中考数学模拟试卷(二)及答案 答题卷
2024年福建省厦门市双十中学中考二模数学试题(含答案)
厦门双十中学2023—2024学年下初三中考模拟考试试卷数学(试卷满分:150分考试时间:120分钟)准考证号______姓名______班级座位号______注意事项:1.全卷三大题,25小题,试卷共5页,另有答题卡;2.答案一律写在答题卡上,否则不予得分;3.可直接用2B 铅笔画图.一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1.-2024的相反数是( )A .2024B .C.D .-20242.图①是2024年1月7日厦门市全程马拉松男子组颁奖现场.图②是领奖台的示意图,则此领奖台的主视图是()图1图2A .B .C .D .3.下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .4.如图所示的是一杆杆秤,杆秤是利用杠杆原理来称质量的简易衡器,由木制的带有秤星的秤杆、金属秤砣、秤钩、提绳等组成.在称物品时,提绳AB 与秤砣绳CD 互相平行,若,则的度数为()A .B .C .D .5.在相同条件下的多次重复试验中,一个随机事件发生的频率为f ,该事件的概率为P .下列说法正确的是()A .试验次数越多,f 越大B .f 与P 都可能发生变化C .试验次数越多,f 越接近于PD .当试验次数很大时,f 在P 附近摆动,并趋于稳定6.下列运算正确的是()12024-1202492α∠=︒β∠88︒90︒92︒86︒A.3a+4b=7ab B.C.D.7.某地开展建设绿色家园活动,活动期间,计划每天种植相同数量的树木.该活动开始后,实际每天比原计划每天多植树50棵,实际植树400棵所需时间与原计划植树300棵所需时间相同.设实际每天植树x棵,则下列方程正确的是()A.B.C.D.8.如图,在中,,,AB=8,以点C为圆心,CA的长为半径画弧,交AB于点D,则弧AD的长为()A.B.C.D.9.综合实践课上,小明画出△ABD,利用尺规作图找一点C,使得四边形ABCD为平行四边形.(1)~(3)是其作图过程.(1)分别以点B,D为圆心,大于长为半径作弧,相交于两点,作过这两点的直线交BD于O(2)连接AO并延长,再以O为圆心,OA长为半径作弧,交AO延长线于点C(3)连接DC,BC,则四边形ABCD即为所求.在小明的作法中,可以直接用于判定四边形ABCD为平行四边形的依据是()(1)(2)(3)A.两组对边分别平行B.两组对边分别相等C.一组对边平行且相等D.对角线互相平分10.如图,将一块等腰直角三角板ABC放在平面直角坐标系中,点,直角顶点,点B在第二象限.将△ABC沿x轴正方向平移后得到,点A,B的对应点,恰好落在双曲线上,()32622b b=()2224a a+=+1266a a a÷=40030050x x=-30040050x x=-40030050x x=+30040050x x=+Rt ABC△90C∠=︒30B∠=︒π4π35π32π12BD()0,1A()2,0C-A B C'''△A'B'kyx=则平移的距离等于( )A .4B .6C .8D .10二、填空题(本大题有6小题,每小题4分,共24分)11.如图,数轴上的点A 、B 分别对应实数a 、b ,则a +b ______0.(用“>”“<”或“=”填空)12.2025年,6G 将在中国进行标准化制定,预计2030年左右,实现商用.其理论数据传输速率1TB 每秒,1TB 约等于1100000000KB ,将1100000000用科学记数法表示为______13.若一个多边形内角和等于,则这个多边形的边数为______.14.小明记录了自己一周内每天的校外体育活动时间,制作了如下折线统计图,这周小明活动时间的中位数是______15.台球是用球杆在台上击球,依靠计算得分确定比赛胜负的室内高雅体育运动.如图是一张宽为m 米,长为2m 米的矩形台球桌ABCD ,某球员击位于AB 的中点E 处的球,球沿EF 射向边AD ,然后反弹到C 点的球袋,球的反弹规律满足光的反射定律.若球的速度为v 米/秒,则球从出发到入袋的时间等于______(用含m 和v ,的式子表示)16.已知点,,抛物线上,且a <b <m -1.则n 的取值范围是______.三、解答题(本大题有9小题,共86分)17.(本题满分818.(本题满分8分)已知:如图,点B ,F ,C ,E 在一条直线上,BF =CE ,AC =DF ,且.720︒()2,A n a -()4,B b (),C n a 221y x mx m =++-1122-⎛⎫+ ⎪⎝⎭AC DF ∥求证:∠B =∠E19.(本题满分8分)解不等式组:20.(本题满分8分)化简.下面是小红和小莉两位同学的部分运算过程:小红的解法:解:原式……小莉的解法:解:原式……(1)小红的解法依据是______;小莉的解法依据是______.(填序号)①等式的基本性质;②分式的基本性质;③乘法交换律;④乘法分配律.(2)若,请任选一种解法,求出代数式的值.21.(本题满分8分)随着经济快速发展,环境问题越来越受到人们的关注,某校为了了解节能减排、垃圾分类等知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”、“了解”、“了解较少”、“不了解”四类,并将结果绘制成以下两幅不完整的统计图,请根据统计图回答下列问题:(1)估计这所学校3000名学生中,“不了解”的人数是多少人.(2)“非常了解”的4人中有,,两名男生,,,两名女生,若从中随机抽取两人去参加环保知识竞赛,请用画树状图或列表的方法,求恰好抽到2名男生的概率.22.(本题满分10分)如图1,在四边形ABCD 中,AB =AD =CD ,以AB 为直径的经过点C ,连接AC 、OD 交于点E .(1)证明:AE =CE()32252123x x x x +≥+⎧⎪⎨--<⎪⎩①②21122a a a a -⎛⎫+÷ ⎪++⎝⎭222122122222aa a a a a a a a a +-+-⎛⎫=+÷=÷= ⎪+++++⎝⎭2222221121211a a a a a a a a a a +++⎛⎫=+⋅=⋅+⋅=⎪+-+--⎝⎭1a =1A 2A 1B 2B O(2)若AC=2BC①证明:DA是的切线②如图2连接BD交于点F,连接EF,求∠DEF的度数图1图223.(本题满分10分)根据以下素材,探索完成任务.探究遮阳伞下的影子长度素材1(1)图3是某款自动旋转遮阳伞,伞面完全张开时张角呈,图4是其侧面示意图.(2)已知支架AB长为2.5米,且垂直于地面BC,悬托架AE=DE=0.5米,点E固定在伞面上,且伞面直径DF是DE的4倍.当伞面完全张开时,点D,E,F始终共线.(3)为实现遮阳效果最佳,伞面装有接收器可以根据太阳光线的角度变化,自动调整手柄D沿着AB移动,以保证太阳光线与DF始终垂直.图3 图4素材2某地区某天下午不同时间的太阳高度角(太阳光线与地面的夹角)参照表:时刻12点13点14点15点16点17点太阳高度角(度)907560453015素材3小明坐在露营椅上的高度(头顶到地面的距离)约为1米,如图2,小明坐的位置记为点Q.问题解决任务1确定影子长度某一时刻测得AD=0.8米,①DF=______;______②请求出此时影子GH的长度;任务2判断是否照射到这天14点,小明坐在离支架3米处的Q点,请判断此时小明是否会被太阳光照射到?请你说明理由;任务3探究合理范围小明打算在这天14:00—15:00露营休息,为保证小明全程不被太阳光照射到,请你通过计算后直接写出BQ的取值范围:______24.(本题满分13分)OO180︒αtan ADE∠=在中,,AD 平分∠BAC ,点E 是段BD 上的动点(不与B ,D 重合)(1)如图5,若AE ⊥AC ,求证:图5(2)如图6,点F 是线段DB 延长线上的一点,且BF =2DE ①求证E 是CF 的中点②将线段DE 绕点E 顺时针旋转得到线段EH ,连接AH ,FH ,求证AH ⊥FH图625.(本题满分13分)顶点为D 的抛物线过和(1)求抛物线的函数表达式;(2)直线交抛物线于点A 和B (A 在B 的左边),交y 轴于C ;直线AD 交x 轴于点P ,①若的面积是面积的2倍,求k 的值;②连接BP ,过点B 作BQ ⊥AP ,交y 轴于Q ,用等式表示CQ 和BP 的数量关系,并证明.厦门双十中学2023—2024学年下初三中考模拟考试试卷数学参考答案(试卷满分:150分考试时间:120分钟)一、选择题(本大题有10小题,每小置4分,共40分.)题号12345678910选项A CB A D DB B D B 二、填空题(本大题有6小题,每小题4分,共24分)11.>12.13.814.63ABC △ABC C α∠=∠=()045α<<︒2AD DE BD=⋅2α2y ax c =+()2,3-()0,2-():40AB y kx k =-<POD △ADC △91.110⨯15.16.3<n<4或n>6(对一半给2分,有n>3给1分)三、解答题(本大题共9小题,共86分)17.(本题满分8分)原式18.(本题满分8分)证明:∵BF=CE,∴BF+CF=CE+CF即BC=EF∵,∴∠ACB=∠DFE,又∵AC=DF,∴,∴∠B=∠E.19.(本题满分8分)解:由①得,由②得,∴不等式组的解集为20.(本题满分8分)解(1)②;④(2)小红的解法:原式小莉的解法:原式,当时,原式21.(本题满分8分)解:(1)本次调查的学生总人数为20÷40%=50“不了解”对应的百分比,估计该校3000名学生中“不了解”的人数是3000×30%=900(人)(2)画树状图如下:52mv22=+=AC DF∥()SASACB DFE≌△△3625x x+≥+1x≥-3624x x-<-2x<12x-≤<()222121122222aa a a aa a a a a++--⎛⎫=+÷=÷⎪+++++⎝⎭()()()()()()21112122222111a a a a aa a a a a a++-++=÷=⋅=++++--2222221121211a a a a aa a a a a+++⎛⎫=+⋅=⋅+⋅⎪+-+--⎝⎭()()()22212211111aa aa a a a a++=+==--+--1a=+===()504112030%50-++=由图可知共有12种可能的结果,恰好抽到2名男生的结果有2个,∴P (抽到2名男生) 22.(本题满分10分)(1)解法1:证明:如图1,连接OC ,∵AO =CO ,AD =CD ,OD =OD ,∴∴∠AOD =∠COD ,∵OA =OC ,∴AE =CE ;解法2:连接OC∵AO =CO ,AD =CD ,∴点O ,D 在AC 的垂直平分线上∴OD 垂直平分AC ,∴AE =CE ;(2)证明:解法1:∵AB 是的直径,∴,∴∵AE =CE ,∴AC =2AE ,∵AC =2BC ,∴BC =AE ,∴,∴∠ABC =∠DAE ,∵∴,∴OA ⊥AD ∵OA 是半径,∴DA 是的切线;(3)解法1:如图2,连接AF,21126==()SSS ADO CDO ≌△△O 90ACB ∠=︒90ACB AED ∠=∠=︒()Rt Rt HL ACB DEA ≌△△90ABC BAC ∠+∠=︒90BAC DAE OAD ∠=∠=∠=︒O∵AB 为直径,∴,∵,∴E ,F 都在以AD 为直径的圆上∴A 、E 、F 、D 四点共圆∵DF =DF ,∴∠DEF =∠DAF ,∵AB =AD ,∴,∴解法2连接AF 和CF∵AB =AD ,,∴∵,∴,∴BF =AF ,∵CF =CF ,∴∠CBF =∠FEA ,∵BC =AE ,∴,∴FC =FE ,∠BFC =∠AFE ,∴∴,∴24.(本题满分13分)(1)∵AB =AC ,AD 平分∠BAC ,∴AD ⊥BC ,BD =CD ∴∵AE ⊥AC ,∴,∴∵,∴∠EAD =∠C ∴,∴∴,∴(2)①设DE =m ,BF =2m ,BD =CD ∴CE =m +n ,DF =2m ∴EF =2m +n —m =m +n90AFB ∠=︒90AED ∠=︒90BAD ∠=︒1452DAF BAD ∠=∠=︒45DEF ∠=︒90BAD ∠=︒45ABF ADB ∠=∠=︒90AFB ∠=︒45ABF BAF ∠=∠=︒FCE FEA ≌△△90EFC ∠=︒45CEF ECF ∠=∠=︒45DEF ∠=︒90ADE ADC ∠=∠=︒90CAE ∠=︒90EAD CAD ∠+∠=︒90C CAD ∠+∠=︒ADE CDA ∽△△AD DECD AD=2AD CD DE =⋅2AD BD DE =⋅∴EF =CE ∴E 是CF 的中点②将线段DE 绕点E 顺时针旋转得到线段EH ,连接AH ,FH ,求证AH ⊥FH方法一:取AF 的中点O ,连接EO ,HO ,DO∵点O 是AF 的中点,E 是CF 的中点,∴OE 是△ACF 的中位线∴,∴∵线段DE 绕点E 顺时针旋转得到线段EH ∴DE =EH ,∴∴∴∴∠OED =∠OEH ,∴∴OD =OH ,∵,∴AO =FO =OD ∴AO =FO =OH∴点H 在以O 为圆心,AF 为直径的圆上∴,∴AH ⊥FH方法二:延长FH 至G 使FH =GH ,连接AG ,CG∵线段DE 绕点E 顺时针旋转得到线段EH ,∴∴∵点E 是CF 的中点,H 是FG 的中点∴EH 是△FCG的中位线,∴2αOE AC ∥OEF C α∠=∠=2α2DEH α∠=1802FEH α∠=︒-1802180OEH ααα∠=︒-+=︒-()3601802180OED ααα∠=︒-︒--=︒-OED OEH ≌△△90ADF ∠=︒90AHF ∠=︒2α2DEH α∠=1802FEH α∠=︒-EH CG∥∴∴∴,∴∠ABF =∠ACG∵DE =EH ,BF =2DE ,∴BF =2EH ,∵CG =2EH ,∴BF =CG ,又∵AB =AC ,∴,∴AF =AG ,∴AH ⊥FH方法三:作EG ⊥DH 于G ,∵线段DE 绕点E 顺时针旋转得到线段EH∴DE =EH ,∴,∴∵DH =2DG ,BF =2DE ,∴,∵,∴,∴,∴,∵,,∴,∴,∠BAF =∠DAH ,∴,∠BAD =∠FAH ,∴,∴,∴AH ⊥FH25.(本题满分13分)(1)∵抛物线过∴c =-2,∴又∵抛物线过∴4a -2=-3,,∴1802FEH FCG α∠=∠=︒-1802180ACG ααα∠=︒-+=︒-180ABF α∠=︒-ABF ACG ≌△△2α2DEH α∠=12DEG DEH α∠=∠=sin sin DG DEG DEα∠==sin DH BF α=90ADB ∠=︒sin AD ABD AB∠=sin AD AB α∠=AD BF AB=9090180ADH DE EDH αα∠=∠+∠=︒+︒-=︒-180ABF α∠=︒-ABF ADH ∽△△AD AH AB AF=AD AB AH AF=ADB AHF ∽△△90ADB AHF ∠=∠=︒()0,2-22y ax =-()2,3-14a =-2124y x =--(2)①由题得,∴,∴CD =OD =2作AM ⊥y 轴于M∵的面积是面积的2倍,∴OP =2AM∵,∠ADM =∠PDO ,∴∴即,∴DM =1,∴OM =1+2=3,∴,∴,∴,∴,②由得,∴,∴∵,∴,∴,解得∴,∴∴轴,∴()0,2-()0,4C -2124y x =--POD △ADC △90POD AMD ∠=∠=︒ADM PDO ∽△△AM DO OP DM =122DM =3A M y y ==-21234A x --=-2A x =-()2,3A --243k --=-12k =-21244y x y kx ⎧=--⎪⎨⎪=-⎩21424kx x -=--2480x kx +-=8A B x x ⋅=-1B Ax x =-ADM PDOS ∽△△AM DO OP DM=212242A x x OP ⎛⎫---- ⎪-⎝⎭=8A OP x =-8,0A P x ⎛⎫- ⎪⎝⎭P B x x =BP y ∥221102244B B BP x x ⎛⎫=---=+ ⎪⎝⎭作BN ⊥y 轴于N∵BQ ⊥AP ,,∴∠BQN +∠PDO =∠OPD +∠PDO =,∴∠BQN =∠PDO .∴∵∴∴∴∴BP =CQ .90POD ∠=︒90︒tan tan BQN OPD∠=∠22tan P BDO OPD PO x x ∠===22tan 112244B B B Q B Q B Q B x x x BN BQN ON y y y x y x ∠====-⎛⎫++--- ⎪⎝⎭22124B B Q B x x y x =++2124Q B y x =-()221124244B B CQ x x =---=+。
2023年山东省济南市中考数学模拟试卷(二)及答案解析
2023年山东省济南市中考数学模拟试卷(二)一、选择题(每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(4分)的倒数是()A.2003B.﹣2003C.D.﹣2.(4分)如图所示的几何体,其俯视图是()A.B.C.D.3.(4分)“神舟”五号飞船总重7990000克,用科学记数法表示为()A.0.799×107克B.8×106克C.8.0×106克D.7.99×106克4.(4分)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.5.(4分)如图,将一块三角尺的直角顶点放在直尺的一边上,当∠1=55°时,∠2的度数为()A.25°B.35°C.45°D.55°6.(4分)化简:的结果是()A.﹣mn+m B.﹣m+1C.﹣m﹣1D.﹣mn﹣n 7.(4分)某企业1~5月份利润的变化情况图所示,以下说法与图中反映的信息相符的是()A.1~2月份利润的增长快于2~3月份分利润的增长B.1~4月份利润的极差与1~5月份利润的极差不同C.1~5月份利润的众数是130万元D.1~5月份利润的中位数为120万元8.(4分)如图,在矩形ABCD中,AB=4,BC=6,点E是BC的中点,连接AE,将△ABE 沿AE折叠,点B落在点F处,连接FC,则sin∠ECF=()A.B.C.D.9.(4分)如图,某建筑物的顶部有一块标识牌CD,小明在斜坡上B处测得标识牌顶部C 的仰角为45°,沿斜坡走下来在地面A处测得标识牌底部D的仰角为60°,已知斜坡AB的坡角为30°,AB=AE=10米.则标识牌CD的高度是()米.A.15﹣5B.20﹣10C.10﹣5D.5﹣5 10.(4分)二次函数y=﹣x2+mx的图象如图,对称轴为直线x=2,若关于x的一元二次方程﹣x2+mx﹣t=0(t为实数)在1<x<5的范围内有解,则t的取值范围是()A.t>﹣5B.﹣5<t<3C.3<t≤4D.﹣5<t≤4二、填空题(本大题共6个小题.每小题4分,共24分.把答案填在答题卡的横线上.)11.(4分)分解因式:xy2﹣4x=.12.(4分)在一个不透明的箱子里装有红色、蓝色、黄色的球共20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球试验后发现摸到红色、黄色球的频率分别稳定在10%和15%,则箱子里蓝色球的个数很可能是个.13.(4分)计算:=.14.(4分)如图,已知AC为⊙O的直径,BC为⊙O的切线,且BC=AC,连接线段AB,与⊙O交于点D,若AC=4cm,则阴影部分的面积为.15.(4分)如图,已知l1∥l2∥l3,相邻两条平行直线间的距离相等.若等腰直角三角形ABC 的直角顶点C在l1上,另两个顶点A、B分别在l3、l2上,则tanα的值是.16.(4分)如图,在正方形ABCD中,E是BC的中点,F是CD上一点,AE⊥EF.有下列结论:①∠BAE=30°;②射线FE是∠AFC的角平分线;③CF=CD;④AF=AB+CF.其中正确结论的结论:(填序号)三、解答题(本大题共10个小题,共86分)17.(6分)计算:()﹣1﹣(π﹣2)0+||+2sin60°.18.(6分)解不等式组:,并写出它的所有整数解.19.(6分)如图,在▱ABCD中,点E是AB边的中点,DE的延长线与CB的延长线交于点F.求证:BC=BF.20.(8分)某校为组织代表队参加市“拜炎帝、诵经典”吟诵大赛.初赛后对选手成绩进行了整理,分成5个小组(x表示成绩,单位:分)A组:75≤x<80;B组:80≤x<85;C组:85≤x<90;D组:90≤x<95;E组:95≤x <100并绘制出如下两幅不完整的统计图,请根据图中信息,解答下列问题:(1)参加初赛的选手共有名;扇形统计图中,E组对应的圆心角是°;(2)现要从D组中的两名男生和两名女生中,随机选取两名选手进入代表队,请用列表或画树状图的方法,求恰好选中一名男生和一名女生的概率.21.(8分)为提高数学学习的兴趣,某学校数学社团利用周日举行了测量旗杆高度的活动.已知旗杆的底座高1米,长8米,宽6米,旗杆位于底座中心.测量方法如下:在地面上找一点D,用测角仪测出看旗杆AB顶B的仰角为67.4°,沿DE方向走4.8米到达C地,再次测得看旗杆顶B的仰角为73.5°.(1)求旗杆的高度.(2)已知夏至日时该地的最大太阳高度角约为78°,试问夏至日旗杆的影子能不能落在台阶上?(太阳高度角是指某地太阳光线与地平线的夹角.结果精确到0.1m,参考数据:tan67.4°≈2.4,tan73.5°≈24/7,tan22.6°≈5/12,tan16.5°≈7/24,tan12°≈0.21)22.(8分)如图,AB为⊙O的直径,点C是⊙O上一点,CD与⊙O相切于点C,过点A作AD⊥DC,连接AC,BC.(1)求证:AC是∠DAB的角平分线;(2)若AD=2,AB=3,求AC的长.23.(10分)“绿水青山就是金山银山”,某村为了绿化荒山,计划在植树节当天种植柏树和杉树.经调查,购买2棵柏树和3棵杉树共需850元;购买3棵柏树和2棵杉树共需900元.(1)求柏树和杉树的单价各是多少元;(2)本次绿化荒山,需购买柏树和杉树共80棵,且柏树的棵数不少于杉树的3倍,要使此次购树费用最少,柏树和杉树各需购买多少棵?24.(10分)如图,已知点A(5,0),B(0,5),把一个直角三角尺DEF放在△OAB内,使其斜边FD在线段AB上,三角尺可沿着线段AB上下滑动,其中∠EFD=45°,ED=2,点G为边FD的中点.(1)求直线AB的解析式;(2)如图1,当点D与点A重合时,求经过点G的反比例函数y=(k≠0)的解析式;(3)在三角尺滑动的过程中,经过点G的反比例函数的图象能否同时经过点F?如果能,求出此时反比例函数的解析式,如果不能,说明理由.25.(12分)已知△ABC中,∠ACB=90°,点D是AB上的一点,过点A作AE⊥AB,过点C作CE⊥CD,且AE与CE相交于点E.(1)如图1,当∠ABC=45°,试猜想CE与CD的数量关系:;(2)如图2,当∠ABC=30°,点D在BA的延长线上,连接DE,请探究以下问题:①CD与CE的数量关系是否发生变化?如无变化,请给予证明;如有变化,先猜想CD与CE的数量关系,再给予证明;②若AC=2,四边形ACED的面积为3,试求BD的值.26.(12分)如图,抛物线y=x2﹣bx+c过点B(3,0),C(0,﹣3),D为抛物线的顶点.(1)求抛物线的解析式以及顶点坐标;(2)点C关于抛物线y=x2﹣bx+c对称轴的对称点为E点,连接BC,BE,求∠CBE的正切值;(3)在(2)的条件下,点M是抛物线对称轴上且在CE上方的一点,是否存在点M使△DMB和△BCE相似?若存在,求点M坐标;若不存在,请说明理由.2023年山东省济南市中考数学模拟试卷(二)参考答案与试题解析一、选择题(每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.【分析】乘积是1的两数互为倒数,由此即可得到答案.【解答】解:的倒数是2003.故选:A.【点评】本题考查倒数,关键是掌握倒数的定义.2.【分析】根据简单组合体的三视图的画法画出它的俯视图即可.【解答】解:这个组合体的俯视图为:故选:D.【点评】本题考查简单组合体的三视图,理解视图的定义,掌握简单组合体的三视图的画法和形状是正确解答的前提.3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将7990000用科学记数法表示为7.99×106.故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【分析】根据轴对称图形与中心对称图形的概念判断即可.【解答】解:A、该图形既不是轴对称图形,也不是中心对称图形,故A不符合题意;B、该图形既是轴对称图形又是中心对称图形,故B符合题意;C、该图形既不是轴对称图形,也不是中心对称图形,故C不符合题意;D、该图形是轴对称图形,不是中心对称图形,故不D符合题意.故选:B.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.【分析】先根据余角的定义求出∠3的度数,再由平行线的性质即可得出结论.【解答】解:∵∠1=55°,∴∠3=90°﹣55°=35°.∵直尺的两边互相平行,∴∠2=∠3=35°.故选:B.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.6.【分析】原式利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分即可得到结果.【解答】解:原式=﹣•=﹣(m+1)=﹣m﹣1.故选:C.【点评】此题考查了分式的混合运算,分式的乘除运算关键是约分,约分的关键是找公因式.7.【分析】解决本题需要从统计图获取信息,再对选项一一分析,选择正确结果.【解答】解:A、1~2月份利润的增长为10万元,2~3月份利润的增长为20万元,慢于2~3月,故选项错误;B、1~4月份利润的极差为130﹣100=30万元,1~5月份利润的极差为130﹣100=30万元,极差相同,故选项错误;C、1~5月份利润,数据130出现2次,次数最多,所以众数是130万元,故选项正确;D、1~5月份利润,数据按从小到大排列为100,110,115,130,130,中位数为115万元,故选项错误.故选:C.【点评】本题考查折线统计图的运用,折线统计图表示的是事物的变化情况.8.【分析】过E作EH⊥CF于H,由折叠的性质得BE=EF,∠BEA=∠FEA,由点E是BC 的中点,得到CE=BE,得到△EFC是等腰三角形,根据等腰三角形的性质得到∠FEH =∠CEH,推出△ABE∽△EHC,求得EH=,结果可求sin∠ECF==.【解答】解:过E作EH⊥CF于H,由折叠的性质得:BE=EF,∠BEA=∠FEA,∵点E是BC的中点,∴CE=BE,∴EF=CE,∴∠FEH=∠CEH,∴∠AEB+∠CEH=90°,在矩形ABCD中,∵∠B=90°,∴∠BAE+∠BEA=90°,∴∠BAE=∠CEH,∠B=∠EHC,∴△ABE∽△EHC,∴,∵AE==5,∴EH=,∴sin∠ECF=sin∠ECH==,(方法二,可以证明∠AEB=∠ECF,求出AE=10,sin∠ECF=sin∠AEB=)故选:D.【点评】本题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质以及勾股定理.9.【分析】过点B作BM⊥EA的延长线于点M,过点B作BN⊥CE于点N,通过解直角三角形可求出BM,AM,CN,DE的长,再结合CD=CN+EN﹣DE即可求出结论.【解答】解:过点B作BM⊥EA的延长线于点M,过点B作BN⊥CE于点N,如图所示.在Rt△ABM中,AB=10米,∠BAM=30°,∴AM=AB•cos∠BAM=5米,BM=AB•sin∠BAM=5米.在Rt△ADE中,AE=10米,∠DAE=60°,∴DE=AE•tan∠DAE=10米.在Rt△BCN中,BN=AE+AM=(10+5)米,∠CBN=45°,∴CN=BN•tan∠CBN=(10+5)米,∴CD=CN+EN﹣DE=10+5+5﹣10=(15﹣5)米.故选:A.【点评】本题考查了解直角三角形﹣仰角俯角问题及解直角三角形﹣坡度坡脚问题,通过解直角三角形求出BM,AM,CN,DE的长是解题的关键.10.【分析】如图,关于x的一元二次方程﹣x2+mx﹣t=0的解就是抛物线y=﹣x2+mx与直线y=t的交点的横坐标,利用图象法即可解决问题.【解答】解:如图,关于x的一元二次方程﹣x2+mx﹣t=0的解就是抛物线y=﹣x2+mx 与直线y=t的交点的横坐标,由题意可知:m=4,当x=1时,y=3,当x=5时,y=﹣5,由图象可知关于x的一元二次方程﹣x2+mx﹣t=0(t为实数)在1<x<5的范围内有解,直线y=t在直线y=﹣5和直线y=4之间包括直线y=4,∴﹣5<t≤4.故选:D.【点评】本题考查抛物线与x轴的交点、一元二次方程等知识,解题的关键是学会利用图象法解决问题,画出图象是解决问题的关键,属于中考选择题中的压轴题.二、填空题(本大题共6个小题.每小题4分,共24分.把答案填在答题卡的横线上.)11.【分析】原式提取x,再利用平方差公式分解即可.【解答】解:原式=x(y2﹣4)=x(y+2)(y﹣2),故答案为:x(y+2)(y﹣2)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.【分析】利用频率估计概率,可得到摸到红色、黄色球的概率为10%和15%,则摸到蓝球的概率为75%,然后根据概率公式可计算出箱子中蓝色球的个数.【解答】解:根据题意得摸到红色、黄色球的概率为10%和15%,所以摸到蓝球的概率为75%,因为20×75%=15(个),所以可估计箱子中蓝色球的个数为15个.故答案为15.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.13.【分析】首先找到最简公分母把式子通分,然后进行加减运算.【解答】解:==.故答案为.【点评】本题考查了分式的加减运算.解决本题首先应通分,最后要注意将结果化为最简分式.14.【分析】由切线的性质和圆周角定理可得∠ACB=90°,∠ADC=90°,由等腰直角三角形的性质可得AD=DB=CD,AO=CO=DO,AC⊥OD,由面积和差关系可求解.【解答】解:如图,连接OD,CD,∵BC为⊙O的切线,AC为⊙O的直径,∴∠ACB=90°,∠ADC=90°,又∵AC=BC,∴AD=DB=CD,∵AO=CO=2cm,∴AC⊥OD,OD=AO=CO=2cm,∴∠COD=90°,∴S阴影=S△ACB﹣S△AOD﹣S扇形COD=×4×4﹣×2×2﹣=(6﹣π)cm2,故答案为:(6﹣π)cm2.【点评】本题考查了切线的性质,圆周角定理,扇形的面积公式等知识,灵活运用这些性质解决问题是解题的关键.15.【分析】过点A作AD⊥l1于D,过点B作BE⊥l1于E,根据同角的余角相等求出∠CAD=∠BCE,然后利用“角角边”证明△ACD和△CBE全等,根据全等三角形对应边相等可得CD=BE,然后利用勾股定理列式求出AC,然后利用锐角的正切等于对边比邻边列式计算即可得解.【解答】解:如图,过点A作AD⊥l1于D,过点B作BE⊥l1于E,设l1,l2,l3间的距离为1,∵∠CAD+∠ACD=90°,∠BCE+∠ACD=90°,∴∠CAD=∠BCE,在等腰直角△ABC中,AC=BC,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CD=BE=1,∴DE=3,∴tan∠α=.故答案为:.【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的性质,锐角三角函数的定义,作辅助线构造出全等三角形是解题的关键.16.【分析】①根据题目中的条件和正方形的性质,利用锐角三角函数可以得到∠BAE是否等于30°;②根据题目中的条件,可以求得∠AEB和∠CFE的正切值,从而可以得到射线FE是否为∠AFC的角平分线;③根据正方形的性质和相似三角形的判定和性质定理即可得到结论;④根据题目中的条件和全等三角形的判定与性质,可以得到AF=AB+CF是否成立.【解答】解:在正方形ABCD中,E是BC的中点,∴AB=BC,BE=AB,∴tan A==,∵tan30°=,∴∠BAE≠30°,故①错误;∵∠B=∠C=90°,AE⊥EF,∴∠BAE+∠BEA=90°,∠BEA+∠CEF=90°,∴∠BAE=∠CEF,∴△ABE∽△ECF,∵AB=2BE=2CE,∴EC=2CF,设CF=a,则EC=BE=2a,AB=4a,∴AE=2a,EF=a,tan∠CFE=2,∴tan∠AFE==2,∴∠AFE=∠CFE,即射线FE是∠AFC的角平分线,故②正确;∵四边形ABCD是正方形,∴∠B=∠C=90°,AB=BC=CD,∵AE⊥EF,∴∠AEF=∠B=90°,∴∠BAE+∠AEB=90°,∠AEB+FEC=90°,∴∠BAE=∠CEF,在△BAE和△CEF中,,∴△BAE∽△CEF,∴,∴BE=CE=2CF,∵BE=CF=BC=CD,即2CF=CD,∴CF=CD,故③选项的结论是错误;过点E作AF的垂线于点G,在△ABE和△AGE中,,∴△ABE≌△AGE(AAS),∴AG=AB,GE=BE=CE,在Rt△EFG和Rt△EFC中,,∴Rt△EFG≌Rt△EFC(HL),∴GF=CF,∴AB+CF=AG+GF=AF,故④选项的结论是正确.故答案为:②④.【点评】此题考查了相似三角形的判定与性质,直角三角形的性质以及正方形的性质.熟练掌握相似三角形的判定与性质是解题的关键.三、解答题(本大题共10个小题,共86分)17.【分析】直接利用负指数幂的性质以及绝对值的性质和特殊角的三角函数值分别化简得出答案.【解答】解:原式=2﹣1+2﹣+2×=3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.【分析】分别求解两个不等式,得到不等式组的解集,写出整数解即可.【解答】解:解不等式①得:x<3,解不等式②得:x≥1,∴原不等式组的解集为:1≤x<3,∴整数解为1,2.【点评】本题考查了一元一次不等式组的整数解,解一元一次不等式组,掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到是解题的关键.19.【分析】首先由平行四边形的性质可得AD=BC,再由全等三角形的判定定理AAS可证明△ADE≌△BFE由此可得AD=BF,进而可证明BC=BF.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,又∵点F在CB的延长线上,∴AD∥CF,∴∠1=∠2.∵点E是AB边的中点,∴AE=BE.∵在△ADE与△BFE中,,∴△ADE≌△BFE(AAS),∴AD=BF,∴BC=BF.【点评】本题考查了平行四边形的性质、全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边、对顶角以及公共角.20.【分析】(1)用组类的人数除以它所占的百分比得到调查的总人数;然后用360°乘以E 组所占的百分比得到扇形统计图中“E”所在扇形圆心角的度数;(2)通过树状图展示12种等可能的结果数,找出恰好选中一名男生和一名女生的结果数,然后根据概率公式求解.【解答】解:(1)参加初赛的选手的人数为8÷20%=40(人);扇形统计图中,E组对应的圆心角=360°×=54°;故答案为40,54;(2)画树状图为:共有12种等可能的结果数,其中恰好选中一名男生和一名女生的结果数为8,所以恰好选中一名男生和一名女生的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.21.【分析】(1)设旗杆的高度为x米,则EB=(x+1)米,利用锐角三角函数列式计算即可;(2)设夏至日旗杆的影长为y米,根据锐角三角函数解得y的值,然后根据旗杆的底座长8米,旗杆位于底座中心.根据8÷2=4,比较y与4的大小,进而可以解决问题.【解答】解:(1)设旗杆的高度为x米,则EB=(x+1)米,根据题意可知:∠BDE=67.4°,∠BCE=73.5°.DC=4.8米,∴tan∠BDE==≈2.4,tan∠BCE==≈,∴≈2.4,解得x=37.4,∴旗杆的高度为37.4米;(2)∵旗杆的高度为37.4米,则BE=38.4米,设夏至日旗杆的影长为y米,∵tan12°=y÷BE≈0.21,解得y=0.21×38.4≈8.1,∵旗杆的底座长8米,宽6米,∴底座的对角线是10米,∴8.1>5,∴夏至日旗杆的影子不能落在台阶上.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题、平行投影、三角函数;借助仰角构造直角三角形并解直角三角形是解决问题的关键.22.