尖子班 2015年八年级下学期期末考试数学试题(三)
2015八年级(下)期末数学试卷附答案
八年级(下)期末数学试卷一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卷中对应的表格内.1.若分式有意义,则a的取值范围是()A.a=0 B.a=1 C.a≠﹣1 D.a≠02.分式方程的解为()A.x=1 B.x=2 C.x=3 D.x=43.若△ABC的周长是12cm,则△ABC三条中位线围成的三角形的周长为()A.24cm B.6cm C.4cm D.3cm4.矩形的长为x,宽为y,面积为16,则y与x之间的函数关系用图象表示大致为()A.B.C.D.5.如图,反比例函数的图象经过点A(﹣1,﹣2).则当x>1时,函数值y的取值范围是()A.y>1 B.0<y<l C.y>2 D.0<y<26.已知如图,A是反比例函数的图象上的一点,AB丄x轴于点B,且△ABO的面积是3,则k的值是()A.3 B.﹣3 C.6 D.﹣67.下面是四位同学解方程过程中去分母的一步,其中正确的是()A.2+x=x﹣1 B.2﹣x=1 C.2+x=1﹣x D.2﹣x=x﹣18.点A、B、C是平面内不在同一条直线上的三点,点D是平面内任意一点,若A、B、C、D四点恰能构成一个平行四边形,则在平面内符合这样条件的点D有()A.1个B.2个C.3个D.4个9.如图,菱形OABC的顶点B在y轴上,顶点C的坐标为(﹣2,1),若反比例函数y=(x>0)的图象经过点A,则k的值为()A.2 B.1 C.﹣1 D.﹣210.某中学足球队的18名队员的年龄情况如下表:年龄(单位:岁)14 15 16 17 18人数 3 6 4 4 1则这些队员年龄的众数和中位数分别是()A.15,15 B.15,15.5 C.15,16 D.16,1511.如图,△ABC中,AB=AC=13,BC=10,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.16.5 B.18 C.23 D.2612.如图.矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F 处,折痕为AE,且EF=3.则AB的长为()A.3 B.4 C.5 D.6二、填空题:(本大题6个小题,每小题4分,共24分)在每小题中,请将答案直接填在答题卷中对应的横线上.13.若分式的值为0,则x=.14.今年年初,我国有的城市受雾霾天气的影响,PM2.5超标,对人体健康影响很大.PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,富含大量的有毒、有害物质.将0.0000025用科学记数法表示为.15.若函数是反比例函数,且图象在第二、四象限内,则m的值是.16.一个平行四边形的一边长是3,两条对角线的长分别是4和,则此平行四边形的面积为.17.已知一个样本:﹣1,0,2,x,3,其平均数是2,则这个样本的方差s2=.(提示:方差公式为s2=.)18.一个水池装一个进水管和三个同样的出水管.先打开进水管,等水池储存一些水后,再打开出水管(进水管不关闭).若同时打开2个进水管,那么5小时后水池空;若同时打开3个出水管,则3小时后水池空.那么出水管比进水管晚开小时.三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卷中对应的位置上.19.计算:(﹣1)2013+﹣|﹣2|+(2013﹣π)0﹣﹣.20.如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明.四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卷中对应的位置上.21.先化简,再求值.其中x=2.22.为了改善生态环境,防止水土流失,某村计划在荒坡上种480棵树,由于青年志愿者的支援,每日比原计划多种,结果提前4天完成任务,原计划每天种多少棵树?23.春兰集团对应聘者甲、乙、丙进行面试,并从专业知识、工作经验、仪表形象三方面给应聘者打分,每一方面满分20分,最后的打分制成条形统计图(如图).(1)利用图中提供的信息,在专业知识方面3人得分的极差是多少?在工作经验方面3人得分的众数是多少?在仪表形象方面谁最有优势?(2)如果专业知识、工作经验、仪表形象三个方面的重要性之比为10:7:3,那么作为人事主管,你应该录用哪一位应聘者为什么?(3)在(2)的条件下,你对落聘者有何建议?24.如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD,垂足为E.求证:BE=AE+CD.(提示:解答需作辅助线哟!)五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卷中对应的位置上.25.如图,在平面直角坐标系中,已知四边形ABCD为菱形,且A(0,3)、B(﹣4,0).(1)求经过点C的反比例函数的解析式;(2)设P是(1)中所求函数图象上一点,以P、O、A顶点的三角形的面积与△COD的面积相等.求点P的坐标.26.如图,在直角坐标系中,四边形OABC的OA,OC两边分别在x,y轴上,OA∥BC,BC=15cm,A点坐标为(16,0),C点坐标为(0,4).点P,Q分别从C,A同时出发,点P以2cm/s的速度由C向B运动,点Q以4cm/s的速度由A向O运动,当点Q到达点O时,点P也停止运动,设运动时间为t秒(0≤t≤4).(1)求当t为多少时?四边形PQAB为平行四边形;(2)求当t为多少时?PQ所在直线将四边形OABC分成左右两部分的面积比为1:2;(3)直接写出在(2)的情况下,直线PQ的函数关系式.参考答案与试题解析一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卷中对应的表格内.1.若分式有意义,则a的取值范围是()A.a=0 B.a=1 C.a≠﹣1 D.a≠0考点:分式有意义的条件.专题:计算题.分析:根据分式有意义的条件进行解答.解答:解:∵分式有意义,∴a+1≠0,∴a≠﹣1.故选C.点评:本题考查了分式有意义的条件,要从以下两个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;2.分式方程的解为()A.x=1 B.x=2 C.x=3 D.x=4考点:解分式方程.分析:首先分式两边同时乘以最简公分母2x(x﹣1)去分母,再移项合并同类项即可得到x的值,然后要检验.解答:解:,去分母得:3x﹣3=2x,移项得:3x﹣2x=3,合并同类项得:x=3,检验:把x=3代入最简公分母2x(x﹣1)=12≠0,故x=3是原方程的解,故原方程的解为:X=3,故选:C.点评:此题主要考查了分式方程的解法,关键是找到最简公分母去分母,注意不要忘记检验,这是同学们最容易出错的地方.3.若△ABC的周长是12cm,则△ABC三条中位线围成的三角形的周长为()A.24cm B.6cm C.4cm D.3cm考点:三角形中位线定理.分析:根据三角形的中位线平行于第三边并且等于第三边的一半可得△ABC的周长等于三条中位线围成的三角形的周长的2倍,然后代入数据计算即可得解.解答:解:∵△ABC的周长是12cm,∴△ABC三条中位线围成的三角形的周长=×12=6(cm).故选B.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记定理是解题的关键.4.矩形的长为x,宽为y,面积为16,则y与x之间的函数关系用图象表示大致为()A.B.C.D.考点:反比例函数的应用;反比例函数的图象.分析:首先由矩形的面积公式,得出它的长y与宽x之间的函数关系式,然后根据函数的图象性质作答.注意本题中自变量x的取值范围.解答:解:由矩形的面积16=xy,可知它的长y与宽x之间的函数关系式为y=(x>0),是反比例函数图象,且其图象在第一象限.故选C.点评:本题考查了反比例函数的应用,注意反比例函数y=的图象是双曲线,当k>0时,它的两个分支分别位于第一、三象限;当k<0时,它的两个分支分别位于第二、四象限.5.如图,反比例函数的图象经过点A(﹣1,﹣2).则当x>1时,函数值y的取值范围是()A.y>1 B.0<y<l C.y>2 D.0<y<2考点:反比例函数的图象;反比例函数图象上点的坐标特征.专题:压轴题;数形结合.分析:先根据反比例函数的图象过点A(﹣1,﹣2),利用数形结合求出x<﹣1时y的取值范围,再由反比例函数的图象关于原点对称的特点即可求出答案.解答:解:∵反比例函数的图象过点A(﹣1,﹣2),∴由函数图象可知,x<﹣1时,﹣2<y<0,∴当x>1时,0<y<2.故选:D.点评:本题考查的是反比例函数的性质及其图象,能利用数形结合求出x<﹣1时y的取值范围是解答此题的关键.6.已知如图,A是反比例函数的图象上的一点,AB丄x轴于点B,且△ABO的面积是3,则k的值是()A.3 B.﹣3 C.6 D.﹣6考点:反比例函数系数k的几何意义.分析:过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|.解答:解:根据题意可知:S△AOB=|k|=3,又反比例函数的图象位于第一象限,k>0,则k=6.故选:C.点评:本题主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得三角形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.7.下面是四位同学解方程过程中去分母的一步,其中正确的是()A.2+x=x﹣1 B.2﹣x=1 C.2+x=1﹣x D.2﹣x=x﹣1考点:解分式方程.分析:去分母根据的是等式的性质2,方程的两边乘以最简公分母,即可将分式方程转化为整式方程.解答:解:方程的两边同乘(x﹣1),得2﹣x=x﹣1.故选D.点评:本题主要考查了等式的性质和解分式方程,注意:去分母时,不要漏乘不含分母的项.8.点A、B、C是平面内不在同一条直线上的三点,点D是平面内任意一点,若A、B、C、D四点恰能构成一个平行四边形,则在平面内符合这样条件的点D有()A.1个B.2个C.3个D.4个考点:平行四边形的判定.专题:几何图形问题.分析:根据平面的性质和平行四边形的判定求解.解答:解:由题意画出图形,在一个平面内,不在同一条直线上的三点,与D点恰能构成一个平行四边形,符合这样条件的点D有3个.故选:C.点评:解答此类题的关键是要突破思维定势的障碍,运用发散思维,多方思考,探究问题在不同条件下的不同结论,挖掘它的内在联系.注意图形结合的解题思想.9.如图,菱形OABC的顶点B在y轴上,顶点C的坐标为(﹣2,1),若反比例函数y=(x>0)的图象经过点A,则k的值为()A.2 B.1 C.﹣1 D.﹣2考点:反比例函数图象上点的坐标特征;菱形的性质.专题:计算题.分析:根据菱形的性质,点A与点C关于OB对称,而OB在y轴上,则可得到A(2,1),然后根据反比例函数图象上点的坐标特征求k的值.解答:解:∵菱形OABC的顶点B在y轴上,∴点A和点C关于y轴对称,∴A(2,1),∴k=2×1=2.故选A.点评:本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了菱形的性质.10.某中学足球队的18名队员的年龄情况如下表:年龄(单位:岁)14 15 16 17 18人数 3 6 4 4 1则这些队员年龄的众数和中位数分别是()A.15,15 B.15,15.5 C.15,16 D.16,15考点:众数;中位数.专题:常规题型.