移相全桥zvs pwm变换器比较

合集下载

第十章-软开关技术2——移相控制ZVS-PWM-DC-DC全桥变换器

第十章-软开关技术2——移相控制ZVS-PWM-DC-DC全桥变换器

loss
TS / 2
而 t25
Lr [ I 2 I Lf (t5 ) / K ] Vin
那么有:Dloss
2Lr [ I 2 I Lf (t5 ) / K ] Vin TS
Dloss 越大;②负载越大, Dloss越大;③ Vin越低,Dloss 越大。 可知:① Lr 越大, Dloss 的产生使DS 减小,为了得到所要求的输出电压,就必须减小原副边的 匝比。而匝比的减小,带来两个问题: ①原边电流增加,开关管电流峰值也要增加,通态损耗加大; ②副边整流桥的耐压值要增加。
6.
Vin i p (t ) (t t4 ) Lr
到 t5 时刻,原边电流达到折算到原 边的负载电流 I Lf (t5 ) / K值,该开 关模态结束。 持续时间为:
t45
Lr I Lf (t5 ) / K Vin
7. 开关模态6 在这段时间里,电源给负载供电 原边电流为:
10.3. 3 两个桥臂实现ZVS的差异
1.实现ZVS的条件 要实现开关管的零电压开通,必须有足够的能量: ①抽走将要开通的开关管的结电容(或外部附加电容)上的电荷; ②给同一桥臂关断的开关管的结电容(或外部附加电容)充电; 考虑到变压器的原边绕组电容,还要有能量用来: ③抽走变压器原边绕组寄生电容CRT 上的电荷。

ip (t ) I p (t0 ) I1
vC1 (t )
I1 (t t0 ) 2Clead I1 vC 3 (t ) Vin (t t0 ) 2Clead

C3 电压降到零,D3 自 t1时刻,
然导通。
3.开关模态2
td (lead ) t01
D3导通后,将Q3 的电压箝在零位 此时开通Q3 ,则Q3是零电压开通。 Q3和Q1驱动信号之间的死区时间 ,即

两种新型移相全桥ZVS-PWM变换器拓扑的比较

两种新型移相全桥ZVS-PWM变换器拓扑的比较

两种新型移相全桥ZVS-PWM变换器拓扑的比较移相全桥ZVS-PWM变换器是一种高效率、高可靠性的DC-DC变换器,其拓扑结构复杂,但是具有很好的电路性能和电气参数。

在实际应用中,有多种不同的移相全桥ZVS-PWM变换器拓扑可供选择。

本篇文章将比较两种新型移相全桥ZVS-PWM变换器拓扑,分别是基于全桥拓扑的变换器和基于三电平全桥拓扑的变换器。

1. 基于全桥拓扑的变换器基于全桥拓扑的移相全桥ZVS-PWM变换器是最常用的拓扑结构。

该拓扑结构具有轻松实现基本ZVS动作的优点,无需使用任何复杂的电路,而且具有较好的成本和设计灵活性。

在实际应用中,基于全桥拓扑的变换器通常需要使用一些辅助电路,以解决谐振现象。

优点:①电路操作简单,易于实现。

②交流侧的损耗较小。

③实现高功率密度。

缺点:①输出电压受交流电源电压的波动影响较大。

②峰值应力程度较高。

2. 基于三电平全桥拓扑的变换器基于三电平全桥拓扑的移相全桥ZVS-PWM变换器是近年来发展较快的一种拓扑结构。

该拓扑结构下,采用更多的功率器件以及更加复杂的电路拓扑,在谐振问题的处理方面具有重要的优势。

目前该拓扑结构在风能、太阳能等领域得到了广泛应用。

优点:①基本消耗无谐振的电路,减小了电路的开关损耗。

②输出电压呈三级结构,可轻松实现多种电压调节方式。

缺点:①开关器件数目增加,造成电路设计和控制难度大。

②在高频控制时可能造成比较强的谐振噪声。

综上所述,两种新型移相全桥ZVS-PWM变换器拓扑各有优缺点,在选择时应根据实际应用需求进行评估。

虽然基于三电平全桥拓扑的移相全桥ZVS-PWM变换器在谐振问题上更加优越,但其电路复杂度和控制难度也更大,适用于高要求的应用场景。

而基于全桥拓扑的移相全桥ZVS-PWM变换器则相对简单易用,更适用于低功率应用。

数据分析是一种通过数学和统计学方法对数据进行分析和解释,以准确判断数据的意义和价值的方法。

在实际工作中,数据分析在市场调研、销售预测、风险管理、财务报表分析等领域都发挥着重要作用。

移相全桥ZVZCSDCDC变换器综述.

移相全桥ZVZCSDCDC变换器综述.

移相全桥ZVZCSDC/DC变换器综述摘要:概述了9种移相全桥ZVZCSDC/DC变换器,简要介绍了各种电路拓扑的工作原理,并对比了优缺点,以供大家参考。

关键词:移相控制;零电压零电流开关;全桥变换器 1概述所谓ZVZCS,就是超前桥臂实现零电压导通和关断,滞后桥臂实现零电流导通和关断。

ZVZCS方案可以解决ZVS方案的故有缺陷,即可以大幅度降低电路内部的循环能量,提高变换效率,减小副边占空比丢失,提高最大占空比,而且其最大软开关范围不受输入电压和负载的影响。

图1 滞后桥臂零电流开关是通过在原边电压过零期间使原边电流复位来实现的。

即当原边电流减小到零后,不允许其继续反方向增长。

原边电流复位目前主要有以下几种方法: 1)利用超前桥臂开关管的反向雪崩击穿,使储存在变压器漏感中的能量完全消耗在超前桥臂的IGBT中,为滞后桥臂提供零电流开关的条件;图2 2)在变压器原边使用隔直电容和饱和电感,在原边电压过零期间,将隔直电容上的电压作为反向阻断电压源,使原边电流复位,为滞后桥臂开关管提供零电流开关的条件; 3)在变压器副边整流器输出端并联电容,在原边电压过零期间,将副边电容上的电压反射到原边作为反向阻断电压源,使原边电流迅速复位,为滞后桥臂开关管提供零电流开关的条件。