【分析】(1)连接OC,根据切线的性质可得∠OCD=90°,再根据AD⊥DC,和半径线段即可证明AC是∠DAB的角平分线;(2)利用圆周角定理得到∠ACB=90°,再证明Rt△ADC∽Rt△ACB,对应边成比例即可求出AC的长.【解答】解:(1)证明:连接OC,如图,∵CD与⊙O相切于点C,∴∠OCD=90°,∴∠ACD+∠ACO=90°,∵AD⊥DC,∴∠ADC=90°,∴∠ACD+∠DAC=90°,∴∠ACO=∠DAC,∵OA=OC,∴∠OAC=∠OCA,∴∠DAC=∠OAC,∴AC是∠DAB的角平分线;(2)∵AB是⊙O的直径,∴∠ACB=90°,∴∠D=∠ACB=90°,∵∠DAC=∠BAC,∴Rt△ADC∽Rt△ACB,∴=,∴AC2=AD•AB=2×3=6,∴AC=.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径,若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理.23.【分析】(1)设柏树的单价为x元/棵,杉树的单价是y元/棵,根据“购买2棵柏树和3棵杉树共需850元;购买3棵柏树和2棵杉树共需900元”列出二元一次方程组,求解即可;(2)设购买柏树a棵,则杉树为(80﹣a)棵,购树总费用为w元,根据题意求出w与a的函数关系式,然后根据总费用和两种树的棵数关系列出不等式组,求出a的取值范围,再根据a是正整数确定出购买方案.【解答】解:(1)设柏树的单价为x元/棵,杉树的单价是y元/棵,根据题意得:,解得,答:柏树的单价为200元/棵,杉树的单价是150元/棵;(2)设购买柏树a棵,则杉树为(80﹣a)棵,购树总费用为w元,根据题意:a≥3(80﹣a),解得a≥60,w=200a+150(80﹣a)=50a+12000,∵50>0,∴w随a的增大而增大,又∵a为整数,∴当a=60时,w=15000,最小此时,80﹣a=20,即购买柏树60棵,杉树20棵时,总费用最小为15000元.【点评】本题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.24.【分析】(1)由A、B点的坐标,利用待定系数法可求得直线AB的解析式;(2)由条件可求得E点坐标,则可求得F点的坐标,利用三角形中位线定理可求得G 点坐标,则可求得反比例函数解析式;(3)可设出F点坐标,则可表示出G点坐标,代入反比例函数解析式进行判断即可.【解答】解:(1)设直线AB的解析式为y=ax+b,把A、B坐标代入可得,解得,∴直线AB的解析式为y=﹣x+5;(2)∵A(5,0),∴OA=5,当D与A重合时,则OE=OD﹣DE=5﹣2=3,∵∠EFD=45°,∴EF=DE=2,∵F(3,2),D(5,0),∵G为DF的中点,∴G(4,1),∴k=4×1=4,∴经过点G的反比例函数的解析式为y=;(3)设F(t,﹣t+5),则D点横坐标为t+2,代入直线AB解析式可得y=﹣(t+2)+5=﹣t+3,∴D(t+2,﹣t+3),∵G为DF中点,∴G(t+1,﹣t+4),若反比例函数同时过G、F点,则可得t(﹣t+5)=(t+1)(﹣t+4),解得t=2,此时F点坐标为(2,3),设过F、G的反比例函数解析式为y=,则s=2×3=6,∴经过点G的反比例函数的图象能同时经过点F,其函数解析式为y=.【点评】本题为反比例函数的综合应用,涉及待定系数法、等腰直角三角形的性质、三角形中位线定理等知识.在(1)中注意待定系数法的应用,在(2)中求得G点坐标是解题的关键,注意中点坐标的求法,在(3)中用t分别表示出F、G的坐标是解题的关键.本题考查知识点较多,综合性较强,难度适中.25.【分析】(1)结论:CE=CD.证明△BCD≌△ACE(ASA)可得结论.(2)①结论有变化.CD=CE.证明△BCD∽△ACE可得结论.②如图2中,过点C作CH⊥AB于H.设EC=a,则CD=a,根据四边形ACED的面积为3,构建方程求出a即可解决问题.【解答】解:(1)结论:CE=CD.理由:如图1中,∵∠ACB=90°,∠B=45°,∴∠B=∠CAB=45°,∴CA=CB,∵AE⊥BA,CE⊥CD,∴∠ACB=∠ECD=∠BAE=90°,∴∠BCD=∠ACE,∠CAE=∠B=45°,∴△BCD≌△ACE(ASA),∴CD=CE.故答案为CE=CD.(2)①结论有变化.CD=CE.理由:如图2中,∵∠ACB=90°,∠B=30°,∴∠BAC=60°,BC=AC,∵AE⊥BA,CE⊥CD,∴∠ACB=∠ECD=∠BAE=90°,∴∠BCD=∠ACE,∠CAE=∠B=30°,∴△BCD∽△ACE,∴==,∴CD=CE.②如图2中,过点C作CH⊥AB于H.设EC=a,则CD=a,∵AC=2,∠ACH=30°,∠CHA=90°,∴AH=AC=1,CH=AH=,∴DH==,∴AD=﹣1,=3,∵S四边形ACED+S△ECD=3,∴S△ACD∴×(﹣1)•+•a•a=3,整理得:a4﹣17a2+52=0,∴a2=4或13(舍弃),∵a>0,∴a=2,∴DH=3,∵BH=CH=3,∴BD=BH+DH=6.【点评】本题属于四边形综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.26.【分析】(1)设抛物线的解析式为y=(x+3)(x+n),将点C的坐标代入可求得n的值,则可得到抛物线的解析式,然后利用配方法可求得抛物线的顶点坐标;(2)过点E作ED⊥BC,垂足为D.由题意可得到△OBC和△CDE均为等腰直角三角形,然后求得CE、BC、DE的长,最后利用锐角三角函数的定义求解即可;(3)先证明tan∠FDB=tan∠CBE,从而得到∠FDB=∠CBE,当=或当∠BMD =∠BCE=45°时,△DMB和△BCE相似.【解答】解:(1)设抛物线的解析式为y=(x+3)(x+n),将点C的坐标代入得:3n=﹣3,解得n=﹣1.∴抛物线的解析式为y=(x+3)(x﹣1)即y=x2﹣2x﹣3.∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴D(1,﹣4).(2)如图1所示:过点E作ED⊥BC,垂足为D.∵B(3,0),C(0,﹣3),∴OC=OB=3.∴∠OCB=∠OBC=45°,BC=3∵点E与点C关于抛物线的对称轴对称,∴CE⊥OC,∴∠DCE=45°.∵ED⊥CD,∴△DEB为等腰直角三角形.∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的对称轴为x=1.∴CE=2.∴CD=ED=.∴BD=BC﹣CD=2.∴tan∠CBE==.(3)如图2所示:∵B(3,0),D(1,﹣4),∴A(﹣1,0),F(1,0).∴FB=2,DF=4.∴tan ∠FDB =.∴tan ∠FDB =tan ∠CBE .∴∠FDB =∠CBE .∴当=时,△BCE ∽△DBM .∴=,解得:MD =.∴点M 的纵坐标=﹣4+=﹣.∴M (1,﹣).如图3所示:∵∠FDB =∠CBE ,∴当∠BMD =∠BCE =45°时,△DMB ∽△BCE .∴FM =FB =2.∴M (1,2).综上所述,当点M 的坐标为(1,﹣)或(1,2)时,△DMB 和△BCE 相似.【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、等腰直角三角形的判定和性质、相似三角形的判定,找出△DMB 和△BCE 相似的条件是解答本题的关键。
2024年新疆维吾尔自治区喀什地区中考二模数学试题(解析版)
2024年初中学业水平模拟考试数学试题卷考生须知:1.本试卷分为试题卷和答题卷两部分,试题卷共5页,答题卷共6页.2.满分150分,考试时间120分钟.3.不得使用计算器.一、单项选择题(本大题共9小题,每小题4分,共36分,请按答题卷中的要求作答)1. 的相反数是( )A. 2024B. C. D. 【答案】A【解析】【分析】根据相反数的定义,即可求解,本题考查了相反数的定义,熟记“只有符号不同的两个数叫做互为相反数”是解题关键.【详解】解:的相反数是2024,故选:.2. 原木旋转陀螺是一种传统益智玩具,是圆锥与圆柱的组合体,则它的主视图是( )A. B. C. D.【答案】A【解析】【分析】根据圆锥与圆柱的组合体的主视图是长方形与三角形,即可求解.【详解】解:依题意,圆锥与圆柱的组合体的主视图是长方形与三角形故选:A .【点睛】本题考查了判断组合体的三视图,熟练掌握三视图的定义是解题的关键.3. 若点在第二象限,且到轴的距离是3,到轴的距离是1,则点的坐标是()2024-2024-1202412024-2024-A P x y PA. B. C. D. 【答案】B【解析】【分析】根据到x 轴的距离是纵坐标的绝对值,到y 轴的距离是横坐标的绝对值进行求解即可.【详解】解:∵点P 到轴的距离是3,到轴的距离是1,∴点P 的横坐标的绝对值为1,纵坐标的绝对值为3,又∵点在第二象限,∴点P 的坐标为,故选B .【点睛】本题考查了平面直角坐标系各象限坐标符号的特征和点到坐标轴的距离,熟记相关基础知识是解决本题的关键.4. 如图所示,直线,则( )A. B. C. D. 【答案】C【解析】【分析】根据三角形外角性质求出,再利用两直线平行内错角相等即可求出.【详解】,,,直线,.故选:C .【点睛】本题考查了三角形外角的性质,平行线的性质,熟练掌握和运用这些性质是解题关键.5. 下列运算结果正确是( )A. B. C. D. 【答案】C 的的()3,1()1,3-()1,3--()3,1-x y P ()1,3-,231,28a b A ∠=∠=︒︒∥1∠=61︒60︒59︒58︒DBC ∠1∠28A ∠=︒ 231∠=︒283159DBC ∴∠=︒+︒=︒ //a b 159DBC ∴∠=∠=︒4482x x x+=()32626x x -=-633x x x ÷=236x x x ⋅=【分析】根据积的乘方,同底数幂的乘法,除法法则,合并同类项法则,逐一进行计算即可得出结论.【详解】解:A 、,选项计算错误,不符合题意;B 、,选项计算错误,不符合题意;C 、,选项计算正确,符合题意;D 、,选项计算错误,不符合题意;故选C .【点睛】本题考查积的乘方,同底数幂的乘法,除法,合并同类项.熟练掌握相关运算法则,是解题的关键.6. 关于x 的一元二次方程的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根【答案】A【解析】【分析】对于,当, 方程有两个不相等的实根,当, 方程有两个相等的实根,, 方程没有实根,根据原理作答即可.【详解】解:∵,∴,所以原方程有两个不相等的实数根,故选:A .【点睛】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题关键.7. 电影《孤注一掷》于2023年8月8日在中国大陆上映,某地第一天票房约3亿元,以后每天票房按相同的增长率增长,三天后票房收入累计达13亿元,若把每天的平均增长率记作x ,则方程可以列为( )A. B. C. D. 【答案】D 4442x x x +=()32628x x -=-633x x x ÷=235x x x ×=280x mx +-=20(0)ax bx c a ++=≠0∆>Δ0=Δ0<280x mx +-=()2248320m m ∆=-⨯-=+>3(1)13x +=23(1)13x +=233(1)13x ++=233(1)3(1)13x x ++++=【分析】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.由第一天为3亿,根据增长率为得出第二天为亿,第三天为亿,根据三天累计为13亿,即可得出关于的一元二次方程.【详解】解:设增长率为,根据题意得:.故选:D .8. 关于二次函数,下列说法不正确的是( )A. 顶点坐标为 B. 当时,随x 增大而减小C. 函数有最小值2D. 当时,有最小值6【答案】B【解析】【分析】本题主要考查了二次函数的图象与性质,熟练掌握二次函数的性质是解此题的关键.首先将二次函数化为顶点式,然后根据二次函数的性质求解即可.【详解】∵,∴顶点坐标为,故A 选项正确,不符合题意;当时,随x 增大而增大,故B 选项错误,符合题意;函数有最小值2,故C 选项正确,不符合题意;当时,有最小值6,故D 选项正确,不符合题意;故选B .9. 如图,正方形的顶点,,延长交x 轴于点,作正方形,延长交x 轴于点,作正方形,…,按照这样的规律,点的纵坐标为( )A. B. C.D. x ()31x +()231x +x x 233(1)3(1)13x x ++++=223y x x =-+()12,3x ≥3x ≥2223(1)2y x x x =-+=-+()12,3x ≥3x ≥ABCD (0,1)A (1,0)B DC 1B 111DB C D 11D C 2B 1222D B C D 2024D 202521-101222024220252【解析】【分析】本题考查了正方形的性质、规律型、点的坐标,连接,根据已知可得,即可得,然后根据正方形的性质可得,,从而求出点D 的纵坐标,同理可求得点的纵坐标,最后从数字找规律即可.【详解】解:连接,∵,∴,∵,∴∵四边形是正方形,∴,∴,∴点D 的纵坐标为,∵,∴同理可得:,,,∴点的纵坐标分别是:,112233BD B D B D B D ,,,1OA OB ==AB =2BD =90OBD ∠=︒123D D D ,,112233BD B DB D B D ,,,()()01,10A B ,,1OA OB ==90AOB ∠=︒AB ==ABCD 9045DAB AB AD ABD BDC ∠=︒=∠=∠=︒,,2BD ==122=118090DBB OBD ∠=︒-∠=︒1DB ==114D B ==121122128D B B B B ====2322332316D B B B B ====123D D D D 、、、12342222、、、∴点的纵坐标为,故选:D .二、填空题(本大题共6小题,每小题4分,共24分.请按答题卷中的要求作答)10.x 的取值范围是______.【答案】【解析】【分析】根据二次根式有意义的条件即可求出答案.详解】解:根据题意得:,解得:.故答案为:.【点睛】本题考查二次根式有意义的条件,解题的关键是理解二次根式有意义,即被开方数大于或等于0.11. 反比例函数y =的图像经过点(-2,3),则k 的值为_______.【答案】-7【解析】【分析】利用反比例函数图象上点的坐标特征得到k +1=-2×3,然后解方程即可.【详解】∵反比例函数y =的图象经过点(-2,3),∴k +1=-2×3,∴k =-7.故答案为-7.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数(k 为常数,k ≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy =k .12. 为全面落实“双减”工作,某校成立了义务宣讲团,为学生家长做“双减”政策解读,现招募两个宣讲教师,有四个老师A 、B 、C 、D 备选,则恰好选中和的概率是____________.【答案】【解析】【分析】画出树状图,利用概率公式即可求解.【2024D 202524x ≤40x -≥4x ≤4x ≤1k x +1k x +k y x =A D 16【详解】解:画树状图如下:共有12种情况,恰好选中和的有2种情况,则恰好选中和的概率是,故答案为:.【点睛】本题考查了列表法或树状图求概率,根据题意画出列表法或树状图,利用概率公式计算概率是解题的关键.13. 如图, 内接于, 是的直径,若,则的度数是___________.【答案】##度【解析】【分析】本题考查直径所对的圆周角等于和同弧所对的圆周角相等,连接,结合,求得,即可求解.【详解】解:连接,如图所示:是的直径,,,,,,A D A D 21126=16ABC O BD O 62ABD ∠=︒C ∠28︒2890︒AD 62ABD ∠=︒D ∠AD BD Q O 90BAD ∴∠=︒62ABD ∠=︒ 28D ∴∠=︒ AB AB = 28C ∴∠=︒故答案为:.14. 如图是抛物线型拱桥,当拱顶离水面2m 时,水面宽4m .水面上升1.5m ,水面宽度为_____m .【答案】2【解析】【分析】本题考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键,学会把实际问题转化为二次函数,利用二次函数的性质解决问题,属于中考常考题型.根据已知建立平面直角坐标系,进而求出二次函数解析式,再通过把代入抛物线解析式得出水面宽度,即可得出答案.【详解】解:建立平面直角坐标系,设横轴x 通过,纵轴y 通过中点O 且通过C 点,则:O 为原点,,;设函数解析式为,把A 点坐标代入得,∴抛物线解析式为,当水面上升1.5米,通过抛物线在图上的观察可转化为:当时,对应的抛物线上两点之间的距离,把代入抛物线解析式得出:,解得:,∴此时的水面宽度为m故答案为2.15. 如图,在矩形ABCD 中,AB =,AD =4,点E 为线段CD 的中点,动点F 从点C 出发,沿28︒ 1.5y =AB AB ()0,2C ()()2,0,2,0A B -22y ax =+()2,0-0.5a =-20.52y x =-+1.5y =1.5y =21.50.52x =-+1x =±112+=C →B →A 的方向在CB 和BA 上运动,将矩形沿EF 折叠,点C 的对应点为C ',当点C '恰好落在矩形的对角线上时(不与矩形顶点重合),点F 运动的距离为_____.【答案】2或4【解析】【分析】分点C′落在对角线BD上和点C′落在对角线AC 上两种情况分别进行讨论求解,即可得出点F 运动的距离.【详解】分两种情况:①当点C ′落在对角线BD 上时,连接CC ′,如图1所示:∵将矩形沿EF 折叠,点C 的对应点为点C ′,且点C '恰好落在矩形的对角线上,∴CC ′⊥EF ,∵点E 为线段CD 的中点,∴CE =ED =EC ′,∴∠CC ′D =90°,即CC ′⊥BD ,∴EF ∥BD ,∴点F 是BC 的中点,∵在矩形ABCD 中,AD =4,∴BC =AD =4,∴CF =2,∴点F 运动的距离为2;②当点C ′落在对角线AC 上时,作FH ⊥CD 于H ,则CC ′⊥EF ,四边形CBFH 为矩形,如图2所示:在矩形ABCD 中,AB =AD =4,∠B =∠BCD =90°,AB ∥CD ,∴BC =AD =4,tan ∠BAC=,∴∠BAC =30°,∵EF ⊥AC,∴∠AFE =60°,∴∠FEH =60°,∵四边形CBFH 为矩形,∴HF =BC =4,∴EH =,∵EC =CD =∴BF =CH=CE ﹣EH =∴点F 运动的距离为4综上所述:点F 运动的距离为2或4故答案为:2或4.【点睛】本题考查了几何变换综合题,需要利用翻折变换的性质、矩形的性质、平行线的性质、三角函数的应用等知识;熟练掌握矩形的性质,熟记翻折变换的性质是解题的关键.三、解答题(本大题共9小题,共90分.解答应写出必要的文字说明、证明过程或演算步骤)16. (1)计算:BC AB HF tan 60 12201(π2024)3tan 3012-⎛⎫--︒+-- ⎪⎝⎭(2)先化简,再求值:,再从、0、1三个数中选择一个你认为合适的数作为x 的值代入求值.【答案】(1)4(2),当时,原式=【解析】【分析】本题考查了含特殊角的三角函数的混合运算以及分式化简求值,正确掌握相关性质内容是解题的关键.(1)先化简零次幂、负整数指数幂,求正切值,绝对值,再运算加减,即可作答.(2)先通分括号内,再运算除法,再化简得出,然后把代入,即可作答.【详解】解:(1);(2)∵分母不为0∴则把代入,得出.2211121x x x x x x ⎛⎫--+÷ ⎪+++⎝⎭1-11x x +-0x =1-11x x +-1-201(π2024)3tan 3012-⎛⎫--︒+-- ⎪⎝⎭()21312=-+-+-114=-+-+4=2211121x x x x x x ⎛⎫--+÷ ⎪+++⎝⎭()()22111121x x x x x x x -+--=÷+++221111x x x x ++=⨯+-()21111x x x +=⨯+-11x x +=-1x ≠±0x =11x x +-01101+=--17. 解不等式组:,并写出它的正整数解.【答案】,正整数解为1,2,3【解析】【分析】本题考查的是解一元一次不等式组并求出其整数解,正确求出每一个不等式解集是基础,熟记“同大取大,同小取小,大小小大中间找,大大小小找不到” 的方法是解答此题的关键.再求出每个不等式的解,再求出解集,然后再找到对应的整数解即可.【详解】解:解不等式①:解不等式②:故不等式组的解集为:,正整数解为:1,2,3.18. 某芒果种植基地,去年结余500万元,估计今年可结余980万元,并且今年收入比去年高,支出比去年低,去年的收入、支出各是多少万元?【答案】收入2120万元,支出1620万元【解析】【分析】本题主要考查了二元一次方程组的实际应用,设去年收入x 万元,支出y 万元,本题的等量关系是:去年的收入去年的支出万元.今年的收入今年的支出万元.然后根据这两个等量关系来列方程组,求出未知数的值即可得到答案.【详解】解:设去年收入x 万元,支出y 万元,根据题意,得()2125223x x x x -⎧≥-⎪⎨⎪-<⎩43x -<≤21252(2)3x x x x -⎧≥-⎪⎨⎪-<⎩①②21510x x -≥-39x -≥-3x ≤2(2)3x x-<243x x-<4x >-43x -<≤15%10%-500=-960=()()500115%110%980x y x y -=⎧⎨+--=⎩解得,答:去年收入2120万元,支出1620万元.19. 如图,在平行四边形中,点E 、F 、G 、H 分别在边上,且,连接.(1)求证:;(2)若,求的度数.【答案】(1)见解析(2)【解析】【分析】本题考查平行四边形的性质与判定,矩形的判定与性质,全等三角形的判定与性质,关键是证明四边形是矩形.(1)由平行四边形的性质得到,得到,由即可证明;(2)由,,得到,推出四边形是平行四边形,又,得到四边形是矩形,因此,进而可求出的度数.【小问1详解】证明:∵四边形是平行四边形,∴,∵,∴,∴,在和中,,∴;21201620x y =⎧⎨=⎩ABCD AB BC CD DA 、、、,AE CG BF DH ==EG 、FH AEH CGF ≌35EG FH AHE =∠=︒,DHG ∠55︒EFGH ,A C AD BC ∠=∠=AH CF =SAS AEH CGF ≌AEH CGF ≌DHG BFE ≌HE FG GH EF ==,EFGH EG FH =EFGH 90EHG ∠=︒DHG ∠ABCD A C AD BC ∠=∠=,BF DH =AD DH BC BF -=-AH CF =AEH △CGF △AE CG A C AH CF =⎧⎪∠=∠⎨⎪=⎩()SAS AEH CGF ≌【小问2详解】由(1)知,同理:,∴,∴四边形是平行四边形,∵,∴四边形是矩形,∴,∵,∴.20. 为提高居民防范电信网络诈骗的意识,某社区举办相关知识比赛.现从该社区甲、乙两个参赛代表队中各随机抽取10名队员的比赛成绩(满分100分),并进行整理、描述和分析(分数用x 表示,共分为四组:A . ,B . ,C . ,D . ),下面给出了部分信息:甲队10名队员的比赛成绩:69,79,88,90,92,94,94,96,98,100.乙队10名队员的比赛成绩在D 组中的所有数据为:92,92,97,99,99,99.甲、乙代表队中抽取的队员比赛成绩统计表代表队平均数中位数众数“C ”组所占百分比甲90a 9410%乙9092b 20%AEH CGF ≌DHG BFE ≌HE FG GH EF ==,EFGH EG FH =EFGH 90EHG ∠=︒35AHE ∠=︒18055DHG EHG AHE ∠=︒-∠-∠=︒6070x ≤<7080x ≤<8090x ≤<90x ≥根据以上信息,解答下列问题:(1)填空:______,______,______;(2)该社区甲代表队有200名队员、乙代表队有230名队员参加了此次比赛,估计此次比赛成绩在A 组的队员共有多少名;(3)根据以上数据,你认为甲、乙哪个代表队的比赛成绩更好?请说明理由(写出一条理由即可).【答案】(1)93,99,10(2)43(3)甲队,理由见详解.【解析】【分析】本题主要考查中位数、众数、平均数以及所占比例的意义和计算方法.(1)根据中位数、众数的定义和百分比之和为1求解即可;(2)甲队总人数乘以样本中A 组所占比例加上乙队总人数乘以样本中A 组所占比例即可.(3)根据平均数和中位数定义求解即可.【小问1详解】解:甲队10名队员的比赛成绩:69,79,88,90,92,94,94,96,98,100.所以,,∴根据成绩统计表和扇形统计图可知:乙队10名队员的比赛中A 组有1人,B 组有1人,C 组有2人,∴乙队10名队员中众数为D 组出现3次的99.故答案为:93,99,10.【小问2详解】根据题意,甲队A 组人员有1人,∴A 组占比为:,由(1)可知乙队A 组占比:,∴此次比赛成绩在A 组的队员共有(人),的=a b =m =()19294932a =+=6%110%20%100%10%10m ⎛⎫=---⨯= ⎪⎝⎭10m =10%10%20010%23010%43⨯+⨯=【小问3详解】根据甲、乙代表队比赛成绩统计表,可知:甲队的比赛成绩更好,代表队平均数中位数众数甲909394乙909299∵甲、乙队平均数都为相等,而甲队的中位数大于乙队,∴甲队的比赛成绩更好.21. 如图,某无人机爱好者在一小区外放飞无人机,当无人机飞行到一定高度点处时,无人机测得操控者的俯角为75°,测得小区楼房顶端点处的俯角为45°.已知操控者和小区楼房之间的距离为70米,此时无人机距地面的高度为74.6米,求小区楼房的高度.(参考数据:,,)【答案】24.6米【解析】【分析】过点作于点,过点作于点,在中,由正切的三角函数可求得AE 的长,从而可得BE 的长,易得是等腰直角三角形,由矩形的性质及等腰直角三角形的性质即可求得楼房BC 的高度.【详解】过点作于点,过点作于点由题意知:∠DAE =75°在中,∴(米) ∴(米)∵四边形是矩形∴米D A BC C A BC D AB BC sin 750.97︒=cos750.26︒=tan 75 3.73︒=D DE AB ⊥E C CF DE ⊥F Rt ADE △CDF D DE AB ⊥E C CF DE ⊥FRt ADE △tan DE DAE AE ∠=74.620tan 75 3.73DE AE ===702050BE AB AE =-=-=BCFE 50FC BE ==在中,∴是等腰直角三角形∴米∴(米)故小区楼房的高度24.6米.【点睛】本题是解直角三角形的应用问题,考查了矩形的性质与判定,等腰三角形的性质与判定,锐角三角函数等知识,理解俯角的含义并通过辅助线构造直角三角形是本题的关键.22. 在中小学生科技节中,某校展示了学生自主研制的甲、乙两种电动车搬运货物的能力.这两种电动车充满电后都可以连续搬运货物30分钟.甲种电动车先开始搬运,6分钟后,乙种电动车开始搬运.线段、分别表示两种电动车的搬运货物量(千克)与时间(分)(从甲种电动车开始搬运时计时)的函数图象,根据图象提供的信息,解答下列问题:(1)甲种电动车每分钟搬运货物量为______千克,乙种电动车每分钟笒运货物量为______千克.(2)当时,求乙种电动车搬运货物量(千克)与时间(分)之间的函数关系式.(3)在甲、乙两车同时搬运货物的过程中,直接写出二者搬运量相差8千克时的值.【答案】(1)4,6(2)(3)14或22【解析】【分析】(1)由图可知甲、乙两车搬运72千克的货物分别用时18分,12分,由此可解;(2)函数图象经过,,利用待定系数法即可求解;(3)时,甲、乙两车同时搬运货物,根据二者搬运量相差8千克列方程即可.【小问1详解】的Rt DCF △45DCF ∠=︒CDF 50DF CF ==74.65024.6BC EF DE DF ==-=-=BC OA BC y x 636x ≤≤y x x 636y x =-()6,0()18,72630x ≤≤解:由图可知,甲种电动车每分钟搬运货物量为(千克),乙种电动车每分钟搬运货物量为(千克),故答案为:4,6;【小问2详解】解:设时,乙种电动车的搬运货物量(千克)与时间(分)之间的函数关系式为,由图可知,图象经过,,,解得,时,乙种电动车的搬运货物量(千克)与时间(分)之间的函数关系式为;【小问3详解】解:设甲种电动车的搬运货物量(千克)与时间(分)之间的函数关系式为,将代入,得,解得,甲种电动车的搬运货物量(千克)与时间(分)之间的函数关系式为,两种电动车充满电后都可以连续搬运货物30分钟,当时,甲、乙两车同时搬运货物,若二者搬运量相差8千克,则或解得或,因此,二者搬运量相差8千克时,的值为14或22.【点睛】本题考查一次函数的实际应用,解题的关键是能够利用待定系数法求函数解析式,第3问注意分情况讨论.23. 如图,在中,,点O 为边上一点,以为半径的与相切于点D ,分别交边于点E ,F .72418=726186=-636x ≤≤y x y kx b =+()6,0()18,72∴601872k b k b +=⎧⎨+=⎩636k b =⎧⎨=-⎩∴636x ≤≤y x 636y x =-y x y mx =()18,727218m =4m =∴y x 4y x = ∴630x ≤≤()46368x x --=()63648x x --=14x =22x =x Rt ABC △90C ∠=︒AB OA O BC AB AC ,(1)求证:平分;(2)若,求的长.【答案】(1)见解析(2)7.5【解析】【分析】(1)连接,由切线的性质可知,即可证,得出,再结合等腰三角形的性质,即可求出,即平分;(2)连接,由,,可得出,结合勾股定理可求出又易证,得出,代入数据求解即可.【小问1详解】证明:如图,连接.∵是的切线,是的半径,D 是切点,∴,∴,∴,∴.∵,∴,∴,∴平分;【小问2详解】解:如图,连接,∵在中,,,∴, AD BAC ∠26tan 1AC CAD =∠=,AE OD 90ODB C ∠=∠=︒OD AC ∥ODA CAD ∠=∠OAD CAD ∠=∠AD BAC ∠DE 1tan 2CAD ∠=6AC =132CD AC ==AD =ADE ACD △∽△AE AD AD AC =OD BC O ☉OD O ☉OD BC ⊥90ODB C ∠=∠=︒OD AC ∥ODA CAD ∠=∠OD OA =ODA OAD ∠=∠OAD CAD ∠=∠AD BAC ∠DE Rt ACD △1tan 2CAD ∠=6AC =132CD AC ==∴∵是直径,∴,∴,由(1)知,∴,∴,∴.【点睛】本题考查切线的性质,角平分线的定义,勾股定理,锐角三角函数,相似三角形的判定和性质等知识.正确连接辅助线是解题关键.24. △ABC 和△DEC 是等腰直角三角形,,,.(1)【观察猜想】当△ABC 和△DEC 按如图1所示的位置摆放,连接BD 、AE ,延长BD 交AE 于点F ,猜想线段BD 和AE 有怎样的数量关系和位置关系.(2)【探究证明】如图2,将△DCE绕着点C 顺时针旋转一定角度,线段BD 和线段AE 的数量关系和位置关系是否仍然成立?如果成立,请证明:如果不成立,请说明理由.(3)【拓展应用】如图3,在△ACD 中,,,,将AC 绕着点C 逆时针旋转90°至BC ,连接BD ,求BD 的长.【答案】(1) ,(2)成立,理由见解析 A D ===AE 90ADE ∠=︒ADE C ∠=∠EAD CAD ∠=∠ADE ACD △∽△AE AD AD AC ==7.5AE =90ACB DCE ∠=∠=︒AC BC =CD CE =()090αα︒<<︒=45ADC ∠︒CD =4=AD BD AE =BD AE ⊥(3)【解析】【分析】(1)通过证明,即可求证;(2)通过证明,即可求证;(3)过点C 作,垂足为C ,交AD 于点H ,根据旋转的性质,等腰直角三角形的性质,勾股定理,即可求解.【小问1详解】,,证明如下:在和中,,,,,,,,,,;【小问2详解】成立,理由如下:∵,∴,即,在和中,∵,,,∴,∴,,∵,∴,∵,∴,∴,BCD ACE ≅ BCD ACE ≅ CH CD ⊥BD AE =BD AE ⊥BCD △ACE △90ACB DCE ∠=∠=︒Q AC BC =CD CE =BCD ACE ∴≅ ,BD AE CBD CAE ∴=∠=∠90ACB ∠=︒ 90CBD BDC ∴∠+∠=︒BDC ADF ∠=∠ 90CAE ADF ∴∠+∠=︒BD AE ∴⊥ACB DEC ∠=∠ACB ACD DCE ACD ∠+∠=∠+∠BCD ACE ∠=∠BCD △ACE △AC BC =BCD ACE ∠=∠CD CE =BCD ACE ≌BD AE =CBD CAE ∠=∠BGC AGF ∠=∠CBD BGC CAE AGF ∠+∠=∠+∠90ACB ∠=︒90CBD BGC ∠+∠=︒90CAE AGF ∠+∠=︒∴,∴;【小问3详解】如图,过点C 作,垂足为C ,交AD 于点H ,由旋转性质可得:,,∵,∴,∵,且,∴,∴,∴在中:,∵,∴,即,在和中,∵,,,∴,∴,,∴,∵,∴,∴,∴,∴,∴是直角三角形,90AFB ∠=︒BD AE ⊥CH CD ⊥90ACB ∠=︒AC BC =CH CD ⊥90DCH ∠=︒90ADC CHD ∠+∠=︒=45ADC ∠︒45CHD ∠=︒CHD ADC ∠=∠CD CH ==Rt DCH V 2DH ===90ACB DCH ∠=∠=︒ACB ACH DCH ACH ∠+∠=∠+∠ACD BCH ∠=∠ACD B C H V AC BC =ACD BCH ∠=∠CD CH =ACD BCH ≌△△4BH AD ==CBH DAC ∠=∠12CBH DAC ∠+∠=∠+∠90ACB ∠=︒190CBH ∠+∠=︒290DAC ∠+∠=︒90BHA ∠=°BH AD ⊥BHD在中,.【点睛】本题考查了全等三角形的判定和性质,勾股定理,旋转的性质,等腰直角三角形的性质等,熟练掌握知识点是解题的关键.Rt BDHBD ===。
2020-2021学年江苏省南京市中考数学二模试卷(2)及答案解析
