2018版高考数学大一轮复习第四章三角函数解三角形4.7解三角形实际应用举例教师用书文北师大版

合集下载

2018版高考数学复习三角函数解三角形4.7解三角形的综合应用理

2018版高考数学复习三角函数解三角形4.7解三角形的综合应用理

第四章 三角函数、解三角形 4.7 解三角形的综合应用 理1.仰角和俯角与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯角(如图①).2.方向角相对于某正方向的水平角,如南偏东30°,北偏西45°等. 3.方位角指从正北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图②).【知识拓展】1.三角形的面积公式:S =p p -a p -bp -c (p =a +b +c2),S =abc 4R =rp (R 为三角形外接圆半径,r 为三角形内切圆半径,p =a +b +c2).2.坡度(又称坡比):坡面的垂直高度与水平长度之比.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为α+β=180°.( × )(2)俯角是铅垂线与视线所成的角,其范围为[0,π2].( × )(3)方位角与方向角其实质是一样的,均是确定观察点与目标点之间的位置关系.( √ ) (4)方位角大小的范围是[0,2π),方向角大小的范围一般是[0,π2).( √ )1.(教材改编)如图所示,设A ,B 两点在河的两岸,一测量者在A 所在的同侧河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点的距离为()A .50 2 mB .50 3 mC .25 2 m D.2522m 答案 A解析 由正弦定理得AB sin∠ACB =ACsin B ,又∵B =30°,∴AB =AC sin∠ACBsin B =50×2212=502(m).2.若点A 在点C 的北偏东30°,点B 在点C 的南偏东60°,且AC =BC ,则点A 在点B 的( ) A .北偏东15° B .北偏西15° C .北偏东10° D .北偏西10° 答案 B解析 如图所示,∠ACB =90°,又AC =BC ,∴∠CBA =45°,而β=30°, ∴α=90°-45°-30°=15°, ∴点A 在点B 的北偏西15°.3.(教材改编)海面上有A ,B ,C 三个灯塔,AB =10 n mile ,从A 望C 和B 成60°视角,从B 望C 和A 成75°视角,则BC 等于( )A .10 3 n mile B.1063n mile C .5 2 n mile D .5 6 n mile答案 D解析 如图,在△ABC 中,AB =10,A =60°,B =75°,∴BCsin 60°=10sin 45°,∴BC =5 6.4.如图所示,D ,C ,B 三点在地面的同一直线上,DC =a ,从C ,D 两点测得A 点的仰角分别为60°,30°,则A 点离地面的高度AB =________.答案32a 解析 由已知得∠DAC =30°,△ADC 为等腰三角形,AD =3a ,又在Rt△ADB 中,AB =12AD=32a . 5.在一次抗洪抢险中,某救生艇发动机突然发生故障停止转动,失去动力的救生艇在洪水中漂行,此时,风向是北偏东30°,风速是20 km/h ;水的流向是正东,流速是20 km/h ,若不考虑其他因素,救生艇在洪水中漂行的速度的方向为北偏东________,速度的大小为________ km/h. 答案 60° 20 3 解析 如图,∠AOB =60°,由余弦定理知OC 2=202+202-800cos 120°=1 200,故OC =203,∠COY =30°+30°=60°.题型一 求距离、高度问题例1 (1)如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75°,30°,此时气球的高AD 是60 m ,则河流的宽度BC 等于( )A .240(3-1) mB .180(2-1) mC .120(3-1) mD .30(3+1) m(2)(2016·三明模拟)在200 m 高的山顶上,测得山下一塔顶与塔底的俯角分别为30°,60°,则塔高是______ m. 答案 (1)C (2)4003解析 (1)如图,在△ACD 中,∠CAD =90°-30°=60°,AD =60 m ,所以CD =AD ·tan 60°=603(m).在△ABD 中,∠BAD =90°-75°=15°, 所以BD =AD ·tan 15°=60(2-3)(m). 所以BC =CD -BD =603-60(2-3) =120(3-1) (m). (2)如图,设塔AB 高为h ,在Rt△CDB 中,CD =200 m ,∠BCD =90°-60°=30°,∴BC =200cos 30°=40033(m).在△ABC 中,∠ABC =∠BCD =30°, ∠ACB =60°-30°=30°, ∴∠BAC =120°. 在△ABC 中,由正弦定理得BC sin 120°=ABsin 30°,∴AB =BC ·sin 30°sin 120°=4003(m).思维升华 求距离、高度问题应注意(1)理解俯角、仰角的概念,它们都是视线与水平线的夹角;理解方向角的概念.(2)选定或确定要创建的三角形,要首先确定所求量所在的三角形,若其他量已知则直接解;若有未知量,则把未知量放在另一确定三角形中求解.(3)确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理.(1)一船以每小时15 km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60°,行驶4 h 后,船到达C 处,看到这个灯塔在北偏东15°,这时船与灯塔的距离为________ km.(2)如图所示,为测一树的高度,在地面上选取A ,B 两点,从A ,B 两点分别测得树尖的仰角为30°,45°,且A ,B 两点间的距离为60 m ,则树的高度为________m.答案 (1)30 2 (2)30+30 3解析 (1)如图,由题意,∠BAC =30°,∠ACB =105°,∴B =45°,AC =60 km , 由正弦定理BC sin 30°=ACsin 45°,∴BC =30 2 km.(2)在△PAB 中,∠PAB =30°,∠APB =15°,AB =60,sin 15°=sin(45°-30°)=sin 45°cos 30°-cos 45°sin 30°=22×32-22×12=6-24, 由正弦定理得PB sin 30°=ABsin 15°,∴PB =12×606-24=30(6+2), ∴树的高度为PB ·sin 45°=30(6+2)×22=(30+303)(m). 题型二 求角度问题例2 如图所示,位于A 处的信息中心获悉:在其正东方向相距40海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C 处的乙船,现乙船朝北偏东θ的方向沿直线CB 前往B 处救援,则cos θ的值为________.答案2114解析 在△ABC 中,AB =40,AC =20,∠BAC =120°, 由余弦定理得BC 2=AB 2+AC 2-2AB ·AC ·cos 120°=2 800⇒BC =207.由正弦定理,得AB sin∠ACB =BCsin∠BAC⇒sin∠ACB =AB BC ·sin∠BAC =217. 由∠BAC =120°,知∠ACB 为锐角,则cos∠ACB =277.由θ=∠ACB +30°,得cos θ=cos(∠ACB +30°) =cos∠ACB cos 30°-sin∠ACB sin 30°=2114. 思维升华 解决测量角度问题的注意事项: (1)首先应明确方位角或方向角的含义;(2)分析题意,分清已知与所求,再根据题意画出正确的示意图,这是最关键、最重要的一步;(3)将实际问题转化为可用数学方法解决的问题后,注意正弦、余弦定理的“联袂”使用.如图,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练.已知点A到墙面的距离为AB ,某目标点P 沿墙面上的射线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小.若AB =15 m ,AC =25 m ,∠BCM =30°,则tan θ的最大值是______(仰角θ为直线AP 与平面ABC 所成角).答案539解析 如图,过点P 作PO ⊥BC于点O ,连接AO ,则∠PAO =θ. 设CO =x m ,则OP =33x m. 在Rt△ABC 中,AB =15 m ,AC =25 m , 所以BC =20 m. 所以cos∠BCA =45.所以AO =625+x 2-2×25x ×45=x 2-40x +625(m).所以tan θ=33x x 2-40x +625=331-40x +625x2=33⎝ ⎛⎭⎪⎫25x -452+925.当25x =45,即x =1254时,tan θ取得最大值为3335=539. 题型三 三角形与三角函数的综合问题例3 (2016·长春质检)已知函数f (x )=2sin x cos x +23cos 2x - 3. (1)求函数f (x )的最小正周期和单调减区间;(2)已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,其中a =7,若锐角A 满足f (A 2-π6)=3,且sin B +sin C =13314,求bc 的值.解 (1)f (x )=2sin x cos x +23cos 2x - 3 =sin 2x +3cos 2x =2sin(2x +π3),因此f (x )的最小正周期为T =2π2=π.由2k π+π2≤2x +π3≤2k π+3π2(k ∈Z )得k π+π12≤x ≤k π+7π12,k ∈Z ,即f (x )的单调递减区间为[k π+π12,k π+7π12](k ∈Z ).(2)由f (A 2-π6)=2sin[2(A 2-π6)+π3]=2sin A =3,又A 为锐角,则A =π3,由正弦定理可得2R =a sin A =732=143,sin B +sin C =b +c 2R =13314, 则b +c =13314·143=13,由余弦定理可知,cos A =b 2+c 2-a 22bc =b +c 2-2bc -a 22bc =12,可求得bc =40.思维升华 三角形与三角函数的综合问题,要借助三角函数性质的整体代换思想,数形结合思想,还要结合三角形中角的范围,充分利用正弦定理、余弦定理解题.设f (x )=sin x cos x -cos 2⎝⎛⎭⎪⎫x +π4. (1)求f (x )的单调区间;(2)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若f ⎝ ⎛⎭⎪⎫A 2=0,a =1,求△ABC 面积的最大值.解 (1)由题意知f (x )=sin 2x 2-1+cos ⎝⎛⎭⎪⎫2x +π22=sin 2x 2-1-sin 2x 2=sin 2x -12. 