图3 2 电路拓扑根据原边电流复位方式的不同,下面列举几种目前常见的移相全桥ZVZCSPWMDC/DC拓扑结构,以供大家参考。

图4 1)NhoE.C. 电路如图1所示[1]。

该电路是最基本的移相全桥ZVZCS变换器,它的驱动信号采用有限双极性控制,从而实现超前桥臂的零电压和滞后桥臂的零电流开关。

这种拓扑结构的缺陷是L1k要折衷选择,L1k太小,在负载电流很小时,超前桥臂不能实现零电压开关;L1k太大,又限制了iL1k的变化速度,从而限制了变换器开关频率的提高。

变换器给负载供电方式是电流源形式,电感L1k电流交流变化,输入电流脉动很大,要求滤波电容很大。

移相控制的ZVSPWMDC_DC全桥变换器的占空比丢失研究

移相控制的ZVSPWMDC_DC全桥变换器的占空比丢失研究

0 引言
近年来, 随着微电子技术和计算机技术在通信设备中的广泛应 用,各类先进电子设备对电源装置的要求也越来越高。 软开关电源技 术是开关电源的前沿技术之一,它具有主功率管开关应力小、损耗低、 效率高、电源突变速度慢、电磁辐射小等优点。 所以国内外都在开发和 应用这一先进技术。 DC/DC 变换器是电源系统中为电子设备提供直流 动 力 的 主 要 装 置 ,在 DC/DC 变 换 器 中 ,以 全 桥 移 相 控 制 软 开 关 PWM 变换器的研究十分活跃, 它是直流电源实现高频化的理想拓扑之一, 特别是在中、大功率的应用场合。 所 以 具 有 谐 振 软 开 关 和 PWM 控 制 特 点 的 ,相 移 全 桥 零 电 压 PWM(FB-ZVS-PWM) 变 换 器 得 到 了 广 泛 应 用,由于功率开关器件实现了零电压开关,从而减小了开关损耗,提高 了电源系统的稳定性。 但是,FB-ZVS-PWM 变换器仍然存在占空比丢 失严重、环路导通损耗大等缺点。 本文就是在此基础上提出的。
小,Dloss 越大。 显然 Dloss 的产生使次级占空 比 减 小 了 ,为 了 在 负 载 上 得
到所要求的输出电压,就必须采取一些相应的措施。
3 适用的占空比改善措施
3.1 为了减小占空比的丢失,提高次级有效占空比,可以采 用 串 联 饱 和电感替代谐振电感 Lr。 3.2 在移 相 控 制 的 ZVS PWM DC/DC 全 桥 变 换 器 的 滞 后 桥 臂 中 加 入 辅助网络。 具体电路结构和其工作原理可参阅相关资料[1-4]。 3.3 采用 FB ZVZCS PWM 逆变电路,即超前桥臂实现 ZVS,滞后桥臂
}); Button Quit=new Button("退出"); f.add(Quit); f.setVisible(true); f.pack(); //将 监 听 器 对 象 注 册 到 需 要 监 听 和 处 理 的 组 件 (事 件 源 )上 Quit.addActionListener(new ActionListener() //匿名内部类 { public void actionPerformed(ActionEvent e)

一种新颖的ZVZCSPWM全桥变换器

一种新颖的ZVZCSPWM全桥变换器

一种新颖的ZVZCSPWM全桥变换器张恩利侯振义余侃民(空军工程大学电讯工程学院,陕西西安 710077)摘要:提出了一种新颖的零电流零电压开关(ZCZVS)PWM全桥变换器,通过增加一个辅助电路的方法实现了变换器的软开关。

与以往的ZCZVSPWM全桥变换器相比,所提出的新颖变换器具有电路结构简单、整机效率高以及电流环自适应调整等优点,这使得它特别适合高压大功率的应用场合。

详细分析了该变换器的工作原理及电路设计,并在一台功率为4kW,工作频率为80kHz的通信用开关电源装置上得到了实验验证。

关键词:全桥变换器;零电压开关;零电流开关;软开关;脉宽调制0 引言移相全桥零电压PWM软开关(PS-FB-ZVS)变换器与移相全桥零电压零电流PWM软开关(PS-FB-ZVZCS)变换器是目前国内外电源界研究的热门课题,并已得到了广泛的应用。

在中小功率的场合,功率器件一般选用MOSFET,这是因为MOSFET的开关速度快,可以提高开关频率,采用ZVS方式,就可将开关损耗减小到较为理想的程度[1]。

而在高压大功率的场合,IGBT更为合适。

但IGBT的最大的缺点是具有较大的开关损耗,尤其是由于IGBT的“拖尾电流”特性,使得它即使工作在零电压情况下,关断损耗仍然较大,要想在ZVS方式下减少关断损耗,则必须加大IGBT的并联电容。

然而由于轻载时ZVS很难实现(滞后臂的ZVS 更难实现),因此ZVS方案对于IGBT来说并不理想。

若采用常规的移相全桥软开关变换器,其优点是显而易见的,即功率开关器件电压、电流额定值小,功率变压器利用率高等,但是它们却也存在着各种各样的缺点:有的难以适用于大功率场合;有的要求很小的漏感;有的电路较为复杂且成本很高[2][3][4][5][6]。