江苏省南京市中考数学二模试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)据报道,截止2016年12月27日,根据江苏作家张嘉佳小说改编的电影《摆渡人》累计票房达32800万元,用科学记数法表示32800万元是()A.328×106元B.32.8×107元C.3.28×108元D.0.328×109元2.(2分)下列学生剪纸作品中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(2分)计算3﹣2的结果是()A.﹣6 B.C.D.﹣4.(2分)使式子有意义的x的取值范围是()A.x>1B.x<1C.x≠1D.x≥15.(2分)一块长方形菜园,长是宽的3倍,如果长减少3米,宽增加4米,这个长方形就变成一个正方形.设这个长方形菜园的长为x米,宽为y米,根据题意,得()A.B.C.D.6.(2分)下列关于正方形的叙述,正确的是()A.正方形有且只有一个内切圆B.正方形有无数个外接圆C.对角线相等且垂直的四边形是正方形D.用一根绳子围成一个平面图形,正方形的面积最大二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)的相反数是,的倒数是.8.(2分)若△ABC∽△DEF,请写出1个正确的结论:.9.(2分)把4x2﹣16因式分解的结果是.10.(2分)已知x1、x2是一元二次方程x2+x﹣5=0的两个根,则x12+x22﹣x1x2= .11.(2分)已知点A(3,y1)、B(m,y2)是反比例函数y=的图象上的两点,且y1<y2.写出满足条件的m的一个值,m可以是.12.(2分)如图,∠3=40°,直线b平移后得到直线a,则∠1+∠2= °.13.(2分)如图,顺次连接菱形ABCD的各边中点E、F、G、H.若AC=a,BD=b,则四边形EFGH的面积是.14.(2分)如图,△AOB和△COD中,∠AOB=∠COD=90°,∠B=40°,∠C=60°,点D在OA上.将△COD绕点O顺时针旋转一周,在旋转过程中,当旋转角是°时,CD∥AB.15.(2分)平面直角坐标系中,原点O关于直线y=﹣x+4对称点O1的坐标是.16.(2分)定点O、P的距离是5,以点O为圆心,一定的长为半径画圆⊙O,过点P作⊙O的两条切线,切点分别是B、C,则线段BC的最大值是.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)先化简,再求值:,其中x=3.18.(7分)(1)解不等式﹣≤1,并把它的解集在数轴上表示出来;(2)若关于x的一元一次不等式x≥a只有3个负整数解,则a的取值范围是.19.(6分)QQ运动记录的小莉爸爸2月份7天步行的步数(单位:万步)如下表:日期2月6日2月7日2月8日2月9日2月10日2月11日2月12日步数2.1 1.7 1.8 1.9 2.0 1.8 2.0(2)求小莉爸爸这7天中每天步行的平均步数;(3)估计小莉爸爸2月份步行的总步数.20.(7分)如图,转盘的白色扇形和黑色扇形的圆心角分别为120°和240°.让转盘自由转动2次,求指针一次落在白色区域,另一次落在黑色区域的概率.21.(7分)如图①,窗帘的褶皱是指按照窗户的实际宽度将窗帘布料以一定比例加宽的做法,褶皱之后的窗帘更能彰显其飘逸、灵动的效果.其中,窗宽度的1.5倍为平褶皱,窗宽度的2倍为波浪褶皱.如图②,小莉房间的窗户呈长方形,窗户的宽度(AD)比高度(AB)的少0.5m,某种窗帘的价格为120元/m2.如果以波浪褶皱的方式制作该种窗帘比以平褶皱的方式费用多180元,求小莉房间窗户的宽度与高度.22.(7分)如图,爸爸和小莉在两处观测气球的仰角分别为α、β,两人的距离(BD)是200m,如果爸爸的眼睛离地面的距离(AB)为1.6m,小莉的眼睛离地面的距离(CD)为1.2m,那么气球的高度(PQ)是多少m?(用含α、β的式子表示)23.(8分)命题:有两个角相等的三角形是等腰三角形(简称“等角对等边”).已知:如图,△ABC中,∠B=∠C.求证:AB=AC.三位同学作出了三种不同的辅助线,并完成了命题的证明.小刚的方法:作∠BAC 的平分线AD,可证△ABD≌△ACD,得AB=AC;小亮的方法:作BC边上的高AD,可证△ABD≌△ACD,得AB=AC;小莉的方法:作BC边上的中线AD.(1)请你写出小刚与小亮方法中△ABD≌△ACD的理由:;(2)请你按照小莉的思路完成命题的证明.24.(8分)已知:如图,△ABC的外接圆是⊙O,AD是BC边上的高.(1)请用尺规作出⊙O(不写作法,保留作图痕迹);(2)若AB=8,AC=6,AD=5.4,求⊙O的半径.25.(10分)快车和慢车同时从甲地出发,匀速行驶,快车到达乙地后,原路返回甲地,慢车到达乙地停止.图①表示两车行驶过程中离甲地的路程y(km)与出发时间x(h)的函数图象,请结合图①中的信息,解答下列问题:(1)快车的速度为km/h,慢车的速度为km/h,甲乙两地的距离为km;(2)求出发多长时间,两车相距100km;(3)若两车之间的距离为s km,在图②的直角坐标系中画出s(km)与x(h)的函数图象.26.(10分)如图,二次函数y=ax2+bx﹣4的图象经过A(﹣1,0)、B(4,0)两点,于y轴交于点D.(1)求这个二次函数的表达式;(2)已知点C(3,m)在这个二次函数的图象上,连接BC,点P为抛物线上一点,且∠CBP=60°.①求∠OBD的度数;②求点P的坐标.27.(12分)【问题提出】我们借助学习“图形的判定”获得的经验与方法对“平行四边形的判定”进一步探究.【初步思考】在一个四边形中,我们把“一组对边平行、一组对边相等、一组对角相等或一条对角线被另一条对角线平分”称为一个条件.如图1,四边形ABCD中,我们用符号语言表示出所有的8个条件:①AB=CD;②AD=BC;③AB∥CD;④AD∥BC;【深入探究】小莉所在学习小组进行了研究,她们认为2个条件可分为以下六种类型:Ⅰ关于对边的2个条件;Ⅱ关于对角的2个条件;Ⅲ关于对角线的2个条件;Ⅳ关于边的条件与角的条件各1个;Ⅴ关于边的条件与对角线的条件各1个;Ⅵ关于角的条件与对角线的条件各1个.(1)小明认为“Ⅰ关于对边的2个条件”可分为“①②,③④,①③,①④”共4种不同种类的情形.请你仿照小明的叙述对其它五种类型进一步分类.(2)小红认为有4种情形是平行四边形的判定依据.请你写出其它的三个判定定理.定义:两组对边分别平行的四边形是平行四边形;定理1:;定理2:;定理3:.(3)小刚认为除了4个判定依据外,还存在一些真命题,他写出了其中的1个,请证明这个真命题,并仿照他的格式写出其它真命题(无需证明):真命题1:四边形ABCD中,若∠BAD=∠BCD,∠ABC=∠ADC,则四边形ABCD是平行四边形.(4)小亮认为,还存在一些假命题,他写出了其中的1个,并举反例进行了说明,请你仿照小亮的格式写出其它假命题并举反例进行说明.假命题1:四边形ABCD中,若AB=CD,AD∥BC,则四边形ABCD不一定是平行四边形.反例说明:如图2,四边形ABCD中,AB=CD,AD∥BC,显然四边形ABCD不是平行四边形.参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)据报道,截止2016年12月27日,根据江苏作家张嘉佳小说改编的电影《摆渡人》累计票房达32800万元,用科学记数法表示32800万元是()A.328×106元B.32.8×107元C.3.28×108元D.0.328×109元【解答】解:将32800万用科学记数法表示为:3.28×108,故选:C.2.(2分)下列学生剪纸作品中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、是中心对称图形,不是轴对称图形,故本选项错误;B、是中心对称图形,也是轴对称图形,故本选项正确;C、不是中心对称图形,是轴对称图形,故本选项错误;D、不是中心对称图形,是轴对称图形,故本选项错误.故选:B.3.(2分)计算3﹣2的结果是()A.﹣6 B.C.D.﹣【解答】解:3﹣2=,故选:C.4.(2分)使式子有意义的x的取值范围是()A.x>1B.x<1C.x≠1D.x≥1【解答】解:根据题意,得2x﹣2≥0,解得,x≥1.故选:D.5.(2分)一块长方形菜园,长是宽的3倍,如果长减少3米,宽增加4米,这个长方形就变成一个正方形.设这个长方形菜园的长为x米,宽为y米,根据题意,得()A.B.C.D.【解答】解:设这个长方形菜园的长为x米,宽为y米,根据题意,得.故选:B.6.(2分)下列关于正方形的叙述,正确的是()A.正方形有且只有一个内切圆B.正方形有无数个外接圆C.对角线相等且垂直的四边形是正方形D.用一根绳子围成一个平面图形,正方形的面积最大【解答】解:A、正确.正方形有且只有一个内切圆;B、错误.正方形有且只有一个外接圆;C、错误.对角线相等且垂直的四边形不一定是正方形;D、错误.用一根绳子围成一个平面图形,圆形的面积最大;故选:A.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)的相反数是﹣,的倒数是.【解答】解:的相反数是﹣,倒数是.故答案为﹣,.8.(2分)若△ABC∽△DEF,请写出1个正确的结论:答案不唯一,如:∠A=∠D,∠B=∠E,∠C=∠F,==等.【解答】解:答案不唯一,如:∠A=∠D,∠B=∠E,∠C=∠F,==等;故答案为:答案不唯一,如:∠A=∠D,∠B=∠E,∠C=∠F,==等.9.(2分)把4x2﹣16因式分解的结果是4(x+2)(x﹣2).【解答】解:原式=4(x2﹣4)=4(x+2)(x﹣2)故答案为:4(x+2)(x﹣2)10.(2分)已知x1、x2是一元二次方程x2+x﹣5=0的两个根,则x12+x22﹣x1x2= 16 .【解答】解:根据题意得x1+x2=﹣1,x1x2=﹣5,所以x12+x22﹣x1x2=(x1+x2)2﹣3x1x2=(﹣1)2﹣3×(﹣5)=16.故答案为16.11.(2分)已知点A(3,y1)、B(m,y2)是反比例函数y=的图象上的两点,且y1<y2.写出满足条件的m的一个值,m可以是2(答案不唯一).【解答】解:∵y=的图象位于一三象限,点A在第一象限,∴y1>0,y随x的增大而减小.∵当m<0时,点B位于第三象限,∴y2<0.故假设不成立.当m>0时,点B位于第一象限,∴y2>0.又∵y1<y2,∴m<3.∴0<m<3.所以m的值可为2.故答案为:2.12.(2分)如图,∠3=40°,直线b平移后得到直线a,则∠1+∠2= 220 °.【解答】解:如图,∵直线b平移后得到直线a,∴a∥b,∴∠1+∠4=180°,即∠4=180°﹣∠1,∵∠5=∠3=40°,∴∠2=∠4+∠5=180°﹣∠1+40°,∴∠1+∠2=220°.故答案为220.13.(2分)如图,顺次连接菱形ABCD的各边中点E、F、G、H.若AC=a,BD=b,则四边形EFGH的面积是ab .【解答】解:∵点E、F分别是菱形AB、BC边上的中点,∴EF是△ABC的中位线,∴EF=AC,且EF∥AC.同理,HG=AC,且HG∥AC,∴EF=HG,且EF∥HG.∴四边形EFGH是平行四边形.∴EH∥FG,EH=FG=BD.又∵四边形ABCD是菱形,∴AC⊥BD,∴EF⊥EH,∴四边形EFGH的面积=EF•EH=a•b=ab.故答案是:ab.14.(2分)如图,△AOB和△COD中,∠AOB=∠COD=90°,∠B=40°,∠C=60°,点D在OA上.将△COD绕点O顺时针旋转一周,在旋转过程中,当旋转角是100或280 °时,CD∥AB.【解答】解:①两三角形在点O的同侧时,如图1,设CD与OB相交于点E,∵AB∥CD,∴∠CEO=∠B=40°,∵∠C=60°,∠COD=90°,∴∠D=90°﹣60°=30°,∴∠DOE=∠CEO﹣∠D=40°﹣30°=10°,∴旋转角∠AOD=∠AOB+∠DOE=90°+10°=100°;②两三角形在点O的异侧时,如图2,延长BO与CD相交于点E,∵AB∥CD,∴∠CEO=∠B=40°,∵∠C=60°,∠COD=90°,∴∠D=90°﹣60°=30°,∴∠DOE=∠CEO﹣∠D=40°﹣30°=10°,∴旋转角为270°+10°=280°,综上所述,当旋转角为100°或280°时,边CD恰好与边AB平行.故答案为:100或280.15.(2分)平面直角坐标系中,原点O关于直线y=﹣x+4对称点O1的坐标是(,).【解答】解:如图,∵原点O关于直线y=﹣x+4对称点O1,∴OO1⊥AB,设O1O与直线y=﹣x+4的交点为D,作O1E⊥x轴于E,由直线y=﹣x+4可知A(3,0),B(0,4),∴OA=3,OB=4,∴AB=5,∵S△AOB=OA•OB=AB•OD,∴OD==,∴OO1=,∵∠ADO=∠O1EO=90°,∠AOD=∠EOO1,∴△AOD∽△O1OE,∴=,即=,∴OE=,∴O1E==,∴点O1的坐标是(,),故答案为(,).16.(2分)定点O、P的距离是5,以点O为圆心,一定的长为半径画圆⊙O,过点P作⊙O的两条切线,切点分别是B、C,则线段BC的最大值是 5 .【解答】解:∵PC、PB是⊙O的切线,∴∠PCO=∠PBO=90°,∴点C、B在以OP为直径的圆上,∵BC是这个圆的弦,∴当BC=OP=5时,BC的值最大(直径是圆中最长的弦).故答案为5.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)先化简,再求值:,其中x=3.【解答】解:原式=+•=+1=,当x=3时,原式==2.18.(7分)(1)解不等式﹣≤1,并把它的解集在数轴上表示出来;(2)若关于x的一元一次不等式x≥a只有3个负整数解,则a的取值范围是﹣4<a≤﹣3 .【解答】解:(1)∵2x﹣3(x﹣1)≤6,∴2x﹣3x+3≤6,解得x≥﹣3,这个不等式的解集在数轴上表示如下:.(2)∵关于x的一元一次不等式x≥a只有3个负整数解,∴关于x的一元一次不等式x≥a的3个负整数解只能是﹣3、﹣2、﹣1,∴a的取值范围是:﹣4<a≤﹣3.故答案为:﹣4<a≤﹣3.19.(6分)QQ运动记录的小莉爸爸2月份7天步行的步数(单位:万步)如下表:日期2月6日2月7日2月8日2月9日2月10日2月11日2月12日步数2.1 1.7 1.8 1.9 2.0 1.8 2.0(2)求小莉爸爸这7天中每天步行的平均步数;(3)估计小莉爸爸2月份步行的总步数.【解答】解:(1)用折线统计图表示小莉爸爸这7天内步行的步数如下:;(2)小莉爸爸这7天内每天步行的平均步数为:=×(2.1+1.7+1.8+1.9+2.0+1.8+2.0)=1.9(万步).(3)小莉爸爸2月份步行的步数约为:1.9×28=53.2(万步).20.(7分)如图,转盘的白色扇形和黑色扇形的圆心角分别为120°和240°.让转盘自由转动2次,求指针一次落在白色区域,另一次落在黑色区域的概率.【解答】解:由图得:白色扇形的圆心角为120°,故转动一次,指针指向白色区域的概率为:=,则转动一次,指针指向阴影区域的概率为:,故让转盘自由转动两次.指针一次落在黑色区域,另一次落在白色区域的概率是:2××=.21.(7分)如图①,窗帘的褶皱是指按照窗户的实际宽度将窗帘布料以一定比例加宽的做法,褶皱之后的窗帘更能彰显其飘逸、灵动的效果.其中,窗宽度的1.5倍为平褶皱,窗宽度的2倍为波浪褶皱.如图②,小莉房间的窗户呈长方形,窗户的宽度(AD)比高度(AB)的少0.5m,某种窗帘的价格为120元/m2.如果以波浪褶皱的方式制作该种窗帘比以平褶皱的方式费用多180元,求小莉房间窗户的宽度与高度.【解答】解:设小莉房间窗户的宽度为xm,则高度为(x+0.5)m.根据题意,得(2﹣1.5)x(x+0.5)×120=180,解得x1=﹣2,x2=1.5.所以x=1.5,x+0.5=2.答:小莉房间窗户的宽度为1.5m,则高度为2m.22.(7分)如图,爸爸和小莉在两处观测气球的仰角分别为α、β,两人的距离(BD)是200m,如果爸爸的眼睛离地面的距离(AB)为1.6m,小莉的眼睛离地面的距离(CD)为1.2m,那么气球的高度(PQ)是多少m?(用含α、β的式子表示)【解答】解:过点A作AE⊥PQ于点E,过点C作CF⊥PQ于点F,设PQ=xm,则PE=(x﹣1.6)m,PF=(x﹣1.2)m.在△PEA中,∠PEA=90°.则tan∠PAE=.∴AE=.在△PCF中,∠PFC=90°.则tan∠PCF=.∴CF=.∵AE+CF=BD.∴+=200.解,得x=.答:气球的高度是m.23.(8分)命题:有两个角相等的三角形是等腰三角形(简称“等角对等边”).已知:如图,△ABC中,∠B=∠C.求证:AB=AC.三位同学作出了三种不同的辅助线,并完成了命题的证明.小刚的方法:作∠BAC 的平分线AD,可证△ABD≌△ACD,得AB=AC;小亮的方法:作BC边上的高AD,可证△ABD≌△ACD,得AB=AC;小莉的方法:作BC边上的中线AD.(1)请你写出小刚与小亮方法中△ABD≌△ACD的理由:AAS ;(2)请你按照小莉的思路完成命题的证明.【解答】解:(1)△ABD≌△ACD的理由是AAS,故答案为AAS.(2)证明:过点D作DE⊥AB于点E,过点D作DF⊥AC于点F.∵∠BED=∠CFD=90°,∠B=∠C,BD=CD.∴△BDE≌△CDF(AAS).∴BE=CF,DE=DF.在Rt△AED和Rt△AFD中,∠AED=∠AFD=90°.∵AD=AD,DE=DF,∴Rt△AED≌Rt△AFD.∴AE=AF.∴AE+BE=AF+CF.即AB=AC.24.(8分)已知:如图,△ABC的外接圆是⊙O,AD是BC边上的高.(1)请用尺规作出⊙O(不写作法,保留作图痕迹);(2)若AB=8,AC=6,AD=5.4,求⊙O的半径.【解答】解:(1)如图,⊙O是所求作的图形.(2)如图,作⊙O的直径AE,连接BE.∵AE是直径,∴∠ABE=90°.∵∠ADC=∠ABE=90°,∠C=∠E,∴△ABE∽△ADC,∴=.即=,解得AE=.∴⊙O的半径为.25.(10分)快车和慢车同时从甲地出发,匀速行驶,快车到达乙地后,原路返回甲地,慢车到达乙地停止.图①表示两车行驶过程中离甲地的路程y(km)与出发时间x(h)的函数图象,请结合图①中的信息,解答下列问题:(1)快车的速度为km/h,慢车的速度为150 km/h,甲乙两地的距离为50 km;(2)求出发多长时间,两车相距100km;(3)若两车之间的距离为s km,在图②的直角坐标系中画出s(km)与x(h)的函数图象.【解答】解:(1)快车的速度为300÷2=150km/h,慢车的速度为:300÷6=50km/h,甲乙两地的距离为300km,故答案为:150,50,300;(2)快车在行驶过程中离A地的路程y1与时间x的函数关系式:当0≤x<2时,y1=150x,当2≤x≤4时,y1=300﹣150(x﹣2),即y1=600﹣150x.慢车在行驶过程中离A地的路程y2与时间x的函数关系式:当0≤x≤6时,y2=50x,由题意,得①当0≤x<2时,y1﹣y2=100,150x﹣50x=100,解得x=1;②当2≤x<3时,y1﹣y2=100,600﹣150x﹣50x=100,解得x=2.5;③当3≤x<4时,y2﹣y1=100,50x﹣(600﹣150x)=100,解得x=3.5;④当4≤x≤6时,两车相距大于100km.答:出发1 h或2.5h或3.5h后,两车相距100km;(3)s与x的函数图象如图所示:26.(10分)如图,二次函数y=ax2+bx﹣4的图象经过A(﹣1,0)、B(4,0)两点,于y轴交于点D.(1)求这个二次函数的表达式;(2)已知点C(3,m)在这个二次函数的图象上,连接BC,点P为抛物线上一点,且∠CBP=60°.①求∠OBD的度数;②求点P的坐标.【解答】(1)由题意知:,解得.∴该二次函数的表达式为y=x2﹣3x﹣4;(2)①∵当x=0时,y=﹣4.∴抛物线与y轴交点D的坐标为(0,﹣4).∵在△BOD中,∠BOD=90°,OB=4,OD=4,∴BD==8,即BD=2OB,∴∠ODB=30°.∴∠OBD=60°;②过点P作PE⊥x轴于点E,过点C作CF⊥BD于点F,∵x=3时,m=﹣4.∴点C的坐标为(3,﹣4).∵CD∥x轴,∴CD=3,∠CDB=60°,∠DCF=30°.∴DF=CD=,CF==,∵BD=8,∴BF=8﹣=,设点P的坐标为(x,x2﹣3x﹣4).则PE=﹣x2+3x+4,BE=4﹣x,∵∠CBP=∠OBD=60°,∴∠CBF=∠PBE.∵∠CFB=∠PEB=90°.∴△CBF∽△PBE.∴=.∴=.解得:x1=4(舍去),x2=﹣.∵当x=﹣时,y=﹣.∴点P的坐标为(﹣,﹣).27.(12分)【问题提出】我们借助学习“图形的判定”获得的经验与方法对“平行四边形的判定”进一步探究.【初步思考】在一个四边形中,我们把“一组对边平行、一组对边相等、一组对角相等或一条对角线被另一条对角线平分”称为一个条件.如图1,四边形ABCD中,我们用符号语言表示出所有的8个条件:①A B=CD;②AD=BC;③AB∥CD;④AD∥BC;⑤∠BAD=∠BCD;⑥∠ABC=∠ADC;⑦OA=OC;⑧OB=OD.【深入探究】小莉所在学习小组进行了研究,她们认为2个条件可分为以下六种类型:Ⅰ关于对边的2个条件;Ⅱ关于对角的2个条件;Ⅲ关于对角线的2个条件;Ⅳ关于边的条件与角的条件各1个;Ⅴ关于边的条件与对角线的条件各1个;Ⅵ关于角的条件与对角线的条件各1个.(1)小明认为“Ⅰ关于对边的2个条件”可分为“①②,③④,①③,①④”共4种不同种类的情形.请你仿照小明的叙述对其它五种类型进一步分类.(2)小红认为有4种情形是平行四边形的判定依据.请你写出其它的三个判定定理.定义:两组对边分别平行的四边形是平行四边形;定理1:两组对边分别相等的四边形是平行四边形;定理2:一组对边平行且相等的四边形是平行四边形;定理3:对角线互相平分的四边形是平行四边形.(3)小刚认为除了4个判定依据外,还存在一些真命题,他写出了其中的1个,请证明这个真命题,并仿照他的格式写出其它真命题(无需证明):真命题1:四边形ABCD中,若∠BAD=∠BCD,∠ABC=∠ADC,则四边形ABCD是平行四边形.(4)小亮认为,还存在一些假命题,他写出了其中的1个,并举反例进行了说明,请你仿照小亮的格式写出其它假命题并举反例进行说明.假命题1:四边形ABCD中,若AB=CD,AD∥BC,则四边形ABCD不一定是平行四边形.反例说明:如图2,四边形ABCD中,AB=CD,AD∥BC,显然四边形ABCD不是平行四边形.【解答】(1)解:Ⅱ关于对角的2个条件可分为“⑤⑥”共1种情形;Ⅲ关于对角线的2个条件可分为“⑦⑧”共1种情形;Ⅳ关于边的条件与角的条件各1个可分为“①⑤,③⑤”共2种情形;Ⅴ关于边的条件与对角线的条件各1个可分为“①⑦,③⑦”共2种情形;Ⅵ关于角的条件与对角线的条件各1个可分为“⑤⑦,⑥⑦”共2种情形.(2)解:定理2:两组对边分别相等的四边形是平行四边形;定理3:一组对边平行且相等的四边形是平行四边形;定理4:对角线互相平分的四边形是平行四边形.故答案为:两组对边分别相等的四边形是平行四边形,一组对边平行且相等的四边形是平行四边形,对角线互相平分的四边形是平行四边形(3)证明:∵∠BAD+∠ABC+∠BCD+∠ADC=360°,∠BAD=∠BCD,∠ABC=∠ADC,∴2∠BAD+2∠ABC=360°,2∠ABC+2∠BCD=360°.∴∠BAD+∠ABC=180°,∠ABC+∠BCD=180°.∴AD∥BC,AB∥CD.∴四边形ABCD是平行四边形.真命题2:四边形ABCD中,若AB∥CD,∠BAD=∠BCD,则四边形ABCD是平行四边形;真命题3:四边形ABCD中,若AB∥CD,OA=OC,则四边形ABCD是平行四边形;真命题4:四边形ABCD中,若∠ABC=∠AD C,OA=OC,则四边形ABCD是平行四边形;(4)解:假命题2:四边形ABCD中,若AB=CD,∠BAD=∠BCD,则四边形ABCD不一定是平行四边形.反例如下:如图△ABC中,AB=AC,在BC上取一点D,连接AD,把△ADC翻转得如图所示的四边形ABDC,∵AB=AC,∴∠B=∠C.在四边形ABDC中,AB=CD,∠B=∠C,显然,四边形ABDC不是平行四边形.假命题3:四边形ABCD中,若AB=CD,OA=OC,则四边形ABCD不一定是平行四边形.反例如下:如图,OA=OC,直线l经过点O,分别以A、C为圆心,一定的长为半径画弧交直线l于点B、D,得如图所示的四边形ABCD,在四边形ABCD中,AB=CD,OA=OC,显然,四边形ABDC不是平行四边形.假命题4:四边形ABCD中,若∠BAD=∠BCD,OA=OC,则四边形ABC D不一定是平行四边形.反例如下:如图,筝形ABCD中,∠BAD=∠BCD,OA=OC,显然四边形ABCD不是平行四边形.。
2024年中考数学二模试卷(徐州卷)(全解全析)
2024年中考第二次模拟考试(徐州卷)数学·全解全析注意事项:1.本试卷共6页.全卷满分140分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、考试证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B铅笔作答,并请加黑加粗,描写清楚.第Ⅰ卷一、选择题(本大题共8个小题,每小题3分,共24分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.2024年夏季奥运会将在法国巴黎举行,平移如图所示的巴黎奥运会图标可以得到的图形是()A.B.C.D.【答案】D【解析】解:由图形可知,选项D与原图形完全相同.故选:D2.8-的倒数是()A.8B.18C.18-D.8-【答案】C【解析】解:∵1818⎛⎫-⨯-= ⎪⎝⎭,∴8-的倒数为18-,故选:C .3.餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心.据统计,中国每年浪费的食物总量折合粮食约1700万吨.将数据1700万用科学记数法表示为()A .71.710⨯B .80.1710⨯C .81.710⨯D .71710⨯【答案】A【解析】解:将数据1700万用科学记数法表示为71.710⨯.故选:A .4.下列运算正确的是()A .()325a a -=-B .3515a a a ⋅=C .22321a a -=D .()22346a b a b -=【答案】D【解析】解:A 、()326a a -=-,故A 不正确,不符合题意;B 、358a a a ⋅=,故B 不正确,不符合题意;C 、22232a a a -=,故C 不正确,不符合题意;D 、()22346a b a b -=,故D 正确,符合题意;故选:D .5.一个含45︒的三角板和一个直尺按如图所示方式叠合在一起,若1123=︒∠,则2∠的度数是()A .67︒B .68︒C .77︒D .78︒【答案】D【解析】解:1=123∠︒ ,123EFB ∴∠=︒,EF BD ∥,123EFB ∠=︒,18012357ABD ∴∠=︒-︒=︒,又90ABC ∠=︒ ,905733DBC ∴∠=︒-︒=︒,2453378C DBC ∠=∠+∠=︒+︒=︒.故选:D .6.如图,,OA OB 是O 的两条半径,点C 在O 上,连接,AC BC ,若36C ∠=︒,则AOB ∠的度数为()A .72︒B .62︒C .54︒D .36︒【答案】A 【解析】解:∵36C ∠=︒,∴272AOB C ∠︒=∠=,故选:A .7.某校射击比赛所用的靶子有8环,9环,10环三个环次,每一环又有10个小环,小新、小华、小宇三人每人射击三次,成绩如图所示,则射击成绩的平均数约为9.0环的是()A .小新B .小宇C .小华D .三人都有可能【答案】C 【解析】解:由图可知:小新的成绩2个在10环上,一个在9环上,平均成绩不可能为9.0环;小宇的成绩一个在10环,一个接近10环,一个接近9环,平均数不可能为9.0环;小华的成绩均在9环附近,射击成绩的平均数约为9.0环;故选C .8.如图,在平面直角坐标系中,矩形ABOC 的顶点C 在y 轴上,A 在x 轴上,把矩形ABOC 沿对角线BO 所在的直线翻折,点A 恰好落在反比例函数()0k y k x=≠的图象上点D 处,BD 与y 轴交于点E ,点D 恰好是BE 的中点.已知A 的坐标为()4,0,则反比例函数的表达式为()A .232y =B .43y =C .4y x =D .1633y x=【答案】B 【解析】解:∵矩形ABOC ,A 的坐标为()4,0,∴4OA =,点B 的横坐标为4,∵折叠,∴4OD OA ==,∵E 在y 轴上,D 为BE 的中点,∴点D 的横坐标为2,过点D 作DF OA ⊥,∴2OF =,∴2223DF OD OF =-,∴(2,23D ,∴22343k =⨯=∴反比例函数的表达式为43y =故选B .第Ⅱ卷二、填空题(本大题共10个小题,每小题3分,共30分)9.0.0081的平方根是.【答案】0.09±【解析】解:因为20.090.0081()±=,所以0.0081的平方根是0.09±;故答案为:0.09±.10.当x =时,分式43xx --无意义.【答案】3【解析】 分式43xx --无意义30x ∴-=3x ∴=.故答案为:3.11.如图,由三个正方形拼成的图形中,字母B 所代表的正方形面积是.【答案】144【解析】解:由勾股定理得,字母B 所代表的正方形面积16925144=-=.故答案为:144.12.如图,第4套人民币中菊花1角硬币采用“外圆内凹正九边形”设计,则内凹正九边形的外角的度数为.【答案】40︒【解析】解:内凹正九边形的外角的度数为360940︒÷=︒,故答案为:40︒.13.若分式方程12x x a +=+的解是3x =,则=a .【答案】1-【解析】解:分式方程去分母得:122x x a +=+,由分式方程的解为3x =,代入整式方程得:31232a +=⨯+,解得:1a =-,故答案为:1-.14.某节活动课上,安安用一张半径为18cm 的扇形纸板做了一个圆锥形帽子(如图,接缝处忽略不计).若圆锥形帽子的半径为10cm ,则这张扇形纸板的面积为cm².【答案】180π【解析】解:解:这张扇形纸板的面积为121018180cm²2ππ⨯⨯⨯=,故答案为:180π.15.已知20ax bx c ++=的两根为2,3,则20cx bx a -+=的两个根分别为.【答案】121123x x =-=-,【解析】解:∵20ax bx c ++=的两根为2,3,∴235236bca a -=+==⨯=,,∴56b a c a =-=,,∴方程20cx bx a -+=即为2560a ax x a ++=,∴26510x x +=+,∴()()21310x x ++=,解得121123x x =-=-,,故答案为:121123x x =-=-,.16.如图,边长为1的正方形ABCD 绕点A 逆时针旋转60︒得到正方形AEFG ,连接CF ,则CF 的长是.2【解析】解:如图所示,连接AC 、AF ,∵四边形AEFD 是四边形ABCD 逆时针旋转60︒,∴AC AF =,60CAF ∠=︒,∴ACF △是等边三角形,∴AC CF AF ==,在Rt ABC △中,222AC AB BC =+=∴2AC CF =2.17.如图,在矩形ABCD 中,4AB =,2AD =,点E 是AD 边的中点,连接,AC BE 交于点,F CAD ∠的平分线AG 交CD 边于点G ,点A 关于过点E 的某条直线的对称点H 恰好在AG 上,且点H 不与点A 重合,连接FH ,则FH 的长为.46363【解析】解:∵在矩形ABCD 中,4AB =,42AD =E 是AD 边的中点,∴90BAD ∠=︒,122AE ED AD ===∴222tan 42AE ABE AB ∠==,2tan 242CD CAD AD ∠=,∴tan tan ABE CAD ∠=∠,∴ABE CAD ∠=∠,∴90ABE BAF CAD BAF BAD ∠+∠=∠+∠=∠=︒,∴90BFA ∠=︒,即BE AC ⊥,∵在矩形ABCD 中,4AB =,22AE =∴()224226BE =+AE BC ∥,∴AEF CBF ∽△△,∴12EF AE BF BC ==,∴12633EF BE =,连接EH ,∵点A 关于过点E 的某条直线的对称点H 恰好在AG 上,∴2AE EH ==∴EAH EHA ∠=∠,∵AG 是CAD ∠的平分线,∴EAH CAH ∠=∠,∴EHA CAH ∠=∠,∴HE AC ∥,∵BE AC ⊥,∴BE EH ⊥,即90FEH ∠=︒,∴()222224622633FH EF EH ⎛⎫=+=+= ⎪⎝⎭463.18.如图,在矩形ABCD 中,6,10AB BC ==,点E 是AD 边的中点,点F 是线段AB 上任一点,连接EF ,以EF 为直角边在AD 下方作等腰直角EFG ,FG 为斜边,连接DG ,则DEG 周长最小值为.【答案】555【解析】解:如图,过点G 作GH AD ⊥于点H ,∵四边形ABCD 是矩形,∴90,6,10A AB CD AD BC ∠=︒====,∴5AE ED ==,∵90A FEG GHE ∠∠∠===︒,∴90,90AEF GEH GEH EGH ∠∠∠∠+=︒+=︒,∴AEF EGH ∠∠=,∵EF EG =,∴(AAS)AEF GHE ≌ ,∴5GH AE ==,过点G 作直线l AD ∥,∵5GH =,GH AD ⊥,∴点G 在直线l 上运动,作点D 关于直线l 的对称点T ,连接ET ,在Rt EDT 中,90,5,10DET DE DT ∠=︒==,∴2255ET DE DT +=∵GD GT =,∴GE GD EG GT ET +=+≥,∴55GE GD +≥,∴GE GD +的最小值为55,∴DEG 周长最小值为555,故答案为:555.三、解答题(本大题共10个小题,共86分.解答应写出文字说明,证明过程或演算步骤)19.计算.(1)()()220240221π433-⎛⎫-+--- ⎪⎝⎭;(2)21111x x x ⎛⎫-÷ ⎪+-⎝⎭.【解析】(1)解:原式411199=+--39=13=;(2)原式21111x x x x+--=⨯+(1)(1)1x x x x x+-=⨯+1x =-.20.解方程或方程组:(1)解方程:2450x x --=;(2)解不等式组:()432123x x x x ⎧+≤+⎪⎨-<⎪⎩①②.【解析】(1)解:因式分解得,(5)(1)0x x -+=,∴10x +=或50x -=,∴15=x ,21x =-;(2)解:解不等式①得,1x ≥-,解不等式②得,3x <,∴不等式组的解集为:13x -≤<.21.一个不透明的笔袋里装有若干支黑色、红色和蓝色这三种颜色的中性笔(除笔芯颜色外,其余都相同),其中黑色中性笔有2支,红色中性笔有1支,从中任意摸出的一支笔是黑色中性笔的概率为12.(1)求笔袋中蓝色中性笔有多少支?(2)第一次任意摸出一支笔(不放回),第二次再摸出一支笔,请用树状图或列表法求出两次摸到的都是黑色中性笔的概率.【解析】(1)解:122112÷--=(支),答:笔袋中蓝色中性笔有1支.(2)解:解法一:树状图法由树状图可知,共有12种等可能的结果,其中两次摸到的都是黑色中性笔的情形有2种,∴两次摸到的都是黑色中性笔的概率为21126=.解法二:列表法第一次第二次黑1黑2红蓝黑1(黑1,黑2)(黑1,红)(黑1,蓝)黑2(黑2,黑1)(黑2,红)(黑2,蓝)红(红,黑1)(红,黑2)(红,蓝)蓝(蓝,黑1)(蓝,黑2)(蓝,红)由列表可知,共有12种等可能的结果,其中两次摸到的都是黑色中性笔的情形有2种,∴两次摸到的都是黑色中性笔的概率为21126=.22.某市教育局为了解“双减”政策落实情况,随机抽取几所学校部分初中生进行调查、统计他们平均每天完成作业的时间,并根据调查结果绘制如下不完整的统计图:请根据图表中提供的信息,解答下面的问题:(1)在调查活动中,教育局采取的调查方式是(填写“普查”或“抽样调查”);(2)教育局抽取的初中生有人,扇形统计图中m的值是;(3)若该市共有初中生12000人,则平均每天完成作业时长在“7080t≤<”分钟的初中生约有多少人.【解析】(1)解:抽查方式为随机抽取几所学校部分初中生进行调查,则在调查活动中,教育局采取的调查方式是抽样调查,故答案为:抽样调查;(2)解:4515%300÷=人,∴教育局抽取的初中生有300人,∴每天完成作业时长在“7080t≤<”分钟的初中生人数有3004513521990----=人,∴90%100%30%300m=⨯=,∴30m=,故答案为:300;30;(3)解:1200030%3600⨯=人,∴平均每天完成作业时长在“7080t≤<”分钟的初中生约有3600人.23.新能源汽车因其废气排放量比较低,被越来越多的家庭所喜爱,老疆车行销售甲、乙两种型号的新能源汽车,十月的第一周售出1辆甲型车和3辆乙型车,销售额为65万元;第二周售出4辆甲型车和5辆乙型车,销售额为155万元.(1)求每辆甲型车和乙型车的售价各为多少万元?(2)茅溪科技发展有限公司准备向老疆车行购买甲、乙两种型号的新能源汽车共8辆,其购车费用不少于145万元,且不超过153万元,问有哪几种购车方案?【解析】(1)解:设每辆甲型车的售价为x 万元,每辆乙型车的售价为y 万元,根据题意得:36545155x y x y +=⎧⎨+=⎩解得:2015x y =⎧⎨=⎩,答:每辆甲型车的售价为20万元,每辆乙型车的售价为15万元;(2)解:设购买甲型车a 辆,则购买乙型车为()8a -辆,依题意得:()14520158153a a ≤+-≤,解得:5 6.6a ≤≤∵a 为正整数,∴a 取5或6.∴有两种购车方案:方案一:购买甲型车5辆,购买乙型车3辆,此时的费用是145万元,;方案二:购买甲型车6辆,购买乙型车2辆,此时的费用是150万元;24.如图,AC 是菱形ABCD 的对角线.(1)在AC 上求作一点E ,使得BEC BCD ∠=∠(尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若140D ∠=︒,求CBE ∠的度数.【解析】(1)解:如图,点E 即为所求;(2)解: 四边形ABCD 是菱形,AD CB ∴∥,ACD ACB ∠=∠,180D BCD ︒∴∠+∠=,18014040BCD ∴∠=︒-︒=︒,20ACD ACB ∴∠=∠=︒,又∵40BEC BCD ∠=∠=︒,1801802040120CBE ACB BEC ∴∠=︒-∠-∠=︒-︒-︒=︒.25.如图,CD 是O 的直径,点B 在O 上,点A 为DC 延长线上一点,过点O 作OE BC ∥交AB 的延长线于点E ,且D E∠=∠(1)求证:AE 是O 的切线;(2)若线段OE 与O 的交点F 是OE 的中点,O 的半径为3,求阴影部分的面积.