2019-2020年八年级下学期期末考试数学试卷(I)

合集下载

2019-2020年八年级下学期期末考试数学试题(解析版)

2019-2020年八年级下学期期末考试数学试题(解析版)

2019-2020年八年级下学期期末考试数学试题(解析版)一、选择题1.直线y=2x+3不经过第()象限.A.一B.二C.三D.四2.如图,四边形ABCD是菱形,对角线AC=8,DB=6,DE⊥BC于点E,则DE的长为()A.2.4 B.3.6 C.4.8 D.63.二次函数y=2x2+mx﹣5的图象与x轴交于点A(x1,0)、B(x2,0),且x12+x22=,则m的值为()A.3 B.﹣3 C.3或﹣3 D.以上都不对4.二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限5.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)2=182 B.50+50(1+x)+50(1+x)2=182C.50(1+2x)=182 D.50+50(1+x)+50(1+2x)2=1826.某篮球队12名队员的年龄如表:年龄(岁)18192021人数5412则这12名队员年龄的众数和平均数分别是()A.18,19 B.19,19 C.18,19.5 D.19,19.57.运动会上,某运动员掷铅球时,所掷铅球的高y(m)与水平距离x(m)之间的函数关系为y=﹣x2+x+,则该运动员的成绩是()A.6 m B.12 m C.8 m D.10 m8.若关于x的方程(k﹣1)x2﹣(k﹣1)x+=0有两个相等的实数根,则k的值为()A.1 B.2 C.1或2 D.以上都不对9.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个10.如图,在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3、A 3B3C3D3,…,按图示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E 4、C3,…,在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,…,则正方形AxxB2016CxxDxx的边长是()A.()xx B.()2016C.()xx D.()xx二、填空题11.一元二次方程x2=x的解是.12.数据﹣2、﹣1、0、1、2的方差是.13.将直线y=﹣2x﹣3向上平移4个单位长度得到的直线的解析式为.14.若矩形的长和宽是方程2x2﹣16x+m=0(0<m≤32)的两根,则矩形的周长为.15.如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),则不等式4x+2<kx+b<0的解集为.16.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B (1,1),则关于x的方程ax2﹣bx﹣c=0的解为.17.已知二次函数y=x2﹣2ax+3(a为常数)图象上的三点:A(x1,y1)、B(x2,y 2)、C(x3,y3),其中x1=a﹣3,x2=a+1,x3=a+2,则y1,y2,y3的大小关系是.18.若二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x,y)在x轴下方,对于以下说法:①b2﹣4ac>0;②x=x0是方程ax2+bx+c=y的解;③x1<x<x2;④a(x0﹣x1)(x﹣x2)<0.其中正确的是.三、解答题(共96分)19.解下列方程(1)x2﹣2x+1=0;(2)﹣2x2+4x﹣1=0.20.为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为,图①中m的值为;(Ⅱ)求本次调查获取的样本数据的众数和中位数;(Ⅲ)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?21.已知一次函数的图象经过A(﹣2,﹣3),B(1,3)两点.(1)求这个一次函数的解析式;(2)求这个一次函数的图象与两坐标轴围成的三角形的面积.22.关于x的一元二次方程x2﹣4x﹣2(k﹣1)=0有两个实数根x1,x2,问是否存在x1+x2<x1x2的情况,若存在,求k的取值范围,若不存在,请说明理由.23.如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCDE是矩形.24.甲乙两车从A市去往B市,甲比乙早出发了2个小时,甲到达B市后停留一段时间返回,乙到达B市后立即返回.甲车往返的速度都为40千米/时,乙车往返的速度都为20千米/时,如图是两车距A市的路程S(千米)与行驶时间t (小时)之间的函数图象,请结合图象回答下列问题:(1)A、B两市的距离是千米,甲到B市后小时乙到达B市;(2)求甲车返回时的路程S(千米)与时间t(小时)之间的函数关系式,并写出自变量t的取值范围;(3)请直接写出甲车从B市往回返后再经过几小时两车相遇.25.如图1,P是线段AB上的一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,连接CD,点E、F、G、H分别是AC、AB、BD、CD的中点,顺次连接E、F、G、H.(1)猜想四边形EFGH的形状,直接回答,不必说明理由;(2)当点P在线段AB的上方时,如图2,在△APB的外部作△APC和△BPD,其他条件不变,(1)中的结论还成立吗?说明理由;(3)如果(2)中,∠APC=∠BPD=90°,其他条件不变,先补全图3,再判断四边形EFGH的形状,并说明理由.26.某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元.为按时完成任务,该企业招收了新工人,设新工人李明第x 天生产的粽子数量为y只,y与x满足如下关系式:y=.(1)李明第几天生产的粽子数量为420只?(2)如图,设第x天每只粽子的成本是P元,P与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大值是多少元?(3)设(2)小题中第m天利润达到最大值,若要使第(m+1)天的利润比第m 天的利润至少多48元,则第(m+1)天每只粽子至少应提价几元?27.如图1,已知抛物线经过坐标原点O和x轴上另一点E,顶点M的坐标为(2,4);矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3.(1)求该抛物线的函数解析式;(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动,设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示).①当t=2秒时,判断点P是否在直线ME上,并说明理由;②设以P、N、C、D为顶点的多边形面积为S,试问S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.xx学年江苏省南通市田家炳中学八年级(下)期末数学试卷参考答案与试题解析一、选择题1.直线y=2x+3不经过第()象限.A.一B.二C.三D.四【考点】一次函数的性质.【分析】由条件可分别求得直线与两坐标轴的交点,则可确定出其所在的象限,可求得答案.【解答】解:在y=2x+3中,令y=0可求得x=﹣1.5,令x=0可得y=3,∴直线与x轴交于点(﹣1.5,0),与y轴交于点(0,3),∴直线经过第一、二、三象限,∴不经过第四象限,故选D.【点评】本题主要考查一次函数的性质,利用直线与两坐标轴的交点即可确定出直线所在的象限.2.如图,四边形ABCD是菱形,对角线AC=8,DB=6,DE⊥BC于点E,则DE的长为()A.2.4 B.3.6 C.4.8 D.6【考点】菱形的性质.【分析】首先根据已知可求得OA,OD的长,再根据勾股定理即可求得BC的长,再由菱形的面积等于底乘以高也等于两对角线的乘积,根据此不难求得DE的长.【解答】解:∵四边形ABCD是菱形,对角线AC=8,DB=6,∴BC==5,∵S菱形ABCD=AC×BD=BC×DE,∴×8×6=5×DE,∴DE==4.8,故选C.【点评】此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.3.二次函数y=2x2+mx﹣5的图象与x轴交于点A(x1,0)、B(x2,0),且x12+x22=,则m的值为()A.3 B.﹣3 C.3或﹣3 D.以上都不对【考点】抛物线与x轴的交点.【分析】利用已知将原式变形得出x12+x22=(x1+x2)2﹣2x1x2,进而利用根与系数关系求出即可.【解答】解:∵二次函数y=2x2+mx﹣5的图象与x轴交于点A(x1,0)、B(x2,0),且x12+x22=,∴x12+x22=(x1+x2)2﹣2x1x2=﹣2×(﹣)=,解得:m=±3,故选:C.【点评】此题主要考查了根与系数的关系,得出x12+x22=(x1+x2)2﹣2x1x2是解题关键.4.二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限【考点】二次函数的图象;一次函数的性质.【分析】根据抛物线的顶点在第四象限,得出n<0,m<0,即可得出一次函数y=mx+n的图象经过二、三、四象限.【解答】解:∵抛物线的顶点在第四象限,∴﹣m>0,n<0,∴m<0,∴一次函数y=mx+n的图象经过二、三、四象限,故选C.【点评】此题考查了二次函数的图象,用到的知识点是二次函数的图象与性质、一次函数的图象与性质,关键是根据抛物线的顶点在第四象限,得出n、m的符号.5.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)2=182 B.50+50(1+x)+50(1+x)2=182C.50(1+2x)=182 D.50+50(1+x)+50(1+2x)2=182【考点】由实际问题抽象出一元二次方程.【专题】增长率问题;压轴题.【分析】主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),如果该厂五、六月份平均每月的增长率为x,那么可以用x分别表示五、六月份的产量,然后根据题意可得出方程.【解答】解:依题意得五、六月份的产量为50(1+x)、50(1+x)2,∴50+50(1+x)+50(1+x)2=182.故选B.【点评】增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b 为终止时间的有关数量.6.某篮球队12名队员的年龄如表:年龄(岁)18192021人数5412则这12名队员年龄的众数和平均数分别是()A.18,19 B.19,19 C.18,19.5 D.19,19.5【考点】众数;加权平均数.【分析】根据众数及平均数的概念求解.【解答】解:年龄为18岁的队员人数最多,众数是18;平均数==19.故选:A.【点评】本题考查了众数及平均数的知识,掌握众数及平均数的定义是解题关键.7.运动会上,某运动员掷铅球时,所掷铅球的高y(m)与水平距离x(m)之间的函数关系为y=﹣x2+x+,则该运动员的成绩是()A.6 m B.12 m C.8 m D.10 m【考点】二次函数的应用.【分析】依题意,该二次函数与x轴的交点的x值为所求.即在抛物线解析式中.令y=0,求x的正数值.【解答】解:把y=0代入y=﹣x2+x+得:﹣ x2+x+=0,解之得:x1=10,x2=﹣2.又x>0,∴x=10,故选:D.【点评】本题主要考查二次函数的实际应用,熟练掌握二次函数的图象和性质是解题的关键.8.若关于x的方程(k﹣1)x2﹣(k﹣1)x+=0有两个相等的实数根,则k的值为()A.1 B.2 C.1或2 D.以上都不对【考点】根的判别式.【分析】若方程有两相等根,则根的判别式△=b2﹣4ac=0,建立关于k的等式,求出k的值,再把不合题意的解舍去,即可得出答案.【解答】解:∵方程有两相等的实数根,∴△=b2﹣4ac=[﹣(k﹣1)]2﹣4(k﹣1)×=0,且k﹣1≠0,解得:k=1(舍去)或k=2,∴k的值为2;故选B.【点评】本题考查了根的根判别式,掌握当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根是本题的关键.9.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个【考点】一次函数的应用.【分析】观察图象可判断①②,由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.【解答】解:由图象可知A、B两城市之间的距离为300km,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,∴①②都正确;设甲车离开A城的距离y与t的关系式为y甲=kt,把(5,300)代入可求得k=60,∴y甲=60t,设乙车离开A城的距离y与t的关系式为y乙=mt+n,把(1,0)和(4,300)代入可得,解得,∴y乙=100t﹣100,令y甲=y乙可得:60t=100t﹣100,解得t=2.5,即甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,∴③不正确;令|y甲﹣y乙|=50,可得|60t﹣100t+100|=50,即|100﹣40t|=50,当100﹣40t=50时,可解得t=,当100﹣40t=﹣50时,可解得t=,又当t=时,y甲=50,此时乙还没出发,当t=时,乙到达B城,y甲=250;综上可知当t的值为或或或t=时,两车相距50千米,∴④不正确;综上可知正确的有①②共两个,故选B.【点评】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间.10.如图,在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3、A 3B3C3D3,…,按图示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E 4、C3,…,在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,…,则正方形AxxB2016CxxDxx的边长是()A.()xx B.()2016C.()xx D.()xx【考点】正方形的性质;坐标与图形性质.【专题】规律型.【分析】利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.【解答】解:如图所示:∵正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,∴D1E1=C1D1sin30°=,则B2C2=()1,同理可得:B3C3==()2,故正方形An BnCnDn的边长是:()n﹣1.则正方形Axx B2016CxxDxx的边长是:()xx.故选:D.【点评】此题主要考查了正方形的性质、锐角三角函数;熟练掌握正方形的性质,得出正方形的边长变化规律是解题关键.二、填空题11.一元二次方程x2=x的解是x=0或x= .【考点】解一元二次方程﹣因式分解法.【分析】移项后因式分解法求解可得.【解答】解:∵x2=x,∴x2﹣x=0,即x(x﹣)=0,∴x=0或x﹣=0,解得:x=0或x=,故答案为:x=0或x=.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.12.数据﹣2、﹣1、0、1、2的方差是 2 .【考点】方差.【分析】根据题目中的数据可以求得这组数据的平均数,然后根据方差的计算方法可以求得这组数据的方差.【解答】解:由题意可得,这组数据的平均数是:,∴这组数据的方差是: =2,故答案为:2.【点评】本题考查方差,解题的关键是明确方差的计算方法.13.将直线y=﹣2x﹣3向上平移4个单位长度得到的直线的解析式为y=﹣2x+1 .【分析】直接根据“上加下减”的原则进行解答即可.【解答】解:由“上加下减”的原则可知,把直线y=﹣2x﹣3向上平移4个单位长度后所得直线的解析式为:y=﹣2x﹣3+4,即y=﹣2x+1.故答案为:y=﹣2x+1【点评】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.14.若矩形的长和宽是方程2x2﹣16x+m=0(0<m≤32)的两根,则矩形的周长为16 .【考点】根与系数的关系;矩形的性质.【分析】设矩形的长和宽分别为x、y,由矩形的长和宽是方程2x2﹣16x+m=0(0<m≤32)的两个根,根据一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系得到x+y=8;xy=,然后利用矩形的性质易求得到它的周长.【解答】解:设矩形的长和宽分别为x、y,根据题意得x+y=8;所以矩形的周长=2(x+y)=16.故答案为:16.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根分别为x1,x2,则x1+x2=﹣,x1•x2=.也考查了矩形的性质.15.如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),则不等式4x+2<kx+b<0的解集为﹣2<x<﹣1 .【分析】由图象得到直线y=kx+b与直线y=4x+2的交点A的坐标(﹣1,﹣2)及直线y=kx+b与x轴的交点坐标,观察直线y=4x+2落在直线y=kx+b的下方且直线y=kx+b落在x轴下方的部分对应的x的取值即为所求.【解答】解:∵经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),∴直线y=kx+b与直线y=4x+2的交点A的坐标为(﹣1,﹣2),直线y=kx+b与x轴的交点坐标为B(﹣2,0),又∵当x<﹣1时,4x+2<kx+b,当x>﹣2时,kx+b<0,∴不等式4x+2<kx+b<0的解集为﹣2<x<﹣1.故答案为:﹣2<x<﹣1.【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.16.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),则关于x的方程ax2﹣bx﹣c=0的解为x1=﹣2,x2=1 .【考点】二次函数的性质.【专题】数形结合.【分析】根据二次函数图象与一次函数图象的交点问题得到方程组的解为,,于是易得关于x的方程ax2﹣bx﹣c=0的解.【解答】解:∵抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),∴方程组的解为,,即关于x的方程ax2﹣bx﹣c=0的解为x1=﹣2,x2=1.故答案为x1=﹣2,x2=1.【点评】本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣.也考查了二次函数图象与一次函数图象的交点问题.17.已知二次函数y=x2﹣2ax+3(a为常数)图象上的三点:A(x1,y1)、B(x2,y 2)、C(x3,y3),其中x1=a﹣3,x2=a+1,x3=a+2,则y1,y2,y3的大小关系是y 2<y3<y1.【考点】二次函数图象上点的坐标特征.【分析】把点的坐标代入可求得y1,y2,y3的值,比较大小即可.【解答】解:∵A(x1,y1)、B(x2,y2)、C(x3,y3)在抛物线上,∴y1=(a﹣3)2﹣2a(a﹣3)+3=﹣a2+12,y2=(a+1)2﹣2a(a+1)+3=﹣a2+4,y3=(a+2)2﹣2a(a+2)+3=﹣a2+7,∵﹣a2+4<﹣a2+7<﹣a2+12,∴y2<y3<y1,故答案为:y2<y3<y1.【点评】本题主要考查二次函数图象上点的坐标特征,掌握函数图象上的点的坐标满足函数解析式是解题的关键.18.若二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x,y)在x轴下方,对于以下说法:①b2﹣4ac>0;②x=x0是方程ax2+bx+c=y的解;③x1<x<x2;④a(x0﹣x1)(x﹣x2)<0.其中正确的是①②④.【考点】抛物线与x轴的交点;二次函数图象与系数的关系.【分析】根据抛物线与x轴有两个不同的交点,根的判别式△>0,再分a>0和a<0两种情况对③④选项讨论即可得解.【解答】解:①∵二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点坐标分别为(x1,0),(x2,0),∴△=b2﹣4ac>0,故本选项正确;②∵点M(x0,y)在二次函数y=ax2+bx+c(a≠0)的图象上,∴x=x0是方程ax2+bx+c=y的解,故本选项正确;③若a>0,则x1<x<x2,若a<0,则x0<x1<x2或x1<x2<x,故本选项错误;④若a>0,则x0﹣x1>0,x﹣x2<0,所以,(x0﹣x1)(x﹣x2)<0,∴a(x0﹣x1)(x﹣x2)<0,若a<0,则(x0﹣x1)与(x﹣x2)同号,∴a(x0﹣x1)(x﹣x2)<0,综上所述,a(x0﹣x1)(x﹣x2)<0正确,故本选项正确.故①②④正确,故答案为①②④【点评】本题考查了二次函数与x轴的交点问题,熟练掌握二次函数图象以及图象上点的坐标特征是解题的关键,③④选项要注意分情况讨论.三、解答题(共96分)19.解下列方程(1)x2﹣2x+1=0;(2)﹣2x2+4x﹣1=0.【考点】解一元二次方程﹣公式法;解一元二次方程﹣配方法.【分析】(1)因式分解法求解可得;(2)公式法求解可得.【解答】解:(1)∵(x﹣1)2=0,∴x﹣1=0,即x=1;(2)∵a=﹣2,b=4,c=﹣1,∴△=16﹣4×(﹣2)×(﹣1)=8>0,∴x==﹣2.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的基本方法是解题的关键.20.为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为40 ,图①中m的值为15 ;(Ⅱ)求本次调查获取的样本数据的众数和中位数;(Ⅲ)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?【考点】条形统计图;用样本估计总体;扇形统计图;中位数;众数.【专题】图表型.【分析】(Ⅰ)根据条形统计图求出总人数即可;由扇形统计图以及单位1,求出m的值即可;(Ⅱ)找出出现次数最多的即为众数,将数据按照从小到大顺序排列,求出中位数即可;(Ⅲ)根据题意列出算式,计算即可得到结果.【解答】解:(Ⅰ)本次接受随机抽样调查的学生人数为6+12+10+8+4=40,图①中m的值为100﹣30﹣25﹣20﹣10=15;故答案为:40;15;(Ⅱ)∵在这组样本数据中,35出现了12次,出现次数最多,∴这组样本数据的众数为35;∵将这组样本数据从小到大得顺序排列,其中处于中间的两个数都为36,∴中位数为=36;(Ⅲ)∵在40名学生中,鞋号为35的学生人数比例为30%,∴由样本数据,估计学校各年级中学生鞋号为35的人数比例约为30%,则计划购买200双运动鞋,有200×30%=60双为35号.【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.21.已知一次函数的图象经过A(﹣2,﹣3),B(1,3)两点.(1)求这个一次函数的解析式;(2)求这个一次函数的图象与两坐标轴围成的三角形的面积.【考点】待定系数法求一次函数解析式.【专题】作图题;待定系数法.【分析】(1)利用待定系数法求函数解形式即可;(2)先求一次函数图象与两坐标轴的交点坐标,再利用三角形的面积公式求解即可.【解答】解:(1)设一次函数解析式为y=kx+b,则,解得,∴这个一次函数的解析式为y=2x+1;(2)当y=0时,x=﹣,当x=0时,y=1,所以函数图象与坐标轴的交点为(﹣,0)(0,1),∴三角形的面积=×|﹣|×1=.【点评】本题主要考查待定系数法求一次函数解析式;先求出函数图象与坐标轴的交点坐标是求三角形面积的关键.22.关于x的一元二次方程x2﹣4x﹣2(k﹣1)=0有两个实数根x1,x2,问是否存在x1+x2<x1x2的情况,若存在,求k的取值范围,若不存在,请说明理由.【考点】根与系数的关系;根的判别式.【分析】根据方程有两个实数根结合根的判别式即可得出△=8k+8≥0,解之即可得出k的取值范围,再结合根与系数的关系以及x1+x2<x1x2,即可得出4<2﹣2k,解之即可得出k的取值范围,取两个k的取值范围的交集即可得出结论.【解答】解:不存在,理由如下:∵方程x2﹣4x﹣2(k﹣1)=0有两个实数根x1,x2,∴△=(﹣4)2﹣4×1×[﹣2(k﹣1)]=8k+8≥0,解得:k≥﹣1.∵x1+x2=4,x1x2=2﹣2k,x1+x2<x1x2,∴4<2﹣2k,解得:k<﹣1.∵k≥﹣1和k<﹣1没有交集,∴不存在x1+x2<x1x2的情况.【点评】本题考查了根的判别式以及根与系数的关系,根据根的判别式以及根与系数的关系找出关于k的一元一次不等式是解题的关键.23.如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCDE是矩形.【考点】矩形的判定;全等三角形的判定与性质.【专题】证明题.【分析】求出∠BAE=∠CAD,证△BAE≌△CAD,推出∠BEA=∠CDA,BE=CD,得出平行四边形BCDE,根据平行线性质得出∠BED+∠CDE=180°,求出∠BED,根据矩形的判定求出即可.【解答】证明:∵∠BAD=∠CAE,∴∠BAD﹣∠BAC=∠CAE﹣∠BAC,∴∠BAE=∠CAD,∵在△BAE和△CAD中∴△BAE≌△CAD(SAS),∴∠BEA=∠CDA,BE=CD,∵DE=CB,∴四边形BCDE是平行四边形,∵AE=AD,∴∠AED=∠ADE,∵∠BEA=∠CDA,∴∠BED=∠CDE,∵四边形BCDE是平行四边形,∴BE∥CD,∴∠CDE+∠BE D=180°,∴∠BED=∠CDE=90°,∴四边形BCDE是矩形.【点评】本题考查了矩形的判定,平行四边形的性质和判定,平行线的性质全等三角形的性质和判定的应用,主要考查学生运用定理进行推理的能力,注意:有一个角是直角的平行四边形是矩形.24.甲乙两车从A市去往B市,甲比乙早出发了2个小时,甲到达B市后停留一段时间返回,乙到达B市后立即返回.甲车往返的速度都为40千米/时,乙车往返的速度都为20千米/时,如图是两车距A市的路程S(千米)与行驶时间t (小时)之间的函数图象,请结合图象回答下列问题:(1)A、B两市的距离是120 千米,甲到B市后 5 小时乙到达B市;(2)求甲车返回时的路程S(千米)与时间t(小时)之间的函数关系式,并写出自变量t的取值范围;(3)请直接写出甲车从B市往回返后再经过几小时两车相遇.【考点】一次函数的应用.【分析】(1)从图中看,甲车3小时到达B市,则3×40=120千米,即A、B 两市的距离是120千米,根据乙车往返的速度都为20千米/时,那么乙车去时所用的时间为:120÷20=6小时,6+2=8,则8小时后乙到达,所以甲到B市后5小时乙到达B市;(2)分别表示A、B两点的坐标,利用待定系数法求解析式,并写t的取值;(3)先分别求出C、D两点的坐标,再求CD的解析式,求直线AB与CD的交点,即此时两车相遇,时间为12小时,计算甲车从第10小时开始返回,则再经过2小时两车相遇.【解答】解:(1)3×40=120,乙车所用时间: =6,2+6﹣3=5,答:A、B两市的距离是120千米,甲到B市后5小时乙到达B市;故答案为:120,5;(2)由题意得:A(10,120),B(13,0),设甲车返回时的路程S(千米)与时间t(小时)之间的函数关系式为:S=kt+b,把A(10,120),B(13,0)代入得:,解得:,∴甲车返回时的路程S(千米)与时间t(小时)之间的函数关系式为:S=﹣40t+520(10≤t≤13);(3)由题意得:C(8,10),120﹣(10﹣8)×20=80,∴D(10,80),设直线CD的解析式为:S=kt+b,把C(8,120)、D(10,80)代入得:,解得:,∴直线CD的解析式为:S=﹣20t+280,则:,﹣40t+520=﹣20t+280,t=12,12﹣10=2,答:甲车从B市往回返后再经过2小时两车相遇.【点评】本题是一次函数的应用,考查了利用待定系数法求一次函数的解析式,本题属于行程问题,明确路程、时间、速度的关系,注意图形中S所表示的实际意义:两车距A市的路程(千米);理解题意,弄清两直线的交点即为两车相遇所表示的点,并注意自变量t的取值范围.25.如图1,P是线段AB上的一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,连接CD,点E、F、G、H分别是AC、AB、BD、CD的中点,顺次连接E、F、G、H.(1)猜想四边形EFGH的形状,直接回答,不必说明理由;(2)当点P在线段AB的上方时,如图2,在△APB的外部作△APC和△BPD,其他条件不变,(1)中的结论还成立吗?说明理由;(3)如果(2)中,∠APC=∠BPD=90°,其他条件不变,先补全图3,再判断四边形EFGH的形状,并说明理由.【考点】菱形的判定与性质;全等三角形的判定与性质;三角形中位线定理;正方形的判定.【专题】几何综合题;压轴题.【分析】(1)连接AD、BC,利用SAS可判定△APD≌△CPB,从而得到AD=BC,因为EF、FG、GH、EH分别是△ABC、△ABD、△BCD、△ACD的中位线,则可以得到EF=FG=GH=EH,根据四边都相等的四边形是菱形,可推出四边形EFGH是菱形;(2)成立,可以根据四边都相等的四边形是菱形判定;(3)先将图形补充完整,再通过角之间的关系得到∠EHG=90°,已证四边形EFGH 是菱形,则四边形EFGH是正方形.【解答】解:(1)四边形EFGH是菱形.(2分)(2)成立.理由:连接AD,BC.(4分)∵∠APC=∠BPD,∴∠APC+∠CPD=∠BPD+∠CPD.即∠APD=∠CPB.又∵PA=PC,PD=PB,∴△APD≌△CPB(SAS)∴AD=CB.(6分)∵E、F、G、H分别是AC、AB、BD、CD的中点,∴EF、FG、GH、EH分别是△ABC、△ABD、△BCD、△ACD的中位线.∴EF=BC,FG=AD,GH=BC,EH=AD.∴EF=FG=GH=EH.∴四边形EFGH是菱形.(7分)(3)补全图形,如答图.判断四边形EFGH是正方形.(9分)理由:连接AD,BC.∵(2)中已证△APD≌△CPB.∴∠PAD=∠PCB.∵∠APC=90°,∴∠PAD+∠1=90°.又∵∠1=∠2.∴∠PCB+∠2=90°.∴∠3=90°.(11分)∵(2)中已证GH,EH分别是△BCD,△ACD的中位线,∴GH∥BC,EH∥AD.∴∠EHG=90°.又∵(2)中已证四边形EFGH是菱形,∴菱形EFGH是正方形.(12分)【点评】此题主要考查了菱形的判定,正方形的判定,全等三角形的判定等知识点的综合运用及推理论证能力.26.某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元.为按时完成任务,该企业招收了新工人,设新工人李明第x 天生产的粽子数量为y只,y与x满足如下关系式:y=.(1)李明第几天生产的粽子数量为420只?(2)如图,设第x天每只粽子的成本是P元,P与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大值是多少元?(3)设(2)小题中第m天利润达到最大值,若要使第(m+1)天的利润比第m 天的利润至少多48元,则第(m+1)天每只粽子至少应提价几元?。