本文提出了一种新颖的ZVZCS PWM全桥变换器,它能有效地改进以往所提出的ZVZCS PWM全桥变换器的不足。

这种变换器是在常规零电压PWM全桥变换器的次级增加了一个辅助电路,此辅助电路的优点在于没有有损元件和有源开关,且结构简单。

最新-改进型全桥移相ZVS-PWMDCDC变换器 精品

最新-改进型全桥移相ZVS-PWMDCDC变换器 精品

改进型全桥移相ZVS-PWMDCDC变换器
摘要介绍了一种能在全负载范围内实现零电压开关的改进型全桥移相-变换器。

在分析其开关过程的基础上,得出了实现全负载范围内零电压开关的条件,并将其应用于一台486的变换器。

关键词全桥变换器;零电压开关;死区时间
引言
移相控制的全桥变换器是在中大功率变换电路中最常用的电路拓扑形式之一。

移相控制方式利用开关管的结电容和高频变压器的漏电感作为谐振元件,使开关管达到零电压开通和关断。

从而有效地降低了电路的开关损耗和开关噪声,减少了器件开关过程中产生的电磁干扰,为变换器提高开关频率、提高效率、降低尺寸及重量提供了良好的条件。

同时保持了电路拓扑结构简洁、控制方式简单、开关频率恒定、元器件的电压和电流应力小等一系列优点。

移相控制的全桥变换器存在一个主要缺点是,滞后臂开关管在轻载下难以实现零电压开关,使得它不适合负载范围变化大的场合[1]。

电路不能实现零电压开关时,将产生以下几个后果
1由于开关损耗的存在,需要增加散热器的体积;
2开关管开通时存在很大的,将会造成大的;
3由于副边二极管的反向恢复,高频变压器副边漏感上的电流瞬变作用,在二极管上产生电压过冲和振荡,所以,在实际应用中须在副边二极管上加入-吸收。

针对上述问题,常见的解决方法是在变压器原边串接一个饱和电感,扩大变换器的零电压开关范围[2][3]。

但是,采用这一方法后,电路仍不能达到全工作范围的零电压开关。

而且,由于饱和电感在实际应用中不可能具有理想的饱和特性,这将会导致1增加电路环流,从而增加变换器的导通损耗;。

移相全桥ZVS及ZVZCS拓扑结构分析

移相全桥ZVS及ZVZCS拓扑结构分析

移相全桥ZVS及ZVZCS拓扑结构分析鲁雄飞河海大学电气工程学院,南京(210098)E-mail:luxiongfei@摘要:总结了基于零电压及零电压零电流全桥PWM技术的各种典型拓扑,比较分析了其拓扑结构及各自的特点。

在不同的应用场合,我们应该根据其特点选择合适的拓扑结构。

关键词:变换器;PWM;零电压开关;零电压零电流开关;中图分类号:TTP1.引言移相控制方式是控制型软开关技术在全开关PWM拓扑的两态开关模式(通态和断态)通过控制方法变为三态开关工作模式(通态断态和续流态),在续流态中实现开关管的软开关。

全桥移相ZVS-PWM DC/DC变换拓扑自出现以来,得到了广泛应用,其有如下优点:○1充分利用电路中的寄生参数(开关管的输出寄生电容和高频变压器的漏感,实现有源开关器件的零电压开关)○2功率拓扑结构简单○3功率半导体器体的低电压应力和电流应力○4频率固定○5移相控制电路简单全桥移相电路具有以上优点,但也依然存在如下缺点:○1占空比丢失○2变压器原边串联电感和副边整流二极管寄生电容振荡○3拓扑只能在轻载到满载的负载范围内,实现零电压软开关目前该拓扑的研究及成果主要集中在以下方面○1减小副边二极管上的电压振荡○2减少拓扑占空比丢失○3增大拓扑零电压软开关的负载适应范围[1]○4循环电流的减小和系统通态损耗的降低[2]2.典型的zvs电路拓扑2.1原边串联电感电路为了实现滞后桥臂的零电压,一般在原边串联电感(如图1所示)。

增大变压器漏感,以增加用来对开关输出电容放电能量。

该电路具有较大的循环能量,变换器的导通损耗较大,且增大了占空比的丢失。

图 1 变压器原边串联电感拓扑在实现滞后桥臂的同时,为了进一步扩大负载范围,可在原边上再串联上一饱和电感,该电路可减小占空比的损失和减小变压器副边的寄生振荡,但是饱和电感工作在正、负饱和值之间,而且频率很高,使得饱和电感的损耗较大,在低的输入电压情况下会引起较为严重的副边占空比丢失。

移相全桥ZVS PWM DC/DC变换器的仿真分析

移相全桥ZVS PWM DC/DC变换器的仿真分析

移相全桥ZVSPWMDC/DC变换器的仿真分析作者:龙泽彪施博文来源:《消费导刊·理论版》2008年第17期[摘要]本文首先在研究硬开关的缺陷上,提出软开关技术。

对移相控制ZVS PWM DC/DC 变换器的工作原理进行分析研究的基础上,使用PSpice9.2计算机仿真软件对变换器的主电路进行仿真和分析,验证该新型DC/DC变换器的拓扑结构设计的正确性和可行性。

[关键词]软开关 DC/DC ZVS 移相控制 PSpice9.2作者简介:龙泽彪(1985-),男,湖北仙桃人,贵州大学电气工程学院在读硕士研究生,研究方向:异步电机控制;施博文(1985-),男,贵州大学电气工程学院在读硕士研究生,研究方向:电力电子与电气传动。

一、引言随着新型电力电子器件以及适用于更高频率的电路拓扑和新型控制技术的不断出现,开关电源朝着小型化、高效化、低成本、低电磁干扰、高可靠性、模块化、智能化的方向发展。

硬开关DC/DC变换器在电流连续工作模式下会遇到严重的问题,这一般都与有源开关器件的体内寄生二极管有关,其关断过程中的反向恢复电流产生的电流尖峰对开关器件有极大的危害。

本文在对DC/DC变换器的基本工作原理进行分析、研究的基础上,对已经出现的软开关DC/DC变换器拓扑结构进行分析研究,提出的一种新型的DC/DC变换器的拓扑结构,并进行深入的研究。

二、移相控制ZVS PWM DC/DC全桥变换器的工作原理移相控制ZVS PWM DC/DC全桥变换器(Phase-Shifted zero-voltage-switching PWMDC/DC Full-Bridge Converter,PS ZVS PWM DC/DC FB Converter),是利用变压器的漏感或原边串联的电感和功率管的寄生电容或外接电容来实现开关管的零电压开关,其主电路拓扑结构及主要波形如图1所示。

