八年级数学一次函数的图像ppt课件

合集下载

八年级数学《一次函数的图象》课件

八年级数学《一次函数的图象》课件

作一次函数 y=2x+1 的图象
解:列表: x … -1 -1/2 0 1/2 2 …
描点
y=2x+1

-1
0
1 0 5…
y y=2x+1
连线
注意:取数可以任 意取,但以计算方 便和便于描点为基 准。
3•
2• 1•
-3
-2

-1• •o
1 -1
2
3
x
-2
-3
函数的图象概念
把一个函数的自变量 x与应变量 y的值分别作为点的横坐标和纵坐 标,在直角坐标系内描出它的对应 点,所有这些点组成的图形叫做函 数的图象。
再次归 纳
作函数图象的一般步骤:
1、列表。列出自变量和函数的对应值 2、描点。根据上表的对应值描出点的位置
3、连线。根据描出的点的发展趋势,用光
滑的线把点连接起来
做一做
(1)作出一次函数 y= -2x+5的图象
(2)在所作的图象上取几个点,找出 它们的横坐标和纵坐标,并验证它
们是否都满足关系y=-2x+5?
作一次函数y=kx+b的图象只要确定 两个点,再过这两个点作直线就可 以了。
在同一直角坐标系内画出下列函
数图象:y=2x+1
y=-2x+1
解: x 0 -0.5 x 0 0.5 y1 0 y 1 0
y y=2x+1
y=-2x+1
•1
••
-2 -1
1
2x
-1
画出一次函数图象的关键是 选取适当的两点,然后连线 即可。为了描点方便,对于 一次函数y=kx+b(k,b是常 数,k≠0)通常选取

《一次函数》课件

《一次函数》课件

REPORTING
经济问题中的一次函数
总结词:经济模型
详细描述:一次函数在经济领域中常被用作简化经济模型,例如,消费和收入之 间的关系、生产成本和产量之间的关系等。通过一次函数,可以更直观地理解经 济现象和预测未来的经济趋势。
物理问题中的一次函数
总结词:物理定律
详细描述:在物理学中,许多定律和公式都可以用一次函数来表示,例如,重力与距离的关系、电流与电压的关系等。通过 一次函数,可以更准确地描述物理现象和预测实验结果。
2023
《一次函数最新》 ppt课件
REPORTING
2023
目录
• 一次函数简介 • 一次函数的表达式 • 一次函数的应用 • 一次函数的解析方法 • 一次函数的实际案例
2023
PART 01
一次函数简介
REPORTING
一次函数的定义
一次函数是形如y=kx+b的函 数,其中k和b是常数,k≠0。
一次函数在数学问题中的应用
线性规划
利用一次函数解决资源分 配问题,实现资源利用的 最大化。
代数方程求解
通过一次函数表示代数方 程,简化方程求解过程。
几何图形面积计算
利用一次函数计算几何图 形的面积,如三角形、矩 形等。
一次函数与其他数学知识的结合
与二次函数的结合
利用一次函数和二次函数的性质 ,解决更复杂的数学问题。
一次函数是线性函数的一种, 它的图像是一条直线。
一次函数在平面坐标系中表示 为一条直线,该直线经过点 (0,b)和斜率为k。
一次函数的图像
一次函数的图像是一 条直线,其斜率为k ,截距为b。
通过代入不同的x值 ,可以求出对应的y 值,从而得到函数的 图像。

一次函数图象的应用课件

一次函数图象的应用课件
一次函数图象的应 用ppt课件
目 录
• 一次函数图象的概述 • 一次函数图象在实际生活中的应用 • 一次函数图象与其他数学知识的结合应用 • 一次函数图象的应用实例分析 • 总结与展望
01
一次函数图象的概述
一次函数图象的定义
01
02
03
一次函数图象
一次函数y=kx+b(k≠0 )的图象是一条直线。
教学方法单一
部分教师在教授一次函数图象时 ,过于注重理论教学,缺乏实际 应用的结合,导致学生难以理解
其实际意义和应用价值。
技术应用不足
现代技术如几何画板、数学软件等 在课堂上的应用不足,限制了学生 对于函数图象动态变化的理解。
学生实践机会少
由于应试教育的影响,学生往往缺 乏实际操作和实践的机会,导致对 一次函数图象的理解停留在理论层 面。
对未来应用的展望与期待
加强技术与教学的结合
期待未来能更多地利用现代技术,使一次函数图象的教学更加生 动、形象,提高学生的学习兴趣和参与度。
注重实际应用与问题解决
希望教师在教学中能更多地引入实际问题,让学生在实际操作中理 解和掌握一次函数图象的应用。
培养学生的创新思维
期待未来的一次函数图象教学能够更加注重培养学生的创新思维和 解决问题的能力,而不仅仅是知识的灌输。
们的位置。
ቤተ መጻሕፍቲ ባይዱ
连线
用直线将这些点连接起 来,形成一次函数的图
象。
验证
根据题目要求或实际应 用需要,验证所绘制的 图象是否符合实际情况