2019-2020学年上海市徐汇区八年级(下)期末数学试卷 解析版

2019-2020学年上海市徐汇区八年级(下)期末数学试卷  解析版

2019-2020学年上海市徐汇区八年级(下)期末数学试卷一.选择题(共6小题)1.下列方程中,有实数解的是()A.x6+1=0B.=2C.+3=0D.2.若一次函数y=kx+b(k≠0)的图象不经过第三象限,则k、b的取值范围是()A.k<0,b≥0B.k>0,b>0C.k<0,b>0D.k>0,b<0 3.在平行四边形、矩形、菱形、等腰梯形中任选一个图形,那么下列事件中为不可能事件的()A.这个图形是中心对称图形B.这个图形既是中心对称图形又是轴对称图形C.这个图形是轴对称图形D.这个图形既不是中心对称图形又不是轴对称图形4.在梯形ABCD中,AD∥BC,AB=CD,那么下列结论中正确的是()A.与是相等向量B.与是相等向量C.与是相反向量D.与是平行向量5.下列命题中:①有两个内角相等的梯形是等腰梯形;②顺次联结矩形的各边中点所成四边形是菱形;③两条对角线相等的梯形是等腰梯形;④对角线互相平分且相等的四边形是矩形.其中真命题有()A.1个B.2个C.3个D.4个6.如图,DE是△ABC的中位线,F是DE的中点,BF的延长线交AC于点H,则HE:AH 等于()A.1:1B.1:2C.2:1D.3:2二.填空题(共12小题)7.若关于x的一次函数y=(2﹣k)x+1(k为常数)中,y随x的增大而减小,则k的取值范围是.8.用换元法解方程=3时,如果设=y时,那么得到关于y的整式方程为.9.方程(x+3)=0的解是.10.如图,已知一次函数y=kx+b的图象经过点A(5,0)与B(0,﹣4),那么关于x的不等式kx+b<0的解集是.11.袋中有两个黄球、四个白球、三个绿球,它们除颜色外其它都一样,现从中任意摸出一个球,摸出绿球的概率是.12.化简:=.13.已知一个多边形的每个外角都是72°,这个多边形是边形.14.已知菱形的周长是48cm,一条较小的对角线的长是12cm,则该菱形较大的内角是度.15.梯形的中位线长8cm,高10cm,则该梯形的面积为cm2.16.如图,矩形ABCD中,O是两对角线交点,AE⊥BD于点E.若OE:OD=1:2,AE =3cm,则BE=cm.17.函数y=和y=﹣(k≠0)的图象关于y轴对称,我们把函数y=和y=﹣(k ≠0)叫做互为“镜子”函数.类似地,如果函数y=f(x)和y=h(x)的图象关y轴对称,那么我们把函数y=f(x)和y=h(x)叫做互为“镜子”函数.则函数y=2x﹣4的“镜子”函数是.18.一次函数y=2x+4的能像与x、y轴分别用交于点A和点B,点C在直线x=4上,点D 是直角坐标平面内一点,若四边形ABCD是菱形,则点D的坐标为.三.解答题(共8小题)19.解方程:=1.20.解方程组.21.解方程:+x=7.22.某工厂储存了30吨煤,由于改进炉灶和烧煤技术,每天能节约2吨煤,且储存的煤比原计划多用20天,原计划每天烧煤多少吨?23.如图,已知在梯形ABCD中,AB∥CD.(1)若AD=BC,且AC⊥BD,AC=6,求梯形ABCD的面积;(2)若CD=3,M、N分别是对角线AC、BD的中点,联结MN,MN=2,求AB的长.24.如图,已知在四边形ABCD中,AB∥CD,点O是对角线AC的中点,联结DO并延长与AB边交于点E,联结CE,设=,=,.(1)试用向量,表示下列向量:=,=.(2)求作:.(保留作图痕迹,写出结果,不要求写作法)25.如图,直线AB经过点A(﹣3,0),B(0,2),经过点D(0,4)并且与y轴垂直的直线CD与直线AB交于第一象限内点C.(1)求直线AB的表达式;(2)在x轴的正半轴上是否存在一点P,使得△OCP为等腰三角形,若存在,求出点P 的坐标;若不存在,请说明理由.26.已知:如图,在正方形ABCD中,点E、F分别在边BC和CD上.(1)若BE=DF,①求证:∠BAE=∠DAF;②联结AC交EF于点O,过点F作FM∥AE,交AC的延长线于M,联结EM,求证:四边形AEMF是菱形.(2)联结BD,交AE、AF于点P、Q.若∠EAF=45°,AB=1,设BP=x,DQ=y,求y关于x的函数关系及定义域.2019-2020学年上海市徐汇区八年级(下)期末数学试卷参考答案与试题解析一.选择题(共6小题)1.下列方程中,有实数解的是()A.x6+1=0B.=2C.+3=0D.【分析】利用乘方的意义可对A进行判断;通过解无理方程可对B进行判断;利用二次根式的性质可对C进行判断;通过解分式方程可对D进行判断.【解答】解:A、x6≥0,x6+1>0,方程x6+1=0没有实数解;B、两边平方得2﹣x=4,解得x=﹣2,经检验x=﹣2为原方程的解;C、≥0,则+3=0没有实数解;D、去分母得x=2,经检验原方程无解.故选:B.2.若一次函数y=kx+b(k≠0)的图象不经过第三象限,则k、b的取值范围是()A.k<0,b≥0B.k>0,b>0C.k<0,b>0D.k>0,b<0【分析】根据一次函数的图象与系数的关系即可得出结论.【解答】解:∵一次函数y=kx+b的图象不经过第三象限,∴直线y=kx+b经过第一、二、四象限或第二、四象限,∴k<0,b≥0.故选:A.3.在平行四边形、矩形、菱形、等腰梯形中任选一个图形,那么下列事件中为不可能事件的()A.这个图形是中心对称图形B.这个图形既是中心对称图形又是轴对称图形C.这个图形是轴对称图形D.这个图形既不是中心对称图形又不是轴对称图形【分析】根据“不可能事件”的意义,结合平行四边形、矩形、菱形、等腰梯形的性质进行判断即可.【解答】解:平行四边形是中心对称图形,不是轴对称图形,矩形既是轴对称图形,又是中心对称图形,菱形既是轴对称图形,又是中心对称图形,等腰梯形是轴对称图形,不是中心对称图形,因此选项D是不可能事件,故选:D.4.在梯形ABCD中,AD∥BC,AB=CD,那么下列结论中正确的是()A.与是相等向量B.与是相等向量C.与是相反向量D.与是平行向量【分析】根据等腰梯形的性质,即可得AC=BD,然后根据相等向量与相反向量,以及平行向量的定义,即可求得答案.【解答】解:A、∵AB=CD,但AB不平行于CD,≠,故本选项错误;B、∵AD∥BC,AB=CD,∴AC=BD,但AC不平行于BD,∴≠,故本选项错误;C、∵AD≠BC,∴与不是相反向量,故本选项错误;D、∵AD∥BC,∴与是平行向量,故本选项正确.故选:D.5.下列命题中:①有两个内角相等的梯形是等腰梯形;②顺次联结矩形的各边中点所成四边形是菱形;③两条对角线相等的梯形是等腰梯形;④对角线互相平分且相等的四边形是矩形.其中真命题有()A.1个B.2个C.3个D.4个【分析】根据梯形、菱形和矩形的判定判断即可.【解答】解:①有两个内角相等的梯形不一定是等腰梯形,原命题是假命题;②顺次联结矩形的各边中点所成四边形是菱形,是真命题;③两条对角线相等的梯形是等腰梯形,是真命题;④对角线互相平分且相等的四边形是矩形,是真命题.故选:C.6.如图,DE是△ABC的中位线,F是DE的中点,BF的延长线交AC于点H,则HE:AH 等于()A.1:1B.1:2C.2:1D.3:2【分析】由DE是△ABC的中位线,即可得DE∥BC,DE=BC,AE=EC,然后由平行线分线段成比例定理,即可求得答案,注意比例变形.【解答】解:∵DE是△ABC的中位线,∴DE∥BC,DE=BC,AE=EC,∵F是DE的中点,∴EF=DE=BC,∴,∴,∴.故选B.或:过D作DG平行于AC交BF于G,∵△DGF≌△EHF,∴DG=HE.而D为AB中点,∴DG=AH.于是HE:AH=1:2.二.填空题(共12小题)7.若关于x的一次函数y=(2﹣k)x+1(k为常数)中,y随x的增大而减小,则k的取值范围是k>2.【分析】根据一次函数的增减性可求得k的取值范围.【解答】解:∵一次函数y=(2﹣k)x+1(k是常数)中y随x的增大而减小,∴2﹣k<0,解得k>2,故答案为:k>2.8.用换元法解方程=3时,如果设=y时,那么得到关于y的整式方程为y2﹣3y+1=0.【分析】可根据方程特点设设=y,则原方程可化为y+=3,再去分母化为整式方程即可.【解答】解:设=y,则原方程可化为:y+=3,去分母,可得y2+1=3y,即y2﹣3y+1=0,故答案为:y2﹣3y+1=0.9.方程(x+3)=0的解是x=2.【分析】因为(x+3)=0可以得出x+3=0,x﹣2=0且x﹣2≥0,由此求得原方程的解即可.【解答】解:∵(x+3)=0,∴x+3=0,x﹣2=0且x﹣2≥0,解得x=﹣3,x=2且x≥2,∴x=2.故答案为:x=2.10.如图,已知一次函数y=kx+b的图象经过点A(5,0)与B(0,﹣4),那么关于x的不等式kx+b<0的解集是x<5.【分析】首先利用图象可找到图象在x轴下方时x<5,进而得到关于x的不等式kx+b<0的解集是x<5.【解答】解:由题意可得:一次函数y=kx+b中,y<0时,图象在x轴下方,x<5,则关于x的不等式kx+b<0的解集是x<5,故答案为:x<5.11.袋中有两个黄球、四个白球、三个绿球,它们除颜色外其它都一样,现从中任意摸出一个球,摸出绿球的概率是.【分析】因为球的总数为9个,即n=9,又因为有三个绿球,即m=3,利用公式p=,可求出摸出绿球的概率.【解答】解:∵n=9,m=3,∴P(摸出绿球)==,=.故答案为:.12.化简:=.【分析】利用三角形法则化简即可.【解答】解:∵=﹣=+=.故答案为.13.已知一个多边形的每个外角都是72°,这个多边形是五边形.【分析】任何多边形的外角和是360°.用外角和除以每个外角的度数即可得到边数.【解答】解:360÷72=5.故这个多边形是五边形.故答案为:五.14.已知菱形的周长是48cm,一条较小的对角线的长是12cm,则该菱形较大的内角是120度.【分析】先根据菱形的性质求出菱形的边长,然后根据对角线长为12cm,可判断出菱形一个角的度数,继而可求得该菱形较大的内角度数.【解答】解:∵菱形的周长为48cm,∴菱形的边长为:48÷4=12cm,∵一条对角线的长是12cm,∴这条对角线跟相邻的两边组成的三角形为等边三角形,则菱形的较小的内角为60°,则较大内角为180°﹣60°=120°.故答案为:120°.15.梯形的中位线长8cm,高10cm,则该梯形的面积为80cm2.【分析】根据梯形中位线定理求出梯形的上底+下底,根据梯形的面积公式计算,得到答案.【解答】解:∵梯形的中位线长8,∴梯形的上底+下底=16,∴该梯形的面积=×16×10=80(cm2),故答案为:80.16.如图,矩形ABCD中,O是两对角线交点,AE⊥BD于点E.若OE:OD=1:2,AE =3cm,则BE=3cm.【分析】由矩形的性质可得AO=BO,由线段的垂直平分线的性质可得AO=AB,可证△ABO是等边三角形,∠ABO=60°,由直角三角形的性质可求解.【解答】解:∵四边形ABCD是矩形,∴AO=CO,BO=DO,AC=BD,∴AO=BO,∵OE:OD=1:2,∴OE=OB,∴BE=OE,又∵AE⊥BD,∴AO=AB,∴AO=AB=BO,∴△ABO是等边三角形,∴∠ABO=60°,∴∠BAE=30°,∴AE=BE=3cm,∴BE=cm,故答案为:3.17.函数y=和y=﹣(k≠0)的图象关于y轴对称,我们把函数y=和y=﹣(k ≠0)叫做互为“镜子”函数.类似地,如果函数y=f(x)和y=h(x)的图象关y轴对称,那么我们把函数y=f(x)和y=h(x)叫做互为“镜子”函数.则函数y=2x﹣4的“镜子”函数是y=﹣2x﹣4.【分析】根据题目中的新定义,可以直接写出函数y=2x﹣4的“镜子”函数.【解答】解:由题意可得,函数y=2x﹣4的“镜子”函数是y=﹣2x﹣4,故答案为:y=﹣2x﹣4.18.一次函数y=2x+4的能像与x、y轴分别用交于点A和点B,点C在直线x=4上,点D 是直角坐标平面内一点,若四边形ABCD是菱形,则点D的坐标为(2,2)或(2,﹣2).【分析】根据菱形的性质找出点C的坐标即可得出D点的坐标.【解答】解:∵一次函数解析式为线y=2x+4,∴B(0,4),A(﹣2,0),∴AB==2,如图∵四边形ABCD是菱形,∴AB=BC,设C(4,n),∴=2,解得n=6或2,∴C1(4,6),C2(4,2),∴D(2,2)或(2,﹣2),故答案为(2,2)或(2,﹣2).三.解答题(共8小题)19.解方程:=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:分式方程整理得:﹣=1,去分母得:(x+2)2﹣20=x2﹣4,整理得:x2+4x+4﹣20=x2﹣4,移项合并得:4x=12,解得:x=3,检验:把x=3代入得:(x+2)(x﹣2)≠0,则分式方程的解为x=3.20.解方程组.【分析】由于组中的两个高次方程都能分解为两个一次方程,所以先分解组中的两个二元二次方程,得到四个一元一次方程,重新组合成二元一次方程组,求出的四个二元一次方程组的解就是原方程的解.【解答】解:由①,得(x﹣y)2=16,所以x﹣y=4或x﹣y=﹣4.由②,得(x+3y)(x﹣3y)=0,即x+3y=0或x﹣3y=0所以原方程组可化为:,,,解这些方程组,得,,,.所以原方程组的解为:,,,.21.解方程:+x=7.【分析】先移项得到=7﹣x,两边平方把无理方程化为整式方程,解整式方程,然后进行检验确定无理方程的解.【解答】解:=7﹣x,两边平方得x﹣1=(7﹣x)2,整理得x2﹣15x+50=0,解得x1=5,x2=10,经检验,原方程的解为x=5.22.某工厂储存了30吨煤,由于改进炉灶和烧煤技术,每天能节约2吨煤,且储存的煤比原计划多用20天,原计划每天烧煤多少吨?【分析】设原计划每天烧煤x吨,由“储存的煤比原计划多用20天”,列出方程,即可求解.【解答】解:设原计划每天烧煤x吨,由题意可得:,解得:x1=3,x2=﹣1(不合题意舍去),经检验:x=3是原方程的解,答:原计划每天烧煤3吨.23.如图,已知在梯形ABCD中,AB∥CD.(1)若AD=BC,且AC⊥BD,AC=6,求梯形ABCD的面积;(2)若CD=3,M、N分别是对角线AC、BD的中点,联结MN,MN=2,求AB的长.【分析】(1)如图1,过C作CE∥BD,交AB的延长线于E,根据平行四边形的性质得到CE=BD,CD=BE,求得AC=BD,推出△ACE是等腰直角三角形,得到AC=CE=6,求得CH=AE=3,根据梯形的面积公式即可得到结论;(2)如图2,延长NM交AD于G,连接DM并延长交AB于H,根据平行线的性质得到∠DCM=∠HAM,根据线段中点的定义得到AM=CM,根据全等三角形的性质得到DM=HM,求得DN=BN,得到AG=DG,根据三角形的中位线定理即可得到结论.【解答】解:(1)如图1,过C作CE∥BD,交AB的延长线于E,∵AB∥CD,∴四边形DBEC是平行四边形,∴CE=BD,CD=BE,∵AC⊥BD,∴AC⊥CE,∵AD=BC,AB∥CD,∴AC=BD,∴AC=CE,∴△ACE是等腰直角三角形,∴AC=CE=6,∴AE=AC=6,∴CH=AE=3,∴梯形ABCD的面积=×6×3=18;(2)如图2,延长NM交AD于G,连接DM并延长交AB于H,∵CD∥AB,∴∠DCM=∠HAM,∵M是对角线AC的中点,∴AM=CM,∵∠CMD=∠AMH,∴△AMH≌△CMD(ASA),∴DM=HM,∵N是对角线BD的中点,∴DN=BN,∴MN∥AB∥CD,∴AG=DG,∴GM=CD=,∵MN=2,∴GN=,∴AB=2GN=7.24.如图,已知在四边形ABCD中,AB∥CD,点O是对角线AC的中点,联结DO并延长与AB边交于点E,联结CE,设=,=,.(1)试用向量,表示下列向量:=﹣,=﹣.(2)求作:.(保留作图痕迹,写出结果,不要求写作法)【分析】(1)首先证明四边形AECD是平行四边形,利用三角形法则求出,即可.(2)如图,过点C作CT∥DE交AE于T.即为所求.【解答】解:(1)∵CD∥AE,∴∠OCD=∠OAE,∵∠DOC=∠AOE,OC=OA,∴△DOC≌△EOA(AAS),∴CD=AE,∵CD∥AE,∴四边形ADCE是平行四边形,∴AD=CE,AD∥EC,∵=+,=,=,∴==﹣,∵=+,,∴=﹣+=﹣,故答案为﹣,﹣.(2)如图,过点C作CT∥DE交AE于T.即为所求.25.如图,直线AB经过点A(﹣3,0),B(0,2),经过点D(0,4)并且与y轴垂直的直线CD与直线AB交于第一象限内点C.(1)求直线AB的表达式;(2)在x轴的正半轴上是否存在一点P,使得△OCP为等腰三角形,若存在,求出点P 的坐标;若不存在,请说明理由.【分析】(1)由待定系数法求出直线AB的表达式为:y=x+2;(2)求出点C的坐标为(3,4),由勾股定理求出OC=5,分三种情况,由等腰三角形的性质和勾股定理进行解答即可.【解答】解:(1)设直线AB的表达式为:y=kx+b,把A(﹣3,0)、B(0,2)代入表达式得:,解得:,∴直线AB的表达式为:y=x+2;(2)∵经过点D(0,4)并且与y轴垂直的直线CD与直线AB交于第一象限内点C,∴点C的纵坐标为:4,∴4=x+2,解得:x=3,∴点C的坐标为:(3,4),∴OC==5,分三种情况:如图,①当OP=PC时,设点P的坐标为:(a,0),则OP2=PC2,即a2=(a﹣3)2+42,解得:a=,∴点P的坐标为:(,0);②当OC=OP=5时,点P的坐标为:(5,0);③当OC=CP时,由点C的横坐标为3,可得点P的横坐标为6,∴点P的坐标为:(6,0);综上所述,△OCP为等腰三角形,点P的坐标为(,0)或(5,0)或(6,0).26.已知:如图,在正方形ABCD中,点E、F分别在边BC和CD上.(1)若BE=DF,①求证:∠BAE=∠DAF;②联结AC交EF于点O,过点F作FM∥AE,交AC的延长线于M,联结EM,求证:四边形AEMF是菱形.(2)联结BD,交AE、AF于点P、Q.若∠EAF=45°,AB=1,设BP=x,DQ=y,求y关于x的函数关系及定义域.【分析】(1)①证明△ABE≌△ADF(SAS),即可推出∠BAE=∠DAF.②证明△FOM≌△EOA(ASA),推出AE=FM,由FM∥AE,可得四边形AEMF是平行四边形,再根据AE=AF可得结论.(2)如图2中,将△ADQ绕点A顺时针旋转90°得到△ABT,连接PT.证明△APQ≌△APT(SAS),推出PQ=PT,由题意BD==,推出PQ=PT=﹣x﹣y,在Rt△TBP中,根据PT2=BT2+PB2,构建关系式即可解决问题.【解答】(1)①证明:如图1中,∵四边形ABCD是正方形,∴∠B=∠D=90°,AB=AD,∵BE=DF,∴△ABE≌△ADF(SAS),∴∠BAE=∠DAF.②证明:如图1中,∵四边形ABCD是正方形,∴∠BAC=∠DAC=45°,∵∠BAE=∠DAF,∴∠EAO=∠F AO,∵△BAE≌△DAF,∴AE=AF,∴AC⊥EF,OE=OF,∵FM∥AE,∴∠OFM=∠OEA,∵∠FOM=∠EOA,∴△FOM≌△EOA(ASA),∴AE=FM,∵FM∥AE,∴四边形AEMF是平行四边形,∵AE=AF,∴四边形AEMF是菱形.(2)解:如图2中,将△ADQ绕点A顺时针旋转90°得到△ABT,连接PT.∵△ADQ≌△ABP,∴AQ=AT,∠ADQ=∠ABT=45°,∠DAQ=∠BAT,∵∠ABD=45°,∴∠TBP=90°,∵∠EAF=45°,∠BAD=90°,∴∠DAQ+∠BAP=∠BAT+∠BAP=45°,∴∠P AT=∠P AQ=45°,∵P A=P A,AT=AQ,∴△APQ≌△APT(SAS),∴PQ=PT,∵AB=AD=1,∠BAD=90°,∴BD==,∴PQ=PT=﹣x﹣y,在Rt△TBP中,∵PT2=BT2+PB2,∴(﹣x﹣y)2=x2+y2,∴y=(0≤x≤).。

2019-2020学年山西省临汾市襄汾县八年级下学期期末考试数学试题(含部分答案)

2019-2020学年山西省临汾市襄汾县八年级下学期期末考试数学试题(含部分答案)

2019-2020学年山西省临汾市襄汾县八年级第二学期期末数学试卷一、选择题(共10小题).1.若分式的值为零,则x的值为()A.0B.1C.﹣1D.±1m,用科学记数法表示为()×10﹣6m×10﹣7m C.125×10﹣8m D.125×10﹣9m 3.如图,平行四边形ABCD的对角线AC与BD相交于点O,添加一个条件不能使平行四边形ABCD变为矩形的是()A.OA=OC B.AC=BD C.DA⊥AB D.∠OAB=∠OBA 4.在参加一次舞蹈比赛中,某校10名学生参赛成绩统计如图所示,对于这10位学生的参赛成绩,下列说法错误的是()A.众数是90B.中位数是90C.平均数是90D.方差是195.如图,在平行四边形ABCD中,对角线AC的垂直平分线分别交CD、AB于点E、F,连接CF.若△BCF的周长为3,则平行四边形ABCD的周长为()A.15B.12C.9D.66.化简的结果为()A.x﹣y B.x+y C.D.7.如图,直线l⊥x轴于点P,且与反比例函数y1=(x>0)及y2=(x>0)的图象分别交于点A、B,连接OA、OB,若△OAB的面积为3,则k1﹣k2的值为()A.B.3C.6D.98.若点M(k﹣1,k+1)关于y轴的对称点在第四象限内,则一次函数y=(3k+2)x+k的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限9.如图,在平行四边形ABCD中,E为BC边上一点(不与端点重合),若AB=AE,且AE平分∠DAB,则下列结论:①∠B=60°,②AC=BC,③∠AED=∠ACD,④△ABC≌△EAD.其中正确的个数是()A.1个B.2个C.3个D.4个10.如图,在正方形ABCD中,点P从点A出发,沿着正方形的边顺时针方向运动一周,则△APC的面积y与点P运动的路程x之间形成的函数关系图象大致是()A.B.C.D.二、填空题(每小题3分,共15分)11.为了解某班学生体育锻炼的用时情况,收集了该班学生一天用于体育锻炼的时间(单位:小时),整理成如图的统计图,则该班学生这天用于体育锻炼的平均时间为______小时.12.某工程队修建一条长1200m的道路;采用新的施工方式,工效提升了50%,结果提前4天完成任务,设这个工程队原计划每天修建道路xm,则列出的方程为.13.如图,在直角坐标系中,已知点A(﹣3,0),B(0,4),对△OAB连续作旋转变换,依次得到三角形①、②、③、④、…,则三角形⑩的直角顶点的坐标为.14.已知三点P1(x1,y1)、P2(x2,y2)、P3(x3,y3)都在反比例函数y=﹣的图象上,且x1<0<x2<x3,则y1、y2、y3的大小关系是.15.如图,矩形ABCD中,AB=4,BC=6,E是边AD的中点,将△ABE沿BE折叠后得到△A'BE延长BA'交CD于点F,则DF的长为.三、解答题(本大题共8个小题,共75分,解答应写出文字说明、证明过程或演算步骤)16.(1)计算:()﹣2﹣(﹣π)0+﹣14;(2)解方程:﹣1=.17.先化简再求值:(1﹣)÷,其中x=﹣3.18.某班实行小组量化考核制.为了了解同学们的学习情况,王老师对甲、乙两个小组连续六周的综合评价得分进行了统计,并将得到的数据制成如下的统计表:综合评价得分统计表(单位:分)周次一二三四五六组别甲组121516141413乙组91410171618平均数中位数方差甲组14乙组14(2)根据综合评价得分统计表中的数据,请在如图中画出乙组综合评价得分的折线统计图.(3)根据折线统计图中的信息,请你分别对甲、乙两个小组连续六周的学习情况作出简要评价.19.今年新冠肺炎疫情在全球肆虐,为降低病亡率,某工厂平均每天比原计划多生产5台呼吸机,现在生产60台呼吸机的时间与原计划生产45台呼吸机所需时间相同.求该工厂原来平均每天生产多少台呼吸机?20.如图,在平行四边形ABCD中,对角线AC与BD相交于点0,点E、F分别为OB、OD的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF.(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.21.有这样一个问题:探究函数y=的图象与性质.小慧根据学习函数的经验对函数y=的图象与性质进行了探究.下面是小慧的探究过程,请补充完成:(1)函数y=的自变量x的取值范围是.(2)如下表所示,列出y与x的几组对应值.请直接写出m的值,m=;x…﹣3﹣201m4567y…346﹣201…(3)请在平面直角坐标系xOy中,描出上表中以各对应值为坐标的点,并画出该函数的图象;(4)结合函数的图象,写出该函数的两条性质.22.如图,在平面直角坐标系中,一次函数y=kx+b的图象分别交x轴、y轴于A、B两点,与反比例函数y=的图象交于C、D两点,DE⊥x轴于点E,已知C点的坐标是(6,﹣1),DE=3.(1)求反比例函数与一次函数的表达式;(2)连接OC、OD,求S△OCD;(3)直接写出不等式kx+b>的解集.23.阅读下列材料:如图①,在四边形ABCD中,若AB=AD,BC=CD,则把这样的四边形称为筝形.(1)写出筝形的两个性质(定义除外):①;②.(2)如图②,在平行四边形ABCD中,点E、F分别在BC、CD上,且AE=AF,∠AEC=∠AFC.求证:四边形AECF是筝形.(3)如图③,在筝形ABCD中,AB=AD=15,BC=DC=13,AC=14,求筝形ABCD 的面积.参考答案一、选择题1.AC;2.AB;3.A;4.AC;5.AD;6.AB;7.AC;8.A;9.AC;10.AC;二、填空题(每小题3分,共15分)11.;12.;13.;14.;15.;三、解答题(本大题共8个小题,共75分,解答应写出文字说明、证明过程或演算步骤)16.;17.;18.;;;19.;20.;21.;;22.;23.;;。

2019-2020学年河北省邯郸市丛台区育华中学八年级下学期期末数学试卷(含答案解析)

2019-2020学年河北省邯郸市丛台区育华中学八年级下学期期末数学试卷(含答案解析)

2019-2020学年河北省邯郸市丛台区育华中学八年级下学期期末数学试卷一、选择题(本大题共16小题,共42.0分)1.若菱形的面积为定值,则它的一条对角线的长与另一条对角线的长满足的函数关系是()A. 正比例函数关系B. 反比例函数关系C. 一次函数关系D. 二次函数关系2.《九章算术》是中国古代的数学代表作,书中记载:今有开门去阃(读kun,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),从点O处推开双门,双门间隙CD的长度为2寸,点C和点D到门槛AB的距离都为1尺(1尺=10寸),则AB 的长是()A. 104寸B. 101寸C. 52寸D. 50.5寸3.下列运算正确的是()A. √2+2√3=3√5B. √8=4√2C. √(−3)2=−3D. √27÷√3=34.若样本x1,x2,x3,…,x n的平均数为10,方差为4,则对于样本x1−3,x2−3,x3−3,…,x n−3,下列结论正确的是()A. 平均数为10,方差为2B. 众数不变,方差为4C. 平均数为7,方差为2D. 中位数变小,方差不变5.一个正比例函数的图象经过A(3,−6),B(−m,4)两点,则m的值为()A. 2B. 8C. −2D. −86.在坐标系xOy中,已知点A(3,1)关于x轴、y轴的对称点分别为P、Q.若坐标轴上的点M恰使△MAP、△MAQ均为等腰三角形,则满足条件的点有()A. 4个B. 5个C. 8个D. 9个7.小明收集了某快餐店今年5月1日至5月5日每天的用水量(单位:吨),整理并绘制成如图折线统计图,下列结论正确的是()A. 平均数是7B. 众数是7C. 中位数是5D. 方差是78.若√12+√y=√27,则y的值为()A. 8B. 15C. 3D. 29.如图,已知在正方形ABCD中,点O为对角线AC的中点,过O点的射线OM、ON分别交AB、BC于点E、F,且∠EOF=90°,BO、EF交于点P,则下面结论中:①图形中全等的三角形只有三对;②△EOF是等腰直角三角形;③正方形ABCD的面积等于四边形OEBF面积的4倍;④BE+BF=√2OA;⑤AE2+BE2=2OP⋅OB.正确结论的个数是()A. 4个B. 3个C. 2个D. 1个10.如图,O为▱ABCD的对角线交点,E为AB的中点,DE交AC于点F,若S□ABCD=12,则S△DOE的值为()A. 1B. 1.5C. 2D.2.2511.A、B两地相距20千米,甲、乙两人都从A地去B地,图中射线l1和l2分别表示甲、乙两人所走路程s(千米)与时间t(小时)之间的关系.下列说法:①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时,乙的速度是6千米/小时;④乙先到达B地.其中正确的个数是()A. 1个B. 2个C. 3个D. 4个12.如图,四边形ABCD的顶点坐标分别为A(−4,0),B(−2,−1),C(3,0),D(0,3),当过点B的直线l将四边形ABCD分成面积相等的两部分时,直线l所表示的函数表达式为()A. y=1110x+65B. y=23x+13C. y=x+1D. y=54x+3213.将一根长24cm的筷子,置于底面直径为5cm、高为12cm的圆柱形水杯中,设筷子露在杯子外面的长为hcm,则h的取值范围是()A. 5≤ℎ≤12B. 5≤ℎ≤24C. 11≤ℎ≤12D. 12≤ℎ≤2414.直线y=mx+1与抛物线y=2x2−8x+k+8相交于点(3,4),则m、k值为()A. {m=1k=3B. {m=−1k=2C. {m=1k=2D. {m=2k=115.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123;④乙的速度比甲的速度快1米/秒,其中正确的编号是()A. ①②B. ②③C. ①②③D. ①②③④16.如图,在三角形纸片ABC中,∠A=90°,AB=12,AC=5折叠三角形纸片,使点A在BC边上的点E处,则AD是()A. 3B. 4C. 103D. 113二、填空题(本大题共4小题,共13.0分)17.在二次根式√x−7中x的取值范围是______.18.要建一个面积为8000m2的长方形操场,把它画在比例尺为1的图纸上,则图纸上的长方形的1000面积为______ cm2.19.已知线段AB=10cm,直线AB上有一点C,且BC=2cm,M是线段AC的中点,则AM=______ .20.若一次函数y=kx+b的图象经过(1,3)和(−1,1),则k+b=______.三、计算题(本大题共1小题,共6.0分)21.计算:(√3−√2)2−√3(√2−√3).四、解答题(本大题共4小题,共39.0分)22.为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表成绩x/分频数频率50≤x<60100.0560≤x<70200.1070≤x<8030b80≤x<90a0.3090≤x≤100800.40请根据所给信息,解答下列问题:(1)b=______,这次比赛成绩的中位数会落在______分数段.(2)请补全频数分布直方图.(3)若成绩在90分以上(包括90分)的为“优等”,则该校参加这次比赛的3000名学生中成绩“优等”的约有多少人?23. 初中数学代数知识中,方程、函数、不等式存在着紧密的联系,请阅读下列两则材料,回答问题:材料一:利用函数图象找方程x 3−x +1=0解的范围.设函数y =x 3−x +1,当x =2时,y =−5<0;当x =−1时,y =1>0则函数y =x 3−x +1的图象经过两个点(−2,−5)与(−1,1),而点(−2,−5)在x 轴下方,点(−1,1)在x 轴上方,则该函数图象与x 轴交点横坐标必大于−2,小于−1.故,方程x 3−x +1=0有解,且该解的范围为−2<x <−1.材料二:解一元二次不等式(x −1)(x +2)<0.由“异号两数相乘,结果为负”可得:情况①,{x −1<0x +2>0得{x <1x >−2,则−2<x <−1. 情况②{x −1>0x +2<0,得{x >1x <−2,则无解. 故,(x −1)(x +2)<0的解集为−2<x <−1.(1)请根据材料一解决问题:已知方程−x 3+2x −5=0有唯一解x 0,且a <x 0<a +1(a 为整数),求整数a 的值.(2)请结合材料一与材料二解决问题:若关于x 的方程mx 2−(m +1)x −4=0的解分别为x 1、x 2,且−1<x 1<0,2<x 2<3,求m 的取值范围.24. 如图,△ABC 与△DCE 中,CA =CD ,∠1=∠2,BC =EC.求证:∠A =∠D .25.【问题提出】在2020抗击新冠肺炎的斗争中,某中学响应政府“停课不停学”的号召进行线上学习,九年级一班的全体同学在自主完成学习任务的同时,全班每两个同学都通过一次视频电话,彼此关怀,互相勉励,共同提高,若每两名同学之间仅通过一次视频电话,如何求全班56名同学共通过多少次电话呢?【模型构建】用点M1、M2、M3、…、M56分别表示第1、2、3、…、56名同学,把该班级人数n与视频通话次数S之间的关系用如图模型表示:【问题解决】(1)填写如图中第5个图中S的值为______ .(2)通过探索发现,通电话次数S与该班级人数n之间的关系式为______ ,则当n=56时,对应的S=______ .(3)若该班全体女生相互之间共通话253次,求该班共有多少名女生?(4)若该班数学兴趣小组的同学们,每两位同学之间互发一条微信问候,小明统计全组共发送微信182条,则该班数学兴趣小组的人数是______ .【答案与解析】1.答案:B解析:解:设菱形的面积为S,两条对角线的长分别为x、y,则有,1xy=S,2∴y=2S,x而菱形的面积为定值,即2S为定值,是常数不变,所以y是x的反比例函数,故选:B.构造菱形的对角线与面积之间的函数关系式,根据关系式进行判断即可.本题考查反比例函数关系,理解反比例函数的意义是正确判断的前提.2.答案:B解析:解:取AB的中点O,过D作DE⊥AB于E,如图2所示:由题意得:OA=OB=AD=BC,设OA=OB=AD=BC=r寸,CD=1寸,则AB=2r(寸),DE=10寸,OE=12∴AE=(r−1)寸,在Rt△ADE中,AE2+DE2=AD2,即(r−1)2+102=r2,解得:r=50.5,∴2r=101(寸),∴AB=101寸,故选:B.取AB的中点O,过D作DE⊥AB于E,根据勾股定理解答即可得到结论.本题考查了勾股定理的应用,弄懂题意,构建直角三角形是解题的关键.3.答案:D解析:试题分析:根据二次根式的加减法对A进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的性质对C进行判断;根据二次根式的除法对D进行判断.A、√2与2√3不能合并,所以A选项错误;B、原式=2√2,所以B选项错误;C、原式=|−3|=3,所以C选项错误;D、原式=√27÷3=3,所以D选项正确.故选D.4.答案:D解析:解:∵样本x1,x2,x3,…,x n的平均数为10,方差为4,∴样本x1−3,x2−3,x3−3,…,x n−3的平均数为7,方差为4,众数和中位数变小.故选:D.利用平均数、中位数、众数和方差的意义进行判断.本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数、众数和中位数.5.答案:A解析:解:设正比例函数解析式为:y=kx,将点A(3,−6)代入可得:3k=−6,解得:k=−2,∴正比例函数解析式为:y=−2x,将B(−m,4)代入y=−2x,可得:2m=4,解得m=2,故选:A.运用待定系数法求得正比例函数解析式,把点B的坐标代入所得的函数解析式,即可求出m的值.本题考查了一次函数图象上点的坐标特征.解题时需灵活运用待定系数法求出函数解析式,然后将点的坐标代入解析式,利用方程思想解决问题是解本题的关键.6.答案:B解析:解:如图,AQ=AM1,AQ=AM5,AQ=AM2,QA=QM4,AM3=QM3,故坐标轴上的点M恰使△MAP、△MAQ均为等腰三角形,则满足条件的点有5个,故选:B.根据等腰三角形的性质即可得到结论.此题主要考查等腰三角形的性质和坐标与图形的性质,解答此题的关键是利用勾股定理求出OP的长,此题难度不大.7.答案:A解析:解:由折线图知:1日用水5吨,二日用水7吨,三日用水11吨,四日用水3吨,5日用水9吨,=7,数据5、7、11、3、9的平均数是5+7+11+3+95中位数是7,由于各数据都出现了一次,故其众数为5、7、11、3、9.[(5−7)2+(7−7)2+(11−7)2+(3−72)+(9−7)2]方差是S2=15=8.综上只有选项A正确.故选:A.由折线图得到相关五天的用水数据,计算这组数据的平均数、中位数、众数、方差,然后判断得结论.本题考查了折线图、平均数、中位数、众数及方差等知识,读折线图得到用水量数据是解决本题的关键.8.答案:C解析:解:因为√12+√y=√27,所以√y=√27−√12=3√3−2√3=√3,所以y=3.故选:C.根据二次根式的加减法计算即可.本题考查了二次根式的加减法,解题的关键是熟练掌握二次根式的加减法法则.9.答案:A解析:解:①不正确;图形中全等的三角形有四对:△ABC≌△ADC,△AOB≌△COB,△AOE≌△BOF,△BOE≌△COF;理由如下:∵四边形ABCD 是正方形,∴AB =BC =CD =DA ,∠BAD =∠ABC =∠BCD =∠D =90°,∠BAO =∠BCO =45°,在△ABC 和△ADC 中,{AB =ADamp; BC =DCamp; AC =ACamp; , ∴△ABC≌△ADC(SSS);∵点O 为对角线AC 的中点,∴OA =OC ,在△AOB 和△COB 中,{OA =OCamp; AB =CBamp; OB =OBamp; , ∴△AOB≌△COB(SSS);∵AB =CB ,OA =OC ,∠ABC =90°,∴∠AOB =90°,∠OBC =45°,又∵∠EOF =90°,∴∠AOE =∠BOF ,在△AOE 和△BOF 中,{∠OAE =∠OBF =45°amp; OA =OBamp; ∠AOE =∠BOF amp; , ∴△AOE≌△BOF(ASA);同理:△BOE≌△COF ;②正确;理由如下:∵△AOE≌△BOF ,∴OE =OF ,∴△EOF 是等腰直角三角形;③正确.理由如下:∵△AOE≌△BOF ,∴四边形OEBF 的面积=△ABO 的面积=14正方形ABCD 的面积; ④正确.理由如下:∵△BOE≌△COF ,∴BE =CF ,∴BE +BF =CF +BF =BC =AB =√2OA ;。

2019-2020学年广东省揭阳市普宁市八年级下学期期末数学试卷 (解析版)

2019-2020学年广东省揭阳市普宁市八年级下学期期末数学试卷 (解析版)