其中,D1~D4分别是S1~S4的内部寄生二极管,C1~C4分别是S1~S4的寄生电容或外接电容,Lr是谐振电感,它包含了变压器的漏感。

移相ZVS-PWM全桥变换器综述

移相ZVS-PWM全桥变换器综述

移相ZVS-PWM全桥变换器概述摘要:移相ZVS-PWM DC/DC全桥变换器巧妙利用变压器漏感和开关管的结电容来完成谐振过程,使开关管实现零电压开关(ZVS),从而减少了开关损耗。

重点简述了该类变换器的基本原理,介绍了几种常见的拓扑,并简要地分析了它们的优缺点,最后指出了其发展方向。

关键词:移相全桥变换器零电压开关(ZVS)Overview of Phase Shift ZVS-PWM Full Bridge ConverterAbstract:Phase shift PWM DC/DC full bridge converter completing resonance procedure through leakage inductance of the transformer and junction capacitor of switch. It can make the switch achieve ZVS, decreasing the switching loss and interference .This paper describes the basi c principle of the converter, introduce several common topology, some common topologies as well as their advantages and drawbacks are discussed and analyzed. Finally it points out the development direction of the Converter.Key words:phrase shift,full bridge converter,ZVS引言全桥变换器广泛应用于中大功率的直流变换场合,近些年来,其软开关技术吸引了国内外学者的广泛关注,出现了很多控制策略和电路拓扑,其中移相控制是目前研究较多的控制方式,而以移相全桥零电压开关变换器(FB-ZVS-PWM)应用更为广泛。

全桥-半桥-推挽-正激-反激的优缺点比较及应用场合分析

全桥-半桥-推挽-正激-反激的优缺点比较及应用场合分析

全桥,半桥,推挽,正激,反激的优缺点比较及应用场合分析优缺点比较一、全桥式开关电源的优点和缺点1、全桥式变压器开关电源输出功率很大,工作效率很高全桥式变压器开关电源与推挽式变压器开关电源一样,由于两组开关器件轮流交替工作,相当于两个开关电源同时输出功率,其输出功率约等于单一开关电源输出功率的两倍。

因此,全桥式变压器开关电源输出功率很大,工作效率很高,经桥式整流或全波整流后,其输出电压的电压脉动系数Sv和电流脉动系数Si都很小,仅需要一个很小值的储能滤波电容或储能滤波电感,就可以得到一个电压纹波和电流纹波都很小的输出电压。

2、全桥式开关电源的优点是开关管的耐压值特别的低全桥式变压器开关电源最大的优点是,对4个开关器件的耐压要求比推挽式变压器开关电源对两个开关器件的耐压要求可以降低一半。

因为,全桥式变压器开关电源4个开关器件分成两组,工作时2个开关器件互相串联,关断时,每个开关器件所承受的电压,只有单个开关器件所承受电压的一半。

其最高耐压等于工作电压与反电动势之和的一半,这个结果正好是推挽式变压器开关电源两个开关器件耐压的一半。

3、全桥式变压器开关电源主要用于输入电压比较高的场合在输入电压很高的情况下,采用全桥式变压器开关电源,其输出功率要比推挽式变压器开关电源的输出功率大很多。

因此,一般电网电压为交流220伏供电的大功率开关电源大部分都是使用全桥式变压器开关电源。

而在输入电压较低的情况下,推挽式变压器开关电源的输出功率又要比全桥式变压器开关电源的输出功率大很多。

4、全桥式变压器开关电源的电源利用率比推挽式变压器开关电源的电源利用率低一些因为2组开关器件互相串联,两个开关器件接通时总的电压降要比单个开关器件接通时的电压降大一倍;但比半桥式变压器开关电源的电源利用率高很多。

因此,全桥式变压器开关电源也可以用于工作电源电压比较低的场合。

5、与半桥式开关电源一样,全桥式变压器开关电源的变压器初级线圈只需要一个绕组,这也是它的优点,这对小功率开关电源变压器的线圈绕制多少带来一些方便。

电流模式控制移相全桥零电压软开关(ZVS)DC-DC功率变换器

电流模式控制移相全桥零电压软开关(ZVS)DC-DC功率变换器

引言随着计算机与通信技术的飞速发展,作为配套设备的开关电源也获得了长足进步,并随着新器件、新理论、新电磁材料和变换技术以及各种辅助设计分析软件的不断问世,开关电源的性能不断提高。

本文介绍一种新型的高频DC/DC开关变换器,并成功地应用在军用充电机上。

DC/DC变换器主电路改进型移相全桥ZVS DC/DC变换器主电路结构和各点波形对照如图1、图2所示。

由于电路工作状态在一个周期内可以分为两个完全一样的过程,所以以下仅仅分析半个周期的情况,而这半个周期又可分为以下三种开关模态。

● 开关模态1,t0<t<t1,其中t1=DT s/2此时Q1和Q4同时导通,变压器副边电感L1和整流管D S2导通,原边能量向负载端传递。

此模态的等效电路见图3。

其中,a为变压器变比,V in是直流母线电压,I1和I2分别是电感L1和L2电流(L1=L2=LS),此时有等式(1)成立。

(1)(2)I p(t)=aI1(t)(3)当Q4关断时该模态过程结束。

● 开关模态2,t1<t<t2,其中t2≤T s/2在t1时刻关断Q4,此时副边电感L1中储存的能量给Q4电容(或并联电容)充电,同时将Q3两端电容电荷放掉。

为了实现软开关,Q4关断和Q3开通之间至少要存在一死区时间Δt1,使得在Q3开通前D3首先导通,且有下式成立。

I p1Δt1=2C eff V in(4)其中C eff是开关管漏源两端等效电容,I P1为t1时刻变压器原边流过电流。

当D3导通后,变压器副边两个二极管D S1和D S2同时导通,电路工作在续流状态。

此时等效电路如图4所示。

此时有如下电路方程成立。

(5)(6)(7)(8)r t=r mosfet+r xfmr (9)其中D为脉冲占空比,f S为电路工作频率,L’ik为主边变压器漏感(或与外接电感的串联值),rt是变压器原边等效电阻,τ是原边等效电流衰减时间常数,Vfp是反并联二极管导通压降。