【解析】(1)证明:连接OB ,∵CD 是O 的直径,∴BC BD ⊥,即90CBD ∠=︒,∵OE BC ∥,∴90DGO CBD ∠=∠=︒,∴90BGE DGO ∠=∠=︒,90D DOG ∠+∠=︒,∵D E ∠=∠,∴DOE DBE ∠=∠,∵OD OB =,∴D OBD ∠=∠,∴90OBD DBE D DOG ∠+∠=∠+∠=︒,∴90OBE ∠=︒,∵OB 是O 的半径,∴AE 是O 的切线;(2)解:连接BF ,∵90OBE ∠=︒,F 是OE 的中点,∴BF OF =,∵O 的半径为3,90∠=︒DGO ,∴3BF OF OB ===,18090BGO DGO ∠=︒-∠=︒,∴OBF 是等边三角形,∴60BOF ∠=︒,∴9030OBG BOF ∠=︒-∠=︒,∴1322OG OB ==,2222333322BG OB OG ⎛⎫=-=-= ⎪⎝⎭,∴阴影部分的面积为:2603133339336022228OBG OBF S S ⨯π⨯π-=-⨯=-扇形△,∴阴影部分的面积为39328π26.如图,山区某教学楼后面紧邻着一个土坡,坡面BC 平行于地面AD ,斜坡AB 的坡比为51:12i =,且26AB =米.为了防止山体滑坡,保障安全,学校决定对该土坡进行改造.经地质人员勘测,当坡角不超过53︒时,可确保山体不滑坡.(1)求改造前坡顶与地面的距离BE 的长.(2)为了消除安全隐患,学校计划将斜坡AB 改造成AF (如图所示),那么BF 至少是多少米?(结果精确到1米)(参考数据:sin530.8︒≈,cos530.6︒≈,tan 53 1.33︒≈,cot 530.75)︒≈.【解析】(1)解: 斜坡AB 的坡比为51:12i =,:12:5BE EA ∴=,设12BE x =,则5EA x =,由勾股定理得,222BE EA AB +=,即222(12)(5)26x x +=,解得,2x =,则1224BE x ==,510AE x ==,答:改造前坡顶与地面的距离BE 的长为24米;(2)解:作FH AD ⊥于H ,则tan FH FAH AH ∠=,24181.33AH ∴=≈,18108BF ∴=-=,答:BF 至少是8米.27.如图,在ABC 中,10AB AC ==,45BC =AD BC ⊥于点D ,点P 从点A 出发,沿折线AC CD →向终点D 运动,点P 在AC 上以每秒5个单位长度的速度匀速运动,在CD 5匀速运动,当点P 不与点A 、D 重合时,作PQ AB ∥,PQ 与射线AD 交于点Q ,以PQ 为一边向左侧作正方形PQMN .设点P 的运动时间为()s t .(1)直接写出AD =______.(2)求sin BAC ∠的值.(3)当正方形PQMN 与ABC 重叠部分图形是四边形时,直接写出t 的取值范围.(4)连接BM ,直接写出BM AB ⊥时t 的值.【解析】(1)解:∵,=⊥AB AC AD BC ,∴1145522BD BC ==⨯=在Rt △ABD 中,根据勾股定理得:2245AD AB BD -=故答案为:45(2)解:如图1,作CE AB ⊥于点E .分别以AB BC 、为底表示ABC 的面积两式相等,可得:8BC ADCE AB ⋅==;∴4sin 5CEBAC AC ∠==;(3)解:正方形PQMN 与ABC 重叠部分图形随着t 的变化而变化.①如图2,当Q 点与D 点重合时,正方形PQMN 与ABC 重叠部分图形,由四边形变为五边形.∵PQ AB ∥,∴1APBDPC DC ==,∴此时:1215ACt ==.②如图3:当MQ 经过B 点时,正方形PQMN 与ABC重叠部分图形,由五边形变为四边形.∵4sin 5BAC ∠=,∴243cos 155BAC ⎛⎫∠=-= ⎪⎝⎭;∵,PQ AB PN PQ ⊥∥,∴PN AB ⊥.∴此时,cos AP BAC PQ AB ⋅∠+=,即355105t t ⨯+=,解得:54t =.如图4:当P 与C 重合时,正方形PQMN 与ABC 重叠部分图形,由四边形变为三角形.此时,1025t ==.综上:t 的取值范围为:01t <≤或524t ≤<;(4)解:由(3)可知54t =时,MQ 经过点B 时BM AB ⊥;另外当P 在DC 上时,也会出现BM AB ⊥,如图5.∵,PQ AB MQ PQ ⊥∥;∴MQ AB ⊥,∴ABD BQD QPD ∽∽ .∴::::::AB BQ PQ AD BD QD BD QD PD ==,即10::45225:BQ PQ QD QD PD ==;得:52PD =∴535452522CP BC PD BD =--=-=;∴3572225t ==.故BM AB ⊥时t 的值为:54,72.28.如图,抛物线2y x bx c =-++交x 轴于A 、B 两点(点A 在点B 的左侧)坐标分别为()2,0-,()4,0,交y 轴于点C .(1)求出抛物线解析式;(2)如图1,过y 轴上点D 作BC 的垂线,交直线BC 于点E ,交抛物线于点F ,当355EF =F 的坐标;(3)如图2,点H 的坐标是()0,2,点Q 为x 轴上一动点,点()2,8P 在抛物线上,把PHQ 沿HQ 翻折,使点P 刚好落在x 轴上,请直接写出点Q 的坐标.【解析】(1)解:将()2,0-,()4,0代入表达式得:4201640b c b c --+=⎧⎨-++=⎩,解得:28b c =⎧⎨=⎩,∴抛物线解析式为228y x x =-++;(2)过点F 作x 轴的垂线交BC 于N ,交x 轴于M ,∵FNE BNM ∠=∠,90FNE EFN BNM MBN ∠+∠=∠+∠=︒,∴EFN MBN ∠=∠,在Rt BOC 中,90BOC ∠=︒,由勾股定理得:22224845BC OB OC =+=+=∴cos cos OB EF EFN MBN BC FN ∠=∠=35545FN =,∴3FN =,∵()4,0B ,()0,8C ,∴直线BC :28y x =-+,设()2,28F m m m -++,(),28N m m -+,∴()228283m m m -++--+=或()28²283m m m -+--++=,∴243m m -+=或243m m -+=-,解得:11m =,23m =,327m =427m =,∴()1,9F 或()3,5或(27,17-或()27,271其中()1,9F 和(27,17-两点所对应的E 点不在线段BC 上,所以舍去,∴点F 的坐标为()3,5或()27,271;(3)分两种情况讨论:①如图所示,当点Q 位于x 轴负半轴时,过点P 作PM y ∥轴交x 轴于点M ,作PN x ∥轴交y 轴于点N ,则四边形OMPN 为矩形,∵()2,8P ,∴2NP OM ==,8ON PM ==,∵()0,2H ,∴826NH =-=,∴222226210PH NP NH =+=+=,由折叠可知:210PH HP '==QP QP '=,∴()222221026OP P H OH =--'=',设OQ x =,∴6QP QP x '==+,2QM x =+,∵222P M Q M P Q +=,∴()()222826x x ++=+,∴4x =,∴Q 点的坐标为()4,0-;②如图所示,当点Q 位于x 轴正半轴时,过点P 作PM y ∥轴交x 轴于点M ,作PN x ∥轴交y 轴于点N ,由①得:210PH P H '==,P Q PQ '=,∴()222221026OP P H OH =--'=',设OQ m =,则6P Q PQ m '==+,2QM m =-,∵222P M Q M P Q +=,∴()()222286m m -+=+,∴2m =,∴Q 点的坐标为()2,0,综上所述,Q 点的坐标为()4,0-或()2,0.。
安徽省中考数学模拟试卷二
安徽省中考(Kao)数学模拟试卷二数(Shu) 学(Xue) 试(Shi) 题(Ti)注意事(Shi)项:1.你拿到的试卷(Juan)满分为(Wei)150分.考试时间为120分钟。
2.试卷包括“试题卷”和“答题卷”两部分。
3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的。
4.考试结束后,请将“试题卷”和“答题卷”一并交回。
题号一二三四五六七八总分得分一.单项选择题。
(本大题共10小题.每小题4分.共40分。
每小题只得分评卷人有一个正确答案.请将正确的答案的序号填入括号中。
)1.2018的相反数是()A.B.2018 C.﹣2018 D.﹣2.计算(﹣x2)3的结果是()A.﹣x6B.x6C.﹣x5D.﹣x83.下列几何体是由4个相同的小正方体搭成的.其中左视图与俯视图相同的是()A. B. C. D.4.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作.根据规划“一带一路”地区覆盖总人口44亿.这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×10105.不等式6﹣3x>0的解集在数轴上表示为()A.B.C.D.6.如图.将矩形ABCD沿GH折叠.点C落在点Q处.点D落在AB边上的点E处.若∠AGE=32°.则∠GHC等于()A.112°B.110°C.108°D.106°7.为了(Liao)解中学(Xue)300名男生的身高(Gao)情况(Kuang).随机抽取若干名男生进行身(Shen)高测量(Liang).将所得(De)数据整理后(Hou).画出频数分布直方图(如图).估计该校男生的身高在169.5cm~174.5cm之间的人数有()A.12 B.48 C.72 D.968.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书.每个同学都把自己的图书向本组其他成员赠送一本.某组共互赠了210本图书.如果设该组共有x名同学.那么依题意.可列出的方程是()A.x(x+1)=210 B.x(x﹣1)=210C.2x(x﹣1)=210 D . x(x﹣1)=2109.已知反比例函数y =的图象在每一个象限内.y随x的增大而增大.那么一次函数y=kx+2的大致图象是()A .B .C .D .10.如图.等腰三角形ABC的底边BC长为4.面积是16.腰AC的垂直平分线EF分别交AC.AB 边于E.F点.若点D为BC边的中点.点M为线段EF上一动点.则△CDM周长的最小值为()A.6 B.8 C.10D.12二、填空题(本大题共4小题.每小题5分.共20分。
湖南省湘潭市2020年中考数学模拟试题(二)有答案精析
湖南省湘潭市2020年中考数学模拟试卷(二)(解析版)一、选择题(本大题共8个小题,每小题有且只有一个正确答案,请将正确答案的选项代号涂在答题卡相应的位置上,每小题3分,满分24分)1.|﹣2|=()A.2 B.﹣2 C. D.2.(﹣4x)2=()A.﹣8x2B.8x2C.﹣16x2D.16x23.在下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.4.下列命题中,正确的是()A.平行四边形的对角线相等B.矩形的对角线互相垂直C.菱形的对角线互相垂直且平分D.对角线相等的四边形是矩形5.在拼图游戏中,从图1的四张纸片中,任取两张纸片,能拼成“小房子”(如图2)的概率等于()A. B. C. D.16.如图,下列水平放置的几何体中,主视图是三角形的是()A. B. C. D.7.若关于x的方程x2+x﹣a+=0没有实数根,则实数a的取值范围是()A.a≥2 B.a≤2 C.a<2 D.a>28.如图,在平面直角坐标系中,菱形OACB的顶点O在原点,点C的坐标为(4,0),点B的纵坐标是﹣1,则顶点A的坐标是()A.(2,﹣1)B.(1,﹣2)C.(1,2) D.(2,1)二、填空题(本题共8个小题,请将答案写在答题卡相应的位置上,每小题3分,满分24分)9.化简:﹣=____________.10.如图,△ABC三边的中线AD、BE、CF的公共点为G,若S△ABC=12,则图中阴影部分的面积是____________.11.已知反比例函数y=的图象经过点(2,3),则此函数的关系式是____________.12.在一张边长为4cm的正方形纸上做扎针随机试验,纸上有一个半径为1cm的圆形阴影区域,则针头扎在阴影区域内的概率为____________.13.某商店一套西服的进价为300元,按标价的80%销售可获利100元,则该服装的标价为____________元.14.如图,直线y=kx+b经过A(﹣2,﹣1)和B(﹣3,0)两点,则不等式﹣3≤﹣2x﹣5<kx+b的解集是____________.15.如图,⊙O的直径AB与弦CD垂直,且∠BAC=40°,则∠BOD=____________.16.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为____________.三、解答题(本大题共10个小题,解答应写出文字说明、证明过程或演算步骤,请将解答过程写在答题卡相应位置上,满分72分)17.计算:|﹣|+(﹣)﹣1sin45°+()0.18.解不等式.19.先化简,再求值:÷(1+),其中x=﹣1.20.某校学生会干部对校学生会倡导的“助残”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,如图是根据这组数据绘制的统计图,图1中从左到右各长方形A、B、C、D、E高度之比为3:4:5:6:2,已知此次调查中捐10元和15元的人数共27人.(1)他们一共抽查了多少人?这组数据的众数、中位数各是多少?(2)图2中,捐款数为20元的D部分所在的扇形的圆心角的度数是多少?(3)若该校共有1000名学生,请求出D部分学生的人数及D部分学生的捐款总额.21.如图,某公司入口处有一斜坡AB,坡角为12°,AB的长为3m,施工队准备将斜坡修成三级台阶,台阶高度均为hcm,深度均为30cm,设台阶的起点为C.(1)求AC的长度;(2)求每级台阶的高度h.(参考数据:sin12°≈0.2079,cos12°≈0.9781,tan12°≈0.2126.结果都精确到0.1cm)22.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.23.红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.24.已知关于x的一元二次方程(x﹣3)(x﹣2)=|m|.(1)求证:对于任意实数m,方程总有两个不相等的实数根;(2)若方程的一个根是1,求m的值及方程的另一个根.25.(10分)(2020•湘潭模拟)如图,以矩形ABCD的对角线AC的中点O为圆心,OA 长为半径作⊙O,⊙O经过B、D两点,过点B作BK⊥AC,垂足为K.过D作DH∥KB,DH分别与AC、AB、⊙O及CB的延长线相交于点E、F、G、H.(1)求证:AE=CK;(2)如果AB=a,AD=a(a为大于零的常数),求BK的长.26.(10分)(2020•长沙)为了扶持大学生自主创业,市政府提供了80万元无息贷款,用于某大学生开办公司生产并销售自主研发的一种电子产品,并约定用该公司经营的利润逐步偿还无息贷款.已知该产品的生产成本为每件40元,员工每人每月的工资为2500元,公司每月需支付其它费用15万元.该产品每月销售量y(万件)与销售单价x(元)之间的函数关系如图所示.(1)求月销售量y(万件)与销售单价x(元)之间的函数关系式;(2)当销售单价定为50元时,为保证公司月利润达到5万元(利润=销售额﹣生产成本﹣员工工资﹣其它费用),该公司可安排员工多少人?(3)若该公司有80名员工,则该公司最早可在几个月后还清无息贷款?2020年湖南省湘潭市中考数学模拟试卷(二)参考答案与试题解析一、选择题(本大题共8个小题,每小题有且只有一个正确答案,请将正确答案的选项代号涂在答题卡相应的位置上,每小题3分,满分24分)1.|﹣2|=()A.2 B.﹣2 C. D.【考点】绝对值.【分析】根据绝对值的性质可直接求出答案.【解答】解:根据绝对值的性质可知:|﹣2|=2.故选:A.【点评】此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际运算当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(﹣4x)2=()A.﹣8x2B.8x2C.﹣16x2D.16x2【考点】幂的乘方与积的乘方.【分析】原式利用积的乘方运算法则计算即可得到结果.【解答】解:原式=16x2,故选D.【点评】此题考查了幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.3.在下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,不是中心对称图形.故错误;C、不是轴对称图形,是中心对称图形.故错误;D、是轴对称图形,也是中心对称图形.故正确.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.下列命题中,正确的是()A.平行四边形的对角线相等B.矩形的对角线互相垂直C.菱形的对角线互相垂直且平分D.对角线相等的四边形是矩形【考点】命题与定理.【分析】根据平行四边形的性质对A进行判断;根据矩形的性质对B进行判断;根据菱形的性质对C进行判断;根据矩形的判定方法对D进行判断.【解答】解:A、平行四边形的对角线互相平分,所以A选项错误;B、矩形的对角线互相平分且相等,所以B选项错误;C、菱形的对角线互相垂直且平分,所以C选项正确;D、对角线相等的平行四边形是矩形,所以D选项错误.故选C.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部组成.熟练平行四边形和特殊平行四边形的判定与性质是解决此题的关键.5.在拼图游戏中,从图1的四张纸片中,任取两张纸片,能拼成“小房子”(如图2)的概率等于()A. B. C. D.1【考点】列表法与树状图法.【分析】首先分别用A与B表示三角形与矩形,然后根据题意画树状图,由树状图求得所有等可能的结果与能拼成“小房子”(如图2)的情况,再利用概率公式求解即可求得答案,【解答】解:分别用A与B表示三角形与矩形,画树状图得:∵共有12种等可能的结果,能拼成“小房子”的有8种情况,∴任取两张纸片,能拼成“小房子”(如图2)的概率等于:=.故选A.【点评】此题考查了列表法或树状图法求概率.注意此题是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.6.如图,下列水平放置的几何体中,主视图是三角形的是()A. B. C. D.【考点】简单几何体的三视图.【分析】找到从正面看所得到的图形是三角形即可.【解答】解:A、主视图为长方形,故本选项错误;B、主视图为三角形,故本选项错误;C、主视图为长方形,故本选项错误;D、主视图为长方形,故本选项错误.故选B.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.7.若关于x的方程x2+x﹣a+=0没有实数根,则实数a的取值范围是()A.a≥2 B.a≤2 C.a<2 D.a>2【考点】根的判别式.【分析】根据判别式的意义得到△=12﹣4(﹣a+)<0,然后解不等式即可.【解答】解:∵关于x的方程x2+x﹣a+=0没有实数根,∴△=12﹣4(﹣a+)<0,解得:a<2,故选C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.8.如图,在平面直角坐标系中,菱形OACB的顶点O在原点,点C的坐标为(4,0),点B的纵坐标是﹣1,则顶点A的坐标是()A.(2,﹣1)B.(1,﹣2)C.(1,2) D.(2,1)【考点】菱形的性质;坐标与图形性质.【分析】点A的横坐等于OC的长的一半,点A的纵坐标与点B的纵坐标互为相反数.【解答】解:∵点C的坐标为(4,0),∴OC=4,∴点B的纵坐标是﹣1,∴A(2,1).故选D.【点评】本题综合考查了菱形的性质和坐标的确定,综合性较强.二、填空题(本题共8个小题,请将答案写在答题卡相应的位置上,每小题3分,满分24分)9.化简:﹣=.【考点】二次根式的加减法.【分析】先把各根式化为最简二次根式,再根据二次根式的减法进行计算即可.【解答】解:原式=2﹣=.故答案为:.【点评】本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.10.如图,△ABC三边的中线AD、BE、CF的公共点为G,若S△ABC=12,则图中阴影部分的面积是4.【考点】三角形的面积.【分析】根据三角形的中线把三角形的面积分成相等的两部分,知△ABC的面积即为阴影部分的面积的3倍.【解答】解:∵△ABC的三条中线AD、BE,CF交于点G,∴S△CGE=S△AGE=S△ACF,S△BGF=S△BGD=S△BCF,∵S△ACF=S△BCF=S△ABC=×12=6,∴S△CGE=S△ACF=×6=2,S△BGF=S△BCF=×6=2,=S△CGE+S△BGF=4.∴S阴影故答案为4.【点评】根据三角形的中线把三角形的面积分成相等的两部分,该图中,△BGF的面积=△BGD的面积=△CGD的面积,△AGF的面积=△AGE的面积=△CGE的面积.11.已知反比例函数y=的图象经过点(2,3),则此函数的关系式是y=.【考点】待定系数法求反比例函数解析式.【分析】已知反比例函数y=的图象经过点(2,3),则把(2,3)代入解析式就可以得到k的值.【解答】解:根据题意得:3=解得k=6,则此函数的关系式是y=.故答案为:y=.【点评】本题比较简单,考查的是用待定系数法求反比例函数的解析式,是中学阶段的重点内容.12.在一张边长为4cm的正方形纸上做扎针随机试验,纸上有一个半径为1cm的圆形阴影区域,则针头扎在阴影区域内的概率为.【考点】几何概率.【分析】根据题意,求得正方形与圆的面积,相比计算可得答案.【解答】解:根据题意,针头扎在阴影区域内的概率就是圆与正方形的面积的比值;由题意可得:正方形纸边长为4cm,其面积为16cm2,圆的半径为1cm,其面积为πcm2,故其概率为.【点评】本题考查几何概率的求法:注意圆、正方形的面积计算.用到的知识点为:概率=相应的面积与总面积之比.13.某商店一套西服的进价为300元,按标价的80%销售可获利100元,则该服装的标价为500元.【考点】一元一次方程的应用.【分析】首先理解题意找出题中存在的等量关系:利润=售价﹣进价,根据此等量关系列方程即可.【解答】解:设该服装的标价为x元,则实际售价为80%x,根据等量关系列方程得:80%x﹣300=100,解得:x=500.故答案为:500.【点评】此题主要考查了一元一次方程的应用,理解利润、售价、进价三者之间的关系是解题关键.14.如图,直线y=kx+b经过A(﹣2,﹣1)和B(﹣3,0)两点,则不等式﹣3≤﹣2x﹣5<kx+b的解集是﹣2<x≤﹣1.【考点】一次函数与一元一次不等式.【分析】把所给两点代入一次函数解析式可得k,b的值,进而求不等式组的解集即可.【解答】解:∵直线y=kx+b经过A(﹣2,﹣1)和B(﹣3,0)两点,∴,解得,∴不等式变为﹣3≤﹣2x﹣5<﹣x﹣3,解得﹣2<x≤﹣1,故答案为﹣2<x≤﹣1.【点评】考查一次函数和一元一次不等式的相关问题;用待定系数法求得未知函数解析式是解决本题的突破点.15.如图,⊙O的直径AB与弦CD垂直,且∠BAC=40°,则∠BOD=80°.【考点】圆周角定理;垂径定理.【分析】根据垂径定理可得点B是中点,由圆周角定理可得∠BOD=2∠BAC,继而得出答案.【解答】解:∵,⊙O的直径AB与弦CD垂直,∴=,∴∠BOD=2∠BAC=80°.故答案为:80°.【点评】此题考查了圆周角定理,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半.16.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为.【考点】翻折变换(折叠问题).【分析】首先利用勾股定理计算出AC的长,再根据折叠可得△DEC≌△D′EC,设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,再根据勾股定理可得方程22+x2=(4﹣x)2,再解方程即可.【解答】解:∵AB=3,AD=4,∴DC=3,BC=4∴AC==5,根据折叠可得:△DEC≌△D′EC,∴D′C=DC=3,DE=D′E,设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,在Rt△AED′中:(AD′)2+(ED′)2=AE2,22+x2=(4﹣x)2,解得:x=,故答案为:.【点评】此题主要考查了图形的翻着变换,以及勾股定理的应用,关键是掌握折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.三、解答题(本大题共10个小题,解答应写出文字说明、证明过程或演算步骤,请将解答过程写在答题卡相应位置上,满分72分)17.计算:|﹣|+(﹣)﹣1sin45°+()0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式利用绝对值的代数意义,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=﹣2×+1=﹣+1=1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.解不等式.【考点】解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x≤2,由②得,x>﹣.故不等式组的解集为:﹣<x≤2.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.先化简,再求值:÷(1+),其中x=﹣1.【考点】分式的化简求值.【分析】分式的化简,要熟悉混合运算的顺序,分子、分母能因式分解的先因式分解;除法要统一为乘法运算,注意化简后,将,代入化简后的式子求出即可.【解答】解:=÷(+)=÷=×=,把,代入原式====.【点评】此题主要考查了分式混合运算,要注意分子、分母能因式分解的先因式分解;除法要统一为乘法运算是解题关键.20.某校学生会干部对校学生会倡导的“助残”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,如图是根据这组数据绘制的统计图,图1中从左到右各长方形A、B、C、D、E高度之比为3:4:5:6:2,已知此次调查中捐10元和15元的人数共27人.(1)他们一共抽查了多少人?这组数据的众数、中位数各是多少?(2)图2中,捐款数为20元的D部分所在的扇形的圆心角的度数是多少?(3)若该校共有1000名学生,请求出D部分学生的人数及D部分学生的捐款总额.【考点】扇形统计图;用样本估计总体;条形统计图;中位数;众数.【分析】(1)根据A、B、C、D、E高度之比为3:4:5:6:2,求得B等和C等所占的百分比,再根据捐10元和15元的人数共27人求得总人数;根据中位数和众数的概念求解;(2)各部分所占的圆心角即为百分比×360°;(3)根据样本估计总体.【解答】解:(1)总人数=27÷=60(人);众数:20(元);中位数15(元).(2)捐款数为20元的D部分所在的扇形的圆心角的度数=×360°=108°;(3)D部分的学生人数=1000×=300(人);D部分学生的捐款总额=300×20=6000(元).【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时也考查了中位数、众数、平均数的概念及根据样本估计总体.21.如图,某公司入口处有一斜坡AB,坡角为12°,AB的长为3m,施工队准备将斜坡修成三级台阶,台阶高度均为hcm,深度均为30cm,设台阶的起点为C.(1)求AC的长度;(2)求每级台阶的高度h.(参考数据:sin12°≈0.2079,cos12°≈0.9781,tan12°≈0.2126.结果都精确到0.1cm)【考点】解直角三角形的应用-坡度坡角问题.【分析】(1)过点B作BE⊥AC于点E,在Rt△ABE中利用三角函数求出AE,由AC=AE ﹣CE,可得出答案;(2)在Rt△ABE中,求出BE,即可计算每级台阶的高度h.【解答】解:如右图,过点B作BE⊥AC于点E,(1)在Rt△ABE中,AB=3m,cos12°≈0.9781,AE=ABcos12°≈2.934m=293.4cm,∴AC=AE﹣CE=293.4﹣60=233.4cm.答:AC的长度约为233.4cm.(2)h=BE=ABsin12°=×300×0.2079=20.79≈20.8cm.答:每级台阶的高度h约为20.8cm.【点评】本题考查了解直角三角形的应用,难度一般,解答本题的关键是根据坡度和坡角构造直角三角形,并解直角三角形.22.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.【考点】全等三角形的判定与性质.【分析】首先得出BC=EF,利用平行线的性质∠B=∠DEF,再利用AAS得出△ABC≌△DEF,即可得出答案.【解答】证明:∵BE=CF,∴BC=EF.∵AB∥DE,∴∠B=∠DEF.在△ABC与△DEF中,,∴△ABC≌△DEF(AAS),∴AB=DE.【点评】此题主要考查了平行线的性质以及全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题关键.23.红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.【考点】列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得恰好选派一男一女两位同学参赛的有8种情况,然后利用概率公式求解即可求得答案.【解答】解:(1)画树状图得:则共有12种等可能的结果;(2)∵恰好选派一男一女两位同学参赛的有8种情况,∴恰好选派一男一女两位同学参赛的概率为:=.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.24.已知关于x的一元二次方程(x﹣3)(x﹣2)=|m|.(1)求证:对于任意实数m,方程总有两个不相等的实数根;(2)若方程的一个根是1,求m的值及方程的另一个根.【考点】根的判别式;一元二次方程的解;根与系数的关系.【分析】(1)要证明方程有两个不相等的实数根,即证明△>0即可;(2)将x=1代入方程(x﹣3)(x﹣2)=|m|,求出m的值,进而得出方程的解.【解答】(1)证明:∵(x﹣3)(x﹣2)=|m|,∴x2﹣5x+6﹣|m|=0,∵△=(﹣5)2﹣4(6﹣|m|)=1+4|m|,而|m|≥0,∴△>0,∴方程总有两个不相等的实数根;(2)解:∵方程的一个根是1,∴|m|=2,解得:m=±2,∴原方程为:x2﹣5x+4=0,解得:x1=1,x2=4.即m的值为±2,方程的另一个根是4.【点评】此题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.同时考查了一元二次方程的解的定义.25.(10分)(2020•湘潭模拟)如图,以矩形ABCD的对角线AC的中点O为圆心,OA 长为半径作⊙O,⊙O经过B、D两点,过点B作BK⊥AC,垂足为K.过D作DH∥KB,DH分别与AC、AB、⊙O及CB的延长线相交于点E、F、G、H.(1)求证:AE=CK;(2)如果AB=a,AD=a(a为大于零的常数),求BK的长.【考点】圆的综合题.【分析】(1)先根据平行线的性质和垂直的定义得出∠AED=90°,再根据矩形的性质判断出Rt△ADE≌Rt△CBK即可;(2)先利用勾股定理求出AC,再用三角形的面积公式求出BK即可.【解答】(1)∵DH∥KB,BK⊥AC,∴DE⊥AC,∴∠AED=90°,∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∴∠EAD=∠KCB,在△ADE和△CBK中∴Rt△ADE≌Rt△CBK,∴AE=CK.(2)在Rt△ABC中,AB=a,AD=BC=a,∴AC===,∵S△ABC=AB×BC=AC×BK,∴BK===a.【点评】此题是圆的综合题,主要考查了矩形的性质,平行线的性质,垂直的定义,勾股定理,解本题的关键是判断出Rt△ADE≌Rt△CBK.26.(10分)(2020•长沙)为了扶持大学生自主创业,市政府提供了80万元无息贷款,用于某大学生开办公司生产并销售自主研发的一种电子产品,并约定用该公司经营的利润逐步偿还无息贷款.已知该产品的生产成本为每件40元,员工每人每月的工资为2500元,公司每月需支付其它费用15万元.该产品每月销售量y(万件)与销售单价x(元)之间的函数关系如图所示.(1)求月销售量y(万件)与销售单价x(元)之间的函数关系式;(2)当销售单价定为50元时,为保证公司月利润达到5万元(利润=销售额﹣生产成本﹣员工工资﹣其它费用),该公司可安排员工多少人?(3)若该公司有80名员工,则该公司最早可在几个月后还清无息贷款?【考点】一次函数的应用;分段函数.【分析】(1)从图中看,这是一个分段一次函数,40≤x≤60和60<x<100时,函数的表达式不同,每段函数都经过两点,使用待定系数法即可求出函数关系式;(2)利用(1)中的函数关系,当销售单价定为50元时,可计算出月销售量,设可安排员工m人,利润=销售额一生产成本﹣员工工资﹣其它费用,列出方程即可解;(3)先分情况讨论出利润的最大值,即可求解.【解答】解:(1)当40≤x≤60时,令y=kx+b,则,解得,故,同理,当60<x<100时,.故y=;(2)设公司可安排员工a人,定价50元时,由5=(﹣×50+8)(50﹣40)﹣15﹣0.25a,得30﹣15﹣0.25a=5,解得a=40,所以公司可安排员工40人;(3)当40≤x≤60时,利润w1=(﹣x+8)(x﹣40)﹣15﹣20=﹣(x﹣60)2+5,则当x=60时,w max=5万元;当60<x<100时,w2=(﹣x+5)(x﹣40)﹣15﹣0.25×80=﹣(x﹣70)2+10,∴x=70时,w max=10万元,∴要尽早还清贷款,只有当单价x=70元时,获得最大月利润10万元,设该公司n个月后还清贷款,则10n≥80,∴n≥8,即n=8为所求.【点评】本题主要考查学生利用待定系数法求解一次函数关系式,一次函数与一次不等式的应用,是一道综合性较强的代数应用题,能力要求比较高.。
福建省2022年中考数学第二次模拟考试(含答案与解析)
福建省2022年中考第二次模拟考试数 学(本卷共25小题,满分150分,考试用时120分钟)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:中考全部内容。
一、选择题:本题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合要求的。
1.下列用相同的正方体堆放在一起组成的几何体中,主视图和左视图不相同的是( )A .B .C .D .2.安徽省2021年全省户籍人口7119.4万人,比上年增加36.5万人,其中7119.4万用科学记数法表示为( )A .47119.410⨯B .70.7119410⨯C .37119410⨯D .77.119410⨯3.下列式子运算正确的是( )A .2347x x x +=B .2323()x y x y =C .347x x x ⋅=D .347()x x =4.若一次函数y ax b =+22()(a b a -= )A .2a b --B .2a b -C .b -D .2a b -+5.将含有30︒的三角板ABC 按如图所示放置,点A 在直线DE 上,其中15BAD ∠=︒,分别过点B ,C 作直线DE 的平行线FG ,HI ,则HCF ∠的度数为( )A .30︒B .60︒C .45︒D .55︒6.已知a ,b 是方程230x x +-=的两个实数根,则22022a b -+的值是( )A .2023B .2021C .2026D .20197.如图,四边形ABCD 与四边形AEFG 是位似图形,位似比为2:3.若6EF =,则BC 的长为( )A .8B .9C .10D .158.如图,将矩形ABCD 沿EF 折叠,使顶点C 恰好落在AB 边的中点C '上,若4AB =,8BC =,则tan BFC ∠'的值为( )A .34B .815C .817D .15179.若关于x 的不等式组231232x m x x-⎧⎪⎨⎪->-⎩无解,则m 的取值范围是( )A .1m >B .1mC .1m <D .1m10.如图1,正方形ABCD 中,点E 是边AD 的中点,点P 以/lcm s 的速度从点A 出发,沿A B C →→运动到点C 后,再沿线段CA 到达点A .图2是点P 运动时,PEC ∆的面积2()y cm 随时间()x s 变化的部分图象.根据图象判断:下列能表示点P 在整个运动过程中y 随x 变化的完整图象为( )A .B .C .D .二、填空题:本题共6小题,每小题4分,共24分。
