23.(12年)()f x是定义在()0,+∞上的增函数,则不等式()(23)f x f x>-的解集是. 24.(13年)下列函数为偶函数的是()A. x ey= B. xy lg= C. xy sin= D. xy cos=25.(14年)下列函数在其定义域内单调递减的是()A.xy21= B.xy2= C.xy)21(= D.2xy=26.(14年)已知)(xf是偶函数,且0≥x时,xxf3)(=,则=-)2(f .27.(05年)下列图形中,经过向左及向上平移一个单位后,能与函数1)(2+=xxf图象重叠的图形是()28. (06年)抛物线4412-+-=xxy的对称轴是( )A. 4-=x B. 2-=x C. 2=x D. 4=x29. (06年)直线caxy+=分别与x轴、y轴相交,交点均在正半轴上,则下列图形中与函数caxy+=2图象相符的是()212+x12-30.(07年)已知函数cbxaxy++=2)(Rx∈的图象在x轴上方,且对称轴在y轴左侧,则函数baxy+=的图象大致是()31. (08年)下列区间中,函数34)(2+-=xxxf在其上单调增加的是( )A. (0,∞-] B. ),0[+∞ C.]2,(-∞ D.),2[+∞32. (08年)二次函数cbacbxaxy,,(2++=为常数)的图像如右图所示,则( )A. 0<ac B. 0>ac C. 0=ac D. 0>ab33. (09年)已知函数为实数)bbxxxf(3)(2++=的图像以1=x为对称轴,则)(xf的最小值为()A.1 B.2 C.3 D.434.(14年)若函数kxxxf++-=2)(2)(Rx∈的最大值为1,则=k .35. (05年)设函数)(xf对任意x都有)10()(xfxf-=,且方程0)(=xf有且仅有2个不同的实数根,则这2个根的和为( )A. 0B. 5C. 10D. 1536.(07年)某公司生产一种电子仪器的成本C(单位:万元)与产量x(3500≤≤x,单位:台)的关系式为xC10010000+=,而总收益R(单位:万元)与产量x的关系式为221300xxR-=,(Ⅰ)试求利润L与产量x的关系式;(说明:总收益=成本+利润),(Ⅱ)当产量为多少时,公司所获得的利润最大?最大利润是多少?37.(09年)已知小王的移动电话按月结算话费,月话费y (元)与通话世界t (分钟)的关系可表示为3600360),360(68,68≤≤⎩⎨⎧>-+=t t l a y ,其中1月份的通话时间未460分钟,月话费为86元, (1)求a 的值。

2018广东高职高考数学模拟试卷028

2018广东高职高考数学模拟试卷028

2018广东高职高考数学模拟试卷一、选择题:(本大题共15小题,每小题5分,满分75分。

) 1. 设集合{}2,0,1M =-,{}1,0,2N =-,则=M N ( ). A.{}0 B. ∅ C. {}0,1,2 D. {}1,0,1,2- 2. 函数()1f x x=-的定义域是( ). A. ()1,-+∞ B. (),1-∞ C. []1,1- D. (1,1)- 3. 若向量)cos 4,sin 4(θθ=a,则a =( ). A. 8 B. 4 C. 2 D. 1 4. 下列等式正确的是( ) . A. lg 7lg31+= B. 7lg 7lg 3lg 3=C. 3lg 3lg 7lg 7= D. 7lg 37lg 3= 5.下列抛物线中,其方程形式为)0(2y 2>-=p px 的是( ).A. B. C. D.6.设向量()4,5a =,()1,0b =,()2,c x =,且满足c )(∥b a +,则x = ( ).A. 12-B. 2-C. 12D. 2 7. 下列函数单调递减的是( ).A.y=0.5xB. 2x y =C. x 5.0log y =D. 2y x = 8. 函数()4sin cos ()f x x x x R =∈的最大值是 ( ). A. 1 B. 8 C. 4 D. 29.已知角θ的顶点为坐标原点,始边为x 轴正半轴,若()4,3P 是角θ终边上的一点,则cos θ=( ).A.34 B. 45 C. 43D. 3510.”()0)2(1≥+-x x ”是“102x x ->+”的( ).A. 充分非必要条件B. 充分必要条件C. 必要非充分条件D. 非充分非必要条件11. 在图1所示的平行四边形ABCD 中,下列等式子不正确的是( ). A. AC AB AD =+ B. AC AD DC =+ C. AC BA BC =- D. AC BC BA =-12. 已知数列{}n a 的前n 项和1n nS n =+,则5a = ( ). A. 142 B. 56 C. 45 D. 13013. 在样本12345x x x x x ,,,,若1x ,2x ,3x 的均值为90,4x ,5x 均值为100,则1x ,2x ,3x ,4x ,5x 均值( ).A. 94B. 90C. 95D. 10014.第一季度在某妇幼医院出生的男、女婴人数统计表(单位:人)如下:月份性别一 二 三 总计 男婴 22 19 23 64 女婴 18 20 21 59 总计403944123则今年第一季度该医院男婴的出生频率是( ). A.44123 B. 64123 C. 40123 D. 5912315. 若圆2222432x y x y k k +-+=--与直线250x y ++=相切,则k =( ). A.3或1- B. 2或1- C. 3-或1 D. 2-或1二、填空题:(本大题共5个小题,每小题5分,满分25分。