ZVS移相全桥变换器设计

ZVS移相全桥变换器设计

ZVS移相全桥变换器设计ZVS(Zero Voltage Switching,零电压开关)全桥变换器是一个常见的DC-DC转换器拓扑结构,可以实现高效率和高电源密度。

在设计ZVS全桥变换器时,需要考虑一系列的参数和约束条件。

在本文中,将详细介绍如何设计ZVS全桥变换器,并讨论其性能和优缺点。

首先,我们需要确定输入和输出电压的范围。

这些值将决定变换器的设定参数,如变压器的变比和磁性元件的尺寸。

同时,我们还需要确定输出功率的要求,以便选取合适的开关器件和电感电容元件。

接下来,我们需要选择合适的开关器件。

对于ZVS全桥变换器,常用的开关器件有MOSFET和IGBT。

MOSFET具有低导通压降和高开关速度的特点,适合在高频率下工作。

而IGBT则具有低导通压降和高断开速度的特点,适合在高压应用下工作。

根据具体的应用需求,可以选择适合的开关器件。

在变换器的设计过程中,需要考虑开关频率和谐振电容电感网络的设计。

开关频率决定了变压器的尺寸和磁性元件的损耗。

一般来说,较高的开关频率可以实现更小的尺寸和更高的效率,但也会增加开关器件的损耗。

谐振电容电感网络的设计是为了实现ZVS开关操作,减少开关过程中的损耗和开关噪声。

可以通过选择合适的电感和电容元件来实现ZVS操作,减少开关器件的压降和功率损耗。

一般来说,ZVS全桥变换器需要设计控制电路来实现准确的输出电压调节和保护功能。

常用的控制技术包括PWM(脉宽调制)控制和反馈控制。

通过PWM控制器,可以实现对开关器件的控制,调节输出电压。

反馈控制则通过比较输出电压与参考电压的差异,并根据差异值来调节开关器件的控制信号。

通过合理的控制策略,可以实现稳定的输出电压和良好的动态响应。

除了上述设计考虑因素,还需要关注保护机制和EMI(电磁干扰)滤波设计。

保护机制是为了确保变换器的安全运行,防止过电流、过温度和过压等故障事件。

常见的保护技术包括电流限制、温度监测和电压保护等。

EMI滤波设计则是为了减少变换器对周围环境的电磁干扰。

9种移相全桥ZVZCSDCDC变换器

9种移相全桥ZVZCSDCDC变换器

摘要:概述了9种移相全桥ZVZCSDC/DC变换器,简要介绍了各种电路拓扑的工作原理,并对比了优缺点,以供大家参考.关键词:移相控制;零电压零电流开关;全桥变换器1概述所谓ZVZCS,就是超前桥臂实现零电压导通和关断,滞后桥臂实现零电流导通和关断.ZVZCS方案可以解决ZVS方案的故有缺陷,即可以大幅度降低电路内部的循环能量,提高变换效率,减小副边占空比丢失,提高最大占空比,而且其最大软开关范围不受输入电压和负载的影响.滞后桥臂零电流开关是通过在原边电压过零期间使原边电流复位来实现的.即当原边电流减小到零后,不允许其继续反方向增长.原边电流复位目前主要有以下几种方法:1)利用超前桥臂开关管的反向雪崩击穿,使储存在变压器漏感中的能量完全消耗在超前桥臂的IGBT中,为滞后桥臂提供零电流开关的条件;2)在变压器原边使用隔直电容和饱和电感,在原边电压过零期间,将隔直电容上的电压作为反向阻断电压源,使原边电流复位,为滞后桥臂开关管提供零电流开关的条件;3)在变压器副边整流器输出端并联电容,在原边电压过零期间,将副边电容上的电压反射到原边作为反向阻断电压源,使原边电流迅速复位,为滞后桥臂开关管提供零电流开关的条件.2电路拓扑根据原边电流复位方式的不同,下面列举几种目前常见的移相全桥ZVZCSPWMDC/DC拓扑结构,以供大家参考.1)NhoE.C.电路如图1所示[1].该电路是最基本的移相全桥ZVZCS变换器,它的驱动信号采用有限双极性控制,从而实现超前桥臂的零电压和滞后桥臂的零电流开关.这种拓扑结构的缺陷是L1k要折衷选择,L1k太小,在负载电流很小时,超前桥臂不能实现零电压开关;L1k太大,又限制了iL1k的变化速度,从而限制了变换器开关频率的提高.变换器给负载供电方式是电流源形式,电感L1k电流交流变化,输入电流脉动很大,要求滤波电容很大.该电路可以工作在电流临界连续状态,但必须采用频率控制,不利于滤波器的优化设计.2)ChenK.电路如图2所示[2][3].该电路超前桥臂并联有串联的电感和电容.电感L1和L2很小,不影响开关管的ZVS,但有两个好处:一是限制振荡的电流峰值;二是在负载很小,开关管不能实现ZVS时,限制开关管的开通电流尖峰.该拓扑结构利用IGBT的反向击穿特性,解决了滞后桥臂IGBT关断时的电流拖尾问题,可以提高IGBT的开关频率,而且在负载很小时也能实现零电流开关.但是,这个电路也付出了代价,漏感L1k中的能量反向时漏感L1k中的能量全部消耗在反向击穿的IGBT中.3)原边加隔直电容和饱和电感的FB-ZVZCS-PWM变换器如图3[4]所示.它在基本的移相全桥变换器的基础上增加了一个饱和电感Ls,并在主电路上增加了一个阻挡电容Cb,阻挡电容Cb与饱和电感Ls适当配合,能使滞后桥臂上的主开关管实现零电流开关.在原边电压过零阶段,饱和电感工作在线性状态,阻止原边电流ip反向流动,在原边电压为Vin或-Vin时,它工作在饱和状态.尽管它有许多明显的优势,但也有不足之处,如最大占空比范围仍受到很多限制,特别是饱和电感上有很大的损耗,饱和电感磁芯的散热问题是一个必须解决的问题.4)副边采用有源箝位开关的FB-ZVZCS-PWM变换器如图4所示[5].这种电路没有使用耗能元件,在副边增加有源箝位开关S,并通过对有源箝位开关的适当控制,为滞后桥臂创造零电流开关条件.超前桥臂在零电压导通与关断的过程中,输出滤波电感Lf参与了谐振过程,而输出滤波电感通常具有很大的值,超前桥臂开关管可以在很大的负载范围内满足零电压开关条件,开关管的导通与关断的死区时间间隔受原边电压最大占空比的限制.