【解析版】福建省福州市中考数学模拟试卷(二)
福建省福州市中考数学模拟试卷(二)一、选择题(共10小题,每题3分,满分30分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.不等式1﹣x>0的解集在数轴上表示正确的是()A. B. C.D.2.如图,已知AB∥CD,与∠1是同位角的角是()A.∠2 B.∠3 C.∠4 D.∠53.下列交通标志图案是轴对称图形的是()A. B. C. D.4.数据0,1,1,x,3,4的平均数是2,则这组数据的中位数是()A. 1 B. 3 C. 1.5 D. 25.如图,⊙O是△ABC的外接圆,∠AOB=60°,AB=AC=2,则弦BC的长为()A. B. 3 C. 2 D. 46.若代数式x2+ax可以分解因式,则常数a不可以取()A.﹣1 B. 0 C. 1 D. 27.下列计算正确的是()A. 2a+5a=7a B. 2x﹣x=1 C. 3+a=3a D. x2•x3=x68.如图,已知△ABC(AC<BC),用尺规在BC上确定一点P,使PA+PC=BC,则符合要求的作图痕迹是()A. B.C. D.9.关于反比例函数y=的图象,下列说法正确的是()A.图象经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x轴成轴对称D.当x<0时,y随x的增大而减小10.如图,一个半径为r的圆形纸片在边长为a()的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是()A. B. C. D.πr2二、填空题(共6小题,每题4分,满分24分)11.要使代数式有意义,则实数a的取值范围是.12.将直线y=2x+1平移后经过点,则平移后的直线解析式为.13.已知==3,==10,==15,…观察以上计算过程,寻找规律计算=.14.一个扇形的弧长是20πcm,半径是24cm,则此扇形的圆心角是度.15.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=6,BC=8,则EF的长为.16.若直线y=m(m为常数)与函数y=的图象恒有三个不同的交点,则常数m的取值范围是.三、解答题(共10小题,满分96分)17.计算:+|﹣4|+(﹣1)0﹣()﹣1.18.先化简,再求值:﹣,其中a=+1,b=﹣1.19.解方程:x2+2x﹣3=0.20.如图,点A,C,D在同一条直线上,BC与AE交于点F,AE=AC,AD=BC,FA=FC.求证:∠B=∠D.21.某班同学分三组进行数学活动,对七年级400名同学最喜欢喝的饮料情况,八年级300名同学零花钱的最主要用途情况,九年级300名同学完成家庭作业时间情况进行了全面调查,并分别用扇形图、频数分布直方图、表格来描述整理得到的数据.时间 1小时左右 1.5小时左右 2小时左右 2.5小时左右人数 50 80 120 50根据以上信息,请回答下列问题:(1)七年级400名同学中最喜欢喝“冰红茶”的人数是多少;补全八年级300名同学中零花钱的最主要用途情况频数分布直方图;(3)九年级300名同学中完成家庭作业的平均时间大约是多少小时?(结果保留一位小数)22.乔丹体育用品商店开展“超级星期六”促销活动:运动服8折出售,运动鞋每双减20元.活动期间,标价为480元的某款运动服装(含一套运动服和一双运动鞋)价格为400元.问该款运动服和运动鞋的标价各是多少元?23.已知钝角三角形ABC,点D在BC的延长线上,连接AD,若∠DAB=90°,∠ACB=2∠D,AD=2,AC=,根据题意画出示意图,并求tanD的值.24.如图,在△ABC中,以AC为直径作⊙O交BC于点D,交AB于点G,且D是BC中点,DE⊥AB,垂足为E,交AC的延长线于点F.(1)求证:直线EF是⊙O的切线;若CF=5,cos∠A=,求BE的长.25.如图,在直角梯形ABCD中,AB∥CD,AD⊥AB,∠B=60°,AB=10,BC=4,点P沿线段AB从点A向点B运动,设AP=x.(1)求AD的长;点P在运动过程中,是否存在以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似?若存在,求出x的值;若不存在,请说明理由;(3)设△ADP与△PCB的外接圆的面积分别为S1、S2,若S=S1+S2,求S的最小值.26.如图,在平面直角坐标系xOy中,已知抛物线y=a(x﹣1)(x﹣5)与x轴交于B、C两点,与y轴交于点A(0,4),抛物线的对称轴l与x轴相交于点M.(1)则a=;该抛物线的对称轴为;连接AC,在直线AC下方的抛物线上是否存在一点N,使△NAC的面积为14?若存在,请你求出点N的坐标;若不存在,请说明理由;(3)设P(m,n)是抛物线上的一点(m、n为正整数),且它位于对称轴的右侧.若以A、O、M、P为顶点的四边形的四条边的长度是四个连续的正整数,求点P的坐标.福建省福州市中考数学模拟试卷(二)参考答案与试题解析一、选择题(共10小题,每题3分,满分30分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.不等式1﹣x>0的解集在数轴上表示正确的是()A. B. C.D.考点:在数轴上表示不等式的解集;解一元一次不等式.分析:根据解不等式的方法,可得不等式的解集,根据不等式的解集在数轴上的表示方法,可得答案.解答:解;1﹣x>0,解得x<1,故选:A.点评:本题考查了在数轴上表示不等式的解集,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.2.如图,已知AB∥CD,与∠1是同位角的角是()A.∠2 B.∠3 C.∠4 D.∠5考点:同位角、内错角、同旁内角.分析:根据同位角的定义得出结论.解答:解:∠1与∠5是同位角.故选:D.点评:本题主要考查了同位角的定义,熟记同位角,内错角,同旁内角,对顶角是关键.3.下列交通标志图案是轴对称图形的是()A. B. C. D.考点:轴对称图形.专题:常规题型.分析:根据轴对称的定义结合选项所给的特点即可得出答案.解答:解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误;故选:B.点评:本题考查了轴对称图形,掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.4.数据0,1,1,x,3,4的平均数是2,则这组数据的中位数是()A. 1 B. 3 C. 1.5 D. 2考点:中位数;算术平均数.分析:根据平均数的计算公式求出x的值,再把这组数据从小到大排列,根据中位数的定义即可得出答案.解答:解:∵数据0,1,1,x,3,4的平均数是2,∴(0+1+1+x+3+4)÷6=2,解得:x=3,把这组数据从小到大排列0,1,1,3,3,4,最中间两个数的平均数是(1+3)÷2=2,则这组数据的中位数是2;故选:D.点评:此题考查了中位数和平均数,根据平均数的计算公式求出x的值是本题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).5.如图,⊙O是△ABC的外接圆,∠AOB=60°,AB=AC=2,则弦BC的长为()A. B. 3 C. 2 D. 4考点:垂径定理;圆周角定理;解直角三角形.专题:计算题.分析:如图,首先证得OA⊥BC;然后由圆周角定理推知∠C=30°,通过解直角△ACD可以求得CD的长度.则BC=2CD.解答:解:如图,设AO与BC交于点D.∵∠AOB=60°,,∴∠C=∠AOB=30°,又∵AB=AC,∴=∴AD⊥BC,∴BD=CD,∴在直角△ACD中,CD=AC•cos30°=2×=,∴BC=2CD=2.故选:C.点评:本题考查了解直角三角形,圆周角定理等知识点.推知△OAB是等边三角形是解题的难点,证得AD⊥BC是解题的关键.6.若代数式x2+ax可以分解因式,则常数a不可以取()A.﹣1 B. 0 C. 1 D. 2考点:因式分解-提公因式法.分析:利用提取公因式法分解因式的方法得出即可.解答:解:∵代数式x2+ax可以分解因式,∴常数a不可以取0.故选:B.点评:此题主要考查了提取公因式法分解因式,理解提取公因式法分解因式的意义是解题关键.7.下列计算正确的是()A. 2a+5a=7a B. 2x﹣x=1 C. 3+a=3a D. x2•x3=x6考点:同底数幂的乘法;合并同类项.分析:根据合并同类项、同底数幂的运算法则计算.解答:解:A、符合合并同类项法则,故本选项正确;B、2x﹣x=x≠1,故本选项错误;C、3和a不是同类项,故本选项错误;D、x2•x3≠x6=x5,故本选项错误.故选:A.点评:本题考查了同底数幂的乘法与合并同类项,熟悉合并同类项法则是解题的关键.8.如图,已知△ABC(AC<BC),用尺规在BC上确定一点P,使PA+PC=BC,则符合要求的作图痕迹是()A. B.C. D.考点:作图—复杂作图.分析:要使PA+PC=BC,必有PA=PB,所以选项中只有作AB的中垂线才能满足这个条件,故D 正确.解答:解:D选项中作的是AB的中垂线,∴PA=PB,∵PB+PC=BC,∴PA+PC=BC故选:D.点评:本题主要考查了作图知识,解题的关键是根据中垂线的性质得出PA=PB.9.关于反比例函数y=的图象,下列说法正确的是()A.图象经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x轴成轴对称D.当x<0时,y随x的增大而减小考点:反比例函数的性质.专题:常规题型.分析:根据反比例函数的性质,k=2>0,函数位于一、三象限,在每一象限y随x的增大而减小.解答:解:A、把点(1,1)代入反比例函数y=得2≠1不成立,故A选项错误;B、∵k=2>0,∴它的图象在第一、三象限,故B选项错误;C、图象的两个分支关于y=﹣x对称,故C选项错误.D、当x>0时,y随x的增大而减小,故D选项正确.故选:D.点评:本题考查了反比例函数y=(k≠0)的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.10.如图,一个半径为r的圆形纸片在边长为a()的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是()A. B. C. D.πr2考点:扇形面积的计算;等边三角形的性质;切线的性质.专题:计算题;压轴题.分析:过圆形纸片的圆心O1作两边的垂线,垂足分别为D,E,连AO1,则在Rt△ADO1中,可求得.四边形ADO1E的面积等于三角形ADO1的面积的2倍,还可求出扇形O1DE的面积,所求面积等于四边形ADO1E的面积减去扇形O1DE的面积的三倍.解答:解:如图,当圆形纸片运动到与∠A的两边相切的位置时,过圆形纸片的圆心O1作两边的垂线,垂足分别为D,E,连AO1,则Rt△ADO1中,∠O1AD=30°,O1D=r,.∴.由.∵由题意,∠DO1E=120°,得,∴圆形纸片不能接触到的部分的面积为=.故选:C.点评:本题考查了面积的计算、等边三角形的性质和切线的性质,是基础知识要熟练掌握.二、填空题(共6小题,每题4分,满分24分)11.要使代数式有意义,则实数a的取值范围是a≠﹣1.考点:分式有意义的条件.专题:计算题.分析:使代数式有意义的条件为a+1≠0,就可求得a的取值范围.解答:解:根据题意得:a+1≠0,所以a≠﹣1.故答案为a≠﹣1.点评:此题主要考查了分式的意义,要求掌握.只要令分式中分母不等于0,求得a的取值范围即可.12.将直线y=2x+1平移后经过点,则平移后的直线解析式为y=2x﹣3.考点:一次函数图象与几何变换.分析:根据平移不改变k的值可设平移后直线的解析式为y=2x+b,然后将点代入即可得出直线的函数解析式.解答:解:设平移后直线的解析式为y=2x+b.把代入直线解析式得1=2×2+b,解得 b=﹣3.所以平移后直线的解析式为y=2x﹣3.故答案为:y=2x﹣3.点评:本题考查了一次函数图象与几何变换及待定系数法去函数的解析式,掌握直线y=kx+b(k≠0)平移时k的值不变是解题的关键.13.已知==3,==10,==15,…观察以上计算过程,寻找规律计算=56.考点:规律型:数字的变化类.分析:对于C a b(b<a)来讲,等于一个分式,其中分母是从1到b的b个数相乘,分子是从a开始乘,乘b的个数.解答:解:∵==3,==10,==15,∴==56.故答案为:56.点评:此题主要考查了数字的变化规律,利用已知得出分子与分母之间的规律是解题关键.14.一个扇形的弧长是20πcm,半径是24cm,则此扇形的圆心角是150度.考点:弧长的计算.分析:直接利用弧长公式l=即可求出n的值,计算即可.解答:解:根据l===20π,解得:n=150,故答案为:150.点评:本题考查了扇形弧长公式计算,注意公式的灵活运用是解题关键.15.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=6,BC=8,则EF的长为1.考点:三角形中位线定理.分析:根据直角三角形斜边上的中线等于斜边的一半求出DF的长度,根据三角形的中位线平行于第三边并且等于第三边的一半求出DE的长,然后相减即可得到EF的长.解答:解:∵DE为△ABC的中位线,∠AFB=90°,∴DE=BC,DF=AB,∵AB=6,BC=8,∴DE=×8=4,DF=×6=3,∴EF=DE﹣DF=4﹣3=1.故答案为:1.点评:本题考查了三角形的中位线定理,直角三角形斜边上的中线等于斜边的一半的性质,熟记定理与性质是解题的关键.16.若直线y=m(m为常数)与函数y=的图象恒有三个不同的交点,则常数m的取值范围是0<m<2.考点:二次函数的图象;反比例函数的图象.专题:压轴题;图表型.分析:首先作出分段函数y=的图象,根据函数的图象即可确定m的取值范围.解答:解:分段函数y=的图象如图:故要使直线y=m(m为常数)与函数y=的图象恒有三个不同的交点,常数m的取值范围为0<m<2,故答案为:0<m<2.点评:本题考查了二次函数的图象及反比例函数的图象,首先作出分段函数的图象是解决本题的关键,采用数形结合的方法确定答案是数学上常用的方法之一.三、解答题(共10小题,满分96分)17.计算:+|﹣4|+(﹣1)0﹣()﹣1.考点:实数的运算;零指数幂;负整数指数幂.专题:计算题.分析:本题涉及零指数幂、负指数幂、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=3+4+1﹣2=6.点评:本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.先化简,再求值:﹣,其中a=+1,b=﹣1.考点:分式的化简求值.专题:计算题.分析:原式利用同分母分式的减法法则计算,约分得到最简结果,将a与b的值代入计算即可求出值.解答:解:原式===a+b,当a=+1,b=﹣1时,原式=+1+﹣1=2.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.解方程:x2+2x﹣3=0.考点:解一元二次方程-因式分解法.专题:计算题.分析:观察方程x2+2x﹣3=0,可因式分解法求得方程的解.解答:解:x2+2x﹣3=0∴(x+3)(x﹣1)=0∴x1=1,x2=﹣3.点评:解方程有多种方法,要根据实际情况进行选择.20.如图,点A,C,D在同一条直线上,BC与AE交于点F,AE=AC,AD=BC,FA=FC.求证:∠B=∠D.考点:全等三角形的判定与性质.专题:证明题.分析:根据三角形全等得到对应角相等即可得出结论.解答:证明:∵FA=FC,∴∠FAC=∠FCA,在△ABC和△EDA中,,∴△ABC≌△EDA,∴∠B=∠D.点评:本题考查了全等三角形的判定与性质,找准对应边和对应角是解题的关键.21.某班同学分三组进行数学活动,对七年级400名同学最喜欢喝的饮料情况,八年级300名同学零花钱的最主要用途情况,九年级300名同学完成家庭作业时间情况进行了全面调查,并分别用扇形图、频数分布直方图、表格来描述整理得到的数据.时间 1小时左右 1.5小时左右 2小时左右 2.5小时左右人数 50 80 120 50根据以上信息,请回答下列问题:(1)七年级400名同学中最喜欢喝“冰红茶”的人数是多少;补全八年级300名同学中零花钱的最主要用途情况频数分布直方图;(3)九年级300名同学中完成家庭作业的平均时间大约是多少小时?(结果保留一位小数)考点:加权平均数;用样本估计总体;频数(率)分布直方图;扇形统计图.专题:压轴题;图表型.分析:(1)先求出喝红茶的百分比,再乘总数.先让总数减其它三种人数,再根据数值画直方图.(3)用加权平均公式求即可.解答:解:(1)冰红茶的百分比为100%﹣25%﹣25%﹣10%=40%,冰红茶的人数为400×40%=160(人),即七年级同学最喜欢喝“冰红茶”的人数是160人;补全频数分布直方图如右图所示.(3)(小时).答:九年级300名同学完成家庭作业的平均时间约为1.8小时.点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键;条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.乔丹体育用品商店开展“超级星期六”促销活动:运动服8折出售,运动鞋每双减20元.活动期间,标价为480元的某款运动服装(含一套运动服和一双运动鞋)价格为400元.问该款运动服和运动鞋的标价各是多少元?考点:二元一次方程组的应用.分析:设运动服、运动鞋的标价分别为x元/套、y元/双,根据标价为480元的某款运动服装价格为400元,列方程组求解.解答:解:设运动服、运动鞋的标价分别为x元/套、y元/双,由题意得,,解得:.答:运动服、运动鞋的标价分别为300元/套、180元/双.点评:本题考查了二元一次方程的应用,解题的关键是读懂题意,设出未知数,找到题目当中的等量关系,列方程求解.23.已知钝角三角形ABC,点D在BC的延长线上,连接AD,若∠DAB=90°,∠ACB=2∠D,AD=2,AC=,根据题意画出示意图,并求tanD的值.考点:解直角三角形.分析:首先根据题意画出示意图,根据三角形外角的性质得出∠ACB=∠D+∠CAD,而∠ACB=2∠D,那么∠CAD=∠D,由等角对等边得到CA=CD,再根据等角的余角相等得出∠B=∠BAC,则AC=CB,BD=2AC=2×=3.然后解Rt△ABD,运用勾股定理求出AB==,利用正切函数的定义求出tanD==.解答:解:如图,∵∠ACB=∠D+∠CAD,∠ACB=2∠D,∴∠CAD=∠D,∴CA=CD.∵∠DAB=90°,∴∠B+∠D=90°,∠BAC+∠CAD=90°,∴∠B=∠BAC,∴AC=CB,∴BD=2AC=2×=3.在Rt△ABD中,∵∠DAB=90°,AD=2,∴AB==,∴tanD==.点评:本题考查了三角形外角的性质,等腰三角形的判定,余角的性质,解直角三角形,勾股定理,正切函数的定义,难度适中.求出BD的值是解题的关键.24.如图,在△ABC中,以AC为直径作⊙O交BC于点D,交AB于点G,且D是BC中点,DE⊥AB,垂足为E,交AC的延长线于点F.(1)求证:直线EF是⊙O的切线;若CF=5,cos∠A=,求BE的长.考点:切线的判定.专题:几何综合题.分析:(1)连结OD.先证明OD是△ABC的中位线,根据中位线的性质得到OD∥AB,再由DE⊥AB,得出OD⊥EF,根据切线的判定即可得出直线EF是⊙O的切线;先由OD∥AB,得出∠COD=∠A,再解Rt△DOF,根据余弦函数的定义得到cos∠FOD==,设⊙O的半径为R,解方程=,求出R=,那么AB=2OD=,解Rt△AEF,根据余弦函数的定义得到cos∠A==,求出AE=,然后由BE=AB﹣AE即可求解.解答:(1)证明:如图,连结OD.∵CD=DB,CO=OA,∴OD是△ABC的中位线,∴OD∥AB,AB=2OD,∵DE⊥AB,∴DE⊥OD,即OD⊥EF,∴直线EF是⊙O的切线;解:∵OD∥AB,∴∠COD=∠A.在Rt△DOF中,∵∠ODF=90°,∴cos∠FOD==,设⊙O的半径为R,则=,解得R=,∴AB=2OD=.在Rt△AEF中,∵∠AEF=90°,∴cos∠A===,∴AE=,∴BE=AB﹣AE=﹣=2.点评:本题考查了切线的判定,解直角三角形,三角形中位线的性质知识点.要证某线是圆的切线,已知此线过圆上某点,连结圆心与这点(即为半径),再证垂直即可.25.如图,在直角梯形ABCD中,AB∥CD,AD⊥AB,∠B=60°,AB=10,BC=4,点P沿线段AB从点A向点B运动,设AP=x.(1)求AD的长;点P在运动过程中,是否存在以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似?若存在,求出x的值;若不存在,请说明理由;(3)设△ADP与△PCB的外接圆的面积分别为S1、S2,若S=S1+S2,求S的最小值.考点:相似形综合题.专题:压轴题.分析:(1)过点C作CE⊥AB于E,根据CE=BC•sin∠B求出CE,再根据AD=CE即可求出AD;若以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似,则△PCB必有一个角是直角.分两种情况讨论:①当∠PCB=90°时,求出AP,再根据在Rt△ADP中∠DPA=60°,得出∠DPA=∠B,从而得到△ADP∽△CPB,②当∠CPB=90°时,求出AP=3,根据≠且≠,得出△PCB与△ADP不相似.(3)先求出S1=π•,再分两种情况讨论:①当2<x<10时,作BC的垂直平分线交BC于H,交AB于G;作PB的垂直平分线交PB于N,交GH于M,连结BM,在Rt△GBH中求出BG、BN、GN,在Rt△GMN中,求出MN=(x﹣1),在Rt△BMN中,求出BM2=x2﹣x+,最后根据S1=π•BM2代入计算即可.②当0<x≤2时,S2=π(x2﹣x+),最后根据S=S1+S2=π(x﹣)2+π即可得出S的最小值.解答:解:(1)过点C作CE⊥AB于E,在Rt△BCE中,∵∠B=60°,BC=4,∴CE=BC•sin∠B=4×=2,∴AD=CE=2.存在.若以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似,则△PCB必有一个角是直角.①当∠PCB=90°时,在Rt△PCB中,BC=4,∠B=60°,PB=8,∴AP=AB﹣PB=2.又由(1)知AD=2,在Rt△ADP中,tan∠DPA===,∴∠DPA=60°,∴∠DPA=∠CPB,∴△ADP∽△CPB,∴存在△ADP与△CPB相似,此时x=2.②∵当∠CPB=90°时,在Rt△PCB中,∠B=60°,BC=4,∴PB=2,PC=2,∴AP=8.则≠且≠,此时△PCB与△ADP不相似.(3)如图,因为Rt△ADP外接圆的直径为斜边PD,则S1=π•()2=π•,①当2<x<10时,作BC的垂直平分线交BC于H,交AB于G;作PB的垂直平分线交PB于N,交GH于M,连结BM.则BM为△PCB外接圆的半径.在Rt△GBH中,BH=BC=2,∠MGB=30°,∴BG=4,∵BN=PB=(10﹣x)=5﹣x,∴GN=BG﹣BN=x﹣1.在Rt△GMN中,∴MN=GN•tan∠MGN=(x﹣1).在Rt△BMN中,BM2=MN2+BN2=x2﹣x+,∴S2=π•BM2=π(x2﹣x+).②∵当0<x≤2时,S2=π(x2﹣x+)也成立,∴S=S1+S2=π•+π(x2﹣x+)=π(x﹣)2+π.∴当x=时,S=S1+S2取得最小值π.点评:此题考查了相似形综合,用到的知识点是相似三角形的性质与判定、二次函数的最值、勾股定理,关键是根据题意画出图形构造相似三角形,注意分类讨论.26.如图,在平面直角坐标系xOy中,已知抛物线y=a(x﹣1)(x﹣5)与x轴交于B、C两点,与y轴交于点A(0,4),抛物线的对称轴l与x轴相交于点M.(1)则a=;该抛物线的对称轴为x=3;连接AC,在直线AC下方的抛物线上是否存在一点N,使△NAC的面积为14?若存在,请你求出点N的坐标;若不存在,请说明理由;(3)设P(m,n)是抛物线上的一点(m、n为正整数),且它位于对称轴的右侧.若以A、O、M、P为顶点的四边形的四条边的长度是四个连续的正整数,求点P的坐标.考点:二次函数综合题.分析:(1)首先把x=0,y=4代入y=a(x﹣1)(x﹣5),求出a的值是多少;然后求出B、C两点的坐标,确定出该抛物线的对称轴即可.首先过点N作NG∥y轴交AC于G,求出直线AC的解析式为:y=﹣x+4,设N点的横坐标是t,则此时点N(t,t2﹣+4)(0<t<5);然后求出△CAN面积的最大值为多少,判断出是否存在一点N,使△NAC的面积为14即可.(3)首先判断出以A、O、M、P为顶点的四边形有两条边:AO=4,OM=3,判断出以1、2、3、4为边或以2、3、4、5为边都不符合题意,所以四条边的长只能是3、4、5、6一种情况,然后证明以A、O、M、P为顶点的四边形的四条边的长是3、4、5、6成立,并求出P的坐标是多少即可.解答:解:(1)把x=0,y=4代入y=a(x﹣1)(x﹣5),可得a×(﹣1)×(﹣5)=4,解得a=;∵B、C两点的坐标分别是(1,0)、(5,0),∴该抛物线的对称轴为x=(5+1)÷2=3,即该抛物线的对称轴为x=3.如图1,过点N作NG∥y轴交AC于G,,抛物线y=(x﹣1)(x﹣5)=x2+4,由点A(0,4)和点C(5,0),可得直线AC的解析式为:y=﹣x+4,设N点的横坐标是t,则此时点N(t,t2﹣+4)(0<t<5),把x=t代入y=﹣x+4,可得G(t,﹣t+4),此时NG=﹣t+4﹣(t2﹣+4)=﹣t2+5t,∴S△ACN=S△ANG+S△CGN=×(﹣t2+5t)=﹣2+,∴当t=时,△CAN面积的最大值为:,∴存在一点N,使△NAC的面积为14.(3)如图2,,以A、O、M、P为顶点的四边形有两条边:AO=4,OM=3,又∵点P的坐标中x>5,∴MP>2,AP>2,∴以1、2、3、4为边或以2、3、4、5为边都不符合题意,∴四条边的长只能是3、4、5、6一种情况.在Rt△AOM中,AM==5,∵抛物线的对称轴过点M,∴在抛物线x>5的图象上有关于点A的对称点与M的距离为5,即PM=5,此时点P横坐标为6,即AP=6,∴以A、O、M、P为顶点的四边形的四条边的长是3、4、5、6成立,即P(6,4).故答案为:、x=3.点评:(1)此题主要考查了二次函数综合题,考查了分析推理能力,考查了分类讨论思想的应用,考查了从已知函数图象中获取信息,并能利用获取的信息解答相应的问题的能力;此题还考查了三角形的面积的求法,以及数形结合方法的应用,要熟练掌握.。
2020-2021学年河北省数学中考模拟试题(2)含答案解析
河北省初中毕业生升学文化课模拟考试数学试卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题.本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共42分)注意事项:1.答卷I前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上. 考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑. 答在试卷上无效.一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如果+30 m表示向东走30 m,那么向西走40 m表示为( ▲)A.+30 m B.-30 m C.+40 m D.-40 m2.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法表示为( ▲)A.6.75×103吨B.6.75×104吨C.6.75×105吨D.6.75×10-4吨a 的值为( ▲)3. 已知点A(a,2013)与点A′(-2014,b)是关于原点O的对称点,则bA . 1B . 5C . 6D .44.如图,已知一商场自动扶梯的长l 为13米,高度h 为5米,自动扶梯与地面所成的夹角为θ,则tan θ的值等于( ▲ ) A .125 B .512C .135 D .1312 5.一组数据2,4,x ,2,4,7的众数是2,则这组数据的平均数、中位数分别为( ▲ ) A .3,4B .3,3.5C . 3.5,3D .4,36.反比例函数xm y 3-=(m ≠3)在图象所在的每一象限内,函数值y 随自变量x 的增大而增大,则m 的取值范围是( ▲ ) A .3m <-B . 3m >-C .3m <D . 3m >7.已知⊙O 1和⊙O 2的半径分别为1和4,如果两圆的位置关系为相交,那么圆心距O 1O 2的取值范围在数轴上表示正确的是( ▲ )8.用棋子按下列方式摆图形,依此规律,第n 个图形比第(n-1)个图形多(▲ )枚棋子.0 0 3 5 3 5 1414ABCDA .4nB . 5n-4C .4n-3D . 3n-29. 如图,平行四边形ABCD 的顶点A 、B 、D 在⊙O 上,顶点C 在⊙O 的直径BE 上,∠ADC=54°,连接AE ,则∠AEB 的度数为( ▲ ) A .27° B .36° C . 46° D .63°10.如图1,在矩形ABCD 中,动点P 从点B 出发,沿BC ,CD 运动至点D 停止,设点P 运动的路程为x ,△ABP 的面积为y ,y 关于x 的函数图象如图2所示, 则△ABC 的面积是( ▲ ) A .4 B .3 C .2 D .111.下列图形中,既是轴对称图形又是中心对称图形的是( ) A.菱形、正方形、平行四边形 B.矩形、等腰三角形、圆 C.矩形、正方形、等腰梯形D.菱形、正方形、圆12.有下列命题:①两条直线被第三条直线所截,同位角相等;②两点之间,线段最短;③相等的角是对顶角;④两个锐角的和是锐角;⑤同角或等角的补角相等. 正确命题的个数是( ) A.2个B.3个C.4个D.5个13.若不等式组211x a x a >-⎧⎨<+⎩无解,则a 的取值范围是( )A.2a <B.2a =C.2a >D.2a ≥ABCDP图114.已知,△ABC 中,∠A=90°,∠ABC=30°.将△ABC 沿直线BC 平移得到△111C B A ,1B 为BC 的中点,连结1BA ,则tan BC A 1∠的值为( ) A .43 B .53 C .63 D .73 15.一个几何体是由若干个相同的立方体组成,其主视图和左视图如图所示,则组成这个几何体的立方体个数不可能的是( )A .15个B .13个C .11个D .5个 16.给出以下命题:①已知8215-可以被在60~70之间的两个整数整除,则这两个数是63、65;②若,2=x a ,3=ya 则y x a -2=34; ③已知关于x 的方程322=-+x mx 的解是正数,则m 的取值范围为6-≠->m m 或; ④若方程x 2-2(m+1)x+m 2=0有两个整数根,且12<m<60, 则m 的整数值有2个. 其中正确的是( )A .①②B .①②④C .①③④ D.②③④ 河北省初中毕业生升学文化课模拟考试(第14题)总 分 核分人(第15题)数学试卷卷II(非选择题,共78分)注意事项:1.答卷II前,将密封线左侧的项目填写清楚.2.答卷II时,将答案用黑色字迹的钢笔、签字笔或圆珠笔直接写在试卷上.题号二三21 22 23 24 25 26得分得分评卷人二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上)17.一个不透明的袋中装有除颜色外其他均相同的2个红球和3个黄球,从中随机摸出一个黄球的概率是▲ .18.若实数a、b满足a+b=5,a2b+ab2=-10,则ab的值是▲.19.如图,矩形ABCD中,AB=8,AD=3.点E从D向C以每秒1个单位的速度运动,以AE为一边在AE的右下方作正方形AEFG,同时垂直于CD 的直线MN 也从C 向D 以每秒2个单位的速度运动,当经过 ▲ 秒时,直线MN 和正方形AEFG 开始有公共点?20.如图,Rt △ABC 的斜边AB 在x 轴上,OA=OB=6,点C 在第一象限,∠A=30°, P (m ,n )是线段BC 上的动点,过点P 作BC 的垂线a ,以直线a 为对称轴,将线段OB 轴对称变换后得线段O ′B ′, (1)当点B ′ 与点C 重合时,m 的值为 ▲ ;(2)当线段O ′B ′与线段AC 没有公共点时,m 的取值范围是 ▲ .三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(本小题满分9分)如图,用两段等长的铁丝恰好可以分别围成一个正五边形和一个正六边形,其中正五边形的边长为(217x +)cm ,正六边形的边长为(22x x +)cm (0)x >其中.求这两段铁丝的总长.得 分评卷人22.(本小题满分10分)已知:图1为一锐角是30°的直角三角尺,其边框为透明塑料制成(内、外直角三角形对应边互相平行且三处所示宽度相等).操作:将三角尺移向直径为6cm 的⊙O ,它的内Rt △ABC 的斜边AB 恰好等于⊙O 的直径,它的外Rt △A ′B ′C ′的直角边A ′C ′ 恰好与⊙O 相切(如图2)。
江苏省淮安市2020年中考数学模拟卷02(含解析)
江苏省淮安市2020年中考数学模拟卷021. 试卷分为第I 卷和第II 卷两部分,共6页,全卷满分150分,考试时间120分钟。
2. 第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,先用橡皮擦干净后,再选涂其它答案,答案写在本试卷上无效.3. 答第II 卷时,用0.5毫米黑色墨水签字笔,将答案写在答题卡上指定的位置,答案写在试卷上或答题卡上规定的区域以外无效. 4. 作图要用2B 铅笔,加黑加粗,描写清楚. 5. 考试结束,将本试卷和答题卡一并交回.第I 卷 (选择题 共24分)一、选择题(本大题共有8小题,每小题3分,共24分。
在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置.......上) 1.2019-的相反数等于( ) A .2019-B .12019C .12019- D .20192.下列各式中,正确的有( ) A .325a a a +=B .32622a a a =gC .326(2)4a a -=D .824a a a ÷=3.截止到2019年9月3日,电影《哪吒之魔童降世》的累计票房达到了47.24亿,47.24亿用科学记数法表示为( ) A .947.2410⨯B .94.72410⨯C .54.72410⨯D .5472.410⨯4.如图所示几何体的左视图正确的是( )A .B .C .D .5.已知ABC ∆的三边长分别为a 、b 、c ,且()()()M a b c a b c a b c =+++---,那么( ) A .0M >B .0M …C .0M =D .0M <6.某篮球运动员在连续7场比赛中的得分(单位:分)依次为23,22,20,20,20,25,18.则这组数据的众数与中位数分别是( ) A .20分,22.5分B .20分,18分C .20分,22分D .20分,20分7.下列关于x 的一元二次方程中,有两个相等的实数根的方程是( ) A .2230x x +-=B .210x +=C .24410x x ++=D .230x x ++=8.如图,矩形ABCD 的边5AB cm =,4BC cm =动点P 从A 点出发,在折线AD DC CB --上以1/cm s 的速度向B 点作匀速运动,则表示ABP ∆的面积()S cm 与运动时间()t s 之间的函数系的图象是( )A .B .C .D .第II 卷 (非选择题 共126分)二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上.) 9.分解因式:29y x y -= .10.某区10名学生参加实际汉字听写大赛,他们得分情况如下表:那么10名学生所得分数的中位数是 . 11.分式方程3104x x+=+的解为 . 12.若n 边形的外角和为(2)180n -⨯︒,则n = . 13.不等式组52124x x -⎧⎨-<⎩…的解集是 .14.圆锥的侧面展开图的圆心角是120︒,其底面圆的半径为2cm ,则其侧面积为 . 15.如图,ABC ∆中,//DE BC ,5AB =,3AC =,若BD AE =,则AD 的长为 .(第15题)(第16题)16.如图,在矩形ABCD 中,3AB =,2BC =,H 是AB 的中点,将CBH ∆沿CH 折叠,点B 落在矩形内点P 处,连接AP ,则tan HAP ∠= .三、解答题(本大题共有11小题,共102分。