02
一次函数图象在实际生活 中的应用
一次函数图象在物理中的应用
总结词
物理现象的数学描述
详细描述

4.3 一次函数的图象(第1课时)正比例函数的图象和性质课件(31张PPT) 北师大版八年级数学上册

4.3 一次函数的图象(第1课时)正比例函数的图象和性质课件(31张PPT) 北师大版八年级数学上册
列表、描点、连线。
y = -3x
y
4
3
2
1
-5 -4 -3 -2 -1 O
-1
-2
-3
-4
y = 2x
这两个函数图
象有什么共同
特征?
1 2 3 4 5 x
归纳总结
y = kx (k 是常数,k≠0)的图象是一条经过原点的直线
y = kx (k≠0)
经过的象限
k>0
第一、三象限
k<0
两点
作图法
第二、四象限
15 x
,即
解:
(1) y 5
100
(2)列表 x
0
y
0
描点
连线
(3)当 x = 220 时,
.
4
3
y/元
6
5
4
3
2
1
(元). O
1 2 34 56 7
答:该汽车行驶 220 km 所需油费是 165 元.
x/km
画正比例函数图象的一般
步骤:列表、描点、连线
正比例函
数的图象
和性质
图象:经过原点的直线.
(x2,y2),若 x1<x2 ,则 y1 > y2.
2. 正比例函数 y = k1x 和 y = k2x 的图象如图,则 k1 和 k2
y y = k1x
的大小关系是( A )
y = k2x
A. k1>k2
B. k1 = k2
o
x
C. k1<k2
D. 不能确定
例3 已知正比例函数 y = mx 的图象经过点 (m,4),且
y 的值随着 x 值的增大而减小,求 m 的值.
解:∵正比例函数 y = mx 的图象经过点(m,4),

函数图像ppt课件

函数图像ppt课件

03
描点法
根据函数表达式,在坐标 系中逐个描出对应的点(x, y),然后用平滑的曲线将 这些点连接起来。
计算法
利用数学软件或计算器, 输入函数表达式,自动生 成函数图像。
表格法
根据函数表达式和已知数 据,制作表格,然后在坐 标系中根据表格数据绘制 出函数图像。
函数图像的观察与分析
观察图像形状
通过观察函数的图像,可以初 步判断函数的类型(如一次函 数、二次函数、三角函数等)
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
06
复合函数的图像
复合函数的定义与性质
总结词
理解复合函数的定义与性质是绘制和分 析其图像的基础。
VS
详细描述
复合函数是由两个或多个函数的组合而成 的函数。它具有一些特殊的性质,如复合 函数的导数、极限等。了解这些性质有助 于更好地绘制和分析复合函数的图像。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
03
二次函数的图像
二次函数的定义与性质
总结词
二次函数的定义、性质和 表达式
二次函数的定义
二次函数是指形式为 y=ax^2+bx+c(其中a、 b、c为常数,且a≠0)的 函数。
二次函数的性质
二次函数具有开口方向、 顶点、对称轴等性质,这 些性质决定了函数图像的 形状和位置。
复合函数图像的绘制
总结词
掌握绘制复合函数图像的方法是理解其性质 和应用的必要手段。
详细描述
绘制复合函数图像需要使用数学软件或绘图 工具,如Matlab、GeoGebra等。在绘制 过程中,需要注意函数的定义域、值域以及 函数的单调性、奇偶性等性质。

一次函数课件ppt

一次函数课件ppt

奇偶性
一次函数既不是奇函数也不是偶函数 ,因为它们的图像不关于原点或 y 轴 对称。
02 一次函数的表达式与系数
一次函数的表达式
01
一次函数的一般表达式为 $y = ax + b$,其中 $a$ 和 $b$ 是常 数,且 $a neq 0$。
02
当 $a > 0$ 时,函数为增函数; 当 $a < 0$ 时,函数为减函数。
已知函数与$x$轴和$y$轴的截距,使用截 距式$y = frac{x}{a} + frac{b}{a}$求函数解 析式。
一次函数的解题技巧
数形结合
利用函数图像直观理解 函数性质,如增减性、
最值等。
整体代入
在求解过程中,将表达 式整体代入,简化计算