分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.解答:解:根据图表数据,同一年龄人数最多的是15岁,共6人,所以众数是15,18名队员中,按照年龄从大到小排列,第9名队员的年龄是15岁,第10名队员的年龄是16岁,所以,中位数是=15.5.故选B.点评:本题考查了确定一组数据的中位数和众数的能力,众数是出现次数最多的数据,一组数据的众数可能有不止一个,找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数,中位数不一定是这组数据中的数.11.如图,△ABC中,AB=AC=13,BC=10,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.16.5 B.18 C.23 D.26考点:直角三角形斜边上的中线;等腰三角形的性质.分析:根据等腰三角形三线合一的性质可得AD⊥BC,DC=,再根据直角三角形的性质可得DE=EC==6.5,然后可得答案.解答:解:∵AB=AC,AD平分∠BAC,∴AD⊥BC,DC=,∵BC=10,∴DC=5,∵点E为AC的中点,∴DE=EC==6.5,∴△CDE的周长为:DC+EC+DE=13+5=18,故选:B.点评:此题主要考查了等腰三角形的性质,以及直角三角形的性质,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.12.如图.矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F 处,折痕为AE,且EF=3.则AB的长为()A.3 B.4 C.5 D.6考点:翻折变换(折叠问题);勾股定理.专题:压轴题;探究型.分析:先根据矩形的特点求出BC的长,再由翻折变换的性质得出△CEF是直角三角形,利用勾股定理即可求出CF的长,再在△ABC中利用勾股定理即可求出AB的长.解答:解:∵四边形ABCD是矩形,AD=8,∴BC=8,∵△AEF是△AEB翻折而成,∴BE=EF=3,AB=AF,△CEF是直角三角形,∴CE=8﹣3=5,在Rt△CEF中,CF===4,设AB=x,在Rt△ABC中,AC2=AB2+BC2,即(x+4)2=x2+82,解得x=6,故选:D.点评:本题考查的是翻折变换及勾股定理,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.二、填空题:(本大题6个小题,每小题4分,共24分)在每小题中,请将答案直接填在答题卷中对应的横线上.13.若分式的值为0,则x=1.考点:分式的值为零的条件.专题:计算题.分析:分式的值是0的条件是:分子为0,分母不为0.解答:解:∵x﹣1=0,∴x=1,当x=1,时x+3≠0,∴当x=1时,分式的值是0.故答案为1.点评:分式是0的条件中特别需要注意的是分母不能是0,这是经常考查的知识点.14.今年年初,我国有的城市受雾霾天气的影响,PM2.5超标,对人体健康影响很大.PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,富含大量的有毒、有害物质.将0.0000025用科学记数法表示为 2.5×10﹣6.考点:科学记数法—表示较小的数.分析:绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.0000025=2.5×10﹣6;故答案为:2.5×10﹣6.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.15.若函数是反比例函数,且图象在第二、四象限内,则m的值是﹣2.考点:反比例函数的性质;反比例函数的定义.专题:计算题.分析:根据反比例函数的定义可知m2﹣5=﹣1,又图象在第二、四象限,所以m+1<0,两式联立方程组求解即可.解答:解:∵函数是反比例函数,且图象在第二、四象限内,∴,解得m=±2且m<﹣1,∴m=﹣2.故答案为:﹣2.点评:本题考查了反比例函数的定义及图象性质.反比例函数解析式的一般形式(k≠0),也可转化为y=kx﹣1(k≠0)的形式,注意自变量x的次数是﹣1;当k>0时,反比例函数图象在一、三象限,当k<0时,反比例函数图象在第二、四象限内.16.一个平行四边形的一边长是3,两条对角线的长分别是4和,则此平行四边形的面积为4.考点:菱形的判定与性质;勾股定理的逆定理.分析:根据勾股定理的逆定理可得对角线互相垂直,然后根据菱形性质可求出面积.解答:解:解:∵平行四边形两条对角线互相平分,∴它们的一半分别为2和,∵22+()2=32,∴两条对角线互相垂直,∴这个四边形是菱形,∴S=4×2=4.故答案为:4.点评:本题考查了菱形的判定与性质,利用了对角线互相垂直的平行四边形是菱形,菱形的面积是对角线乘积的一半.17.已知一个样本:﹣1,0,2,x,3,其平均数是2,则这个样本的方差s2=6.(提示:方差公式为s2=.)考点:方差.分析:先由平均数公式求得x的值,再由方差公式求解.解答:解:∵平均数=(﹣1+2+3+x+0)÷5=2∴﹣1+2+3+x+0=10,x=6∴方差S2=[(﹣1﹣2)2+(0﹣2)2+(2﹣2)2+(6﹣2)2+(3﹣2)2]÷5=6.故答案为6.点评:本题考查方差的定义.它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.18.一个水池装一个进水管和三个同样的出水管.先打开进水管,等水池储存一些水后,再打开出水管(进水管不关闭).若同时打开2个进水管,那么5小时后水池空;若同时打开3个出水管,则3小时后水池空.那么出水管比进水管晚开15小时.考点:分式方程的应用.分析:设出水管比进水管晚开x小时,进水管进水的速度为a 米3/时,出水管的出水速度为b米3/时,根据题意可得,一个进水管(x+5)小时进的水量=两个出水管5个小时的出水量,一个进水管(x+3)小时进的水量=三个出水管3个小时的出水量,据此列方程组求解.解答:解:设出水管比进水管晚开x小时,进水管进水的速度为a 米3/时,出水管的出水速度为b米3/时,由题意得,,两式相除,得:,解得:x=15,经检验,x=15是原分式方程的解.故答案为:15.点评:本题考查了分式方程的应用,解答本题的关键是读懂题意,根据题意设出适当的未知数,找出等量关系,列方程求解,注意检验.三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卷中对应的位置上.19.计算:(﹣1)2013+﹣|﹣2|+(2013﹣π)0﹣﹣.考点:实数的运算;零指数幂;负整数指数幂.专题:计算题.分析:原式第一项利用乘方的意义计算,第二项利用二次根式性质化简,第三项利用零指数幂法则计算,第四项利用负整数指数幂法则计算,最后一项利用立方根定义计算即可得到结果.解答:解:原式=﹣1+3﹣2+1﹣3+4=2.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明.考点:平行四边形的判定与性质.专题:探究型.分析:根据CE∥AB,DE交AC于点O,且OA=OC,求证△ADO≌△ECO,然后求证四边形ADCE 是平行四边形,即可得出结论.解答:解:猜想线段CD与线段AE的大小关系和位置关系是:相等且平行.理由:∵CE∥AB,∴∠DAO=∠ECO,∵在△ADO和△ECO中∴△ADO≌△ECO(ASA),∴AD=CE,∴四边形ADCE是平行四边形,∴CD AE.点评:此题主要考查了平行四边形的判定与性质等知识点的理解和掌握,解答此题的关键是求证△ADO≌△ECO,然后可得证四边形ADCE是平行四边形,即可得出结论.四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卷中对应的位置上.21.先化简,再求值.其中x=2.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再把x=2代入进行计算即可.解答:解:原式=[﹣]•=•=•=.当x=2时,原式==.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.22.为了改善生态环境,防止水土流失,某村计划在荒坡上种480棵树,由于青年志愿者的支援,每日比原计划多种,结果提前4天完成任务,原计划每天种多少棵树?考点:分式方程的应用.分析:根据:原计划完成任务的天数﹣实际完成任务的天数=4,列方程即可.解答:解:设原计划每天种x棵树,据题意得,,解得x=30,经检验得出:x=30是原方程的解.答:原计划每天种30棵树.点评:此题主要考查了分式方程的应用,合理地建立等量关系,列出方程是解题关键.23.春兰集团对应聘者甲、乙、丙进行面试,并从专业知识、工作经验、仪表形象三方面给应聘者打分,每一方面满分20分,最后的打分制成条形统计图(如图).(1)利用图中提供的信息,在专业知识方面3人得分的极差是多少?在工作经验方面3人得分的众数是多少?在仪表形象方面谁最有优势?(2)如果专业知识、工作经验、仪表形象三个方面的重要性之比为10:7:3,那么作为人事主管,你应该录用哪一位应聘者为什么?(3)在(2)的条件下,你对落聘者有何建议?考点:加权平均数;条形统计图;众数;极差.专题:图表型.分析:运用极差、众数、平均数的定义并结合条形统计图来分析和解决题目.解答:解:(1)专业知识方面3人得分极差是18﹣14=4分,工作经验方面3人得分的众数是15,在仪表形象方面丙最有优势;(2)甲得分:14×0.5+17×0.35+12×0.15=14.75分;乙得分:18×0.5+15×0.35+11×0.15=15.9分;丙得分:16×0.5+15×0.35+14×0.15=15.35分,∴应录用乙;(3)对甲而言,应加强专业知识的学习,同时要注意自己的仪表形象.对丙而言,三方面都要努力.重点在工作经验和仪表形象.点评:本题考查了从统计图中获取信息的能力和计算加权平均数的能力.24.如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD,垂足为E.求证:BE=AE+CD.(提示:解答需作辅助线哟!)考点:全等三角形的判定与性质;矩形的判定与性质.专题:证明题.分析:作CF⊥BE,垂足为F,得出矩形CFED,求出∠CBF=∠A,根据AAS证△BAE≌△CBF,推出BF=AE即可.解答:证明:作CF⊥BE,垂足为F,∵BE⊥AD,∴∠AEB=90°,∴∠FED=∠D=∠CFE=90°,∴四边形EFCD为矩形,∴CD=EF,∵∠FED=∠D=∠CFE=90°,∠CBE+∠ABE=90°,∠BAE+∠ABE=90°,∴∠BAE=∠CBF,在△BAE和△CBF中,,∴△BAE≌△CBF(AAS),∴BF=AE,∴BE=BF+FE=AE+CD.点评:本题考查了全等三角形的性质和判定,矩形的判定和性质的应用,关键是求出△BAE≌△CBF,主要考查学生运用性质进行推理的能力.五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卷中对应的位置上.25.如图,在平面直角坐标系中,已知四边形ABCD为菱形,且A(0,3)、B(﹣4,0).(1)求经过点C的反比例函数的解析式;(2)设P是(1)中所求函数图象上一点,以P、O、A顶点的三角形的面积与△COD的面积相等.求点P的坐标.考点:反比例函数综合题.专题:数形结合.分析:(1)根据菱形的性质可得菱形的边长,进而可得点C的坐标,代入反比例函数解析式可得所求的解析式;(2)设出点P的坐标,易得△COD的面积,利用点P的横坐标表示出△PAO的面积,那么可得点P的横坐标,就求得了点P的坐标.