2023年广东省深圳市福田区深大附中创新中学中考二模数学试卷(解析版)
初三模拟考试(二)数学试卷说明:1.全卷分试卷和答题卡,共4页,考试时问90分钟,满分100分.2.答题前,请将班级、考生号、姓名填(涂)写在答题卡.不得在答题卡其它区域做任何标记.3.答题卡上的答案必须写在题目指定位置上.(选择题答案必须涂在答题卡上,凡答案写在试卷上不给分)4.考试结束,请将答题卡上交.第一部分 选择题一、选择题(本大题共10小题,每小题3分,共30分)1. 2023−的倒数是( )A. 2023−B. 2023C. 12023D. 12023− 【答案】D【解析】【分析】直接利用倒数的定义,即若两个不为零的数的积为1,则这两个数互为倒数,即可求解.【详解】解:2023−的倒数是 故选:D .【点睛】本题考查了倒数的定义,熟练掌握和运用倒数的求法是解决本题的关键.2. 某几何体从三个方向看到的平面图形都相同,这个几何体可以是( )A. B.C. D.【答案】C【解析】【分析】根据三视图判断即可;【详解】的左视图、主视图是三角形,俯视图是圆,故A不符合题意;的左视图、主视图是长方形,俯视图是三角形,故B不符合题意;的主视图、左视图、俯视图都是正方形,故C符合题意;的左视图、主视图是长方形,俯视图是圆,故D不符合题意;故选C.【点睛】本题主要考查了几何体三视图的判断,准确分析是解题的关键.3. 已知一组数据2,3,5,x,533,则x的值是()A. 3B. 5C. 2D. 无法确定【答案】A【解析】【分析】根据众数的定义,结合这组数据的具体情况进行判断即可.【详解】解:在这组已知的数据中,“3”出现2次,“5”出现2次,“2”出现1次,要使这组数据有唯一的众数3,因此x所表示的数一定是3.故选:A.【点睛】本题考查众数的定义,掌握一组数据中出现次数最多的数据是这组数据的众数是正确判断的关键.4. 我国的北斗卫星导航系统中有一颗中高轨道卫星高度大约是21500000米.将数21500000用科学记数法表示为()A. 7× D. 721.510×2.15102.1510× B. 90.12510× C. 8【答案】A【解析】【分析】绝对值大于1数可以用科学记数法表示,一般形式为10n a ×,n 为正整数,且比原数的整数位数少1,据此可以解答.【详解】解:数21500000用科学记数法表示为72.1510×.故选:A【点睛】本题考查用科学记数法表示较大的数,熟练掌握科学记数法表示较大的数一般形式为10n a ×,其中110a ≤<,n 是正整数,正确确定a 的值和n 的值是解题的关键.5. 下列计算正确的是( )A. 235a a a +=B. ()2121a a +=+C. 326a a a ×=D. ()3236ab a b = 【答案】D【解析】【分析】根据合并同类项的法则、同底数幂的乘法法则、幂的乘方法则、去括号法则,进行计算即可得到答案.【详解】解:A. 235a a a +≠,故本选项错误,不符合题意;B.()2122a a +=+,故本选项错误,不符合题意;C.325a a a ×=,故本选项错误,不符合题意;D.()3236ab a b =,故本选项正确,符合题意;故选:D .【点睛】本题主要考查了合并同类项的法则、同底数幂的乘法法则、幂的乘方法则、去括号法则,熟练掌握合并同类项的法则、同底数幂的乘法法则、幂的乘方法则、去括号法则,是解题的关键.6. 不等式组54131622x x x x +<− ≤− 的解集是( ) A. 3x ≥B. 2x <或3x ≥C. 2x <D. 23x <≤【答案】D【解析】【分析】分别解出每一个不等式,找到它们的公共部分,即可得出结论. 的【详解】解:由541x x +<−,得:2x >; 由31622x x ≤−,得:3x ≤; ∴23x <≤;故选D .【点睛】本题考查解一元一次不等式组.正确的求出每一个不等式的解集,是解题的关键.7. 如图,一块直角三角尺的一个顶点落在直尺的一边上,若245∠=°,则1∠的度数为( )A. 30°B. 45°C. 50°D. 55°【答案】B【解析】 【分析】根据平行线的性质和直角的定义解答即可.【详解】解:如图,作EF AB ∥,∵AB CD ,∴∥∥EF AB CD ,∴245,1AEF FEC ∠=∠=°∠=∠,∵90AEC ∠=°,∴1904545FEC ∠=∠=°−°=°,故选:B .【点睛】此题考查平行线的性质,关键是根据平行线的性质得出245,1AEF FEC ∠=∠=°∠=∠. 8. 如图,四边形ABCD 是菱形,120ADC ∠=°,4AB =,扇形BEF 的半径为4,圆心角为60°,则图中阴影部分的面积是( )A. 83π−B. 83π−C. 2π−D. 2π−【答案】A【解析】【分析】根据菱形的性质得出DAB 是等边三角形,进而利用全等三角形的判定得出ABG DBH ≅ ,得出四边形GBHD 的面积等于ABD △的面积,进而求出即可.【详解】解:连接BD ,∵四边形ABCD 是菱形,120ADC ∠=°,∴60A ∠=°,1260∠=∠=°,∴DAB 是等边三角形,∵4AB =,∴ABD △的高为∵扇形BEF 的半径为4,圆心角为60°,∴4560∠+∠=°,35∠+∠=°,∴3=4∠∠,设AD 、BE 相交于点G ,设BF 、DC 相交于点H ,在ABG 和DBH △中,234A AB DB ∠=∠ = ∠=∠,∴()ABG DBH ASA ≅ ,∴四边形GBHD 的面积等于ABD △的面积,∴图中阴影部分的面积是:260418436023ABD EBFS S ππ××−=−××− 扇形. 故选:A .【点睛】此题主要考查了扇形的面积计算以及全等三角形的判定与性质等知识,根据已知得出四边形EBFD 的面积等于ABD △的面积是解题关键.9. 10个全等的小正方形拼成如图所示的图形,点P 、X 、Y 是小正方形的顶点,Q 是边XY 一点.若线段PQ 恰好将这个图形分成面积相等的两个部分,则XQ QY的值为( ) A. 12 B. 23 C. 25 D. 35【答案】B【解析】【分析】首先设QY =x ,根据题意得到PQ 下面的部分的面积为:S △+S 正方形=12×5×(1+x )+1=5,解方程即可求得QY 的长,即可解决问题.【详解】解:设QY =x ,根据题意得到PQ 下面的部分的面积为:S △+S 正方形=12×5×(1+x )+1=5, 解得x =35, ∴XQ =1﹣35=25, ∴225335XQ QY ==, 故选B .【点睛】本题考查三角形的面积,一元一次方程等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.10. 如图,在ABC 中,AB AC =,点D 在AC 边上,过ABD △的内心I 作IE BD ⊥于点E .若10BD =,4CD =,则BE 的长为( )A. 6B. 7C. 8D. 9【答案】B【解析】 【分析】过点I 作,IG AB IF AC ⊥⊥,垂足分别为G ,F ,可得,AG AF BG BE ==,DE DF =,设,AG AF a DE DF b ====,10BE BG b ==−,再由AB AC =,即可求解.【详解】如图,过点I 作,IG AB IF AC ⊥⊥,垂足分别为G ,F ,∵点I 为ABD △的内心,∴以IE 为半径的圆I 是ABD △∴,AG AFBG BE ==,DE DF =, 设,AGAF a DE DF b ====, ∵10BD =,∴10BE BG b ==−,∴10,4AB AG BG a b AC AD DC a b =+=+−=+=++,∵AB AC =,∴104a b a b +−=++,解得:3b =,∴107BE b =−=.故选:B 【点睛】本题主要考查了三角形的内心,切线长定理,熟练掌握三角形的内心的性质,切线长定理是解题的关键.二、填空题(本大题共5小题,每小题3分,共15分)11. 已知2269x y −=,3x y +=,则x y −=___. 【答案】23【解析】【分析】把已知条件利用平方差公式分解因式,然后代入数据计算即可.【详解】解:∵x 2﹣y 2=69,x +y =3,∴x 2﹣y 2=(x +y )(x ﹣y )=3(x ﹣y )=69, 解得:x ﹣y =23.故答案为:23.【点睛】此题考查对平方差公式的灵活应用能力,分解因式是关键.12. 抽样调查是一种用样本估计总体的很好的统计方法.小明的家承包了村里的一个鱼塘用来养鱼,养殖一年后小明爸爸准备将养的鱼一次性整塘出售给某鱼店老板,为此,小明爸爸想估计一下整塘鱼的数量.小明运用所学习的统计知识进行了一下操作:他首先从鱼塘中随机排捞出100条鱼,将这100条鱼分别作一记号后再放回鱼塘,数天后再从鱼塘中随机捕捞出240条鱼,其中有记号的鱼有15条,这样小明就帮爸爸估算出了鱼塘中鱼的数量.那么小明估计鱼塘中的鱼大约有 ___条.【答案】1600【解析】【分析】设鱼塘中的鱼有x 条,则15100240x=,由此能估计鱼塘中鱼的条数. 【详解】解:设鱼塘中的鱼有x 条,则15100240x=, 解得1600x =.经检验:符合题意故答案为:1600.【点睛】本题考查收集数据的方法的应用,解题的关键是认真审题,建立等式.13. 如图,已知60BAC ∠=°,AD 是角平分线且10AD =,作AD 的垂直平分线交AC 于点F ,作DE AC ⊥,则DEF 周长为________.【答案】5+【解析】【分析】知道60BAC ∠=°和AD 是角平分线,就可以求出30DAE ∠=°,AD 的垂直平分线交AC 于点F 可以得到AF =FD ,在直角三角形中30°所对的边等于斜边的一半,再求出DE ,得到DEF C DE EF AF AE DE =++=+△.【详解】解: AD 的垂直平分线交AC 于点F ,∴ DF AF =(垂直平分线上的点到线段两端点距离相等)∴DEF C DE EF AF AE DE =++=+△∵60BAC ∠=°,AD 是角平分线 ∴30DAE ∠=°∵10AD =∴5DE =,AE =∴5DEF C =+△【点睛】此题考查角平分线的性质、直角三角形的性质、垂直平分线的性质的综合题,掌握运用三者的性质是解题的关键.14. 利用图形的分、和、移、补探索图形关系,是我国传统数学的一种重要方法.如图1,BD 是矩形ABCD 的对角线,将△BCD 分割成两对全等的直角三角形和一个正方形,然后按图2重新摆放,观察两图,若a =4,b =2,则矩形ABCD 的面积是______.【答案】16【解析】【分析】设小正方形的边长为x ,利用a 、b 、x 表示矩形的面积,再用a 、b 、x 表示三角形以及正方形的面积,根据面积列出关于a 、b 、x 的关系式,解出x ,即可求出矩形面积.【详解】解:设小正方形的边长为x ,∴矩形的长为()a x + ,宽为()b x + ,由图1可得:()()211122222a xb x ax bx x ++=×+×+, 整理得:20x ax bx ab ++−=,4a = ,2b =,2680x x ∴+−=,268x x ∴+=,∴矩形的面积为()()()()242688816a x b x x x x x ++=++=++=+= .故答案为:16.【点睛】本题主要考查列代数式,一元二次方程的应用,求出小正方形的边长是解题的关键. 15. 如图,菱形ABCD 中,2AB =,DE BC ⊥于点E ,F 为CD 的中点,连接AE ,AF ,EF .若90AFE ∠=°,则AEF △的外接圆半径为_____.【解析】【分析】延长EF 交AD 的延长线于G ,由菱形的性质得出2,ADCD AB AD BC ===∥,证明()DFG CFE ASA ≌ ,得出,DG CE GF EF ==,由线段垂直平分线的性质得出AE AG =,设CE DG x ==,则2AE AG x ==+,由直角三角形斜边上的中线性质得出1,12DE AG GF EF CD ⊥===,得到22EG EF ==,由勾股定理得22222DE AE AD EG DG =−=−,解方程得到1DG =−,进而求出AE 即可得到,AEF △的外接圆的半径【详解】解:延长EF 交AD 的延长线于G ,如图所示: ∵四边形ABCD 是菱形,∴2,ADCD AB AD BC ===∥, ∴GDF C ∠=∠, ∵F 是CD 的中点, ∴CF DF =, 又∵DFG CFE ∠=∠, ∴()DFG CFE ASA ≌ ,∴,DG CEGF EF ==, ∵90AFE ∠=°, ∴AF EF ⊥, ∴AE AG =,设CE DG x ==,则2AE AG x ==+, ∵,AG BC DE BC ⊥∥,F 是CD 的中点,∴1,12DE AG GF EF CD ⊥===, ∴22EG EF ==,在Rt ADE △和Rt GDE 中,由勾股定理得22222DE AE AD EG DG =−=−,即()2222222x x +−=−,解得1x =,(负值舍去),∴1DG =−,∴1AE AG AD DG ==++, ∵90AFE ∠=°,∴AE 是AEF △的外接圆的直径,∴AEF △,【点睛】此题考查了菱形的性质,全等三角形的判定与性质,平行线的性质,线段垂直平分线的性质,直角三角形斜边上的中线性质,勾股定理等知识,本题综合性强,有一定的难度三、解答题(本题共7小题,共55分)16. 101()(3)3π−−−−【答案】112【解析】【分析】先利用绝对值、特殊角的三角函数值、负整数次数幂、二次根式化简以及零次幂等知识进行化简,然后再进行计算.101()(3)3π−−−+−(3)1=−− 3312=++−+=112− 【点睛】本题主要考查了绝对值、特殊角的三角函数值、负整数次数幂、二次根式化简以及零次幂等知识点,灵活应用相关知识成为解答本题的关键.17. 先化简,在求值:2211121x x x x x x −−+÷ +++ ,再从101−、、三个数中选择一个你认为合适数作为x 的的值代入求值. 【答案】11x x +−;当0x =时,原式1=−. 【解析】【分析】直接将括号里面通分运算,再利用分式的混合运算法则计算得出答案.【详解】原式()()()22111111x x x x x x x +−+ =−⋅++−()21111x x x +⋅+−11x x +=− 要使分式有意义,x 不能取1和-1,∴当0x =时,原式01101+==−− 【点睛】本题考查的是分式的化简求值,解题时需注意分式的分母不为0.18. 我市某中学举行“法制进校园”知识竞赛,赛后将学生的成绩分为A 、B 、C 、D 四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图.请你根据统计图解答下列问题.(1)共有______名学生参加竞赛;成绩为“B 等级”的学生人数有______名; (2)在扇形统计图中,m 的值为______;(3)学校决定从本次比赛获得“A 等级”的学生中,选出2名去参加市中学生知识竞赛.已知“A 等级”中有1名女生,请用画树状图的方法求出女生被选中的概率. 【答案】(1)20,5 (2)40 (3)23【解析】【分析】(1)利用样本容量=频数÷所占百分比计算即可,利用和为20计算度数即可. (2)利用样本容量=频数÷所占百分比变式计算即可.(3)画树状图计算即可. 【小问1详解】根据题意,得样本容量315%20n =÷=(名); 成绩为“B 等级”的学生人数有:203485−−−=(名), 故答案为:20,5. 【小问2详解】∵82040%%m ÷==, ∴40m =, 故答案为:40.小问3详解】设男生为12,B B ,女生为1G ,画树状图如下:一共有6种等可能性,有女生1G 的有4种等可能性, 所以出女生被选中的概率4263=. 【点睛】本题考查了条形统计图,扇形统计图,样本的计算,画树状图计算概率,熟练掌握统计图的意义,画树状图计算概率是解题的关键.19. 某学校准备购买若干台A 型电脑和B 型打印机.如果购买1台A 型电脑,2台B 型打印机,一共需要花费5900元;如果购买2台A 型电脑,2台B 型打印机,一共需要花费9400元. (1)求每台A 型电脑和每台B 型打印机的价格分别是多少元?(2)如果学校购买A 型电脑和B 型打印机的预算费用不超过20000元,并且购买B 型打印机的台数要比购买A 型电脑的台数多1台,那么该学校至多能购买多少台B 型打印机? 【答案】(1)每台A 型3500元,每台B 型1200元;(2)5台. 【解析】【分析】(1)设每台A 型电脑的价格为x 元,每台B 型打印机的价格为y 元,根据“1台A 型电脑的钱数+2台B 型打印机的钱数=5900,2台A 型电脑的钱数+2台B 型打印机的钱数 =9400”列出二元一次方程组,解之可得,【(2)设学校购买a 台B 型打印机,则购买A 型电脑为(a - 1)台,根据“(a -1)台A 型 电脑的钱数+a 台B 型打印机的钱数≤20000”列出不等式,解之可得.【详解】解:(1)设每台A 型电脑的价格为x 元,每台B 型打印机的价格为y 元,根据题意,得:25900229400x y x y +=+= , 解得:35001200x y ==, 答:每台A 型电脑的价格为3500元,每台B 型打印机的价格为1200元; (2)设学校购买a 台B 型打印机,则购买A 型电脑为(a ﹣1)台, 根据题意,得:3500(a ﹣1)+1200a ≤20000, 解得:a ≤5,答:该学校至多能购买5台B 型打印机.【点睛】本题考查了一元一次不等式与二元一次方程组的应用,解题的关键是熟练的掌握一元一次不等式与二元一次方程组的应用.20. 阅读理解题:一次数学综合实践活动课上,小亮发现并证明了关于三角形角平分线一个结论.如图1,已知AD 是ABC 的角平分线,可得:AB BDAC CD=,小亮的证明过程(部分)如下: 证明:过点C 作CE AB ∥,交AD 的延长线于点E , ∵CE AB ∥,∴,E BAE B BCE ∠=∠∠=∠. ∴ABD ECD ∽△△. ∴AB BD CE CD=. ……(1)请按照上面小亮的证明思路.写出该证明的剩余部分; (2)如图2,在ABC 中,AD 是ABC 的角平分线,已知35BD BC =,则AB AC 的值为______.的(3)如图3,在矩形ABCD 中,点E 是CD 上一点,已知3,4,1AB AD DE ===,连接BE ,AF平分BAD ∠与BE 交于点F ,则BF 的长为______. 【答案】(1)见解析 (2)32(3【解析】【分析】(1)过点C 作CE AB ∥,交AD 的延长线于点E ,先证明ABD ECD ∽△△,得到AB BDCE CD=,接着上述思路,再证明CA CE =,即可得到结论; (2)AD 是ABC 的角平分线,由(1)可得AB BD AC CD =,由35BD BC =得到32BD CD =,即可得到答案; (3)延长BE 交AD 的延长线于点G ,先证明GDE GAB △∽△,则DG DEAG AB=,求得2DG =,得6AG =,在Rt ABG △中,由勾股定理可得BG =,再根据(1)的结论进一步即可得到答案.【小问1详解】证明:过点C 作CE AB ∥,交AD 的延长线于点E , ∵CE AB ∥,∴,E BAE B BCE ∠=∠∠=∠. ∴ABD ECD ∽△△. ∴AB BD CE CD=. ∵AD 是ABC 的角平分线,∴BAD CAD ∠=∠. ∴E CAD ∠=∠, ∴CA CE =, ∴AB BD AC CD=; 【小问2详解】解:∵AD 是ABC 的角平分线, 由(1)可得AB BDAC CD=, ∵35BD BC =, ∴32BD CD =,∴32AB BD AC CD ==; 【小问3详解】解:延长BE 交AD 的延长线于点G ,∵四边形ABCD 是矩形, ∴AB CD ∥.∴,GDE GAB DEG ABG ∠=∠∠=∠. ∴GDE GAB △∽△,∴DG DE AG AB=, ∴143DGDG =+. ∴2DG =.∴426AG AD DG =+=+=, 在Rt ABG △中,90BAG ∠=°,∴BG∵AF平分BAG ∠,∴3162BF AB FG AG ===, ∴13BF BG =,∴13BF =× 【点睛】此题主要考查了相似三角形的判定和性质、矩形的性质、勾股定理等知识,熟练掌握相似三角形的判定和性质是解题的关键.21. 请阅读下列解题过程:解一元二次不等式:2230x x −−<. 解:设2230x x −−=,解得:11x =−,23x =,则抛物线2=23y x x −−与x 轴的交点坐标为()1,0−和()3,0.画出二次函数2=23y x x −−的大致图象(如图所示). 由图象可知:当13x −<<时函数图象位于x 轴下方, 此时0y <,即2230x x −−<.所以一元二次不等式2230x x −−<的解集为:13x −<<.通过对上述解题过程的学习,按其解题的思路和方法解答下列问题:(1)上述解题过程中,渗透了下列数学思想中的_________和_________(只填序号) ①转化思想;②分类讨论思想;③数形结合思想. (2)用类似的方法解一元二次不等式:220x x −+>.(3)某“数学兴趣小组”根据以上的经验,对函数()()13y x x =−−−的图象和性质进行了探究,探究过程如下,请补充完整:①自变量x 的取值范围是___________;x 与y 的几组对应值如表,其中m =___________.x … 4 3− 2−1− 0 1 2 3 4 …y … 5 03− m 3− 0 1 0 3− …②如图,在直角坐标系中画出了函数的部分图象,用描点法将这个图象补画完整. ③结合函数图象,解决下列问题: 解不等式:()()3130x x −−−−≤≤【答案】(1)①,③ (2)02x <<(3)①全体实数;4−;②见解析;③32x −−≤≤或01x ≤≤或34x ≤≤ 【解析】【分析】(1)根据转化思想和数形结合思想解答,即可; (2)依照例题,先求得220x x −+=的解,再画出22yx x =−+的草图,观察图象即可求解;(3)①当=1x −时,代入数据求解即可;②描点,连线,即可画出函数图象;③观察图象即可求解. 【小问1详解】故答案为:①,③ 【小问2详解】 解:220x x −+>,设220x x −+=,解得:10x =,22x =,则抛物线22yx x =−+与x 轴的交点坐标为()0,0和()2,0.画出二次函数22yx x =−+的大致图象(如图所示).由图象可知:当02x <<时函数图象位于x 轴上方,此时0y >,即220x x −+>.所以一元二次不等式220x x −+>的解集为:02x <<; 【小问3详解】解:①自变量x 的取值范围是全体实数;当=1x −时,()()()()1311134y x x =−−−=−−−−−=−,即4m =− 列表;x… 4−3−2−1− 0 1 2 3 4 … y…53− 4− 3− 013−…故答案为:全体实数;4−;②描点,连线,函数()()13y x x =−−−图象如图:③由图象可知;由图象可知:当32x −−≤≤或01x ≤≤或34x ≤≤时函数()()13y x x =−−−的图象位于3−与0之间,此时30y −≤≤,即()()3130x x −−−−≤≤.一元二次不等式()()3130x x −−−−≤≤的解集为:32x −−≤≤或01x ≤≤或34x ≤≤. 故答案为:32x −−≤≤或01x ≤≤或34x ≤≤.【点睛】本题主要考查了抛物线与x 轴的交点,一元二次不等式的解法,数形结合的思想方法,本题是阅读型题目,理解题干中的解题的思想方法并熟练运用是解题的关键.22. 定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,E ∠是ABC 中A ∠的遥望角,若A α∠=,请用含α的代数式表示E ∠.(2)如图2,四边形ABCD 内接于 ,O AD BD= ,四边形ABCD 的外角平分线DF 交O 于点F ,连结BF 并延长交CD 的延长线于点E .求证BEC ∠是ABC 中BAC ∠的遥望角.(3)如图3,在(2)的条件下,连结,AE AF ,若AC 是O 的直径.求AED ∠的度数.【答案】(1)12α;(2)见解析;(3)45° 【解析】 【分析】(1)根据遥望角的定义得到12EBC BAC ∠=∠,12ECD ACD ∠=∠,根据三角形的外角性质计算,得到答案;(2)延长BC 到点T ,根据圆内接四边形的性质得到180FDC FBC ∠+∠=°,得到ABF FBC ∠=∠,根据圆周角定理得到ACD BFD ∠=∠,进而得到ACD DCT ∠=∠,根据遥望角的定义证明结论; (3)连接CF ,根据遥望角的定义得到2BAC BEC ,进而证明BEC FAD ∠=∠,根据FDE FDA ∆≅∆得到DE DA =,根据等腰直角三角形的性质解答即可.【详解】解:(1)E ∠ 是ABC ∆中A ∠的遥望角,12EBC BAC ∴∠=∠,12ECD ACD ∠=∠, 11()22E ECD EBD ACD ABC A ∴∠=∠−∠=∠−∠=∠, 12E α∴∠=; (2)如图2,延长BC 到点T ,四边形FBCD 内接于O ,180FDC FBC ∴∠+∠=°,180FDE FDC ∠+∠=° ,FDE FBC ∴∠=∠,DF 平分ADE ∠,ADF FDE ∴∠=∠,ADF ABF ∠=∠ ,ABF FBC ∴∠=∠,BE ∴是ABC ∠的平分线,AD BD=, ACD BFD ∴∠=∠,180BFD BCD ∠+∠=° ,180DCT BCD ∠+∠=°,DCT BFD ∴∠=∠,ACD DCT ∴∠=∠,CE ∴是ABC ∆的外角平分线,BEC ∴∠是ABC ∆中BAC ∠遥望角;(3)如图3,连接CF ,BEC ∠ 是ABC ∆中BAC ∠2BAC BEC ∴∠=∠,BFC BAC ∠=∠ ,2BFC BEC ∴∠=∠,BFC BEC FCE ∠=∠+∠ ,BEC FCE ∴∠=∠,FCE FAD ∠=∠ ,BEC FAD ∴∠=∠,FDE FDA ∠=∠ ,FD FD =,在FDE ∆和FDA ∆中,FDE FDAFED FAD DF DF∠=∠ ∠=∠ = ,()FDE FDA AAS ∴∆≅∆,的DE DA∴=,∴∠=∠,AED DAE的直径,是OACADC∴∠=°,90∴∠+∠=°,AED DAE90∴∠=∠=°.45AED DAE【点睛】本题考查的是圆的有关知识、全等三角形的判定和性质、等腰直角三角形的性质,掌握圆周角定理、三角形外角性质、全等三角形的判定定理和性质定理是解题的关键.第24页/共24页。
河南省2023年九年级中考数学 模拟试卷(二)
NMEODCBA2022-2023学年第二学期九年级一模考试数学模拟试卷(二)注意事项:1.本试卷共8页,三大题,满分120分,考试时间100分钟.请用蓝、黑色钢笔或圆珠笔直接答在试卷上.2.答题前将密封线内的项目填写清楚.题号一二三总分16 17 18 19 20 21 22 23分数一、选择题(每小题3分,共30分)1.下列各数中最大的数是【】(A)π(B)17(C)4 (D)-82.我省2016年全年生产总值达到约19 367亿元,19367亿元用科学记数法表示为【】(A)1119.36710⨯元(B)121.936710⨯元(C)130.1936710⨯元(D)131.936710⨯元3.下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是【】(A)(B)(C)(D)4.如图,直线a,b被直线c,d所截,若∠1=∠2,∠3=125°,则∠4的度数为【】(A)75 (B)70 (C)60 (D)555.下列计算正确的是【】(A)228=-(B)()632=-(C)22423aaa=-(D)()523aa=-6. 不等式组3252(2)1xx-<⎧⎨-≤⎩的解集是【】得分评卷人考号:班级:姓名:(A ) 无解 (B )1x <- (C )52x ≥(D )512x -<≤ 7.从九年级一班3名优秀班干部和九二班2名优秀班干部中随机抽取两名学生担任升旗手,则抽取的两名学生刚好一个班的概率为【 】(A )45 (B )35 (C )25(D )158.为了解长城小区“全民健身”活动的开展情况,随机对居住在该小区的部分居民一周的体育锻炼时间进行了抽样统计,结果如下表:锻炼时间(时) 3 4 5 6 7 人数(人)6141541则关于居民一周体育锻炼时间,下列说法错误的是【 】(A )众数是5小时(B )中位数是4小时(C )平均数是4.5小时(D )样本容量是40 9.如图,已知△ABC ,∠ACB =90°,BC=3,AC=4,小红按如下步骤作图:①分别以A ,C 为圆心,以大于12AC 的长为半径在AC 两边作弧,交于两点M ,N ;②连接MN ,分别交AB ,AC 于点D ,O ;③过C 作CE ∥AB 交MN 于点E ,连接AE ,CD .则四边形ADCE 的周长为【 】(A )10(B )20(C )12(D )24(第9题 ) (第10题)10.如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,…组成一条平滑的曲线.点P 从原点D 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2015秒时,点P 的坐标是【 】 (A )(2014,0)(B )(2015,-1) (C )(2015,1) (D )(2016,0)二、填空题(每小题3分,共15分) 11.计算:01(3)3--+= .12.若关于x 的一元二次方程032=-+k x x 有两个不相等的实数根,则k 的取值范围是_ _.13.已知A(0,3),B(2,3)是抛物线cbxxy++-=2上两点,该抛物线的顶点坐标是 .14.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交弧AB 于点E,以点C 为圆心,OA的长为直径作半圆交OE于点D.若OA=4,则图中阴影部分的面积为 .(第14题)(第15题)15.如图,在矩形ABCD中,BC=3,CD=4,点P是AB上(不含端点A,B)任意一点,把△PBC 沿PC折叠,当点B的对应点B′落在矩形ABCD对角线上时,BP=.三、解答题(本题共8个小题,满分75分)16.(8分)先化简22121x xxx x x--⎛⎫÷-⎪+⎝⎭,然后从-1,0,1,2中选取一个合适的数作为x的值代入求值. 得分评卷人17.(9分)为了了解学生在一年中的课外阅读量,九(1)班对九年级800名学生采用随机抽样的方式进行了问卷调查,调查的结果分为四种情况:A.10本以下;B.10~15本;C.16~20本;D.20本以上.根据调查结果统计整理并制作了如图所示的两幅统计图表:(1)在这次调查中一共抽查了名学生;(2)表中x,y的值分别为:x= ,y= ;(3)在扇形统计图中,C部分所对应的扇形的圆心角是度;(4)根据抽样调查结果,请估计九年级学生一年阅读课外书20本以上的学生人数.18. (9分)如图,△ABC中,AB=AC,以AB为直径的半圆O交BC于点D,交AC于点E.(1)求证:△OBD≌△OED;(第18题)(2)填空:①当∠BAC= 度时,CA是⊙O的切线;②当∠BAC= 度时,四边形OBDE是菱形19. (9分)某中学九年级数学兴趣小组想测量建筑物AB的高度.他们在C处仰望建筑物顶端,得分各种情况人数统计频数分布表课外阅读情况 A B C D频数20 x y 40得分得分评卷人测得仰角为48°,再往建筑物的方向前进6米到达D 处,测得仰角为64°,求建筑物的高度.(测角器的高度忽略不计,结果精确到0.1米)(参考数据:sin48°≈710,tan48°≈1110,sin64°≈910,tan64°≈2.)(第19题)20.(9分)如图,矩形OABC 的顶点A ,C 分别在x 轴和y 上,点B 的坐标为(-2,3),双曲线(0)k y x x=< 的图象经过BC 的中点D ,且与AB 交于点E ,连接D ,E .(1)求k 的值及点E 的坐标.(2)若点F 是OC 边上一点,且∠BDE=∠CFB ,求点F 的坐标.(第20题)21. (10分)学校准备购进一批节能灯,已知1只A 型节能灯和3只B 型节能灯共需26元;3只A 型节能灯和2只B 型节能灯共需29元.(1)求一只A 型节能灯和一只B 型节能灯的售价各是多少元?得分 评卷人得分 评卷人(2)学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.如图1,△ABC和△ADE均为等边三角形,点D在BC的延长线上,连接CE,请填空:①∠ACE的度数为;②线段AC、CD、CE之间的数量关系为.(2)拓展探究如图2,△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,点D在边BC的延长线上,连接CE请判断∠ACE的度数及线段AC、CD、CE之间的数量关系,并说明理由.(3)问题解决如图3,在Rt△ABC中,AC=3,BC=5,∠ACB=90°,若点P满足PA=PB,∠APB=90°,请直接写出线段PC的长度.23.(11分)如图,抛物线y=-x 2+bx+c 与直线221+=x y 交于C 、D 两点,其中点C 在y 轴上,点D 的坐标为)273(,. 点P 是y 轴右侧的抛物线上一动点,过点P 作PE ⊥x 轴于点E ,交CD于点F.(1)求抛物线的解析式;(2)若点P 的横坐标为m ,当m 为何值时,以O 、C 、P 、F 为顶点的四边形是平行四边形?请说明理由.....相应的点P 的坐标.(第23题)备用图。
2021年广东省中考数学仿真模拟试卷(二)(解析版)