由-π2+2k π≤2x ≤π2+2k π,k ∈Z, 可得-π4+k π≤x ≤π4+k π,k ∈Z ;由π2+2k π≤2x ≤3π2+2k π,k ∈Z, 可得π4+k π≤x ≤3π4+k π,k ∈Z . 所以f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤-π4+k π,π4+k π(k ∈Z );单调递减区间是⎣⎢⎡⎦⎥⎤π4+k π,3π4+k π(k ∈Z ). (2)由f ⎝ ⎛⎭⎪⎫A 2=sin A -12=0,得sin A =12,由题意知A 为锐角,所以cos A =32. 由余弦定理a 2=b 2+c 2-2bc cos A , 可得1+3bc =b 2+c 2≥2bc ,即bc ≤2+3,当且仅当b =c 时等号成立. 因此12bc sin A ≤2+34.所以△ABC 面积的最大值为2+34.10.函数思想在解三角形中的应用典例 (12分)某港口O 要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O 北偏西30°且与该港口相距20海里的A 处,并正以30海里/小时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v 海里/小时的航行速度匀速行驶,经过t小时与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)假设小艇的最高航行速度只能达到30海里/小时,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.思想方法指导 已知两边和其中一边的对角解三角形时,可以设出第三边,利用余弦定理列方程求解;对于三角形中的最值问题,可建立函数模型,转化为函数最值问题解决. 规范解答解 (1)设相遇时小艇航行的距离为S 海里,则[1分]S =900t 2+400-2·30t-=900t 2-600t +400=t -132+300.[3分]故当t =13时,S min =103,v =10313=30 3.即小艇以303海里/小时的速度航行,相遇时小艇的航行距离最小.[6分] (2)设小艇与轮船在B 处相遇.则v 2t 2=400+900t 2-2·20·30t ·cos(90°-30°),[8分] 故v 2=900-600t +400t2.∵0<v ≤30,∴900-600t +400t 2≤900,即2t 2-3t ≤0,解得t ≥23.又t =23时,v =30,故v =30时,t 取得最小值,且最小值等于23.此时,在△OAB 中,有OA =OB =AB =20.[11分] 故可设计航行方案如下:航行方向为北偏东30°,航行速度为30海里/小时.[12分]1.一艘海轮从A 处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B 处,在C 处有一座灯塔,海轮在A 处观察灯塔,其方向是南偏东70°,在B 处观察灯塔,其方向是北偏东65°,那么B ,C 两点间的距离是( ) A .10 2 海里 B .10 3 海里 C .20 3 海里 D .20 2 海里答案 A解析 如图所示,易知,在△ABC 中,AB =20,∠CAB =30°,∠ACB =45°, 根据正弦定理得BC sin 30°=ABsin 45°,解得BC =10 2.2.在相距2 km 的A ,B 两点处测量目标点C ,若∠CAB =75°,∠CBA =60°,则A ,C 两点之间的距离为( ) A. 6 km B. 2 km C. 3 km D .2 km答案 A 解析 如图,在△ABC 中,由已知可得∠ACB =45°, ∴ACsin 60°=2sin 45°,∴AC =22×32= 6. 3.一船向正北航行,看见正西方向相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时( ) A .5海里 B .5 3 海里 C .10海里 D .10 3 海里答案 C解析 如图所示,依题意有∠BAC =60°,∠BAD =75°, 所以∠CAD =∠CDA =15°,从而CD =CA =10,在Rt△ABC 中,得AB =5,于是这艘船的速度是50.5=10(海里/时).4.如图,两座相距60 m 的建筑物AB ,CD 的高度分别为20 m ,50 m ,BD 为水平面,则从建筑物AB 的顶端A 看建筑物CD 的张角为( )A .30°B .45°C .60°D .75°答案 B解析 依题意可得AD =2010,AC =305, 又CD =50,所以在△ACD 中,由余弦定理得cos∠CAD =AC 2+AD 2-CD 22AC ·AD=52+102-5022×305×2010=6 0006 0002=22,又0°<∠CAD <180°,所以∠CAD =45°, 所以从顶端A 看建筑物CD 的张角为45°.5.如图所示,测量河对岸的塔高AB 时可以选与塔底B 在同一水平面内的两个测点C 与D ,测得∠BCD =15°,∠BDC =30°,CD =30,并在点C 测得塔顶A 的仰角为60°,则塔高AB 等于( )A .5 6B .15 3C .5 2D .15 6答案 D解析 在△BCD 中,∠CBD =180°-15°-30°=135°.由正弦定理得BC sin 30°=30sin 135°,所以BC =15 2.在Rt△ABC 中,AB =BC tan∠ACB =152×3=15 6. 故选D.6.一个大型喷水池的中央有一个强大喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点A 测得水柱顶端的仰角为45°,沿点A 向北偏东30°前进100 m 到达点B ,在B 点测得水柱顶端的仰角为30°,则水柱的高度是( ) A .50 m B .100 m C .120 m D .150 m答案 A解析 设水柱高度是h m ,水柱底端为C ,在Rt△BCD 中,∠CBD =30°,BC =3h .在△ABC 中,∠A =60°,AC =h ,AB =100,根据余弦定理得,(3h )2=h 2+1002-2·h ·100·cos 60°,即h 2+50h -5 000=0,即(h -50)(h +100)=0,即h =50,故水柱的高度是50 m.7.江岸边有一炮台高30 m ,江中有两条船,船与炮台底部在同一水平面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距____m. 答案 10 3解析 如图,OM =AO tan 45°=30 (m),ON =AO tan 30°=33×30=10 3 (m), 在△MON 中,由余弦定理得,MN =900+300-2×30×103×32=300=10 3 (m).8.如图,一艘船上午9:30在A 处测得灯塔S 在它的北偏东30°处,之后它继续沿正北方向匀速航行,上午10:00到达B 处,此时又测得灯塔S 在它的北偏东75°处,且与它相距8 2 n mile.此船的航速是______ n mile/h.答案 32解析 设航速为v n mile/h ,在△ABS 中,AB =12v ,BS =82,∠BSA =45°,由正弦定理得82sin 30°=12v sin 45°,∴v =32.9.如图,某住宅小区的平面图呈圆心角为120°的扇形AOB ,C 是该小区的一个出入口,且小区里有一条平行于AO 的小路CD .已知某人从O 沿OD 走到D 用了2分钟,从D 沿DC 走到C 用了3分钟.若此人步行的速度为每分钟50米,则该扇形的半径为________米.答案 507解析 如图,连接OC ,在△OCD 中,OD =100,CD =150,∠CDO =60°.由余弦定理得OC 2=1002+1502-2×100×150×cos 60°=17 500,解得OC =507. *10.在Rt△ABC 中,C =90°,A ,B ,C 所对的边分别为a ,b ,c ,且满足a +b =cx ,则实数x 的取值范围是________.答案 (1,2] 解析 x =a +bc =sin A +sin Bsin C=sin A +cos A=2sin ⎝ ⎛⎭⎪⎫A +π4.又A ∈⎝⎛⎭⎪⎫0,π2,∴sin π4<sin ⎝⎛⎭⎪⎫A +π4≤sin π2,即x ∈(1,2].11.要测量电视塔AB 的高度,在C 点测得塔顶A 的仰角是45°,在D 点测得塔顶A 的仰角是30°,并测得水平面上的∠BCD =120°,CD =40 m ,求电视塔的高度. 解 如图,设电视塔AB 高为x m ,则在Rt△ABC 中,由∠ACB =45°,得BC =x . 在Rt△ADB 中,∠ADB =30°, 则BD =3x .在△BDC 中,由余弦定理得,BD 2=BC 2+CD 2-2BC ·CD ·cos 120°,即(3x )2=x 2+402-2·x ·40·cos 120°, 解得x =40,所以电视塔高为40 m.12.(2015·天津)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知△ABC 的面积为315,b -c =2,cos A =-14.(1)求a 和sin C 的值; (2)求cos ⎝⎛⎭⎪⎫2A +π6的值. 解 (1)在△ABC 中,由cos A =-14,可得sin A =154. 由S △ABC =12bc sin A =315,得bc =24,又由b -c =2,解得b =6,c =4. 由a 2=b 2+c 2-2bc cos A ,可得a =8. 由asin A =c sin C ,得sin C =158.(2)cos ⎝ ⎛⎭⎪⎫2A +π6=cos 2A ·cos π6-sin 2A ·sin π6 =32(2cos 2A -1)-12×2sin A ·cos A =15-7316. *13.在海岸A 处发现北偏东45°方向,距A 处(3-1)海里的B 处有一艘走私船.在A 处北偏西75°方向,距A 处2海里的C 处的我方缉私船奉命以103海里/小时的速度追截走私船,此时走私船正以10海里/小时的速度从B 处向北偏东30°方向逃窜.问:缉私船沿什么方向行驶才能最快截获走私船?并求出所需时间.解 如图,设缉私船应沿CD 方向行驶t 小时,才能最快截获走私船(在D 点),则CD =103t 海里,BD =10t 海里, 在△ABC 中,由余弦定理,得BC 2=AB 2+AC 2-2AB ·AC ·cos A=(3-1)2+22-2·(3-1)·2·cos 120°=6, 解得BC = 6. 又BC sin∠BAC =ACsin∠ABC, ∴sin∠ABC =AC ·sin ∠BAC BC =2·sin 120°6=22,∴∠ABC =45°,故B 点在C 点的正东方向上, ∴∠CBD =90°+30°=120°, 在△BCD 中,由正弦定理,得BD sin∠BCD =CDsin∠CBD,∴sin∠BCD =BD ·sin∠CBDCD=10t ·sin 120°103t=12. ∴∠BCD =30°,∴缉私船沿北偏东60°的方向行驶. 又在△BCD 中,∠CBD =120°,∠BCD =30°, ∴∠D =30°,∴BD =BC ,即10t =6, 解得t =610小时≈15分钟.∴缉私船应沿北偏东60°的方向行驶,才能最快截获走私船,大约需要15分钟.。