解答:解:(1)由题意知,OA=3,OB=4在Rt△AOB中,AB=∵四边形ABCD为菱形∴AD=BC=AB=5,∴C(﹣4,﹣5).设经过点C的反比例函数的解析式为(k≠0),则=﹣5,解得k=20.故所求的反比例函数的解析式为.(2)设P(x,y)∵AD=AB=5,OA=3,∴OD=2,S△COD=即,∴|x|=,∴当x=时,y==,当x=﹣时,y==﹣∴P()或().点评:综合考查反比例函数及菱形的性质,注意:根据菱形的性质得到点C的坐标;点P的横坐标的有两种情况.26.如图,在直角坐标系中,四边形OABC的OA,OC两边分别在x,y轴上,OA∥BC,BC=15cm,A点坐标为(16,0),C点坐标为(0,4).点P,Q分别从C,A同时出发,点P以2cm/s的速度由C向B运动,点Q以4cm/s的速度由A向O运动,当点Q到达点O时,点P也停止运动,设运动时间为t秒(0≤t≤4).(1)求当t为多少时?四边形PQAB为平行四边形;(2)求当t为多少时?PQ所在直线将四边形OABC分成左右两部分的面积比为1:2;(3)直接写出在(2)的情况下,直线PQ的函数关系式.考点:一次函数综合题.分析:(1)根据平行四边形PQAB的对边相等的性质得到关于t的方程,通过解方程求得t的值;(2)由题意得到:OC=4cm,OA=16cm.利用梯形的面积公式求得S梯形OABC=62(cm2),S四边形PQOC=,结合限制性条件“PQ所在直线将四边形OABC分成左右两部分的面积比为1:2”列出关于t的方程,通过解方程来求t的值;(3)根据(2)中求得的t的值可以得到点P、Q的坐标,则利用待定系数法来求直线PQ的解析式.解答:解:(1)ts后,BP=(15﹣2t)cm,AQ=4t cm.由BP=AQ,得15﹣2t=4t,t=2.5(s).又∵OA∥BC,∴当t=2.5s时,四边形PQAB为平行四边形.(2)∵点C坐标为(0,4),点A坐标为(16,0),∴OC=4cm,OA=16cm.∴S梯形OABC=(OA+BC)•OC=×(16+15)×4=62(cm2).∵t秒后,PC=2tcm,OQ=(16﹣4t)cm,∴S四边形PQOC=,又∵PQ所在直线将四边形OABC分成左右两部分的面积比为1:2,∴,解得(s).当(s)时,直线PQ将四边形OABC分成左右两部分的面积比为1:2.(3)当s时,P(,4),Q(,0).设直线PQ的解析式为:y=kx+b(k≠0),则,解得所以,此时直线PQ的函数关系式为.点评:本题考查了一次函数综合题,解题时,利用了梯形的面积公式、待定系数法求一次函数的解析式、平行四边形的判定定理等知识点,题中运用动点的运动速度与运动时间求出相关线段的长是解题的关键.。
2015年八年级数学(下)期末试卷带答案
2015年八年级数学(下)期末考试卷考试时间:120分钟 总分:120分 命题:Mr. Xiong 一、选择题 (10×3′=30分)1、已知a<b 且ab ≠0,化简二次根式b a 3-的正确结果是( ) A. -a ab - B.-a ab C.a ab D.a ab -2、三角形的三边长a 、b 、c ,由下列条件不能判断它是直角三角形的是( ) A. a:b:c=7:16:14 B.222c b a =-C.2a =(b+c)(b-c)D.a:b:c=15:9:123、如图,在矩形纸片ABCD 中,AB=5CM ,BC=10CM ,CD 上有一点E ,ED=2cm ,AD 上有一点P ,PD=3cm ,过点P 作PF ⊥AD ,交BC 于点F ,将纸片折叠,使点P 与点E 重合,折痕与PF 交于点Q ,则PQ 的长是( ). A.413 cm B.3cm C.2cm D.27cm 4、5、已知a-b=2+3,b-c=3-2,则ac bc ab c b a ---++222的值为( ) A 、310 B 、123 C 、10 D 、156、数据10,10,x ,8的众数与平均数相同,那么这组数的中位数是()A .10 B .8C .12D .47、已知每一个小时有一列速度相同的动车从甲地开往乙地,图中OA 、MN 分别是第一列动车和第二列动车离甲地的路程S (km )与运行时间t (h )的函数图象,折线DB ﹣BC是一列从乙地开往甲地速度为100km/h 的普通快车距甲地的路程S (km )与运行时间t (h )的函数图象.以下说法错误的是( )第3题8、已知一次函数y=(2k-1)x-k 的图像不经过第一象限,则k 的取值范围是( )A. 21 kB. 0<k<21C. 0≤k<21D. 0≤k ≤219、如图所示,一个圆柱高为8cm ,底面圆的半径为5cm ,则从圆柱左下角A 点出发.沿圆柱体表面到右上角B 点的最短路程为( )A .B.C.D .以上都不对10、如图所示.直线y=x+2与y 轴相交于点A ,OB 1=OA ,以OB 1为底边作等腰三角形A 1OB 1,顶点A 1在直线y=x+2上,△A 1OB 1记作第一个等腰三角形;然后过B 1作平行于OA 1的直线B 1A 2与直线y=x+2相交于点A 2,再以B 1A 2为腰作等腰三角形A 2B 1B 2,记作第二个等腰三角形;同样过B 2作平行于OA 1的直线B 2A 3与直钱y=x+2相交于点A 3,再以B 2A 3为腰作等腰三角形A 3B 2B 3,记作第三个等腰三角形;依此类推,则等腰三角形A 10B 9B 10的面积为( )A .3•48 B .3•49 C .3•410 D .3•411 二、填空题(每小题3分,共24分)11、已知2753n 是整数,则正整数n 的最小值是_____________.12、如图,正方形ABCD 的边长为4,点P 在DC 边上且DP=1,点Q 是AC 上一动点,则DQ+PQ 的最小值为______.A . 普通快车比第一列动车晚发车0.5hB . 普通快车比第一列动车晚到达终点1.5hC . 第二列动车出发后1h 与普通快车相遇D .普通快车与迎面的相邻两动车相遇的时间间隔为0.7h第7题第十题图13、如图,把矩形纸片OABC 放入平面直角坐标系中,使OA 、OC 分别落在x 轴,y 轴上,顶点O 与原点O 重合连接AC ,将矩形纸片OABC 沿AC 折叠,使点B 落在D 的位置,若B (1, 2)则点D 的坐标为_____________.14、如图,直线y=kx+b 经过A (-1,2)、B (-2, 0)两点,则0≤kx+b ≤-2x 的解集是____________.15、若a ,b ,c ,是直角三角形的三条边长,斜边c 上的高的长是h ,给出下列结论:(1)以a 2,b 2,c 2的长为边的三条线段能组成一个三角形;(2)以,,的长为边的三条线段能组成一个三角形; (3)以a +b ,c +h ,h 的长为边的三条线段能组成直角三角形;(4)以,,的长为边的三条线段能组成直角三角形;(5)以,,的长为边的三条线段能组成直角三角形.其中正确结论的序号为________.16、甲、乙、丙3人用擂台赛形式进行训练,每局2人进行单打比赛,另1人当裁判,每一局的输方去当下一局的裁判,而由原来的裁判向胜者挑战.半天训练结束时发现甲共打了12局,乙共打了21局,而丙共当裁判8局.设甲丙交手a 局,乙丙交手b 局,甲乙交手c 局,则4a ﹣1+b ﹣2c 0=________,a-2, b-15, c-5三数的方差为________.17、一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH 的边长为2米,坡角∠A=30°,∠B=90°,BC=8米.当正方形DEFH 运动到什么位置,即当AE=________米时,有222BC AE DC +=.18、小王、小阳两人同时从甲、乙两地出发相向而行,小王先到达乙地后原地休息,她们二人的距离y (km )与步行的时间x (h )之间的函数关系的图像如图所示,则直线AB 的解析式为______________________. 三、解答题(共66分) 19、(6分)计算x x xx x 23)3221286÷+-(20、如图,三角形ABC 为等边三角形,D 、F 分别为BC 、AC 上的一点,且CD=BF,以AD 为边作等边三角形ADE 。
2015年八下期末数学测试题及答案
八年级下册数学期末试卷注意事项:1.本试卷满分150分,考试用时120分钟.2.答题前,考生务必将班级、姓名、考试号等填写在答题卷相应的位置上. 3.考生答题必须在答题卷上,答在试卷和草稿纸上一律无效. 一、选择题(每小题3分,共24分.每题有且只有一个答案正确) 1.若53=b a ,则b b a +的值是 ( ▲ )A .53B .58C .85D .232. 如图,天平右盘中的每个砝码的质量都是1克, 则物体A 的质量m 克的取值范围表示在数轴上 为 ( ▲ )A. B. C. D.3. 下列命题中,有几个真命题 ( ▲ ) ①同位角相等 ②直角三角形的两个锐角互余 ③平行四边形的对角线互相平分且相等 ④对顶角相等A. 1个 B . 2个 C. 3个 D. 4个 4. 若反比例函数xm y 2+=的图象在各个象限内y 随着x 的增大而增大,则m 的取值范围是( ▲ ) A .2-<mB .2->mC .2<mD .2>m5. 在一个不透明的盒子里有形状、大小完全相同的黄球2个、红球3个、白球4个,从盒子里任意摸出1个球,摸到红球的概率是 ( ▲ )A.92 B. 94 C. 32 D. 31 6. 如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中△ABC 相似的是 ( ▲ )A .B .C .D .ABC7. 如果不等式组⎩⎨⎧≥<m x x 5有解,那么m 的取值范围是 ( ▲ ) A .5>m B. 5<m C.5≥m D. 5≤m8. 如图,在矩形ABCD 中,AB =4cm ,AD =12cm ,点P 在AD 边上以每秒l cm 的速度从点A 向点D 运动,点Q 在BC 边上,以每秒4cm 的速度从点C 出发,在CB 间往返..运动,两个点同时出发,当点P 到达点D 时停止(同时点Q 也停止),在这段时间内,线段PQ 有多少次平行于AB ? ( ▲ )A .1B .2C .3D .4二、填空题(每小题3分,共30分)将答案填写在题中横线上. 9.当m = ▲ 时,分式22m m --的值为零. 10. 命题“全等三角形的面积相等”的逆命题是 ▲11.在比例尺为1∶1 00 000的地图上,量得甲、乙两地的距离是15cm ,则两地的实际距离 ▲ km .12. 如图是一种贝壳的俯视图,点C 分线段AB 近似于黄金分割(AC > BC ).已知AB =10cm ,则AC 的长约为 ▲ cm .(结果精确到0.1cm )13. 扬州市义务教育学业质量监测实施方案如下:3、4、5年级在语文、数学、英语3个科目中各抽1个科目进行测试,各年级测试科目不同.对于4年级学生,抽到数学科目的概率为 ▲ .14. 如图,使△AOB ∽△COD ,则还需添加一个条件是: ▲ (写一个即可)ODCBA第12题图 第14题图15. 若关于x 的分式方程xm x x -=--525无解,则m 的值为____▲_____16. 如图,△ABC 中,∠B =90°,AB =6,BC =8,将△ABC 沿DE 折叠,使点C 落在AB •边上的C ′处,并且C ′D ∥BC ,则CD 的长是 ▲17. 某单位向一所希望小学赠送1080件文具,现用A 、B 两种不同的包装箱进行包装,已知每个B 型包装箱比A 型包装箱多装15件文具,单独使用B 型包装箱比单独使用A 型包装箱可少用12个.设A 型包装箱每个可以装x 件文具,根据题意列方程为 ▲ .18. 如图,双曲线2(0)y x x=>经过四边形OABC 的顶点A 、C ,∠ABC =90°,OC 平分OA 与x 轴正半轴的夹角,AB ∥x 轴,将△ABC 沿AC 翻折后得到△AB 'C ,B '点落在OA 上,则四边形OABC的面积是 ▲三、解答题(本大题10小题,共96分)解答应写出文字说明、证明过程或演算步骤. 