广东2018年理数高考试题(word档含答案解析)

广东2018年理数高考试题(word档含答案解析)

绝密★启用前
2018年普通高等学校招生全国统一考试(广东卷)
理科数学
注意事项:
1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一
项是符合题目要求的。

1.设1i 2i 1i z
,则||z A .0
B .12
C .1
D .22.已知集合220A
x x x ,则A R e A .12x
x B .12x x C .|1|2x x x x D .|1|2
x x x x 3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:
建设前经济收入构成比例
建设后经济收入构成比例则下面结论中不正确的是
A .新农村建设后,种植收入减少。

2018年广东省高等职业院校招收中等职业学校毕业生考试语文、英语、数学(三科全)

2018年广东省高等职业院校招收中等职业学校毕业生考试语文、英语、数学(三科全)

2018年广东省高等职业院校招收中等职业学校毕业生考试语文本试卷共8页,24小题,满分150分。

考试用时150分钟。

注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、考场号、座位号填写在答题卡上。

用2B铅笔将试卷类型(A)填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角"条形码粘贴处"。

2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动先划掉原来的答案,然后再写上新的。

4.答卷时;必不须准保使持用铅答笔题和卡涂的改整洁。

一、本大题共8小题,每小题3分共24分。

l.下列词语中加点字的读音都不相同的一组是A.慰藉./籍.贯啜.泣/拾掇.数.学/数.见不鲜B.诛.杀/茱.萸慎.重/缜.密山脉./脉脉.含情C.瓦砾./闪烁.渎.职/案牍.蹊.跷/另辟蹊.径D.绵亘./旦.夕讪.笑/汕.头省.略/不省.人事2下列词语中没有错别字的一组是A.砝码简练侯车室引吭高歌B.辨别九洲主旋律反腐倡廉C.赡养琐屑斑马线抨然心动D.暧昧沧桑度假村发号施令3.下列句子中加点的词语使用得体的一项是A.李明偶小学同学陈军李明说:“多年不见很是挂念令.尊.身体可好?B.王芳受邀到丽丽家参加生日晚会王芳说:“我一定按时到寒舍..赴约。

”C.王明挑选了一张个人照送给同桌丁莉作毕业留念他在照片背面写上“丁莉惠顾..”。

D.郑经理因为堵车迟到他一见到客户赶紧道歉:“不好意思,让您恭候..多时了4.依次填入下列各句横线上的词语最恰当的一组是(1)目前网游市场竞争无序相关部门严格监管,进一步规范经营者、开发者和管理者的行为。

(2)乘客信息安全是交通运营安全的一个重要环节,网约车平台公司不应随便乘客个人信息。

2018广东高职高考A卷数学试卷 教师版(学霸教育独家放送)

2018广东高职高考A卷数学试卷 教师版(学霸教育独家放送)

) D. 2(1-2n-1)
∴1+
1 2
+
1 22
+
1 23
+
1 24
+
1 2n1

a1(qn 1) q 1
1 =
1 n 2
1 1
1

=2(1-2-n)
2
9.(2018 广东高职高考 T9)若向量 AB (1,2) , AC (3,4),则 BC =
A. 3x-y-3=0
B. 3x+y-9=0
C. 3x-y-10=0
D. 3x+y-8=0
答案:A
解析:AB
中点(2,3)kAB=
2-4 5-(-1)

-
1 3
AB 垂直平分线 k=3
∴AB 垂直平分线是 y=3(x-2)+3 即 3x-y-3=0
14.(2018 广东高职高考 T14)数列an 为等比数列,前 n 项和 Sn=3n+1+a,a=( )
(2)由(1)得:A=-(x-52)2+245(0<x<5)
当 A=52时,A 最大=245
(3)由题得 C=2πr=10 解得:r=5π
∴S=πr2=2π5
由(2)得 A 最大=245 ∵π<4 ∴S>A
22.(2018 广东高职高考 T22)数列an 为等差数列 a1+a2+a3=6,a5+a6=25,
∴f(π8)=3sin(2×π8+������)=3sin(π4+������) =3(sin������cosπ4+ sinπ4cos������)
=3(
2 3
×
22+
2 2×
7) 3
= 14 +1 2

广东省2018年高考数学

广东省2018年高考数学

2018年普通高等学招生全国统一考试理科数学一、选择题:本题有12小题,每小题5分,共60分。

1、设z=,则|z|=A、0B、C、1D、2、已知集合A={x|x2-x-2>0},则A=A、{x|-1<x<2}B、{x|-1x2}C、{x|x<-1}∪{x|x>2}D、{x|x-1}∪{x|x2}3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是:A、新农村建设后,种植收入减少。