高考数学一轮总复习教学课件第四章 三角函数、解三角形第3节 两角和与差的正弦、余弦和正切公式

高考数学一轮总复习教学课件第四章 三角函数、解三角形第3节 两角和与差的正弦、余弦和正切公式

D.tan(α+β)=-1
解析:(2)由题意得
sin αcos β+sin βcos α+cos α cos β-sin αsin β

= 2 × (cos α-sin α)·sin β,整理,
得sin αcos β-sin β cos α+cos αcos β+sin αsin β=
0,即sin(α-β)+cos(α-β)=0,所以tan(α-β)=-1.故选C.

即 sin(α+β)= .故选 C.

(1)三角函数求值中变角的原则
①当“已知角”有两个时,“所求角”一般表示为两个“已知角”
的和或差的形式.
②当“已知角”有一个时,此时应着眼于“所求角”与“已知角”
的和或差的关系,再应用诱导公式把“所求角”变成“已知角”.
(2)常用的拆角、配角技巧
2α=(α+β)+(α-β),α=(α+β)-β=(α-β)+β,β=








=cos(α+ )cos -sin(α+ )sin




= × - × =- .故选 C.







( 2 )(2024 ·山东日照模拟 ) 已知α∈ (










,

) , β∈( π,
cos(α- )=- ,sin(β- )= ,则 sin(α+β)的值为(
.
又因为β∈[π, ],所以β-α∈[ , ],故 cos(β-α)=

第4章第四章三角函数、解三角形第4节二倍角公式及应用课件(共35张PPT) 高考数学一轮复习

第4章第四章三角函数、解三角形第4节二倍角公式及应用课件(共35张PPT) 高考数学一轮复习
内容索引
=12-co2s2α+12+14cos2α- 43sin2α+ 43sin2α-12sin2α=1-14cos2α-12 sin2α
=1-14(1-2sin2α)-12sin2α=34.
内容索引
思考1►►► 如何利用二倍角公式进行三角函数式的化简及恒等式的证明?要注 意什么?
内容索引
要充分观察角与角之间的联系,看角是否有倍数关系?能否用二倍 角公式化简?有切有弦要弦切互化.
sin15°cos15°=12sin30°=14,故 D 不正确.
【答案】 C
内容索引
2. 已知角α的顶点为坐标原点 ,始边与x轴的非负半轴重合 ,且
P(8,3cosα)为α终边上一点,则cos2α等于( )
A. -79
B. -89
7
8
C. 9
D. 9
【分析】 根据三角函数定义和同角三角函数关系求出sinα,再由二
=cos2αcsoinsαα2cosα2=cosαsinα2cosα2=12sinαcosα=14sin2α=右边, 所以原式成立.
内容索引
某同学在一次研究性学习中发现,以下四个式子的值都等于同 一个常数:
①sin212°+cos242°+sin12°cos42°; ②sin215°+cos245°+sin15°cos45°; ③sin220°+cos250°+sin20°cos50°; ④sin230°+cos260°+sin30°cos60°. (1) 试从上述式子中选择一个,求出这个常数; (2) 根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明 你的结论.
倍角公式可求cos2α.
内容索引
【解析】 由三角函数定义可知 tanα=3c8osα=csoinsαα,则 3cos2α=8sinα =3-3sin2α,解得 sinα=13或 sinα=-3(舍去),则 cos2α=1-2sin2α=79.

2018版高考数学一轮复习 第四章 三角函数与解三角形 4.3 两角和与差的正弦、余弦和正切公式

2018版高考数学一轮复习 第四章 三角函数与解三角形 4.3 两角和与差的正弦、余弦和正切公式

2018版高考数学一轮复习 第四章 三角函数与解三角形 4.3 两角和与差的正弦、余弦和正切公式、二倍角公式真题演练集训 理 新人教A 版1.[2015·新课标全国卷Ⅰ]sin 20°cos 10°-cos 160°·sin 10°=( )A .-32 B.32 C .-12 D.12答案:D解析:sin 20°cos 10°-cos 160°sin 10°=sin 20°·cos 10°+cos 20°sin 10°=sin(20°+10°)=sin 30°=12,故选D. 2.[2016·四川卷]cos 2π8-sin 2π8=________. 答案:22 解析:由二倍角公式,得cos 2 π8-sin 2 π8=cos ⎝⎛⎭⎪⎫2×π8=22. 3.[2015·四川卷]sin 15°+sin 75°的值是________. 答案:62解析:sin 15°+sin 75°=sin 15°+cos 15°=2⎝ ⎛⎭⎪⎫22sin 15°+22cos 15° =2(sin 15°cos 45°+cos 15°sin 45°)=2sin 60°=2×32=62. 4.[2015·江苏卷]已知tan α=-2,tan(α+β)=17,则tan β的值为________. 答案:3解析:tan β=tan[(α+β)-α]=α+β-tan α1+α+βα=17--1+17-=3.课外拓展阅读三角恒等变换的综合问题1.三角恒等变换与三角函数性质的综合应用利用三角恒等变换先将三角函数式转化为y =A sin(ωx +φ)的形式,再求其周期、单调区间、最值等,一直是高考的热点.[典例1] [改编题]已知函数f (x )=2sin ωx -4sin 2ωx 2+2+a (其中ω>0,α∈R ),且f (x )的图象在y 轴右侧的第一个最高点的横坐标为2.(1)求函数f (x )的最小正周期;(2)若f (x )在区间[6,16]上的最大值为4,求a 的值.[解] (1)f (x )=2sin ωx -4sin 2ωx 2+2+a =22sin ⎝⎛⎭⎪⎫ωx +π4+a , 由题意,知2ω+π4=π2,得ω=π8. 所以最小正周期T =2πω=16. (2)f (x )=22sin ⎝ ⎛⎭⎪⎫π8x +π4+a , 因为x ∈[6,16],所以π8x +π4∈⎣⎢⎡⎦⎥⎤π,9π4. 由图象可知(图略),当π8x +π4=9π4, 即当x =16时, f (x )的最大值,由22sin 9π4+a =4,得a =2. 2.三角恒等变换与三角形的综合三角恒等变换经常出现在解三角形中,与正弦定理、余弦定理相结合,综合考查三角形中的边与角、三角形形状的判断等,是高考热点内容.根据所给条件解三角形时,主要有两种途径:(1)利用正弦定理把边的关系化成角,因为三个角之和等于π,可以根据此关系把未知量减少,再用三角恒等变换化简求解;(2)利用正弦、余弦定理把边的关系化成角的关系,再用三角恒等变换化简求解.[典例2] 在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,且a 2+b 2+2ab =c 2.(1)求C ;(2)设cos A cos B =325,α+A α+B cos 2α=25,求tan α的值.[解] (1)因为a 2+b 2+2ab =c 2, 由余弦定理,得cos C =a 2+b 2-c 22ab =-2ab 2ab =-22.故C =3π4. (2)由题意,得 αsin A -cos αcos A αsin B -cos αcos Bcos 2α=25, 因此(tan αsin A -cos A )(tan αsin B -cos B )=25, tan 2αsin A sin B -tan α(sin A cos B +cos A sin B )+cos A cos B =25, tan 2αsin A sin B -tan αsin(A +B )+cos A cos B =25.① 因为C =3π4,A +B =π4, 所以sin(A +B )=22. 因为cos(A +B )=cos A cos B -sin A sin B ,即325-sin A sin B =22, 解得sin A sin B =325-22=210. 由①得tan 2α-5tan α+4=0,解得tan α=1或tan α=4.3.三角恒等变换与向量的综合三角恒等变换与向量的综合问题是高考中经常出现的问题,一般以向量的坐标形式给出与三角函数有关的条件,并结合简单的向量运算,往往是两向量平行或垂直的计算,即令a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2,a ∥b ⇔x 1y 2=x 2y 1,a ⊥b ⇔x 1x 2+y 1y 2=0,把向量形式化为坐标运算后,接下来的运算仍然是三角函数的恒等变换以及三角函数、解三角形等知识的运用.[典例3] 已知△ABC 为锐角三角形,若向量p =(2-2sin A ,cos A +sin A )与向量q =(sin A -cos A,1+sin A ),是共线向量.(1)求角A ;(2)求函数y =2sin 2B +cos C -3B2的最大值. [思路分析] (1)向量共线→三角函数式――→化简得sin 2A 的值→得锐角A (2)化函数为A ωx +φ+b 的形式→根据B 的范围求最值 [解] (1)因为p ,q 共线,所以(2-2sin A )(1+sin A )=(cos A +sin A )(sin A -cos A ),则sin 2A =34. 又A 为锐角,所以sin A =32,则A =π3. (2)y =2sin 2B +cos C -3B2=2sin 2B +cos ⎝ ⎛⎭⎪⎫π-π3-B -3B 2=2sin 2B +cos ⎝ ⎛⎭⎪⎫π3-2B =1-cos 2B +12cos 2B +32sin 2B =32sin 2B -12cos 2B +1 =sin ⎝⎛⎭⎪⎫2B -π6+1. 因为B ∈⎝⎛⎭⎪⎫0,π2,所以2B -π6∈⎝ ⎛⎭⎪⎫-π6,5π6, 所以当2B -π6=π2时,函数y 取得最大值, 解得B =π3,y max =2.。