在此种拓扑结构中,可能会出现副边整流输出电压的占空比大于原边电压最大占空比的现象,这种现象称为“占空比增大效应”(dutycycleboosteffect)这种现象是由箝位电容Cc和箝位开关的作用造成的.此电路的主要缺点是控制上稍微复杂一些,以及有源箝位开关采用的是硬开关,但是,有源箝位开关在一个开关周期中仅工作很短一段时间,对变换器整体效率影响很小.5)利用变压器辅助绕组的FB-ZVZCS-PWM变换器电路拓扑如图5所示[6].该电路通过在副边增加一个变压器辅助绕组和一个简单的辅助线路,无须增加耗能元件或有源开关来取得滞后桥臂ZCS.其副边整流电压可由箝位电容箝位,一般可将其限制在120%额定值内,该方案可在大功率场合应用.该电路拓扑的优点是负载范围宽,占空比损失小,器件的电压应力、电流应力小,成本低.但是它也有缺点,即副边结构复杂,设计时有些困难.6)副边带能量恢复缓冲电路的FB-VZCS-PWM变换器如图6所示[7].它的副边增加了由3个快恢复二极管和2个小电容构成的能量恢复缓冲电路,此电路在能量传递初始期间,电容Cs1和Cs2与漏感谐振,电容上的电压达到2nVin,超前桥臂开关管一关断,电容上电压就折合到原边,在漏感上产生一反压,使得原边电流下降.而且,通过能量恢复电路的低阻抗路径使副边整流二极管实现了ZVS.该结构稍微复杂些,最大缺点是,由于电容Cs1和Cs2与漏感谐振,使得副边整流电压几乎是正常电压nVin的2倍,增加了整流管的电压应力,并且由于存在大量环流,也增加了导通损耗.7)使用改进的能量恢复缓冲电路的FB-ZVZCS-PWM变换器如图7所示[8].它运用改进的能量恢复缓冲电路来减小循环电流和副边瞬间超压.除了增加二极管Ds4外,其工作原理和线路与6)相同.8)滞后桥臂中串入二极管的FB-ZVZCS-PWM变换器如图8所示[9].它利用串联二极管阻断电容电压可能引起的原边电流的反向流动.可以在任意负载和输入电压变化范围内实现滞后桥臂的零电流开关.9)副边利用简单辅助电路的FB-ZVZCS-PWM变换器如图9所示[10].此电路副边由一个简单辅助电路构成:包括一个小电容和两个小二极管,结构简单,整流电压不恒定,取决于占空比.该方案不含饱和电感,辅助开关,不产生大的环流,没有额外的箝位电路,这是因为,副边整流电压被箝位于箝位电容电压与输出电压之和.所用的元器件均在低电压,低电流下工作,还有负载范围宽,占空比损失小等优点,从而使此变换器具有高效率,低成本,解决了目前常见变换器的许多问题.在高功率场合很有发展前途.3结语综上所述可知,图2和图3电路使用耗能元件来复位原边电流,降低了总效率并阻碍功率超过5kW;图4电路通过副边增加有源箝位开关来复位原边电流,价格较贵并且控制复杂,有源箝位开关采用的是硬开关,开关频率是原边的两倍,开关损耗大;图5电路所有有源和无源元器件都工作在最小电流应力和电压应力下,有较宽的ZVZCS范围,较小的占空比损耗,不存在严重的寄生环流,功率超过5kW,但是辅助电路复杂;图6电路中电容Cs1和Cs2与漏感谐振引起大的循环能量,降低了总效率并使得副边整流电压几乎是正常电压nVs的二倍,增加了副边整流管的电流应力,变压器和开关的导通损耗也增加了;图7电路是对图6电路的改进,它减小了副边瞬间超压和环流,也能使开关损耗传到负载;通过比较图6和图7缓冲电路中Cs放电时间和漏感L1k 复位时间,可以看出吸收电容复位变压器漏感能量的能力和容量,后者比前者加倍,因而使用图7电路能扩展到重载范围.图9电路简化了前几种ZVZCS方案,仅仅增加由一个小电容和两个小二极管组成的简单辅助电路,无须增加耗能元件和有源开关实现ZVZCS,不仅为原边开关提供ZVZCS条件,而且箝位副边整流二极管,效率高而且价格便宜.。

5kW移相全桥ZVSDCDC变换器的研究_图文(精)

5kW移相全桥ZVSDCDC变换器的研究_图文(精)

硕士学位论文5kW 移相全桥ZVS DC/DC变换器的研究RESEARCH ON 5kW PHASE-SHIFT FULL BRIDGEZVS DC/DC CONVERTER刘鑫哈尔滨工业大学2011年6月国内图书分类号:TM614 学校代码:10213 国际图书分类号:621.3 密级:公开工学硕士学位论文5kW 移相全桥ZVS DC/DC变换器的研究硕士研究生:刘鑫导师:马洪飞教授申请学位:工学硕士学科:电气工程所在单位:电气工程及自动化学院答辩日期:2011年6月授予学位单位:哈尔滨工业大学Classified Index:TM614 U.D.C:621.3Dissertation for the Master Degree in EngineeringRESEARCH ON 5kW PHASE-SHIFT FULL BRIDGEZVS DC/DC CONVERTERCandidate : Supervisor : Speciality :Liu XinAcademic Degree Applied for:Prof.Ma HongfeiMaster of EngineeringPower Electronics and Electric DriversSchool of Electrical Engineering and Automation June, 2011Affiliation : Date of Defence:Degree-Conferring-Institution : Harbin Institute of Technology哈尔滨工业大学硕士学位论文摘要DC/DC变换器是电力电子领域重要组成部分,在能源紧张的今天,提高DC/DC变换器的效率及功率密度,具有重要的意义。