分类讨论
根据不同情况分类讨论 ,得出不同情况下的函
斜率与图像
斜率决定了图像的倾斜程 度,当 a > 0 时,图像向 右倾斜;当 a < 0 时,图 像向左倾斜。
一次函数的性质
单调性
无界性
一次函数的单调性由斜率决定,当 a > 0 时,函数单调递增;当 a < 0 时 ,函数单调递减。
一次函数的值域是全体实数,即对于 任意实数 x,y = ax + b 总有一个对 应的值。
一次函数的系数
一次函数的斜率为 $a$,表示函数图 像的倾斜程度。
当 $a > 0$ 时,函数图像从左下到右 上倾斜;当 $a < 0$ 时,函数图像从 左上到右下倾斜。
一次函数的应用
一次函数在数学、物理、工程等领域都有广泛应用。
在实际生活中,一次函数可以用来描述一些简单的问题,如速度与时间的关系、 价格与数量的关系等。

17.3.2.一次函数的图像课件(共40张PPT) 华东师大版数学八年级下册

17.3.2.一次函数的图像课件(共40张PPT) 华东师大版数学八年级下册
当 x 取几个整数时,函数 y = kx + b 的图 象是一条直线上的几个点.
课堂小结
直线 y = kx + b (k ≠ 0) 与坐标 轴的交点
与 x 轴的交点坐标为( – b ,0) k
与 y 轴的交点坐标为(0,b) 方程 kx + b = 0 的解是 x = – b
k
随堂演练
1. 已知一次函数 y = mx –(m – 2)过原点, 则 m 的值为( C )
4
(2)与 x 轴的交点是(3,0),与 y 轴的
交点是(0,2).
y y = 4x – 1
(0,2 )
–1( 1 ,0) 4
–1
1 (3,0)
–1 (0,–1)
x 2
y=– x+2 3
例 3 问题 1 中,汽车距北京的路程 s(千 米)与汽车在高速公路上行驶的时间 t (时)之间 的函数关系式是 s = 570 – 95t,试画出这个函 数的图象.
(4,320)
240
160
80 (4,0)
O 1 2 3 4 5 t(h)
谢谢观看
与 y 轴的交点坐标为(0,b) 方程 kx + b = 0 的解是 x = – b
k
练习
求下列直线与 x 轴和 y 轴的交点,并在同
一个平面直角坐标系中画出它们的图象:
(1)y = 4x – 1; (2)y = – 2 x + 2.
3
解(1)与 x 轴的交点是( 1 ,0),与 y
轴的交点是(0,–1).
x
2 共同点:_与__y__轴__交__于__同__一__点__ –2
不同点:_两__直__线__不__平__行__

一次函数图象课件

一次函数图象课件

物理问题
利用一次函数图象描述物 理现象,如速度与时间的 关系、力与位移的关系等 。
经济问题
通过一次函数图象分析成 本、收益、利润等经济指 标的变化趋势。
一次函数图象在数学建模中的应用
建立数学模型
利用一次函数图象描述实 际问题的变化趋势,建立 数学模型进行预测和决策 。
参数估计
通过一次函数图象的拟合 ,估计模型参数,提高预 测精度。
一次函数图象ppt课 件
目录
• 一次函数图象的基本概念 • 一次函数图象的性质 • 一次函数图象的应用 • 一次函数图象的变换 • 一次函数图象的解题技巧
01
一次函数图象的基本概念
一次函数图象的定义
01 一次函数图象
一次函数y=kx+b(k≠0)的图象是一条直线。
02 斜率
一次函数图象的斜率为k,反映了函数值y随自变 量x的变化率。
THANKS
感谢观看
利用待定系数法解题
总结立关于待定系数的方程或方程组,通过解方程或方 程组得到待定系数的值,从而确定一次函数的解析式。这种方法能够避免对函数 性质和图像的复杂分析,提高解题效率。
利用方程组法解题
总结词:逻辑严谨
详细描述:根据题目条件建立关于未知数的方程组,通过解方程组得出未知数的值,进一步确定一次函数的解析式。这种方 法需要严谨的逻辑思维和计算能力,能够确保解题的准确性和完整性。
一次函数图象的对称性
总结词
关于y轴对称
详细描述
一次函数图象是关于y轴对称的。这是因为一次函 数的表达式为y=kx+b,其中k是斜率,b是截距 。无论k和b取何值,图象总是关于y轴对称。
03
一次函数图象的应用
利用一次函数图象解决实际问题