2018版高考数学理一轮复习文档:第四章 三角函数、解

2018版高考数学理一轮复习文档:第四章 三角函数、解

1.y =A sin(ωx +φ)的有关概念2.用五点法画y =A sin(ωx +φ)一个周期内的简图时,要找五个特征点 如下表所示:3.函数y =sin x 的图象经变换得到y =A sin(ωx +φ) (A >0,ω>0)的图象的步骤如下:【知识拓展】1.由y =sin ωx 到y =sin(ωx +φ)(ω>0,φ>0)的变换:向左平移φω个单位长度而非φ个单位长度.2.函数y =A sin(ωx +φ)的对称轴由ωx +φ=k π+π2,k ∈Z 确定;对称中心由ωx +φ=k π,k ∈Z确定其横坐标.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)y =sin ⎝⎛⎭⎫x -π4的图象是由y =sin ⎝⎛⎭⎫x +π4的图象向右平移π2个单位得到的.( √ ) (2)将函数y =sin ωx 的图象向右平移φ(φ>0)个单位长度,得到函数y =sin(ωx -φ)的图象.( × )(3)利用图象变换作图时“先平移,后伸缩”与“先伸缩,后平移”中平移的长度一致.( × )(4)函数y =A sin(ωx +φ)的最小正周期为T =2πω.( × )(5)把y =sin x 的图象上各点纵坐标不变,横坐标缩短为原来的12,所得图象对应的函数解析式为y =sin 12x .( × )(6)若函数y =A cos(ωx +φ)的最小正周期为T ,则函数图象的两个相邻对称中心之间的距离为T2.( √ )1.(教材改编)y =2sin(12x -π3)的振幅,频率和初相分别为( )A .2,4π,π3B .2,14π,π3C .2,14π,-π3D .2,4π,-π3答案 C解析 由题意知A =2,f =1T =ω2π=14π,初相为-π3.2.(2015·山东)要得到函数y =sin ⎝⎛⎭⎫4x -π3的图象,只需将函数y =sin 4x 的图象( ) A .向左平移π12个单位B .向右平移π12个单位C .向左平移π3个单位D .向右平移π3个单位答案 B解析 ∵y =sin ⎝⎛⎭⎫4x -π3=sin ⎣⎡⎦⎤4⎝⎛⎭⎫x -π12, ∴要得到y =sin ⎝⎛⎭⎫4x -π3的图象,只需将函数y =sin 4x 的图象向右平移π12个单位. 3.(2016·青岛模拟)将函数y =sin x 的图象上所有的点向右平行移动π10个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是( ) A .y =sin(2x -π10)B .y =sin(2x -π5)C .y =sin(12x -π10)D .y =sin(12x -π20)答案 C解析 y =sin x π10−−−−−→右移个单位 y =sin(x -π10)―――――→横坐标伸长到原来的2倍y =sin(12x -π10).4.(2016·临沂模拟)已知函数f (x )=A cos(ωx +θ)的图象如图所示,f (π2)=-23,则f (-π6)=________.答案 -23解析 由题图知,函数f (x )的周期 T =2(11π12-7π12)=2π3,所以f (-π6)=f (-π6+2π3)=f (π2)=-23.5.若将函数f (x )=sin(2x +π4)的图象向右平移φ个单位,所得图象关于y 轴对称,则φ的最小正值是________. 答案3π8解析 ∵函数f (x )=sin(2x +π4)的图象向右平移φ个单位得到g (x )=sin[2(x -φ)+π4]=sin(2x+π4-2φ), 又∵g (x )是偶函数,∴π4-2φ=k π+π2(k ∈Z ),∴φ=-k π2-π8(k ∈Z ).当k =-1时,φ取得最小正值3π8.题型一 函数y =A sin(ωx +φ)的图象及变换例1 (2015·湖北)某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分数据,如下表:(1)请将上表数据补充完整,并直接写出函数f (x )的解析式;(2)将y =f (x )图象上所有点向左平行移动θ(θ>0)个单位长度,得到y =g (x )的图象.若y =g (x )图象的一个对称中心为⎝⎛⎭⎫5π12,0,求θ的最小值.解 (1)根据表中已知数据,解得A =5,ω=2,φ=-π6.数据补全如下表:且函数解析式为f (x )=5sin ⎝⎛⎭⎫2x -π6. (2)由(1)知f (x )=5sin ⎝⎛⎭⎫2x -π6, 得g (x )=5sin ⎝⎛⎭⎫2x +2θ-π6. 因为函数y =sin x 图象的对称中心为(k π,0),k ∈Z . 令2x +2θ-π6=k π,解得x =k π2+π12-θ,k ∈Z .由于函数y =g (x )的图象关于点⎝⎛⎭⎫5π12,0成中心对称,所以令k π2+π12-θ=5π12,解得θ=k π2-π3,k ∈Z .由θ>0可知,当k =1时,θ取得最小值π6.引申探究在本例(2)中,将f (x )图象上所有点向左平移π6个单位长度,得到g (x )的图象,求g (x )的解析式,并写出g (x )图象的对称中心. 解 由(1)知f (x )=5sin(2x -π6),因此g (x )=5sin[2(x +π6)-π6]=5sin(2x +π6).因为y =sin x 的对称中心为(k π,0),k ∈Z . 令2x +π6=k π,k ∈Z ,解得x =k π2-π12,k ∈Z .即y =g (x )图象的对称中心为(k π2-π12,0),k ∈Z .思维升华 (1)五点法作简图:用“五点法”作y =A sin(ωx +φ)的简图,主要是通过变量代换,设z =ωx +φ,由z 取0,π2,π,32π,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象.(2)图象变换:由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)的图象,有两种主要途径:“先平移后伸缩”与“先伸缩后平移”.把函数y =sin x 的图象上所有点的横坐标缩小到原来的一半,纵坐标保持不变,再把所得函数图象向左平移π4个单位,得到的函数图象的解析式是( )A .y =cos 2xB .y =-sin 2xC .y =sin(2x -π4)D .y =sin(2x +π4)答案 A解析 由y =sin x 图象上所有点的横坐标缩小到原来的一半,纵坐标保持不变,所得图象的解析式为y =sin 2x ,再向左平移π4个单位得y =sin2(x +π4),即y =cos 2x .题型二 由图象确定y =A sin(ωx +φ)的解析式例2 已知函数f (x )=A sin(ωx +φ) (A >0,|φ|<π2,ω>0)的图象的一部分如图所示.(1)求f (x )的表达式; (2)试写出f (x )的对称轴方程.解 (1)观察图象可知A =2且点(0,1)在图象上, ∴1=2sin(ω·0+φ),即sin φ=12.∵|φ|<π2,∴φ=π6,又∵1112π是函数的一个零点且是图象递增穿过x 轴形成的零点,∴11π12ω+π6=2π,∴ω=2. ∴f (x )=2sin(2x +π6).(2)设2x +π6=B ,则函数y =2sin B 的对称轴方程为B =π2+k π,k ∈Z ,即2x +π6=π2+k π(k ∈Z ),解得x =k π2+π6(k ∈Z ),∴f (x )=2sin(2x +π6)的对称轴方程为x =k π2+π6(k ∈Z ).思维升华 求y =A sin(ωx +φ)+B (A >0,ω>0)解析式的步骤 (1)求A ,B ,确定函数的最大值M 和最小值m ,则A =M -m 2,B =M +m2. (2)求ω,确定函数的周期T ,则ω=2πT .(3)求φ,常用方法如下:①代入法:把图象上的一个已知点代入(此时要注意该点在上升区间上还是在下降区间上)或把图象的最高点或最低点代入.②五点法:确定φ值时,往往以寻找“五点法”中的特殊点作为突破口.具体如下:“第一点”(即图象上升时与x 轴的交点)为ωx +φ=0;“第二点”(即图象的“峰点”)为ωx +φ=π2;“第三点”(即图象下降时与x 轴的交点)为ωx +φ=π;“第四点”(即图象的“谷点”)为ωx +φ=3π2;“第五点”为ωx +φ=2π.(2016·太原模拟)已知函数f (x )=sin(ωx +φ) (ω>0,|φ|<π2)的部分图象如图所示,则y =f (x +π6)取得最小值时x 的集合为( )A .{x |x =k π-π6,k ∈Z }B .{x |x =k π-π3,k ∈Z }C .{x |x =2k π-π6,k ∈Z }D .{x |x =2k π-π3,k ∈Z }答案 B解析 根据所给图象,周期T =4×(7π12-π3)=π,故π=2πω,∴ω=2,因此f (x )=sin(2x +φ),另外图象经过点(7π12,0),代入有2×7π12+φ=k π(k ∈Z ),再由|φ|<π2,得φ=-π6,∴f (x +π6)=sin(2x +π6),当2x +π6=-π2+2k π (k ∈Z ),即x =-π3+k π(k ∈Z )时,y =f (x +π6)取得最小值.题型三 三角函数图象性质的应用 命题点1 三角函数模型的应用例3 (2015·陕西)如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin ⎝⎛⎭⎫π6x +φ+k ,据此函数可知,这段时间水深(单位:m)的最大值为( )A .5B .6C .8D .10答案 C解析 由题干图易得y min =k -3=2,则k =5. ∴y max =k +3=8.命题点2 函数零点(方程根)问题例4 已知关于x 的方程2sin 2x -3sin 2x +m -1=0在⎝⎛⎭⎫π2,π上有两个不同的实数根,则m 的取值范围是________. 答案 (-2,-1)解析 方程2sin 2x -3sin 2x +m -1=0可转化为 m =1-2sin 2x +3sin 2x =cos 2x +3sin 2x =2sin ⎝⎛⎭⎫2x +π6,x ∈⎝⎛⎭⎫π2,π. 设2x +π6=t ,则t ∈⎝⎛⎭⎫76π,136π, ∴题目条件可转化为m2=sin t ,t ∈⎝⎛⎭⎫76π,136π有两个不同的实数根. ∴y =m2和y =sin t ,t ∈⎝⎛⎭⎫76π,136π的图象有两个不同交点,如图:由图象观察知,m 2的范围为(-1,-12),故m 的取值范围是(-2,-1). 引申探究例4中,若将“有两个不同的实数根”改成“有实根”,则m 的取值范围是__________. 答案 [-2,1)解析 由例4知,m2的范围是⎣⎡⎭⎫-1,12, ∴-2≤m <1,∴m 的取值范围是[-2,1). 命题点3 图象与性质的综合应用例5 已知函数f (x )=3sin(ωx +φ)(ω>0,-π2≤φ<π2)的图象关于直线x =π3对称,且图象上相邻两个最高点的距离为π. (1)求ω和φ的值;(2)当x ∈[0,π2]时,求函数y =f (x )的最大值和最小值.解 (1)因为f (x )的图象上相邻两个最高点的距离为π,所以f (x )的最小正周期T =π,从而ω=2πT=2.又因为f (x )的图象关于直线x =π3对称,所以2·π3+φ=k π+π2,k ∈Z ,由-π2≤φ<π2,得k =0,所以φ=π2-2π3=-π6.综上,ω=2,φ=-π6.(2)由(1)知f (x )=3sin(2x -π6),当x ∈[0,π2]时,-π6≤2x -π6≤5π6,∴当2x -π6=π2,即x =π3时,f (x )最大值=3;当2x -π6=-π6,即x =0时,f (x )最小值=-32.