2019-2020学年广东揭阳市普宁市八年级第二学期期末数学试卷一、选择题(共10小题).1.下列图案中是中心对称图形但不是轴对称图形的是()A.B.C.D.2.下列各式中,从左边到右边的变形是因式分解的是()A.(x+2y)(x﹣2y)=x2﹣4y2B.x2y﹣xy2﹣1=xy(x﹣y)﹣1C.a2﹣4ab+4b2=(a﹣2b)2D.ax+ay+a=a(x+y)3.不等式﹣2x+6>0的解集在数轴上表示正确的是()A.B.C.D.4.如图,在△ABC中,AB=3,BC=6,AC=4,点D,E分别是边AB,CB的中点,那么DE的长为()A.1.5B.2C.3D.45.如图是“一带一路”示意图,若记北京为A地,莫斯科为B地,雅典为C地,分别连接AB、AC、BC,形成一个三角形.若想建立一个货物中转仓,使其到A、B、C三地的距离相等,则中转仓的位置应选在()A.△ABC三条中线的交点处B.△ABC三条高所在直线的交点处C.△ABC三条角平分线的交点处D.△ABC三边的垂直平分线的交点处6.如图,▱ABCD中,点O为对角线AC、BD的交点,下列结论错误的是()A.AC=BD B.AB∥DC C.BO=DO D.∠ABC=∠CDA 7.对于实数a、b、c中,给出下列命题:①若a<b,则a﹣c<b﹣c;②若ab>c,则a>;③若﹣3a>2a,则a<0;④若a>b,则ac2>bc2.其中真命题有()A.①②B.①③C.②④D.③④8.下列各分式中,最简分式是()A.B.C.D.9.关于x的方程无解,则m的值为()A.﹣5B.﹣8C.﹣2D.510.如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E.若DE=1,则BC的长为()A.3B.+C.+2D.2+二、填空题(共7小题.)11.分解因式:2x3﹣18x=.12.分式方程+=1的解为.13.若一个正多边形的每一个外角都是30°,则这个正多边形的内角和等于度.14.用反证法证明“三角形的三个内角中,至少有一个大于或等于60°”时,应先假设.15.如图,将等腰直角△ABC沿BC方向平移得到△A1B1C1.若BC=3,△ABC与△A1B1C1重叠部分面积为2,则BB1=.16.如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式﹣2x ≤ax+3的解集是.17.如图,在直角坐标系中,已知点A(﹣3,0),B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4…,则△2020的直角顶点的坐标为.三、解答题(一)(本大题3小题,每小题6分,共18分.)18.解不等式组,并把解集在数轴上表示出来.19.先化简,再求值:•﹣(+1),其中x=﹣6.20.在△ABC中,AB=AC,∠BAC=120°,AB边的垂直平分线交AB于D,交BC于E,求证:BE=CE.四、解答题(二)(本大题3小题,每小题8分,共24分.)21.已知平行四边形ABCD.(1)尺规作图:作∠BAD的平分线交直线BC于点E,交DC延长线于点F(要求:尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,求证:CE=CF.22.某学习平台为提高学生的积极性,推出学习积分,所得积分可兑换礼品.某品牌的圆珠笔每支需要40积分,笔芯每支需要10积分.现积分超市推出以下两种活动:活动一:按兑换物品所需的积分打八折扣积分;活动二:兑换一支圆珠笔送两支笔芯.王叔叔有1000积分,想兑换这种圆珠笔10支,笔芯x支(x≥20).(1)请你分别写出活动一、活动二兑换所需的积分y1,y2与笔芯x(支)之间的函数关系式;(2)若只能选择一种兑换活动,请你帮助王叔叔判断选择哪种活动更优惠.23.如图,等边△ABC中,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD和EF.(1)求证:四边形DCFE是平行四边形;(2)求∠F的度数.五、解答题(三)(本大题2小题,每小题10分,共20分.)24.为防控“新型冠状病毒”,某超市分别用1600元、6000元购进两批防护口罩,第二批防护口罩每个进货价格比第一批贵2元,购进的数量是第一批的3倍.(1)第一批口罩进货单价多少元?(2)若这两次购进防护口罩过程中所产生其他费用不少于600元,那么该超市这两批防护口罩的平均购进单价至少为多少元?25.将▱OABC放在平面直角坐标系中,O为原点,点C(﹣6,0),点A在第一象限,OA =2,∠A=60°,AB与y轴交于点N.(1)如图①,求点A的坐标;(2)如图②,将平行四边形OABC绕点O逆时针旋转得到平行四边形OA′B′C',当点A的对应点A′落在y轴正半轴上时,求旋转角及点B的对应点B′的坐标;(3)将平行四边形OABC绕点A旋转得到平行四边形DAEF,使点B的对应点E落在直线OA上,请在图③中画出旋转后的图形,并直接写出OE、AB、BC之间的关系.参考答案一、选择题(本大题共10小题,每小题3分,共30分.)1.下列图案中是中心对称图形但不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.解:A、是中心对称图形,也是轴对称图形,不符合题意;B、不是中心对称图形,是轴对称图形,不符合题意;C、是中心对称图形,不是轴对称图形,符合题意;D、不是轴对称图形,也不是中心对称图形,不符合题意.故选:C.2.下列各式中,从左边到右边的变形是因式分解的是()A.(x+2y)(x﹣2y)=x2﹣4y2B.x2y﹣xy2﹣1=xy(x﹣y)﹣1C.a2﹣4ab+4b2=(a﹣2b)2D.ax+ay+a=a(x+y)【分析】根据因式分解的意义:把一个多项式化成几个整式积的形式,左边是一个多项式,右边是整式的积的形式,进行判断即可.解:根据因式分解的意义:把一个多项式化成几个整式积的形式,A、右边不是积的形式,故本选项错误;B、右边最后不是积的形式,故本选项错误;C、右边是(a﹣2b)(a﹣2b),故本选项正确;D、结果是a(x+y+1),故本选项错误.故选:C.3.不等式﹣2x+6>0的解集在数轴上表示正确的是()A.B.C.D.【分析】不等式﹣2x+6>0的解集是x<3,小于应向左画,且不包括3时,应用空心圆表示,不能用实心的原点表示3这一点,据此可求得不等式的解以及解集再数轴上的表示.解:不等式移项,得﹣2x>﹣6,系数化1,得x<3;∵不包括3时,应用圈表示,不能用实心的原点表示3这一点答案;故选:B.4.如图,在△ABC中,AB=3,BC=6,AC=4,点D,E分别是边AB,CB的中点,那么DE的长为()A.1.5B.2C.3D.4【分析】根据三角形中位线定理解答即可.解:∵点D,E分别是边AB,CB的中点,∴DE=AC=2,故选:B.5.如图是“一带一路”示意图,若记北京为A地,莫斯科为B地,雅典为C地,分别连接AB、AC、BC,形成一个三角形.若想建立一个货物中转仓,使其到A、B、C三地的距离相等,则中转仓的位置应选在()A.△ABC三条中线的交点处B.△ABC三条高所在直线的交点处C.△ABC三条角平分线的交点处D.△ABC三边的垂直平分线的交点处【分析】根据题意和线段垂直平分线的性质,可以解答本题.解:∵到A、B、C三地的距离相等,∴中转仓的位置应选在△ABC三边的垂直平分线的交点处,故选:D.6.如图,▱ABCD中,点O为对角线AC、BD的交点,下列结论错误的是()A.AC=BD B.AB∥DC C.BO=DO D.∠ABC=∠CDA 【分析】根据平行四边形的性质即可判断.解:∵四边形ABCD是平行四边形,∴AB∥CD,OB=OD,∠ABC=∠ADC,∴B、C、D正确,故选:A.7.对于实数a、b、c中,给出下列命题:①若a<b,则a﹣c<b﹣c;②若ab>c,则a>;③若﹣3a>2a,则a<0;④若a>b,则ac2>bc2.其中真命题有()A.①②B.①③C.②④D.③④【分析】根据不等式的性质对各命题的真假进行判断.解:若a<b,则a﹣c<b﹣c,所以①为真命题;若ab>c,当b>0时,则a>,所以②为假命题;若﹣3a>2a,则a<0,所以③为真命题;若a>b,当c≠0时,则ac2>bc2.所以④为假命题.故选:B.8.下列各分式中,最简分式是()A.B.C.D.【分析】最简分式是指分子和分母没有公因式.解:(A)原式=,故A不是最简分式;(B)原式==,故B不是最简分式;(C)原式=,故C是最简分式;(D)原式==,故D不是最简分式;故选:C.9.关于x的方程无解,则m的值为()A.﹣5B.﹣8C.﹣2D.5【分析】分式方程去分母转化为整式方程,由分式方程无解得到x+1=0,求出x的值,代入整式方程求出m的值即可.解:去分母得:3x﹣2=2x+2+m,由分式方程无解,得到x+1=0,即x=﹣1,代入整式方程得:﹣5=﹣2+2+m,解得:m=﹣5,故选:A.10.如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E.若DE=1,则BC的长为()A.3B.+C.+2D.2+【分析】如图.过点D作DF⊥AC于F.首先证明DE=DF=1,解直角三角形分别求出BD,DC即可解决问题.解:如图.过点D作DF⊥AC于F.∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF=1,在Rt△BED中,∵∠BED=90°,∠B=30°,∴BD=2DE=2,在Rt△DFC中,∵∠DFC=90°,∠C=45°,∴CD=DF=,∴BC=BD+CD=2+,故选:D.二、填空题(本大题共7小题,每小题4分,共28分.)11.分解因式:2x3﹣18x=2x(x+3)(x﹣3).【分析】先提取公因式2x,再对余下的多项式利用平方差公式继续分解.解:原式=2x(x2﹣9)=2x(x+3)(x﹣3),故答案为:2x(x+3)(x﹣3).12.分式方程+=1的解为x=1.【分析】根据解分式方程的步骤,即可解答.解:方程两边都乘以x﹣2,得:3﹣2x﹣2=x﹣2,解得:x=1,检验:当x=1时,x﹣2=1﹣2=﹣1≠0,所以分式方程的解为x=1,故答案为:x=1.13.若一个正多边形的每一个外角都是30°,则这个正多边形的内角和等于1800度.【分析】根据任何多边形的外角和都是360°,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.n边形的内角和是(n﹣2)•180°,把多边形的边数代入公式,就得到多边形的内角和.解:多边形的边数:360°÷30°=12,正多边形的内角和:(12﹣2)•180°=1800°.14.用反证法证明“三角形的三个内角中,至少有一个大于或等于60°”时,应先假设三角形的三个内角都小于60°.【分析】熟记反证法的步骤,直接填空即可.解:用反证法证明“三角形的三个内角中,至少有一个大于或等于60°”时,应先假设三角形的三个内角都小于60°.15.如图,将等腰直角△ABC沿BC方向平移得到△A1B1C1.若BC=3,△ABC与△A1B1C1重叠部分面积为2,则BB1=.【分析】重叠部分为等腰直角三角形,设B1C=2x,则B1C边上的高为x,根据重叠部分的面积列方程求x,再求BB1.解:设B1C=2x,根据等腰三角形的性质可知,重叠部分为等腰直角三角形,则B1C边上的高为x,∴×x×2x=2,解得x=(舍去负值),∴B1C=2,∴BB1=BC﹣B1C=.故答案为.16.如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式﹣2x ≤ax+3的解集是x≥﹣1.【分析】首先利用待定系数法求出A点坐标,再以交点为分界,结合图象写出不等式﹣2x≤ax+3的解集即可.解:∵函数y1=﹣2x过点A(m,2),∴﹣2m=2,解得:m=﹣1,∴A(﹣1,2),∴不等式﹣2x<ax+3的解集为x≥﹣1.故答案为:x≥﹣1.17.如图,在直角坐标系中,已知点A(﹣3,0),B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4…,则△2020的直角顶点的坐标为(8076,0).【分析】根据勾股定理列式求出AB的长,再根据第四个三角形与第一个三角形的位置相同可知每三个三角形为一个循环组依次循环,然后求出一个循环组旋转前进的长度,再用2020除以3,根据商为673余数为1,可知第20,20个三角形的直角顶点为循环组的最后一个三角形的顶点,求出即可.解:∵点A(﹣3,0)、B(0,4),∴AB==5,由图可知,每三个三角形为一个循环组依次循环,一个循环组前进的长度为:4+5+3=12,∵2020÷3=673…1,∴△2020的直角顶点是第673个循环组的最后一个三角形的直角顶点,∵673×12=8076,∴△2019的直角顶点的坐标为(8076,0).故答案为(8076,0).三、解答题(一)(本大题3小题,每小题6分,共18分.)18.解不等式组,并把解集在数轴上表示出来.【分析】分别求出各不等式的解集,再求出其公共解集,并把解集在数轴上表示出来即可.解:,由①得x≤1,由②得x>﹣2,故不等式组的就为﹣2<x≤1.把解集在数轴上表示出来为:19.先化简,再求值:•﹣(+1),其中x=﹣6.【分析】根据分式的加减法和乘法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.解:•﹣(+1)===,当x=﹣6时,原式==.20.在△ABC中,AB=AC,∠BAC=120°,AB边的垂直平分线交AB于D,交BC于E,求证:BE=CE.【分析】先根据等腰三角形性质和三角形内角和定理求出∠B=∠C=30°,根据线段垂直平分线性质和等腰三角形性质求出∠BAD=30°,根据含30度角的直角三角形性质解答即可.【解答】证明:∵AB=AC,∠BAC=120°∴∠B=∠C=30°,又∵DE垂直平分AB∴EA=EB∴∠EAB=∠B=30°∴∠CAE=120°﹣30°=90°,∴在Rt△AEC中∵∠C=30°,∴AE=CE∴BE=CE.四、解答题(二)(本大题3小题,每小题8分,共24分.)21.已知平行四边形ABCD.(1)尺规作图:作∠BAD的平分线交直线BC于点E,交DC延长线于点F(要求:尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,求证:CE=CF.【分析】(1)作∠BAD的平分线交直线BC于点E,交DC延长线于点F即可;(2)先根据平行四边形的性质得出AB∥DC,AD∥BC,故∠1=∠2,∠3=∠4.再由AF平分∠BAD得出∠1=∠3,故可得出∠2=∠4,据此可得出结论.解:(1)如图所示,AF即为所求;(2)∵四边形ABCD是平行四边形,∴AB∥DC,AD∥BC,∴∠1=∠2,∠3=∠4.∵AF平分∠BAD,∴∠1=∠3,∴∠2=∠4,∴CE=CF.22.某学习平台为提高学生的积极性,推出学习积分,所得积分可兑换礼品.某品牌的圆珠笔每支需要40积分,笔芯每支需要10积分.现积分超市推出以下两种活动:活动一:按兑换物品所需的积分打八折扣积分;活动二:兑换一支圆珠笔送两支笔芯.王叔叔有1000积分,想兑换这种圆珠笔10支,笔芯x支(x≥20).(1)请你分别写出活动一、活动二兑换所需的积分y1,y2与笔芯x(支)之间的函数关系式;(2)若只能选择一种兑换活动,请你帮助王叔叔判断选择哪种活动更优惠.【分析】(1)根据题意可以得到两种活动下兑换所需的积分y1,y2与笔芯x(支)之间的函数关系式;(2)再利用分类讨论的方法即可得到王叔叔选择哪种活动更优惠.解:由题意可得,y1=(40×10+10x)×0.8=8x+320,y2=40×10+10(x﹣10×2)=10x+200;(2)当y1=y2时,8x+320=10x+200,得x=60,当y1<y2时,8x+320<10x+200,得x>60,当y1>y2时,8x+320>10x+200,得x<60,当y1=1000时,8x+320=1000,得x=85,当y2=1000时,10x+200=1000,得x=80,∴当x=60时,选择活动一和活动二一样优惠,当60<x≤85时,选择活动一更优惠,当20≤x<60时,选择活动二更优惠.23.如图,等边△ABC中,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD和EF.(1)求证:四边形DCFE是平行四边形;(2)求∠F的度数.【分析】(1)直接利用三角形中位线定理得出四边形DCFE是平行四边形即可;(2)由平行四边形的性质得出CD∥FE,则∠F=∠BCD,由等边三角形的性质得出∠BCD=30°,即可得出∠F=30°.【解答】(1)证明:∵D、E分别为AB、AC的中点,∴DE为△ABC的中位线,∴DE∥BC,DE=BC,∵CF=BC,∴DE=CF,∵DE∥CF,∴四边形DCFE是平行四边形,(2)解:由(1)得:四边形DCFE是平行四边形,∴CD∥FE,∴∠F=∠BCD,∵△ABC是等边三角形,D是AB的中点,∴∠ACB=60°,CD平分∠ACB,∴∠BCD=30°,∴∠F=30°.五、解答题(三)(本大题2小题,每小题10分,共20分.)24.为防控“新型冠状病毒”,某超市分别用1600元、6000元购进两批防护口罩,第二批防护口罩每个进货价格比第一批贵2元,购进的数量是第一批的3倍.(1)第一批口罩进货单价多少元?(2)若这两次购进防护口罩过程中所产生其他费用不少于600元,那么该超市这两批防护口罩的平均购进单价至少为多少元?【分析】(1)设第一批口罩进货单价为x元,则第二批口罩进货单价为(x+2)元,根据数量=总价÷单价结合第二批购进的数量是第一批的3倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)根据数量=总价÷单价可求出第一批购进的数量,结合第二批购进的数量是第一批的3倍可求出第二批购进的数量,设该超市这两批防护口罩的平均购进单价为y元,根据总价=单价×数量结合这两次购进防护口罩过程中所产生其他费用不少于600元,即可得出关于y的一元一次不等式,解之取其中的最小值即可得出结论.解:(1)设第一批口罩进货单价为x元,则第二批口罩进货单价为(x+2)元,依题意,得:=3×,解得:x=8,经检验,x=8是原方程的解,且符合题意.答:第一批口罩进货单价为8元.(2)第一批购进数量为1600÷8=200(个),第二批购进数量为200×3=600(个).设该超市这两批防护口罩的平均购进单价为y元,依题意,得:(200+600)y≥1600+6000+600,解得:y≥10.25.答:该超市这两批防护口罩的平均购进单价至少为10.25元.25.将▱OABC放在平面直角坐标系中,O为原点,点C(﹣6,0),点A在第一象限,OA =2,∠A=60°,AB与y轴交于点N.(1)如图①,求点A的坐标;(2)如图②,将平行四边形OABC绕点O逆时针旋转得到平行四边形OA′B′C',当点A的对应点A′落在y轴正半轴上时,求旋转角及点B的对应点B′的坐标;(3)将平行四边形OABC绕点A旋转得到平行四边形DAEF,使点B的对应点E落在直线OA上,请在图③中画出旋转后的图形,并直接写出OE、AB、BC之间的关系.【分析】(1)利用含30度角的直角三角形的性质求出AN,ON即可得出结论;(2)先求出A'B'=6,∠OA'B'=60°,进而利用含30度角的直角三角形的性质求出B'E,AE即可得出结论;(3)分顺时针旋转和逆时针旋转两种情况,由旋转的性质可求解.解:(1)如图①,在Rt△AON中,∠A=60°,∴∠AON=30°,∵OA=2,∴AN=1,ON=,∴A(1,);(2)如图②,过点B'作B'E⊥y轴于E,∵C(﹣6,0),∴OC=6,∵四边形ABCO是平行四边形,∴AB=OC=6,当点A的对应点A′落在y轴正半轴上时,旋转角为∠AOA'=30°,由旋转知,A'B'=AB=6,OA'=OA=2,∠OA'B=∠A=60°,∴∠A'B'E=30°,∴A'E=3,B'E=3,∴OE=A'E﹣OA'=3﹣2=1,∴B'(﹣3,﹣1);(3)如图3,①当顺时针旋转时,∠BAE=120°,∵将平行四边形OABC绕点A旋转得到平行四边形DAEF,∴AB=AE,∵四边形ABCO是平行四边形,∴BC=OA,∴OE=OA+AE=BC+AB;①当逆时针旋转时,∠BAE'=60°,∵将平行四边形OABC绕点A旋转得到平行四边形DAE'F',∴AB=AE',∵四边形ABCO是平行四边形,∴BC=OA,∴OE=AE'﹣AO=AB﹣BC;综上所述:OE=BC+AB或OE=AB﹣BC.。

北师大版2019-2020学年度初二数学第二学期期末考试试卷( 含答案)

北师大版2019-2020学年度初二数学第二学期期末考试试卷(  含答案)

2019-2020学年度第二学期期末考试八年级数学试题一、选择题:(每题2分,12小题,共24分)1.下列四个图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.下面的多边形中,内角和与外角和相等的是()A.B.C.D.3.长和宽分别是a,b的长方形的周长为10,面积为6,则a2b+ab2的值为()A.15 B.16 C.30 D.604.如图,AB∥CD∥EF,AC=4,CE=6,BD=3,则DF的值是()A.4.5 B.5 C.2 D.1.55.如图,BE、CD相交于点A,连接BC,DE,下列条件中不能判断△ABC∽ADE的是()A.∠B=∠D B.∠C=∠E C.=D.=6.关于x的元二次方程2x2+4x﹣c=0有两个不相等的实数根,则实数c可能的取值为()A.﹣5 B.﹣2 C.0 D.﹣87.某超市今年二月份的营业额为82万元,四月份的营业额比三月份的营业额多20万元,若二月份到四月份每个月的月销售额增长率都相同,若设增长率为x,根据题意可列方程()A.82(1+x)2=82(1+x)+20 B.82(1+x)2=82(1+x)C.82(1+x)2=82+20 D.82(1+x)=82+208.如图,▱ABCD中,对角线AC、BD相交于点O,OE⊥BD交AD于点E,连接BE,若▱ABCD的周长为28,则△ABE的周长为()A.28 B.24 C.21 D.149.如图,已知菱形OABC的两个顶点O(0,0),B(2,2),若将菱形绕点O以每秒45°的速度逆时针旋转,则第2019秒时,菱形两对角线交点D的横坐标为()A.B.C.1 D.﹣110.如图,菱形ABCD的对角线AC、BD相交于点O,过点C作CE⊥AD于点E,连接OE,若OB=8,S菱形ABCD=96,则OE的长为()A.2B.2C.6 D.811.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=12,点D在边BC上,点E在线段AD 上,EF⊥AC于点F,EG⊥EF交AB于点G.若EF=EG,则CD的长为()A.3.6 B.4 C.4.8 D.512.如图,四边形ABCD中,AC⊥BC,AD∥BC,BC=3,AC=4,AD=6.M是BD的中点,则CM的长为()A.B.2 C.D.3二、填空题:(每题2分,8小题,共16分)13.因式分解:m2n+2mn2+n3=.14.若分式有意义,则实数x的取值范围是.15.若关于x的分式方程=有增根,则m的值为.16.设x1,x2是一元二次方程x2﹣x﹣1=0的两根,则x1+x2+x1x2=.17.如图,菱形ABCD的对角线AC,BD交于点O,AC=4,BD=16,将△ABO沿点A到点C 的方向平移,得到△A′B′O′,当点A′与点C重合时,点A与点B′之间的距离为.18.如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分∠ACB.若AD=2,BD=3,则AC的长.19.如图,在Rt△ABC中,∠B=90°,AB=2,BC=3,D、E分别是AB、AC的中点,延长BC至点F,使CF=BC,连接DF、EF,则EF的长为.20.如图,边长为2的正方形ABCD中,AE平分∠DAC,AE交CD于点F,CE⊥AE,垂足为点E,EG⊥CD,垂足为点G,点H在边BC上,BH=DF,连接AH、FH,FH与AC交于点M,以下结论:①FH=2BH;②AC⊥FH;③S△ACF=1;④CE=AF;⑤EG2=FG•DG,其中正确结论的有(只填序号).三、计算题:(4小题,共18分)21.(1)化简;(m+2+)•(2)先化简,再求值;(+x+2)÷,其中|x|=222.解方程:(1)x2﹣2x﹣5=0;(2)=.四、解答题:(5小题,共42分)23.阅读下列材料:已知实数m,n满足(2m2+n2+1)(2m2+n2﹣1)=80,试求2m2+n2的值解:设2m2+n2=t,则原方程变为(t+1)(t﹣1)=80,整理得t2﹣1=80,t2=81,∴t =±9因为2m2+n2≥0,所以2m2+n2=9.上面这种方法称为“换元法”,把其中某些部分看成一个整体,并用新字母代替(即换元),则能使复杂的问题简单化.根据以上阅读材料内容,解决下列问题,并写出解答过程.已知实数x,y满足(4x2+4y2+3)(4x2+4y2﹣3)=27,求x2+y2的值.24.某书店积极响应政府“改革创新,奋发有为”的号召,举办“读书节“系列活动.活动中故事类图书的标价是典籍类图书标价的1.5倍,若顾客用540元购买图书,能单独购买故事类图书的数量恰好比单独购买典籍类图书的数量少10本.(1)求活动中典籍类图书的标价;(2)该店经理为鼓励广大读者购书,免费为购买故事类的读者赠送图1所示的精致矩形包书纸.在图1的包书纸示意图中,虚线是折痕,阴影是裁剪掉的部分,四角均为大小相同的正方形,正方形的边长为折叠进去的宽度.已知该包书纸的面积为875cm2(含阴影部分),且正好可以包好图2中的《中国故事》这本书,该书的长为21cm,宽为15cm,厚为1cm,请直接写出该包书纸包这本书时折叠进去的宽度.25.如图,在△ABC中,AB=AC,AD是BC边的中线,过点A作BC的平行线,过点B作AD 的平行线,两线交于点E.(1)求证:四边形ADBE是矩形;(2)连接DE,交AB与点O,若BC=8,AO=3,求△ABC的面积.26.如图,已知:AD为△ABC的中线,过B、C两点分别作AD所在直线的垂线段BE和CF,E、F为垂足,过点E作EG∥AB交BC于点H,连结HF并延长交AB于点P.(1)求证:DE=DF(2)若BH:HC=11:5;①求:DF:DA的值;②求证:四边形HGAP为平行四边形.27.如图,矩形ABCD中,AB=12,AD=9,E为BC上一点,且BE=4,动点F从点A出发沿射线AB方向以每秒3个单位的速度运动.连接DF,DE,EF.过点E作DF的平行线交射线AB于点H,设点F的运动时间为t(不考虑D、E、F在一条直线上的情况).(1)填空:当t=时,AF=CE,此时BH=;(2)当△BEF与△BEH相似时,求t的值;(3)当F在线段AB上时,设△DEF的面积为S,△DEF的周长为C.①求S关于t的函数关系式;②直接写出C的最小值.参考答案与试题解析一.选择题(共12小题)1.下列四个图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、既是轴对称图形,又是中心对称图形,故此选项正确.故选:D.2.下面的多边形中,内角和与外角和相等的是()A.B.C.D.【分析】根据多边形的内角和公式(n﹣2)•180°与多边形的外角和定理列式进行计算即可得解.【解答】解:设多边形的边数为n,根据题意得(n﹣2)•180°=360°,解得n=4.故选:B.3.长和宽分别是a,b的长方形的周长为10,面积为6,则a2b+ab2的值为()A.15 B.16 C.30 D.60【分析】直接利用矩形面积求法结合提取公因式法分解因式计算即可.【解答】解:∵长和宽分别是a,b的长方形的周长为10,面积为6,∴2(a+b)=10,ab=6,故a+b=5,则a2b+ab2=ab(a+b)=30.故选:C.4.如图,AB∥CD∥EF,AC=4,CE=6,BD=3,则DF的值是()A.4.5 B.5 C.2 D.1.5【分析】直接根据平行线分线段成比例定理即可得出结论.【解答】解:∵直线AB∥CD∥EF,AC=4,CE=6,BD=3,∴=,即=,解得DF=4.5.故选:A.5.如图,BE、CD相交于点A,连接BC,DE,下列条件中不能判断△ABC∽ADE的是()A.∠B=∠D B.∠C=∠E C.=D.=【分析】分别根相似三角形的判定方法,逐项判断即可.【解答】解:∵∠BAC=∠DAE,∴当∠B=∠D或∠C=∠E时,可利用两角对应相等的两个三角形相似证得△ABC∽ADE,故A、B选项可判断两三角形相似;当=时,可得=,结合∠BAC=∠DAE,则可证得△ABC∽△AED,而不能得出△ABC∽△ADE,故C不能判断△ABC∽ADE;当=时,结合∠BAC=∠DAE,可证得△ABC∽△ADE,故D能判断△ABC∽△ADE;故选:C.6.关于x的元二次方程2x2+4x﹣c=0有两个不相等的实数根,则实数c可能的取值为()A.﹣5 B.﹣2 C.0 D.﹣8【分析】利用一元二次方程根的判别式(△=b2﹣4ac)可以判断方程的根的情况,有两个不相等的实根,即△>0【解答】解:依题意,关于x的一元二次方程,有两个不相等的实数根,即△=b2﹣4ac=42+8c>0,得c>﹣2根据选项,只有C选项符合,故选:C.7.某超市今年二月份的营业额为82万元,四月份的营业额比三月份的营业额多20万元,若二月份到四月份每个月的月销售额增长率都相同,若设增长率为x,根据题意可列方程()A.82(1+x)2=82(1+x)+20 B.82(1+x)2=82(1+x)C.82(1+x)2=82+20 D.82(1+x)=82+20【分析】根据题意可以列出相应的方程,本题得以解决.【解答】解:由题意可得,82(1+x)2=82(1+x)+20,故选:A.8.如图,▱ABCD中,对角线AC、BD相交于点O,OE⊥BD交AD于点E,连接BE,若▱ABCD的周长为28,则△ABE的周长为()A.28 B.24 C.21 D.14【分析】先判断出EO是BD的中垂线,得出BE=ED,从而可得出△ABE的周长=AB+AD,再由平行四边形的周长为24,即可得出答案.【解答】解:∵四边形ABCD是平行四边形,∴OB=OD,AB=CD,AD=BC,∵平行四边形的周长为28,∴AB+AD=14∵OE⊥BD,∴OE是线段BD的中垂线,∴BE=ED,∴△ABE的周长=AB+BE+AE=AB+AD=14,故选:D.9.如图,已知菱形OABC的两个顶点O(0,0),B(2,2),若将菱形绕点O以每秒45°的速度逆时针旋转,则第2019秒时,菱形两对角线交点D的横坐标为()A.B.C.1 D.﹣1【分析】根据菱形的性质及中点的坐标公式可得点D坐标,再根据旋转的性质可得旋转后点D的坐标.【解答】解:菱形OABC的顶点O(0,0),B(2,2),得D点坐标为(,),即(1,1).∴OD=每秒旋转45°,则第2019秒时,得45°×2019,45°×2019÷360=252.375周,OD旋转了252又周,菱形的对角线交点D的坐标为(﹣,0),故选:B.10.如图,菱形ABCD的对角线AC、BD相交于点O,过点C作CE⊥AD于点E,连接OE,若OB=8,S菱形ABCD=96,则OE的长为()A.2B.2C.6 D.8【分析】由菱形的性质得出BD=16,由菱形的面积得出AC=12,再由直角三角形斜边上的中线性质即可得出结果.【解答】解:∵四边形ABCD是菱形,∴OA=OC,OB=OD=BD,BD⊥AC,∴BD=16,∵S菱形ABCD═AC×BD=96,∴AC=12,∵CE⊥AD,∴∠AEC=90°,∴OE=AC=6,故选:C.11.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=12,点D在边BC上,点E在线段AD 上,EF⊥AC于点F,EG⊥EF交AB于点G.若EF=EG,则CD的长为()A.3.6 B.4 C.4.8 D.5【分析】根据题意和三角形相似的判定和性质,可以求得CD的长,本题得以解决.【解答】解:作DH∥EG交AB于点H,则△AEG∽△ADH,∴,∵EF⊥AC,∠C=90°,∴∠EFA=∠C=90°,∴EF∥CD,∴△AEF∽△ADC,∴,∴,∵EG=EF,∴DH=CD,设DH=x,则CD=x,∵BC=12,AC=6,∴BD=12﹣x,∵EF⊥AC,EF⊥EG,DH∥EG,∴EG∥AC∥DH,∴△BDH∽△BCA,∴,即,解得,x=4,∴CD=4,故选:B.12.如图,四边形ABCD中,AC⊥BC,AD∥BC,BC=3,AC=4,AD=6.M是BD的中点,则CM的长为()A.B.2 C.D.3【分析】延长BC到E使BE=AD,则四边形ACED是平行四边形,根据三角形的中位线的性质得到CM=DE=AB,根据跟勾股定理得到AB===5,于是得到结论.【解答】解:延长BC到E使BE=AD,则四边形ACED是平行四边形,∵BC=3,AD=6,∴C是BE的中点,∵M是BD的中点,∴CM=DE=AB,∵AC⊥BC,∴AB===5,∴CM=,故选:C.二.填空题(共8小题)13.因式分解:m2n+2mn2+n3=n(m+n)2.【分析】首先提取公因式n,再利用完全平方公式分解因式得出答案.【解答】解:m2n+2mn2+n3=n(m2+2mn+n2)=n(m+n)2.故答案为:n(m+n)2.14.若分式有意义,则实数x的取值范围是x≠5 .【分析】根据分式有意义的条件可得x﹣5≠0,再解即可.【解答】解:由题意得:x﹣5≠0,解得:x≠5,故答案为:x≠5.15.若关于x的分式方程=有增根,则m的值为 3 .【分析】分式方程去分母转化为整式方程,由分式方程有增根求出x的值,代入计算即可求出m的值.【解答】解:去分母得:3x=m+3,由分式方程有增根,得到x﹣2=0,即x=2,把x=2代入方程得:6=m+3,解得:m=3,故答案为:316.设x1,x2是一元二次方程x2﹣x﹣1=0的两根,则x1+x2+x1x2=0 .【分析】直接根据根与系数的关系求解.【解答】解:∵x1、x2是方程x2﹣x﹣1=0的两根,∴x1+x2=1,x1×x2=﹣1,∴x1+x2+x1x2=1﹣1=0.故答案为:0.17.如图,菱形ABCD的对角线AC,BD交于点O,AC=4,BD=16,将△ABO沿点A到点C 的方向平移,得到△A′B′O′,当点A′与点C重合时,点A与点B′之间的距离为10 .【分析】由菱形的性质得出AC⊥BD,AO=OC=AC=2,OB=OD=BD=8,由平移的性质得出O'C=OA=2,O'B'=OB=8,∠CO'B'=90°,得出AO'=AC+O'C=6,由勾股定理即可得出答案.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AO=OC=AC=2,OB=OD=BD=8,∵△ABO沿点A到点C的方向平移,得到△A'B'O',点A'与点C重合,∴O'C=OA=2,O'B'=OB=8,∠CO'B'=90°,∴AO'=AC+O'C=6,∴AB'===10;故答案为10.18.如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分∠ACB.若AD=2,BD=3,则AC的长.【分析】证出∠ACD=∠DCB=∠B,证明△ACD∽△ABC,得出=,即可得出结果.【解答】解:∵BC的垂直平分线MN交AB于点D,∴CD=BD=3,∴∠B=∠DCB,AB=AD+BD=5,∵CD平分∠ACB,∴∠ACD=∠DCB=∠B,∵∠A=∠A,∴△ACD∽△ABC,∴=,∴AC2=AD×AB=2×5=10,∴AC=.故答案为:.19.如图,在Rt△ABC中,∠B=90°,AB=2,BC=3,D、E分别是AB、AC的中点,延长BC至点F,使CF=BC,连接DF、EF,则EF的长为.【分析】连接DE,CD,根据三角形中位线的性质得到DE∥BC,DE=BC,推出四边形DCFE是平行四边形,得到EF=CD,根据勾股定理即可得到结论.【解答】解:连接DE,CD,∵D、E分别是AB、AC的中点,∴DE∥BC,DE=BC,∴DE∥CF,∵CF=BC,∴DE=CF,∴四边形DCFE是平行四边形,∴EF=CD,∵在Rt△ABC中,∠B=90°,AB=2,BC=3,∴CD===,∴EF=CD=,故答案为:.20.如图,边长为2的正方形ABCD中,AE平分∠DAC,AE交CD于点F,CE⊥AE,垂足为点E,EG⊥CD,垂足为点G,点H在边BC上,BH=DF,连接AH、FH,FH与AC交于点M,以下结论:①FH=2BH;②AC⊥FH;③S△ACF=1;④CE=AF;⑤EG2=FG•DG,其中正确结论的有①②④⑤(只填序号).【分析】①②、证明△ABH≌△ADF,得AF=AH,再得AC平分∠FAH,则AM既是中线,又是高线,得AC⊥FH,证明BH=HM=MF=FD,则FH=2BH;所以①②都正确;③可以直接求出FC的长,计算S△ACF≠1,错误;④根据正方形边长为2,分别计算CE和AF的长得结论正确;⑤利用相似先得出EG2=FG•CG,再根据同角的三角函数列式计算CG的长为1,则DG=CG,得出⑤也正确.【解答】解:①②如图1,∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°,∠BAD=90°,∵AE平分∠DAC,∴∠FAD=∠CAF=22.5°,在△ABH和△ADF中,,∴△ABH≌△ADF(SAS),∴AH=AF,∠BAH=∠FAD=22.5°,∴∠HAC=∠FAC,∴HM=FM,AC⊥FH,∵AE平分∠DAC,∴DF=FM,∴FH=2DF=2BH,故①②正确;③在Rt△FMC中,∠FCM=45°,∴△FMC是等腰直角三角形,∵正方形的边长为2,∴AC=2,MC=DF=2﹣2,∴FC=2﹣DF=2﹣(2﹣2)=4﹣2,S△AFC=CF•AD≠1,故③不正确;④AF==2,∵△ADF∽△CEF,∴=,∴CE=,∴CE=AF,故④正确;⑤延长CE和AD交于N,如图2,∵AE⊥CE,AE平分∠CAD,∴CE=EN,∵EG∥DN,∴CG=DG,在Rt△FEC中,EG⊥FC,∴∠GEF=∠GCE,∴△EFG∽△CEG,∴=,∴EG2=FG•CG,∴EG2=FG•DG,故选项⑤正确;故答案为:①②④⑤.三、计算题:(4小题,共18分)21.(1)化简;(m+2+)•(2)先化简,再求值;(+x+2)÷,其中|x|=2【分析】(1)原式括号中两项通分并利用同分母分式的加法法则计算,约分即可得到结果;(2)原式括号中两项通分并利用同分母分式的加法法则计算,约分得到最简结果,求出x的值代入计算即可求出值.【解答】解:(1)原式=•=•=m+1;(2)原式=•=,由|x|=2,得到x=2或﹣2(舍去),当x=2时,原式=19.22.解方程:(1)x2﹣2x﹣5=0;(2)=.【分析】(1)利用公式法求解可得;(2)两边都乘以(x+1)(x﹣2)化为整式方程,解之求得x的值,继而检验即可得.【解答】解:(1)∵a=1,b=﹣2,c=﹣5,∴△=4﹣4×1×(﹣5)=24>0,则x==1±,∴;(2)两边都乘以(x+1)(x﹣2),得:x+1=4(x﹣2),解得x=3,经检验x=3是方程的解.四、解答题:(5小题,共42分)23.阅读下列材料:已知实数m,n满足(2m2+n2+1)(2m2+n2﹣1)=80,试求2m2+n2的值解:设2m2+n2=t,则原方程变为(t+1)(t﹣1)=80,整理得t2﹣1=80,t2=81,∴t =±9因为2m2+n2≥0,所以2m2+n2=9.上面这种方法称为“换元法”,把其中某些部分看成一个整体,并用新字母代替(即换元),则能使复杂的问题简单化.根据以上阅读材料内容,解决下列问题,并写出解答过程.已知实数x,y满足(4x2+4y2+3)(4x2+4y2﹣3)=27,求x2+y2的值.【分析】设t=x2+y2(t≥0),则原方程转化为(4t+3)(4t﹣3)=27,然后解该方程即可.【解答】解:设t=x2+y2(t≥0),则原方程转化为(4t+3)(4t﹣3)=27,整理,得16t2﹣9=27,所以t2=.∵t≥0,∴t=.∴x2+y2的值是.【点评】考查了换元法解一元二次方程,换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.24.某书店积极响应政府“改革创新,奋发有为”的号召,举办“读书节“系列活动.活动中故事类图书的标价是典籍类图书标价的1.5倍,若顾客用540元购买图书,能单独购买故事类图书的数量恰好比单独购买典籍类图书的数量少10本.(1)求活动中典籍类图书的标价;(2)该店经理为鼓励广大读者购书,免费为购买故事类的读者赠送图1所示的精致矩形包书纸.在图1的包书纸示意图中,虚线是折痕,阴影是裁剪掉的部分,四角均为大小相同的正方形,正方形的边长为折叠进去的宽度.已知该包书纸的面积为875cm2(含阴影部分),且正好可以包好图2中的《中国故事》这本书,该书的长为21cm,宽为15cm,厚为1cm,请直接写出该包书纸包这本书时折叠进去的宽度.【分析】(1)设典籍类图书的标价为x元,根据购买两种图书的数量差是10本,列出方程并解答;(2)矩形面积=(2宽+1+2折叠进去的宽度)×(长+2折叠进去的宽度).【解答】解:(1)设典籍类图书的标价为x元,由题意,得﹣10=.解得x=18.经检验:x=18是原分式方程的解,且符合题意.答:典籍类图书的标价为18元;(2)设折叠进去的宽度为ycm,则(2y+15×2+1)(2y+21)=875,化简得y2+26y﹣56=0,∴y=2或﹣28(不合题意,舍去),答:折叠进去的宽度为2cm.【点评】此题考查了分式方程和一元二次方程的应用,(2)题结合了矩形面积的求法考查了图形的折叠问题,能够得到折叠进去的宽度和矩形纸的长、宽的关系,是解决问题的关键.25.如图,在△ABC中,AB=AC,AD是BC边的中线,过点A作BC的平行线,过点B作AD 的平行线,两线交于点E.(1)求证:四边形ADBE是矩形;(2)连接DE,交AB与点O,若BC=8,AO=3,求△ABC的面积.【分析】(1)先求出四边形ADBE是平行四边形,根据等腰三角形的性质求出∠ADB=90°,根据矩形的判定得出即可;(2)根据矩形的性质得出AB=DE=2AO=6,求出BD,根据勾股定理求出AD,根据三角形面积公式求出即可.【解答】(1)证明:∵AE∥BC,BE∥AD,∴四边形ADBE是平行四边形,∵AB=AC,AD是BC边的中线,∴AD⊥BC,即∠ADB=90°,∴四边形ADBE为矩形;(2)解:∵在矩形ADBE中,AO=3,∴AB=2AO=6,∵D是BC的中点,∴DB=BC=4,∵∠ADB=90°,∴AD===2,∴△ABC的面积=BC•AD=×8×2=8.【点评】本题考查了等腰三角形的性质和矩形的性质和判定,能求出四边形ADCE是矩形是解此题的关键.26.如图,已知:AD为△ABC的中线,过B、C两点分别作AD所在直线的垂线段BE和CF,E、F为垂足,过点E作EG∥AB交BC于点H,连结HF并延长交AB于点P.(1)求证:DE=DF(2)若BH:HC=11:5;①求:DF:DA的值;②求证:四边形HGAP为平行四边形.【分析】(1)由AAS证明△BDE≌△CDF,即可得出结论;(2)①设BH=11x,则HC=5x,BC=16x,则,DH=3x,由平行线得出△EDH∽△ADB,得出,即可得出结论;②求出=,证出FH∥AC,即PH∥AC,即可得出结论.【解答】(1)证明:∵AD为△ABC的中线,∴BD=CD,∵BE⊥AD,CF⊥AD,∴∠BED=∠CFD=90°,在△BDE和△CDF中,,∴△BDE≌△CDF(AAS),∴DE=DF;(2)①解:设BH=11x,则HC=5x,BC=16x,则,DH=3x,∵EG∥AB,∴△EDH∽△ADB,∴,∵DE=DF,∴;②证明:∵,∴,∵,∴=,∴FH∥AC,∴PH∥AC,∵EG∥AB,∴四边形HGAP为平行四边形.【点评】本题考查了平行四边形的判定、平行线的判定、全等三角形的判定与性质、相似三角形的判定与性质等知识;熟练掌握平行四边形的判定是关键.27.如图,矩形ABCD中,AB=12,AD=9,E为BC上一点,且BE=4,动点F从点A出发沿射线AB方向以每秒3个单位的速度运动.连接DF,DE,EF.过点E作DF的平行线交射线AB于点H,设点F的运动时间为t(不考虑D、E、F在一条直线上的情况).(1)填空:当t=时,AF=CE,此时BH=;(2)当△BEF与△BEH相似时,求t的值;(3)当F在线段AB上时,设△DEF的面积为S,△DEF的周长为C.①求S关于t的函数关系式;②直接写出C的最小值.【分析】(1)在Rt△ABC中,利用勾股定理可求得AB的长,即可得到AD、t的值,从而确定AE的长,由DE=AE﹣AD即可得解.(2)若△DEG与△ACB相似,要分两种情况:①AG:DE=DH:GE,②AH:EG=DH:DE,根据这些比例线段即可求得t的值.(需注意的是在求DE的表达式时,要分AD>AE和AD<AE两种情况);(3)分别表示出线段FD和线段AD的长,利用面积公式列出函数关系式即可.【解答】解:(1)∵BC=AD=9,BE=4,∴CE=9﹣4=5∵AF=CE即:3t=5,∴t=,∵EH∥DF∴△DAF∽△EBH,∴=即:=解得:BH=;当t=时,AF=CE,此时BH=;(2)由EH∥DF得∠AFD=∠BHE,又∵∠A=∠CBH=90°∴△EBH∽△DAF,∴即=∴BH=当点F在点B的左边时,即t<4时,BF=12﹣3t此时,当△BEF∽△BHE时:即42=(12﹣3t)×解得:t1=2此时,当△BEF∽△BEH时:有BF=BH,即12﹣3t=解得:t2=当点F在点B的右边时,即t>4时,BF=3t﹣12此时,当△BEF∽△BHE时:即42=(3t﹣12)×解得:t3=2+2(3)①∵EH∥DF∴△DFE的面积=△DFH的面积=FH•AD=(12﹣3t+t)×9=54﹣②如图,∵BE=4,∴CE=5,根据勾股定理得,DE=13,是定值,所以当C最小时DE+EF最小,作点E关于AB的对称点E'连接DE,此时DE+EF最小,在Rt△CDE'中,CD=12,CE'=BC+BE'=BC+BE=13,根据勾股定理得,DE'==,∴C的最小值=13+.【点评】此题考查了勾股定理、轴对称的性质、平行四边形及梯形的判定和性质、解直角三角形、相似三角形等相关知识,综合性强,是一道难度较大的压轴题.。

2019-2020学年河南省洛阳市八年级(下)期末数学试卷 (解析版)

2019-2020学年河南省洛阳市八年级(下)期末数学试卷  (解析版)