2021年广东省中考数学仿真模拟试卷(二)一、选择题(共10小题).1.﹣2021的倒数为()A.B.C.﹣2021D.20212.我国北斗公司在2020年发布了一款代表国内卫星导航系统最高水平的芯片,该芯片的制造工艺达到了0.000000022米.用科学记数法表示0.000000022为()A.22×10﹣10B.2.2×10﹣10C.2.2×10﹣9D.2.2×10﹣83.下列计算正确的是()A.=±3B.=2C.D.=24.在第四象限内的点P到x轴的距离是1,到y轴的距离是4,则点P的坐标为()A.(1,4)B.(4,﹣1)C.(﹣4,1)D.(4,1)5.若一个正多边形的每一个外角为30°,那么这个正多边形的边数是()A.6B.8C.10D.126.如果x=2是关于x的方程2x﹣a=6的解,那么a的值是()A.1B.2C.﹣1D.﹣27.在平面直角坐标系中,把直线y=﹣2x+3沿y轴向上平移两个单位长度后.得到的直线的函数关系式为()A.y=﹣2x+5B.y=﹣2x﹣5C.y=﹣2x+1D.y=﹣2x+7 8.如图,在菱形ABCD中,对角线AC与BD相交于点O,若AB=2,∠BAD=120°,则BD的长为()A.2B.3C.2D.9.如图,在△ABC中,∠BAC=45°,∠C=15°,将△ABC绕点A逆时针旋转α角度(0°<α<180°)得到△ADE,若DE∥AB,则α的值为()A.50°B.55°C.60°D.65°10.二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,下列结论:①abc<0;②9a+3b+c<0;③a>;④若方程ax2+bx+c=0两个根x1和x2,则3<|x1﹣x2|<4,其中正确的结论有()A.①②③B.①②④C.①③④D.②③④二、填空题(每小题4分,共28分)11.分解因式:a2b﹣ab=.12.若有意义,那么x满足的条件是.13.已知一组数据从小到大依次为﹣2,0,4,x,6,8,其中位数为5.则众数为.14.计算:(π﹣2020)0﹣()﹣1=.15.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tan C =.16.如图在以点O为圆心的两个同心圆中,大圆的半径为2,小圆的半径为1,∠AOB=100°.则阴影部分的面积是.17.如图,已知点D、点E分别是边长为2a的等边三角形ABC的边BC、AB的中点,连接AD,点F为AD上的一个动点,连接EF、BF.若AD=b,则△BEF的周长的最小值是.三、解答题(一)(本大题3小题,每小题6分,共18分)18.先化简,再求值:(x+y)(x﹣y)﹣x(x+2y)+3xy,其中x=1,y=3.19.解不等式组:,并在数轴上表示出不等式组的解集.20.在△ABC中,BD是边BC上的高.(1)尺规作图:作∠C的角平分线,交BD于E.(2)若DE=4,BC=10,求△BCE的面积.四、解答题(二)(本大题3小题,每小题8分,共24分)21.为了解全县6000名初中七年级学生对“阳光跑操”活动的喜欢程度,某校学生课外小组随机抽取部分学生进行调查,被调查的每个学生按A(非常喜欢)、B(比较喜欢)、C(一般)、D(不喜欢)四个等级对活动进行评价.(1)小华在本校调查了30名初中七年级学生对“阳光跑操”活动的喜欢程度.他的抽样是否合理?为什么?(2)该校学生课外小组从全县初中七年级学生中随机抽取了200名初中七年级学生,调查他们对“阳光跑操”活动的喜欢程度.如图所示,是该小组采集数据后绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:①图①中“D”所在扇形的圆心角为;②在图②中补画条形统计图中不完整的部分;③全县6000名初中七年级学生对“阳光跑操”活动“非常喜欢”和“比较喜欢”的学生共有多少人?22.为提升青少年的身体素质,在全市中小学推行“阳光体育”活动,某学校为满足学生的需求,准备购买一些键球和跳绳.已知用720元购买键球的个数比购买跳绳的条数多24,键球单价为跳绳单价的.(1)求键球、跳绳的单价分别为多少元?(2)如果计划用不多于2700元购买键球、跳绳共100个,那么最多可以购买多少条跳绳?23.如图,在Rt△ABC中,∠B=90°.以AB为直径作⊙O,交AC于点D,连接BD.作∠ACB平分线,交BD于点F,交AB于点E.(1)求证:BE=BF.(2)若AB=6,∠A=30°,求DF的长.五、解答题(三)(本大题2小题,每小题10分,共20分)24.Rt△ABC在直角坐标系内的位置如图所示,反比例函数y=(k≠0)在第一象限内的图象与BC边交于点D(4,1),与AB边交于点E(2,n).(1)求反比例函数的解析式和n值;(2)当=时,求直线AB的解析式;(3)设P是线段AB边上的点,在(2)的条件下,是否存在点P,以B、C、P为顶点的三角形与△EDB相似?若存在,请直接写出此时点P的坐标;若不存在,请说明理由.25.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0)、B(3,0)两点,与y轴交于点C(0,3),D为抛物线的顶点.(1)求此二次函数的表达式;(2)求△CDB的面积.(3)在其对称轴右侧的抛物线上是否存在一点P,使△PDC是等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.参考答案一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.﹣2021的倒数为()A.B.C.﹣2021D.2021【分析】直接利用倒数的定义分析得出答案.解:﹣2021的倒数为:﹣.故选:A.2.我国北斗公司在2020年发布了一款代表国内卫星导航系统最高水平的芯片,该芯片的制造工艺达到了0.000000022米.用科学记数法表示0.000000022为()A.22×10﹣10B.2.2×10﹣10C.2.2×10﹣9D.2.2×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.000000022=2.2×10﹣8.故选:D.3.下列计算正确的是()A.=±3B.=2C.D.=2【分析】根据算术平方根、立方根以及实数的平方的计算方法,逐项判断即可.解:∵=3,∴选项A不符合题意;∵=﹣2,∴选项B不符合题意;∵=5∴选项C不符合题意;∵=2,∴选项D符合题意.故选:D.4.在第四象限内的点P到x轴的距离是1,到y轴的距离是4,则点P的坐标为()A.(1,4)B.(4,﹣1)C.(﹣4,1)D.(4,1)【分析】根据第四象限内点的横坐标是正数,纵坐标是负数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度求出点P的横坐标和纵坐标,然后写出答案即可.解:∵点P在第四象限且到x轴的距离是1,到y轴的距离是4,∴点P的横坐标为4,纵坐标为﹣1,∴点P的坐标是(4,﹣1).故选:B.5.若一个正多边形的每一个外角为30°,那么这个正多边形的边数是()A.6B.8C.10D.12【分析】根据正多边形的每一个外角都相等,多边形的边数=360°÷30°,计算即可求解.解:这个正多边形的边数:360°÷30°=12,故选:D.6.如果x=2是关于x的方程2x﹣a=6的解,那么a的值是()A.1B.2C.﹣1D.﹣2【分析】把x=2代入方2x﹣a=6得出4﹣a=6,求出方程的解即可.解:把x=2代入方程2x﹣a=6得:4﹣a=6,解得:a=﹣2,故选:D.7.在平面直角坐标系中,把直线y=﹣2x+3沿y轴向上平移两个单位长度后.得到的直线的函数关系式为()A.y=﹣2x+5B.y=﹣2x﹣5C.y=﹣2x+1D.y=﹣2x+7【分析】利用一次函数平移规律,上加下减进而得出平移后函数解析式即可.解:直线y=﹣2x+3沿y轴向上平移2个单位,则平移后直线解析式为:y=﹣2x+3+2=﹣2x+5,故选:A.8.如图,在菱形ABCD中,对角线AC与BD相交于点O,若AB=2,∠BAD=120°,则BD的长为()A.2B.3C.2D.【分析】首先根据菱形的性质知AC垂直平分BD,再由Rt△ABO求出BO,即可求出BD 的长.解:∵四边形ABCD是菱形,∴AC⊥BD,BD=2BO,∵∠BAD=120°,∴∠BAO=60°,∠ABO=30°,∴AO=AB=1,BO==,∴BD=2.故选:C.9.如图,在△ABC中,∠BAC=45°,∠C=15°,将△ABC绕点A逆时针旋转α角度(0°<α<180°)得到△ADE,若DE∥AB,则α的值为()A.50°B.55°C.60°D.65°【分析】根据三角形内角和定理求出∠ABC,根据旋转得出∠EDA=∠ABC=120°,根据平行线的性质求出∠DAB即可.解:∵在△ABC中,∠BAC=45°,∠C=15°,∴∠ABC=180°﹣∠BAC﹣∠C═180°﹣45°﹣15°=120°,∵将△ABC绕点A逆时针旋转α角度(0<α<180°)得到△ADE,∴∠ADE=∠ABC=120°,∵DE∥AB,∴∠ADE+∠DAB=180°,∴∠DAB=180°﹣∠ADE=60°∴旋转角α的度数是60°,故选:C.10.二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,下列结论:①abc<0;②9a+3b+c<0;③a>;④若方程ax2+bx+c=0两个根x1和x2,则3<|x1﹣x2|<4,其中正确的结论有()A.①②③B.①②④C.①③④D.②③④【分析】①抛物线对称轴在y轴右侧,则ab异号,而c>0,即可求解;②x=3时,y=9a+3b+c<0,即可求解;③由对称轴,和x=1时的函数值的符号即可求解;④根据图象即可求解.解:①抛物线对称轴在y轴右侧,则ab异号,而c>0,则abc<0,故结论正确;②由图象可知x=3时,y=9a+3b+c<0,故结论正确;③∵﹣=2,∴b=﹣4a,∵x=1时,y=a+b+c<0,∴﹣3a+c<0,∴a>,故结论正确;④若方程ax2+bx+c=0两个根x1和x2,由图象可知,0<x1<1,3<x2<4,∴则2<|x1﹣x2|<4,故结论错误;故选:A.二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:a2b﹣ab=ab(a﹣1).【分析】提取公因式ab,即可得出答案.解:原式=ab(a﹣1).故答案为:ab(a﹣1).12.若有意义,那么x满足的条件是x≤1.【分析】根据二次根式有意义的条件列出不等式,解不等式得到答案.解:要使有意义,则1﹣x≥0,解得,x≤1,故答案为:x≤1.13.已知一组数据从小到大依次为﹣2,0,4,x,6,8,其中位数为5.则众数为6.【分析】先根据中位数的概念列方程求出x的值,再由众数的定义即可得出答案.解:∵数据﹣2,0,4,x,6,8的中位数为5,∴=5,解得x=6,所以这组数据为﹣2,0,4,6,6,8,所以众数为6,故答案为:6.14.计算:(π﹣2020)0﹣()﹣1=﹣1.【分析】首先利用零次幂和负整数指数幂的性质进行计算,再算加减即可.解:原式=1﹣2=﹣1,故答案为:﹣1.15.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tan C =.【分析】如图,过点A作AE⊥CB交CB的延长线于E.Rt△AEC中,根据tan C=,求解即可.解:如图,过点A作AE⊥CB交CB的延长线于E.Rt△AEC中,tan C===,故答案为:.16.如图在以点O为圆心的两个同心圆中,大圆的半径为2,小圆的半径为1,∠AOB=100°.则阴影部分的面积是.【分析】用大扇形的面积减去小扇形的面积得出阴影部分的面积.解:S阴影=﹣=π,故答案为π.17.如图,已知点D、点E分别是边长为2a的等边三角形ABC的边BC、AB的中点,连接AD,点F为AD上的一个动点,连接EF、BF.若AD=b,则△BEF的周长的最小值是a+b.【分析】根据等边三角形的性质AD⊥BC,连接CE交AD于F,则此时EF+CF的值最小,且最小值CE的长度,根据等边三角形的性质即可得到结论.解:∵△ABC是等边三角形,点D是边BC的中点,∴AD⊥BC,∴点B,C关于AD对称,连接CE交AD于F,则此时EF+CF的值最小,且最小值CE的长度,∵点E边AB的中点,∴CE⊥AB,∴CE=AD=b,∵BE=AB=a,∴△BEF的周长的最小值是a+b,故答案为:a+b.三、解答题(一)(本大题3小题,每小题6分,共18分)18.先化简,再求值:(x+y)(x﹣y)﹣x(x+2y)+3xy,其中x=1,y=3.【分析】直接利用整式的混合运算法则化简,进而代入已知数据得出答案.解:原式=x2﹣y2﹣x2﹣2xy+3xy=﹣y2+xy,当x=1,y=3时,原式=﹣32+1×3=﹣9+3=﹣6.19.解不等式组:,并在数轴上表示出不等式组的解集.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解:由①解得x<4,由②解得x≥3,所以不等式组的解集为3≤x<4.解集在数轴上表示如下图:.20.在△ABC中,BD是边BC上的高.(1)尺规作图:作∠C的角平分线,交BD于E.(2)若DE=4,BC=10,求△BCE的面积.【分析】(1)利用基本作图作CE平分∠BCD;(2)作EH⊥BC于H,如图,根据角平分线的性质得EH=ED=4,然后利用三角形面积公式计算即可.解:(1)如图,CE为所作;(2)作EH⊥BC于H,如图,∵CE平分∠BCD,ED⊥CD,EH⊥BC,∴EH=ED=4,∴△BCE的面积=×4×10=20.四、解答题(二)(本大题3小题,每小题8分,共24分)21.为了解全县6000名初中七年级学生对“阳光跑操”活动的喜欢程度,某校学生课外小组随机抽取部分学生进行调查,被调查的每个学生按A(非常喜欢)、B(比较喜欢)、C(一般)、D(不喜欢)四个等级对活动进行评价.(1)小华在本校调查了30名初中七年级学生对“阳光跑操”活动的喜欢程度.他的抽样是否合理?为什么?(2)该校学生课外小组从全县初中七年级学生中随机抽取了200名初中七年级学生,调查他们对“阳光跑操”活动的喜欢程度.如图所示,是该小组采集数据后绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:①图①中“D”所在扇形的圆心角为54°;②在图②中补画条形统计图中不完整的部分;③全县6000名初中七年级学生对“阳光跑操”活动“非常喜欢”和“比较喜欢”的学生共有多少人?解:(1)不合理,理由:因为调查的30名初中七年级学生全部来自同一所学校,样本不具有代表性;样本容量过小,不具有广泛性;(2)①360°×(1﹣20%﹣40%﹣25%)=360°×15%=54°,即图①中“D”所在扇形的圆心角为54°,故答案为:54°;②C等级的学生有200×25%=50(人),补全的条形统计图如右图所示;③6000×(20%+40%)=6000×60%=3600(人),即全县6000名初中七年级学生对“阳光跑操”活动“非常喜欢”和“比较喜欢”的学生共有3600人.22.为提升青少年的身体素质,在全市中小学推行“阳光体育”活动,某学校为满足学生的需求,准备购买一些键球和跳绳.已知用720元购买键球的个数比购买跳绳的条数多24,键球单价为跳绳单价的.(1)求键球、跳绳的单价分别为多少元?(2)如果计划用不多于2700元购买键球、跳绳共100个,那么最多可以购买多少条跳绳?解:(1)设跳绳的单价为x元,则键球的单价为x元,依题意得:﹣=24,解得:x=45,经检验,x=45是原方程的解,且符合题意,∴x=18(元).答:键球的单价为18元,跳绳的单价为45元.(2)设可以购买m条跳绳,则购买(100﹣m)条跳绳,依题意得:45m+18(100﹣m)≤2700,解得:m≤.又∵m为正整数,∴m的最大值为33.答:最多可以购买33条跳绳.23.如图,在Rt△ABC中,∠B=90°.以AB为直径作⊙O,交AC于点D,连接BD.作∠ACB平分线,交BD于点F,交AB于点E.(1)求证:BE=BF.(2)若AB=6,∠A=30°,求DF的长.【分析】(1)欲证明BE=BE,只要证明∠4=∠5即可.(2)因为DF=BD﹣BF,只要求出BD,BF即可解决问题.【解答】(1)证明:∵AB为⊙O直径,∴∠ADB=90°,∴∠1+∠3=90°,∵∠ABC=90°∴∠2+∠5=90°,∵CE为∠ACB的角平分线,∴∠1=∠2,∴∠3=∠5,∵∠3=∠4,∴∠4=∠5,∴BE=BF.(2)解:在Rt△ABD中,∵∠A=300,AB=6,∴DB=3,在Rt△ACB中,∠A=300,AB=6∴BC=,在Rt△BCE中,∠2=30°,BC=,∴BE=2,∴BF=2,∴DF=BD﹣BF=3﹣2=1.五、解答题(三)(本大题2小题,每小题10分,共20分)24.Rt△ABC在直角坐标系内的位置如图所示,反比例函数y=(k≠0)在第一象限内的图象与BC边交于点D(4,1),与AB边交于点E(2,n).(1)求反比例函数的解析式和n值;(2)当=时,求直线AB的解析式;(3)设P是线段AB边上的点,在(2)的条件下,是否存在点P,以B、C、P为顶点的三角形与△EDB相似?若存在,请直接写出此时点P的坐标;若不存在,请说明理由.解:(1)∵D(4,1)、E(2,n)在反比例函数y=的图象上,∴4=k,2n=k,∴k=4,n=2,∴反比例函数的解析式为y=;(2)如图1,过点E作EH⊥BC,垂足为H.在Rt△BEH中,tan∠BEH=tan∠A==,∵D(4,1),E(2,2),EH=4﹣2=2,∴BH=1.∴B(4,3).设直线AB的解析式为y=kx+b,代入B(4,3)、E(2,2),得,解得:,因此直线AB的函数解析式为:y=x+1;(3)存在,如图2,作EF⊥BC于F,PH⊥BC于H,当△BED∽△BPC时,,∴=,∵BF=1,∴BH=,∴CH=,可得=x+1,x=1,点P的坐标为(1,);如图3,当△BED∽△BCP时,=,∵EF=2,BF=1,由勾股定理,BE=,∴=,∴BP=,∴,BF=1,BH=,∴CH=,可得=x+1,x=,点P的坐标为(,),点P的坐标为(1,);(,).25.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0)、B(3,0)两点,与y轴交于点C(0,3),D为抛物线的顶点.(1)求此二次函数的表达式;(2)求△CDB的面积.(3)在其对称轴右侧的抛物线上是否存在一点P,使△PDC是等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.解:(1)设解析式为:y=a(x﹣x1)(x﹣x2)(a≠0),即y=a(x+1)(x﹣3).把点C(0,3)代入,得a(0+1)(0﹣3)=3.a=﹣1.故该抛物线解析式是y=﹣(x+1)(x﹣3)或y=﹣x2+2x+3.(2)由y=﹣x2+2x+3=﹣(x﹣1)2+4知,顶点坐标D为(1,4).∵B(3,0),C(0,3),∴BC2=18,BD2=(3﹣1)2+(0﹣4)2=20,CD2=(0﹣1)2+(3﹣4)2=2,∴BD2=BC2+CD2.∴△BCD是直角三角形,且∠BCD=90°.∴S△BCD=CD•BC=××3=3,即△CDB的面积是3.(3)存在,由y=﹣x2+2x+3得,D点坐标为(1,4),对称轴为x=1,①若以CD为底边,则PD=PC,设P点坐标为(x,y),根据勾股定理得:x2+(3﹣y)2=(x﹣1)2+(4﹣y)2,即y=4﹣x,又∵P点(x,y)在抛物线上,∴4﹣x=﹣x2+2x+3,即x2﹣3x+1=0,解得x1=,x2=<1 (舍去),∴x=,∴y=4﹣x=,即点P坐标为(,).②若以CD为一腰,因为点P在对称轴右侧的抛物线上,由抛物线对称性知,点P与点C关于直线x=1对称,此时点P坐标为(2,3),∴符合条件的点P坐标为(,)或(2,3).。
2024年安徽省亳州市谯城区中考二模数学试题(含答案)
亳州市2024年4月份九年级模拟考试数学(试题卷)注意事项:1.本试卷满分为150分,考试时间为120分钟.2.本试卷包括“试题卷”和“答题卷”两部分,“试题卷”共4页,“答题卷”共6页.3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的.4.考试结束后,请将“试题卷”和“答题卷”一并交回.一、选择题(本大题共10小题,每小题4分,满分40分,每小题都给出A ,B 、C ,D 四个选项,其中只有一个是正确的)1.12024-的相反数是( )A .-2024B .2024C .12024D .12024-2.2024年2月5日,据中安在线报道,2023年,安徽省全省生产总值47050.6亿元,按不变价格计算,比上年增长5.8%.将数据47050.6亿用科学记数法表示为( )A .130.47050610⨯B .124.7050610⨯C .1147.050610⨯D .134.7050610⨯3.如图所示的几何体的俯视图是()A .B .C .D .4.下列运算正确的是( )A .235a b ab +=B .2322332a b a b a b -=C .()325a a =D .84422a a a ÷=5.不等式1152x x +>-的解集在数轴上表示正确的是()A .B .C .D .6.中国结寓意团圆、美满,以独特的东方神韵体现中国人民的智慧和深厚的文化底蕴.如图,晓进家有一个菱形中国结装饰,对角线AC ,BD 相交于点O ,测得10cm AB =,16cm BD =,过点A 作AH BC ⊥于点H ,连接OH ,则OH 的长为()第6题图A .6cmB .8cmC .10cmD .12cm7.如图,EF ,CD 是⊙O 的两条直径,点A 是劣弧 DF 的中点.若32COF ∠=︒,则ADC ∠的度数是()第7题图A .47°B .74°C .53°D .63°8.黄山是我国四大名山之一.在学习了“概率初步”这章后,同桌的小明和小波两同学做了一个游戏:小明将分别标有“美”、“丽”、“黄”、“山”四个汉字的小球(除汉字外其余完全相同)装在一个不透明的口袋中搅拌均匀,然后小波同学从口袋中随机摸出一球,不放回.小明再搅拌均匀后,小波又随机摸出一球,两次摸出的球上的汉字组成“黄山”的概率是( )A .14B .16C .18D .5169.一次函数()0y bx a c =-≠和二次函数()20y ax x b a =++≠在同一平面直角坐标系中的图象可能是()A .B .C .D .10.如图,在矩形ABCD 中,AD =,BAD ∠的平分线交BC 于点E ,DH AE ⊥于点H ,连接BH并延长交CD 于点F ,连接DE 交BF 于点O ,则下列结论中错误的是( )A .ED 平分AEC∠B .12OE DE=C .HE DF =D .BC CF -=二、填空题(本大题共4小题,每小题5分,满分20分)11=______.12.若关于x 的一元二次方程()21210k x x +-+=有两个实数根,则实数k 的取值范围是______.13.如图,一次函数123y x =-的图象分别交x 轴、y 轴于点A ,B ,P 为AB 上一点且PC 为AOB △的中位线,PC 的延长线交反比例函数()0k y k x =>的图象于点Q ,52OQC S =△,则PQ 的长是______.第13题图14.如图,在ABC △中,30A ∠=︒,90ACB ∠=︒,4BC =.请解决下列问题:(1)AC 的长是______;(2)若点D 是AC 边上的动点,连接DB ,以DB 为边在DB 的左下方作等边DBE △,连接CE ,则点D 在运动过程中,线段CE 的长的最小值是______.第14题图三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:()23223x x x x --⋅--,其中3x =.16.《九章算术》是人类科学史上应用数学的“算经之首”,书中记载:今有共买物,人出八,盈三;人出七,不足四.意思是:现有几个人共买一件物品,每人出8文钱多出3文钱;每人出7文钱,还差4文钱.求该物品的价格是多少文钱.四、(本大题共2小题,每小题8分,满分16分)17.如图,在平面直角坐标系xOy 中.(1)画出ABC △关于x 轴对称的111A B C △;(2)在y 轴上画出一点D ,使得BD DA +的值最小.(保留作图痕迹,不写作法)18.合肥骆岗中央公园中的一条小路使用六边形、正方形、三角形三种地砖按照如图方式铺设.已知图1中有1块六边形地砖,6块正方形地砖,6块三角形地砖;图2中有2块六边形地砖,11块正方形地砖,10块三角形地砖;….(1)按照以上规律可知,图4中有______块正方形地砖;(2)若铺设这条小路共用去n 块六边形地砖,分别用含n 的代数式表示用去的正方形地砖、三角形地砖的数量;(3)若50n =,求此时三角形地砖的数量.五、(本大题共2小题,每小题10分,满分20分)19.如图,小明同学为了测量塔DE 的高度,他在与山脚B 处同一水平面的A 处测得塔尖点D 的仰角为37°,再沿AC 方向前进30米到达山脚B 处﹐测得塔尖点D 的仰角为63.4°,塔底点E 的仰角为30°,求塔DE 的高度.(参考数据:sin 370.60︒≈,cos370.80︒≈,tan 370.75︒≈,sin 63.40.89cm ︒≈,cos 63.40.45︒≈,tan 63.4 2.00︒≈ 1.73≈,结果精确到0.1米)20.如图,在ABC △中;90ACB ∠=︒,以BC 为直径的⊙O 交AB 于点D ,连接CD ,⊙O 的切线DE 交AC 于点E .(1)求证:AE =CE ;(2)若10AB =,6BC =,连接OE ,与CD 交于点F ,求OF 的长.六、(本题满分12分)21.安全意识,警钟长鸣,某中学为提高学生的安全防范意识,组织七、八年级学生开展了一次安全知识竞赛.成绩分别为A ,B ,C ,D 四个等级,其中相应等级的得分依次记为10分、9分、8分、7分.学校分别从七、八年级各抽取25名学生的竞赛成绩整理并绘制成如下统计图、表,请根据提供的信息解答下列问题:年级平均分中位数众数方差七年级8.76a 9 1.06八年级8.768b1.38(1)根据以上信息可知:a =______,b =______,并把七年级竞赛成绩,条形统计图补充完整;(2)根据数据分析表,你认为七年级和八年,级哪个年级的竞赛成绩更好,并说明理由;(3)若该校七、八年级共有1200人参加本次知识竞赛,且规定9分及以上的成绩为优秀,请估计该中学七、八年级参加本次知识竞赛的学生中成绩为优秀的共有多少人?七、(本题满分12分)22.已知点C 为ABC △和CDE △的公共顶点,将CDE △绕点C 顺时针旋转()0360αα︒<<︒,连接BD ,AE .(1)问题发现:如图1,若ABC △和CDE △均为等边三角形,则线段BD 与线段AE 的数量关系是______;(2)类比探究:如图2,若90ABC EDC ∠=∠=︒,60ACB ECD ∠=∠=︒,其他条件不变,请写出线段BD 与线段AE 的数量关系,并说明理由;(3)拓展应用:如图3,若90BAC DEC ∠=∠=︒,AB AC =,CE DE =,2BC CD ==B ,D ,E 三点共线时,求BD 的长.八、(本题满分14分)23.在平面直角坐标系中,抛物线223y x x =--交x 轴于A ,B 两点(点A 在点B 的左侧),交y 轴于点C .(1)求点A ,B 的坐标;(2)如图1,若在x 轴上方的抛物线上存在一点D ,使得45ACD ∠=︒,求点D 的坐标;(3)如图2,平面上一点()3,2E ,过点E 作任意一条直线交抛物线于P ,Q 两点,连接AP ,AQ ,分别交y 轴于M ,N 两点,则OM 与ON 的积是否为定值?若是,求出此定值;若不是,请说明理由.亳州市2024年4月份九年级模拟考试·数学(参考答案)一、选择题(本大题共10小题,每小题4分,满分40分)1.C 2.B 3.B 4.D 5.B 6.A 7.C 8.B 9.A10.D 【解析】在矩形ABCD 中,∵AE 平分BAD ∠,∴45BAE DAE ∠=∠=︒,∴ABE △是等腰直角三角形,∴AE =.∵AD =,∴AE AD =,∴()11802ADE AED DAE ∠=∠=︒-∠()11804567.52=︒-︒=︒,∴18067.5CED AEB AED ∠=︒-∠-∠=︒,∴AED CED ∠=∠,即ED 平分AEC ∠,故选项A 正确,不符合题意;在ABE △和AHD △中,,90,,BAE DAE ABE AHD AE AD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴()AAS ABE AHD ≌△△,∴BE DH =,∴AB BE AH HD ===,∴()()111801804522AHB ABH BAE ∠=∠=︒-∠=︒-︒67.5=︒.∵OHE AHB ∠=∠,∴OHE AED ∠=∠,∴OE OH =.∵DH AE ⊥,∴90DHE ∠=︒,∴9067.522.5OHD DHE OHE ∠=∠-∠=︒-︒=︒.∵67.54522.5ODH ADE ADH ∠=∠-∠=︒-︒=︒,∴OHD ODH ∠=∠,∴OH OD =,∴OE OD OH ==,∴12OE DE =,故选项B 正确;不符合题意;∵9067.522.5EBH ABE ABH ∠=∠-∠=︒-︒=︒,∴EBH OHD ∠=∠.在BEH △和HDF △中,,,45,EBH OHD BE DH AEB HDF ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩∴()ASA BEH HDF ≌△△,∴BH HF =,EH DF =,故选C 正确,不符合题意;综上所述,可得CD BE =,DF EH CE ==,CF CD DF =-,∴()()2BC CF CD EH CD EH EH -=+--=,故选项D 错误,符合题意.二、填空题(本大题共4小题,每小题5分,满分20分)11.-1 12.0k ≤且1k ≠- 13.8314.(1)2)2【解析】(1)∵30A ∠=︒,90ACB ∠=︒,4BC =,∴8AB =.在Rt ABC △中,由勾股定理得AC ===(2)如图,取AB 的中点Q ,连接CQ ,DQ ,则4BQ AQ ==.∵90ACB ∠=︒,30A ∠=︒,∴60CBQ ∠=︒.∵4BQ AQ ==,∴4CQ BQ AQ ===,∴BCQ △是等边三角形∴BC BQ =.∵60DBE CBQ ∠=∠=︒,∴EBC DBQ ∠=∠.在EBC △和DBQ △中,,,,EB DB EBC DBQ BC BQ =⎧⎪∠=∠⎨⎪=⎩∴()SAS EBC DBQ ≌△△,∴EC DQ =,∴当QD AC ⊥时,线段QD 最短,即线段EC 的值最小,在Rt AQD △中,4AQ =,30A ∠=︒,∴122DQ AQ ==,∴线段CE 的长的最小值为2.三、(本大题共2小题,每小题8分,满分16分)15.解:原式()2321333x x x x x --=⋅=---.当3x =时,原式===16.解:设该物品的价格为x 文钱,根据题意,得3487x x +-=,解得53x =.答:该物品的价格是53文钱.四、(本大题共2小题,每小题8分,满分16分)17.解:(1)如图,111A B C △即为所求.如图,点D 即为所求.18.解:(1)21【解析】由图形可知,图1中六边形地砖块数为1,正方形地砖块数为6151=⨯+,三角形地砖块数为6142=⨯+;图2中六边形地砖块数为2,正方形地砖块数为11251=⨯+,三角形地砖块数为10242=⨯+;图3中六边形地砖块数为3,正方形地砖块数为16351=⨯+,三角形地砖块数为14342=⨯+;…,由此可见,每增加1块六边形地砖,正方形地砖会增加5块,三角形地砖会增加4块,所以图4中正方形地砖块数为21块.(2)由(1)发现的规律可知,当铺设这条小路共用去n 块六边形地砖时,用去的正方形地砖的块数为()51n +块,三角形地砖的块数为()42n +块.(3)当50n =时,三角形地砖的块数为424502202n +=⨯+=(块).答:此时三角形地砖的数量为202块.五、(本大题共2小题,每小题10分,满分20分)19.解:设BC x =米.在Rt BDC △中,∵63.4DBC ∠=︒,∴tan 63.42DC BC x =⋅︒≈(米).∵30AB =米,∴()30AC AB BC x =+=+米.在Rt ADC △中,∵37A ∠=︒,∴2tan 370.7530DC xAC x ︒==≈+,解得18x =,∴18BC =米,236DC x ==米.在Rt EBC △中,30EBC ∠=︒,∴tan 3018EC BC =⋅︒==(米),∴3625.6225.6DE DC CE =-=-≈≈(米).答:塔DE 的高度约为25.6米.20.(1)证明:∵90ACB ∠=︒,BC 为⊙O 的直径,∴EC 为⊙O 的切线,90BDC ADC ∠=∠=︒.∵DE 为⊙O 的切线,∴CE DE =,∴ECD EDC ∠=∠.∵90A ECD ADE EDC ∠+∠=∠+∠=︒,∴A ADE ∠=∠,∴AE DE ∠=,∴AE CE =.(2)解:如图,连接OD .∵90ACB ∠=︒,BC 为⊙O 的直径,∴AC 为⊙O 的切线.∵DE 是⊙O 的切线,∴EO 平分CED ∠,∴OE CD ⊥,F 为CD 的中.∵AE CE =,BO CO =,∴OE 是ABC △的中位线,∴1110522OE AB ==⨯=,在Rt ACB △中,90ACB ∠=︒,10AB =,6BC =,在勾股定理得8AC ===.在Rt ADC △中,∵AE CE =,∴118422DE AC ==⨯=.在Rt EDO △中,116322DO BC ==⨯=,4DE =,由勾股定理得5OE ===.由三角形的面积公式,得1122EDO S DE DO OE DF =⋅=⋅△,即435DF ⨯=,解得 2.4DF =.在Rt DFO △中,由勾股定理得 1.8OF ===.21.解:(1)9 10七年级竞赛成绩条形统计图补充完整如下.七年级竞赛成绩条形统计图【解析】∵七年级竞赛成绩由高到低排在第13位的是B 等级9分,∴9a =;∵八年级A 等级人数最多,∴10b =;七年级竞赛成绩C 等级人数为2561252---=(人).(2)七年级的竞赛成绩更好.理由:七、八年级的竞赛成绩的平均分相同,七年级竞赛成绩的中位数大于八年级,七年级竞赛成绩的方差小于八年级竞赛成绩的方差,所以七年级的竞赛成绩更好.(3)()61244%4%2512007202525+++⨯⨯=+(人).答:估计该中学七、八年级参加本次知识竞赛的学生中成绩为优秀的共有720人.七、(本题满分12分)22.解:(1)BD AE=【解析】∵ABC △和CDE △都是等边三角形,∴AC BC =,DC EC =,60ACB ECD ∠=∠=︒,∴BCD ACE ∠=∠,∴()SAS BCD ACE ≌△△,∴BD AE =.(2)12BD AE =.理由:∵90ABC EDC ∠=∠=︒,60ACB ECD ∠=∠=︒,∴30BAC DEC ∠=∠=︒,∴12BC CD AC CE ==,BCD ACE ∠=∠.∴BCD ACE ∽△△,∴12BD AE =,∴12BD AE =.(3)当B ,D ,E 三点共线时,有以下两种情况:①如图1,当点D 在线段BE 上的时.∵90BAC DEC ∠=∠=︒,AB AC =,CE DE =,2BC CD ==,∴BC ==,CD ==∴2AC =,1CE DE ==.∵90E ∠=︒,∴BE ==,∴1BD BE DE =-=-;②如图2,当点E 在线段BD 上时,同理得1BD BE DE =+=+.综上所述,BD 1-1.八、(本题满分14分)23.解:(1)令0y =,则2230x x --=,解得11x =-,23x =.∵点A 在点B 的左侧,∴()1,0A -,()3,0B ,即点A 的坐标为()1,0-,点B 的坐标为()3,0.(2)由抛物线223y x x =--,得点()0,3C -.如图1,过点A 作AK AC ⊥交CD 于点K ,过点K 作KH x ⊥轴于点H .∵45ACD ∠=︒,∴CAK △是等腰直角三角形,∴AC AK =.又∵90AOC KHA ∠=∠=︒,90ACO OAC KAH ∠=︒-∠=∠,∴()AAS OAC HKA ≌△△,∴3AH CO ==,1KH OA ==,∴2OH =,∴()2,1K .设直线CD 的解析式为3y kx =-,则231k -=,解得2k =,∴直线CD 的解析式为23y x =-.联立,得223,23,y x x y x ⎧=--⎨=-⎩解得4x =或0x =(舍去),∴点D 的坐标为()4,5.(3)OM 与ON 的积是定值.设直线PQ 的解析式为y ax b =+,()11,P x y ,()22,Q x y .∵直线PQ 过点()3,2E 交抛物线于P ,Q 两点,∴23a b =+,即23b a =-,∴直线PQ 的解析式为23y ax a =+-,联立,得223,23,y x x y ax a ⎧=--⎨=+-⎩整理,得()22350x a x a -++-=,∴122x x a +=+,1235x x a ⋅=-.如图2,过点P 作PS x ⊥轴于点S ,过点Q 作QT x ⊥轴于点T ,则AMO APS ∽△△,∴MO PS AO AS=,即()()2111111132311x x x x MO AO x x +---==++.∵1AO =,∴13OM x =-.同理得()23ON x =--,∴()()1233OM ON x x ⋅=---⎡⎤⎣⎦()()121239353292x x x x a a =-⋅-++=---++=⎡⎤⎡⎤⎣⎦⎣⎦,即OM 与ON 的积为定值,此定值为2.。
中考数学模拟试卷及答案解析
绝密★启用前2022年四川省自贡市富顺三中中考数学模拟试卷(二)副标题考试范围:xxx ;考试时间:100分钟;命题人:xxx注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I 卷(选择题)一、选择题(本大题共12小题,共48.0分。