思维升华 (1)三角函数模型的应用体现在两方面:一是已知函数模型求解数学问题;二是把实际问题抽象转化成数学问题,建立数学模型,再利用三角函数的有关知识解决问题. (2)方程根的个数可转化为两个函数图象的交点个数.(3)研究y =A sin(ωx +φ)的性质时可将ωx +φ视为一个整体,利用换元法和数形结合思想进行解题.已知函数f (x )=cos(3x +π3),其中x ∈[π6,m ],若f (x )的值域是[-1,-32],则m 的取值范围是__________. 答案 [2π9,5π18]解析 画出函数的图象.由x ∈[π6,m ],可知5π6≤3x +π3≤3m +π3,因为f (π6)=cos 5π6=-32且f (2π9)=cos π=-1,要使f (x )的值域是[-1,-32],只要2π9≤m ≤5π18,即m ∈[2π9,5π18].4.三角函数图象与性质的综合问题典例 (12分)已知函数f (x )=23sin(x 2+π4)·cos(x 2+π4)-sin(x +π).(1)求f (x )的最小正周期;(2)若将f (x )的图象向右平移π6个单位长度,得到函数g (x )的图象,求函数g (x )在区间[0,π]上的最大值和最小值.思维点拨 (1)先将f (x )化成y =A sin(ωx +φ)的形式再求周期;(2)将f (x )解析式中的x 换成x -π6,得g (x ),然后利用整体思想求最值.规范解答解 (1)f (x )=23sin(x 2+π4)·cos(x 2+π4)-sin(x +π)=3cos x +sin x [3分]=2sin(x +π3),[5分]于是T =2π1=2π.[6分](2)由已知得g (x )=f (x -π6)=2sin(x +π6),[8分]∵x ∈[0,π],∴x +π6∈[π6,7π6],∴sin(x +π6)∈[-12,1],[10分]∴g (x )=2sin(x +π6)∈[-1,2].[11分]故函数g (x )在区间[0,π]上的最大值为2,最小值为-1.[12分]解决三角函数图象与性质的综合问题的一般步骤: 第一步:(化简)将f (x )化为a sin x +b cos x 的形式; 第二步:(用辅助角公式)构造f (x )=a 2+b 2·(sin x ·a a 2+b 2+cos x ·ba 2+b 2); 第三步:(求性质)利用f (x )=a 2+b 2sin(x +φ)研究三角函数的性质; 第四步:(反思)反思回顾,查看关键点、易错点和答题规范.1.为了得到函数y =cos(2x +π3)的图象,可将函数y =sin 2x 的图象( )A .向左平移5π6个单位长度B .向右平移5π6个单位长度C .向左平移5π12个单位长度D .向右平移5π12个单位长度答案 C解析 由题意,得y =cos(2x +π3)=sin(2x +π3+π2)=sin 2(x +5π12),则它是由y =sin 2x 向左平移5π12个单位得到的,故选C. 2.若f (x )=sin(2x +φ)+b ,对任意实数x 都有f ⎝⎛⎭⎫x +π3=f (-x ),f ⎝⎛⎭⎫2π3=-1,则实数b 的值为( ) A .-2或0 B .0或1 C .±1 D .±2答案 A解析 由f ⎝⎛⎭⎫x +π3=f (-x )可得f (x )的图象关于直线x =π6对称,∴2×π6+φ=π2+k π,k ∈Z .当直线x =π6经过最高点时,φ=π6;当直线x =π6经过最低点时,φ=-56π.若f (x )=sin ⎝⎛⎭⎫2x +π6+b ,由f ⎝⎛⎭⎫23π=-1,得b =0;若f (x )=sin ⎝⎛⎭⎫2x -56π+b ,由f ⎝⎛⎭⎫23π=-1,得b =-2.所以b =-2或b =0.3.已知函数f (x )=3sin ωx +cos ωx (ω>0),x ∈R .在曲线y =f (x )与直线y =1的交点中,若相邻交点距离的最小值为π3,则f (x )的最小正周期为( )A.π2B.2π3 C .π D .2π 答案 C解析 f (x )=3sin ωx +cos ωx =2sin(ωx +π6)(ω>0).由2sin(ωx +π6)=1,得sin(ωx +π6)=12,∴ωx +π6=2k π+π6或ωx +π6=2k π+56π(k ∈Z ).令k =0,得ωx 1+π6=π6,ωx 2+π6=56π,∴x 1=0,x 2=2π3ω.由|x 1-x 2|=π3,得2π3ω=π3,∴ω=2.故f (x )的最小正周期T =2π2=π.4.函数f (x )=sin(ωx +φ) (x ∈R ,ω>0,|φ|<π2)的部分图象如图所示,如果x 1,x 2∈(-π6,π3)且f (x 1)=f (x 2),则f (x 1+x 2)等于( )A.12 B.32C.22D .1答案 B解析 观察图象可知,A =1,T =π, ∴ω=2,f (x )=sin(2x +φ).将(-π6,0)代入上式得sin(-π3+φ)=0,由|φ|<π2,得φ=π3,则f (x )=sin(2x +π3).函数图象的对称轴为x =-π6+π32=π12.又x 1,x 2∈(-π6,π3),且f (x 1)=f (x 2),∴x 1+x 22=π12,∴x 1+x 2=π6,∴f (x 1+x 2)=sin(2×π6+π3)=32.故选B.5.函数f (x )=sin(2x +φ)⎝⎛⎭⎫|φ|<π2的图象向左平移π6个单位后所得函数图象的解析式是奇函数,则函数f (x )在⎣⎡⎦⎤0,π2上的最小值为( ) A .-32B .-12C.12 D.32答案 A解析 由函数f (x )的图象向左平移π6个单位得g (x )=sin ⎝⎛⎭⎫2x +φ+π3的图象, 因为是奇函数,所以φ+π3=k π,k ∈Z ,又因为|φ|<π2,所以φ=-π3,所以f (x )=sin ⎝⎛⎭⎫2x -π3. 又x ∈⎣⎡⎦⎤0,π2,所以2x -π3∈⎣⎡⎦⎤-π3,2π3, 所以当x =0时,f (x )取得最小值为-32. 6.(2016·太原模拟)已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2的最小正周期是π,若将f (x )的图象向右平移π3个单位后得到的图象关于原点对称,则函数f (x )的图象( )A .关于直线x =π12对称B .关于直线x =5π12对称C .关于点⎝⎛⎭⎫π12,0对称 D .关于点⎝⎛⎭⎫5π12,0对称答案 B解析 由题意知2πω=π,∴ω=2;又由f (x )的图象向右平移π3个单位后得到y =sin[2⎝⎛⎭⎫x -π3+φ]=sin ⎝⎛⎭⎫2x +φ-23π,此时关于原点对称,∴-2π3+φ=k π,k ∈Z ,∴φ=2π3+k π,k ∈Z ,又|φ|<π2,∴φ=-π3,∴f (x )=sin ⎝⎛⎭⎫2x -π3. 当x =π12时,2x -π3=-π6,∴A 、C 错误; 当x =5π12时,2x -π3=π2,∴B 正确,D 错误.7.(2016·全国丙卷)函数y =sin x -3cos x 的图象可由函数y =sin x +3cos x 的图象至少向右平移________个单位长度得到. 答案2π3解析 y =sin x -3cos x =2sin ⎝⎛⎭⎫x -π3,y =sin x +3cos x =2sin ⎝⎛⎭⎫x +π3,因此至少向右平移2π3个单位长度得到.8.(2017·长春质检)设偶函数f (x )=A sin(ωx +φ) (A >0,ω>0,0<φ<π)的部分图象如图所示,△KLM 为等腰直角三角形,∠KML =90°,KL =1,则f (16)的值为________.答案34解析 由题意知,点M 到x 轴的距离是12,根据题意可设f (x )=12cos ωx ,又由题图知12·2πω=1,所以ω=π,所以f (x )=12cos πx ,故f (16)=12cos π6=34.9.(2015·天津)已知函数f (x )=sin ωx +cos ωx (ω>0),x ∈R .若函数f (x )在区间(-ω,ω)内单调递增,且函数y =f (x )的图象关于直线x =ω对称,则ω的值为________.答案π2解析 f (x )=sin ωx +cos ωx =2sin ⎝⎛⎭⎫ωx +π4, 因为f (x )在区间(-ω,ω)内单调递增,且函数图象关于直线x =ω对称,所以f (ω)必为一个周期上的最大值,所以有ω·ω+π4=2k π+π2,k ∈Z ,所以ω2=π4+2k π,k ∈Z .又ω-(-ω)≤2πω2,即ω2≤π2,即ω2=π4,所以ω=π2.10.电流强度I (安)随时间t (秒)变化的函数I =A sin(ωt +φ)(A >0,ω>0,0<φ<π2)的图象如图所示,则当t =1100秒时,电流强度是________安.答案 -5解析 由图象知A =10,T 2=4300-1300=1100,∴ω=2πT =100π,∴I =10sin(100πt +φ).∵图象过点⎝⎛⎭⎫1300,10, ∴10sin(100π×1300+φ)=10,∴sin(π3+φ)=1,π3+φ=2k π+π2,k ∈Z ,∴φ=2k π+π6,k ∈Z ,又∵0<φ<π2,∴φ=π6.∴I =10sin ⎝⎛⎭⎫100πt +π6, 当t =1100秒时,I =-5安.11.已知函数y =A sin(ωx +φ) (A >0,ω>0)的图象过点P (π12,0),图象上与点P 最近的一个最高点是Q (π3,5).(1)求函数的解析式;(2)求函数f (x )的递增区间.解 (1)依题意得A =5,周期T =4(π3-π12)=π,∴ω=2ππ=2.故y =5sin(2x +φ),又图象过点P (π12,0),∴5sin(π6+φ)=0,由已知可得π6+φ=0,∴φ=-π6,∴y =5sin(2x -π6).(2)由-π2+2k π≤2x -π6≤π2+2k π,k ∈Z ,得-π6+k π≤x ≤π3+k π,k ∈Z ,故函数f (x )的递增区间为[k π-π6,k π+π3] (k ∈Z ).12.已知函数f (x )=3cos 2x +sin x ·cos x -32. (1)求函数f (x )的最小正周期T 和函数f (x )的单调递增区间; (2)若函数f (x )的对称中心为(x,0),求x ∈[0,2π)的所有x 的和. 解 (1)由题意得f (x )=sin(2x +π3),∴T =2π2=π,令-π2+2k π≤2x +π3≤π2+2k π,k ∈Z .可得函数f (x )的单调递增区间为[-5π12+k π,π12+k π],k ∈Z .(2)令2x +π3=k π,k ∈Z ,可得x =-π6+k π2,k ∈Z .∵x ∈[0,2π),∴k 可取1,2,3,4. ∴所有满足条件的x 的和为2π6+5π6+8π6+11π6=13π3. *13.(2016·潍坊模拟)函数f (x )=A sin(ωx +φ) (A >0,ω>0,0<φ<π2)的部分图象如图所示.(1)求f (x )的解析式;(2)设g (x )=[f (x -π12)]2,求函数g (x )在x ∈[-π6,π3]上的最大值,并确定此时x 的值.解 (1)由题图知A =2,T 4=π3,则2πω=4×π3,∴ω=32. 又f (-π6)=2sin[32×(-π6)+φ]=2sin(-π4+φ)=0,∴sin(φ-π4)=0,∵0<φ<π2,∴-π4<φ-π4<π4,∴φ-π4=0,即φ=π4,∴f (x )的解析式为f (x )=2sin(32x +π4).(2)由(1)可得f (x -π12)=2sin[32(x -π12)+π4]=2sin(32x +π8),∴g (x )=[f (x -π12)]2=4×1-cos (3x +π4)2=2-2cos(3x +π4),∵x ∈[-π6,π3],∴-π4≤3x +π4≤5π4,∴当3x +π4=π,即x =π4时,g (x )max =4.。