2019-2020学年河南省洛阳市八年级(下)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)式子在实数范围内有意义,则x的取值范围是()A.x>0B.x≥﹣1C.x≥1D.x≤12.(3分)下列计算:①+=;②()2=2;③5﹣=5;④(+)(﹣)=﹣1.其中正确的有()个A.1B.2C.3D.43.(3分)某特警部队为了选拔“神枪手”,举行了射击比赛,最后由甲、乙两名战士进入决赛,在相同条件下,两人各射靶10次,经过统计计算,甲、乙两名战士的总成绩都是99环,甲的方差是0.28,乙的方差是0.21,则下列说法中,正确的是()A.甲的成绩比乙的成绩稳定B.甲、乙两人成绩的稳定性相同C.乙的成绩比甲的成绩稳定D.无法确定谁的成绩更稳定4.(3分)如图,正方形ABCD中,延长AB至E,使AE=AC,连接CE,则∠BCE=()A.10°B.20°C.30°D.22.5°5.(3分)为了解某小区家庭垃圾袋的使用情况,小亮随机调查了该小区10户家庭一周垃圾袋的使用数量,结果如下(单位:个):7,9,11,8,7,14,10,8,9,7,则这组数据的众数和平均数分别是()A.8和9B.7和9C.9和7D.7和8.56.(3分)面试时,某人的基本知识、表达能力、工作态度的得分分别是90分、80分、85分,若依次按20%、40%、40%的比例确定成绩,则这个人的面试成绩是()A.82分B.86分C.85分D.84分7.(3分)如图,D,E,F分别是△ABC各边的中点,AH是高,若ED=6cm,那么HF的长为()A.5 cm B.6 cm C.10 cm D.不能确定8.(3分)已知一次函数y=(2m﹣1)x+1上两点A(x1,y1)、B(x2,y2),当x1<x2时,有y1<y2,则m的取值范围是()A.m<B.m>C.m<2D.m>09.(3分)四边形ABCD是菱形,对角线AC,BD相交于点O,且∠ACD=30°,BD=2,则菱形ABCD的面积为()A.2B.4C.4D.810.(3分)如图,正方形ABCD的边长为16,点M在边DC上,且DM=4,点N是对角线AC上一动点,则线段DN+MN的最小值为()A.16B.16C.20D.4二、填空题(每小题3分,共15分)11.(3分)若实数a、b满足,则=.12.(3分)在开展“爱心捐助武汉疫区”的活动中,某团支部8名团员捐款分别为(单位:元)6,5,3,5,6,10,5,6,则这组数据的中位数是.13.(3分)方程组的解为.14.(3分)如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,BF=6,AB=5,则AE的长为.15.(3分)如图,在矩形ABCD中,AD=5,AB=8,点E为DC边上的一个动点,把△ADE 沿AE折叠,当点D的对应点D′刚好落在矩形ABCD的对称轴上时,则DE的长为.三、解答题(共75分)16.(8分)计算:(1)3﹣+﹣;(2)÷﹣×+.17.(9分)如图,某学校(A点)到公路(直线l)的距离为30m,到公交站(D点)的距离为50m,现在公路边上建一个商店(C点),使商店到学校A及公交站D的距离相等,求商店C与公交站D之间的距离.(结果保留整数)18.(9分)某校为迎接中华人民共和国建国70周年,开展了以“不忘初心,缅怀革命先烈,奋斗新时代”为主题的读书活动.校德育处对本校七年级学生四月份“阅读该主题相关书籍的读书量”(下面简称:“读书量”)进行了随机抽样调査,并对所有随机抽取学生的“读书量”(单位:本)进行了统计,如图所示:根据以上信息,解答下列问题:(1)补全上面两幅统计图;填出本次所抽取学生四月份“读书量”的中位数为;(2)求本次所抽取学生四月份“读书量”的平均数;(3)已知该校七年级有600名学生,请你估计该校七年级学生中,四月份“读书量”为5本的学生人数.19.(9分)如图,已知一次函数y1=ax+2与y2=x﹣1的图象交于点A(2,1).(1)求a的值;(2)若点C是直线y2=x﹣1上的点且AC=2,求点C的坐标;(3)直接写出y2>y1>0时,x的取值范围.20.(9分)如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.(1)求证:四边形BCEF是平行四边形;(2)若∠DEF=90°,DE=8,EF=6,当AF为时,四边形BCEF是菱形.21.(10分)某营业厅销售3部A型号手机和2部B型号手机的营业额为10800元,销售4部A型号手机和1部B型号手机的营业额为10400元.(1)求每部A型号手机和B型号手机的售价;(2)该营业厅计划一次性购进两种型号手机共50部,其中B型号手机的进货数量不超过A型号手机数量的3倍.已知A型手机和B型手机的进货价格分别为1500元/部和1800元/部,设购进A型号手机a部,这50部手机的销售总利润为W元.①求W关于a的函数关系式;②该营业厅购进A型号和B型号手机各多少部时,才能使销售总利润最大,最大利润为多少元?22.(10分)已知,在△ABC中,∠BAC=90°,∠ABC=45°,D为直线BC上一动点(不与点B,C重合),以AD为边作正方形ADEF,连接CF.(1)如图1,当点D在线段BC上时,BC与CF的位置关系是,BC、CF、CD 三条线段之间的数量关系为;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请猜想BC与CF的位置关系BC,CD,CF三条线段之间的数量关系并证明;(3)如图3,当点D在线段BC的反向延长线上时,点A,F分别在直线BC的两侧,其他条件不变.若正方形ADEF的对角线AE,DF相交于点O,OC=,DB=5,则△ABC的面积为.(直接写出答案)23.(11分)如图,一次函数y1=x+n与x轴交于点B,一次函数y2=﹣x+m与y轴交于点C,且它们的图象都经过点D(1,﹣).(1)则点B的坐标为,点C的坐标为;(2)在x轴上有一点P(t,0),且t>,如果△BDP和△CDP的面积相等,求t的值;(3)在(2)的条件下,在y轴的右侧,以CP为腰作等腰直角△CPM,直接写出满足条件的点M的坐标.2019-2020学年河南省洛阳市八年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)式子在实数范围内有意义,则x的取值范围是()A.x>0B.x≥﹣1C.x≥1D.x≤1【分析】根据被开方数是非负数,可得答案.【解答】解:由题意,得x﹣1≥0,解得x≥1,故选:C.2.(3分)下列计算:①+=;②()2=2;③5﹣=5;④(+)(﹣)=﹣1.其中正确的有()个A.1B.2C.3D.4【分析】根据合并同类二次根式法则、二次根式的性质和平方差公式依此计算可得.【解答】解:①与不是同类二次根式,不能合并,此式计算错误;②()2=2,此式计算正确;③5﹣=4,此式计算错误;④(+)(﹣)=2﹣3=﹣1,此式计算正确;故选:B.3.(3分)某特警部队为了选拔“神枪手”,举行了射击比赛,最后由甲、乙两名战士进入决赛,在相同条件下,两人各射靶10次,经过统计计算,甲、乙两名战士的总成绩都是99环,甲的方差是0.28,乙的方差是0.21,则下列说法中,正确的是()A.甲的成绩比乙的成绩稳定B.甲、乙两人成绩的稳定性相同C.乙的成绩比甲的成绩稳定D.无法确定谁的成绩更稳定【分析】根据方差的定义,方差越小数据越稳定即可判断.【解答】解:∵甲的方差是0.28,乙的方差是0.21,∴S甲2>S乙2,∴乙的成绩比甲的成绩稳定;故选:C.4.(3分)如图,正方形ABCD中,延长AB至E,使AE=AC,连接CE,则∠BCE=()A.10°B.20°C.30°D.22.5°【分析】根据正方形的性质,可以得到∠ACB和∠CAB的度数,再根据AC=AE,可以得到∠ACE和∠AEC的度数,然后即可得到∠BCE的度数.【解答】解:∵AC是正方形ABCD的对角线,∴∠CAB=∠ACB=45°,∵AC=AE,∴∠ACE=∠AEC,∵∠ACE+∠AEC+∠CAE=180°,∴∠ACE=∠AEC=67.5°,∴∠BCE=∠ACE﹣∠ACB=67.5°﹣45°=22.5°,故选:D.5.(3分)为了解某小区家庭垃圾袋的使用情况,小亮随机调查了该小区10户家庭一周垃圾袋的使用数量,结果如下(单位:个):7,9,11,8,7,14,10,8,9,7,则这组数据的众数和平均数分别是()A.8和9B.7和9C.9和7D.7和8.5【分析】根据众数和算术平均数的定义列式计算可得.【解答】解:将这组数据重新排列为7,7,7,8,8,9,9,10,11,14,所以这组数据的众数为7,平均数为=9,故选:B.6.(3分)面试时,某人的基本知识、表达能力、工作态度的得分分别是90分、80分、85分,若依次按20%、40%、40%的比例确定成绩,则这个人的面试成绩是()A.82分B.86分C.85分D.84分【分析】根据加权平均数的计算公式进行计算,即可得出答案.【解答】解:根据题意得:90×20%+80×40%+85×40%=84(分);答:这个人的面试成绩是84分.故选:D.7.(3分)如图,D,E,F分别是△ABC各边的中点,AH是高,若ED=6cm,那么HF的长为()A.5 cm B.6 cm C.10 cm D.不能确定【分析】根据D、E、F分别是△ABC各边的中点,可知DE为△ABC的中位线,根据DE的长度可求得AC的长度,然后根据直角三角形斜边的中线等于斜边的一半,可得HF=AC,即可求解.【解答】解:∵D、E分别是△ABC各边的中点,∴DE为△ABC的中位线,∵ED=6cm,∴AC=2DE=2×6=12(cm),∵AH⊥CD,且F为AC的中点,∴HF=AC=6cm.故选:B.8.(3分)已知一次函数y=(2m﹣1)x+1上两点A(x1,y1)、B(x2,y2),当x1<x2时,有y1<y2,则m的取值范围是()A.m<B.m>C.m<2D.m>0【分析】先根据x1<x2时,y1<y2,得到y随x的增大而增大,所以x的比例系数大于0,那么2m﹣1>0,解不等式即可求解.【解答】解:∵当x1<x2时,有y1<y2∴y随x的增大而增大∴2m﹣1>0,∴m>.故选:B.9.(3分)四边形ABCD是菱形,对角线AC,BD相交于点O,且∠ACD=30°,BD=2,则菱形ABCD的面积为()A.2B.4C.4D.8【分析】由菱形的性质得出OA=OC=AC,OB=OD=BD=1,AC⊥BD,在Rt△OCD 中,由含30°角的直角三角形的性质求出CD=2OD=2,由勾股定理求出OC,得出AC,由菱形的面积公式即可得出结果.【解答】解:∵四边形ABCD是菱形,∴OA=OC=AC,OB=OD=BD=1,AC⊥BD,在Rt△OCD中,∵∠ACD=30°,∴CD=2OD=2,∴OC===,∴AC=2OC=2,∴菱形ABCD的面积=AC•BD=×2×2=2.故选:A.10.(3分)如图,正方形ABCD的边长为16,点M在边DC上,且DM=4,点N是对角线AC上一动点,则线段DN+MN的最小值为()A.16B.16C.20D.4【分析】连接MB交AC于N,此时DN+MN最小,先证明这个最小值就是线段BM的长,利用勾股定理就是即可解决问题.【解答】解:如图,连接MB交AC于N,此时DN+MN最小.∵四边形ABCD是正方形,∴B、D关于AC对称,∴DN=BN,∴DN+MN=BN+NM=BM,在Rt△BMC中,∵∠BCM=90°,BC=16,CM=CD﹣DM=16﹣4=12,∴BM=.故选:C.二、填空题(每小题3分,共15分)11.(3分)若实数a、b满足,则=.【分析】根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【解答】解:根据题意得:,解得:,则原式=﹣.故答案是:﹣.12.(3分)在开展“爱心捐助武汉疫区”的活动中,某团支部8名团员捐款分别为(单位:元)6,5,3,5,6,10,5,6,则这组数据的中位数是 5.5元.【分析】将数据重新排列,再根据中位数的定义求解可得.【解答】解:将这组数据重新排列为:3,5,5,5,6,6,6,10,所以这组数据的中位数为=5.5(元),故答案为:5.5元.13.(3分)方程组的解为.【分析】由图象可知,一次函数x+y=3与y=2x的交点坐标为(1,2),所以方程组的解为.【解答】解:∵一次函数x+y=3与y=2x的交点坐标为(1,2),∴方程组的解为.故答案为.14.(3分)如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,BF=6,AB=5,则AE的长为8.【分析】连接EF,AE交BF于O点,如图,由作法得AB=AF,AE平分∠BAD,先证明四边形ABEF为菱形得到AE⊥BF,OA=OE,BO=OF=3,然后利用勾股定理计算出OA,从而得到AE的长.【解答】解:连接EF,AE交BF于O点,如图,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠F AE=∠BEA,由作法得AB=AF,AE平分∠BAD,∴∠BAE=∠F AE,∴∠BAE=∠BEA,∴BA=BE,∴AF=BE,而AF∥BE,∴四边形ABEF为平行四边形,而AB=AF,∴四边形ABEF为菱形,∴AE⊥BF,OA=OE,BO=OF=3,在Rt△AOB中,OA===4,∴AE=2OA=8.故答案为8.15.(3分)如图,在矩形ABCD中,AD=5,AB=8,点E为DC边上的一个动点,把△ADE 沿AE折叠,当点D的对应点D′刚好落在矩形ABCD的对称轴上时,则DE的长为或.【分析】过点D′作MN⊥AB于点N,MN交CD于点M,由矩形有两条对称轴可知要分两种情况考虑,根据对称轴的性质以及折叠的特性可找出各边的关系,在直角△EMD′与△AND′中,利用勾股定理可得出关于DM长度的一元二次方程,解方程即可得出结论.【解答】解:过点D′作MN⊥AB于点N,MN交CD于点M,如图1所示.设DE=a,则D′E=a.∵矩形ABCD有两条对称轴,∴分两种情况考虑:①当DM=CM时,AN=DM=CD=AB=4,AD=AD′=5,由勾股定理可知:ND′==3,∴MD′=MN﹣ND′=AD﹣ND′=2,EM=DM﹣DE=4﹣a,∵ED′2=EM2+MD′2,即a2=(4﹣a)2+4,解得:a=;②当MD′=ND′时,MD′=ND′=MN=AD=,由勾股定理可知:AN==,∴EM=DM﹣DE=AN﹣DE=﹣a,∵ED′2=EM2+MD′2,即,解得:a=.综上知:DE=或.故答案为:或.三、解答题(共75分)16.(8分)计算:(1)3﹣+﹣;(2)÷﹣×+.【分析】(1)先化简各二次根式,再合并同类二次根式即可得;(2)先计算二次根式的乘除运算、化简二次根式,再计算加减运算可得.【解答】解:(1)原式=3﹣2+﹣3=﹣;(2)原式=﹣+2=4+.17.(9分)如图,某学校(A点)到公路(直线l)的距离为30m,到公交站(D点)的距离为50m,现在公路边上建一个商店(C点),使商店到学校A及公交站D的距离相等,求商店C与公交站D之间的距离.(结果保留整数)【分析】作出A点到公路的距离,构造出直角三角形,利用勾股定理易得BD长,那么根据直角三角形BCD的各边利用勾股定理即可求得商店与车站之间的距离.【解答】解:作AB⊥L于B,则AB=30m,AD=50m.∴BD=40m.设CD=x,则CB=40﹣x,x2=(40﹣x)2+302,x2=1600+x2﹣80x+302,80x=2500,x≈31,答:商店C与公交站D之间的距离约为31米.18.(9分)某校为迎接中华人民共和国建国70周年,开展了以“不忘初心,缅怀革命先烈,奋斗新时代”为主题的读书活动.校德育处对本校七年级学生四月份“阅读该主题相关书籍的读书量”(下面简称:“读书量”)进行了随机抽样调査,并对所有随机抽取学生的“读书量”(单位:本)进行了统计,如图所示:根据以上信息,解答下列问题:(1)补全上面两幅统计图;填出本次所抽取学生四月份“读书量”的中位数为3本;(2)求本次所抽取学生四月份“读书量”的平均数;(3)已知该校七年级有600名学生,请你估计该校七年级学生中,四月份“读书量”为5本的学生人数.【分析】(1)先由读1本书的人数及其所占百分比可得总人数,再用总人数乘以读4本书的百分比可得其人数,用读3本书人数除以总人数可得其百分比,据此可补全统计图,最后根据中位数的定义可得答案;(2)根据加权平均数的定义求解可得;(3)用总人数乘以样本中四月份“读书量”为5本的学生人数所占比例可得答案.【解答】解:(1)∵被调查的总人数为3÷5%=60(人),∴读书4本的人数为60×20%=12(人),读3本书的人数所占百分比为×100%=35%,∵共有60个数据,其中位数为第30、31个数据的平均数,而第30、31个数据均为3本,∴中位数为=3(本),故答案为:3本.(2)本次所抽取学生四月份“读书量”的平均数为=3.6(本);(3)估计该校七年级学生中,四月份“读书量”为5本的学生人数为600×=60(人).19.(9分)如图,已知一次函数y1=ax+2与y2=x﹣1的图象交于点A(2,1).(1)求a的值;(2)若点C是直线y2=x﹣1上的点且AC=2,求点C的坐标;(3)直接写出y2>y1>0时,x的取值范围.【分析】(1)把A点坐标代入y1=ax+2可求出a的值;(2)设C(t,t﹣1),利用两点间的距离公式得到(t﹣2)2+(t﹣1﹣1)2=(2)2,然后解方程可得到点C的坐标;(3)先确定一次函数y1=﹣x+2与x轴的交点坐标为(4,0),然后结合函数图象,写出x轴上且直线y=x﹣1在直线y=﹣x+2上方所对应的自变量的范围即可.【解答】解:(1)把A(2,1)代入y1=ax+2得2a+2=1,解得a=﹣;(2)设C(t,t﹣1),∵A(2,1),AC=2,∴(t﹣2)2+(t﹣1﹣1)2=(2)2,解得t1=0,t2=4,∴点C的坐标为(0,﹣1)或(4,3);(3)当y=0时,﹣x+2=0,解得x=4,∴一次函数y1=﹣x+2与x轴的交点坐标为(4,0),∴当2<x<4时,y2>y1>0.20.(9分)如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.(1)求证:四边形BCEF是平行四边形;(2)若∠DEF=90°,DE=8,EF=6,当AF为时,四边形BCEF是菱形.【分析】(1)由AB=DE,∠A=∠D,AF=DC,易证得△ABC≌DEF(SAS),即可得BC=EF,且BC∥EF,即可判定四边形BCEF是平行四边形;(2)由四边形BCEF是平行四边形,可得当BE⊥CF时,四边形BCEF是菱形,所以连接BE,交CF与点G,由三角形DEF的面积求出EG的长,根据勾股定理求出FG的长,则可求出答案.【解答】(1)证明:∵AF=DC,∴AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴BC=EF,∠ACB=∠DFE,∴BC∥EF,∴四边形BCEF是平行四边形;(2)解:如图,连接BE,交CF于点G,∵四边形BCEF是平行四边形,∴当BE⊥CF时,四边形BCEF是菱形,∵∠DEF=90°,DE=8,EF=6,∴DF===10,∴S△DEF=EF×DE,∴EG==,∴FG=CG===,∴AF=CD=DF﹣2FG=10﹣=.故答案为:.21.(10分)某营业厅销售3部A型号手机和2部B型号手机的营业额为10800元,销售4部A型号手机和1部B型号手机的营业额为10400元.(1)求每部A型号手机和B型号手机的售价;(2)该营业厅计划一次性购进两种型号手机共50部,其中B型号手机的进货数量不超过A型号手机数量的3倍.已知A型手机和B型手机的进货价格分别为1500元/部和1800元/部,设购进A型号手机a部,这50部手机的销售总利润为W元.①求W关于a的函数关系式;②该营业厅购进A型号和B型号手机各多少部时,才能使销售总利润最大,最大利润为多少元?【分析】(1)根据3部A型号手机和2部B型号手机营业额10800元,4部A型号手机和1部B型号手机营业额10400元,构造二元一次方程组求解即可;(2)①根据:每类手机利润=单部手机利润×部数,总利润=A型手机利润+B型手机利润,得函数关系式.注意a的取值范围.②根据①的关系式,利用一元函数的性质得出结论.【解答】解:(1)设每部A型号手机的售价为x元,每部B型号手机的售价为y元.由题意,得解得(2)①由题意,得w=(2000﹣1500)a+(2400﹣1800)(50﹣a),即w=30000﹣100a,又∵50﹣a≤3a∴a≥∴w关于a的函数关系式为w=30000﹣100a(a≥);②w关于a的函数关系式为w=30000﹣100a,∵k=﹣100<0,∴w随a的增大而减小,又∵a只能取正整数,∴当a=13时,总利润w最大,最大利润w=30000﹣100×13=2870050﹣a=37答:该营业厅购进A型号手机13部,B型号手机37部时,销售总利润最大,最大利润为28700元22.(10分)已知,在△ABC中,∠BAC=90°,∠ABC=45°,D为直线BC上一动点(不与点B,C重合),以AD为边作正方形ADEF,连接CF.(1)如图1,当点D在线段BC上时,BC与CF的位置关系是BC⊥CF,BC、CF、CD三条线段之间的数量关系为CF+CD=BC;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请猜想BC与CF的位置关系BC,CD,CF三条线段之间的数量关系并证明;(3)如图3,当点D在线段BC的反向延长线上时,点A,F分别在直线BC的两侧,其他条件不变.若正方形ADEF的对角线AE,DF相交于点O,OC=,DB=5,则△ABC的面积为.(直接写出答案)【分析】(1)△ABC是等腰直角三角形,利用SAS即可证明△BAD≌△CAF,从而证得CF=BD,据此即可证得;(2)同(1)相同,利用SAS即可证得△BAD≌△CAF,从而证得BD=CF,即可得到CF﹣CD=BC;(3)先证明△BAD≌△CAF,进而得出△FCD是直角三角形,根据直角三角形斜边上中线的性质即可得到DF的长,再求出CD,BC即可解决问题.【解答】解:(1)如图1中,∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°﹣∠DAC,∠CAF=90°﹣∠DAC,∴∠BAD=∠CAF,∵在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴BD=CF,∠ABD=∠ACF=45°,∴∠FCB=∠ACF+∠ACB=90°,即CF⊥BC,∵BD+CD=BC,∴CF+CD=BC;故答案为:CF⊥BC,CF+CD=BC.(2)结论:CF⊥BC,CF﹣CD=BC.理由:如图2中,∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°﹣∠DAC,∠CAF=90°﹣∠DAC,∴∠BAD=∠CAF,∵在△BAD和△CAF中,,∴△BAD≌△CAF(SAS)∴BD=CF,∠ABD=∠ACF=45°,∴∠FCB=∠ACF+∠ACB=90°,即CF⊥BC,∴BC+CD=CF,∴CF﹣CD=BC;(3)如图3中,∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°﹣∠BAF,∠CAF=90°﹣∠BAF,∴∠BAD=∠CAF,∵在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴∠ACF=∠ABD,BD=CF=5,∵∠ABC=45°,∴∠ABD=135°,∴∠ACF=∠ABD=135°,∴∠FCD=135°﹣45°=90°,∴△FCD是直角三角形.∵OD=OF,∴DF=2OC=13,∴Rt△CDF中,CD===12,∴BC=DC﹣BD=12﹣5=7,∴AB=AC=,∴S△ABC=××=.23.(11分)如图,一次函数y1=x+n与x轴交于点B,一次函数y2=﹣x+m与y轴交于点C,且它们的图象都经过点D(1,﹣).(1)则点B的坐标为(,0),点C的坐标为(0,﹣1);(2)在x轴上有一点P(t,0),且t>,如果△BDP和△CDP的面积相等,求t的值;(3)在(2)的条件下,在y轴的右侧,以CP为腰作等腰直角△CPM,直接写出满足条件的点M的坐标.【分析】(1)根据待定系数法,可得函数解析式,分别令y=0和x=0,可得B、C点坐标;(2)根据面积的和差,可得关于t的方程,根据解方程,可得答案;(3)分情况讨论,注意是在y轴的右侧,有三个符合条件的点M,作辅助线,构建三角形全等,根据全等三角形的判定与性质,可得M的坐标.【解答】解:(1)将D(1,﹣)代入y=x+n,解得n=﹣3,即y=x﹣3,当y=0时,x﹣3=0.解得x=,即B点坐标为(,0);将(1,﹣)代入y=﹣x+m,解得m=﹣1,即y=﹣x﹣1,当x=0时,y=﹣1.即C点坐标为(0,﹣1);故答案为:(,0),(0,﹣1);(2)如图1,S△BDP=(t﹣)×|﹣|=,当y=0时,﹣x﹣1=0,解得x=﹣,即E点坐标为(﹣,0),S△CDP=S△DPE﹣S△CPE=(t+)×﹣×(t+)×|﹣1|=,由△BDP和△CDP的面积相等,得:=+,解得t=5.2;(3)以CP为腰作等腰直角△CPM,有以下两种情况:①如图2,当以点C为直角顶点,CP为腰时,点M1在y轴的左侧,不符合题意,过M2作M2A⊥y轴于A,∵∠PCM2=∠PCO+∠ACM2=∠PCO+∠OPC=90°,∴∠ACM2=∠OPC,∵∠POC=∠CAM2,PC=CM2,∴△POC≌△CAM2(AAS),∴PO=AC=5.2,OC=AM2=1,∴M2(1,﹣6.2);②如图3,当以点P为直角顶点,CP为腰时,过M4作M4E⊥x轴于E,同理得△COP≌△PEM4,∴OC=EP=1,OP=M4E=5.2,∴M4(6.2,﹣5.2),同理得M3(4.2,5.2);综上所述,满足条件的点M的坐标为(1,﹣6.2)或(6.2,﹣5.2)或(4.2,5.2).。

2019-2020学年海南省海口十四中八年级下学期期末数学试卷 (解析版)

2019-2020学年海南省海口十四中八年级下学期期末数学试卷 (解析版)

2019-2020学年海南省海口十四中八年级第二学期期末数学试卷一、选择题(共12小题).1.计算(﹣3)0的结果是()A.﹣3B.﹣1C.0D.12.约分的结果是()A.﹣1B.﹣2x C.D.3.计算﹣的结果是()A.a+b B.a﹣b C.﹣a﹣b D.14.二十一世纪,纳米技术将被广泛应用,纳米是长度计量单位,1纳米=0.000000001米,则5纳米可以用科学记数法表示为()A.5×109米B.50×10﹣8米C.5×10﹣9米D.5×10﹣8米5.小颖八年级第一学期的数学成绩分别为:平时90分,期中86分,期末95分.若按如图所显示的权重要求计算,则小颖该学期总评成绩为()A.88分B.91.8分C.92.8分D.93分6.点M(﹣4,3)关于x轴对称的点的坐标为()A.(3,﹣4)B.(4,﹣3)C.(﹣4,﹣3)D.(4,3)7.若反比例函数y=的图象经过点(2,3),则它的图象也一定经过的点是()A.(﹣3,﹣2)B.(2,﹣3)C.(3,﹣2)D.(﹣2,3)8.一次函数y=x﹣3的图象不经过哪个象限()A.第一象限B.第二象限C.第三象限D.第四象限9.小亮从家O,步行到公交站台B,等公交车去学校C,图中的折线表示小亮的行程s(千米)与所花时间t(分)之间的函数关系.下列说法错误的是()A.他家到公交车站台为1千米B.他等公交车的时间为6分钟C.他步行的速度100米/分钟D.公交车的速度是350米/分钟10.如图,矩形ABCD的两条对角线交于点O,若∠AOD=120°,AB=6,则AC等于()A.8B.10C.12D.1811.如图,菱形ABCD的边长为10,∠ABC=60°,则菱形ABCD的面积等于()A.24B.48C.100D.5012.如图所示,以正方形ABCD中AD边为一边向外作等边△ADE,则∠AEB=()A.10°B.15°C.20°D.12.5°二、填空题(每小题4分,共16分)13.若代数式的值等于0,则x=.14.如图,已知函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是.15.两个边长为10cm的正方形按如图所示的方式重叠在一起,点O是其中一个正方形的中心,则重叠部分的面积为cm2.16.两个反比例函数C1:y=和C2:y=在第一象限内的图象如图所示,设点P在C1上,PC⊥x轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,则四边形PAOB 的面积为.三、解答题(共48分)17.计算(1)﹣+﹣|1﹣|+(π﹣3)0(2)(m﹣1﹣)÷18.某工程队承接了3000米的修路任务,在修好600米后,引进了新设备,工作效率是原来的2倍,一共用30天完成了任务.求引进新设备前平均每天修路多少米?19.某校积极开展国防知识教育,九年级甲、乙两班分别选5名同学参加“国防知识”比赛,其预赛成绩如图所示:(1)根据如图填写下表:平均数中位数众数方差甲班8.5乙班8.510 1.6(2)根据以上数据可以判断哪个班的数据比较稳定.20.如图表示一艘轮船和一艘快艇沿相同路线从甲港出发到乙港行驶过程中路程随时间变化的图象(分别是正比例函数图象和一次函数图象).根据图象解答下列问题:(1)请分别求出表示轮船和快艇行驶过程的函数解析式(不要求写出自变量的取值范围);(2)轮船和快艇在途中(不包括起点和终点)行驶的速度分别是多少?(3)问快艇出发多长时间赶上轮船?21.已知:如图,在矩形ABCD中,对角线AC与BD相交于点O,过点C,D分别作BD,AC的平行线,两线相交于点P.(1)求证:四边形CODP是菱形;(2)当矩形ABCD的边AD,DC满足什么关系时,菱形CODP是正方形?请说明理由.22.如图,平行四边形ABCD的边AB在x轴上,点C的坐标为(﹣5,4),点D在y轴的正半轴上,经过点A的直线y=x﹣1与y轴交于点E,将直线AE沿y轴向上平移n (n>0)个单位长度后,得到直线l,直线l经过点C时停止平移.(1)求点A和点B的坐标以及直线l所对应的函数表达式.(2)若直线l交y轴于点F,连接CF,设△CDF的面积为S(这里规定:线段是面积为0的三角形),求S与n之间的函数关系式,并写出n的取值范围.参考答案一、选择题(共12小题).1.计算(﹣3)0的结果是()A.﹣3B.﹣1C.0D.1【分析】根据零指数幂:a0=1(a≠0)可得答案.解:(﹣3)0=1,故选:D.2.约分的结果是()A.﹣1B.﹣2x C.D.【分析】首先找出分子分母的公因式xy,再约去即可.解:=﹣=﹣,故选:C.3.计算﹣的结果是()A.a+b B.a﹣b C.﹣a﹣b D.1【分析】根据分式加减法法则计算即可求解.解:原式=,故选:C.4.二十一世纪,纳米技术将被广泛应用,纳米是长度计量单位,1纳米=0.000000001米,则5纳米可以用科学记数法表示为()A.5×109米B.50×10﹣8米C.5×10﹣9米D.5×10﹣8米【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:5纳米=5×10﹣9,故选:C.5.小颖八年级第一学期的数学成绩分别为:平时90分,期中86分,期末95分.若按如图所显示的权重要求计算,则小颖该学期总评成绩为()A.88分B.91.8分C.92.8分D.93分【分析】根据题意和题目中的数据、扇形统计图中的数据,可以计算出小颖该学期总评成绩,本题得以解决.解:90×10%+86×30%+95×60%=9+25.8+57=91.8(分),故选:B.6.点M(﹣4,3)关于x轴对称的点的坐标为()A.(3,﹣4)B.(4,﹣3)C.(﹣4,﹣3)D.(4,3)【分析】直接利用关于x轴对称,横坐标相同,纵坐标互为相反数进而得出答案.解:点M(﹣4,3)关于x轴对称的点的坐标为:(﹣4,﹣3).故选:C.7.若反比例函数y=的图象经过点(2,3),则它的图象也一定经过的点是()A.(﹣3,﹣2)B.(2,﹣3)C.(3,﹣2)D.(﹣2,3)【分析】根据反比例函数图象上点的坐标特征得到点的横纵坐标之积为6的点在反比例函数图象上,由此分别对各点进行判断.解:根据题意得k=2×3=6,所以反比例函数解析式为y=,∵﹣3×(﹣2)=6,2×(﹣3)=﹣6,3×(﹣2)=﹣6,﹣2×3=﹣6,∴点(﹣3,﹣2)在反比例函数y=的图象上.故选:A.8.一次函数y=x﹣3的图象不经过哪个象限()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据一次函数的性质一次项系数大于0,则函数一定经过一,三象限,常数项﹣3<0,则一定与y轴负半轴相交,据此即可判断.解:一次函数y=x﹣4的图象一定不经过第二象限.故选:B.9.小亮从家O,步行到公交站台B,等公交车去学校C,图中的折线表示小亮的行程s(千米)与所花时间t(分)之间的函数关系.下列说法错误的是()A.他家到公交车站台为1千米B.他等公交车的时间为6分钟C.他步行的速度100米/分钟D.公交车的速度是350米/分钟【分析】根据图象可以确定他离家8km用了多长时间,等公交车时间是多少,他步行的时间和对应的路程,公交车运行的时间和对应的路程,然后确定各自的速度.解:A、依题意得他家到公交车站台为1千米,故A选项正确;B、依题意在第10min开始等公交车,第16min结束,故他等公交车时间为6min,故B选项正确;C、他步行10min走了1000m,故他步行的速度为他步行的速度是100m/min,故C选项正确;D、公交车(30﹣16)min走了(8﹣1)km,故公交车的速度为7000÷14=500m/min,故D选项错误..故选:D.10.如图,矩形ABCD的两条对角线交于点O,若∠AOD=120°,AB=6,则AC等于()A.8B.10C.12D.18【分析】根据矩形的对角线互相平分且相等可得OA=OB=AC,根据邻补角的定义求出∠AOB,然后判断出△AOB是等边三角形,根据等边三角形的性质可得OA=AB,然后求解即可.解:∵矩形ABCD的两条对角线交于点O,∴OA=OB=AC,∵∠AOD=120°,∴∠AOB=180°﹣∠AOD=180°﹣120°=60°,∴△AOB是等边三角形,∴OA=AB=6,∴AC=2OA=2×6=12.故选:C.11.如图,菱形ABCD的边长为10,∠ABC=60°,则菱形ABCD的面积等于()A.24B.48C.100D.50【分析】连接AC交BD于O,由菱形的性质得AC⊥BD,BC=AB=10,OA=OC,证△ABC是等边三角形,得AC=AB=10,OA=OC=5,由勾股定理求出OB=5,则BD=2OB=10,由菱形面积公式即可得出答案.解:连接AC交BD于O,如图:∵四边形ABCD是菱形,边长为10,∴AC⊥BD,BC=AB=10,OA=OC,∵∠ABC=60°,∴△ABC是等边三角形,∴AC=AB=10,OA=OC=5,∴OB===5,∴BD=2OB=10,∴菱形ABCD的面积=AC×BD=×10×10=50;故选:D.12.如图所示,以正方形ABCD中AD边为一边向外作等边△ADE,则∠AEB=()A.10°B.15°C.20°D.12.5°【分析】根据正方形性质求出AB=AD,∠BAD=90°,根据等边三角形的性质得出∠EAD=60°,AD=AE=AB,推出∠ABE=∠AEB,根据三角形的内角和定理求出即可.解:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,∵三角形ADE是等边三角形,∴∠EAD=60°,AD=AE=AB,∴∠ABE=∠AEB,∵∠ABE+∠AEB+∠BAE=180°,∴∠AEB=×(180°﹣90°﹣60°)=15°,故选:B.二、填空题(每小题4分,共16分)13.若代数式的值等于0,则x=﹣3.【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.解:由题意可得:x2﹣9=0且2x﹣6≠0,解得x=﹣3,故答案为:﹣3.14.如图,已知函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是x>﹣2.【分析】函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),求不等式3x+b>ax ﹣3的解集,就是看函数在什么范围内y=3x+b的图象对应的点在函数y=ax﹣3的图象上面.解:从图象得到,当x>﹣2时,y=3x+b的图象对应的点在函数y=ax﹣3的图象上面,∴不等式3x+b>ax﹣3的解集为:x>﹣2.故答案为:x>﹣2.15.两个边长为10cm的正方形按如图所示的方式重叠在一起,点O是其中一个正方形的中心,则重叠部分的面积为25cm2.【分析】连接OA、OD,证明OAM≌△ODN,得阴影部分的面积等于△OAD的面积,再由△OAD的面积与正方形ABCD的面积的关系求得结果.解:如图,连接OA、OD,则∠AOD=∠GOE=90°,∴∠AOM=∠DON,∵ABCD是正方形,O为正方形ABCD的中心,∴OA=OD,∠OAM=∠ODN=45°,在△OAM和△ODN中,,∴△OAM≌△ODN(ASA),∴S△OAM=S△ODN,∴S阴影=S△ODM+S△ODN=S△OAM+S△ODM=S△OAD,=S正方形ABCD=×102=25(cm2),故答案是:25.16.两个反比例函数C1:y=和C2:y=在第一象限内的图象如图所示,设点P在C1上,PC⊥x轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,则四边形PAOB 的面积为1.【分析】根据反比函数比例系数k的几何意义得到S△AOC=S△BOD=|k|,S矩形PCOD=|2|=2,然后利用矩形面积分别减去两个三角形的面积即可得到四边形PAOB的面积.解:∵PC⊥x轴,PD⊥y轴,∴S△AOC=S△BOD=|k|=,S矩形PCOD=|2|=2,∴四边形PAOB的面积=2﹣2•=1.三、解答题(共48分)17.计算(1)﹣+﹣|1﹣|+(π﹣3)0(2)(m﹣1﹣)÷【分析】(1)根据实数的运算法则即可求出答案.(2)根据分式的运算法则即可求出答案.解:(1)原式=4﹣4﹣3﹣(﹣1)+1=﹣3﹣+1+1=﹣1﹣.(2)原式=÷=•=.18.某工程队承接了3000米的修路任务,在修好600米后,引进了新设备,工作效率是原来的2倍,一共用30天完成了任务.求引进新设备前平均每天修路多少米?【分析】求的是新工效,工作总量为3000,一定是根据工作时间来列等量关系.本题的关键描述语是:“一共用30天完成了任务”;等量关系为:600米所用时间+剩余米数所用时间=30.解:设引进新设备前平均每天修路x米.根据题意,得:.解得:x=60.经检验:x=60是原方程的解,且符合题意.答:引进新设备前平均每天修路60米.19.某校积极开展国防知识教育,九年级甲、乙两班分别选5名同学参加“国防知识”比赛,其预赛成绩如图所示:(1)根据如图填写下表:平均数中位数众数方差甲班8.58.58.50.7乙班8.5810 1.6(2)根据以上数据可以判断哪个班的数据比较稳定.【分析】(1)根据平均数和众数的概念求出甲的平均数与众数,根据方差的计算公式求出甲的方差;(2)根据方差的性质解答.解:(1)甲的平均数为=8.5,众数为:8.5,方差为:[(8.5﹣8.5)2+(7.5﹣8.5)2+(8﹣8.5)2+(8.5﹣8.5)2+(10﹣8.5)2]=0.7,乙的中位数是8,(2)从方差看,甲班的方差小,所以甲班的成绩更稳定.20.如图表示一艘轮船和一艘快艇沿相同路线从甲港出发到乙港行驶过程中路程随时间变化的图象(分别是正比例函数图象和一次函数图象).根据图象解答下列问题:(1)请分别求出表示轮船和快艇行驶过程的函数解析式(不要求写出自变量的取值范围);(2)轮船和快艇在途中(不包括起点和终点)行驶的速度分别是多少?(3)问快艇出发多长时间赶上轮船?【分析】(1)可根据图中给出的信息,用待定系数法分别求出轮船与快艇的函数关系式.(2)可根据轮船与快艇到乙港时用的时间和走的路程,根据速度=路程÷时间,求出速度是多少.(3)当快艇追上轮船时两者走的路程相同,根据(1)求出的函数式,让两者的路程相等,即可得出时间的值.解:(1)设表示轮船行驶过程的函数式为y=kx.由图象知:当x=8时,y=160.∴8k=160,解得:k=20∴表示轮船行驶过程的函数式为y=20x.设表示快艇行驶过程的函数解析式为y=ax+b.由图象知:当x=2时,y=0;当x=6时,y=160∴,解得因此表示快艇行驶过程的函数解析式为y=40x﹣80;(2)由图象可知,轮船在8小时内行驶了160千米.快艇在4小时内行驶了160千米.故轮船在途中的行驶速度为160÷8=20(千米/时)快艇在途中行驶的速度为160÷4=40(千米/时);(3)设轮船出发x小时后快艇追上轮船.20x=40x﹣80,x=4,则x﹣2=2.答:快艇出发2小时后赶上轮船.21.已知:如图,在矩形ABCD中,对角线AC与BD相交于点O,过点C,D分别作BD,AC的平行线,两线相交于点P.(1)求证:四边形CODP是菱形;(2)当矩形ABCD的边AD,DC满足什么关系时,菱形CODP是正方形?请说明理由.【分析】(1)根据DP∥AC,CP∥BD,即可证出四边形CODP是平行四边形,由矩形的性质得出OC=OD,即可得出结论;(2)利用正方形的判定方法分析得出答案.【解答】(1)证明:∵DP∥AC,CP∥BD∴四边形CODP是平行四边形,∵四边形ABCD是矩形,∴BD=AC,OD=BD,OC=AC,∴OD=OC,∴四边形CODP是菱形;(2)解:当矩形ABCD的边AD=DC,菱形CODP是正方形,理由:∵四边形ABCD是矩形,∴AO=CO,又∵AD=DC,∴DO⊥AC,∴∠DOC=90°,∴菱形CODP是正方形.22.如图,平行四边形ABCD的边AB在x轴上,点C的坐标为(﹣5,4),点D在y轴的正半轴上,经过点A的直线y=x﹣1与y轴交于点E,将直线AE沿y轴向上平移n (n>0)个单位长度后,得到直线l,直线l经过点C时停止平移.(1)求点A和点B的坐标以及直线l所对应的函数表达式.(2)若直线l交y轴于点F,连接CF,设△CDF的面积为S(这里规定:线段是面积为0的三角形),求S与n之间的函数关系式,并写出n的取值范围.【分析】(1)令y=0,则x﹣1=0,求A(2,0),由平行四边形的性质可知AB=5,则B(﹣3,0),设经过点C时直线l的解析式为y=+k,把C的坐标代入,即可求得解析式;(2)易求E(0,﹣1),当0≤n≤5时,S=×4×(5﹣n)=10﹣2n;当5<n≤时,S=×4×(n﹣5)=2n﹣10.解:(1)令y=0,则x﹣1=0,x=2,∴A(2,0),∵C的坐标为(﹣5,4),∴AB=5,∴B(﹣3,0);∵直线AE沿y轴向上平移得到l,∴设直线l的经过点C时的解析式为y=+k,把C(﹣5,4)代入得,4=×(﹣5)+k,解得k=,∴当l到达C点时的解析式为y=x+;(2)∵将直线AE沿y轴向上平移n(n>0)个单位长度后,得到直线l:y=﹣1+n,此时l与y轴的交点为(0,n﹣1),∵C的坐标为(﹣5,4),∴D(0,4),由直线AE为y=x﹣1可知,E(0,﹣1),当0≤n≤5时,S=×4×(4﹣n+1)=10﹣2n;当5<n≤时,S=4×(n﹣5)=2n﹣10.。