19.(本题满分8分)(1)解不等式,并把解集表示在数轴上 (2)解分式方程 242x x +>-211x x x-=-20.(本题满分8分)先化简:1)111(2-÷-+x xx ,再选择一个恰当的x 值代入并求值. 21.(本题满分8分)如图,已知D E 、分别是△ABC 的边AC AB 、上的点,若55A ∠=︒,85C ∠=︒, 40ADE ∠=︒.(1)请说明:△ADE ∽△ABC ;(2)若8,6,10AD AE BE ===,求AC 的长.22.(本题满分8分)如图,点D ,E 在△ABC 的边BC 上, 连接AD ,AE . ①AB =AC ;②AD =AE ;③BD =CE .以 此三个等式中的两个作为命题的题设,另一个作为命题的结论,构成三个命题:①②⇒③;①③⇒②;②③⇒①.(1)以上三个命题是真命题的为(直接作答) ;(2)请选择一个真命题进行证明(先写出所选命题,然后证明).ED CB AEDCBA第16题图 第18题图23.(本题满分10分)如图,在单位长度为1的方格 纸中.ABC △如图所示:(1)请在方格纸上建立平面直角坐标系,使(0,0)A ,(4,4)C -并求出B 点坐标( , ); (2)以点A 为位似中心,位似比为1:2,在第一,二象限内将ABC △缩小,画出缩小后的位似图形A B C '''△; (3)计算A B C '''△的面积S24.(本题满分10分)在一个不透明的口袋中装有4张相同的纸牌,它们分别标有数字1,2,3,4.随机地摸取出一张纸牌然后放回,再随机摸取出一张纸牌.(1)用树状图或列表的方法计算两次摸取纸牌上数字之积为奇数的概率;(2)甲、乙两个人进行游戏,如果两次摸出纸牌上数字之积为奇数,则甲胜;如果两次摸出纸牌上数字之积为偶数,则乙胜。
2015年八年级数学下册期末试卷含答案
2015年八年级数学下册期末试卷含答案一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分)1 )A. B .2.方程2(1)4(1)x x -=-的根是( )A .5B .-5C .5或-5D .5或13.在五边形ABCDE 中,已知∠A 与∠C 互补,∠B+∠D=2700,则∠E 的度数为( ) A .800 B .900 C .1000 D .11004有意义,则x 的取值范围是( ) A .x ≤5 B .x ≥5 C .x >5且 x ≠6 D .x ≥5且x ≠6 5.下列四个命题中真命题是( )A.对角线互相垂直平分的四边形是正方形;B.对角线垂直且相等的四边形是菱形;C.对角线相等且互相平分的四边形是矩形;D.四边都相等的四边形是正方形.6.某市2013年投入教育经费2亿元,为了发展教育事业,该市每年教育经费的年增长率均为x ,从2013年到2015年共投入教育经费9.5亿元,则下列方程正确的是( )A.5.922=x B .5.9)1(2=+x C .5.9)1(22=+x D .5.9)1(2)1(222=++++x x7.如图,在平面直角坐标系中,菱形ABCD 的顶点C 的坐标为(-1,0),点B 的坐标为(0,2),点A 在第二象限.直线521+-=x y 与x 轴、y 轴分别交于点N 、M .将菱形ABCD 沿x 轴向右平移m 个单位,当点D 落在△MON 的内部时(不包括三角形的边),则m 的值可能是( ) A.1 B.2 C.4 D.8 8.对于反比例函数ky x=,如果当2-≤x ≤1-时有最大值4=y ,则当x ≥8时,有( ) A .最小值y =21-B .最小值1-=yC .最大值y =21-D .最大值1-=y9.已知关于x 的一元二次方程02)(2=-+++c a bx x c a ,其中a 、b 、c 分别为△ABC 三边的长.下列关于这个方程的解和△ABC 形状判断的结论错误的是( ) A .如果x =-1是方程的根,则△ABC 是等腰三角形; B .如果方程有两个相等的实数根,则△ABC 是直角三角形; C .如果△ABC 是等边三角形,方程的解是x =0或 x =-1; D .如果方程无实数解,则△ABC 是锐角三角形. 10.有下列四个命题: ① 函数xky =,当0,0<>x k 时,y 随着x 的增大而减小.② 点P )(y x ,的坐标满足054222=+-++y x y x ,若点P 也在反比例函数xk y =的图像上,则2-=k . ③ 如果一个样本123,,,n x x x x 的方差a ,那么这个样本1233,3,33,n x x x x 的方差为3a.. ④关于x 的方程0)(2=++b m x a 的解是21-=x ,12=x ,(a,m,b 均为常数,a ≠0),则方程0)2(2=+++b m x a 的解是14x =-,21x =-其中真命题的序号是 ( )A .1个B .2个C .3个D .4个 二. 认真填一填 (本题有6个小题, 每小题4分, 共24分) 11.在一次演讲比赛中,某班派出的5名同学参加年级竞赛的成绩如下表(单位:分),其中隐去了3号同学的成绩,但得知5名同学的平均成绩是21分,那么5名同学成绩的方差是 .12.用反证法证明“在三角形中,至少有一个角不大于60°”时,应先假设 .13. 如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB=6cm ,BC=8cm ,则△AEF 的周长= cm .14.如图,点A 在反比例函数ky x=(x>0)的图象上,过点A 作AD ⊥y 轴于点D ,延长AD 至点C ,使AD =DC ,过点A 作AB ⊥x 轴于点B ,连结BC 交y 轴于点E .若△ABC 的面积为4,则k 的值为 .15.如图,△ABC 是一张等腰直角三角形彩色纸,AC =BC =40cm .(1)将斜边上的高CD 五等分,然后裁出4张宽度相等的长方形纸条,则这4张纸条的面积和是 cm 2.(2)若将斜边上的高CD 分成n 等分,然后裁出(n -1)张宽度相等的长方形纸条,则这(n -1)张纸条的面积和是 cm 2.16. 若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.在四边形ABCD 中,AB=AD=BC ,∠BAD=90°,AC 是四边形ABCD 的和谐线,则∠BCD=三. 全面答一答 (本题有7个小题, 共66分) 解答应写出文字说明, 证明过程或推演步骤.17.(本题6分)(1)64)7()3(22--+- (2)2)32()31)(31(+--+18.(本题8分)(1)162=-x x (2)2x 2+5x-5=019.(本题8分)某校初三学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):经统计发现两班总数相等。
八年级数学第二学期期末试卷(三).doc
八年级数学第二学期期末试卷(三)(本卷共150分)姓名______________ 得分______________一、选择题(每小题4分,共40分)1、八年级某班55位同学中,4月份出生的频率是0.20,那么该班4月份生日的同学有()A. 10 人B. 11 人C. 12 人D. 13 人2、下列各图中,不是中心对称图形的是...................................... ()A.有两个角是直角C.有两个角是锐角5、下列运算屮,正确的是 .......... B.有两个角是钝角 D.—个角是钝角,一个•角是直角............................................ ( ) A. V36=±6 B. 3V2-V2 =3 C. (V2 + V3)2 =5 D. J (1 一血尸=迥_\6、 卜歹U命题中,真命题是 ............................................... ()A. 对角线相等的四边形是矩形B. 对角线互相垂直且相等的四边形是正方形C. 对角线互相垂直的四边形是菱形D. 对角线互相平分的四边形是平行四边形7、A. 9B. 12C. 18 8、如图,以口4位刀对角线的交点为坐标原点,以平行于力〃边的 直线为丸轴,建立平面直角坐标系.若点〃的坐标为(3, 2), 则点〃的坐标为 ......................................... ()A. (-3, 一2)B. (2, 3)C. (-2, -3)D. (3, 2) 9、关于/的一元二次方程(6/-l )x 2 +兀+夕一1 = 0的一个根为0,10、如图,矩形AxBxC^的面积为4.顺次连结各边的中点得 到四边形AEGDx 再顺次连结四边形AzBGD 各边的 中点得到四边形A 点GD ;依此类推,则四边形虫昵以 的面积是 . (A. —B. —C. J-D.— 16 32 64 128则d 的值为A. 1 或一1B. 1C. -1 二、填空题:(每小题4分,共40分)11、方程X 2=3X 的根是A. (X -4)2=9B. (x + 4)2 =9C. (X -8)2=16 D ・(X + 8)2=574、用反证法证明命题“一个三角形中不能有两个角是直角”,应先假设这个三角形屮…( )D. 16( ) D. 012、二次根式A/4X-3中字母兀的取值范围是________________13、请写出定理:“等腰三角形的两个底角相等”的逆定理:14、若一个多边形的内角和为1080° ,则这个多边形的边数是 _____________15、如图:两个相同的矩形摆成“L”字形,则乙CFA= ____________ 度.16、依次连结等腰梯形各边中点所得的四边形是_______________ .17、菱形的对角线长分别为6cm和8cm,则菱形的面积是 ____________ .18、观察分析,探求规律,然后填空:V2, 2,恵,2近,V10,…,_________ (请在横线上写出第50个数).19、一个三角形的三边都满足方程,一6/+8 = 0,则这个三角形的周长为_____________ ・20、如图,将个边长都为lcm的正方形按如图所示摆放,点川、力2…儿分别是正方形的屮心,则刀个这样的正方形重叠部分的面积和为_________ cm2. (第20题图)三、解答题(70分)21、化简或计算(2小题,每小题5分,共10分)(2) (A/5-A/3)2-(A/5+V3)222、解方程(2小题,每小题5分,共10分)(1)2(X-4)2=1823、(本题6分)已知:如图,E、F是平行四边行ABCD的对角线AC上的两点,AE二CF。
人教版2014—2015年八年级下期末考试数学试卷及答案3