2018版高考数学一轮复习第四章三角函数、解三角形第7讲解三角形应用举例理

2018版高考数学一轮复习第四章三角函数、解三角形第7讲解三角形应用举例理

第7讲解三角形应用举例、选择题1在某次测量中,在 A 处测得同一平面方向的B 点的仰角是50°,且到A 的距离为2, C点的俯角为70°,且到A 的距离为3,贝U B 、C 间的距离为( )A. 16B.17 C. 18D.19解析 因/ BAC= 120°, AB= 2, AC= 3.B C = A B + A C — 2AB" AG Cos / BAC=4 + 9-2X 2X 3X cos 120 ° = 19.••• BC= 19. 答案D2•如图所示,为了测量某障碍物两侧A, B 间的距离,给定下列四组数据,不能确定A , B间距离的是().VA . a , a , bB .a , 3 , aC. a , b , YD.a ,3 , b解析 选项B 中由正弦定理可求 b ,再由余弦定理可确定 AB 选项C 中可由余弦定理确 定AB 选项D 同B 类似,故选A.答案 A3.一艘海轮从A 处出发,以每小时 40海里的速度沿南偏东 40°的方向直线航行,30分钟后到达B 处,在C 处有一座灯塔, 海轮在 A 处观察灯塔,其方向是南偏东70°,在B 处观察灯塔,其方向是北偏东 65° ,那么 B , C 两点间的距离是A . 10 2海里 C. 20 3海里 解析如图所示, 10 ,3海里 20 2海里易知,在厶ABC 中, AB= 20海里,/ CABB. D. =30°, / ACB= 45° ,根据正弦定理得sinBC °ADsin 45 ° ,解得 BC= 10 2(海里).答案A24.如图,两座相距60 m 的建筑物AB CD 的高度分别为20 m c50 m , BD 为水平面,则从建筑物 AB 的顶端A 看建筑物CD 的张角为 ( ).A . 30°B. 45°C. 60°D. 75°解析 依题意可得 AD= 20 10(m) , AC= 30 5(m),又CD 门10 2-502 6 000 2必------------- -------- —专,又 0° <Z CAD 180。

浙江版2018年高考数学一轮复习专题4.7解三角形及其应用举例讲20171128379

浙江版2018年高考数学一轮复习专题4.7解三角形及其应用举例讲20171128379

第07节 解三角形及其应用举例【考纲解读】【知识清单】1. 测量距离问题 实际问题中的有关概念(1)仰角和俯角:在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图1).(2)方位角:从指北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图2). (3)方向角:相对于某一正方向的水平角(如图3)①北偏东α°即由指北方向顺时针旋转α°到达目标方向. ②北偏西α°即由指北方向逆时针旋转α°到达目标方向. ③南偏西等其他方向角类似.(4)坡度:①定义:坡面与水平面所成的二面角的度数(如图4,角θ为坡角).②坡比:坡面的铅直高度与水平长度之比(如图4,i 为坡比). 对点练习:【浙江宁波模拟】如图,某商业中心O 有通往正东方向和北偏东︒30方向的两条街道,某公园P 位于商业中心北偏东θ角⎪⎭⎫⎝⎛=<<33tan ,20θπθ,且与商业中心O 的距离为21公里处,现要经过公园P 修一条直路分别与两条街道交汇于B ,A 两处,当商业中心O 到B ,A 两处的距离之和最小时,B A ,的距离为 公里.【答案】AB ==2. 测量高度问题余弦定理:2222c o s a b c a b C +-= , 2222cos b c a ac A +-= ,2222cos c a b ac B +-=.变形公式cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,os C =a 2+b 2-c 22ab对点练习:【2015高考湖北】如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30 的方向上,行驶600m 后到达B 处,测得此山顶在西偏北75 的方向上,仰角为30 ,则此山的高度CD = m.【答案】6100【解析】依题意,30=∠BAC ,105=∠ABC ,在A B C ∆中,由180=∠+∠+∠ACB BAC ABC ,所以45=∠ACB ,因为600=AB ,由正弦定理可得30sin 45sin 600BC=,即2300=BC m ,在BCD Rt ∆中,因为30=∠CBD ,2300=BC ,所以230030tan CDBC CD ==,所以6100=CD m.3. 测量角度问题应熟练掌握正、余弦定理及其变形.解三角形时,有时可用正弦定理,也可用余弦定理,应注意用哪一个定理更方便、简捷就用哪一个定理. 对点练习:【2017广东佛山二模】某沿海四个城市A 、B 、C 、D 的位置如图所示,其中60ABC ∠=︒,135BCD ∠=︒, 80nmile AB =, 40BC =+, CD =, D 位于A 的北偏东75︒方向.现在有一艘轮船从A 出发以50nmile/h 的速度向D 直线航行,60min 后,轮船由于天气原因收到指令改向城市C 直线航行,收到指令时城市C 对于轮船的方位角是南偏西θ度,则sin θ=__________.【答案】4θ=∠-∠-∠=∠-∠= ,故sinθ=CFN AFN AFC MAF AFC15【考点深度剖析】高考对正弦定理和余弦定理的考查较为灵活,题型多变,选择题、填空题的形式往往独立考查正弦定理或余弦定理,解答题往往综合考查定理在确定三角形边角中的应用,多与三角形周长、面积有关;有时也会与平面向量、三角恒等变换等结合考查,试题难度控制在中等以下. 高考对正弦定理和余弦定理应用的考查,主要是利用定理等知识和方法解决一些与测量和几何计算有关的问题,关键是弄懂有关术语,认真理解题意,难度不大.主要考查灵活运用公式求解计算能力、推理论证能力、数学应用意识、数形结合思想等.从近几年浙江卷来看,三角形中的应用问题,主要是结合直角三角形,考查边角的计算,也有与导数结合考查的情况.【重点难点突破】考点1 测量距离问题【1-1】【2017北京市延庆区一模】在相距2千米的两点错误!未找到引用源。