2019-2020学年江苏省无锡市八年级(下)期末数学试卷 (解析版)

2019-2020学年江苏省无锡市八年级(下)期末数学试卷  (解析版)

2019-2020学年江苏省无锡市八年级(下)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分.)1.(3分)要使二次根式有意义,则实数x的取值范围是()A.x>0B.x>5C.x≥0D.x≥52.(3分)下列事件中属于必然事件()A.射击一次,中靶B.明天会下雨C.太阳从东边升起D.公鸡下蛋3.(3分)下列平面图形中是中心对称图形的为()A.B.C.D.4.(3分)下列性质中,菱形具有而平行四边形不一定具有()A.对角线互相平分B.两组对角相等C.对角线互相垂直D.两组对边平行5.(3分)若点(2,y1)(4,y2)都在函数y=﹣的图象上,则y1与y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.无法确定6.(3分)为了解某市6万名八年级学生每天做家庭作业所用的时间,从该市八年级学生中抽取1000名学生进行调查,下列说法正确的是()A.6万名八年级学生是总体B.其中的每名八年级学生每天做家庭作业所用的时间是个体C.所调查的1000名学生是总体的一个样本D.样本容量是1000名学生7.(3分)分式﹣可变形为()A.﹣B.C.﹣D.8.(3分)一次函数y=kx﹣k与反比例函数y=在同一直角坐标系中的图象可能是()A.B.C.D.9.(3分)如图,一次函数y=﹣x+3的图象与x轴、y轴分别交于点A、B,点C在x轴上,点D为平面内一点,且四边形ABCD为矩形,则点D的坐标为()A.(2,﹣3)B.(4,3)C.(﹣4,﹣)D.(,﹣3)10.(3分)如图,平面直角坐标系中,已知A(2,0),B(4,0),p为y轴正半轴上一个动点,将线段P A绕点P逆时针旋转90°,点A的对应点为Q,则线段BQ的最小值是()A.3B.5C.D.2二、填空题(共8小题,每小题3分,满分24分)11.(3分)若分式的值为0,则x的值为.12.(3分)我们把一个样本的40个数据分成4组,其中第1、2、3组的频数分别为6、12、14,则第4组的频率为.13.(3分)若1<x<3,则化简+|x﹣3|=.14.(3分)矩形ABCD中,AB=3,AD=4,M、N分别为BC、CD的中点,则MN的长为.15.(3分)如图,在平行四边形ABCD中,AB=5,AD=6,将▱ABCD沿AE翻折后,点B 恰好与点C重合,则折痕AE的长为.16.(3分)如图,在△ABC中,已知AB=AC,∠C═50°,将△ABC绕点B按逆时针方向旋转一定的角度后得到△DBE,若DE恰好经过点A,设BE与AC相交于点F,则∠AFB的度数为.17.(3分)如图,一次函数y=k1x+b与反比例函数y=的图象交于A、B两点,其横坐标分别为1和5,则关于x的不等式k1x+b﹣<0的解集是.18.(3分)如图,在矩形ABCD中,AB=5,E为边CD上一点,DE=2,将△BCE沿BE 折叠,点C落在F处,设BF交AD于点M,若∠MEB=45°,则BC的长为.三、解答题(共8小题,满分66分)19.(8分)(1)﹣+;(2)(2﹣)(2)﹣()2.20.(8分)(1)计算:+;(2)解方程:﹣5=.21.(6分)先化简,再求值:,其中a=﹣2,b=1.22.(8分)如图,已知△OAB中,OA=OB,分别延长AO、BO到点C、D.使得OC=AO,OD=BO,连接AD、DC、CB.(1)求证:四边形ABCD是矩形;(2)以OA、OB为一组邻边作▱AOBE,连接CE,若CE⊥BD,求∠AOB的度数.23.(6分)某地教研部门为了了解本地区学生在“停课不停学”在线学习期间的学习情况,进行了如下调查:要求每名学生在“优秀”、“良好”、“一般”和“较差”这四个选项中选择一项进行自我评价.调查组随机抽取了若干名学生的调查问卷进行统计并绘制了如下两幅不完整的统计图.请根据图中所给信息,解答下列问题:(1)在这次调查中,一共抽查了名学生;(2)在扇形统计图中,“良好”所对应的圆心角的度数为;(3)请将条形统计图补充完整.24.(10分)大浮杨梅是我市特色水果,古称“吴越佳果”.某水果店第一次用540元购进一批大浮杨梅,由于销售状况良好,该店又用1710元购进一批大浮杨梅,所购数量是第一次购进数量的3倍,但进货价每千克多了1元.(1)第一次所购大浮杨梅的进货价是每千克多少元?(2)该店以每千克30元销售这些大浮杨梅,在销售中,第一次购进的大浮杨梅有10%的损耗,第二次购进的大浮杨梅有15%的损耗.问:该水果店售完这两批杨梅共可获利多少元?25.(10分)如图,已知点A(2,4)、B(4,a)都在反比例函数y=的图象上.(1)求k和a的值;(2)以AB为一边在第一象限内作▱ABCD,若点C的横坐标为8,且▱ABCD的面积为10,求点D的坐标.26.(10分)如图,已知正方形ABCD的边长为6cm,E为边AB上一点且AE长为1cm,动点P从点B出发以每秒1cm的速度沿射线BC方向运动.把△EBP沿EP折叠,点B落在点B'处.设运动时间为t秒.(1)当t=时,∠B'PC为直角;(2)是否存在某一时刻t,使得点B'到直线AD的距离为3?若存在,请求出所有符合题意的t的值;若不存在,请说明理由.2019-2020学年江苏省无锡市八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.)1.(3分)要使二次根式有意义,则实数x的取值范围是()A.x>0B.x>5C.x≥0D.x≥5【分析】直接利用二次根式有意义的条件分析得出答案.【解答】解:∵二次根式有意义,∴x﹣5≥0,解得:x≥5.故选:D.2.(3分)下列事件中属于必然事件()A.射击一次,中靶B.明天会下雨C.太阳从东边升起D.公鸡下蛋【分析】直接利用随机事件以及必然事件、不可能事件的定义分别分析得出答案.【解答】解:A、射击一次,中靶,属于随机事件,不合题意;B、明天会下雨,属于随机事件,不合题意;C、太阳从东边升起,属于必然事件,符合题意;D、公鸡下蛋,属于不可能事件,不合题意;故选:C.3.(3分)下列平面图形中是中心对称图形的为()A.B.C.D.【分析】根据中心对称图形的定义判断即可.【解答】解:A、是中心对称图形,符合题意;B、不是中心对称图形,不合题意;C、不是中心对称图形,不合题意;D、不是中心对称图形,不合题意;故选:A.4.(3分)下列性质中,菱形具有而平行四边形不一定具有()A.对角线互相平分B.两组对角相等C.对角线互相垂直D.两组对边平行【分析】根据平行四边形的性质和菱形的性质对各选项进行判断即可.【解答】解:A、菱形、平行四边形的对角线互相平分,故A选项不符合题意;B、菱形、平行四边形的两组对角分别相等,故B选项不符合题意;C、菱形的对角线互相垂直平分,平行四边形的对角线互相平分,故C选项符合题意;D、菱形、平行四边形的两组对边分别平行,故D选项不符合题意;故选:C.5.(3分)若点(2,y1)(4,y2)都在函数y=﹣的图象上,则y1与y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.无法确定【分析】根据函数的解析式和反比例函数的性质得出函数y=﹣的图象,在每个象限内,y随x的增大而增大,再比较即可.【解答】解:∵y=﹣中年k=﹣3<0,∴函数y=﹣的图象,在每个象限内,y随x的增大而增大,∵点(2,y1)(4,y2)都在函数y=﹣的图象上,2<4,∴y1<y2,故选:B.6.(3分)为了解某市6万名八年级学生每天做家庭作业所用的时间,从该市八年级学生中抽取1000名学生进行调查,下列说法正确的是()A.6万名八年级学生是总体B.其中的每名八年级学生每天做家庭作业所用的时间是个体C.所调查的1000名学生是总体的一个样本D.样本容量是1000名学生【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:A、该校八年级全体学生每天做家庭作业所用的时间是总体,故A不符合题意;B、其中的每名八年级学生每天做家庭作业所用的时间是个体,故B符合题意;C、从中抽取的1000名学生每天做家庭作业所用的时间是总体的一个样本,故C不符合题意;D、样本容量是1000,故D不符合题意;故选:B.7.(3分)分式﹣可变形为()A.﹣B.C.﹣D.【分析】先提取﹣1,再根据分式的符号变化规律得出即可.【解答】解:﹣=﹣=,故选:D.8.(3分)一次函数y=kx﹣k与反比例函数y=在同一直角坐标系中的图象可能是()A.B.C.D.【分析】分k>0及k<0两种情况考虑,根据一次函数图象与系数的关系、反比例函数的图象对照四个选项即可得出结论.【解答】解:当k>0时,一次函数y=kx﹣k的图象过一、三、四象限,反比例函数y=的图象在一、三象限,当k<0时,一次函数y=kx﹣k的图象过一、二、四象限,反比例函数y=的图象在二、四象限,∴A、C、D不符合题意,B符合题意;故选:B.9.(3分)如图,一次函数y=﹣x+3的图象与x轴、y轴分别交于点A、B,点C在x轴上,点D为平面内一点,且四边形ABCD为矩形,则点D的坐标为()A.(2,﹣3)B.(4,3)C.(﹣4,﹣)D.(,﹣3)【分析】利用一次函数图象上点的坐标特征可求出点A,B的坐标,进而可得出OA,OB 的长,由四边形ABCD为矩形可得出∠ABC=90°,结合同角的余角相等可得出∠OBC =∠OAB,结合∠BOC=∠AOB=90°可得出△BOC∽△AOB,利用相似三角形的性质可求出OC的长,进而可得出点C的坐标,再利用矩形的性质(对角线互相平分),即可求出点D的坐标.【解答】解:当x=0时,y=﹣×0+3=3,∴点B的坐标为(0,3),OB=3;当y=0时,﹣x+3=0,解得:x=4,∴点A的坐标为(4,0),OA=4.∵四边形ABCD为矩形,∴∠ABC=90°.∵∠OAB+∠OBA=90°,∠OBA+∠OBC=90°,∴∠OBC=∠OAB,又∵∠BOC=∠AOB=90°,∴△BOC∽△AOB,∴=,即=,∴OC=,∴点C的坐标为(﹣,0).又∵四边形ABCD为矩形,A(4,0),B(0,3),C(﹣,0),∴点D的坐标为(4﹣﹣0,0+0﹣3),即(,﹣3).故选:D.10.(3分)如图,平面直角坐标系中,已知A(2,0),B(4,0),p为y轴正半轴上一个动点,将线段P A绕点P逆时针旋转90°,点A的对应点为Q,则线段BQ的最小值是()A.3B.5C.D.2【分析】设P(0,m),则OP=m,通过证得△AOP≌△PMQ求得Q的坐标,然后根据勾股定理得到BQ=,即可求得当m=1时,BQ有最小值3.【解答】解:∵A(2,0),∴OA=2,设P(0,m),则OP=m,作QM⊥y轴于M,∵∠APQ=90°,∴∠OAP+∠APO=∠APO+∠QPM,∴∠OAP=∠QPM,∵∠AOP=∠PMQ=90°,P A=PQ,∴△AOP≌△PMQ(AAS),∴MQ=OP=m,PM=OA=2,∴Q(m,m+2),∵B(4,0),∴BQ==,∴当m=1时,BQ有最小值3,故选:A.二、填空题(共8小题,每小题3分,满分24分)11.(3分)若分式的值为0,则x的值为﹣3.【分析】分式的值为零,分子等于零,且分母不等于零.【解答】解:由题意,知x+3=0且x﹣1≠0.解得x=﹣3.故答案是:﹣3.12.(3分)我们把一个样本的40个数据分成4组,其中第1、2、3组的频数分别为6、12、14,则第4组的频率为0.2.【分析】首先计算出第4组的频数,然后再计算出第4组的频率即可.【解答】解:第4组的频数为:40﹣6﹣12﹣14=8,频率为:=0.2,故答案为:0.2.13.(3分)若1<x<3,则化简+|x﹣3|=2.【分析】直接利用二次根式的性质结合绝对值的性质化简得出答案.【解答】解:∵1<x<3,∴+|x﹣3|=x﹣1+3﹣x=2.故答案为:2.14.(3分)矩形ABCD中,AB=3,AD=4,M、N分别为BC、CD的中点,则MN的长为2.5.【分析】连接BD,由矩形的性质得CD=AB=3,BC=AD=4,∠C=90°,由勾股定理得BD=5,证MN是△BCD的中位线,由三角形中位线定理即可得出答案.【解答】解:连接BD,如图:∵四边形ABCD是矩形,∴CD=AB=3,BC=AD=4,∠C=90°,∴BD===5,∵M、N分别为BC、CD的中点,∴MN是△BCD的中位线,∴MN=BD=2.5;故答案为:2.5.15.(3分)如图,在平行四边形ABCD中,AB=5,AD=6,将▱ABCD沿AE翻折后,点B 恰好与点C重合,则折痕AE的长为4.【分析】由点B恰好与点C重合,可知AE垂直平分BC,根据勾股定理计算AE的长即可.【解答】解:∵翻折后点B恰好与点C重合,∴AE⊥BC,BE=CE,∵BC=AD=6,∴BE=3,∴AE=.故答案为:4.16.(3分)如图,在△ABC中,已知AB=AC,∠C═50°,将△ABC绕点B按逆时针方向旋转一定的角度后得到△DBE,若DE恰好经过点A,设BE与AC相交于点F,则∠AFB的度数为70°.【分析】直接利用等腰三角形的性质结合旋转的性质得出∠BAD=∠CBE=20°,进而利用三角形的外角得出答案.【解答】解:∵AB=AC,∠C═50°,∴∠ABC=∠C=50°,∠BAC=80°,∵将△ABC绕点B按逆时针方向旋转一定的角度后得到△DBE,DE恰好经过点A,∴BD=AB,∴∠D=∠BAD=∠BAC=80°,∴∠BAD=∠CBE=20°,∴∠AFB=∠CBF+∠C=20°+50°=70°.故答案为:70°.17.(3分)如图,一次函数y=k1x+b与反比例函数y=的图象交于A、B两点,其横坐标分别为1和5,则关于x的不等式k1x+b﹣<0的解集是x<0或1<x<5.【分析】根据k1x+b﹣<0,则反比例函数大于一次函数,进而结合图象得出答案.【解答】解:如图所示:关于x的不等式k1x+b﹣<0的解集是:x<0或1<x<5.故答案为:x<0或1<x<5.18.(3分)如图,在矩形ABCD中,AB=5,E为边CD上一点,DE=2,将△BCE沿BE 折叠,点C落在F处,设BF交AD于点M,若∠MEB=45°,则BC的长为15.【分析】过M点作MN⊥BE,交BC于点N,设BC=x,根据折叠的性质,结合矩形的性质,通过证明△EMD≌△NEC可表示AM=x﹣3,BM=x﹣2,再根据勾股定理列式计算即可求解.【解答】解:过M点作MN⊥BE,交BC于点N,由折叠可知:△MNE和△BMN均为等腰三角形,∴BM=BN,ME=NE,∵∠MEB=45°,∴∠MEN=90°,∴∠MED+∠NEC=90°,在矩形ABCD中,∠D=∠C=90°,CD=AB=5,∴∠MED+∠EMD=90°,∴∠EMD=∠NEC,∴△EMD≌△NEC,∴DE=CN,MD=EC,∵DE=2,∴CN=2,MD=EC=3,设BC=x,则AD=x,∴AM=x﹣3,BM=BN=x﹣2,在Rt△ABM中,AB2+AM2=BM2,即52+(x﹣3)2=(x﹣2)2,解得x=15,故BC的长为15.三、解答题(共8小题,满分66分)19.(8分)(1)﹣+;(2)(2﹣)(2)﹣()2.【分析】(1)直接化简二次根式进而合并得出答案;(2)直接利用乘法公式进而计算得出答案.【解答】解:(1)原式=5﹣3+=2+2=4;(2)原式=(2)2﹣()2﹣2=8﹣3﹣2=3.20.(8分)(1)计算:+;(2)解方程:﹣5=.【分析】(1)先通分,再因式分解,约分后即可求解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)+=+==;(2)﹣5=,去分母得:4+x﹣5﹣(x﹣1)=2x,解得:x=,经检验,x=是分式方程的解.21.(6分)先化简,再求值:,其中a=﹣2,b=1.【分析】首先算括号里面的加法(通分),再算除法,把除法变成乘法(除以一个数等于乘以它的倒数)再把分式的分子、分母分解因式约分,化成最简分式即可.【解答】解:,=,=,=,当a=﹣2,b=1时,原式=.22.(8分)如图,已知△OAB中,OA=OB,分别延长AO、BO到点C、D.使得OC=AO,OD=BO,连接AD、DC、CB.(1)求证:四边形ABCD是矩形;(2)以OA、OB为一组邻边作▱AOBE,连接CE,若CE⊥BD,求∠AOB的度数.【分析】(1)根据已知条件推出四边形ABCD是平行四边形,求得AO=AC,BO=BD,等量代换得到AC=BD,于是得到四边形ABCD是矩形;(2)连接OE,设EC与BD交于F,根据垂直的定义得到∠CFD=90°,根据平行四边形的性质得到AE∥BO,根据直角三角形的性质得到EO=AO,推出△AEO是等边三角形,于是得到结论.【解答】(1)证明:∵OC=AO,OD=BO,∴四边形ABCD是平行四边形,∴AO=AC,BO=BD,∵AO=BO,∴AC=BD,∴四边形ABCD是矩形;(2)解:连接OE,设EC与BD交于F,∵EC⊥BD,∴∠CFD=90°,∵四边形AEBO是平行四边形,∴AE∥BO,∴∠AEC=∠CFD=90°,即△AEC是直角三角形,∵EO是Rt△AEC中AC边上的中线,∴EO=AO,∵四边形AEBO是平行四边形,∴OB=AE,∵OA=OB,∴AE=OA=OE,∴△AEO是等边三角形,∴∠OAE=60°,∵∠OAE+∠AOB=180°,∴∠AOB=120°.23.(6分)某地教研部门为了了解本地区学生在“停课不停学”在线学习期间的学习情况,进行了如下调查:要求每名学生在“优秀”、“良好”、“一般”和“较差”这四个选项中选择一项进行自我评价.调查组随机抽取了若干名学生的调查问卷进行统计并绘制了如下两幅不完整的统计图.请根据图中所给信息,解答下列问题:(1)在这次调查中,一共抽查了580名学生;(2)在扇形统计图中,“良好”所对应的圆心角的度数为108°;(3)请将条形统计图补充完整.【分析】(1)由“优秀”的人数及其所占百分比可得调查的总人数;(2)由360°乘以学习效果“良好”的学生人数所占的比例即可;(3)求出“一般”的学生人数为82名,从而补全条形统计图.【解答】解:(1)这次活动共抽查的学生人数为232÷40%=580(名);故答案为:580;(2)在扇形统计图中,“良好”所对应的圆心角的度数为360°×=108°;故答案为:108°;(3)“一般”的学生人数为580﹣92﹣174﹣232=82(名),将条形统计图补充完整如图:24.(10分)大浮杨梅是我市特色水果,古称“吴越佳果”.某水果店第一次用540元购进一批大浮杨梅,由于销售状况良好,该店又用1710元购进一批大浮杨梅,所购数量是第一次购进数量的3倍,但进货价每千克多了1元.(1)第一次所购大浮杨梅的进货价是每千克多少元?(2)该店以每千克30元销售这些大浮杨梅,在销售中,第一次购进的大浮杨梅有10%的损耗,第二次购进的大浮杨梅有15%的损耗.问:该水果店售完这两批杨梅共可获利多少元?【分析】(1)设第一次所购大浮杨梅的进货价是每千克x元,由题意得等量关系:第一次购进大浮杨梅数量×3=第二次购进大浮杨梅数量,根据等量关系,列出方程,再解即可;(2)首先计算出两次购进大浮杨梅的数量,然后再计算卖完后的总收入,然后再减去两次的总进价即可.【解答】解:(1)设第一次所购大浮杨梅的进货价是每千克x元,由题意得:×3=,解得:x=18,经检验:x=18是原分式方程的解,且符合题意,答:第一次所购大浮杨梅的进货价是每千克18元;(2)540÷18=30,30×3=90,30×(30×90%+90×85%)﹣540﹣1710=855(元),答:该水果店售完这两批杨梅共可获利855元.25.(10分)如图,已知点A(2,4)、B(4,a)都在反比例函数y=的图象上.(1)求k和a的值;(2)以AB为一边在第一象限内作▱ABCD,若点C的横坐标为8,且▱ABCD的面积为10,求点D的坐标.【分析】(1)把点A坐标代入反比例函数y=求得k的值,将点B坐标代入反比例函数的解析式求出a的值即可;(2)由题意得点D的横坐标为6,设D(6,m),连接BD,过A作EF∥y轴,作DE ⊥EF,BF⊥EF,则E(2,m),F(2,2),由S梯形DEFB﹣S△DEA﹣S△AFB=S△ABD得出方程,解方程即可.【解答】解:(1)∵点A(2,4)在反比例函数y=的图象上,∴k=2×4=8,∵B(4,a)在反比例函数y=的图象上,∴a==2;(2)∵A(2,4),B(4,2),点C的横坐标为8,∴点D的横坐标为6,设D(6,m),连接BD,过A作EF∥y轴,作DE⊥EF,BF⊥EF,如图所示:则E(2,m),F(2,2),∵▱ABCD的面积为10,∴S△ABD=×10=5,∵S梯形DEFB﹣S△DEA﹣S△AFB=S△ABD,或S梯形DEFB+S△DEA﹣S△AFB=S△ABD,∴(2+4)(m﹣2)﹣×4×(m﹣4)﹣×2×2=5,或(2+4)(m﹣2)+×4×(4﹣m)﹣×2×2=5,解得:m=5,∴点D的坐标为:(6,5).26.(10分)如图,已知正方形ABCD的边长为6cm,E为边AB上一点且AE长为1cm,动点P从点B出发以每秒1cm的速度沿射线BC方向运动.把△EBP沿EP折叠,点B落在点B'处.设运动时间为t秒.(1)当t=5时,∠B'PC为直角;(2)是否存在某一时刻t,使得点B'到直线AD的距离为3?若存在,请求出所有符合题意的t的值;若不存在,请说明理由.【分析】(1)根据当∠B'PC=90°时,∠BPB'=90°,即可得到△BEP为等腰直角三角形,进而得到BP=BE=5cm,再根据点P从点B出发以每秒1cm的速度沿射线BC方向运动,即可得到t的值;(2)过B'作MN∥AB,交AD,BC于点M,N,过E作EH∥AD,交MN于H,进而得出四边形ABNM是矩形,四边形AEHM是矩形.再分两种情况进行讨论:①如图1,若点B'在AD下方;②如图2,若点B'在AD上方,分别根据Rt△PB'N中,B'P2=PN2+B'N2,即可得到t的值为秒或15秒.【解答】解:(1)∵正方形ABCD的边长为6cm,E为边AB上一点且AE长为1cm,∴BE=5cm,当∠B'PC=90°时,∠BPB'=90°,∴由折叠可得,∠BPE=∠BPB'=45°,又∵∠B=90°,∴∠BEP=45°,∴BP=BE=5cm,∵点P从点B出发以每秒1cm的速度沿射线BC方向运动,∴t=5÷1=5(秒),故答案为:5;(2)存在,过B'作MN∥AB,交AD,BC于点M,N,过E作EH∥AD,交MN于H,∵AD∥BC,MN∥AB,∴四边形ABNM是平行四边形,又∵∠A=90°,∴四边形ABNM是矩形,同理可得:四边形AEHM是矩形.①如图1,若点B'在AD下方,则B'M=3cm,B'N=3cm,∵MH=AE=1cm,∴B'H=2cm,由折叠可得,EB'=EB=5cm,∴Rt△EB'H中,EH==(cm),∴BN=AM=EH=cm,∵BP=t,∴PB'=t,PN=﹣t,∵Rt△PB'N中,B'P2=PN2+B'N2,∴t2=(﹣t)2+32,解得t=.②如图2,若点B'在AD上方,则B'M=3cm,B'N=9cm,同理可得,EH=3cm,∵BP=t,∴B'P=t,PN=t﹣3,∵Rt△PB'N中,B'P2=PN2+B'N2,∴t2=(t﹣3)2+92,解得t=15.综上所述,t的值为秒或15秒.。

2019-2020学年天津市南开区八年级下期末数学试卷((有答案))(已审阅)

2019-2020学年天津市南开区八年级下期末数学试卷((有答案))(已审阅)

天津市南开区下学期期末考试八年级数学试卷本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分 试卷满分100分.考试时间100分钟。