B、新农村建设后,其他收入增加了一倍以上。

C、新农村建设后,养殖收入增加了一倍。

D、新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半。

4、记S n为等差数列{a n}的前n项和,若3S3=S2+S4,a1=2,则a5=A、-12B、-10C、10D、125、设函数f(x)=x3+(a-1)x2+ax,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为:A、y=-2xB、y=-xC、y=2xD、y=x6、在ABC中,AD为BC边上的中线,E为AD的中点,则=A、--B、--C、-+D、-7、某圆柱的高为2,底面周长为16,其三视图如右图,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A 、B 、C 、3D 、28.设抛物线C :y ²=4x 的焦点为F ,过点(-2,0)且斜率为的直线与C 交于M ,N 两点,则·=A.5B.6C.7D.89.已知函数f (x )=g (x )=f (x )+x+a ,若g (x )存在2个零点,则a 的取值范围是A. [-1,0)B. [0,+∞)C. [-1,+∞)D. [1,+∞)10.下图来自古希腊数学家希波克拉底所研究的几何图形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018 年广东省普通高校高职考试
数学试题
一、 选择题(共
15 小题,每题 5 分,共 75 分)
1、(2018)已知集合 A 0,12,4,5, , B 0,2 ,则 A I B ( )
A. 1
B. 0,2
C.
3,4,5
D.
0,1,2
2.(2018)函数 f x
3 4 x 的定义域是(

A 、 3
,
B 、 4
,
C 、
,
3
D 、,
4
4
3
4
3
3.(2018)下列等式正确的是(

A 、 lg5 lg3 lg 2
B 、 lg5 lg3 lg8
C 、 lg 5
lg10
1 lg 5
D 、 lg = 2
100
4.( 2018)指数函数 y a x 0
a 1 的图像大致是( )
A
B C D
5.(2018)“ x
3 ”是 “ x 2 9 ”的(

A 、必要非充分条件
B 、充分非必要条件
C 、充分必要条件
D 、非充分非必要条件
6.(2018)抛物线 y 2
4x 的准线方程是(

A 、 x
1
B 、 x 1
C 、 y 1
D 、 y
1
7. ( 2018)已知 ABC , BC
3, AC 6, C 90 ,则( )
A 、 sin A
2 B 、 cos A
6 C 、 tan A
2
D 、 cos( A B) 1
2
2
8.(2018) 1 1 1 1
L
1
( )
1
22 23 24
2n 1
2
A 、
B 、
2
C 、
D 、 2
2 uuur
3
uuur
uuur 3,4
9.(2018)若向量 AB
1,2 , AC
,则 BC (

A 、 4,6
B 、 2, 2
C 、 1,3
D 、 2,2
10.(2018)现有 3000 棵树,其中 400 棵松树,现在提取 150 做样本,其中抽取松树 做样本的有( )棵
A 、15
B 、 20
C 、25
D 、 30 11.(2018) f x
x 3 , x 0
f 2


x 2 1, x
,则 f
A 、1
B 、0
C 、 1
D 、 2
12. (2018)一个硬币抛两次,至少一次是正面的概率是(

A 、
1
B 、
1
C 、
2
D 、
3
3 2
3 4
13.(2018)已知点 A 1,4 , B 5,2 ,则 AB 的垂直平分线是(

A 、 3x y 3 0
B 、 3x y 9 0
C 、 3x y 10 0
D 、 3x y 8 0 14.(2018)已知数列 a n 为等比数列,前 n 项和 S n
3n 1
a ,则 a (

A 、 6
B 、 3
C 、0
D 、3
15.(2018)设 f x 是定义在 R 上的奇函数,且对于任意实数 x ,有 f x 4 f x ,
若 f 1 3 ,则 f 4
f 5
( )
A 、 3
B 、3
C 、 4
D 、6
二、二、填空题(共 5 小题,每题 5 分,共25 分)
16、(2018)双曲线x
2
y2 1的离心率 e ;
4 32
r r r r r
17、(2018)已知向量 a
,,,若 a b ,则 b

4 3 , b x 4
18、(2018)已知数据10, x,11, y,12, z的平均数
为8,则 x, y, z 的平均数为;
19、(2018)以两直线x y 0 和 2x y 3 0 的交点为圆心,且与直线 2x y 2 0 相切的圆的标准方程是;
20 已知ABC对应边分别为
的内角A B

C
的对边分别为a, b, c ,已知 3b 4a, B 2 A
,,
则 cosA ;
三、解答题( 50 分)
21、( 2018)矩形周长为10,面积为 A ,一边长为x。

(1)求 A 与x的函数关系式;
(2)求 A 的最大值;
(2)设有一个周长为 10 的圆,面积为 S ,试比较 A 与 S 的大小关系。

22、(2018)已知数列a n 是等差数列,a1 a2 a3 6, a5 a6 25
( 1)求a n的通项公式;( 2)若b n a2 n,求数列b n 的前n 项和为T n.
23、(2018)已知 f x Asin x, A 0,0,0,最小值为 3 ,最小正周期为。

( 1)求A的值,的值;
( 2)函数y f x ,过点, 7,求f.
48
24、( 2018) C
的焦点F1 6,0 , F2 6,0
,椭圆
C
与椭圆 x 轴的一个交点
A 3,0
.
已知椭圆
( 1)求椭圆C的标准方程;
( 2)设P为椭圆C上任意一点,求F1PF2的最小值.。

相关文档
最新文档