C2015年度第二学期期末统考初 二 数学一、选择题(共24分,每小题3分)下列各题均有四个选项,其中只有一个是符合题意的. 1.函数y =中自变量x 的取值范围是A .2x ≠B .2x ≤C .2x >D .2x ≥ 2.五边形的内角和为A .180°B .360°C .540°D .720°3.在平面直角坐标系中,点A (1,2)关于x 轴对称的点的坐标是 A .(1,2) B .(1,-2) C .(-1,2) D .(-1,-2) 4. 下列图形中,既是中心对称图形又是轴对称图形的是A .等边三角形B .平行四边形C .等腰梯形D .矩形 5.已知2x =是一元二次方程2+80x mx -=的一个解,则m 的值是A .2B .2-C .4-D .2或4-6.某工厂由于管理水平提高,生产成本逐月下降. 原来每件产品的成本是1600元,两个月后,降至900元.如果产品成本的月平均降低率是x ,那么根据题意所列方程正确的是A .1600(1)900x -=B .900(1)1600x +=C .21600(1)900x -=D .2900(1)1600x += 7. 10名同学分成甲、乙两队进行篮球比赛,他们的身高(单位:cm )如下表所示:设两队队员身高的平均数依次为x 甲,x 乙,身高的方差依次为2S 甲,2S 乙,则下列关系中完全 正确的是A .x x =甲乙,22S S >乙甲 B .x x =甲乙,22S S<乙甲C .x x >甲乙,22S S>乙甲 D .x x <甲乙,22S S<乙甲8.如图,菱形ABCD 中,AB =2,∠B =120°,点M 是AD 的中点,点P 由点A 出发,沿A →B →C →D 作匀速运动,到达点D 停止,则△APM 的面积y 与点P 经过的路程x 之间的函数关系的图象大致是AB C D二、填空题(共18分,每小题3分)9.如图,在△ABC 中,D ,E 分别是边AB ,AC 的中点,如果BC =8,那么DE = .10. 某地未来7日最高气温走势如图所示,那么这组数据的极差为 °C .11. 如图,在菱形ABCD 中,AC ,BD 是对角线,如果∠BAC =70°,那么∠ADC 等于 . 12. 如果把代数式x 2-2x+3化成2()x h k -+的形式,其中h ,k 为常数,那么h +k 的值是 . 13. 如图,在梯形ABCD 中,AD ∥BC ,如果∠ABC =60º,BD 平分∠ABC ,且BD ⊥DC ,CD =4, 那么梯形ABCD 的周长是 . 14.如图,在平面直角坐标系中有一个边长为1的正方形OABC ,边OA ,OC 分别在x 轴、y 轴上,如果以对角线OB 为边作第二个正方形11OBB C ,再以对角线1OB 为边作第三个正方形122OB B C ,……,照此规律作下去,则点2B 的坐标为_________;点2014B 的坐标为_________. 三、解答题(共20分,每小题5分) 15.解方程:2450x x --=.16. 如图,将△ABC 置于平面直角坐标系中,点A (-1,3),B (3,1),C (3,3).(1)请作出△ABC 关于原点O 的中心对称图形△A ’B ’C ’;(点A 的对称点是点A ’, 点B 的对称点是点B ’, 点C 的对称点是点C ’)(2)判断以A ,B ’,A ’ ,B 为顶点的四边形的形状,并直接写出这个四边形的周长.ED CBA A BCDDCBA17. 已知一次函数112y x =+的图象与x 轴交于点A ,与y 轴交于点B . (1)求A ,B 两点的坐标;(2)过B 点作直线B P 与x 轴交于点P ,且使△A B P 的面积为2,求点P 的坐标.18.已知:如图,点E ,F 是□ABCD 中AB ,DC 边上的点,且AE =CF ,联结DE ,BF .求证:DE =BF .四、解答题(共24分,每小题6分)19. 已知关于x 的一元二次方程04222=-++k x x 有两个不相等的实数根. (1)求k 的取值范围;(2)若k 为正整数,且该方程的根都是整数,求k 的值.20.为了解某校学生的身高情况,随机抽取该校若干名学生测量他们的身高,已知抽取的学生中,男生、女生的人数相同....,利用所得数据绘制如下统计图表: 身高分组表 女生身高频数分布表 男生身高频数分布直方图请根据以上图表提供的信息,解答下列问题:(1)在女生身高频数分布表中:a = ,b = ,c = ; (2)补全男生身高频数分布直方图;(3)已知该校共有女生400人,男生380人,请估计身高在165≤x <170之间的学生约有多少人.ABCD EF21.为鼓励居民节约用水,某市对居民用水收费实行“阶梯水价”,按每年用水量统计,不超过180立方米的部分按每立方米5元收费;超过180立方米不超过260立方米的部分按每立方米7元收费;超过260立方米的部分按每立方米9元收费.(1)设每年用水量为x 立方米,按“阶梯水价”应缴水费y 元,请写出y (元)与x (立方米)之间的函数解析式;(2)明明家预计2015年全年用水量为200立方米,那么按“阶梯水价”收费,她家应缴水费多少元?22.如图,矩形ABCD 的对角线AC ,BD 交于点O , DE ∥AC 交BA 的延长线于点E ,点F 在BC 上,BF =BO ,且AE =6,AD =8. (1)求BF 的长;(2)求四边形OFCD 的面积.五、解答题(共14分,每小题7分)23. 如图,在平面直角坐标系xOy 中,直线1l 与x 轴交于点A (3-,0),与y 轴交于点B ,且与直线2l :43y x =的交点为C (a ,4) . (1)求直线1l 的解析式;(2)如果以点O ,D ,B ,C 为顶点的四边形是平行四边 形,直接写出点D 的坐标;(3)将直线1l 沿y 轴向下平移3个单位长度得到直线3l ,点P (m ,n )为直线2l 上一动点,过点P 作x 轴的垂线, 分别与直线1l ,3l 交于M ,N.当点P 在线段..MN 上时,请直接写出m 的取值范围.EOFDCB A24.把一个含45°角的直角三角板BEF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点B重合,联结DF,点M,N分别为DF,EF的中点,联结MA,MN.(1)如图1,点E,F分别在正方形的边CB,AB上,请判断MA,MN的数量关系和位置关系,直接写出结论;(2)如图2,点E,F分别在正方形的边CB,AB的延长线上,其他条件不变,那么你在(1)中得到的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.丰台区2013—2014学年度第二学期期末初二数学试题答案及评分参考一、选择题(共24分,每小题3分)二、填空题(共18分,每小题3分)三、解答题(共20分,每小题5分) 15.解方程:2450x x --=.解:5)(1)0x x -+=(,------- 2分 ∴50x -=或10x +=.∴125, 1.x x ==- ------- 5分 16.解:(1)如右图: ------- 3分(2)正方形; ------- 5分17.解:(1)令y =0,则x =-2;令x =0,则y =1; ∴A 点坐标为(-2,0);B 点坐标为(0,1).(2)∵△ABP 的面积为2,∴122OB AP ⨯=. ------- 3分又∵OB =1,∴AP =4. ∴点P 的坐标为(-6,0),(2,0). ------- 5分18.证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD . ------- 2分∵AE =CF ,∴AB -AE =CD -CF ,即EB =DF . ------- 3分 ∴四边形DEBF 是平行四边形. ------- 4分 ∴DE =BF . ------- 5分 其他证法相应给分.四、解答题(共24分,每小题6分)19.解:(1)∵方程04222=-++k x x 有两个不相等的实数根,∴()2=24240k D -->. ------- 2分∴52k <. ------- 3分 (2)∵k 为正整数,∴=1,2k . ------- 4分当=1k 时,原方程为 2220x x +-=,此方程无整数根,不合题意,舍去. ------- 5分 当=2k 时,原方程为 220x x +=,解得,1202x x ==-,. 符合题意. 综上所述,=k 2.------- 6分20. 解:(1)a =0.20,b =40,c =6,------- 3分 (2)如右图: ------- 4分(3)84000.15+380=60+76=13640创(人), ∴身高在165≤x <170之间的学生约有136人. ------- 6分 21.解:(1)当0180x# 时,5y x =; ------- 1分当180260x < 时,()5180+7180y x =?,即7360y x =-; -------2分ABCD EF当260x >时,()()5180+72601809260y x =创-+-,即9880y x =-.综上所述, ()()()5018073601802609880260.x x y x x x x ≤≤⎧⎪=-<≤⎨⎪->⎩;;-------4分 (2)当=200x 时,736072003601040y x =-=?=(元). ∴按“阶梯水价”收费,她家应缴水费1040元. -------6分22.解: (1)∵四边形ABCD 是矩形,∴∠BAD =90°,∴∠EAD =180°—∠BAD =90°. 在Rt △EAD 中,∵AE =6,AD =8,∴10DE . -------1分∵DE ∥AC ,AB ∥CD ,∴四边形ACDE 是平行四边形. ∴AC =DE =10. -------2分 在Rt △ABC 中,∠ABC =90°,∵OA =OC ,∴152BO AC ==. -------3分∵BF =BO ,∴BF =5. -------4分(2)过点O 作OG ⊥BC 于点G ,∵四边形ABCD 是矩形, ∴∠BCD =90°,∴CD ⊥BC .∴OG ∥CD .∵OB =OD ,∴BG =CG ,∴OG 是△BCD 的中位线. -------5分 由(1)知,四边形ACDE 是平行四边形,AE =6,∴CD =AE =6.∴132OG CD ==. ∵AD =8,∴BC =AD =8.∴1242BCD S BC CD D =鬃= , 11522BOF S BF OG D =鬃=. ∴332BCD BOF OFCD S S S D D =-=四边形 . -------6分 其他证法相应给分.五、解答题(共14分,每小题7分) 23.解:(1)∵直线2l :43y x =经过点C (a ,4), ∴443a =,∴3a =. ------- 1分 ∴点C (3,4).设直线1l 的解析式为y kx b =+,∵直线1l 与x 轴交于点A (3-,0),且经过点C (3,4), ∴30,3 4.k b k b -+=⎧⎨+=⎩,∴ 232.k b ,⎧=⎪⎨⎪=⎩ ∴直线1l 的解析式为223y x =+. ------- 2分 EOFDCBAG(2)点D 的坐标是(3,2),(3,6)或(3-,2-). ------- 5分 (3)332x -# . ------- 7分 25.解:(1)MA =MN 且MA ⊥MN . ------- 2分(2)(1)中结论仍然成立. ------- 3分 证明:联结DE ,∵四边形ABCD 是正方形,∴AB =BC =CD =DA ,∠ABC =∠BCD =∠CDA =∠DAB =90°. 在Rt △ADF 中,∵M 是DF 的中点,∴12MA DF MD MF ===.∴∠1=∠3.∵N 是EF 的中点,∴MN 是△DEF 的中位线.∴12MN DE =,MN ∥DE . ------- 4分∵△BEF 为等腰直角三角形, ∴BE =BF ,∠EBF =90°.∵点E ,F 分别在正方形的边CB ,AB 的延长线上, ∴AB BF CB BE +=+ ,即AF =CE . ∴△ADF ≌△CDE . ------- 5分 ∴DF =DE ,∠1=∠2.∴MA =MN ,∠2=∠3. ------- 6分 ∵∠2+∠4=∠ABC =90°,∠4=∠5,∴∠3+∠5=90°,∴∠6=180°—(∠3+∠5)=90°. ∴∠7=∠6=90°,MA ⊥MN . ------- 7分 其他证法相应给分.7654321DANMEBCF。
2015年新人教版八年级数学下册期末测试题及答案(精心整理5套)