高考数学大一轮复习第四章三角函数、解三角形4.7解三角形的实际应用课件

高考数学大一轮复习第四章三角函数、解三角形4.7解三角形的实际应用课件

7.如图,某工程中要将一长为100 m,倾斜角为75°的斜坡改 造成倾斜角为30°的斜坡,并保持坡高不变,则坡底需加长 _1_0_0__2_m. 解析 设坡底需加长x m, 由正弦定理得si1n0300°=sinx45°,解得 x=100 2.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
基础自测
JICHUZICE
题组一 思考辨析 1.判断下列结论是否正确(请在括号中打“√”或“×”)
(1)从A处望B处的仰角为α,从B处望A处的俯角为β,则α,β的关系为α+β=180°.
(2)俯角是铅垂线与视线所成的角,其范围为0,π2.( × )
(× )
(3)方位角与方向角其实质是一样的,均是确定观察点与目标点之间的位置关系.
3.如图,为了测量两座山峰上P,Q两点之间的距离,选 择山坡上一段长度为300 3m且和P,Q两点在同一平面内 的路段AB的两个端点作为观测点,现测得∠PAB=90°, ∠PAQ=∠PBA=∠PBQ=60°,则P,Q两点间的距离为 _9_0_0_ m. 解析 由已知,得∠QAB=∠PAB-∠PAQ=30°. 又∠PBA=∠PBQ=60°, ∴∠AQB=30°,∴AB=BQ. 又PB为公共边,∴△PAB≌△PQB,∴PQ=PA. 在Rt△PAB中,AP=AB·tan 60°=900,故PQ=900, ∴P,Q两点间的距离为900 m.
123456
5.在某次测量中,在A处测得同一半平面方向的B点的仰角是60°,C点的俯角 是70°,则∠BAC=_1_3_0_°__. 解析 60°+70°=130°.
123456
6.海上有A,B,C三个小岛,A,B相距 5 3 海里,从A岛望C和B成45°视角, 从B岛望C和A成75°视角,则B,C两岛间的距离是_5___2_海里. 解析 由题意可知∠ACB=60°,由正弦定理得sin∠ABACB=sin∠BCBAC, 即si5n 630°=sinBC45°,得 BC=5 2.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018版高考数学大一轮复习 第四章 三角函数、解三角形 4.7 解三角形实际应用举例教师用书 文 北师大版1.仰角和俯角与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯角(如图①).2.方向角相对于某正方向的水平角,如南偏东30°,北偏西45°等. 3.方位角指从正北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图②).【知识拓展】1.三角形的面积公式:S =p p -a p -b p -c (p =a +b +c 2),S =abc 4R =rp (R 为三角形外接圆半径,r 为三角形内切圆半径,p =a +b +c 2).2.坡度(又称坡比):坡面的垂直高度与水平长度之比.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为α+β=180°.( × )(2)俯角是铅垂线与视线所成的角,其范围为[0,π2].( × )(3)方位角与方向角其实质是一样的,均是确定观察点与目标点之间的位置关系.( √ ) (4)方位角大小的范围是[0,2π),方向角大小的范围一般是[0,π2).( √)1.(教材改编)如图所示,设A ,B 两点在河的两岸,一测量者在A 所在的同侧河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点的距离为()A .50 2 mB .50 3 mC .25 2 m D.2522 m答案 A解析 由正弦定理得AB sin∠ACB =ACsin B ,又∵B =30°,∴AB =AC sin∠ACBsin B =50×2212=502(m).2.若点A 在点C 的北偏东30°,点B 在点C 的南偏东60°,且AC =BC ,则点A 在点B 的( ) A .北偏东15° B .北偏西15° C .北偏东10° D .北偏西10°答案 B解析 如图所示,∠ACB =90°,又AC =BC ,∴∠CBA =45°,而β=30°, ∴α=90°-45°-30°=15°, ∴点A 在点B 的北偏西15°.3.(教材改编)海面上有A ,B ,C 三个灯塔,AB =10 n mile ,从A 望C 和B 成60°视角,从B 望C 和A 成75°视角,则BC 等于( )A .10 3 n mile B.1063 n mileC .5 2 n mileD .5 6 n mile答案 D解析 如图,在△ABC 中,AB =10,A =60°,B =75°,∴BCsin 60°=10sin 45°,∴BC =5 6.4.如图所示,D ,C ,B 三点在地面的同一直线上,DC =a ,从C ,D 两点测得A 点的仰角分别为60°,30°,则A 点离地面的高度AB =________.答案32a 解析 由已知得∠DAC =30°,△ADC 为等腰三角形,AD =3a ,又在Rt△ADB 中,AB =12AD=32a . 5.在一次抗洪抢险中,某救生艇发动机突然发生故障停止转动,失去动力的救生艇在洪水中漂行,此时,风向是北偏东30°,风速是20 km/h ;水的流向是正东,流速是20 km/h ,若不考虑其他因素,救生艇在洪水中漂行的方向为北偏东________,速度的大小为________ km/h.答案 60° 20 3解析 如图,∠AOB =60°,由余弦定理知OC 2=202+202-800cos 120°=1 200,故OC =203,∠COY =30°+30°=60°.题型一 求距离、高度问题例1 (1)如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75°,30°,此时气球的高AD 是60 m ,则河流的宽度BC 等于( )A .240(3-1) mB .180(2-1) mC .120(3-1) mD .30(3+1) m(2)(2016·三明模拟)在200 m 高的山顶上,测得山下一塔顶与塔底的俯角分别为30°,60°,则塔高是______ m. 答案 (1)C (2)4003解析 (1)如图,在△ACD 中,∠CAD =90°-30°=60°,AD =60 m ,所以CD =AD ·tan 60°=603(m).在△ABD 中,∠BAD =90°-75°=15°, 所以BD =AD ·tan 15°=60(2-3)(m). 所以BC =CD -BD =603-60(2-3) =120(3-1)(m).(2)如图,设塔AB 高为h ,在Rt△CDB 中,CD =200 m ,∠BCD =90°-60°=30°, ∴BC =200cos 30°=40033(m).在△ABC 中,∠ABC =∠BCD =30°, ∠ACB =60°-30°=30°, ∴∠BAC =120°. 在△ABC 中,由正弦定理得BC sin 120°=ABsin 30°,∴AB =BC ·sin 30°sin 120°=4003(m).思维升华 求距离、高度问题应注意(1)理解俯角、仰角的概念,它们都是视线与水平线的夹角;理解方向角的概念.(2)选定或确定要创建的三角形,要首先确定所求量所在的三角形,若其他量已知则直接解;若有未知量,则把未知量放在另一确定三角形中求解.(3)确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理.(1)一船以每小时15 km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60°,行驶4 h 后,船到达C 处,看到这个灯塔在北偏东15°,这时船与灯塔的距离为________ km.(2)如图所示,为测一树的高度,在地面上选取A ,B 两点,从A ,B 两点分别测得树尖的仰角为30°,45°,且A ,B 两点间的距离为60 m ,则树的高度为________m.答案 (1)30 2 (2)30+30 3解析 (1)如图,由题意,∠BAC =30°,∠ACB =105°,∴B =45°,AC =60 km , 由正弦定理BC sin 30°=ACsin 45°,∴BC =30 2 km.(2)在△PAB 中,∠PAB =30°,∠APB =15°,AB =60,sin 15°=sin(45°-30°)=sin 45°cos 30°-cos 45°sin 30° =22×32-22×12=6-24, 由正弦定理得PB sin 30°=ABsin 15°,∴PB =12×606-24=30(6+2), ∴树的高度为PB ·sin 45°=30(6+2)×22=(30+303)(m). 题型二 求角度问题例2 如图所示,位于A 处的信息中心获悉:在其正东方向相距40海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C 处的乙船,现乙船朝北偏东θ的方向沿直线CB 前往B 处救援,则cos θ的值为________.答案2114解析 在△ABC 中,AB =40,AC =20,∠BAC =120°, 由余弦定理得BC 2=AB 2+AC 2-2AB ·AC ·cos 120°=2 800⇒BC =207.由正弦定理,得AB sin∠ACB =BCsin∠BAC⇒sin∠ACB =AB BC ·sin∠BAC =217. 由∠BAC =120°,知∠ACB 为锐角,则cos∠ACB =277.由θ=∠ACB +30°,得cos θ=cos(∠ACB +30°) =cos∠ACB cos 30°-sin∠ACB sin 30°=2114. 思维升华 解决测量角度问题的注意事项: (1)首先应明确方位角或方向角的含义;(2)分析题意,分清已知与所求,再根据题意画出正确的示意图,这是最关键、最重要的一步; (3)将实际问题转化为可用数学方法解决的问题后,注意正弦、余弦定理的“联袂”使用.如图,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练.已知点A到墙面的距离为AB ,某目标点P 沿墙面上的射线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小.若AB =15 m ,AC =25 m ,∠BCM =30°,则tan θ的最大值是______.(仰角θ为直线AP 与平面ABC 所成角)答案539解析 如图,过点P 作PO ⊥BC 于点O ,连接AO ,则∠PAO =θ. 设CO =x m ,则OP =33x m. 在Rt△ABC 中,AB =15 m ,AC =25 m , 所以BC =20 m.所以cos∠BCA =45.所以AO =625+x 2-2×25x ×45=x 2-40x +625(m).所以tan θ=33x x 2-40x +625= 331-40x +625x2=33⎝ ⎛⎭⎪⎫25x -452+925.当25x =45,即x =1254时,tan θ取得最大值为3335=539. 题型三 三角形与三角函数的综合问题例3 (2016·长春质检)已知函数f (x )=2sin x cos x +23cos 2x - 3. (1)求函数f (x )的最小正周期和单调减区间;(2)已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,其中a =7,若锐角A 满足f (A 2-π6)=3,且sin B +sin C =13314,求b ·c 的值.解 (1)f (x )=2sin x cos x +23cos 2x - 3 =sin 2x +3cos 2x =2sin(2x +π3),因此f (x )的最小正周期为T =2π2=π.由2k π+π2≤2x +π3≤2k π+3π2(k ∈Z ),得k π+π12≤x ≤k π+7π12,k ∈Z ,即f (x )的单调递减区间为[k π+π12,k π+7π12](k ∈Z ).