一次函数的图象课件

一次函数的图象课件
一次函数的图象ppt课件
欢迎来到一次函数的图象ppt课件!在这个课件中,我们会探讨一次函数的定 义和特点、标准式和一般式、图像特征、平移和伸缩、应用场景、解一次方 程以及一些练习题和总结。
一次函数的定义和特点
一次函数是一个线性函数,它的图像是一条直线。它的特点是斜率恒定,代 表着增长的速度或减少的速度。
一次函数可以用来描述速度、位移和时间之间的 关系。
3 工程学
4 统计学
Байду номын сангаас一次函数可以用来解决线性规划问题和最优化问 题。
一次函数可以用来拟合和预测数据。
解一次方程及应用
1
步骤二
2
计算斜率和截距的值。
3
步骤四
4
找到方程的解或应用特定的值。
步骤一
将方程转化为标准式。
步骤三
画出一次函数的图像。
练习题与总结
一次函数的标准式和一般式
一次函数的标准式为y = ax + b,其中a是斜率,b是截距。一般式为Ax + By + C = 0,其中A、B和C是常数。
一次函数的图像特征
斜率
斜率决定了直线的倾斜程度,正斜率表示向上增长,负斜率表示向下减小。
截距
截距表示直线与y轴的相交点,可以用来推测函数的起点或截距。
练习题
1. 求解方程 y = 2x + 3 的解。 2. 画出方程 y = -0.5x + 2 的图像。
总结
一次函数是数学中重要的概念,它具有线性的特点, 可以用来描述许多实际问题。通过学习一次函数,你 可以更好地理解数学和应用它们。
平行于坐标轴
一次函数的图像平行于坐标轴,这意味着x坐标和y坐标只有一个值会变化。

一次函数的性质和图像(一)课件

一次函数的性质和图像(一)课件
在物理中,许多现象可以用一次函数来描述,如速度与时间的关系、电阻与电流 的关系等。通过这些实例,可以深入理解一次函数在实际问题中的应用。
经济问题中的应用
在经济学中,许多经济指标之间的关系可以用一次函数来描述,如价格与需求的 关系、成本与产量的关系等。通过这些实例,可以了解一次函数在经济分析中的 应用。
像会向右平移。
03
一次函数的应用
一次函数在实际生活中的应用
一次函数在经济学中的应用
一次函数可以用来描述经济现象之间的关系,例如成本与产量的 关系、价格与需求量的关系等。
一次函数在物理学中的应用
在物理学中,一次函数可以用来描述线性关系,例如速度与时间的 关系、力与位移的关系等。
一次函数在工程领域的应用
02
一次函数的图像
一次函数图像的绘制
步骤二
在坐标系上选择一个点,例如 原点$(0,0)$。
步骤四
在坐标系上标出该点,即 $(0,1)$。
步骤一
确定函数表达式。例如,$y = 2x + 1$。
步骤三
使用一次函数的表达式,计算 出该点沿x轴和y轴的坐标值。 例如,$y = 2(0) + 1 = 1$。
一次函数的图像是一条直线,其斜率 为$a$,截距为$b$。
一次函数的图像可以通过平移得到, 向上平移$k$个单位得到$y = ax + b + k$,向下平移$k$个单位得到$y = ax + b - k$。
一次函数的单调性由斜率$a$决定, 当$a > 0$时,函数为增函数;当$a < 0$时,函数为减函数。
一次函数在概率统计问题中的应用
03
在概率统计问题中,一次函数可以用来描述概率分布、平均数

一次函数的图象和性质(第1课时)PPT课件

一次函数的图象和性质(第1课时)PPT课件

7.若一次函数y=kx+4的图像经过点(1,2).
(1)求k的值;
(2)在所给直角坐标系中画出此函数的图像;
(3)根据图像回答:当x
时,y>0.
解析:(1)把点(1,2)代入函数解析式,利用方程来求得k的值;(2)由 两点确定一条直线进行作图;(3)根据图像解答即可.
解:(1)依题意,得2=k+4,解得k=-2,即k的值是-2.
A.x<-2
B.x>-2
C.x<2
D.x>2
解析:由图像可得一次函数的图像与x轴的 交点为(-2,0),当y<0时,x<-2.故选A.
6.连降6天大雨,某水库的蓄水量随时间的增加而直线上升.若
该水库的蓄水量v(万米3)与降雨的时间t(天)的关系如图所示,
则下列说法正确的是
( B)
A.降雨后,蓄水量每天减少5万米3
达成共识. 1.图像为一条直线. 2.由画图过程,知一次函数y=2x-1的图像是由所有满足关系式y=2x-1 的点(x,y)连线而得到的.因此,凡满足关系式y=2x-1的x,y的值所对应 的点都在一次函数y=2x-1的图像上.