第Ⅰ卷(选择题共36分)注意事项:答第Ⅰ卷前,考生务必先将自己的姓名、准考证号,用蓝、黑色墨水的钢笔或圆珠笔填写在“答题卡”上;用2B 铅笔将考试科目对应的信息点涂黑;在指定位置粘贴考试用条形码.一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的) (1)方程x x 22=的解是(A)2=x (B)2=x (C)0=x (D)2=x 或0=x 【专题】计算题.【分析】方程移项后,分解因式利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解. 【解答】解:方程x 2=2x , 移项得:x 2-2x=0,分解因式得:x (x-2)=0, 可得x=0或x-2=0, 解得:x 1=0,x 2=2. 故选:D .【点评】此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键.(2)下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数x 与方差2s :根据表中数据要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择 (A)甲 (B)乙 (C)丙 (D)丁【分析】根据方差和平均数的意义找出平均数大且方差小的运动员即可.【解答】解:∵甲的方差是3.5,乙的方差是3.5,丙的方差是15.5,丁的方差是16.5, ∴S甲2=S乙2<S丙2<S丁2,∴发挥稳定的运动员应从甲和乙中选拔, ∵甲的平均数是561,乙的平均数是560, ∴成绩好的应是甲,∴从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择甲; 故选:A .【点评】本题考查了方差和平均数.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.(3)用配方法解关于x 的方程0242=+-x x ,此方程可变形为 (A)()622=-x (B)()622=+x (C)()222=-x (D)()222=+x 【专题】压轴题.【分析】根据配方法的方法,先把常数项移到等号右边,再在两边同时加上一次项系数一半的平方,最后将等号左边配成完全平方式,利用直接开平方法就可以求解了.【解答】解:移项,得x2-4x=-2在等号两边加上4,得x2-4x+4=-2+4∴(x-2)2=2.故C答案正确.故选:C.【点评】本题是一道一元二次方程解答题,考查了解一元二次方程的基本方法--配方法的运用,解答过程注意解答一元二次方程配方法的步骤.(4)点(1,m)为直线1y上一点,则OA的长度为2-=x(A)1 (B)3(C)2(D)5【专题】探究型.【分析】根据题意可以求得点A的坐标,从而可以求得OA的长.【解答】解:∵点A(1,m)为直线y=2x-1上一点,∴m=2×1-1,解得,m=1,∴点A的坐标为(1,1),故选:C.【点评】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质和勾股定理解答.(5)已知一次函数3y,且y随x的增大而减小,那么它的图象经过+=kx(A)第一、二、三象限(B)第一、二、四象限(C)第一、三、四象限(D)第二、三、四象限【专题】函数及其图象.【分析】先根据一次函数的性质判断出k的取值范围,再根据一次函数的图象与系数的关系即可得出结论.【解答】解:∵一次函数y=kx+3,y随x的增大而减小,∴k<0,∵b=3>0,∴此函数的图象经过一、二、四象限.故选:B.【点评】本题考查的是一次函数的图象与系数的关系,熟知一次函数y=kx+b(k≠0)中,k<0,b>0时函数的图象在一、二、四象限是解答此题的关键.(6)已知四边形ABCD是平行四边形,下列结论中不正确的是(A)当AB=BC时,四边形ABCD是菱形(B)当AC⊥BD时,四边形ABCD是菱形(C)当∠ABC=90°时,四边形ABCD是矩形(D)当AC=BD时,四边形ABCD是正方形.【专题】多边形与平行四边形.【分析】根据邻边相等的平行四边形是菱形;根据所给条件可以证出邻边相等;根据有一个角是直角的平行四边形是矩形;根据对角线相等的平行四边形是矩形.【解答】解:A、根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC时,它是菱形,故本选项错误;B、根据对角线互相垂直的平行四边形是菱形知:当AC⊥BD时,四边形ABCD是菱形,故本选项错误;C 、根据有一个角是直角的平行四边形是矩形知:当∠ABC=90°时,四边形ABCD 是矩形,故本选项错误;D 、根据对角线相等的平行四边形是矩形可知:当AC=BD 时,它是矩形,不是正方形,故本选项正确;综上所述,符合题意是D 选项; 故选:D .【点评】本题考查正方形的判定、菱形的判定、矩形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.(7)如图,数轴上点A 表示的数是-1,原点O 是线段AB 的中点,∠BAC=30,∠ABC=90°,以点A 为圆心,AC 长为半径画弧,交数轴于点D,则点D 表示的数是 (A)1332- (B)332 (C)334 (D)1334-【分析】首先求得AB 的长,然后在直角△ABC 中利用三角函数即可求得AC 的长,则AD=AC 即可求得,然后求得OD 即可. 【解答】解:∵点A 表示-1,O 是AB 的中点, ∴OA=OB=1, ∴AB=2,故选:D .【点评】本题考查了三角函数,在直角三角形中利用三角函数求得AC 的长是关键.(8)已知,如图,菱形ABCD 中,对角线AC 、BD 相交于点O,OE ∥CD 交BC 于点E,AD=6cm,则OE 的长为(A)6cm (B) 4cm (C)3cm (D)2cm【分析】由菱形ABCD 中,OE ∥DC ,可得OE 是△BCD 的中位线,又由AD=6cm ,根据菱形的性质,可得CD=6cm ,再利用三角形中位线的性质,即可求得答案. 【解答】解:∵四边形ABCD 是菱形, ∴CD=AD=6cm ,OB=OD , ∵OE ∥DC ,∴BE :CE=BO :DO , ∴BE=CE ,即OE 是△BCD 的中位线,故选:C .【点评】此题考查了菱形的性质以及三角形中位线的性质.注意证得OE 是△BCD 的中位线是解此题的关键.(9)如图,在△ABC 中,CE 平分∠ACB ,CF 平分∠ACD ,且EF ∥BC 交AC 于点M ,若CM=5,则22CF CE 等于(A)75 (B)100 (C)120 (D)125【分析】根据角平分线的定义推出△ECF 为直角三角形,然后根据勾股定理即可求得CE 2+CF 2=EF 2,进而可求出CE 2+CF 2的值. 【解答】解:∵CE 平分∠ACB ,CF 平分∠ACD ,∴△EFC 为直角三角形,又∵EF ∥BC ,CE 平分∠ACB ,CF 平分∠ACD , ∴∠ECB=∠MEC=∠ECM ,∠DCF=∠CFM=∠MCF , ∴CM=EM=MF=5,EF=10,由勾股定理可知CE 2+CF 2=EF 2=100. 故选:B .【点评】本题考查角平分线的定义,直角三角形的判定以及勾股定理的运用,解题的关键是首先证明出△ECF 为直角三角形.(10)某农机厂四月份生产零件50万个,第二季度共生产182万个.设该厂五、六月份平均每月的增长率为x ,那么符合题意的方程是(A)()1821502=+x (B)()()182150150502=++++x x (C)()()182215015050=++++x x (D)()1822150=+x 【专题】增长率问题;压轴题.【分析】主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),如果该厂五、六月份平均每月的增长率为x ,那么可以用x 分别表示五、六月份的产量,然后根据题意可得出方程.【解答】解:依题意得五、六月份的产量为50(1+x )、50(1+x )2, ∴50+50(1+x )+50(1+x )2=182. 故选:B .【点评】增长率问题,一般形式为a (1+x )2=b ,a 为起始时间的有关数量,b 为终止时间的有关数量.(11)如图,在R △ABC 中,∠ACB=90°,D 为斜边AB 的中点,动点P 从点B 出发,沿B→C→A 运动,如图(1)所示,设y S DPB △,点P 运动的路程为x ,若y 与x 之间的函数图象如图(2)所示,则a 的值为(A)3 (B)4 (C)5 (D)6【分析】根据已知条件和图象可以得到BC 、AC 的长度,当x=4时,点P 与点C 重合,此时△DPC 的面积等于△ABC 面积的一半,从而可以求出y 的最大值,即为a 的值.【解答】解:根据题意可得,BC=4,AC=7-4=3,当x=4时,点P 与点C 重合, ∵∠ACB=90°,点D 为AB 的中点,即a 的值为3,故选:A .(12)在平面直角坐标系中,已知点A(O,1),B(1,2),点P 在x 轴上运动,当点P 到A 、B 两点的距离之差的绝对值最大时,该点记为点P 1,当点P 到A 、B 两点的距离之和最小时,该点记为点P 2,以P 1P 2为边长的正方形的面积为 (A)1 (B)34(C)916(D)5 【专题】一次函数及其应用.【分析】由三角形两边之差小于第三边可知,当A 、B 、P 三点不共线时,|PA-PB|<AB ,又因为A (0,1),B (1,2)两点都在x 轴同侧,则当A 、B 、P 三点共线时,|PA-PB|=AB ,即|PA-PB|≤AB ,所以当点P 到A 、B 两点距离之差的绝对值最大时,点P 在直线AB 上.先运用待定系数法求出直线AB 的解析式,再令y=0,求出x 的值即可得到点P 1的坐标;点A 关于x 轴的对称点为A',求得直线A'B 的解析式,令y=0,即可得到点P 2的坐标,进而得到以P 1P 2为边长的正方形的面积. 【解答】解:由题意可知,当点P 到A 、B 两点距离之差的绝对值最大时,点P 在直线AB 上.设直线AB 的解析式为y=kx+b ,∴y=x+1,令y=0,则0=x+1, 解得x=-1.∴点P 1的坐标是(-1,0).∵点A 关于x 轴的对称点A'的坐标为(0,-1),设直线A'B的解析式为y=k'x+b',∵A'(0,-1),B(1,2),∴故选:C.【点评】本题考查了最短距离问题,待定系数法求一次函数的解析式及x轴上点的坐标特征.根据三角形两边之差小于第三边得出当点P在直线AB上时,P点到A、B两点距离之差的绝对值最大,是解题的关键.第Ⅱ卷(非选择题共64分)(二)填空题(本大题共6小题,每小题3分,共18分.请将答案直接填在答题纸中对应的横线上)(13)已知,正比例函数经过点(-1,2),该函数解析式为________________.【专题】函数及其图象.【分析】把点(-1,2)代入正比例函数的解析式y=kx,即可求出未知数的值从而求得其解析式;【解答】解:设正比例函数的解析式为y=kx(k≠0),∵图象经过点(-1,2),∴2=-k,此函数的解析式是:y=-2x;故答案为:y=-2x【点评】此题考查待定系数法确定函数关系式,此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.(14)直角三角形的一条直角边长是另一条直角边长的2倍,斜边长是105,则较短的直角边的长为___________.【专题】几何图形.【分析】根据边之间的关系,运用勾股定理,列方程解答即可.【解答】解:由题意可设两条直角边长分别为x,2x,解得x1=10,x2=-10舍去),所以较短的直角边长为10.故答案为:10【点评】本题考查了一元二次方程和勾股定理的应用,解题的关键是根据勾股定理得到方程,转化为方程问题.(15)一组数据1,2,1,0,2,a,若它们的众数为1,则这组数据的平均数为__________.【分析】根据众数为1,求出a的值,然后根据平均数的概念求解.【解答】解:∵众数为1,∴a=1,【点评】本题考查了众数和平均数的知识:一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和再除以数据的个数.(16)关于x的方程()0-xk有实数根,则k的取值范围是_________.+x+2132=【专题】常规题型.【分析】当k-3=0时,解一元一次方程可得出方程有解;当k-3≠0时,利用根的判别式△=16-4k≥0,即可求出k的取值范围.综上即可得出结论.【解答】解:①当k-3=0,即k=3时,方程为2x+1=0,②当k-3≠0,即k≠3时,△=22-4(k-3)=16-4k≥0,解得:k≤4且k≠3.综上即可得出k的取值范围为k≤4.故答案为k≤4.【点评】本题考查了根的判别式,分二次项系数为零和非零两种情况考虑是解题的关键.(17)已知,R△ABC中,∠C=90°,AC=3,BC=4,P为AB上任意一点,PF⊥AC于F,PE⊥BC于E,则EF的最小值是___________.【分析】根据已知得出四边形CEPF是矩形,得出EF=CP,要使EF最小,只要CP 最小即可,根据垂线段最短得出即可.【解答】解:连接CP,如图所示:∵∠C=90°,PF⊥AC于F,PE⊥BC于E,∴∠C=∠PFC=∠PEC=90°,∴四边形CEPF是矩形,∴EF=CP,要使EF最小,只要CP最小即可,当CP⊥AB时,CP最小,在Rt△ABC中,∠C=90°,AC=3,BC=4,由勾股定理得:AB=5,∴CP=2.4,即EF=2.4,故答案为:2.4.【点评】本题利用了矩形的性质和判定、勾股定理、垂线段最短的应用,解此题的关键是确定出何时,EF最短,题目比较好,难度适中.(18)如图,在平面直角坐标系xOy中,E(8,0),F(0,6)(Ⅰ)当G(4,8)时,∠FGE=_______度;(Ⅱ)在图中网格区域内找一点P,使∠FPE=90°,且四边形OEPF被过P点的一条直线PM分割成两部分后,可以拼成一个正方形,则P点坐标为________.(要求写出点P坐标,画出过点P的分割线PM,不必说明理由,不写画法)【分析】(1)先利用勾股定理分别计算三边长,再利用勾股定理的逆定理可得:∠FGE=90°;(2)构建全等三角形:△APF≌△MEP,构建P的位置,根据三角形全等得到正方形.【解答】解:(1)如图1,连接EF,由勾股定理得:FG2=22+42=20,GE2=42+82=80,EF2=62+82=100,∴FG2+GE2=EF2,∴∠FGE=90°,故答案为:90°;(2)如图2,过P作PM⊥x轴于M,当P(7,7),PM为分割线;根据格点的长度易得:△APF≌△MEP≌△BFP,∴∠APF=∠MEP,∵∠MEP+∠MPE=90°,∴∠APF+∠MPE=90°,即∠FPE=90°,四边形OEPF将△EPM剪下放在△BFP上,构建正方形BOMP;故答案为:(7,7).【点评】本题考查了三角形全等的性质和判定、勾股定理及其逆定理、正方形的判定,熟练掌握勾股定理及其逆定理是关键.三、解答题(本大题共6小题,共46分.解答应写出文字说明、演算步骤或推理过程(19)解方程(每小题4分,本题共8分)(Ⅰ)0122=--x x (Ⅱ)()041292=--x 【专题】方程与不等式.【分析】(Ⅰ)利用配方法即可解决问题; (Ⅱ)利用直接开方法即可解决问题;【点评】本题考查解一元二次方程,解题的关键是熟练掌握解二元一次方程的方法,属于中考常考题型. (20)(本题共7分)某中学在一次爱心捐款活动中,全体同学积极踊跃捐款.现抽查了九年级(1)班全班学生捐款情况,并绘制了如下的统计表和统计图:求:(Ⅰ)m=______;n=______;(Ⅱ)求学生捐款数目的众数、中位数和平均数; (Ⅲ)若该校有学生2500人,估计该校学生共捐款多少元?【专题】常规题型.【分析】(Ⅰ)把表格中的数据相加得出本次接受随机抽样调查的学生人数;利用50元,100元的捐款人数求得占总数的百分比得出m 、n 的数值即可; (Ⅱ)利用众数、中位数和平均数的意义和求法分别得出答案即可; (Ⅲ)利用求得的平均数乘总人数得出答案即可.【解答】解:(Ⅰ)本次接受随机抽样调查的学生人数为4+12+9+3+2=30人. 12÷30=40%,9÷30=30%,所以扇形统计图中的m=40,n=30; 故答案为:40,30;(Ⅱ)∵在这组数据中,50出现了12次,出现的次数最多, ∴学生捐款数目的众数是50元;∵按照从小到大排列,处于中间位置的两个数据都是50, ∴中位数为50元;这组数据的平均数=(20×4+50×12+100×9+150×3+200×2)÷30=2430÷30=81(元). (Ⅲ)根据题意得: 2500×81=202500元答:估计该校学生共捐款202500元.【点评】此题考查扇形统计图,用样本估计总体,众数、中位数、平均数的意义与求法,理解题意,从图表中得出数据以及利用数据运算的方法是解决问题的关键. (21)(本题共7分)已知关于x 的一元二次方程()()01222=-++-m x m x (Ⅰ)求证:方程有两个不相等的实数根;(Ⅱ)若此方程的一个根是1,请求出方程的另一个根; (Ⅲ)求以(Ⅱ)中所得两根为边长的直角三角形的周长。

2019-2020年八年级下学期期末考试数学试卷含答案(人教版)

2019-2020年八年级下学期期末考试数学试卷含答案(人教版)

2018-2019学年度八年级下学期期末考试数学试卷第Ⅰ卷 选择题(共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.“垃圾分类,从我做起”,以下四幅图案分别代表四类可回收垃圾,其中是中心对称图形的是( )A .B .C .D .2.下列各式由左边到右边的变形中,属于分解因式的是( )A .()a x y ax ay -=-B .22()()a b a b a b -=+-C .243(4)3x x x x -+=-+D .211()a a a a +=+3. 下列实数中,能够满足不等式30x -<的正整数是( )A .-2B .3C .4D .24. 小颖一家自驾某地旅行,手机导航系统推荐了两条线路,线路一全程75km ,线路二全程90km ,汽车在线路二上行驶的平均车速是线路一上平均车速的1.8倍,且线路二的用时比线路一的用时少半小时,若汽车在线路一上行驶的平均速度为/xkm h ,则下面所列方程正确的是( )A .759011.82x x =+B .759011.82x x =-C .759011.82x x =+D .759011.82x x =- 5. 小贤的爸爸在钉制平行四边形框架时,采用了一种方法:如图,将两根木条AC BD 、的中点重叠,并用钉子固定,则四边形ABCD 就是平行四边形,这种方法的依据是( )A .两组对边分别平行的四边形是平行四边形B .两组对角分别相等的四边形是平行四边形C .两组对边分别相等的四边形是平行四边形D .对角线互相平分的四边形是平行四边形6. 如图,在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点O ,过点O 作//EF BC 交AB 于点E ,交AC 于点F ,过点O 作OD AC ⊥于点D ,某班学生在一次数学活动课中,探索出如下结论,其中错误的是( )A .EF BE CF =+B .点O 到ABC ∆各边的距离相等C .90BOC A ∠=+∠oD .设OD m =,AE AF n +=,则12AEFS mn ∆= 7. 已知不等式组122123x a x x -≥⎧⎪+-⎨>⎪⎩的解集如图所示(原点未标出,数轴的单位长度为1),则 a 的值为( )A .4B .3C .2D .18. 已知21x y -=,2xy =,则322344x y x y xy -+的值为( )A .-2B .1C .-1D .29. 某n 边形的每个外角都等于与它相邻内角的14,则n 的值为( ) A .7 B .8 C .10 D .910. 如图,点C 是线段BE 的中点,分别以BC CE 、为边作等腰ABC ∆和等腰CDE ∆,90BAC CDE ∠=∠=o ,连接AD BD AE 、、,且BD AE 、相交于点G ,CG 交AD 于点F ,则下列说法中,不正确的是( )A .CF 是ACD ∆的中线B .四边形ABCD 是平行四边形C .AE BD = D .AG 平分CAD ∠第Ⅱ卷 非选择题(共90分)二、填空题(共5个小题,每题3分,满分15分,将答案填在答题纸上)11. 分式a a b +与22b a b-的最简公分母是 . 12. 因式分解:252x x -= .13.如图,已知一块直角三角板的直角顶点与原点O 重合,另两个顶点A ,B 的坐标分别为(1,0)-,(0,3),现将该三角板向右平移使点A 与点O 重合,得到'OCB ∆,则点B 的对应点'B 的坐标为 .14. 如图,两个完全相同的正五边形ABCDE ,AFGHM 的边DE ,MH 在同一直线上,且有一个公共顶点A ,若正五边形ABCDE 绕点A 旋转x 度与正五边形AFGHM 重合,则x 的最小值为 .15. 如图,在平行四边形ABCD 中,8AB =,12BC =,120B ∠=o ,E 是BC 的中点,点P 在平行四边形ABCD 的边上,若PBE ∆为等腰三角形,则EP 的长为 .三、解答题:本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(1)解不等式:922x x +>(2)解方程:11293331x x =+--17. 如图,在ABCD 中,点E ,F 分别在边BC ,AD 上,且DF BE =.求证:四边形AECF 是平行四边形.18. 如图,在ABC ∆中,AB AC =,36A ∠=o ,DE 是AC 的垂直平分线.(1)求证:BCD ∆是等腰三角形.(2)若BCD ∆的周长是a ,BC b =,求ACD ∆的周长.(用含a ,b 的代数式表示)19. 在如图所示的网格上按要求画出图形,并回答问题.(1)将ABC ∆平移,使得点A 平移到图中点D 的位置,点B 、点C 的对应点分别为点E 、点F ,请画出DEF ∆.(2)画出ABC ∆关于点D 成中心对称的111A B C ∆.(3)DEF ∆与111A B C ∆是否关于某个点成中心对称?如果是,请在图中画出这个对称中心,并记作点O .20. 数学课后,小玲和同桌小娟各自拿出自己的漂亮的正方形手帕,她们俩各有一条方格手帕和一条绣花手帕,如图,小玲说:“我的方格手帕的边长比你的方格手帕的边长大0.6cm .”小娟说:“我的绣花手帕的边长比你的绣花手帕的边长大0.6cm .”设小玲的两块手帕的面积和为1S ,小娟的两块手帕的面积和为2S ,请同学们运用因式分解的方法算一算2S 与1S 的差.21. 如图1,将线段AB 平移至DC ,使点A 与点D 对应,点B 与点C 对应,连接AD 、BC .(1)填空:AB 与CD 的位置关系为 ,BC 与AD 的位置关系为 .(2)如图2,若G 、E 为射线DC 上的点,AGE GAE ∠=∠,AF 平分DAE ∠交直线CD 于F ,且30FAG ∠=o ,求B ∠的度数.22. 学校广播站要招聘一名播音员,擅长诵读的小龙想去应聘,但是不知道是否符合应聘条件,于是在微信上向好朋友亮亮倾诉,如图所示的是他们的部分对话内容,面对小龙的问题,亮亮也犯了难.(1)请聪明的你用所学的方程知识帮小龙计算一下,他是否符合学校广播站的应聘条件?(2)小龙和奶奶各读一篇文章,已知奶奶所读文章比小龙所读文章至少多了3200个字,但奶奶所用的时间是小龙的2倍,则小龙至少读了多少分钟?23. 定义:既相等又垂直的两条线段称为“等垂线段”,如图1,在Rt ABC ∆中,90A ∠=o ,AB AC =,点D 、E 分别在边AB 、AC 上,AD AE =,连接DE 、DC ,点M 、P 、N 分别为DE 、DC 、BC 的中点,且连接PM 、PN .观察猜想(1)线段PM 与PN “等垂线段”(填“是”或“不是”)猜想论证(2)ADE ∆绕点A 按逆时针方向旋转到图2所示的位置,连接BD ,CE ,试判断PM 与PN 是否为“等垂线段”,并说明理由.拓展延伸(3)把ADE ∆绕点A 在平面内自由旋转,若4AD =,10AB =,请直接写出PM 与PN 的积的最大值.试卷答案一、选择题1-5: CBDAD 6-10:CADCD二、填空题11. 2()()a b a b +- 12. (52)x x - 13. 14. 14415. 6、、三、解答题16.(1)解:去分母得94x x +>移项、合并得39x ->-解得3x <所以不等式的解集为3x <(2)解:去分母得1316x =-+ 解得43x =- 经检验,43x =-是分式方程的解.17.证明:∵四边形ABCD 是平行四边形∴//AF EC ,AD BC =∵DF BE =∴AD DF BC BE -=-∴AF EC =∴四边形AECF 是平行四边形18.解:(1)∵AB AC =,36A ∠=o ∴180722AB ACB -∠∠=∠==oo∵DE 是AC 的垂直平分线∴AD DC =∴36ACD A ∠=∠=o∵CDB ∠是ADC ∆的外角∴72CDB ACD A ∠=∠+∠=o∴B CDB ∠=∠∴CB CD =∴BCD ∆是等腰三角形.(2)∵AD CD CB b ===,BCD ∆的周长是a∴AB a b =-∵AB AC =∴AC a b =-∴ACD ∆的周长AC AD CD a b b b a b =++=-++=+19.解:(1)如图,DEF ∆即为所求.(2)如图,111A B C ∆即为所求.(3)是,如图,点O 即为所求.20.解:222221(29.821.2)(29.221.8)S S -=+-+ 2222(29.821.8)(29.221.2)=---(29.821.8)(29.821.8)(29.221.2)(29.221.2)=+--+-51.6850.48=⨯-⨯(51.650.4)8=-⨯9.6=(2cm )21.解:(1)//AB CD ,//AD BC(2)∵//AB CD∴BAG G ∠=∠∵G EAG ∠=∠∴EAG BAG ∠=∠∵AF 平分DAE ∠∴FAE FAD ∠=∠∴2BAD FAG ∠=∠∵30FAG ∠=o∴60BAD ∠=o∵//BC AD∴180B BAD ∠+∠=o∴120B ∠=o22.解:(1)设小龙每分钟读x 个字,则小龙奶奶每分钟读(50)x -个字 根据题意,得1050130050x x=- 解得260x =经检验,260x =是所列方程的解,并且符合实际问题的意义. ∵学校广播站招聘的条件是每分钟250-270字∴小龙符合学校广播站的应聘条件.(2)设小龙读了y 分钟,则小龙奶奶读了2y 分钟, 由题意知(26050)22603200y y -⨯-≥解得20y ≥∴小龙至少读了20分钟.23.解:(1)是(2)由旋转知BAD CAE ∠=∠∵AB AC =,AD AE =∴ABD ∆≌ACE ∆(SAS )∴ABD ACE ∠=∠,BD CE = 利用三角形的中位线得12PN BD =,12PM CE =, ∴PM PN =由中位线定理可得//PM CE ,//PN BD∴DPM DCE ∠=∠,PNC DBC ∠=∠∵DPN DCB PNC DCB DBC ∠=∠+∠=∠+∠∴MPN DPM DPN DCE DCB DBC ∠=∠+∠=∠+∠+∠ BCE DBC ACB ACE DBC =∠+∠=∠+∠+∠ACB ABD DBC ACB ABC =∠+∠+∠=∠+∠∵90BAC ∠=o∴90ACB ABC ∠+∠=o∴90MPN ∠=o∴PM 与PN 为“等垂线段”(3)PM 与PN 的积的最大值为49. 提示:12PM PN BD ==∴BD 最大时,PM 与PN 的积最大 ∴点D 在BA 的延长线上∴14BD AB AD =+=∴7PM =∴249PM PN PM •==。

2019-2020学年安徽省六安市霍邱县八年级下学期期末数学试卷 (解析版)

2019-2020学年安徽省六安市霍邱县八年级下学期期末数学试卷 (解析版)

2019-2020学年安徽六安市霍邱县八年级第二学期期末数学试卷一、选择题(共10小题).1.若有意义,则x的取值范围是()A.x≥2B.x≥﹣2C.x>2D.x>﹣22.下列运算正确的是()A.=﹣2B.(2)2=6C.+=D.×=3.用配方法解方程x2﹣6x﹣8=0时,配方结果正确的是()A.(x﹣3)2=17B.(x﹣3)2=14C.(x﹣6)2=44D.(x﹣3)2=1 4.如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A.6B.7C.8D.95.一个三角形三个内角之比为1:2:3,其所对三边之比为()A.1:2:3B.1::C.1::2D.1::3 6.如图,矩形ABCD的对角线AC=10,∠BOC=120°,则AB的长度是()A.5B.6C.8D.57.一组数据4,5,6,7,7,8的中位数和众数分别是()A.7,7B.7,6.5C.5.5,7D.6.5,78.为执行“均衡教育“政策,某区2017年投入教育经费2500万元,预计到2019年底三年累计投入1.2亿元,若每年投入教育经费的年平均增长百分率为x,则下列方程正确的是()A.2500(1+2x)=12000B.2500(1+x)2=1200C.2500+2500(1+x)+2500(1+2x)=12000D.2500+2500(1+x)+2500(1+x)2=120009.下列命题正确的是()A.一组对边相等,另一组对边平行的四边形一定是平行四边形B.对角线相等的四边形一定是矩形C.两条对角线互相垂直的四边形一定是菱形D.两条对角线相等且互相垂直平分的四边形一定是正方形10.如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE=3,AF=5,则AC的长为()A.4B.4C.10D.8二、填空题(本大题共有4小题,每小题5分,共计20分)11.计算÷的结果是.12.已知x1,x2是关于x的方程x2﹣(m﹣1)x﹣m=0的两个根,且x1+x2=3,则m的值是.13.四边形具有不稳定性.如图,矩形ABCD按箭头方向变形成平行四边形A'B'C'D',变形后∠A'=30°,若矩形ABCD的面积是9,则平行四边形A'B'C'D'的面积是14.如图,Rt△ABC中,∠ACB=90°,AC=12,BC=5,延长BC至点D,连接AD,若△ABD是以AD为其中一腰的等腰三角形,则线段DC的长等于.三、解答题(本大题共有9小题,共计90分)15.计算:.16.解方程:x2﹣6x﹣4=0.17.已知:如图,E,F为▱ABCD对角线AC上的两点,且AE=CF,连接BE,DF,求证:BE=DF.18.已知关于x的方程x2+2(m﹣1)x+m2+5=0有两个不相等的实数根,化简:.19.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点都在网格交点上,请按要求完成下列各题.(1)线段AB的长为,BC的长为.(2)点D也在格点上,且以A,B,C,D为顶点的四边形是平行四边形.请在网格图中画出一个符合条件的平行四边形;(3)设(2)中你所画的平行四边形的面积为S,请通过计算说明;S=AC•BC.20.观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,…按照以上规律,解决下列问题:(1)写出第5个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明其正确性.21.某校初二学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):′1号2号3号4号5号总分甲班1009811089103500乙班891009511997500经统计发现两班总数相等.此时有学生建议,可以通过考察数据中的其他信息作为参考.请你回答下列问题:(1)计算两班的优秀率;(2)求两班比赛数据的中位数;(3)计算两班比赛数据的方差哪一个小?(4)根据以上三条信息,你认为应该把冠军奖状发给哪一个班级?简述你的理由.方差的公式为.22.“疫情”期间,李晨在家制作一种工艺品,并通过网络平台进行线上销售.经过一段时间后发现:当售价是40元/件时,每天可售出该商品60件,且售价每降低1元,就会多售出3件,设该商品的售价为x元/件(20≤x≤40).(1)请用含售价x(元/件)的代数式表示每天能售出该工艺品的件数;(2)已知每件工艺品需要20元成本,每天销售该工艺品的纯利润为900元.①求该商品的售价;②为了支持“抗疫”行动,李晨决定每销售一件该工艺品便通过网络平台自动向某救助基金会捐款0.5元,求李晨每天通过销售该工艺品面捐款的数额.23.我们给出如下定义:把对角线相等的四边形叫做“对等四边形”.如图①,在四边形ABCD中,AC=BD,四边形ABCD就是“对等四边形”.(1)下列四边形中,一定是“对等四边形”的是(填序号)①平行四边形②矩形③菱形④梯形(2)如图②,在“对等四边形”ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,求证:四边形EFGH是菱形.(3)在(2)的条件下,若四边形EFGH也是“对等四边形”,且对角线长为2,求四边形ABCD的面积.参考答案一、选择题(共10小题).1.若有意义,则x的取值范围是()A.x≥2B.x≥﹣2C.x>2D.x>﹣2【分析】二次根式有意义,被开方数是非负数.解:依题意,得x﹣2≥0,解得,x≥2.故选:A.2.下列运算正确的是()A.=﹣2B.(2)2=6C.+=D.×=【分析】根据二次根式的性质以及二次根式加法,乘法及乘方运算法则计算即可.解:A:=2,故本选项错误;B:=12,故本选项错误;C:与不是同类二次根式,不能合并,故本选项错误;D:根据二次根式乘法运算的法则知本选项正确.故选:D.3.用配方法解方程x2﹣6x﹣8=0时,配方结果正确的是()A.(x﹣3)2=17B.(x﹣3)2=14C.(x﹣6)2=44D.(x﹣3)2=1【分析】方程利用完全平方公式变形即可得到结果.解:用配方法解方程x2﹣6x﹣8=0时,配方结果为(x﹣3)2=17,故选:A.4.如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A.6B.7C.8D.9【分析】根据多边形的内角和公式及外角的特征计算.解:多边形的外角和是360°,根据题意得:180°•(n﹣2)=3×360°解得n=8.故选:C.5.一个三角形三个内角之比为1:2:3,其所对三边之比为()A.1:2:3B.1::C.1::2D.1::3【分析】求出三角形的各个内角,利用直角三角形30度角的性质解决问题即可.解:设△ABC中,∠A:∠B:∠C=1:2:3,∵∠A+∠B+∠C=180°,∴∠A=30°,∠B=60°,∠C=90°,设BC=a,则AB=2a,AC=a,∴BC:AC:AB=1::2,故选:C.6.如图,矩形ABCD的对角线AC=10,∠BOC=120°,则AB的长度是()A.5B.6C.8D.5【分析】由矩形的性质得出OA=OB=4,证明△AOB是等边三角形,得出AB=OA即可.解:∵四边形ABCD是矩形,∴OA=AC=5,OB=OD,AC=BD=10,∴OA=OB=5,∵∠BOC=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=5;故选:A.7.一组数据4,5,6,7,7,8的中位数和众数分别是()A.7,7B.7,6.5C.5.5,7D.6.5,7【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.解:在这一组数据中7是出现次数最多的,故众数是7,而将这组数据从小到大的顺序排列后,处于中间位置的数是6,7,那么由中位数的定义可知,这组数据的中位数是(6+7)÷2=6.5.故选:D.8.为执行“均衡教育“政策,某区2017年投入教育经费2500万元,预计到2019年底三年累计投入1.2亿元,若每年投入教育经费的年平均增长百分率为x,则下列方程正确的是()A.2500(1+2x)=12000B.2500(1+x)2=1200C.2500+2500(1+x)+2500(1+2x)=12000D.2500+2500(1+x)+2500(1+x)2=12000【分析】设每年投入教育经费的年平均增长百分率为x,根据题意可得,2017年投入教育经费+2017年投入教育经费×(1+增长率)+2017年投入教育经费×(1+增长率)2=1.2亿元,据此列方程.解:设每年投入教育经费的年平均增长百分率为x,由题意得,2500+2500×(1+x)+2500(1+x)2=12000.故选:D.9.下列命题正确的是()A.一组对边相等,另一组对边平行的四边形一定是平行四边形B.对角线相等的四边形一定是矩形C.两条对角线互相垂直的四边形一定是菱形D.两条对角线相等且互相垂直平分的四边形一定是正方形【分析】A、一组对边相等,另一组对边平行的四边形不一定为平行四边形,例如等腰梯形满足一组对边相等,另一组对边平行,但不是平行四边形;B、对角线相等的四边形不一定为矩形,例题等腰梯形的对角线相等,但不是矩形,应改为对角线相等的平行四边形为矩形;C、对角线互相垂直的四边形不一定为菱形,例如:画出图形,如图所示,AC与BD垂直,但是显然ABCD不是菱形,应改为对角线互相垂直的平行四边形是菱形;D、两条对角线相等且互相垂直平分的四边形是正方形,根据题意画出相应的图形,如图所示,根据对角线互相平分,得到四边形为平行四边形,再由平行四边形的对角线相等,得到平行四边形为矩形,最后根据矩形的对角线互相垂直得到矩形为正方形.解:A、一组对边相等,另一组对边平行的四边形不一定是平行四边形,例如等腰梯形,一组对边平行,另一组对边相等,不是平行四边形,故本选项为假命题;B、对角线相等的四边形不一定是矩形,例如等腰梯形对角线相等,但不是矩形,故本选项为假命题;C、两条对角线互相垂直的四边形不一定是菱形,如图所示:AC⊥BD,但四边形ABCD不是菱形,本选项为假命题;D、两条对角线相等且互相垂直平分的四边形是正方形,已知:四边形ABCD,AC=BD,AC⊥BD,OA=OC,OB=OD,求证:四边形ABCD为正方形,证明:∵OA=OC,OB=OD,∴四边形为平行四边形,又AC=BD,∴四边形ABCD为矩形,∵AC⊥BD,∴四边形ABCD为正方形,则本选项为真命题,故选:D.10.如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE=3,AF=5,则AC的长为()A.4B.4C.10D.8【分析】连接AE,由线段垂直平分线的性质得出OA=OC,AE=CE,证明△AOF≌△COE得出AF=CE=5,得出AE=CE=5,BC=BE+CE=8,由勾股定理求出AB==4,再由勾股定理求出AC即可.解:连接AE,如图:∵EF是AC的垂直平分线,∴OA=OC,AE=CE,∵四边形ABCD是矩形,∴∠B=90°,AD∥BC,∴∠OAF=∠OCE,在△AOF和△COE中,,∴△AOF≌△COE(ASA),∴AF=CE=5,∴AE=CE=5,BC=BE+CE=3+5=8,∴AB===4,∴AC===4;故选:A.二、填空题(本大题共有4小题,每小题5分,共计20分)11.计算÷的结果是3.【分析】根据二次根式的性质把化简,再根据二次根式的性质计算即可.解:.故答案为:312.已知x1,x2是关于x的方程x2﹣(m﹣1)x﹣m=0的两个根,且x1+x2=3,则m的值是4.【分析】根据方程的系数结合两根之和等于3,即可得出关于m的一元一次方程,解之即可得出m的值.解:∵x1,x2是关于x的方程x2﹣(m﹣1)x﹣m=0的两个根,且x1+x2=3,∴m﹣1=3,∴m=4.故答案为:4.13.四边形具有不稳定性.如图,矩形ABCD按箭头方向变形成平行四边形A'B'C'D',变形后∠A'=30°,若矩形ABCD的面积是9,则平行四边形A'B'C'D'的面积是【分析】根据30°角所对的直角边等于斜边的一半,可知平行四边形的高等于矩形的宽的一半,由于底不变,所以平行四边形A'B'C'D'的面积是矩形面积的一半.解:由题意可知,平行四边形A'B'C'D'的底边A'D'与矩形的长AD相等,平行四边形A'B'C'D'的高变为矩形的宽的一半,所以平行四边形A'B'C'D'的面积是矩形面积的一半.所以平行四边形A'B'C'D'的面积是.故答案为:.14.如图,Rt△ABC中,∠ACB=90°,AC=12,BC=5,延长BC至点D,连接AD,若△ABD是以AD为其中一腰的等腰三角形,则线段DC的长等于5或.【分析】先利用勾股定理求出AB的长,再分①AD=AB;②AD=BD两种情况进行讨论即可得出结论.解:∵Rt△ABC中,∠ACB=90°,AC=12,BC=5,∴AB===13.∵△ABD是以AD为其中一腰的等腰三角形,∴分两种情况:①当AD=AB时,∵AC⊥BD,∴DC=BC=5;②当AD=BD时,设DC=x,则AD=BD=5+x.∵Rt△ADC中,∠ACD=90°,∴DC2+AC2=AD2,即x2+122=(5+x)2,解得x=.综上所述,线段DC的长等于5或.故答案为:5或.三、解答题(本大题共有9小题,共计90分)15.计算:.【分析】首先利用乘法分配律计算乘法,然后化简,再算加减即可.解:原式=+﹣4=2+﹣4=﹣2+.16.解方程:x2﹣6x﹣4=0.【分析】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.解:移项得x2﹣6x=4,配方得x2﹣6x+9=4+9,即(x﹣3)2=13,开方得x﹣3=±,∴x1=3+,x2=3﹣.17.已知:如图,E,F为▱ABCD对角线AC上的两点,且AE=CF,连接BE,DF,求证:BE=DF.【分析】证明△AEB≌△CFD,即可得出结论.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC.∴∠BAE=∠DCF.在△AEB和△CFD中,,∴△AEB≌△CFD(SAS).∴BE=DF.18.已知关于x的方程x2+2(m﹣1)x+m2+5=0有两个不相等的实数根,化简:.【分析】首先利用根的判别式确定m的取值范围,再化简二次根式,利用绝对值的性质计算即可.解:∵x2+2(m﹣1)x+m2+5=0有两个不相等的实数根,∴△=4(m﹣1)2﹣4(m2+5)≥0,即﹣8m﹣16≥0,解得:m<﹣2,则=|1﹣m|+|m+2|=1﹣m﹣m﹣2=﹣2m﹣1.19.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点都在网格交点上,请按要求完成下列各题.(1)线段AB的长为5,BC的长为2.(2)点D也在格点上,且以A,B,C,D为顶点的四边形是平行四边形.请在网格图中画出一个符合条件的平行四边形;(3)设(2)中你所画的平行四边形的面积为S,请通过计算说明;S=AC•BC.【分析】(1)利用勾股定理计算即可.(2)根据平行四边形的判定画出图形即可.(3)利用勾股定理的逆定理证明解:(1)由题意,AB==5,BC==2,故答案为5,.(2)如图所示.(3)由勾股定理得,又∵AB=5,,∴AC2+BC2=AB2,∴∠ACB=90°,由勾股定理逆定理得△ACB为以AC和BC为直角边的直角三角形,∵,又∵所作的平行四边形的面积为△ACB面积的两倍,∴S=AC•BC.20.观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,…按照以上规律,解决下列问题:(1)写出第5个等式:5+1;(2)写出你猜想的第n个等式:(+1)(n+1﹣)=n+1(用含n的等式表示),并证明其正确性.【分析】(1)根据所给等式可得答案;(2)首先写出第n个等式,然后再利用二次根式的乘法进行计算即可.【解答】(1)解:(+1)(6﹣)=5+1,故答案为:5+1;(2)(+1)(n+1﹣)=n+1,证明:∵=∴,故答案为:(+1)(n+1﹣)=n+1.21.某校初二学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):′1号2号3号4号5号总分甲班1009811089103500乙班891009511997500经统计发现两班总数相等.此时有学生建议,可以通过考察数据中的其他信息作为参考.请你回答下列问题:(1)计算两班的优秀率;(2)求两班比赛数据的中位数;(3)计算两班比赛数据的方差哪一个小?(4)根据以上三条信息,你认为应该把冠军奖状发给哪一个班级?简述你的理由.方差的公式为.【分析】(1)优秀率等于100分以上(含100分)的人数除以总人数;(2)按大小顺序排列,中间一个数或两个数的平均数为中位数;(3)由方差的公式进行计算即可;(4)根据比赛成绩的优秀率高,中位数大,方差小,综合评定,则甲班踢毽子水平较好.解:(1)甲班的优秀率为:3÷5=0.6=60%,乙班的优秀率为:2÷5=0.4=40%;(2)甲班5名学生比赛成绩的中位数是100个乙班5名学生比赛成绩的中位数是97个;(3)甲班的平均分为,乙班的平均分为==100,甲班在这次比赛中的方差为:,乙班在这次比赛中的方差为:∴S甲2<S乙2;(4)甲班定为冠军.因为甲班5名学生的比赛成绩的优秀率比乙班高,中位数比乙班大,方差比乙班小,综合评定甲班踢毽子水平较好.22.“疫情”期间,李晨在家制作一种工艺品,并通过网络平台进行线上销售.经过一段时间后发现:当售价是40元/件时,每天可售出该商品60件,且售价每降低1元,就会多售出3件,设该商品的售价为x元/件(20≤x≤40).(1)请用含售价x(元/件)的代数式表示每天能售出该工艺品的件数;(2)已知每件工艺品需要20元成本,每天销售该工艺品的纯利润为900元.①求该商品的售价;②为了支持“抗疫”行动,李晨决定每销售一件该工艺品便通过网络平台自动向某救助基金会捐款0.5元,求李晨每天通过销售该工艺品面捐款的数额.【分析】(1)由该商品的售价结合售价每降低1元就会多售出3件,即可得出每天售出该工艺品的件数;(2)①根据总利润=每件工艺品的利润×销售数量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;②根据每天通过销售该工艺品面捐款的数额=0.5×每天销售的数量,即可得出结论.解:(1)∵该商品的售价为x元/件(20≤x≤40),且当售价是40元/件时,每天可售出该商品60件,且售价每降低1元,就会多售出3件,∴每天能售出该工艺品的件数为60+3(40﹣x)=(180﹣3x)件.(2)①依题意,得:(x﹣20)(180﹣3x)=900,整理,得:x2﹣80x+1500=0,解得:x1=30,x2=50(不合题意,舍去).答:该商品的售价为30元/件.②0.5×(180﹣3×30)=45(元).答:李晨每天通过销售该工艺品面捐款的数额为45元.23.我们给出如下定义:把对角线相等的四边形叫做“对等四边形”.如图①,在四边形ABCD中,AC=BD,四边形ABCD就是“对等四边形”.(1)下列四边形中,一定是“对等四边形”的是②(填序号)①平行四边形②矩形③菱形④梯形(2)如图②,在“对等四边形”ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,求证:四边形EFGH是菱形.(3)在(2)的条件下,若四边形EFGH也是“对等四边形”,且对角线长为2,求四边形ABCD的面积.【分析】(1)由矩形的性质可求解;(2)由三角形中位线定理可得EH=BD=FG,EF=AC=GH,由“对等四边形”的性质可得AC=BD,可得EH=FG=EF=GH,可得结论;(3)先证四边形EFGH是正方形,边长为,可得EF⊥FG,EF=FG=,由三角形中位线定理解得BD⊥AC,BD=AC=,可求解.解:(1)∵矩形的对角线相等,∴矩形一定是“对等四边形”,故答案为:②;(2)证明:连接AC、BD,∵点E,F,G,H分别为边AB,BC,CD,DA的中点,∴EH=BD=FG,EF=AC=GH,∵四边形ABCD是“对等四边形”,∴AC=BD,∴EH=FG=EF=GH,∴四边形EFGH是菱形;(3)连接EG,HF,∵四边形EFGH是菱形,∴GE与HF互相垂直平分,又∵四边形EFGH是“对等四边形”,且对角线长为2,∴GE=HF=2,∴四边形EFGH是正方形,边长为,∴EF⊥FG,EF=FG=,∵点E,F,G,H分别为边AB,BC,CD,DA的中点,∴FG∥BD,FG=BD,EF∥AC,EF=AC,∴BD⊥AC,BD=AC=,∴四边形ABCD的面积等于AC×BD=4.。