在每小题列出的选项中,选出符合题目的一项)1. 在下列四种图形变换中,本题图案不包含的变换是( ) A. 位似 B. 旋转 C. 轴对称 D. 平移2. 计算(a 3)2的结果是( ) A. a 9 B. a 6 C. a 5 D. a3. 下列图形中,是中心对称图形的是( )……○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※……○…………内…………○…………装…………○…………订…………○…………线…………○…………A.B.C.D.4. 对于反比例函数y =−k 2−1x,下列说法不正确的是( ) A. y 随x 的增大而增大B. 它的图象在第二、四象限C. 当k =2时,它的图象经过点(5,−1)D. 它的图象关于原点对称5. 下列调查中,适宜采用抽样方式的是( ) A. 调查我市中学生每天体育锻炼的时间B. 调查某班学生对“新冠疫情防疫知识”的知晓率C. 调查一架“歼20”隐形战机各零部件的质量D. 调查冬奥会越野滑雪参赛运动员兴奋剂的使用情况6. 下列命题中正确的是( ) A. 对角线相等的四边形是矩形 B. 对角线互相垂直的四边形是菱形C. 对角线互相垂直平分且相等的四边形是正方形……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………D. 一组对边相等,另一组对边平行的四边形是平行四边形7. 如图,小芳和爸爸正在散步,爸爸身高1.8米,他在地面上的影长为2.1米.若小芳身高只有1.2m ,则她的影长为( )A. 1.2mB. 1.4mC. 1.6mD. 1.8米8. 如图,设△DEF 缩小为原来的一半,操作方法如下:任意取一点P ,连接DP ,取DP 的中点A ,再连接EP 、FP ,取它们的中点B 、C ,得到△ABC ,下列说法错误的是( )A. △ABC 与△DEF 是位似图形B. △ABC 与△DEF 是相似图形C. △ABC 与△DEF 的周长比是1:2D. △ABC 与△DEF 的面积比是1:29. 已知抛物线y =ax 2+bx +c(a ≠0)在平面直角坐标系中的位置如图,则下列结论中正确的是( )A. a >0B. b <0C. c <0D. a +b +c >010. 宾馆有50间房供游客居住,当毎间房每天定价为180元时,宾馆会住满;当毎间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的毎间房每天支出20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价定为x 元.则有( )……○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※……○…………内…………○…………装…………○…………订…………○…………线…………○…………A. (180+x −20)(50−x10)=10890 B. (x −20)(50−x−18010)=10890 C. x(50−x−18010)−50×20=10890D. (x +180)(50−x10)−50×20=1089011. 在同一平面直角坐标系中,函数y =kx 与y =kx +k 2(k ≠0)的大致图象是( )A.B.C.D.12. 如图,Rt △APC 的顶点A 、P 在反比例函数y =1x的图象上,已知P 的坐标为(1,1),CPAC=1n(n ≥2的自然数);当n =2,3,4……100时,A 点的横坐标相应为a 2,a 3,a 4⋯a 100,则1a 2+1a 3+1a 4+⋯+1a 100的值为( )A. 2100B. 5049C. (12)99D. 5050第II 卷(非选择题)二、填空题(本大题共6小题,共24.0分)13. 如果x 2=y 3=z 4≠0,则x+y+zx+y−z = ______ .14. 如图,△ABC 中,DE//BC ,DE 分别交边AB 、AC 于D 、E 两点,若AD :AB =1:3,则△ADE 与△ABC 的面积比为______ .……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………15. 已知m ,n 为一元二次方程x 2+2x −9=0的两实数根,那么m +n −mn 的值为______ .16. 在半径为4π的圆中,45°的圆心角所对的弧长等于______. 17. 如图,在△ABC 中,AB =AC ,点A 在反比例函数y =12x(x >0)的图象上,点B ,C 在x 轴上,OC =15OB ,延长AC 交y 轴于点D ,连接BD ,AO ,则△BCD 的面积为______.18. 如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE.将△ADE 沿AE对折至△AFE ,延长EF 交边BC 于点G ,连接AG 、CF.下列结论:①△ABG ≌△AFG ;②BG =GC ;③AG//CF ;④S △FGC =3.其中正确结论的是______.三、计算题(本大题共3小题,共26.0分)19. 解不等式2x −3<x+13,并把解集在数轴上表示出来.20. 先化简,再求值:(x−1x−x−2x+1)÷2x 2−xx 2+2x+1,其中x 满足x 2−x −1=0.21. 为实施“农村留守儿童关爱计划”,某校对全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅不完整的统计图:(1)求该校平均每班有多少名留守儿童?并将该条形统计图补充完整;……○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※……○…………内…………○…………装…………○…………订…………○…………线…………○…………(2)某爱心人士决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名留守儿童来自同一个班级的概率. 四、解答题(本大题共5小题,共52.0分。
2024年中考数学临考押题卷02(成都卷)(考试版)-备战2024年中考数学临考题号押题
2024年中考数学临考押题卷(成都卷)02(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
A 卷(共100分)第Ⅰ卷(共32分)一、选择题(本大题共8个小题,每小题4分,共32分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑).1.(2024·江苏南京·一模)实数a 在数轴上的位置如图所示,则下列计算结果为正数的是()A .2aB .1a C .1a -D .2a +2.(2024·海南省直辖县级单位·一模)今冬,哈尔滨旅游火了!冻梨精致摆盘、把交响乐演出搬进火车站、鄂伦春族同胞被请出来表演驯鹿,哈尔滨的各种花式“宠粉”操作,使众多当地网友直呼:“尔滨,你让我感到陌生!”因为“尔滨”的真情实意款待,在2024年元且小长假,哈尔滨3天总游客量达到304.79万人,旅游收入59.14亿元,创历史新高!那么,将数据“5914000000”用科学记数法表示为()A .115.91410⨯B .100.591410⨯C .105.91410⨯D .95.91410⨯3.(2024·河南·模拟预测)下列运算结果正确的是()A .230·x x x =B .336235x x x +=C .()32626x x =D .()()2232349x x x +-=-4.(2024·广东潮州·一模)某校为了解学生的课外阅读情况,随机调查了10名学生,得到他们在某一天各自课外阅读所用时间的数据结果(见图),根据此图可知这10名学生这一天各自课外阅读所用时间组成样本的众数和中位数分别是()A .0.5,0.5B .0.5,0.75C .1.0,0.5D .1.0,0.755.(2024·河北石家庄·模拟预测)为测量一池塘两端A ,B 间的距离.甲、乙两位同学分别设计了两种不同的方案.甲:如图1,先过点B 作AB 的垂线BF ,再在射线BF 上取C ,D 两点,使BC CD =,接着过点D 作BD 的垂线DE ,交AC 的延长线于点E .则测出DE 的长即为A ,B 间的距离;乙:如图2,先确定直线AB ,过点B 作射线BE ,在射线BE 上找可直接到达点A 的点D ,连接DA ,作DC DA =,交直线AB 于点C ,则测出BC 的长即为AB 间的距离,则下列判断正确的是()A .只有甲同学的方案可行B .只有乙同学的方案可行C .甲、乙同学的方案均可行D .甲、乙同学的方案均不可行6.(2023·贵州贵阳·模拟预测)《九章算术》中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元.问有多少人?小红是这样想的:设有x 人,物品价值y 元,她先列了一个方程83x y -=,请你帮她再列出另一个方程()A .47x y +=B .47x y -=C .74x y +=D .74x y-=7.(2024·四川广安·模拟预测)如图,等边三角形ABC 和正方形ADEF 都内接于O ,则:AD AB =()A .223B 23C 32D 3228.(2024·广东·一模)二次函数()20y ax bx c a =++≠的y 与x 的部分对应值如下表:x1-013y 0 1.5-2-0根据表格中的信息,得到了如下的结论:①<0abc ;②二次函数²y ax bx c =++可改写为()212y a x =--的形式③关于x 的一元二次方程2 1.5ax bx c ++=-的根为120,2x x ==;④若0y >,则3x >⑤当2x ≥时,y 有最小值是 1.5-;其中所有正确结论的序号是()A .①②④B .②③⑤C .①③⑤D .②③④⑤第Ⅱ卷(共68分)二、填空题(本大题共5个小题,每题4分,满分20分,将答案填在答题纸上)9.(2024·广东广州·一模)分解因式:22a a -=.10.(2024·湖南株洲·一模)反比例函数6y x=-的图象与直线()0y kx k =<相交于()11,A x y ,()22,B x y 两点,则1221x y x y +的值是.11.(2024·山东淄博·一模)在平面直角坐标系中,点()3,0A 关于直线y x =对称的点A '的坐标为.12.(2024·陕西咸阳·二模)如图,在平行四边形ABCD 中,E 为BC 的中点,F 为AB 上一点,连接BD ,EF相交于点G .若9cm AB =,且13BF AB =, 4.5cm BG =,则BD 的长为cm13.(2023·四川成都·统考一模)如图,在ABC 中,AB 6=,按以下步骤作图,①以点C 为圆心,以适当的长为半径作弧,交CB 于点D ,交CA 于点E ,连接DE ;②以点B 为圆心,以CD 长为半径作弧,交BA 于点F ;③以点F 为圆心,以DE 的长为半径作弧,在ABC 内与前一条弧相交于点G ;④连接BG 并延长交AC 于点H ,若H 恰好为AC 的中点,则AC 的长为.三、解答题(本大题共5小题,共48分.其中:14题12分,15-16题每题8分,17-18题每题10分.解答应写出文字说明、证明过程或演算步骤.)14.(2023上·江苏常州·九年级校考期中)计算与化简:(1)()1018sin 45212-⎛⎫⨯︒+-- ⎪⎝⎭;(2)解不等式组:()1123121x x x +⎧≤⎪⎨⎪-<+⎩.15.(2024.浙江中考模拟预测)立定跳远是一项有益身心的运动,它能够锻炼我们的各项身体素质,让我们的身体更加健康和灵活,初中生立定跳远也是中考体育中的一项.某校为了解初三学生立定跳远的情况,对初三学生进行立定跳远水平测试,并随机抽取了部分学生的测试成绩,将结果绘制成如下不完整的统计图表.学生立定跳远测试成绩分布表成绩x (m )频数频率1.2 1.4x ≤<80.161.4 1.6x ≤<m 0.241.6 1.8x ≤<160.321.82.0x ≤<100.22.0 2.2x ≤<40.08根据以上信息,解答下列问题:(1)抽取的学生人数为______名,补全频数分布直方图;(2)若以每组成绩的组中值(如1.2 1.4x ≤<的组中值为1.3)为该组成绩的平均成绩,求所抽取学生立定跳远的平均成绩;(3)若该校初三年级共有600名学生,请你估计该校初三学生中立定跳远成绩不低于1.6m 的学生人数.16.(2024·成都·模拟预测)消防安全事关经济发展和社会和谐稳定,是惠及民生、确保民安的一项重要基础性工作,消防车是消防救援的主要装备.图1是某种消防车云梯,图2是其侧而示意图,点D ,B ,O 在同一直线上,DO 可绕着点O 旋转,AB 为云梯的液压杆,点O ,A ,C 在同一水平线上,其中BD 可伸缩,套管OB 的长度不变,在某种工作状态下测得液压杆3m AB =,53BAC ∠=︒,37DOC ∠=︒.(1)求BO 的长.(2)消防人员在云梯末端点D 高空作业时,将BD 伸长到最大长度6m ,云梯DO 绕着点O 按顺时针方向旋转一定的角度,消防人员发现铅直高度升高了3.2m ,求云梯OD 大约旋转了多少度.(参考数据:3sin 375︒≈,3tan 374︒≈,sin 5345︒≈,tan 5343︒≈,sin 670.92︒≈,cos670.39︒≈)17.(2023·江苏无锡·模拟预测)如图,已知ABC 内接于O ,若60BAC ∠=︒,AD 平分BAC ∠交O 于D ,交BC 于点E .(1)求证:2BD AD DE =⋅;(2)若43,3AB AC ==AD 、DE 的长.18.(2024·江苏淮安·中考模拟预测)如图,点P 是y 轴正半轴上的一个动点,过点P 作y 轴的垂线l ,与反比例函数4y x=-的图象交于点A .把直线l 上方的反比例函数图象沿着直线l 翻折,其它部分保持不变,所形成的新图象称为“4y x =-的l 镜像”.(1)当OP =3时:①点M 1,22⎛⎫-- ⎪⎝⎭“4y x =-的l 镜像”;(填“在”或“不在”)②“4y x=-的l 镜像”与x 轴交点坐标是;(2)过y 轴上的点Q ()0,1-作y 轴垂线,与“4y x=-的l 镜像”交于点B 、C ,点B 在点C 左侧.若点Q 把线段BC 划分成2:1的两部分,求OP 的长.(3)如果改变翻折方式,将反比例函数()40y x x=-<的图象沿直线5y x =+翻折得到一个封闭图形(图中阴影部分),若直线5y kx =+与此封闭图形有交点,则k 的范围是.B 卷(共50分)一、填空题(每题4分,满分20分,将答案填在答题纸上)19.(2024·山东·九年级校考阶段练习)如果2320a a +-=,那么代数式2231393a a a a -⎛⎫+⋅ ⎪-+⎝⎭的值为.20.(2023·重庆·九年级校考阶段练习)关于x 的一元二次方程()24410a x x --+=有两个实数根,且关于x的分式方程4433x a x x ++=--有正整数解,则满足条件的所有整数a 的和为.21.(2024.湖南.中考模拟预测)如图,点A 在⊙O 上,60BAC ∠=︒,以A 为圆心,AB 为半径的扇形ABC 内接于⊙O .某人向⊙O 区域内任意投掷一枚飞镖,则飞镖恰好落在扇形ABC 内的概率为.22.(2023·安徽·九年级校考期末)如图,在平面直角坐标系中,抛物线223y x x =-++与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于C 点.动点P 从点B 出发,沿x 轴负方向以每秒1个单位的速度运动.过点P 作PQ BC ⊥,垂足为Q ,再将PBQ 绕点P 按逆时针方向旋转90︒.设点P 的运动时间为t 秒.(1)若旋转后的点B 落在该抛物线上,则t 的值为.(2)若旋转后的PBQ 与该抛物线有两个公共点,则t 的取值范围是.23.(2023·江苏宿迁·校考三模)如图:在矩形ABCD 中,3AB =,32AC =,点E 沿射线CD 以2个单位每秒的速度运动,同时点F 沿射线DB 以1个单位每秒的速度运动,连接AE 和CF 交点为M ,在AM 上取一点P 使得23AP AM =,把AP 绕A 点逆时针旋转45︒得到AQ ,连接BQ ,则BQ 的最小值为.二、解答题(本大题共说明、证明过程或演算步骤.)24.(2023·湖北襄阳·统考中考真题)在襄阳市创建“经济品牌特色品牌”政策的影响下.每到傍晚,市内某网红烧烤店就食客如云,这家烧烤店的海鲜串和肉串非常畅销,店主从食品加工厂批发以上两种产品进行加工销售,其中海鲜串的成本为m 元/支,肉串的成本为n 元/支;两次购进并加工海鲜串和肉串的数量与成本如下表所示(成本包括进价和其他费用):次数数量(支)总成本(元)海鲜串肉串第一次3000400017000第二次4000300018000针对团以消费,店主决定每次消费海鲜串不超过200支时,每支售价5元;超过200支时、不超过200支的部分按原价,超过200支的部分打八折.每支肉串的售价为3.5元.(1)求m 、n 的值;(2)五一当天,一个旅游团去此店吃烧烤,一次性消费海鲜串和肉串共1000支,且海鲜串不超过400支.在本次消费中,设该旅游团消费海鲜串x 支,店主获得海鲜串的总利润为y 元,求y 与x 的函数关系式,并写出自变量x 的取值范围;(3)在(2)的条件下,该旅游团消费的海鲜串超过了200支,店主决定给该旅游团更多优惠,对每支肉串降价a (01a <<)元,但要确保本次消费获得肉串的总利润始终不低于海鲜串的总利润,求a 的最大值.25.(2024·湖南长沙·中考模拟预测)在平面直角坐标系中,设直线l 的解析式为:y kx m =+(k m 、为常数且.0k ≠),当直线l 与一条曲线有且只有一个公共点时,我们称直线l 与这条曲线“相切”,这个公共点叫做“切点”.(1)求直线l :6y x =-+与双曲线9y x=的切点坐标;(2)已知一次函数12y x =,二次函数221y x =+,是否存在二次函数23y ax bx c =++,其图象经过点()32-,,使得直线12y x =与22231y x y ax bx c =+=++,都相切于同一点?若存在,求出3y 的解析式;若不存在,请说明理由;(3)已知直线()1111:0l y k x m k =+≠,直线()22222:0l y k x m k =+≠是抛物线222y x x =-++的两条切线,当1l 与2l 的交点P 的纵坐标为4时,试判断12k k ⋅是否为定值,并说明理由.26.(2023·广东深圳·九年级校考阶段练习)【问题背景】如图,菱形ABCD 的对角线相交于点O ,点G 是AB 的中点.菱形111OB C D 与菱形ABCD 全等,1160DAB D OB ∠=∠=︒.点M 和点N 分别是AB 与1OB 以及BC 与1OD 的交点.当菱形111OB C D 绕点O 旋转时,且点M 始终在线段BG 上,两个菱形重叠部分的面积总等于一个菱形面积的18.【类比探究】已知菱形ABCD 的对角线相交于点O ,60DAB ∠=︒.等边PEF !边PE 、PF 分别与菱形ABCD 的边AB 、BC 相交于点M 、N .(1)如图1,若等边PEF !的顶点P 与点O 重合,求证:PM PN =.(2)数学兴趣小组对上面的问题进行了拓展探究,如图2,将图1中的PEF !沿OC 方向平移至如图所示位置,若PA k PC=(k 为常数)请描述PM 与PN 的数量关系(用含k 的式子表示),并说明理由.(3)如图3,在(2)的条件下,延长NP 交边CD 于点G ,连接BP ,若30BPN ∠=︒,且GN PA k PN PC ==,求k 的值.。
杭州市拱墅区中考二模数学试题及答案
中考模拟(二) 数学试卷考生须知:本试卷分试题卷和答题卷两部分.满分120分,考试时间100分钟.答题时,不能使用计算器,在答题卷指定位置内写明校名,姓名和班级,填涂考生号. 所有答案都做在答题卡标定的位置上,请务必注意试题序号和答题序号相对应.参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标(-ab 2,a b ac 442-)一.仔细选一选 (本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母在答题卡中相应的方框内涂黑.注意可以用多种不同的方法来选取正确答案. 1.计算02(2)-+-=( )A .2B .-4C .0D .3 216 )A .2B .±2C .4D .±43.一元二次方程(2)2x x x -=-的解是( )A .1-B .2C .1-或2D .0或2 4.具有下列条件的两个等腰三角形,不能判断它们全等的是( ) A .两腰对应相等 B .底边、一腰对应相等 C .顶角、一腰对应相等 D .一底角、底边对应相等5.下列事件为不可能事件的是( )A .某个数的相反数等于它本身B .某个数的倒数是0C .某两个负数积大于0D .某两数的和小于06.样本数据5,7,7,x 的中位数与平均数相同,则x 的值是( ) A .9 B .5或9 C .7或9 D .57.已知△ABC 绕点C 按顺时针方向旋转49º后得到△A 1B 1C ,如果A 1C ⊥BC ,那么∠A +∠B 等于( ) A .41º B .149º C .139º D .139º或41º 8.在△ABC 中,∠C =90°,AC =6,BC =8,以C 为圆心,r 为半径画⊙C ,使⊙C 与线段AB 有且只有两个公共点,则 r 的取值范围是( ) A .68r ≤≤ B .68r ≤< C .2465r <≤ D .2485r <≤ 9.已知11a a -=-,若a 为整数时,方程组,x y a +=⎧⎨的解x 为正数,y 为负数,则a 的值为( )A .0或1B .1或-1C .0或-1D .010.如图,已知二次函数132312-+=x x y 的图像与x 轴交于A 、B 两点,与y 轴交于点C ,连接AC ,点P 是抛物线上的一个动点,记△APC 的面积为S ,当S =2时,相应的点P 的个数是( )A .4 个B .3个C .2个D .1个二.认真填一填 (本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案. 11.计算:已知:4:3a b =,则3245a ba b+-= ;12.分解因式222(1)4a a +-= ;13.如图,AB ∥CD ,BE 平分∠ABC ,∠CDE =145º, 则∠C = ;14.若点()22,P m m -在直线y x =-上,则点()1,m m -关于y 轴的对称点坐标是 ;15.已知矩形ABCD 的边AB =4,AD =3,现将矩形ABCD 如图放在直线l 上,且沿着l 向右作无滑动地翻滚,当它翻滚到位置1111A B C D 时,计算:(1)顶点A 所经过的路线长为 ;(2)点A 经过的路线与直线l 所围成的面积为 ;16.如图,⊙O 过四边形ABCD 的四个顶点,已知∠ABC =90º,BD 平分 ∠ABC ,则:①AD =CD ,②3BD =AB +CB ,③点O 是∠ADC 平分线上的点,④2222AB BC CD +=,上述结论中正确的编号是 . 三.全面答一答 (本题有8个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以. 17.(本小题6分)为响应杭州市政府提出的“文明出行,低碳生活”活动,某校组织了以“文明出行,从我做起”为主题的电子小报制作比赛,评分结果只有60,70,80,90,100五种.现从中随机抽取部分作品,对其份数与成绩进行整理,制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)求本次抽取了多少份作品,并补全两幅统计图;(2)已知该校收到参赛作品共1200份,请估计该校学生比赛成绩达到90分以上(包含90分)的作品有多少份.18.( 本小题8分)如图,已知AC ⊥BC ,BD ⊥AD ,AC 与BD 交于O ,AC =B D .求证:(1)BC =AD ; (2)△OAB 是等腰三角形.19.( 本小题8分)有六张正面分别有数字-3,-1,0,1,5,6的不透明卡片,它们除数字不同外其余全部相同.现将它们背面向上,洗匀后从中任取一张,将该卡片上的数字记为a ,求关于x 的分式方程2111111ax x xx -+=+--的解,并求该方程的解不小于12-的概率.20.( 本小题10分)已知在平面直角坐标系中,点A ,B 的坐标分别为A (2,-5), B (5,1).在同一个坐标系内画出满足下列条件的点(保留画图痕迹),并求出该点的坐标.(1)在y 轴上找一点C ,使得AC +BC 的值最小; (2)在x 轴上找一点D ,使得AD -BD 的值最大.21.(本小题10分)如图,两个观察者从A ,B 两地观测空中C 处一个气球,分别测得仰角为45º和60º.已知A ,B 两地相距30米,延长AB ,作CD ⊥AD 于D ,当气球沿着与AB 平行的方向飘移到点'C 时,在A 处又测得气球的仰角为30º,求CD 与'CC 的长度.(结果保留根号)22.(本小题12分)如图,AB 是半圆O 的直径,且AB =45CDEF 内接于半圆,点C ,D 在AB 上,点E ,F 在半圆上.(1)当矩形CDEF 相邻两边FC ︰CD 32时,求弧AF 的度数; (2)当四边形CDEF 是正方形时: ①试求正方形CDEF 的边长;②若点G ,M 在⊙O 上, GH ⊥AB 于H ,MN ⊥AB 于N , 且△GDH 和△MHN 都是等腰直角三角形,求HN 的长.23.(本小题12分)已知抛物线32++=bx ax y 经过点A (-1,0),B (3,0),交y 轴于点C ,M 为抛物线的顶点,连接MB .(1)求该抛物线的解析式;(2)在y 轴上是否存在点P 满足△PBM 是直角三角形,若存在,请求出P点的坐标,若不存在,请说明理由;(3)设Q 点的坐标为(8,0),将该抛物线绕点Q 旋转180°后,点M 的对应点为M ',求MBM '∠的度数.中考模拟(二) 数学答案一、 选择题(每题3分)DBCAB BDCAC二、 填空题(每题4分)11.18 12.()()2211+-a a 13.110º 14.(-1,1)或1(2,)2--15.6π;252π+12 16.①③④ (注:14、15题只要看到对一个就得2分;16题对一个得1分,对二个得2分,对三个得4分,不论对几个只要出现②得0分) 三、解答题 17.(6分)(1) 本次抽取了 120 份作品;图略,看关键数字填空正确:评分80分有 42 个人,占总人数 35﹪ ,评分为60分的占总人数 5﹪ ;-------4分(各1分)(2) 1200×(30﹪+10﹪)=480份∴该校学生比赛成绩达到90分以上(含90分)的作品有480份.------------------------2分 18.(8分)(1)连接BA ,∵AC ⊥BC ,BD ⊥AD ,∴在Rt △DAB 与Rt △CAB 中,AC=DB AB=AB ∴Rt △DAB ≌Rt △CAB (HL ) -----------------------3分 ∴BC =AD ----------------------------1分(2) ∵Rt △DAB ≌Rt △CAB(已证)∴∠CAB =∠DBA ------------------------------------------2分 ∴OA =OB ,∴△OAB 是等腰三角形.------------------2分 19.(8分)去分母,两边同乘以12-x 得:x x ax --=-+-111------------------------2分 解得:21-=a x ------------------------------------------------------------------------2分 把相应的a 代入,分别得11111,,,1,,53234--------------------------2分(没写出这6个不扣分) 观察以上解的情况,知满足条件的点有5个,所以概率为56---------------- 2分 20.(10分)(1) C 点如图 --------------------------------------------------------2分 (或作B 关于y 轴的对称点B ′,连结AB ′交y 轴于点C ) 解得A ′B 直线解析式:72376'-=x y B A 或62377AB y x '=-- )∴点C 的坐标为230,7⎛⎫- ⎪⎝⎭--------------------------------------3分(2) D 点如图(作点B 关于x 轴的对称点B ′,连结AB’延长交x 轴于D )--------------------2分 (理由:若A ,B′,D 三点不共线,根据三角形两边之差小于第三条边可得:AD -B ′D <AB ′∴当A ,B ′,D 三点共线时,AD -B ′D =AB ′,此时AD -B ′D 有最大值,最大值为A B′的长度. 此时,点D600300D'D BCC'A在直线A B′上)根据题意由A (2,-5),B′(5,-1)代入可得42333AB y x '=-, ∴当AD -BD 有最大值时,点D 的坐标为23,04⎛⎫⎪⎝⎭------------------------------------------------3分21.(10分)(1)过点C ′作AD 的延长线的垂线,垂足为D′ ---------------------1分 在Rt △ACD 中,∵∠CAD =45º,则CD =AD =x ----------------1分 在Rt △BCD 中,∠ CBD =60º,则BD =33------------------2分 ∵AD -BD=AB, 即 x 3=30, ∴求得x =CD 33-(米)=(45+3---------------2分(未分母有理化不扣分) 在Rt △AC ′ D ′中,3tan30C D AD ''=︒',∴AD '=45+3分 ∴C C′=A D′-CD =3分22.(12分)(1)连结FO ,根据圆的对称性,矩形CDEF 内接于半圆可得CO =OD ,----------------1分∴Rt △COF 中,FC ︰CD 31,∴∠FOC=60°---------------------------------------2分 ∴弧AF 的度数为60°-----------------------------------------------------------------------------1分(2)① ∵四边形CDEF 是正方形,∴FC=2CO ---------------------------------------------------1分 ∵FC 2+CO 2=()252,解得CO =2,∴CF =4,正方形的边长为4 ----------------------- 3分② 连结OG ,OM ,∵△GDH 和△MHN 都是等腰直角三角形,∴DH =HG ,HN =MN 在Rt △OGH 中,222OG HG OH =+,设DH =x ,则()()222522=++x x 解得x =2 或x =-4(舍去)----------------------------------------2分 在Rt △OMN 中,222ON NM OM +=,设HN =y , ∴()()2225222=+++y y ,解得62±-=y (舍去负值)∴26-=HN ------------------------------------------------------2分23.(12分)(1)322++-=x x y ------------------------------2分 (2)设点P 的坐标为(0,y ),① 若∠MPB =90°,过点M 作ME ⊥x 轴,MF ⊥y 轴, 易证Rt △PFM ∽Rt △BOP ,可得:341yy -=解得121,3y y ==,∴点P 的坐标为(0,1),(0,3)--------------2分② 若∠PMB =90°,同理,Rt △PFM ∽Rt △BEM , ∴4124=-y 解得:27=y ∴点P 的坐标为 ⎪⎭⎫⎝⎛27,0-----------------2分③ 若∠MBP =90°,同理, Rt △POB ∽Rt △BEM∴432=-y ,解得:23-=y ,∴点P 的坐标为 ⎪⎭⎫ ⎝⎛-23,0--------2分综上:△PBM 是直角三角形时,P 点的坐标为(0,1),(0,3),70,2⎛⎫ ⎪⎝⎭,30,2⎛⎫- ⎪⎝⎭(3)由题意可知:B (3,0),M(1,4),Q(8,0),点M ,M ′关于点Q 中心对称, ∴M′ (15,-4),-------------------------------------------1分 连结M ′B ,并延长M ′B 交y 轴于点D ,由113M B y x '=-+,可得D (0,1)---------------------1分 连结MD ,易证Rt △DFM ≌Rt △DOB∴△DBM 是等腰直角三角形,∠DBM =45°--------1分 ∴∠MBM'=135°-------------------------------------------1分 解法二:过点M′作MB 的垂线交MB 的延长线于点D ,由△MB M′面积计算,转化为已知△面积和底边MB 求高D M′,解得54'=D M 再由104412'22=+=BM , M’D ⊥MD , ∴△DB M′是等腰Rt △, ∴ 54'==BD D M ∴ ∠M’BD=∠BM’D=45° ( 同样4分)。
【带解析】中考热身模拟试卷数学(二)
2022年中考热身模拟试卷数学(二)同学你好!答题前请认真阅读一下内容:1.全卷共六页,三个大题,共25小题,满分150分,考试时间为120分钟,考试形式闭卷。
2.一律在答题卡相应位置作答,在试题卷上答题视为无效。
3.不能使用科学计算器。
一、选择题:以下每小题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置作答,每题3分,共36分。
1.计算-3-2的结果是 ( )A . -1B .5-C . 1D 52.2020年,贵州高考人数是470600人,470600用科学计数法表示为( )A.60.470610⨯B.447.0610⨯C.64.70610⨯D.54.70610⨯3.如图:是由5个大小相同的小正方体组成的几何体,则它的主视图是 ( )4.已知a+b=-3,则代数式b a 33+的值为 ( )A.-6B.6C.-9D.95.关于x 的一元二次方程260x x --=的解为( )A .3,221-=-=x xB .122,3x x ==C .122,3x x =-=D .122,3x x ==-6.在一次模拟考试中,小李的成绩得分如下:95,91,85,97,93,90,85,这组数据的中位数和众数分别是 ( ) A .90,85 B .91,93 C .90,97D .91,857.如图:与∠2相等的角有几个 ( )A 1B .2C .3D .48.菱形ABCD 的对角线AC,BD 的长分别为5和6,则这个菱形的面积是( )A .30B .15 C.24 D .20(第3题图)(第7题图)9.在中考体育考试身体机能项目中,女同学要在台阶实验和800米项目中选择一项进行测试,假如两种项目选取的机会均等,小花和小红选中相同项目的概率是( )11.如图,在Rt △ABC 中,∠ACB=90⁰,AB=8,BC=6,分别以A 、B两弧分别交于D,E 两点,作直线DE ,在直线DE上有一动点F ,连接BF 、CF ,则CF+BF的最小值是( )A.C.10 D.12.如图是二次函数y=ax 2+bx+c (a ,b ,c 是常数,a ≠0)图象的一部分,与X 轴交于点(-1,0),对称轴为X=1,对于下列说法:①2a -b=0;②a-b+c =0;③a +b ≥m (am +b )(m 为实数)④当﹣1<x <3时,y >0,其中结论正确的有几个( )A .1B .2 C.3 D .4二、填空题:每题分4,共16分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年中考模拟试卷 数学卷答题卷
一、仔细选一选(本题有10个小题,每小题3分,共30分)
二、认真填一填 (本小题有6个小题,每小题4分,共24分)
三、用心答一答(本题有8个小题,共66分)
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
1 2 3 4 5 6 7 8 9 10
0A
0A 0A 0A 0A 0A 0A 0A 0A 0A 0B
0B 0B 0B 0B 0B 0B 0B 0B 0B 0C
0C 0C 0C 0C 0C 0C 0C 0C 0C 0D 0D 0D 0D 0D 0D 0D 0D 0D 0D
正确填涂 11、 12、 13、____________________ 14、 15、 16、 17、(本小题满分6分)
18.(本小题满分8分)
15
30
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
⑴
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
第4页共4页。