一、选择题(每空 2分,共14分)1、若兀》为实数,且何+1+山- 2=气则顷的值为( )A. 1B . 一1C . 2D. -22、有一个三角形两边长为 4和5,要使三角形为直角三角形,则第三边长为()10、若口A?C 的三边 a 、b 、C 满足kT+(6T2)'+后H = 11、 请写出定理:“等腰三角形的两个底角相等” 的逆定理: .12、 如图,在口 ABCM ,对角线 AC, BD 相交于O,AC+BD=16 BC=6,贝"^ AOD 勺周长为 。
13、 如图,矩形 ABCW, AE 2, B 『3,对角线 AC 的垂直平分线分别交 AD, BC 于点E 、 F,连接CM 则CE 的长.14、如图所示:在正方形 ABCD 勺边BC 延长线上取一点 E,使CE=AC 连接AE 交C" F,7、某班第一小组 7名同学的毕业升学体育测试成绩(满分30分)依次为:25,23,25,23,27,30,25 ,这组数据的中位数和众数分别是()A. 23,25B. 23,23C. 25,23二、填空题(每空 2分,共20分)8、函数'r + 2中,自变x 的取值范,是2015春期末考试八年级数学试题19、计算:(V2+1)2000 步1)2000= A 、3 B 、而 C 、3或画D 、3或-面3、如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )7 9 n15 UA. 7, 24, 25 B .2,2,2 C . 3, 4, 5D . 4, " , 24、 如下图,在△站C 中, 如= 10,则现的长为( A. 3 B . 45、 已知点(-2 , y 。
, ( -1 C . 5D . 6,y2), ( 1, y3)都在直线 y= — 3x + b 上, 16、 已知直线y = 2x + 8与x 轴和y 轴的交点的坐标分别是 ;与两条坐标 轴围成的三角形的面积是 .17、 一组有三个不同的数:3、8、7,它们的频数分别是3、5、2,这组数据的平均数是的大小关系是( 18、若一组数据气次亦一’孔的平均数是或,方差是占,贝- 3,4 一 3,队-3 A. y 1>y 2>y 3 B . y 1<y 2<y 3 C . y 3>y 1>y 2 D . y 3<y 1<y 2 6、一次函数凡=般+由与已=天+”的图像如下图,则下列结论:①k <0;②式>0;③ 的平均数是 ,方差是 .三、计算题(19、5,20、5,21、6 共 16 分)当式<3时,>L 《山中,正确的个数是() 0,则△ ABC 的面积为23、(8分)已知:P是正方形ABCEX角线BD上一点,PE^ DC PF1BC, E、F分别为垂足, 求证:AP=EF21、先化简后求值.四、简答题22、(7分)如图,WC中,CD 1 AB于D,若曷=2皿心3,凯* 求召口的长。
2014——2015第二学期八年级数学下册期末试卷(三)
2014——2015学年度第二学期八年级数学期末试卷(三)(亲爱的同学,当你走进考场,你就是这里的主人。
只要心境平静,只要细心、认真地阅读、思考,你就会感到试题并不难。
一切都在你的掌握之中,请相信自己。
) 一、选择题(每题3分,共27分)1.下列各式中,31-x 、12+a b 、πy x +2、21--m 、a +21、22)()(y x y x +-、x 12-、115-分式的个数有( ).A. 2个B. 3个C. 4个D. 5个2.反比例函数y = 1x的图象在( )A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限 3.分别以下列四组数为一个三角形的边长:(1)6、8、10;(2)5、12、13;(3)8、15、17; (4)4、5、6,其中能构成直角三角形的有( )A.四组B.三组C.二组D.一组 4.把分式(0)xyx y x y+≠+中的x 、y 都扩大3倍,那么分式的值( ). A. 扩大3倍 B. 缩小3倍 C. 扩大9倍 D. 不变 5. 顺次连结四边形各边中点所得的四边形是( ).A. 平行四边形B. 矩形C. 菱形D. 以上都不对 6.为筹备班级的中秋联欢会,班长对全班学生爱吃哪几种水果作了民意调查.那么最终买什么水果,下面的调查数据中最值得关注的是( )A .中位数B .平均数C .众数D .加权平均数7. 如图,等腰梯形ABCD 中,AD∥BC,AE∥DC,∠B=60º,BC=3,△ABE 的周长为6,则等腰梯形的周长是( ). A .8 B.10 C.12 D. 168.解分式方程032222=+---x xx x 时,利用换元法...设y xx =-22,把原方程变形成整式方程为( )(A )0132=++y y (B )0132=+-y y (C )0132=--y y (D )0132=-+y y 9.如图所示,正方形ABCD 的面积为12,ABE △是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD PE +的和最小,则这个最小值为( )A .. C .3 D 二、填空题(每小题3分,共24分)10.当x= 时,分式22x x --值为零. 11.化简:x yx y y x+=++ . 12. 已知矩形的两对角线所夹的角为60︒,且其中一条对角线长为4㎝,则该矩形的两边长分别为 . 13.若反比例函数my x=-的图象经过点(32)--,,则m = . 14.如图7,平行四边形ABCD 中,AE 、CF 分别是∠BAD 和∠BCD 的角平分线,根据现有的图形,请添加一个条件,使四边形AECF 为菱形,则添加的一个条件可以是_______ (只需写出一个即可,图中不能再添加别的“点”和“线”)图715.小玲家的鱼塘里养了2000条鲢鱼,现准备打捞出售。
2015年八年级下册数学期末试卷(带答案)
2015年八年级下册数学期末试卷(带答案)2014/2015学年度第二学期期末质量检测八年级数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上) 1.每年4月23日是“世界读书日”,为了了解某校八年级500名学生对“世界读书日”的知晓情况,从中随机抽取了50名学生进行调查,在这次调查中,样本是 A.500名学生 B.所抽取的50名学生对“世界读书日”的知晓情况 C.50名学生 D.每一名学生对“世界读书日”的知晓情况 2.下列安全标志图中,是中心对称图形的是A B C D 3.下列计算正确的是 A. B. C. D. 4.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球是白球的概率是 A. B. C. D. 5.分式有意义,则x的取值范围是 A.x=1 B.x≠1 C.x=-1 D.x≠-1 6.若反比例函数的图象过点(2,1),则这个函数的图象一定过点 A.(2,-1) B.(1,-2) C.(-2,1) D.(-2,-1) 7.如图,平行四边形ABCD 中,下列说法一定正确的是 A.AC=BD B.AC⊥BD C.AB=CD D.AB=BC 8.如图,在矩形ABCD中,点E、F分别在边AB,BC上,且AE= AB.将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF 于点Q.对于下列结论:①EF=2BE,②PF=2PE;③FQ=4EQ;④△PBF 是等边三角形.其中正确的是 A.①② B.②③ C.①③ D.①④ 二、填空题(本大题共有10小题,每小题2分,共20分.不需写出解答过程,请将答案直接写在答题卡相应位置上) 9.若二次根式有意义,则的取值范围是▲ . 10.若菱形两条对角线的长分别为6和8,则这个菱形的面积为▲ . 11.若关于的分式方程有增根,则这个增根是▲ . 12.已知y是x的反比例函数,当x > 0时,y 随x的增大而减小.请写出一个满足以上条件的函数表达式▲ . 13.计算▲ . 14.已知,则的值等于▲ . 15.已知一只纸箱中装有除颜色外完全相同的红色、黄色、蓝色乒乓球共100个.从纸箱中任意摸出一球,摸到红色球、黄色球的概率分别是0.2 、0.3.则纸箱中蓝色球有▲ 个. 16.如图,矩形中,,,是边上的中点,是边上的一动点,,分别是、的中点,则随着点的运动,线段长的取值或取值范围为▲ .17.直线与双曲线交于、两点,则的值是▲ . 18.图1是一个八角星形纸板,图中有八个直角,八个相等的钝角,每条边都相等.如图2将纸板沿虚线进行切割,无缝隙无重叠的拼成图3所示的大正方形,其面积为8+4 ,则图3中线段AB的长为▲ .三、解答题(本大题共有9小题,共76分.请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤) 19.(本题满分5分)计算: 20.(本题满分5分)解方程: 21.(本题满分6分) 化简并求值:,其中22.(本题满分6分) 网瘾低龄化问题已引起社会各界的高度关注,有关部门在全国范围内对12�35岁的网瘾人群进行了简单的随机抽样调查,得到了如图所示的两个不完全统计图.请根据图中的信息,解决下列问题:(1)求条形统计图中a的值;(2)求扇形统计图中18�23岁部分所占的百分比;(3)据报道,目前我国12�35岁网瘾人数约为2000万,请估计其中12�23岁的人数.23.(本题满分8分)已知,如图,是的角平分线,点、分别在、上,且∥ ,∥ .求证:24.(本题满分10分) 甲、乙两台机器加工相同的零件,甲机器加工160个零件所用的时间与乙机器加工120个零件所用的时间相等.已知甲、乙两台机器每小时共加工35个零件,求甲、乙两台机器每小时各加工多少个零件?25.(本题满分12分)如图,一次函数的图象与反比例函数y= �C 3x的图像交于、两点,与x轴交于点,且、两点关于y轴对称.(1)求、两点的坐标以及一次函数的函数关系式; (2)求的面积.(3)在 x轴上是否存在点,使得的值最大.若存在,求出点的坐标,若不存在,请说明理由. 26.(本题满分12分)(1)如图1,、是正方形的边及延长线上的点,且,则与的数量关系是▲ . (2)如图2,、是等腰的边及延长线上的点,且,连接交于点,交于点,试判断与的数量关系,并说明理由;(3)如图3,已知矩形的一条边,将矩形沿过的直线折叠,使得顶点落在边上的点处。
2015年初二数学下册期末试卷(有答案)
2015年初二数学下册期末试卷(有答案)2014-2015学年度第二学期期末教学质量检测试卷八年级数学(时间:100分钟,满分100分)题号一二三总分 1~10 11~18 19 20 21 22 23 24 得分评卷人一、选择题(本大题共10题,每小题3分,共30分) 1.下列各式其中二次根式的个数有 A、1个 B、2个 C、3个 D、4个 2.下列各组数据中的三个数,可构成直角三角形的是() A、4,5,6 B、2,3,4 C、11,12,13 D、8,15,17 3.下列给出的条件中,能判定四边形ABCD是平行四边形的是( ) A、AB∥CD,AD=BC B、AB=AD,CB=CD C、AB=CD,AD=BC D、∠B=∠C,∠A=∠D 4.若为二次根式,则m的取值为() A、m≤3 B、m<3 C、m≥3 D、m>3 5. 下列计算正确的是()① ;② ;③ ;④ ; A、1个 B、2个 C、3个 D、4个 6.一次函数y=-5x+3的图象经过的象限是() A、一、二、三 B、二、三、四 C、一、二、四 D、一、三、四 7. 在Rt△ABC中,AB=3,AC=4,则BC的长为(). A、5 B、 C、5或 D、无法确定 8.数据10,10,,8的众数与平均数相同,那么这组数的中位数是() A、10 B、8 C、12 D、4 9.如果三角形的两边分别为4和6,那么连接该三角形三边中点所得三角形的周长可能是() A、6 B、8 C、10 D、12 10.函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位置正确的是() A. B. C. D. 二、填空题(本大题共8题,每小题3分,共24分) 11.计算: =_______。