2019-2020学年吉林省长春市双阳区八年级下学期期末数学试卷 (解析版)

2019-2020学年吉林省长春市双阳区八年级下学期期末数学试卷 (解析版)

2019-2020学年吉林长春市双阳区八年级第二学期期末数学试卷一、选择题(共10小题).1.方程2x+1=x﹣1的解为()A.x=﹣2B.x=﹣C.x=0D.x=2.2.用“加减法”将方程组中的x消去后得到的方程是()A.3y=2B.7y=8C.﹣7y=2D.﹣7y=83.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.4.若x的一半不小于5,则不等关系表示正确的式子是()A.x≤5B.x≥5C.x>5D.x<55.如果a3x b y与﹣a2y b x+1是同类项,则()A.B.C.D.6.不等式组,的解集在数轴上表示正确的是()A.B.C.D.7.某人到瓷砖商店去买一种多边形形状的瓷砖用来铺设无缝地板,他购买的瓷砖形状不可以是()A.正三角形B.长方形C.正八边形D.正六边形8.等腰三角形的一条边长为6,另一边长为13,则它的周长为()A.25B.25或32C.32D.199.2020年初新冠疫情肆虐,社会经济受到严重影响.地摊经济是就业岗位的重要来源.小李把一件标价60元的T恤衫,按照8折销售仍可获利10元,设这件T恤的成本为x元,根据题意,下面所列的方程正确的是()A.60×0.8﹣x=10B.60×8﹣x=10C.60×0.8=x﹣10D.60×8=x﹣1010.如果(a+7)x<a+7的解集为x>1,那么a需要满足()A.a<0B.a<7C.a<﹣7D.a≤﹣7二、填空题(每小题3分,共18分)11.一个角是40°,则这个角的余角是度.12.已知5a+8b=3b+10,利用等式性质可求得a+b的值是.13.若a>b,则﹣2a﹣5﹣2b﹣5(填“>”或“<”).14.若方程3x﹣y=5,用含x的代数式表示y的式子是:y=.15.根据图中所给信息,可知一只玩具猫的价格为元.16.用4个全等的正八边形进行拼接,使相等的两个正八边形有一条公共边,围成一圈后中间形成一个正方形,如图1,用n个全等的正六边形按这种方式进行拼接,如图2,若围成一圈后中间形成一个正多边形,则n的值为.三、解答题(本大题10小题,共72分)17.解下列方程组.18.解不等式组:19.若一个多边形的内角和比外角和多540°,求这个多边形的边数.20.如图,在△ABC中,AD是BC边上的中线,△ABD的周长比△ADC的周长多2,且AB与AC的和为10.(1)求AB、AC的长.(2)求BC边的取值范围.21.小马虎解不等式﹣>1出现了错误,解答过程如下:不等式两边都乘以6,得3﹣2(x﹣2)>1(第一步)去括号,得3﹣2x+4>1(第二步)移项,合并同类项,得﹣2x>﹣6.(第三步)解得x<3(第四步)(1)小马虎解答过程是从第步开始出错的,出错的原因是.(2)请写出此题正确的解答过程.22.《孙子算经》是中国古代重要的数学著作,其中记载:“今有甲、乙二人,持钱各不知数.甲得乙中半,可满四十八.乙得甲太半,亦满四十八,问甲、乙二人原持钱各几何?”译文:“甲,乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文,如果乙得到甲所有钱的,那么乙也共有钱48文,问甲,乙二人原来各有多少钱?”23.在一次智力测验中有20道选择题,评分标准为:对1题给5分,错1题扣2分,不答题不给分也不扣分,小明有两道题未答,至少答对几道题,总分才不会低于60分?24.我们规定,若关于x的一元一次方程ax=b的解为b﹣a,则称该方程为“差解方程”,例如:2x=4的解为2,且2=4﹣2,则该方程2x=4是差解方程.(1)判断3x=4.5是否是差解方程;(2)若关于x的一元一次方程5x=m+1是差解方程,求m的值.25.如图,AB=30cm,点P从点A出发,沿AB以3cm/s的速度匀速向终点B运动;同时点Q从点B出发,沿BA以5cm/s的速度匀速向终点A运动,设运动时间为t.(1)填空:PA=cm:BQ=cm(用含t的代数式表示)(2)当P、Q两点相遇时,求t的值.(3)直接写出P、Q两点相距6cm时,t的值为.26.【探究】如图①,在△ABC中,∠ABC的平分线与∠ACB的平分线相交于点P.(1)若∠ABC=80°,∠ACB=50°.则∠A=度,∠P=度.(2)∠A与∠P的数量关系为,并说明理由.【应用】如图②,在△ABC中,∠ABC的平分线与∠ACB的平分线相交于点P.∠ABC 的外角平分线与∠ACB的外角平分线相交于点Q.直接写出∠A与∠Q的数量关系为.参考答案一、选择题(共10小题).1.方程2x+1=x﹣1的解为()A.x=﹣2B.x=﹣C.x=0D.x=2.解:方程移项合并得:x=﹣2,故选:A.2.用“加减法”将方程组中的x消去后得到的方程是()A.3y=2B.7y=8C.﹣7y=2D.﹣7y=8解:,①﹣②得:﹣7y=8,故选:D.3.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.解:为△ABC中BC边上的高的是A选项.故选:A.4.若x的一半不小于5,则不等关系表示正确的式子是()A.x≤5B.x≥5C.x>5D.x<5解:根据题意,得x≥5.故选:B.5.如果a3x b y与﹣a2y b x+1是同类项,则()A.B.C.D.解:∵a3x b y与﹣a2y b x+1是同类项,∴,②代入①得,3x=2(x+1),解得x=2,把x=2代入②得,y=2+1=3,所以,方程组的解是.故选:D.6.不等式组,的解集在数轴上表示正确的是()A.B.C.D.解:,由①得:x<3,由②得:x≥1,∴不等式组的解集为1≤x<3.数轴上表示,如图所示:故选:B.7.某人到瓷砖商店去买一种多边形形状的瓷砖用来铺设无缝地板,他购买的瓷砖形状不可以是()A.正三角形B.长方形C.正八边形D.正六边形【解答】解;A、正三角形的内角是60°,6个正三角形可以密铺,故A可以;B、长方形的内角是90°,4个长方形可以密铺,故B可以;C、正八边形的内角是135°,2个正八边形有缝隙,3个正八边形重叠,故C不可以;D、正六边形的内角是120°,3个正六边形可以密铺,故D可以;故选:C.8.等腰三角形的一条边长为6,另一边长为13,则它的周长为()A.25B.25或32C.32D.19解:三角形的三边长为13、13、6时,它的周长为32,三角形的三边长为13、6、6时,不能组成三角形,∴三角形的周长为32,故选:C.9.2020年初新冠疫情肆虐,社会经济受到严重影响.地摊经济是就业岗位的重要来源.小李把一件标价60元的T恤衫,按照8折销售仍可获利10元,设这件T恤的成本为x元,根据题意,下面所列的方程正确的是()A.60×0.8﹣x=10B.60×8﹣x=10C.60×0.8=x﹣10D.60×8=x﹣10解:设这件T恤的成本为x元,根据题意,可得:60×0.8﹣x=10.故选:A.10.如果(a+7)x<a+7的解集为x>1,那么a需要满足()A.a<0B.a<7C.a<﹣7D.a≤﹣7解:∵(a+7)x<a+7的解集为x>1,∴a+7<0,解得:a<﹣7.故选:C.二、填空题(每小题3分,共18分)11.一个角是40°,则这个角的余角是50度.解:∵互余的两个角的和是90°,∴40°角的余角是:90°﹣40°=50°.故答案为:50.12.已知5a+8b=3b+10,利用等式性质可求得a+b的值是2.解:5a+8b=3b+10,5a+8b﹣3b=3b﹣3b+10,5a+5b=10,5(a+b)=10,a+b=2.给答案为:2.13.若a>b,则﹣2a﹣5<﹣2b﹣5(填“>”或“<”).解:∵a>b,∴﹣2a<﹣2b,∴﹣2b﹣5<﹣2b﹣5.故答案为:<.14.若方程3x﹣y=5,用含x的代数式表示y的式子是:y=3x﹣5.解:由3x﹣y=5,得到y=3x﹣5.故答案为:3x﹣5.15.根据图中所给信息,可知一只玩具猫的价格为10元.解:设一只玩具猫的价格为x元,一只玩具狗的价格为y元,根据题意得:,解得:.故答案为:10.16.用4个全等的正八边形进行拼接,使相等的两个正八边形有一条公共边,围成一圈后中间形成一个正方形,如图1,用n个全等的正六边形按这种方式进行拼接,如图2,若围成一圈后中间形成一个正多边形,则n的值为6.解:两个正六边形结合,一个公共点处组成的角度为240°,故如果要密铺,则需要一个内角为120°的正多边形,而正六边形的内角为120°,故答案为:6.三、解答题(本大题10小题,共72分)17.解下列方程组.解:,由①得x=5﹣y③,将③代入②得:3(5﹣y)﹣7y=10,即y=,将y=代入③得:x=,则方程组的解为.18.解不等式组:解:,由①得:x>﹣,由②得:x<2,则不等式组的解集为﹣<x<2.19.若一个多边形的内角和比外角和多540°,求这个多边形的边数.解:设这个多边形是n边形.则180°•(n﹣2)=540°+360°,解得n=7.20.如图,在△ABC中,AD是BC边上的中线,△ABD的周长比△ADC的周长多2,且AB与AC的和为10.(1)求AB、AC的长.(2)求BC边的取值范围.解:(1)∵AD是BC边上的中线,∴BD=CD,∴△ABD的周长﹣△ADC的周长=(AB+AD+BD)﹣(AC+AD+CD)=AB﹣AC=4,即AB﹣AC=2①,又AB+AC=10②,①+②得.2AB=12,解得AB=6,②﹣①得,2AC=8,解得AC=4,∴AB和AC的长分别为:AB=6,AC=4;(2)∵AB=6,AC=4,∴2<BC<10.21.小马虎解不等式﹣>1出现了错误,解答过程如下:不等式两边都乘以6,得3﹣2(x﹣2)>1(第一步)去括号,得3﹣2x+4>1(第二步)移项,合并同类项,得﹣2x>﹣6.(第三步)解得x<3(第四步)(1)小马虎解答过程是从第一步开始出错的,出错的原因是去分母时漏乘常数项.(2)请写出此题正确的解答过程.解:(1)两边应该同时乘以6,不等式左边=3﹣2(x﹣2),右边=1×6,即从第一步开始出错,出错原因是去分母时漏乘常数项,故答案为:一,去分母时漏乘常数项,(2)不等式两边都乘以6得:3﹣2(x﹣2)>1×6,去括号得:3﹣2x+4>6,移项,合并同类项得:﹣2x>﹣1,解得:x<.即不等式的解集为:x.22.《孙子算经》是中国古代重要的数学著作,其中记载:“今有甲、乙二人,持钱各不知数.甲得乙中半,可满四十八.乙得甲太半,亦满四十八,问甲、乙二人原持钱各几何?”译文:“甲,乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文,如果乙得到甲所有钱的,那么乙也共有钱48文,问甲,乙二人原来各有多少钱?”解:设甲原有的钱数为x,乙原有的钱数为y,根据题意,得,解得:,解得:答:甲、乙两人各带的钱数为36和24.23.在一次智力测验中有20道选择题,评分标准为:对1题给5分,错1题扣2分,不答题不给分也不扣分,小明有两道题未答,至少答对几道题,总分才不会低于60分?解:设小明答对x道题,根据题意可得5x﹣2(20﹣2﹣x)≥60解得:x≥因为x是整数,所以x所取最小值为14,答:小明至少答对14道题,总分才不会低于60分.24.我们规定,若关于x的一元一次方程ax=b的解为b﹣a,则称该方程为“差解方程”,例如:2x=4的解为2,且2=4﹣2,则该方程2x=4是差解方程.(1)判断3x=4.5是否是差解方程;(2)若关于x的一元一次方程5x=m+1是差解方程,求m的值.解:(1)∵3x=4.5,∴x=1.5,∵4.5﹣3=1.5,∴3x=4.5是差解方程;(2)方程5x=m+1的解为:x=,∵关于x的一元一次方程5x=m+1是差解方程,∴m+1﹣5=,解得:m=.故m的值为.25.如图,AB=30cm,点P从点A出发,沿AB以3cm/s的速度匀速向终点B运动;同时点Q从点B出发,沿BA以5cm/s的速度匀速向终点A运动,设运动时间为t.(1)填空:PA=3t cm:BQ=5t cm(用含t的代数式表示)(2)当P、Q两点相遇时,求t的值.(3)直接写出P、Q两点相距6cm时,t的值为3或.解:(1)∵点P从点A出发,沿AB以3cm/s的速度匀速向终点B运动;同时点Q从点B出发,沿BA以5cm/s的速度匀速向终点A运动,∴当运动时间为t秒时,PA=3tcm,BQ=5tcm.故答案为:3t;5t.(2)根据题意得:3t+5t=30,解得:t=.答:当P、Q两点相遇时,t的值为.(3)当点P在点Q左侧时,3t+5t=30﹣6,解得:x=3;当点P在点Q右侧时,3t+5t=30+6,解得:t=.故答案为:3或.26.【探究】如图①,在△ABC中,∠ABC的平分线与∠ACB的平分线相交于点P.(1)若∠ABC=80°,∠ACB=50°.则∠A=50度,∠P=115度.(2)∠A与∠P的数量关系为∠P﹣∠A=90°,并说明理由.【应用】如图②,在△ABC中,∠ABC的平分线与∠ACB的平分线相交于点P.∠ABC 的外角平分线与∠ACB的外角平分线相交于点Q.直接写出∠A与∠Q的数量关系为∠Q=90°﹣∠A.【解答】【探究】解:(1)∵∠ABC=80°,∠ACB=50°,∴∠A=1880°﹣80°﹣50°=50°,∵∠ABC的平分线与∠ACB的平分线相交于点P,∴∠CBP=∠ABC,∠BCP=∠ACB,∴∠BCP+∠CBP=(∠ABC+∠ACB)=×130°=65°,∴∠P=180°﹣65°=115°,故答案为:50,115;(2)∠P﹣∠A=90°.理由如下:∵BP、CP分别平分∠ABC、∠ACB,∴∠PBC=∠ABC,∠PCB=∠ACB,∵∠A+∠ABC+∠ACB=180°∠P+∠PBC+∠PCB=180°,∴∠P+(∠ABC+∠ACB)=180°,∴∠P+(180°﹣∠A)=180°,∴∠P﹣∠A=90°;故答案为:∠P﹣∠A=90°;【应用】解:∠Q=90°﹣∠A.理由如下:∵∠ABC的外角平分线与∠ACB的外角平分线相交于点Q,∴∠CBQ=(180°﹣∠ABC)=90°﹣∠ABC,∠BCQ=(180°﹣∠ACB)=90°﹣∠ACB,∴△BCQ中,∠Q=180°﹣(∠CBQ+∠BCQ)=180°﹣(90°﹣∠ABC+90°﹣∠ACB)=(∠ABC+∠ACB),又∵∠ABC+∠ACB=180°﹣∠A,∴∠Q=(180°﹣∠A)=90°﹣∠A;故答案为:∠Q=90°﹣∠A.。

2019-2020学年福建省漳州市八年级下学期期末数学试卷 (解析版)

2019-2020学年福建省漳州市八年级下学期期末数学试卷 (解析版)

2019-2020学年福建省漳州市八年级第二学期期末数学试卷一、选择题(共10小题).1.下列各式中,属于分式的为()A.B.C.D.2.如图是我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”,关于该图形的对称性,下列说法正确的是()A.是中心对称图形但不是轴对称图形B.是轴对称图形但不是中心对称图形C.既是中心对称图形也是轴对称图形D.既不是中心对称图形也不是轴对称图形3.若一个等腰三角形的两边长分别为2,4,则第三边的长为()A.2 B.3 C.4 D.2或44.下列各式由左到右的变形中,属于分解因式的是()A.a(m+n)=am+anB.10x2﹣5x=5x(2x﹣1)C.6a2b3=2a2b•3b2D.x2﹣16+6x=(x+4)(x﹣4)+6x5.若a>b,则下列关系式不成立的是()A.a﹣5>b﹣5 B.6a>6b C.﹣a>﹣b D.a﹣b>06.若分式的值等于0,则x的值为()A.2 B.0 C.﹣1 D.7.若P是△ABC所在平面内的点,且PA=PB=PC,则下列说法正确的是()A.点P是△ABC三边垂直平分线的交点B.点P是△ABC三条角平分线的交点C.点P是△ABC三边上高的交点D.点P是△ABC三边中线的交点8.在平面直角坐标系中,已知点A(﹣1,2),B(1,0),平移线段AB,使点A落在点A1(2,3)处,则点B的对应点B1的坐标为()A.(﹣2,﹣1)B.(4,1)C.(4,0)D.(﹣2,1)9.下列计算正确的是()A.1+=B.C.a÷b•=a D.10.如图,已知点A(2,1),B(0,2),将线段AB绕点M逆时针旋转到A1B1,点A与A1是对应点,则点M的坐标是()A.(0,﹣2)B.(1,﹣1)C.(0,0)D.(﹣1,﹣1)二、填空题(共6小题).11.因式分解:a2﹣4=.12.在平面直角坐标系中,点P(3,﹣5)关于原点对称的点的坐标是.13.若分式在实数范围内有意义,则x的取值范围是.14.如图,一次函数y=kx+b的图象经过点A(﹣1,2),则不等式kx+b<2的解集为.15.如图,以△ABC的顶点B为圆心,BA长为半径画弧,交BC边于点D,连接AD.若∠BAC =120°,∠C=40°,则∠BAD的大小为度.16.如图,在△ABC中,∠B=45°,∠C=30°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E.若BD=,则CD的长为.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.请在答题纸的相应位置解答.17.因式分解:(1)mx+my;(2)2x2+4xy+2xy2.18.如图,已知AB=CD,DE⊥AC,BF⊥AC,垂足分别是点E,F,AE=CF.求证:AB∥CD.19.解不等式组:.20.先化简,再求值:(1﹣)÷,其中a=+2.21.证明:等腰三角形的两腰上的中线相等.22.在Rt△ABC中,∠C=90°.(1)在CB上找一点E,使EB=EA;(要求:尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,若AC=4,BC=8,求CE的长.23.已知一次函数y1=kx+2k﹣4的图象过一、三、四象限.(1)求k的取值范围;(2)对于一次函数y2=ax﹣a+1(a≠0),若对任意实数x,y1<y2都成立,求k的取值范围.24.如图,已知△ABC是等边三角形,在△ABC外有一点D,连接AD,BD,CD,将△ACD绕点A按顺时针方向旋转得到△ABE,AD与BE交于点F,∠BFD=97°.(1)求∠ADC的大小;(2)若∠BDC=7°,BD=3,CD=5,求AD的长.25.某药店销售A,B两种口罩,每个A种口罩比B种进价多0.5元,用240元购进A种口罩与用180元购进B种口罩的数量相同.(1)求A,B两种口罩每个的进价;(2)药店计划购进A,B两种口罩共10000个,其中A种口罩的进货量不多于3000个,且B种口罩进货量不超过A种口罩进货量的3倍.设购进A种口罩m个.①求m的取值范围;②若A种口罩每个售价3元,B种口罩每个售价2元,药店决定从销售A种口罩的利润中按每个捐款a(0.4<a<0.6)元给红十字会,做为慈善基金.设药店售完10000个口罩并捐款后获得的利润为W元,求药店获得利润W最大时的进货方案.参考答案一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题纸的相应位置填涂.1.下列各式中,属于分式的为()A.B.C.D.解:A、的分母中不含有字母,因此它们是整式,而不是分式;B、的分母中不含有字母,因此它们是整式,而不是分式;C、分母中含有未知数,所以它是分式;D、的分母中不含有字母,因此它们是整式,而不是分式;故选:C.2.如图是我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”,关于该图形的对称性,下列说法正确的是()A.是中心对称图形但不是轴对称图形B.是轴对称图形但不是中心对称图形C.既是中心对称图形也是轴对称图形D.既不是中心对称图形也不是轴对称图形解:该图形是中心对称图形但不是轴对称图形.故选:A.3.若一个等腰三角形的两边长分别为2,4,则第三边的长为()A.2 B.3 C.4 D.2或4解:①4是腰长时,三角形的三边分别为4、4、2,能组成三角形,所以,第三边为4;②4是底边时,三角形的三边分别为2、2、4,∵2+2=4,∴不能组成三角形,综上所述,第三边为4.故选:C.4.下列各式由左到右的变形中,属于分解因式的是()A.a(m+n)=am+anB.10x2﹣5x=5x(2x﹣1)C.6a2b3=2a2b•3b2D.x2﹣16+6x=(x+4)(x﹣4)+6x解:A、该变形是整式乘法,不是因式分解,故本选项不符合题意;B、符合因式分解的概念,故本选项符合题意;C、该变形不是多项式分解因式,故本选项不符合题意;D、该变形没有分解成几个整式的积的形式,故本选项不符合题意.故选:B.5.若a>b,则下列关系式不成立的是()A.a﹣5>b﹣5 B.6a>6b C.﹣a>﹣b D.a﹣b>0 解:A、若a>b,则a﹣5>b﹣5,原变形成立,故本选项不符合题意;B、若a>b,则6a>6b,原变形成立,故本选项不符合题意;C、若a>b,则﹣a<﹣b,原变形不成立,故本选项符合题意;D、若a>b,则a+2>b+2,原变形成立,故本选项不符合题意;故选:C.6.若分式的值等于0,则x的值为()A.2 B.0 C.﹣1 D.解:∵分式的值等于0,∴2x﹣1=0且x+1≠0,解得:x=.故选:D.7.若P是△ABC所在平面内的点,且PA=PB=PC,则下列说法正确的是()A.点P是△ABC三边垂直平分线的交点B.点P是△ABC三条角平分线的交点C.点P是△ABC三边上高的交点D.点P是△ABC三边中线的交点解:∵PA=PB,∴点P在线段AB的垂直平分线上,∵PB=PC,∴点P在线段BC的垂直平分线上,∴点P是△ABC三边垂直平分线的交点,故选:A.8.在平面直角坐标系中,已知点A(﹣1,2),B(1,0),平移线段AB,使点A落在点A1(2,3)处,则点B的对应点B1的坐标为()A.(﹣2,﹣1)B.(4,1)C.(4,0)D.(﹣2,1)解:由点A(﹣1,2)平移后A1(2,3)可得坐标的变化规律是:横坐标+3,纵坐标+1,∴点B的对应点B1的坐标(4,1).故选:B.9.下列计算正确的是()A.1+=B.C.a÷b•=a D.解:(A)原式=,故A错误.(B)原式=+=,故B错误.(C)原式=aו=,故C错误.故选:D.10.如图,已知点A(2,1),B(0,2),将线段AB绕点M逆时针旋转到A1B1,点A与A1是对应点,则点M的坐标是()A.(0,﹣2)B.(1,﹣1)C.(0,0)D.(﹣1,﹣1)解:如图,点M的坐标是(1,﹣1),故选:B.二、填空题:本题共6小题,每小题4分,共24分.请将答案填入答题纸的相应位置.11.因式分解:a2﹣4=(a+2)(a﹣2).解:a2﹣4=(a+2)(a﹣2).故答案为:(a+2)(a﹣2).12.在平面直角坐标系中,点P(3,﹣5)关于原点对称的点的坐标是(﹣3,5).解:点P(3,﹣5)关于原点对称的点的坐标是(﹣3,5),故答案为:(﹣3,5).13.若分式在实数范围内有意义,则x的取值范围是x≠2 .解:∵分式在实数范围内有意义,∴x的取值范围是:x≠2.故答案为:x≠2.14.如图,一次函数y=kx+b的图象经过点A(﹣1,2),则不等式kx+b<2的解集为x >﹣1 .解:∵次函数y=kx+b的图象经过第一、二、四象限,∴y随x的增大而减小,∵点A(﹣1,2)在直线y=kx+b上,∴当x=﹣1时,y=kx+b=2,∴当x>﹣1时,kx+b<2,即不等式kx+b<2的解集为x>﹣1.故答案为x>﹣1.15.如图,以△ABC的顶点B为圆心,BA长为半径画弧,交BC边于点D,连接AD.若∠BAC =120°,∠C=40°,则∠BAD的大小为80 度.解:∵∠BAC=120°,∠C=40°,∴∠B=180°﹣∠BAC﹣∠C=20°,∵AB=BD,∴∠BAD=∠ADB=(180°﹣∠B)÷2=80°,故答案为:80.16.如图,在△ABC中,∠B=45°,∠C=30°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E.若BD=,则CD的长为 2 .解:过点D作DF⊥AC于F,∵AD为∠BAC的平分线,且DE⊥AB于E,DF⊥AC于F,∴DE=DF,在Rt△BED中,∠B=45°,∴2DE2=BD2=()2=2,∴DE2=1,∴DF=DE=1,在Rt△CDF中,∠C=30°,∴CD=2DF=2,故答案为:2.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.请在答题纸的相应位置解答.17.因式分解:(1)mx+my;(2)2x2+4xy+2xy2.解:(1)mx+my=m(x+y);(2)2x2+4xy+2xy2=2(x2+2xy+xy2)=2(x+y)2.18.如图,已知AB=CD,DE⊥AC,BF⊥AC,垂足分别是点E,F,AE=CF.求证:AB∥CD.解:如图,∵DE⊥AC,BF⊥AC,∴∠DEC=∠BFA=90°.又∵AE=CF,∴AE+EF=CF+EF,即AF=CE,在Rt△AFB与Rt△CED中,,∴△AFB≌△CED(HL).∴∠A=∠C.∴AB∥CD.19.解不等式组:.解:,由①得:x<4,由②得;x≥﹣,则原不等式组的解集为﹣≤x<4.20.先化简,再求值:(1﹣)÷,其中a=+2.解:(1﹣)÷===,当a=+2时,原式==.21.证明:等腰三角形的两腰上的中线相等.【解答】已知:△ABC中,AB=AC,AD=DC,AE=EB,求证:BD=CE.证明:∵AB=AC,AD=DC,AE=EB,∴DC=BE,∠DCB=∠EBC.∵BC=CB,∴△BDC≌△CEB(SAS).∴BD=CE.即等腰三角形的两腰上的中线相等.22.在Rt△ABC中,∠C=90°.(1)在CB上找一点E,使EB=EA;(要求:尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,若AC=4,BC=8,求CE的长.解:(1)如图,点E为所作;(2)设CE=x,则EB=AE=8﹣x,在Rt△ACE中,∵AC2+BC2=AE2,∴42+x2=(8﹣x)2,解得x=3,即CE的长为3.23.已知一次函数y1=kx+2k﹣4的图象过一、三、四象限.(1)求k的取值范围;(2)对于一次函数y2=ax﹣a+1(a≠0),若对任意实数x,y1<y2都成立,求k的取值范围.解:(1)由题意得,解得0<k<2,∴k的取值范围是0<k<2;(2)依题意,得k=a,∴y2=kx﹣k+1,∵对任意实数x,y1<y2都成立,∴2k﹣4<﹣k+1,解得k<,∵0<k<2,∴k的取值范围是0<k.24.如图,已知△ABC是等边三角形,在△ABC外有一点D,连接AD,BD,CD,将△ACD绕点A按顺时针方向旋转得到△ABE,AD与BE交于点F,∠BFD=97°.(1)求∠ADC的大小;(2)若∠BDC=7°,BD=3,CD=5,求AD的长.解:(1)∵将△ACD绕点A按顺时针方向旋转得到△ABE,∴AB=AC,∠ADC=∠E,∠CAB=∠DAE=60°,∵∠BFD=97°=∠AFE,∴∠E=180°﹣97°﹣60°=23°,∴∠ADC=∠E=23°;(2)如图,连接DE,∵AD=AE,∠DAE=60°,∴△AED是等边三角形,∴∠ADE=60°,AD=DE,∵将△ACD绕点A按顺时针方向旋转得到△ABE,∴△ACD≌△ABE,∴CD=BE=5,∵∠BDC=7°,∠ADC=23°,∠ADE=60°,∴∠BDE=90°,∴DE===4,∴AD=DE=4.25.某药店销售A,B两种口罩,每个A种口罩比B种进价多0.5元,用240元购进A种口罩与用180元购进B种口罩的数量相同.(1)求A,B两种口罩每个的进价;(2)药店计划购进A,B两种口罩共10000个,其中A种口罩的进货量不多于3000个,且B种口罩进货量不超过A种口罩进货量的3倍.设购进A种口罩m个.①求m的取值范围;②若A种口罩每个售价3元,B种口罩每个售价2元,药店决定从销售A种口罩的利润中按每个捐款a(0.4<a<0.6)元给红十字会,做为慈善基金.设药店售完10000个口罩并捐款后获得的利润为W元,求药店获得利润W最大时的进货方案.解:(1)设A口罩每个的进价x元,则B口罩每个的进价(x﹣0.5)元,根据题意,得,解得x=2,经检验,x=2是原方程的解并且符合题意.∴B口罩每个的进价2﹣0.5=1.5(元),答:A口罩每个的进价2元,则B口罩每个的进价1.5元.(2)①依题意得,10000﹣m≤3m,解得m≥2500,∵m≤3000,∴m的取值范围为2500≤x≤3000;②由①,得2500≤x≤3000;依题意,得W=(3﹣2﹣a)m+(2﹣1.5)(10000﹣m)=(0.5﹣a)m+5000.(Ⅰ)当0.4<a<0.5时,∵0.5﹣a>0,∴W随m的增大而增大,∴当m=3000时,W取最大值;(Ⅱ)当a=0.5时,W的值为5000;(Ⅲ)当0.5<a<0.6时,∵0.5﹣a<0,∴W随m的增大而减小,∴当m=2500时,W取最大值;综上所述,当0.4<a<0.5时,药店购A种口罩3000个,B种口罩7000个;当a=0.5时,药店进A种口罩和B种口罩在符合题意的购买范围内的整数均可;当0.5<a<0.6时,药店购A种口罩2500个,B种口罩7500个.。

2019-2020学年中山市八年级下期末考试数学试题(有答案)

2019-2020学年中山市八年级下期末考试数学试题(有答案)