(2)由f (A 2-π6)=2sin[2(A 2-π6)+π3]=2sin A =3, 又A 为锐角,则A =π3,由正弦定理可得2R =a sin A =732=143,sin B +sin C =b +c 2R =13314,则b +c =13314·143=13, 由余弦定理可知,cos A =b 2+c 2-a 22bc = b +c 2-2bc -a 22bc =12,可求得bc =40.思维升华 三角形与三角函数的综合问题,要借助三角函数性质的整体代换思想,数形结合思想,还要结合三角形中角的范围,充分利用正弦定理、余弦定理解题.设f (x )=sin x cos x -cos 2⎝⎛⎭⎪⎫x +π4.(1)求f (x )的单调区间;(2)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若f ⎝ ⎛⎭⎪⎫A 2=0,a =1,求△ABC 面积的最大值.解 (1)由题意知f (x )=sin 2x 2-1+cos ⎝⎛⎭⎪⎫2x +π22=sin 2x 2-1-sin 2x 2=sin 2x -12. 由-π2+2k π≤2x ≤π2+2k π,k ∈Z, 可得-π4+k π≤x ≤π4+k π,k ∈Z ;由π2+2k π≤2x ≤3π2+2k π,k ∈Z, 可得π4+k π≤x ≤3π4+k π,k ∈Z . 所以f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤-π4+k π,π4+k π(k ∈Z );单调递减区间是⎣⎢⎡⎦⎥⎤π4+k π,3π4+k π(k ∈Z ). (2)由f ⎝ ⎛⎭⎪⎫A 2=sin A -12=0,得sin A =12,由题意知A 为锐角,所以cos A =32. 由余弦定理a 2=b 2+c 2-2bc cos A , 可得1+3bc =b 2+c 2≥2bc ,即bc ≤2+3,当且仅当b =c 时等号成立. 因此12bc sin A ≤2+34.所以△ABC 面积的最大值为2+34.10.函数思想在解三角形中的应用典例 (12分)某港口O 要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O 北偏西30°且与该港口相距20海里的A 处,并正以30海里/小时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v 海里/小时的航行速度匀速行驶,经过t 小时与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)假设小艇的最高航行速度只能达到30海里/小时,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.思想方法指导 已知两边和其中一边的对角解三角形时,可以设出第三边,利用余弦定理列方程求解;对于三角形中的最值问题,可建立函数模型,转化为函数最值问题解决. 规范解答解 (1)设相遇时小艇航行的距离为S 海里,则[1分]S =900t 2+400-2·30t ·20·cos 90°-30°=900t 2-600t +400=900 t -132+300.[3分]故当t =13时,S min =103,v =10313=30 3.即小艇以303海里/小时的速度航行,相遇时小艇的航行距离最小.[6分] (2)设小艇与轮船在B 处相遇.则v 2t 2=400+900t 2-2·20·30t ·cos(90°-30°),[8分] 故v 2=900-600t +400t2.∵0<v ≤30,∴900-600t +400t 2≤900,即2t 2-3t ≤0,解得t ≥23.又t =23时,v =30,故v =30时,t 取得最小值,且最小值等于23.此时,在△OAB 中,有OA =OB =AB =20.[11分] 故可设计航行方案如下:航行方向为北偏东30°,航行速度为30海里/小时.[12分]1.一艘海轮从A 处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B 处,在C 处有一座灯塔,海轮在A 处观察灯塔,其方向是南偏东70°,在B 处观察灯塔,其方向是北偏东65°,那么B ,C 两点间的距离是( ) A .10 2 海里 B .10 3 海里 C .20 3 海里 D .20 2 海里答案 A解析 如图所示,易知,在△ABC 中,AB =20,∠CAB =30°,∠ACB =45°, 根据正弦定理得BC sin 30°=ABsin 45°,解得BC =10 2.2.在相距2 km 的A ,B 两点处测量目标点C ,若∠CAB =75°,∠CBA =60°,则A ,C 两点之间的距离为( )A. 6 kmB. 2 kmC. 3 km D .2 km 答案 A 解析 如图,在△ABC 中,由已知可得∠ACB =45°, ∴ACsin 60°=2sin 45°,∴AC =22×32= 6. 3.一船向正北航行,看见正西方向相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时( ) A .5海里 B .5 3 海里 C .10海里 D .10 3 海里答案 C解析 如图所示,依题意有∠BAC =60°,∠BAD =75°,所以∠CAD =∠CDA =15°,从而CD =CA =10, 在Rt△ABC 中,得AB =5,于是这艘船的速度是50.5=10(海里/时).4.如图,两座相距60 m 的建筑物AB ,CD 的高度分别为20 m ,50 m ,BD 为水平面,则从建筑物AB 的顶端A 看建筑物CD 的张角为( )A .30° B.45° C.60° D.75° 答案 B解析 依题意可得AD =2010,AC =305, 又CD =50,所以在△ACD 中,由余弦定理得cos∠CAD =AC 2+AD 2-CD 22AC ·AD=305 2+ 2010 2-5022×305×2010=6 0006 0002=22,又0°<∠CAD <180°,所以∠CAD =45°, 所以从顶端A 看建筑物CD 的张角为45°.5.如图所示,测量河对岸的塔高AB 时可以选与塔底B 在同一水平面内的两个测点C 与D ,测得∠BCD=15°,∠BDC=30°,CD=30,并在点C测得塔顶A的仰角为60°,则塔高AB等于( )A.5 6 B.15 3C.5 2 D.15 6答案 D解析在△BCD中,∠CBD=180°-15°-30°=135°.由正弦定理得BCsin 30°=30sin 135°,所以BC=15 2.在Rt△ABC中,AB=BC tan∠ACB=152×3=15 6.故选D.6.一个大型喷水池的中央有一个强大喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点A测得水柱顶端的仰角为45°,沿点A向北偏东30°前进100 m到达点B,在B点测得水柱顶端的仰角为30°,则水柱的高度是( )A.50 m B.100 m C.120 m D.150 m答案 A解析设水柱高度是h m,水柱底端为C,在Rt△BCD中,∠CBD=30°,BC=3h.在△ABC中,∠A=60°,AC=h,AB=100,根据余弦定理得,(3h)2=h2+1002-2·h·100·cos 60°,即h2+50h-5 000=0,即(h-50)(h+100)=0,即h=50,故水柱的高度是50 m.7.江岸边有一炮台高30 m,江中有两条船,船与炮台底部在同一水平面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距____m. 答案 10 3 解析 如图,OM =AO tan 45°=30(m), ON =AO tan 30°=33×30 =103(m),在△MON 中,由余弦定理得,MN = 900+300-2×30×103×32=300=10 3 (m).8.如图,一艘船上午9:30在A 处测得灯塔S 在它的北偏东30°处,之后它继续沿正北方向匀速航行,上午10:00到达B 处,此时又测得灯塔S 在它的北偏东75°处,且与它相距8 2 n mile.此船的航速是______ n mile/h.答案 32解析 设航速为v n mile/h ,在△ABS 中,AB =12v ,BS =82,∠BSA =45°,由正弦定理得82sin 30°=12v sin 45°,∴v =32.9.如图,某住宅小区的平面图呈圆心角为120°的扇形AOB ,C 是该小区的一个出入口,且小区里有一条平行于AO 的小路CD .已知某人从O 沿OD 走到D 用了2分钟,从D 沿DC 走到C 用了3分钟.若此人步行的速度为每分钟50米,则该扇形的半径为________米.答案 507解析 如图,连接OC ,在△OCD 中,OD =100,CD =150,∠CDO =60°.由余弦定理得OC 2=1002+1502-2×100×150×cos 60°=17 500,解得OC =507.10.在Rt△ABC 中,C =90°,A ,B ,C 所对的边分别为a ,b ,c ,且满足a +b =cx ,则实数x 的取值范围是________. 答案 (1,2] 解析 x =a +bc =sin A +sin Bsin C=sin A +cos A =2sin ⎝ ⎛⎭⎪⎫A +π4.又A ∈⎝⎛⎭⎪⎫0,π2, ∴sin π4<sin ⎝⎛⎭⎪⎫A +π4≤sin π2,即x ∈(1,2].11.要测量电视塔AB 的高度,在C 点测得塔顶A 的仰角是45°,在D 点测得塔顶A 的仰角是30°,并测得水平面上的∠BCD =120°,CD =40 m ,求电视塔的高度. 解 如图,设电视塔AB 高为x m ,则在Rt△ABC 中,由∠ACB =45°,得BC =x . 在Rt△ADB 中,∠ADB =30°, 则BD =3x .在△BDC 中,由余弦定理得,BD 2=BC 2+CD 2-2BC ·CD ·cos 120°,即(3x )2=x 2+402-2·x ·40·cos 120°, 解得x =40,所以电视塔高为40 m.12.(2015·天津)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知△ABC 的面积为315,b -c =2,cos A =-14.(1)求a 和sin C 的值; (2)求cos ⎝⎛⎭⎪⎫2A +π6的值. 解 (1)在△ABC 中,由cos A =-14,可得sin A =154. 由S △ABC =12bc sin A =315,得bc =24,又由b -c =2,解得b =6,c =4. 由a 2=b 2+c 2-2bc cos A ,可得a =8. 由asin A =c sin C ,得sin C =158. (2)cos ⎝ ⎛⎭⎪⎫2A +π6=cos 2A ·cos π6-sin 2A ·sin π6=32(2cos 2A -1)-12×2sin A ·cos A =15-7316. 13.在海岸A 处发现北偏东45°方向,距A 处(3-1)海里的B 处有一艘走私船.在A 处北偏西75°方向,距A 处2海里的C 处的我方缉私船奉命以103海里/小时的速度追截走私船,此时走私船正以10海里/小时的速度从B 处向北偏东30°方向逃窜.问:缉私船沿什么方向行驶才能最快截获走私船?并求出所需时间.解 如图,设缉私船应沿CD 方向行驶t 小时,才能最快截获走私船(在D 点),则CD =103t 海里,BD =10t 海里,在△ABC 中,由余弦定理,得BC 2=AB 2+AC 2-2AB ·AC ·cos A=(3-1)2+22-2·(3-1)·2·cos 120°=6,解得BC = 6. 又BC sin∠BAC =ACsin∠ABC,∴sin∠ABC =AC ·sin ∠BAC BC =2·sin 120°6=22,∴∠ABC =45°,故B 点在C 点的正东方向上, ∴∠CBD =90°+30°=120°, 在△BCD 中,由正弦定理,得BD sin∠BCD =CDsin∠CBD,∴sin∠BCD =BD ·sin∠CBD CD =10t ·sin 120°103t=12.∴∠BCD =30°,∴缉私船沿北偏东60°的方向行驶. 又在△BCD 中,∠CBD =120°,∠BCD =30°, ∴∠D =30°,∴BD =BC ,即10t =6, 解得t =610小时≈15分钟. ∴缉私船应沿北偏东60°的方向行驶,才能最快截获走私船,大约需要15分钟.。

相关文档
最新文档