12.若是正比例函数,则m=_______。
13.在□ABCD 中,若添加一个条件_______ _,则四边形ABCD是矩形。
14.已知一组数据10,8,9,a,5众数是8,求这组数据的中位数________________。
2015年八年级下学期数学期末测试卷
2015年人教版八年级下学期数学期末测试卷一、选择题(每题3分,共36分)1:要使式子有意义,则x 的取值范围是 ( )A.x>0B.x ≥-2C.x ≥2D.x ≤2 2下列各组数中,以a 、b 、c 为边的三角形不是直角三角形的是( )A 1.5,2,3a b c ===B 7,24,25a b c ===C 6,8,10a b c ===D 3,4,5a b c ===3已知平行四边形一边长为10,一条对角线长为6,则它的另一条对角线a 的取值范围为 ( )A .4<a<16B .14<a<26C .12<a<20D .以上答案都不正确 4,在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的条件是 ( )A.AC =BD ,AB =CD ,AB ∥CDB.AD //BC ,∠A =∠CC.AO =BO =CO =DO ,AC ⊥BDD.AO =CO ,BO =DO ,AB =BC5某公司10名职工的5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是 ( ) 4 A.2400元、2400元 B.2400元、2300元 C.2200元、2200元 D. 2200元2300元6. 0)y kx b k =+≠(的图象如图所示,当0y >时,x 的取值范围是( ) A.0x < B.0x > C.2x < D.2x >7.若△ABC 中AB=13,AC=15,高AD=12,则BC 的长是 ( )A. 14B. 4C. 4或14D. 以上都不对8甲、乙两个样本的容量相同,甲样本的方差为0.102,乙样本的方差是0.06,那么 ( ).A .甲的波动比乙的波动大B .乙的波动比甲的波动大C .甲、乙的波动大小一样D .甲、乙的波动大小无法确定9 ( ).A B 12 C 5.0 D 3010早晨,小刚沿着通往学校唯一的一条路(直路)上学,途中发现忘带饭盒,停下往家里打电话,妈妈接到电话后带上饭盒马上赶往学校,同时小刚返回,两人相遇后,小刚立即赶往学校,妈妈回家,15分钟妈妈到家,再经过3分钟小刚到达学校,小刚始终以100米/分的速度步行,小刚和妈妈的距离y (单位:米)与小刚打完电话后的步行时间t (单位:分)之间的函数关系如图,下列四种说法:①打电话时,小刚和妈妈的距离为1250米;②打完电话后,经过23分钟小刚到达学校;③小刚和妈妈相遇后,妈妈回家的速度为150米/分;④小刚家与学校的距离为2550米.其中正确的个数是( )A .1 个B .2 个C . 3个 D . 4个11正比例函数y=kx(k ≠0)的函数值y 随x 的增大而增大,则一次函数y=x+k 的图象大致是 ( )12若顺次连接四边形各边中点所得四边形是矩形,则原四边形一定是 ( )A 对角线互相垂直的四边形B 菱形C 矩形D 正方形二、填空题: (每题3分,共30分)13计算(48 + 416)÷27=________14 一次函数y=(2m-1)x+7的图象过A (-1,y 1), B(-2,y 2 ),且y 1﹤y 2则m 的取 值范围是________15若75-的小数部分是b,则b5+的小数部分是a,7+= ;ab516 a,b,c是△ABC的三边长,满足关系式+|a-b|=0,则△ABC的形状为.17一组数据:3, a, 4 , 6 ,7,它们的平均数是5,那么这组数据的方差是18某三角形的三条中位线分别是3 4 5则此三角形的面积是周长是.19,菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是.20已知x=2-1 ,则x2+2x-9=21如图,在矩形ABCD中,AB=8,BC=10,E是AB上一点,将矩形ABCD沿CE折叠后,点B落在AD边的F点上,则DF的长为.22钓鱼岛自古就是中国领土,中国政府已对钓鱼岛开展常态化巡逻.某天,为按计划准点到达指定海域,某巡逻艇凌晨1:00出发,匀速行驶一段时间后,因中途出现故障耽搁了一段时间,故障排除后,该艇加快速度仍匀速前进,结果恰好准点到达.如图是该艇行驶的路程(海里)与所用时间t(小时)的函数图象,则该巡逻艇原计划准点到达的时刻是.三解答题 23计算: (共12分)(1)9+7-5+2.(3分)(2)(2-1)(+1)-(1-2)2.(3分)(3)化简求值)111(1222+-+÷+-x x x x x 其中x=2+1(6分) 24(6分)国家规定“中小学生每天在校体育活动时间不低于1小时”,为此,某市就“你每天在校体育活动时间是多少”的问题随机调查了辖区内300名初中学生,根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是: A 组:t <0.5h ;B 组:0.5h ≤t ≤1h ;C 组:1h ≤t <1.5t ;D 组:t ≥1.5h 请根据上述信息解答下列问题:(1)C 组的人数是_______;(2)本次调查数据的中位数落在_______组内;(3)若该辖区约有24000名初中学生,请你估计其中达国家规定体育活动时间的人约有多少25(6分)已知,矩形ABCD 中,AB=4cm ,BC=8cm ,AC 的垂直平分线EF 分别交AD 、BC 于点E 、F ,垂足为O 。
2015-2016学年度浙教版八年级下学期数学期末测试卷3(附解答)
2015~2016学年度八年级下学期数学期末冲刺卷三参考答案一、选择题题号 1 2 3 4 5 6 7 8 9 10 答案 A D B D B D B B C D 二、填空题11﹒2﹒12﹒8﹒13﹒25%﹒1425﹒15﹒y=5x﹒16﹒0.5或5.5﹒17﹒15﹒18﹒25﹒19﹒56﹒20﹒①③④﹒三、解答题21.【解答】9612(1+2)(1-2)-(3+2)21962(1-2)-(7+43)48(-1)-743=3-7-3=-6.22.【解答】移项,得2x2-3x=5,两边都除2,得x2-32x=52,配方,得x2-32x+(34)2=52+(34)2,即(x-4)2=16,开平方,得x-3474,∴x1=52,x2=-1.23.【解答】(1)画△A1B1C1如图所示,点B1的坐标为(3,3);(2)点D的位置有三个,如图所示,相应位置点D的坐标分别为:D1(-2,2),D2(-2,-4),D3(2,4).24.【解答】(1)20,3,3;(2)由题意知:该班女生对新闻的“关注指数”为65%,所以,男生对新闻的“关注指数”为60%.设该班的男生有x人.则(136)xx-++=60%,解得:x=25.经检验x=25是原方程的解.答:该班级男生有25人;(3)小明相比较该班级男、女生收看“上合会议”新闻次数的离散程度,那么小明要关注的统计量是方差.故答案为20,3,3;方差.25.【解答】设他购买了x件这种服装,由题意,得[80-2(x-10)]x=1200,解得x1=20,x2=30,∵当x=30时,80-2×(30-10)=40<50,∴x=30不合题意,应舍去,故小华购买了20件这种服装.26.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°,在Rt△ABE和Rt△ADF中,∵AB ADB D BE DF=⎧⎪∠=∠⎨⎪=⎩,∴Rt△ABE≌Rt△ADF(SAS),∴AE=AF;(2)四边形AENF是菱形,理由如下:由(1)知:Rt△ABE≌Rt△ADF,∴∠BAE=∠DAF,∵AC是正方形ABCD的对角线,∴∠BAC=∠DAC=45°,∴∠BAC-∠BAE=∠DAC-∠DAF,即∠EAM=∠F AM,由(1)知:AE=AF,∴MF=ME,AN⊥EF,又∵MN=AM,∴四边形AENF是菱形.27.【解答】(1)在y=2x+2中,令y=0,则x=-1,∴B的坐标是(-1,0),∵A在直线y=2x+2上,∴A的坐标是(1,4).∵A(1,4)在反比例函数y=kx图象上∴k=1×4=4.∴反比例函数的解析式为:y=4x;(2)∵四边形ABCD是平行四边形,∴D的坐标是(2,2),∵当x=2时,y=42=2,∴D(2,2)在反比例函数y=4x的图象上.28.【解答】(1)证明:延长AE、BC交于点N,如图1,∵四边形ABCD是正方形,∴AD∥BC,∴∠DAE=∠ENC,∵AE平分∠DAM,∴∠DAE=∠MAE,∴∠ENC=∠MAE,∴MA=MN,在△ADE和△NCE中,DAE CNEAED NEC DE CE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADE≌△NCE(AAS),∴AD=NC,∴MA=MN=NC+MC=AD+MC.(2)AM=DE+BM成立.证明:过点A作AQ⊥AE,交CB的延长线于点Q,如图1,∵四边形ABCD是正方形,∴∠BAD=∠D=∠ABC=90°,AB=AD,AB∥DC.∵AQ⊥AE,∴∠QAE=90°,∴∠QAB=90°-∠BAE=∠DAE.在△ABQ 和△ADE 中,90QAB EAD AB AD ABQ D ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴△ABQ ≌△ADE (ASA ), ∴BQ =DE ,∠Q =∠AED , ∵AB ∥DC ,∴∠AED =∠BAE ,∵∠QAB =∠EAD =∠EAM ,∴∠AED =∠BAE =∠BAM +∠EAM =∠BAM +∠QAB =∠QAM , ∴∠Q =∠QAM , ∴AM =QM ,∴AM =QM =QB +BM =DE +BM .(3)①结论AM =AD +MC 仍然成立;②结论AM =DE +BM 不成立. ①证明:延长AE 、BC 交于点N ,如图2, ∵四边形ABCD 是矩形, ∴AD ∥BC .∴∠DAE =∠ENC , ∵AE 平分∠DAM , ∴∠DAE =∠MAE , ∴∠ENC =∠MAE , ∴MA =MN ,在△ADE 和△NCE 中,DAE CNE AED NEC DE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△NCE (AAS ), ∴AD =NC ,∴MA =MN =NC +MC =AD +MC ; ②证明:假设AM =DE +BM 成立.过点A 作AQ ⊥AE ,交CB 的延长线于点Q ,如图2所示, ∵四边形ABCD 是矩形, ∴∠BAD =∠D =∠ABC =90°,AB ∥DC , ∵AQ ⊥AE ,∴∠QAE =90°, ∴∠QAB =90°-∠BAE =∠DAE , ∴∠Q =90°-∠QAB =90°﹣∠DAE =∠AED , ∵AB ∥DC ,∴∠AED =∠BAE ,∵∠QAB =∠EAD =∠EAM ,∴∠AED =∠BAE =∠BAM +∠EAM =∠BAM +∠QAB =∠QAM , ∴∠Q =∠QAM , ∴AM =QM ,∴AM=QM=QB+BM,∵AM=DE+BM,∴QB=DE,在△ABQ和△ADE中,QAB EADABQ DBQ DE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABQ≌△ADE(AAS),∴AB=AD,这与条件“AB≠AD“矛盾,故假设不成立,∴AM=DE+BM不成立.。
2015八年级数学下册期末测试卷
.