因为一次函数的图像是一条直线,所以也把一次函数y=kx+b 的图像称为直线y=kx+b.
为(0,2),与x轴的交点为
2 3
,0
.故选C.
4.函数
yk x
的图像经过点(1,-1),则函数y=kx-2的图像是
图中的
(A)
解析:∵
y
k x
的图像经过点(1,-1),∴k=xy=-1,∴函数解析式
为y=-x-2,所以函数图像经过(-2,0)和(0,-2).故选A.

人教版八年级下册数学 19.2.2 一次函数(2)一次函数的图像与性质 课件 (共26张PPT)

人教版八年级下册数学 19.2.2 一次函数(2)一次函数的图像与性质 课件 (共26张PPT)

y Ox
y随x的增大而减小
函数的图象随着x的增大从左到右 下降
图象与y轴相交 于正半轴,图 象只经过一、 二、四象限, 不经过第三象 限。
图象与y轴相交 于负半轴,图象 只经过二、三、 四象限,不经过 第一象限。
*k越小直线相对于x轴越陡峭。
y
y
Ox
Ox
根据图象确定k,b的取值
K> 0 b= 0
K <0 b= 0

k>0
k<0
y
y
Ox
Ox

性质:k>0,y 随x 的增大 而增大;k<0,y 随 x 的 增大而减小.
针对函数 y =kx+b,大家想研 究什么?应该怎样研究?
画一画
y =2x
画一次函数 y =2x-3 的图象.
x … -2 -1 0 1 2 … y=2x-3 … -7 -5 -3 -1 1 … y
求一次函数y=kx+b(k≠0)的图象与两坐标轴的交点的方法是; 令x=0,则得y=b,而得与y轴的交点坐标为(0,b); 令y=0,则得x=-b/k,而得与x轴的交点坐标为(-b/k,0)
K:决定直线倾斜的方向。 |k|越大,函数图象越靠近 y轴。
b: 决定直线与y轴相交的 交点的位置。当b>0时,交 点在y轴正半轴;当b˂0时, 交点在y轴负半轴。
2 1
得 x=1.
-2 -1 O
过点(0,3)、(1,0)画一条直线,
-1 -2
123
x
这条直线就是函数y=-3x+3的图像.
-3
-4 y=-3x+3
思思思考考考1:23::画画把一一直次次线函函y数=数y-=y3=2xx怎-3样1x-的平3 图移像得的选到图取函像哪数选两y=取点-哪比3两较x+点方3比便的较?图方像便?? 2

初中数学苏科版八年级上册6.3 一次函数的图像 课件PPT

初中数学苏科版八年级上册6.3 一次函数的图像 课件PPT
x … -2 -1 0 1 2 … y … -3 -1 1 3 5 …
问题: (1)为什么要连线才能得到函数的图像?
列表时,只恰当地选取了自变量x的5个值,从而只描 出了其中的5个点;事实上,该函数的自变量x可以取任何 实数,从而满足该函数的点有无数个;根据线是由点形成 的,连线其实就是补描出无数个满足该函数的点.
(3)从表格中你能发现香的燃烧有什么规律吗? 香的长度每分钟减少0.8厘米
燃烧时间/分 香的长度/ cm
0 5 10 15 20 16 12 8 4 0
香的长度每分钟减少0.8厘米
(4)设香的长度为y (cm),燃烧时间x (分),你能 写出y与x之间的函数表达式吗?
一次函数 y=16-0.8 x
创设情境
2.点燃一支香,观察它的长度随时间的变化情况
(2)这支香没点燃前的长度是多少?点燃5分钟后 是多少?10分钟呢?…填入下表:
燃烧时间/分 香的长度/ cm
0 5 10 15 20 16 12 8 4 0
创设情境
2.点燃一支香,观察它的长度随时间的变化情况
燃烧时间/分 香的长度/ cm
0 5 10 15 20 16 12 8 4 0
x … -2 -1 0 1 2 … y … -3 -1 1 3 5 … (2)描点: 以表中各对x、y的值为点的坐标,在平面
直角坐标系中描出相应的点;
(-2,-3)、(-1,-1)、(0,1)、(1,3)、(2,5)
(3)连线: 顺次连接描出的各点,即可得该函数的图像.
画法分析
按下列步骤,在平面直角坐标系中, 画一次函数 y=2x+1 的图像.
一次函数 y=16-0.8 x
香的长度 y
(7)描出点(0,16)、(5,12)、 (10,8)、(15,4)、(20,0)