功率器件的发展和软开关技术的提出使变换器高效高功率密度成为可能。

移相全桥ZVS DC/DC变换器是一种能够实现软开关和大功率能量变换的变换器。

移相ZVS-PWM全桥变换器综述

移相ZVS-PWM全桥变换器综述

移相ZVS-PWM全桥变换器综述移相ZVS-PWM全桥变换器概述摘要:移相ZVS-PWM DC/DC全桥变换器巧妙利用变压器漏感和开关管的结电容来完成谐振过程,使开关管实现零电压开关(ZVS),从而减少了开关损耗。

重点简述了该类变换器的基本原理,介绍了几种常见的拓扑,并简要地分析了它们的优缺点,最后指出了其发展方向。

关键词:移相全桥变换器零电压开关(ZVS)Overview of Phase Shift ZVS-PWM Full Bridge ConverterAbstract:Phase shift PWM DC/DC full bridge converter completing resonance procedure through leakage inductance of the transformer and junction capacitor of switch. It can make the switch achieve ZVS, decreasing the switching loss and interference .This paper describes the basi c principle of the converter, introduce several common topology, some common topologies as well as their advantages and drawbacks are discussed and analyzed. Finally it points out the development direction of the Converter.Key words:phrase shift,full bridge converter,ZVS引言全桥变换器广泛应用于中大功率的直流变换场合,近些年来,其软开关技术吸引了国内外学者的广泛关注,出现了很多控制策略和电路拓扑,其中移相控制是目前研究较多的控制方式,而以移相全桥零电压开关变换器(FB-ZVS-PWM)应用更为广泛。

谐振变换器研究现状

谐振变换器研究现状

谐振变换器研究现状随着电力电子技术的发展与计算机技术的快速提升,有关DC/DC变换器的应用变得很普遍,对于这方面的研究也就多了起来。

高效率、高频率是人们社会生活中的DC/DC变换器的重要指标,谐振变换器目前常见有以下四种。

1移相全桥PWM ZVS DC/DC变换器如图,输入为直流电压源,T1、T2为超前桥臂,T3、T4为滞后桥臂,D1到D4为并联二极管,C1到C4为4个开关的寄生电容和外接电容。

器件L r是谐振电感(其中变压器漏感归并到谐振电感里)。

L f和C f分别是滤波电感和滤波电容(L r 要尽量的大,这样I f近似不变)。

图1.1移相全桥PWM ZVS DC/DC变换器它的优缺点:(1)轻载时难以实现零电压开通超前桥臂和滞后桥臂开关管实现ZVS的条件不同。

两个桥臂上的开关管实现ZVS都需要相应的并联谐振电容能量释放为零,二极管自然导通。

对于超前桥臂,T2开通前期间,放电电流较大且恒定不变;另一方面由于变压器原副边有能量传递,原边等效电路中电感很大,故用于实现超前桥臂开关管ZVS的能量很大。

而滞后桥臂T3开通前的期间,一方面谐振电流逐渐变小;另一方面,由于二极管D5、D6同时导通,变压器副边被短路,原副边没有能量传递,等效电感大小仅为Lr,故用于实现滞后桥臂开关管ZVS的电感能量较小,滞后桥臂较难于实现ZVS。

(2)整流二极管的反向恢复方面二极管反向恢复问题是变换器电路中的一个比较严重的部份[3]。

但是在该电路中,由于占空比丢失的原因,使得谐振电感L r不能太大,这样在副边则必需要有滤波电感L f 。

而这样在原边电压反向的时候,就有可能产生D5、D6同时导通的情况(同时它们上的电流不能马上降到零),所以二极管反向恢复不是很好。

2LC 串联谐振变换器通过前面的叙述,本文叙述了基本PWM ZVS 电路有较大的缺陷。

而另外一种用的比较多的变换器是LC 串联谐振变换器。

该变换器的电路图如下图所示[4]:图1.2LC 串联谐振的电路图和基本PWM ZVS 电路类似,该电路的全桥整流原理和前文一致,这里就不再叙述了,以免累赘。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

11
基本移相控制变换器工作过程: 12种工作模式(5)
Q1
Q1 Vin Q3 D1
Q3 Q2 I2
Q1 Q4
A
C1
Q2
D2
B
C2
D3
C3
Q4
D4
C4
ip vAB
Q4 I1
Llk DR 1
Lf RL0Βιβλιοθήκη Cfvin v in
DR 2 TR (e) [t 3 , t 4]
v rect 0 t0 t1 t2 t3 t4 t5 V in/ K t6 t7 t8 t9t 10t11 t 12t 13
14
超前桥臂实现ZVS

超前桥臂容易实现ZVS,输出滤波电感Lf 与谐振电感Lr串联,此时用来实现ZVS的 能量是Lf和Lr中的能量。一般来说,Lf 很大,在超前桥臂开关过程中,其电流 近似不变,等效于一恒流源。为了实现 超前桥臂的零电压开通,必须使Q1和Q3驱 动信号的死区时间满足以下关系:
Vin (C1 C3 ) 4 NCoss Vin Td ( lead ) Ip I zvs
8
基本移相控制变换器工作过程: 12种工作模式(2)
Q1 Vin Q3 D3 D1
A
C1
Q2
D2
B
D4
C2
Q1 Q4 I1
Q3 Q2 I2
Q1 Q4
C 3
Q4
C 4
ip vAB
Llk DR1
Lf
0
Cf RL
vin v in
DR 2 TR (b) [t 0 , t1]
v rect 0 t0 t1 t2 t3 t4 t5 V in/ K t6 t7 t8 t9t 10t11 t 12t 13
10
基本移相控制变换器工作过程: 12种工作模式(4)
Q1 V in Q3
A
D1
C1
Q2
D2
Q1
Q3 Q2 I2
Q1 Q4
B
C2
D3
C3
Q4
D4
C4
ip vAB
Q4 I1
Llk DR 1
Lf RL
0
Cf
vin v in
DR 2 TR (d) [t 2 , t 3]
v rect 0 t0 t1 t2 t3 t4 t5 V in/ K t6 t7 t8 t9t 10t11 t 12t 13
4
Lf输出滤波电感; Cf滤波电容; Rld 负载
控制方式比较-双极性控制方式