13、某次能力测试中 ,10 人的成绩统计如下表 , 则这 10 人成绩的平均数为
.
分数
54321
人数
31222
14、直线 y 2x b 经过点 (3,5), 则关于 x 的不等式 2x b 0的解集为
.
15、如图 , 菱形 ABCD 的周长为 8 5 ,对角线 AC和 BD相交于点 O ,AC∶ BD=1∶ 2,则 AO∶ BO=
连接 BD,则 BD的长为 (
)
A、 3
B、 2 3 C 、 3 3
D、 4 3
9、正比例函数 y kx,( k 0) 的函数值 y 随 x 的增大而增大 , 则一次函数 y x k
的图象大致是 ( )
快乐的学习,快乐的考试!
趁着冷静,快速答题!
10、如图 , 函数 y 2x 和 y ax 4 的图象相交于点 A(m,3) ), 则不等式
, 现对他们进行一次测验 , 两个人在相同条
件下各射靶 10 次 , 为了比较两人的成绩 , 制作了如下统计图表 :
甲、乙射击成绩统计表:
平均数
中位数 [ 来 方差 [ 来
命中 10 环的次数
甲
7
0
乙
1
甲、乙射击成绩折线图:
(1) 请补全上述图表 ( 请直接在表中填空和补全折线图 ). (2) 如果规定成绩较稳定者胜出 , 你认为谁应胜出 ?说明你的理由 . (3) 如果希望 (2) 中的另一名选手胜出 , 根据图表中的信息 , 应该制定怎样的评判规则
)
A、 2400 元、 2400 元 B、 2400 元、 2300 元 C、 2200 元、 2200 元
工资 ( 元 ) 人数 ( 人 )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
尖子班 2015年八年级下学期期末考试数学试题(三)
(考试时间120分钟 满分120分)
一、选择题(本大题共6小题,每小题3分。
共18分)
1. 已知一元二次方程x 2﹣x=0,它的解是 ( ) A. 0 B. 1 C. 0,﹣1 D. 0,1
2. 不为0的四个实数a 、b ,c 、d 满足ab=cd ,改写成比例式错误的是 ( ) A.
=
B.
=
C.
=
D.
=
3. 如图,在正方形网格中有△ABC ,△ABC 绕O 点按逆时针旋转90°后的图案应该是 ( )
A.
B.
C.
D. 4. 如图,已知△ABC 与△ADE 中,∠C=∠AED=90°,点E 在AB 上,那么添加下列一个条件后,仍无法判定
△ABC ∽△ADE 的是 ( ) A.
=
B. ∠B=∠D
C. AD ∥BC
D. ∠BAC=∠D
5. 如图,将□ABCD 绕点C 顺时针旋转一定角度后,得到□EFCG ,若BC 与CG 在同一直线上,点D 在EG 上,则旋转的度数为 ( ) A. 45° B. 50° C. 55° D. 60°
6. 如图,△ABC 中,∠=70°,∠B=30°,将△ABC 绕点A 顺时针旋转后,得到△AB C ⅱ
,且C ¢在边BC 上,则∠B C B ⅱ
的度数为( ) A. 30° B. 40° C. 50° D. 60°
第4题图 第5题图 第6题图 二、填空题(本大题共8小题,每小题3分。
共24分)
7. 矩形、菱形、正方形都是特殊的四边形,它们具有很多共性,如:______________. (填一条即可)
8. 如图,在边长为2的正方形ABCD 中,顺次连接各边中点得正方形A 1B 1C 1D 1,又依次连接正方形A 1B 1C 1D 1各边中点得正方形A 2B 2C 2D 2,以此规律已知作下去,那么正方形A 8B 8C 8D 8的周长是___________. 9. 如图,已知在△ABC 中,∠A=90°,AB=AC ,CD 平分∠ACB ,DE ⊥BC 于E ,若BC=15cm ,则△DEB 的周长为_________cm.
10. 如图,延长正方形ABCD 的边BC 至E ,使CE=AC ,连接AE 交CD 于F ,则∠AFC=__________度. 11. 分式方程
的解是____________
12. 如图,已知AD 是△ABC 的角平分线,点E 、F 分别是边AC 、AB 的中点,连接DE 、DF ,要使四边形AEDF 称为菱形,还需添加一个条件,这个条件可以是_________.
13. 不等式组20
1x x ì-?ïí-?ïî
的解集为______________.
14. 如图,直线0.756y x =-+与x ,y 轴分别交于A 、B ,C 是AB 的中点,点P 从A 出发以每秒1个单位的速度沿
射线AO 方向运动,将点C 绕P 顺时针旋转90°得到点D ,作DE ⊥x 轴,垂足为E ,连接PC ,PD ,PB. 设 点P 的运动时间为t 秒(08t <<),当以P ,D ,E 为顶点的三角形与△BOP 相似时,写出所有t 的值
_______________.
第8题图 第9题图 第10题图 第12题图 第14题图 三、解答题(本大题共10小题,共78分) 15. (6分)解不等式组并把解集在数轴上表示出来:
16. (6分)如图,已知四边形ABCD 和DEFG 都是正方形,连接AE 、CG . 请猜想AE 与CG 有什么数量关系?并证明你的猜想.
17. (6分)请只用无刻度的直尺作图:在图中的正方形网格边长均为1,在图1中作一个面积为12的菱形;在图2中作一个面积为13的正方形.
18. (6分)小明和小丽两人玩一个游戏:三张大小,质地都相同相的卡片,分別标有数字1,2,3,将标数字的一面朝下放着,小明从中任意抽取一张,记下数字后放回并洗匀,然后小丽又从中任意抽取一张,记下数字,如果两人抽得的卡片上数字这和为奇数,则小明获胜;如果和为偶数则小丽胜. 你认为这个游戏对双方公平吗?谪画树状图或表格分析.
19. (8分)有四根小木棒长度分别是1、3、5、7,若从中任意抽出三根木棒组成三角形, (1)下列说法正确的序号是____________ ①第一根抽出木棒长度是3的可能性是 ②抽出的三根木棒能组成三角形是必然事件 ③抽出的三根木棒能组成三角形是随机事件 ④抽出的三要木棒能组成三角形是不可能事件 (2)求抽出的三根木棒能组成三角形的概率.
20. (8分)某书店对一批数学活动书进行优惠销售,每本书定价15元,书店规定:当购买的数量小于30本时,每本书打7折;当购买数量不小于30本时,每本书打6折.
(1)当购买量在30本以内时,超过多少本时比购买30本花钱还多?
(2)某学校分两次购买了80本此书,共用去750元,问该校这两次分别购买了多少本书?
21. (8分)如图,平行四边形ABCD与平行四边形ABEF有公共边AB,且∠D=∠F,BC=BE,
连接AC、AE.
(1)试说明AC=AE;
(2)连接CE、DF,猜想四边形CDFE的形状,并说明理由.
22. (8分)如图,将△ABC绕点C旋转180°得到△DEC,过点B作AD的平行线,与ED的延长线交于点F.
(1)求证:D是EF的中点;
(2)连接BD,当△ABC满足什么条件时,BD⊥EF?并说明其理由.
23. (10分)一块矩形塑料板ABCD,AD=10,AB=4. 将一块足够大的直角三角板PHF的直角顶点P置于AD边上(不于A、D 重合,任意移动P点和三角板PHF的位置,如图1.
(1)△PEF是否存在这样的位置,使两边直角边分别通过B、C两点?如图2若存在,请求出AP的长度,若不存在,请说理由.
(2)PH始终通过B点时,PF交BC于E点,交DC的延长线于Q点,△PHF是否存在这样的位置,使得CE=2?若能请求出这时AP的长度;若不能,请说明理由. 24. (12分)在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动. (1)如图①,当点E自D向C,点F自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的位置关系,并说明理由;
(2)如图②,当E,F分别移动到边DC,CB的延长线上时,连接AE和DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不须证明)
(3)如图③,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?请说明理由;
(4)如图④,当E,F分别在边DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图. 若AD=2,试求出线段CP的最小值.。