一次函数的图像课件

一次函数的图像课件
02
图像是一条直线,其上每一个点 的坐标 $(x, y)$ 都满足该函数的 解析式。
解析式中参数对图像的影响
$k$ 的影响
当 $k > 0$ 时,图像为上升直线;当 $k < 0$ 时,图像为下降直线。
$b$ 的影响
当 $b > 0$ 时,图像与 $y$ 轴交于 正半轴;当 $b < 0$ 时,图像与 $y$ 轴交于负半轴。
如果将一次函数的x替换 为x+h(h>0),则图 像向左移动h个单位。
如果将一次函数的x替换 为x-h(h>0),则图像
向右移动h个单位。
03 一次函数的应用
一次函数在实际生活中的应用
一次函数在经济学中的应用
一次函数可以用来描述经济活动中的关系,例如成本与产量的关 系、价格与需求的关系等。
一次函数在物理学中的应用
截距
一次函数的截距为b,表示函数图像 与y轴的交点。当b>0时,交点在y轴 的正半轴上;当b<0时,交点在y轴的 负半轴上。
一次函数图像的平移
上平移
下平移
左平移
右平移
如果一次函数的b值增加 (即向上平移),则图 像向上移动相应的距离。
如果一次函数的b值减小 (即向下平移),则图 像向下移动相应的距离。
在物理学中,一次函数可以用来描述线性关系,例如速度与时间的 关系、力与位移的关系等。
一次函数在统计学中的应用
在统计学中,一次函数可以用来拟合数据,例如线性回归分析等。
一次函数在数学题目中的应用
一次函数在代数题中的应用
在代数题目中,一次函数可以用来解决方程和不等式问题,例如求解一元一次方 程、一元一次不等式等。
描点,最后将这些点连接成一条直线。

新人教版八年级数学上册第14章一次函数精品课件ppt

新人教版八年级数学上册第14章一次函数精品课件ppt
我们现在已经知道了正比例函数关系式的特点,那么 它的图象有什么特征呢?
Copyright 2004-2009 版权所有 盗版必究
活动三.共同探究,理解知识 1.例题.画出下列正比例函数的图象,并进行比较,寻找两个 函数图象的相同点与不同点,考虑两个函数的变化规律. 1.y=2x 2.y=-2x
学生通过活动,了解正比例函数图象特点及函数变化规 律,让学生自己动手、动口、动脑,经历规律发现的整个过 程,从而提高各方面能力及学习兴趣.并能正确画图、积极 探索、总结规律、准确表述.
x -3 -2 -1 0 1 2 3 y 6 4 2 0 -2 -4 -6
画出图象如图(1). (2)y=-2x的自变量取值范围可以是全体实数,列表表示几组对应 值:画出图象如图(2).
Copyright 2004-2009 版权所有 盗版必究
(3)分析比较两个图象的共同点和不同点 1)共同点:都是经过原点的直线. 2)不同点:函数y=2x的图象从左向右呈上升状态,即随着x的 增大y也增大;经过第一、三象限.函数y=-2x的图象从左向 右呈下降状态,即随x增大y反而减小;经过第二、四象限.
一九九六年,鸟类研究者在芬兰给一只燕鸥뼈မ鸟) 套上标志环.4个月零1周后人们在2.56万千米外的澳 大利亚发现了它. (1)这只百余克重的小鸟大约平均每天飞行多少千米 (精确到10千米)? (2)这只燕鸥的行程y(千米)与飞行时间x(天)之间有 什么关系? (3)这只燕鸥飞行1个半月的行程大约是多少千米?
Copyright 2004-2009 版权所有 盗版必究
活动四.自己动手,课堂练习
在同一坐标系中,画出下列函数的图象,并对它们进行
比较.(1)y=0.5x
(2)y= -0.5x

北师大版八年级数学上册课件:4.3.1一次函数图象(24张PPT)

北师大版八年级数学上册课件:4.3.1一次函数图象(24张PPT)
只要将点的横纵坐标分别代入关系式 中,看是否满足关系式,若满足关系式, 则该点在直线上,否则不在直线上。
当堂检测
1.下列哪些点在一次函数y=2x-3的图像 上?(2,3),(2,1),(0,3),(3,0)
(2,1)
2.做出 一次函数
y=2x+1 的图象。
当堂检测
3.若一次函数y=-x+b的图象经过 点(0,-3),求b的值. 4.若函数y=-2mx-(m2-9)的图象 经过原点,求m的值.
正比例函数的图象是一条经过原点的直线,一次函数y=kx+b的图象是一条经过(0,b),( ,0)的直线。
只要将点的横纵坐标分别代入关系式中,看是否满足关系式,若满足关系式,则该点在直线上,否则不在直线上。
所有的一次函数的图象都是一条直线。
3、理解一次函数的表达式与图象之间的对应关系。
每日一练
1.已知直线y= (k+1)x+1-2k,若直线与y
小组合作
2.既然我们得出一次函数y=kx+b的 图象是一条直线.那么在画一次函 数图象时有没有什么简单的方法呢?
两点法
小组合作
3.作出y=-x+2的图像(两点法)
描点,连线
教师精讲
1.画函数图像的一般步骤 (1)列表,(2)描点,(3)连线 2.一次函数的图象及画法注意事 项: (1).所有一次函数的图象都是 一条直线,通常我们把一次函数 y=kx+b的图象叫做直线y=kx+b
教师精讲
3、理解一次函数的表达式与图象之间的对应关系。 列表法,图像法,解析式法
(2).一次函数图象的简单画法: 如果正比例函数y=kx的图象经过点(-1,3),那么k=_____
1、满足关系式y= -2x+5的x,y所对应的点(x,y)都在一次函数的图象上吗? (0,b)和(- ,0)。