Q1 Q3 Q2 Q4

斜对角线开关管为一组, 同时导通或者同时截止。 调节占空比来调节输出 电压大小 开关管工作在硬开关状 态,开关频率难以提高
5
控制方式比较-移相控制方式

Q1 Q3 Q2 Q4

每个桥臂两个开关管 180度互补导通 两个桥臂导通之间相差 一个相位,即移相角 通过调节移相角调节输 出电压
15
滞后桥臂实现ZVS


需要串联谐振的电感储能大于谐振电容的储 2 能: I zvs 4 2 1 Coss Vin 2 ( Lr Llk ) N 3 滞后桥臂的输出电容以谐振的方式充,放电, 死区时间可以估计为谐振周期的1/4周期。
Td ( lag ) 4 NCossVin Lr (C2 C4 ) 2 3 I zvs
3
基本电压型全桥变换电路
Q1 Vin D1 Q2 D2
v AB
Vin Vin
Vin / K
Vin / K
+
A
Q3 D3
B
Q4 Tr DR1 DR2 D4
c
Lf Cf D Rld
v sec
vCD
Vin / K DVin / K
+
-
Vo
Vo
0
Ton Ts / 2
Vin直流输入电压;Q1&D1~Q4&D4 构成变换器两个桥臂; Tr高频变压器; DR1,DR2输出整流二极管
L
Lr0
linear inductor saturable inductor
I
18
利用变压器激磁电感实现 满载范围ZVS(C)
Q1 Q3 Q2
S2 S1
Q1 Q4
Q1 Vin Q 3
D1
A
C1
Q2 Q4
D2 D4
B
C2
Q4
D3 C3
C4
Llk Lm
Lf DR1 S1 Vr Cf RL
ip vAB 0
22
The End Thanks
23
Q1 Q3 Q2 Q1 Q4
Q1 Vin Q3
D1 D3
A
C1
Q2 Q4
D2 D4
B
C2
ip vAB Q4 I1 I2
C3
C4
Llk
Ls DR1 Lm DR2 TR
Lf Cf RL
0
v in v in
v rect 0 V in/ K t 1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12
9
基本移相控制变换器工作过程: 12种工作模式(3)
Q1 Vin Q3
A
D1
C1
Q2
D2
B
C2
Q1 Q4 I1
Q3 Q2 I2
Q1 Q4
D3
C3
Q4
D4
C4
ip
Llk DR 1 Cf RL Lf
vAB 0
vin v in
DR2 TR (c) [t 1 , t 2]
v rect 0 t0 t1 t2 t3 t4 t5 V in/ K t6 t7 t8 t9t 10t11 t 12t 13
7
基本移相控制变换器工作过程: 12种工作模式(1)
Q1
Q1 Vin Q3
Q3 Q2 I2
Q1 Q4
A
D1
C1
Q2
D2
B
D4
C2
D3
C 3
Q4
C4
ip vAB
Q4 I1
Llk DR1
L f RL
0
Cf
vin v in
DR 2 TR (a) t 0
v rect 0 t0 t1 t2 t3 t4 t5 V in/ K t6 t7 t8 t9t 10t11 t 12t 13
13
基本移相控制变换器工作过程: 12种工作模式(7)
Q1 Vin Q3 D3 D1
A
C1
Q2
D2
B
C2
Q1 Q4 I1
Q3 Q2 I2
Q1 Q4
C3
Q4
D4
C4
ip vAB
Llk DR 1
Lf RL
0
Cf
v in v in
DR 2 TR (g) [t 5 , t 6]
v rect 0 t0 t1 t2 t3 t4 t5 V in/ K t6 t7 t8 t9t 10t11 t 12t 13
6
基本移相控制FB-ZVS-PWM变 换器(A)
优点: 取消了Snubber电路; 未增加额外元器件; 利用电路中的寄生参数,如变压器漏感和开关管 结电容谐振,创造软开关条件,提高整机效率; 减小体积和重量。 缺点:全桥内电路有自循环能量,影响变换器效率; 副方存在占空比丢失,最大占空比利用不充分; 副方有寄生振荡,导致副方整流管电压应力较高; 滞后桥臂实现ZVS范围受负载和电源电压的影响。
移相全桥ZVS PWM变换器 比较分析
山特SMR RD 许俊云
1
内容提要


DC/DC变换器应用于开关电源 基本移相控制FB-ZVS(Zero-VoltageSwitching)-PWM变换器 三种改进型移相全桥ZVS拓扑介绍 总结
2
DC/DC变换器应用于开关电源


开关电源小型化的要求,需不断提高开关电源的工作 频率,增加了开关损耗,因而,降低开关损耗的软开 关技术得到迅速发展。 Buck、Boost、Buck/Boost、Forward和Flyback等单管 构成的变换器一般应用在中、小功率场合;双管变换 器Push-Pull, 双管Forward,软开关较难实现;而在中 大功率场合,一般采用全桥变换器,且有专门芯片实 现软开关控制。
I1
I2
DR2 TR
S2
v in v in
v rect 0 t 1 t2 t3 t4 t5 V in/ K t6 t7 t8 t9 t10 t11 t12
19
利用输出电感能量实现 宽范围ZVS(D)
Q1 Q3 Q2
S2 S1
Q1 Q4
Q1 Vin Q3
D1
A
C1
Q2 Q4
D2 D4
B
C2
Q4
D3 C3
12
基本移相控制变换器工作过程: 12种工作模式(6)
Q1
Q1 Vin Q3 D1
Q3 Q2 I2
Q1 Q4
A
C1
Q2
D2
B
C2
D3
C3
Q4
D4
C4
ip vAB
Q4 I1
Llk DR 1
Lf RL
0
Cf
vin v in
DR 2 TR (f) [t 4 t 5] ,
v rect 0 t0 t1 t2 t3 t4 t5 V in/ K t6 t7 t8 t9t 10t11 t 12t 13
C4
I1
Llk Lm
Lf S 1 DR1 Vr Cf
ip
相关文档
最新文档