人教版数学八年级下册课件 19.2一次函数的图像和性质 (共28张PPT)

人教版数学八年级下册课件 19.2一次函数的图像和性质 (共28张PPT)
(3)若直线y=(3-k)x-k经过 第二、三、四象限,求k的取值 范围:__________(4分)
课堂小结
说一说你在这节课上都收 获到了什么知识?
时间是一个常数,但对勤 奋者来说,是一个“变数”.
你在学业上的收获与你 平时的付出是成正比的
求出y=kx+b(k,b为常数,k≠0) 的图像与x轴、y轴的交点,你发现 了什么规律?
结论:
函数y=kx+b(k,b为
常数,k≠0)的图像
与x轴交于(-
b k
,0)
与y轴交于(0,b)
用你认为最简单的方法画出函 数y=2x-1与y=-2x+l的图象.
思考:一次函数解析式y=kx+b (k, b是常数,k≠0)中,k的正负对 函数图象有什么影响?(3分钟)
即它可以看作由直线
y=x向_上___平移 2 个
1 2 3 x 单位长度而得到.
函数y=x-2的图象与y轴 交于点(0,-2),即它可以看
作由直线y=x向下 平移_2_
个单位长度而得到.
一次函数y=3x-4的图象是 什么形状?它与直线y=3x有什 么关系?
函数y=-2x+3的图像是由 哪个正比例函数的图像平移 得到的? 需要平移几个单位 长度?
y=-2x+1
y
o·· x
y=-2x-1
k的取值范围 b的取值范围
的象限
一、三、二
k>0
b<0
一、三、四
k<0
b>0
二、四、一
k<0
b<0
二、四、三
比一比看谁记得快,你发现 什么规律了么?
直线y=2x-3与x轴交点坐标为_(_23__,0_)_, 与y轴交点坐标为_(__0_,_-_3_)__ 图象经过第__一_、__三_、__四__象限, y随x增大而__增__大_______.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级(下 册 )
华东师大版 §18.3
前面,我们已经学习了用描点法画函数的图象,也知道
通常可以结合函数的图象研究它的性质和应用.那么,你知
道一次函数的图象是什么形状的吗?
探索
在所给的直角坐标系中画出函数
y
1
x 的图象
2
x -3 -2 -1 0 1 2 3
y
-1.5 -1 -0.5 0 0.5 1 1.5
请同学们根据画图象的步骤:列表、描点、连线,4
在同一平面直角坐标系中画出下列函数的图象:
3
Y=2x、 y=2x+1、y=-2x、y=-2x-1
2

观察:它们有什么特点?
1

- 4 - 3 - 2 -●1 O● 1 2 3 4 ● -1

概括:
1.一次函数y = kx + b的图象是什么图形?你是通 过确定几个点来作一次函数y=kx+b的图象的呢?
2m-1<0
试一试:
在同一直角坐标系中画出y=2x和y=2x+2的图象 1、列表
x … -3 -2 -1 0 1 2 3 …
y=22x+ y2
· 6
y=2x … -6 -4 -2 0 2 4 6 … y=2x+ …-6+2 -4+2 -2+2 0+2 2+2 4+2 6+2 …
· 5 y=2x
4
2、2描点(-3,-4) (-2,-2) (-1,0) (0,2)(1,4) (2,6) (3,8)
x … -3 -2 -1 0 1 2 3 …
y=x+ … 1 2 3 4 5 6 7 … y增大
4
7 6 5 4 3 2 1 y减小
y=- …

x+4
直线y=kx+b 探索发现 y y=x+4 5
...............
在y= x+4中
X依次取-3,-2, -1, 0, 1, 2, 3时
· 4 3
4
3
1
· . . . . . . . . . . . . 6. 7. . -2 -10 1 3 4
随 着
x 的 x增 大
你发现一次
-2
函数值的变
-3
化有什么规
而 减 y= - x+4 小
律?
k<0 时 X的值增大
k<0图象呈下降趋势
归纳总结: 一次函数 y = kx + b(k≠0)的性质
在一次函数y = kx+b中 当k>0时,y的值随着x值的增大而增大,
图象呈上升趋势;
当k<0时,y的值随着x值的增大而减小,
图象呈下降趋势。
下列函数,y的值随着x值的增大如何变化?
(1 ) y 10 x 9 增大 ( 2 ) y 0 .3 x 2 减小
( 3 ) y 5 x 4 增大
( 4 ) y ( 2 3 ) x 减小
2、写出m的3个值,使相应的 一次函数y=(2m-1)x+2的值都 是随着x值的增大而减小.
二、一次函数 y = kx + b (k≠0)经过象限:
k>0 b>0 一、三、二
k>0 b<0 一、三、四 k<0 b>0 二、四、一
y y=-2x
y = 2x + 1
y=2x y=2x-2
o
x
k<0 b<0 二、四、三
y = -2x + 1 y = - 2x - 3
练习1 已知函数 y = kx的图象在二、四象限, 那么函数y = kx-k的图象可能是( B )
y
y
y
y
0x 0
A
B
0x x
C
0x D
练习2 1、若直线 y =mx+n经过第一、 二、三象)
限,讨论m、n的符号。 m>0,n>0
2、直线 y1x3,y1x5 分别是由直线经
过怎样的移动得到2的.
2
分析:只要k相同,直线就平行,一次函数y=kx+b(k≠0)是
由正比例函数的图象y=kx(k≠0)经过向上或向下平移个单位得到
· 3
2
函数y=kx+b能由y=kx得到吗?
1
x
y=kx+b可由y=kx向上或者向下平移得到-4。-3 -2 -1 o 1 2 3 4 5
y=2x经过那些象限? 一、三 y=2x+2呢? 一、二、三
-1
-2
-3
y=2x-3
y=2x-3呢? 一、三、四
-4
当k>0时,y=kx+b呢?
-5
-6
归纳总结:
y=2x-3
将y =2x向下平移3个单位得到
-6
想一想: y=2x+ 在同一坐标系中画出y=2x,y=2x+2和y=2x-3的图象 y 2
y=2x+2可由y=2x向上平移2个单位得到
6
y=2x-3可由y =2x向下平移3个单位得到 5
那么:函数y=2x+b的图象是怎样得到的?
4
y=2x
b>0,向上平移;b<0,向下平移。
·· 3
2
· 3、连线
1
x
y=2x+2可由y=2x向上平移2个单位得到 -4 -3 o -2 -1 1 2 3 4 5
结论:
在直线y=k1x+b1与直线y=k2x+b2中, 如果k1 = k2 , b1≠b2那么这两条直线平行。
猜一猜:函数y=2x-3的图象是怎样的?
· -1 -2
· -3 -4 -5
小试牛刀:
1.一次函数y=(-3k+1)x+2k-1
的图象经过原点,试确定
k的值。
-3k+1≠0, 2k-1=0.
k1 2
2.(2001.杭州)如果正比例函数y=(m-3)x
经过第一、三象限,则m的取值范围__m__>_3__.
∵m-3>0 ∴m>3
探索发现
对一次函数y=x+4,x依次取-3,-2,-1,0,1,2,3 逐渐增大的过程中,y的值是否也在增大? 对y=-x+4呢?
y 的
y的值是否也增大?
2

你发现一次 函数值的变
· -6.
1
.-5 . . . . . . .
-4 -3 -2 -10 -1 2
.
.
.
也 . 随. .

x
-2

k>0时 X的值增大

化有什么规
律?
k>0图象呈上升趋势
...............
探索发现
y
y
直线y=kx+b
y= - x+4
6
·5
y=k数 y x ,y 4 x ,y 3 x ,y 2 x
的图象。
(3)直线y x ,y 4 x ,y 3 x ,y 2 x 分别经过
((2那1)) 你几正作个象比正限例比?函例数函y数=yk=x的kx的图图象象有时什描么了特几点个?点
y3x y
y 4x

y2x

2

1
yx
-1 0 1 2
x
-1
y 3 x ,y x ,y 4 x ,y 2 x
归纳总结:
一、正比例函数y = kx (k≠0)图象的性质
1、正比例函数 y = kx 的图象都是经过坐标 原点(0,0)的一条直线;
2、(1)当 k>0时,y=kx经过一、三象限, (2)当 k<0时,y=kx经过二、四象限;
相关文档
最新文档