广东省中山市八年级(下)期末数学试卷一、单项选择题(共10个小题,每小题3分,满分30分)1.下列式子为最简二次根式的是()A.B.C.D.2.已知一组数据:9,8,8,6,9,5,7,则这组数据的中位数是()A.6B.7C.8D.93.下列各比值中,是直角三角形的三边之比的是()A.1:2:3B.2:3:4C.3:4:6D.1::24.下列各式计算正确的是()A.B.C.3+=3D.=﹣25.如图,在▱ABCD中,∠A=140°,则∠B的度数是()A.40°B.70°C.110°D.140°6.鞋店老板去进货时,他必须了解近期各种尺码的鞋销售情况,他应该最关心统计量中的()A.众数B.中位数C.平均数D.方差7.下列条件中,不能判定一个四边形为平行四边形的是()A.两组对边分别平行B.两组对角分别相等C.对角线互相平分D.一组对边平行,另一组对边相等8.关于正比例函数y=﹣3x,下列结论正确的是()A.图象不经过原点B.y随x的增大而增大C.图象经过第二、四象限D.当x=时,y=19.如图是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,其中AE=5,BE=12,则EF的长是()A.7B.8C.7D.710.如图,一次函数y=﹣x+4的图象与两坐标轴分别交于A、B两点,点C是线段AB上一动点(不与点A、B重合),过点C分别作CD、CE垂直于x轴、y轴于点D、E,当点C从点A出发向点B运动时,矩形CDOE的周长()A.逐渐变大B.不变C.逐渐变小D.先变小后变大二、填空题(共6个小题,每小题4分,满分24分)11.在函数y=中,自变量x的取值范围是.12.若一组数据1,3,x,4,5,6的平均数是4,则这组数据的众数是.13.将函数y=的图象向上平移个单位后,所得图象经过点(0,1).14.如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm到D,则橡皮筋被拉长了cm.15.如图,在△ABC中,AB=3,AC=5,点D,E,F分别是AB,BC,AC的中点,则四边形ADEF的周长为.16.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于点H,则DH=.三、解答题(一)(共3个小题,每小题6分,满分18分)17.计算:(2+)(2﹣)+(﹣)÷.18.如图,直线l是一次函数y=kx+b的图象.(1)求出这个一次函数的解析式.(2)根据函数图象,直接写出y<2时x的取值范围.19.某公司招聘人才,对应聘者分别进行了阅读能力、思维能力和表达能力三项测试,其中甲、乙两人的测试成绩(百分制)如下表:(单位:分)应聘者阅读能力思维能力表达能力甲859080乙958095(1)若根据三项测试的平均成绩在甲、乙两人中录用一人,那么谁将被录用?(2)若将阅读能力、思维能力和表达能力三项测试得分按1:3:1的比确定每人的最后成绩,谁将被录用?四、解答题(二)(共3个小题,每小题7分,满分21分)20.如图,∠B=90°,AB=4,BC=3,CD=l2,AD=13,点E是AD的中点,求CE的长.21.甲、乙两名队员参加射击训练,各自射击10次的成绩分别被制成下列统计图.根据以上信息,整理分析数据如下:队员平均/环中位数/环众数/环甲7b7乙a7.5c(1)写出表格中的a、b、c的值;(2)已知乙队员射击成绩的方差为 4.2,计算出甲队员射击成绩的方差,并判断哪个队员的射击成绩较稳定.22.如图,▱ABCD中E,F分别是AD,BC中点,AF与BE交于点G,CE和DF交于点H,求证:四边形EGFH是平行四边形.五、解答题(三)(共3个小题,每小题9分,满分27分)23.某市居民用水实行阶梯收费,每户每月用水量如果未超过20吨,按每吨2元收费.如果超过20吨,未超过的部分仍按每吨2元收费,超过部分按每吨2.5元收费.设某户每月用水量为x吨,应收水费为y 元.(1)分别写出当每月用水量未超过20吨和超过20吨时,y与x之间的函数关系式;(2)若某用户5月份和6月份共用水45吨,且5月份的用水量不足20吨,两个月共交水费95元,求该用户5月份和6月份分别用水多少吨?24.如图,在△ABC中,BD、CE分别为AC、AB边上的中线,BD、CE交于点H,点G、F分别为HC、HB的中点,连接AH、DE、EF、FG、GD,其中HA=BC.(1)证明:四边形DEFG为菱形;(2)猜想当AC、AB满足怎样的数量关系时,四边形DEFG为正方形,并说明理由.25.如图,把矩形OABC放入平面直角坐标系xO中,使OA、OC分别落在x、y轴的正半轴上,其中AB =15,对角线AC所在直线解析式为y=﹣x+b,将矩形OABC沿着BE折叠,使点A落在边OC上的点D处.(1)求点B的坐标;(2)求EA的长度;(3)点P是y轴上一动点,是否存在点P使得△PBE的周长最小,若存在,请求出点P的坐标,若不存在,请说明理由.广东省中山市八年级(下)期末数学试卷参考答案与试题解析一、单项选择题(共10个小题,每小题3分,满分30分)1.下列式子为最简二次根式的是()A.B.C.D.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A正确;B、被开方数含能开得尽方的因数或因式,故B错误;C、被开方数含能开得尽方的因数或因式,故C错误;D、被开方数含分母,故D错误;故选:A.【点评】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.2.已知一组数据:9,8,8,6,9,5,7,则这组数据的中位数是()A.6B.7C.8D.9【分析】根据这组数据是从大到小排列的,找出最中间的数即可.【解答】解:∵9,8,8,6,9,5,7,从大到小排列为9,9,8,8,7,6,5,∴处于最中间的数是8,∴这组数据的中位数是8;故选:C.【点评】此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)即可.3.下列各比值中,是直角三角形的三边之比的是()A.1:2:3B.2:3:4C.3:4:6D.1::2【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.【解答】解:A、∵x+2x=3x,∴三条线段不能组成三角形,不能组成直角三角形,故A选项错误;B、∵(2x)2+(3x)2≠(4x)2,∴三条线段不能组成直角三角形,故B选项错误;C、∵(3x)2+(4x)2≠(6x)2,∴三条线段不能组成直角三角形,故C选项错误;D、∵x2+(x)2=(2x)2,∴∴三条线段能组成直角三角形,故D选项正确;故选:D.【点评】此题考查了勾股定理逆定理的运用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可,注意数据的计算.4.下列各式计算正确的是()A.B.C.3+=3D.=﹣2【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.【解答】解:∵不能合并,故选项A错误,∵=6,故选项B正确,∵3+不能合并,故选项C错误,∵=2,故选项D错误,故选:B.【点评】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.5.如图,在▱ABCD中,∠A=140°,则∠B的度数是()A.40°B.70°C.110°D.140°【分析】根据平行四边形的性质,邻角互补,即可得出答案.【解答】解:∵四边形ABCD是平行四边形,∴∠A+∠B=180°,∵∠A=140°,∴∠B=40°,故选:A.【点评】此题主要考查了平行四边形的性质,灵活的应用平行四边形的性质是解决问题的关键.6.鞋店老板去进货时,他必须了解近期各种尺码的鞋销售情况,他应该最关心统计量中的()A.众数B.中位数C.平均数D.方差【分析】根据平均数、中位数、众数、方差的意义分析判断即可,得出鞋店老板最关心的数据.【解答】解:∵众数体现数据的最集中的一点,这样可以确定进货的数量,∴鞋店老板最关心的统计量应该是众数.故选:A.【点评】此题主要考查了统计的有关知识,主要是众数的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.7.下列条件中,不能判定一个四边形为平行四边形的是()A.两组对边分别平行B.两组对角分别相等C.对角线互相平分D.一组对边平行,另一组对边相等【分析】根据平行四边形的判定方法一一判断即可;【解答】解:A、两组对边分别平行的四边形是平行四边形,故本选项不符合题意;B、两组对角分别相等的四边形是平行四边形,故本选项不符合题意;C、对角线互相平分的四边形是平行四边形,故本选项不符合题意;D、四边形可能是等腰梯形,本选项符合题意;故选:D.【点评】本题考查平行四边形的判定方法,解题的关键是熟练掌握平行四边形的判定方法,属于中考常考题型.8.关于正比例函数y=﹣3x,下列结论正确的是()A.图象不经过原点B.y随x的增大而增大C.图象经过第二、四象限D.当x=时,y=1【分析】根据正比例函数的性质直接解答即可.【解答】解:A.图象经过原点,错误;B.y随x的增大而减小,错误;C、图象经过第二、四象限,正确;D.当x=时,y=﹣1,错误;故选:C.【点评】本题考查了正比例函数的性质,解题的关键是了解正比例函数的比例系数的符号与正比例函数的关系,难度不大.9.如图是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,其中AE=5,BE=12,则EF的长是()A.7B.8C.7D.7【分析】12和5为两条直角边长时,求出小正方形的边长7,即可利用勾股定理得出EF的值.【解答】解:∵AE=5,BE=12,即12和5为两条直角边长时,小正方形的边长=12﹣5=7,∴EF=;故选:C.【点评】本题考查了勾股定理、正方形的性质;熟练掌握勾股定理是解决问题的关键.10.如图,一次函数y=﹣x+4的图象与两坐标轴分别交于A、B两点,点C是线段AB上一动点(不与点A、B重合),过点C分别作CD、CE垂直于x轴、y轴于点D、E,当点C从点A出发向点B运动时,矩形CDOE的周长()A.逐渐变大B.不变C.逐渐变小D.先变小后变大【分析】根据一次函数图象上点的坐标特征可设出点C的坐标为(m,﹣m+4)(0≤m≤2),根据矩形的=4,此题得解.周长公式即可得出C矩形CDOE【解答】解:设点C的坐标为(m,﹣m+4)(0<m<4),则CE=m,CD=﹣m+4,∴C=2(CE+CD)=8(当m=0或4时,C与A或B重合,2AO或2BO=8).矩形CDOE故选:B.【点评】本题考查了一次函数图象上点的坐标特征以及矩形的性质,根据一次函数图象上点的坐标特征设出点C的坐标是解题的关键.二、填空题(共6个小题,每小题4分,满分24分)11.在函数y=中,自变量x的取值范围是x≥﹣1.【分析】根据二次根式的性质,被开方数大于等于0,列不等式求解.【解答】解:根据题意得:x+1≥0,解得,x≥﹣1.【点评】本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.12.若一组数据1,3,x,4,5,6的平均数是4,则这组数据的众数是5.【分析】根据题意可以求得x的值,从而可以求的这组数据的众数.【解答】解:∵一组数据1,3,x,4,5,6的平均数是4,∴,解得,x=5,∴这组数据是1,3,5,4,5,6,∴这组数据的众数是5,故答案为:5.【点评】本题考查众数、算术平均数,解答本题的关键是明确题意,利用众数的知识解答.13.将函数y=的图象向上平移3个单位后,所得图象经过点(0,1).【分析】按照“左加右减,上加下减”的规律,可设新函数解析式为y=+b,然后将点(0,1)代入其中,即可求得b的值.【解答】解:设平移后的解析式是:y=+b.∵此函数图象经过点(0,1),∴1=﹣2+b,解得b=3.故答案是3.【点评】本题主要考查一次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.14.如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm到D,则橡皮筋被拉长了2cm.【分析】根据勾股定理,可求出AD、BD的长,则AD+BD﹣AB即为橡皮筋拉长的距离.【解答】解:Rt△ACD中,AC=AB=4cm,CD=3cm;根据勾股定理,得:AD==5cm;∴AD+BD﹣AB=2AD﹣AB=10﹣8=2cm;故橡皮筋被拉长了2cm.【点评】此题主要考查了等腰三角形的性质以及勾股定理的应用.15.如图,在△ABC中,AB=3,AC=5,点D,E,F分别是AB,BC,AC的中点,则四边形ADEF的周长为8.【分析】首先证明四边形ADEF是平行四边形,根据三角形中位线定理求出DE、EF即可解决问题.【解答】解:∵BD=AD,BE=EC,∴DE=AC=2.5,DE∥AC,∵CF=FA,CE=BE,∴EF=AB=1.5,EF∥AB,∴四边形ADEF是平行四边形,∴四边形ADEF的周长=2(DE+EF)=8.故答案为:8【点评】本题考查三角形中位线定理、平行四边形的判定和性质等知识,解题的关键是出现中点想到三角形中位线定理,记住三角形中位线平行于第三边且等于第三边的一半,属于中考常考题型.16.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于点H,则DH=.【分析】先根据菱形的性质得OA=OC=4,OB=OD=3,AC⊥BD,再利用勾股定理计算出AB=5,然后根据菱形的面积公式得到•AC•BD=DH•AB,再解关于DH的方程即可.【解答】解:∵四边形ABCD是菱形,∴OA=OC=4,OB=OD=3,AC⊥BD,在Rt△AOB中,AB==5,∵S=•AC•BD,菱形ABCDS=DH•AB,菱形ABCD∴DH•5=•6•8,∴DH=.故答案为.【点评】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形的面积等于对角线乘积的一半.三、解答题(一)(共3个小题,每小题6分,满分18分)17.计算:(2+)(2﹣)+(﹣)÷.【分析】根据平方差公式和多项式除以单项式可以解答本题.【解答】解:(2+)(2﹣)+(﹣)÷=4﹣3+2﹣=3﹣.【点评】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.18.如图,直线l是一次函数y=kx+b的图象.(1)求出这个一次函数的解析式.(2)根据函数图象,直接写出y<2时x的取值范围.【分析】(1)将(﹣2,0)、(2,2)两点代入y=kx+b,解得k,b,可得直线l的解析式;(2)根据函数图象可以直接得到答案.【解答】解:(1)将点(﹣2,0)、(2,2)分别代入y=kx+b,得:,解得.所以,该一次函数解析式为:y=x+1;(2)由图象可知,当y<2时x的取值范围是:x<2.【点评】本题主要考查了待定系数法求一次函数的解析式,利用代入法是解答此题的关键.19.某公司招聘人才,对应聘者分别进行了阅读能力、思维能力和表达能力三项测试,其中甲、乙两人的测试成绩(百分制)如下表:(单位:分)应聘者阅读能力思维能力表达能力甲859080乙958095(1)若根据三项测试的平均成绩在甲、乙两人中录用一人,那么谁将被录用?(2)若将阅读能力、思维能力和表达能力三项测试得分按1:3:1的比确定每人的最后成绩,谁将被录用?【分析】(1)根据平均数的计算公式分别进行计算即可;(2)根据加权平均数的计算公式分别进行解答即可.【解答】解:(1)∵=(85+90+80)÷3=85(分),=(95+80+95)÷3=90(分),∴<,∴乙将被录用;(2)根据题意得:==87(分),==86(分);∴>,∴甲将被录用.【点评】本题主要考查平均数,解题的关键是熟练掌握算术平均数和加权平均数的计算公式.四、解答题(二)(共3个小题,每小题7分,满分21分)20.如图,∠B=90°,AB=4,BC=3,CD=l2,AD=13,点E是AD的中点,求CE的长.【分析】先由勾股定理求得AC的长度,再根据勾股定理的逆定理判定△ADC是直角三角形,然后根据直角三角形斜边上的中线等于斜边的一半即可求解.【解答】解:在Rt△ABC中,∠B=90°,∵AB=3,BC=4,∴,∵CD=12,AD=13,∵AC2+CD2=52+122=169,AD2=169,∴AC2+CD2=AD2,∴∠C=90°,∴△ACD是直角三角形,∵点E是AD的中点,∴CE=.【点评】本题考查的是勾股定理,勾股定理的逆定理及直角三角形的性质,能根据勾股定理的逆定理判断出△ADC是直角三角形是解答此题的关键.21.甲、乙两名队员参加射击训练,各自射击10次的成绩分别被制成下列统计图.根据以上信息,整理分析数据如下:队员平均/环中位数/环众数/环甲7b7乙a7.5c(1)写出表格中的a、b、c的值;(2)已知乙队员射击成绩的方差为 4.2,计算出甲队员射击成绩的方差,并判断哪个队员的射击成绩较稳定.【分析】(1)利用加权平均数的计算公式、中位数、众数的概念解答;(2)利用方差的计算公式求出S甲2,根据方差的性质判断即可.【解答】解:(1)a=(3+6+4+8+7+8+7+8+10+9)=7,b=7,c=8;(2)S甲2=×[(5﹣7)2×1+(6﹣7)2×2+(7﹣7)2×4+(8﹣7)2×2+(9﹣7)2×1]=1.2,则S甲2<S乙2,∴甲队员的射击成绩较稳定.【点评】本题考查的是加权平均数、方差的计算,掌握加权平均数的计算公式、方差的计算公式是解题的关键.22.如图,▱ABCD中E,F分别是AD,BC中点,AF与BE交于点G,CE和DF交于点H,求证:四边形EGFH是平行四边形.【分析】可分别证明四边形AFCE是平行四边形,四边形BFDE是平行四边形,从而得出GF∥EH,GE∥FH,即可证明四边形EGFH是平行四边形.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵AE=AD,FC=BC,∴AE∥FC,AE=FC.∴四边形AECF是平行四边形.∴GF∥EH.同理可证:ED∥BF且ED=BF.∴四边形BFDE是平行四边形.∴GE∥FH.∴四边形EGFH是平行四边形.【点评】考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.五、解答题(三)(共3个小题,每小题9分,满分27分)23.某市居民用水实行阶梯收费,每户每月用水量如果未超过20吨,按每吨2元收费.如果超过20吨,未超过的部分仍按每吨2元收费,超过部分按每吨2.5元收费.设某户每月用水量为x吨,应收水费为y 元.(1)分别写出当每月用水量未超过20吨和超过20吨时,y与x之间的函数关系式;(2)若某用户5月份和6月份共用水45吨,且5月份的用水量不足20吨,两个月共交水费95元,求该用户5月份和6月份分别用水多少吨?【分析】(1)分别根据:未超过20吨时,水费y=2×相应吨数;超过20吨时,水费y=2×20+超过20吨的吨数×2.5;列出函数解析式;(2)设该户居民5月份用水x吨,则6月份用水量为(45﹣m)吨,然后依据两个月共交水费95元列方程求解即可.【解答】解:(1)当0≤x≤20时,y=2x;当x>20时,y=2×20+2.5(x﹣20)=2.5x﹣10;(2)设该户居民5月份用水x吨,则6月份用水量为(45﹣m)吨,.根据题意,得:2m+2.5(45﹣m)﹣10=95,解得:m=15.答:该户居民5月份用水15吨,6月份用水量为30吨.【点评】本题考查了一次函数的应用、一元一次方程的应用;得到用水量超过20吨的水费的关系式是解决本题的关键.24.如图,在△ABC中,BD、CE分别为AC、AB边上的中线,BD、CE交于点H,点G、F分别为HC、HB的中点,连接AH、DE、EF、FG、GD,其中HA=BC.(1)证明:四边形DEFG为菱形;(2)猜想当AC、AB满足怎样的数量关系时,四边形DEFG为正方形,并说明理由.【分析】(1)利用三角形中位线定理推知ED∥FG,ED=FG,则由“对边平行且相等的四边形是平行四边形”证得四边形DEFG是平行四边形,同理得EF=HA=BC=DE,可得结论;(2)AC=AB时,四边形DEFG为正方形,通过证明△DCB≌△EBC(SAS),得HC=HB,证明对角线DF=EG,可得结论.【解答】(1)证明:∵D、E分别为AC、AB的中点,∴ED∥BC,ED=BC.同理FG∥BC,FG=BC,∴ED∥FG,ED=FG,∴四边形DEFG是平行四边形,∵AE=BE,FH=BF,∴EF=HA,∵BC=HA,∴EF=BC=DE,∴▱DEFG是菱形;(2)解:猜想:AC=AB时,四边形DEFG为正方形,理由是:∵AB=AC,∴∠ACB=∠ABC,∵BD、CE分别为AC、AB边上的中线,∴CD=AC,BE=AB,∴CD=BE,在△DCB和△EBC中,∵,∴△DCB≌△EBC(SAS),∴∠DBC=∠ECB,∴HC=HB,∵点G、F分别为HC、HB的中点,∴HG=HC,HF=HB,∴GH=HF,由(1)知:四边形DEFG是菱形,∴DF=2FH,EG=2GH,∴DF=EG,∴四边形DEFG为正方形.【点评】本题考查了平行四边形、矩形的判定、菱形的判定、正方形的判定、三角形的中位线性质定理,三角形中线的性质及等腰三角形的性质,其中三角形的中位线的性质定理为证明线段相等和平行提供了依据.25.如图,把矩形OABC放入平面直角坐标系xO中,使OA、OC分别落在x、y轴的正半轴上,其中AB =15,对角线AC所在直线解析式为y=﹣x+b,将矩形OABC沿着BE折叠,使点A落在边OC上的点D处.(1)求点B的坐标;(2)求EA的长度;(3)点P是y轴上一动点,是否存在点P使得△PBE的周长最小,若存在,请求出点P的坐标,若不存在,请说明理由.【分析】(1)根据点C的坐标确定b的值,利用待定系数法求出点A坐标即可解决问题;(2)在Rt△BCD中,BC=9,BD=AB=15,KDCD==12,TCOD=15﹣12=3,设DE=AE =x,在Rt△DEO中,根据DE2=OD2+OE2,构建方程即可解决问题;(3)如图作点E关于y轴的对称点E′,连接BE′交y轴于P,此时△BPE的周长最小.利用待定系数法求出直线BE′的解析式即可解决问题;【解答】解:(1)∵AB=15,四边形OABC是矩形,∴OC=AB=15,∴C(0,15),代入y=y=﹣x+b得到b=15,∴直线AC的解析式为y=﹣x+15,令y=0,得到x=9,∴A(9,0),B(9,15).(2)在Rt△BCD中,BC=9,BD=AB=15,∴CD==12,∴OD=15﹣12=3,设DE=AE=x,在Rt△DEO中,∵DE2=OD2+OE2,∴x2=32+(9﹣x)2,∴x=5,∴AE=5.(3)如图作点E关于y轴的对称点E′,连接BE′交y轴于P,此时△BPE的周长最小.∵E(4,0),∴E′(﹣4,0),设直线BE′的解析式为y=kx+b,则有,解得,∴直线BE′的解析式为y=x+,∴P(0,).【点评】本题考查一次函数综合题、矩形的性质、翻折变换、勾股定理等知识,解题的关键是熟练掌握待定系数法解决问题,学会利用轴对称解决最短问题,属于中考压轴题.。

2019-2020学年重庆八中八年级(下)期末数学试卷(含解析)

2019-2020学年重庆八中八年级(下)期末数学试卷(含解析)

2019-2020学年重庆八中八年级(下)期末数学试卷一.选择题(共10小题).1.下面学习平台的图标中,是轴对称图形的是()A.B.C.D.2.方程x2=4x的解是()A.x=4B.x=2C.x=4或x=0D.x=03.下列各组中的四条线段成比例的是()A.a=,b=3,c=2,d=B.a=4,b=6,c=5,d=10C.a=2,b=,c=2,d=D.a=2,b=3,c=4,d=14.下列分解因式正确的是()A.2x2﹣xy﹣x=2x(x﹣y﹣1)B.﹣xy2+2xy﹣3y=﹣y(xy﹣2x﹣3)C.x(x﹣y)﹣y(x﹣y)=(x﹣y)2D.x2﹣x﹣3=x(x﹣1)﹣35.将方程x2+4x+1=0配方后,原方程变形为()A.(x+2)2=3B.(x+4)2=3C.(x+2)2=﹣3D.(x+2)2=﹣5 6.已知:∠MON,如图,小静进行了以下作图:①在∠MON的两边上分别截取OA,OB,使OA=OB;②分别以点A,B为圆心,OA长为半径作弧,两弧交于点C;③连接AC,BC,AB,OC.若OC=2,S四边形OACB=4,则AB的长为()A.5B.4C.3D.27.已知反比例函数y=的图象上有两点A(x1,y1),B(x2,y2),当x1<0<x2时,有y1<y2,则m的取值范围是()A.m<0B.m>0C.m<D.m>8.(多选题)下列命题是假命题的是.A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相平分的四边形是平行四边形C.菱形的对角线互相垂直平分且相等D.对角线互相垂直的四边形是菱形9.如图,四边形ABCD为矩形纸片,把纸片ABCD折叠,使点B恰好落在CD边的中点E 处,折痕为AF,若CD=6,则AF等于()A.B.C.D.810.如图,已知点A、B在反比例函数y=的图象上,AB经过原点O,过点A作x轴的垂线与反比例函数y=的图象交于点C,连接BC,则△ABC的面积是()A.8B.6C.4D.3二、填空题(共4小题).11.使分式有意义的x的取值范围是.12.已知一个正n边形的每个内角都为144°,则边数n为.13.现有三张分别标有数字2,3,4的卡片;它们除了数字外完全相同,把卡片背面朝上洗匀,从中任意抽取一张,将上面的数字记为a;将卡片放回后,再次任意抽取一张,将上面的数字记为b,则点(a,b)在直线y=x+1图象上的概率为.14.如图,将边长为2cm的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,若两个三角形重叠部分的面积是1cm2,则它移动的距离AA′等于cm.三、解答题:(共54分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.15.(1)解方程:2x2﹣3x﹣3=0;(2)解方程:.16.先化简(x+1﹣)÷,再从0,1,2中选出你喜欢的x的值代入求解.17.如图,四边形ABCD中,已知AB⊥BC,CD⊥BC,且AB=CD.(1)求证:四边形ABCD为矩形;(2)对角线AC,BD相交于O,AE⊥BD,垂足为E,已知AB=3,AD=4,求△AEO 的面积.18.某建筑公司为了完成一项工程,设计了两种施工方案.方案一:甲工程队单独做需40天完成;方案二:乙工程队先做30天后,甲、乙两工程队一起再合做20天恰好完成任务.请问:(1)乙工程队单独做需要多少天才能完成任务?(2)现将该工程分成两部分,甲工程队做其中一部分工程用了x天,乙工程队做另一部分工程用了y天,若x,y都是正整数,且甲工程队做的时间不到15天,乙工程队做的时间不到70天,那么两工程队实际各做了多少天?19.目前“在线支付”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.(1)根据图中信息求出m=,n=;(2)请你帮助他们将这两个统计图补全;(3)根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?(4)已知A、B两位同学都最认可“微信”,C同学最认可“支付宝”,D同学最认可“网购”.从这四名同学中抽取两名同学,请你通过树状图或表格,求出这两位同学最认可的新生事物不一样的概率.20.某养殖户为了预防“猪瘟”的侵袭,每天对猪场进行药熏消毒.一瓶药物在释放过程中,一个圈舍内每立方米空气中含药量y(毫克)与时间x(分钟)之间满足正比例函数关系;已知一个圈舍内一瓶药物打开后10分钟释放完毕,此时圈舍内每立方米的空气中含药量为30毫克,药物释放完后,y与x之间满足反比例函数关系.(1)分别求当0≤x≤10和x>10时,y与x之间满足的函数关系式;(2)请补全函数图象;(3)据测定,当空气中每立方米的含药量不低于15毫克时,消毒才有效.根据函数图象,你知道这次熏药的有效消毒时间大约是多少分钟?四、(本大题共5个小题,每小题4分,共20分,其中21是单项选择题,22题是多项选择题)请将每小题的答案直接填在答题卡中对应的横线上..21.小明上午8:00从家出发,外出散步,到重庆图书馆看了一会儿杂志,继续以相同的速度散步一段时间,然后回家.如图描述了小明在散步过程中离家的路程s(米)与所用时间t(分)之间的函数关系,则下列信息错误的是()A.小明看杂志用了20分钟B.小明一共走了1600米C.小明回家的速度是80米/分D.上午8:32小明在离家800米处23.若多项式x3+x+m含有因式x2﹣x+2,则m的值是.24.端午节,中国四大传统节日之一,是集祈福攘灾、欢庆娱乐和饮食为一体的民俗大节.端午食粽之习俗,自古以来在中国各地盛行不衰,已成了中华民族影响最大、覆盖面最广的民间饮食习俗之一.端午节当日,小明,爸爸和妈妈一起包粽子,假设三个人每分钟各自包的粽子数不变.当小明包三分钟后,爸爸才开始动手包;当爸爸包三分钟后,妈妈才开始动手包;已知爸爸包了12分钟时,所包的粽子数与小明所包的粽子数相同,妈妈包了20分钟时,所包的粽子数与小明所包的粽子数相同.则妈妈包分钟,妈妈和爸爸所包的粽子数相同.25.如图,在正方形ABCD中,AB=4,E为BD上一点,BE=3,过点E作EF⊥BD交AD于点H,交BA延长线于点F,M为AD上一点,过点E作EN⊥EM交CD于点N,EN=,连接BN,FM,G为FM中点,连接EG,则EG=.五、解答题:(本大题共3个小题,共30分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.26.一个四位整数abcd(千位数字为a,百位数字为b,十位数字为c,个位数字为d),若满足a+b=c+d=k,那么,我们称这个四位整数abcd为“k类等和数”.例如:3122是一个“4类等和数”,因为:3+1=2+2=4;5417不是一个“k类等和数”,因为5+4=9,1+7=8,9≠8.(1)写出最小的“3类等和数”是,最大的“8类等和数”是.(2)若一个四位整数是“k类等和数”且满足+=56(a,c≠0),求满足条件的所有“k类等和数”的个数,并把它们写出来.27.如图,在平面直角坐标系中,直线y=与x轴、y轴分别交于A、C两点,在x轴的正半轴有一点B满足OA=2OB,连接CB.(1)如图1,点E在线段CB上,点F在直线AC上,连接EF且满足EF平行于y轴,且S△AEF=S△ABC,请求出此时点E的坐标.若点P为直线AC上一动点,求PB+PE的最小值;(2)如图2,现将△OBC绕O点逆时针旋转60°,得到△OB′C′,将△AOC沿着直线OC'平行移动得到△A′O′C″,若在平移过程中当△C″C'B'是等腰三角形,请直接写出点C″的坐标.28.如图,平行四边形ABCD中,BC=BD,点F是线段AB的中点,过点C作CG⊥DB交BD于点G,CG延长线交DF于点H,且CH=DB.(1)如图1,若DH=1,求FH的值;(2)如图1,连接FG,求证:DB=FG+HG;(3)如图2,延长CH交AD于点M,延长FG交CD于点N,直接写出的值.参考答案一.选择题(共10个小题,每小题.3分,共30分)1.下面学习平台的图标中,是轴对称图形的是()A.B.C.D.解:A、不是轴对称图形,故此选项不合题意;B、不是轴对称图形,故此选项不合题意;C、不是轴对称图形,故此选项不合题意;D、是轴对称图形,故此选项符合题意;故选:D.2.方程x2=4x的解是()A.x=4B.x=2C.x=4或x=0D.x=0解:原方程可化为:x2﹣4x=0,提取公因式:x(x﹣4)=0,∴x=0或x=4.故选:C.3.下列各组中的四条线段成比例的是()A.a=,b=3,c=2,d=B.a=4,b=6,c=5,d=10 C.a=2,b=,c=2,d=D.a=2,b=3,c=4,d=1解:A.×3≠2×,故本选项错误;B.4×10≠5×6,故本选项错误;C.2×=×2,故本选项正确;D.4×1≠3×2,故本选项错误;故选:C.4.下列分解因式正确的是()A.2x2﹣xy﹣x=2x(x﹣y﹣1)B.﹣xy2+2xy﹣3y=﹣y(xy﹣2x﹣3)C.x(x﹣y)﹣y(x﹣y)=(x﹣y)2D.x2﹣x﹣3=x(x﹣1)﹣3【分析】根据提公因式法和公式法进行判断求解.解:A、公因式是x,应为2x2﹣xy﹣x=x(2x﹣y﹣1),错误;B、符号错误,应为﹣xy2+2xy﹣3y=﹣y(xy﹣2x+3),错误;C、提公因式法,正确;D、右边不是积的形式,错误;故选:C.【点评】本题考查了多项式的因式分解,符号的变化是学生容易出错的地方,要克服.5.将方程x2+4x+1=0配方后,原方程变形为()A.(x+2)2=3B.(x+4)2=3C.(x+2)2=﹣3D.(x+2)2=﹣5【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.解:∵x2+4x+1=0,∴x2+4x=﹣1,∴x2+4x+4=﹣1+4,∴(x+2)2=3.故选:A.【点评】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确使用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.6.已知:∠MON,如图,小静进行了以下作图:①在∠MON的两边上分别截取OA,OB,使OA=OB;②分别以点A,B为圆心,OA长为半径作弧,两弧交于点C;③连接AC,BC,AB,OC.若OC=2,S四边形OACB=4,则AB的长为()A.5B.4C.3D.2【分析】根据作法判定出四边形OACB是菱形,再根据菱形的面积等于对角线乘积的一半列式计算即可得解.解:由作图可得,OA=OB=BC=AC,∴四边形AOBC是菱形,∴S菱形AOBC=OC×AB,即4=,解得AB=4,故选:B.【点评】本题考查了菱形的判定与性质,解题时注意:菱形的面积等于对角线乘积的一半,判定出四边形OACB是菱形是解题的关键.7.已知反比例函数y=的图象上有两点A(x1,y1),B(x2,y2),当x1<0<x2时,有y1<y2,则m的取值范围是()A.m<0B.m>0C.m<D.m>【分析】先根据当x1<0<x2时,有y1<y2,判断出1﹣2m的符号,求出m的取值范围即可.解:∵反比例函数y=的图象上有两点A(x1,y1),B(x2,y2),当x1<0<x2时,有y1<y2,∴反比例函数的图象在一三象限,∴1﹣2m>0,解得m<.故选:C.【点评】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出反比例函数y =的图象在一、三象限是解答此题的关键.8.(多选题)下列命题是假命题的是A、C、D.A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相平分的四边形是平行四边形C.菱形的对角线互相垂直平分且相等D.对角线互相垂直的四边形是菱形【分析】根据平行四边形的判定方法对A、B进行判断;根据菱形的性质对C进行判断;根据菱形的判定方法对D进行判断.解:A、一组对边平行且这组对边相等的四边形是平行四边形,所以A选项为假命题;B.对角线互相平分的四边形是平行四边形,所以B选项为真命题;C.菱形的对角线互相垂直平分,所以C选项为假命题;D.对角线互相垂直的平行四边形是菱形,所以D选项为假命题.故答案为A、C、D.【点评】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.9.如图,四边形ABCD为矩形纸片,把纸片ABCD折叠,使点B恰好落在CD边的中点E 处,折痕为AF,若CD=6,则AF等于()A.B.C.D.8【分析】先图形折叠的性质得到BF=EF,AE=AB,再由E是CD的中点可求出ED的长,再求出∠EAD的度数,设FE=x,则AF=2x,在△ADE中利用勾股定理即可求解.解:由折叠的性质得BF=EF,AE=AB,因为CD=6,E为CD中点,故ED=3,又因为AE=AB=CD=6,所以∠EAD=30°,则∠FAE=(90°﹣30°)=30°,设FE=x,则AF=2x,在△AEF中,根据勾股定理,(2x)2=62+x2,x2=12,x1=2,x2=﹣2(舍去).AF=2×2=4.故选:A.【点评】解答此题要抓住折叠前后的图形全等的性质解答.10.如图,已知点A、B在反比例函数y=的图象上,AB经过原点O,过点A作x轴的垂线与反比例函数y=的图象交于点C,连接BC,则△ABC的面积是()A.8B.6C.4D.3【分析】设A(a,),根据A、B两点关于原点对称得B点坐标,由AC⊥x轴,两点的横坐标相等,结合C点在反比例函数y=的图象上,求得C点坐标,进而求得AC,B到AC的距离,再运用三角形的面积公式,便可求得结果.解:设A(a,),则B(﹣a,﹣),C(a,﹣),∴AC=,B点到AC的距离为:a﹣(﹣a)=2a,∴△ABC的面积=,故选:B.【点评】本题考查了反比例函数的图象与性质,三角形的面积计算,关键是用同一个字母表示A、B、C三点的坐标.二、填空题(本大题共4个小题,每小题4分,共16分)请将每小题的答案直接填在答题卡中对应的横线上.11.使分式有意义的x的取值范围是x≠﹣2.【分析】根据分式有意义,分母不等于0列不等式求解即可.解:由题意得,x+2≠0,解得x≠﹣2.故答案为:x≠﹣2.【点评】此题主要考查了分式有意义的条件,正确把握相关定义是解题关键.12.已知一个正n边形的每个内角都为144°,则边数n为十.解:由题意得,(n﹣2)•180°=144°•n,解得n=10.故答案为:十.13.现有三张分别标有数字2,3,4的卡片;它们除了数字外完全相同,把卡片背面朝上洗匀,从中任意抽取一张,将上面的数字记为a;将卡片放回后,再次任意抽取一张,将上面的数字记为b,则点(a,b)在直线y=x+1图象上的概率为.解:画树状图为:共有9种等可能的结果,其中点(a,b)在直线y=x+1图象上的结果为(2,2),(4,3),所以点(a,b)在直线y=x+1图象上的概率=.故答案为.14.如图,将边长为2cm的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,若两个三角形重叠部分的面积是1cm2,则它移动的距离AA′等于1cm.【分析】本题考查了等腰直角三角形的判定和性质及平移的基本性质.解:设CD与A′C′交于点H,AC与A′B′交于点G,由平移的性质知,A′B′与CD平行且相等,∠ACB′=45°,∠DHA′=∠DA′H=45°,∴△DA′H是等腰直角三角形,A′D=DH,四边形A′GCH是平行四边形,∵S A′GCH=HC•B′C=(CD﹣DH)•DH=1cm2,∴DH=A′D=1cm,∴AA′=AD﹣A′D=1cm.故答案为1.三、解答题:(共54分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.15.(1)解方程:2x2﹣3x﹣3=0;(2)解方程:.解:(1)2x2﹣3x﹣3=0,b2﹣4ac=(﹣3)2﹣4×2×(﹣3)=33,x=,x1=,x2=;(2)方程两边都乘以2(x﹣1)得:2=3+2x﹣2,解得:x=0.5,检验:当x=0.5时,2(x﹣1)≠0,所以x=0.5是原方程的解,即原方程的解是x=0.5.16.先化简(x+1﹣)÷,再从0,1,2中选出你喜欢的x的值代入求解.解:(x+1﹣)÷===﹣,∵当x=0,1时原式无意义,∴x=2,当x=2时,原式=﹣.17.如图,四边形ABCD中,已知AB⊥BC,CD⊥BC,且AB=CD.(1)求证:四边形ABCD为矩形;(2)对角线AC,BD相交于O,AE⊥BD,垂足为E,已知AB=3,AD=4,求△AEO 的面积.【解答】(1)证明:∵AB⊥BC,CD⊥BC,∴AB∥CD,∵AB=CD,∴四边形ABCD是平行四边形,∵AB⊥BC,∴∠ABC=90°,∴四边形ABCD为矩形;(2)解:∵四边形ABCD为矩形,∴∠BAC=90°,∵AB=3,AD=4,∴BD=5,∵S△ABD=AB•AD=BD•AE,∴3×4=5AE,∴AE=,∵AC=BD=5,∴AO=AC=,∵AE⊥BD,∴OE===,∴△AEO的面积==.18.某建筑公司为了完成一项工程,设计了两种施工方案.方案一:甲工程队单独做需40天完成;方案二:乙工程队先做30天后,甲、乙两工程队一起再合做20天恰好完成任务.请问:(1)乙工程队单独做需要多少天才能完成任务?(2)现将该工程分成两部分,甲工程队做其中一部分工程用了x天,乙工程队做另一部分工程用了y天,若x,y都是正整数,且甲工程队做的时间不到15天,乙工程队做的时间不到70天,那么两工程队实际各做了多少天?解:(1)设乙工程队单独做需要x天完成任务,由题意,得:+20×=1,解得:x=100,经检验,x=100是原方程的解.答:乙工程队单独做需要100天才能完成任务;(2)根据题意得:+=1,整理得:y=100﹣x.∵y<70,∴100﹣x<70.解得:x>12.又∵x<15且为整数,∴x=13或14.当x=13时,y不是整数,所以x=13不符合题意,舍去.当x=14时,y=100﹣×14=100﹣35=65.答:甲队实际做了14天,乙队实际做了65天.19.解:(1)∵被调查的总人数m=10÷10%=100人,∴支付宝的人数所占百分比n%=×100%=35%,即n=35,故答案为:100、35;(2)网购人数为100×15%=15人,微信对应的百分比为×100%=40%,补全图形如下:(3)估算全校2000名学生中,最认可“微信”这一新生事物的人数为2000×40%=800(人);答:大约有800人最认可“微信”这一新生事物.(4)列表如下:共有12种等可能情况,这两位同学最认可的新生事物不一样的有10种;所以这两位同学最认可的新生事物不一样的概率为P==.20.某养殖户为了预防“猪瘟”的侵袭,每天对猪场进行药熏消毒.一瓶药物在释放过程中,一个圈舍内每立方米空气中含药量y(毫克)与时间x(分钟)之间满足正比例函数关系;已知一个圈舍内一瓶药物打开后10分钟释放完毕,此时圈舍内每立方米的空气中含药量为30毫克,药物释放完后,y与x之间满足反比例函数关系.(1)分别求当0≤x≤10和x>10时,y与x之间满足的函数关系式;(2)请补全函数图象;(3)据测定,当空气中每立方米的含药量不低于15毫克时,消毒才有效.根据函数图象,你知道这次熏药的有效消毒时间大约是多少分钟?【分析】(1)根据函数图象找出点的坐标,再根据点的坐标利用待定系数法即可求出一次函数和反比例函数的关系式;(2)根据(1)中所求解析式画出图象即可;(3)将y=15分别代入两函数关系式中求出x值,二者做差即可得出结论.解:(1)当0≤x≤10时,设y=ax(a≠0);当x>10时,设y=(k≠0).将(10,30)代入y=ax,得30=10a,解得a=3,∴y=3x(0≤x≤10).将(10,30)代入y=,得30=,解得:k=300,∴y=(x>10);(2)如图所示:(3)当y=3x=15时,x=5;当y==15时,x=20.20﹣5=15(分钟).答:这次熏药的有效消毒时间大约是15分钟.【点评】本题考查了反比例函数的应用、待定系数法求函数解析式以及一次函数(反比例)函数图象上点的坐标特征,解题的关键是:(1)根据点的坐标利用待定系数法求出函数关系式;(2)将y=15代入两函数关系式求出x的值.四、(本大题共5个小题,每小题4分,共20分,其中21是单项选择题,22题是多项选择题)请将每小题的答案直接填在答题卡中对应的横线上..21.小明上午8:00从家出发,外出散步,到重庆图书馆看了一会儿杂志,继续以相同的速度散步一段时间,然后回家.如图描述了小明在散步过程中离家的路程s(米)与所用时间t(分)之间的函数关系,则下列信息错误的是()A.小明看杂志用了20分钟B.小明一共走了1600米C.小明回家的速度是80米/分D.上午8:32小明在离家800米处【分析】根据函数图象中的数据可以判断各个选项中的说法是否正确,注意题目中说小明到重庆图书馆室看了一会儿杂志,继续以相同的速度散步一段时间,由图象可知小明前400米用时8分钟,则从图书馆出来继续散步用的时间也是8分钟.解:由图可得,小明看杂志用了28﹣8=20分钟,故选项A不合题意,小明一共走了800+800=1600米,故选项B不合题意,小明回家的速度是800÷(46﹣28﹣8)=80米/分,故选项C不合题意,上午8:36小明在离家800米处,故选项D符合题意,故选:D.【点评】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.23.若多项式x3+x+m含有因式x2﹣x+2,则m的值是2.【分析】设另一个因式是x+a,根据已知得出(x2﹣x+2)(x+a)=x3+x+m,再进行化简,即可求出a、m值.解:∵多项式x3+x+m含有因式x2﹣x+2,∴设另一个因式是x+a,则(x2﹣x+2)(x+a)=x3+x+m,∵(x2﹣x+2)(x+a)=x3+ax2﹣x2﹣ax+2x+2a=x3+(a﹣1)x2+(﹣a+2)x+2a,∴a﹣1=0,2a=m,解得:a=1,m=2,故答案为:2.【点评】本题考查了因式分解的定义和多项式乘以多项式法则,能得出关于a、m的方程是解此题的关键.24.端午节,中国四大传统节日之一,是集祈福攘灾、欢庆娱乐和饮食为一体的民俗大节.端午食粽之习俗,自古以来在中国各地盛行不衰,已成了中华民族影响最大、覆盖面最广的民间饮食习俗之一.端午节当日,小明,爸爸和妈妈一起包粽子,假设三个人每分钟各自包的粽子数不变.当小明包三分钟后,爸爸才开始动手包;当爸爸包三分钟后,妈妈才开始动手包;已知爸爸包了12分钟时,所包的粽子数与小明所包的粽子数相同,妈妈包了20分钟时,所包的粽子数与小明所包的粽子数相同.则妈妈包75分钟,妈妈和爸爸所包的粽子数相同.【分析】设小明每分钟包x个粽子,妈妈包y分钟,妈妈和爸爸所包的粽子数相同,则爸爸每分钟包x个粽子,妈妈每分钟包x个粽子,根据爸爸和妈妈所包的粽子数相同,即可得出关于y的一元一次方程,解之即可得出结论.解:设小明每分钟包x个粽子,妈妈包y分钟,妈妈和爸爸所包的粽子数相同,则爸爸每分钟包x=x个粽子,妈妈每分钟包x=x个粽子,依题意得:x(3+y)=xy,即(3+y)=y,解得:y=75.故答案为:75.【点评】本题考查了一元一次方程的应用以及列代数式,根据各数量之间的关系,利用含x的代数式表示出爸爸、妈妈每分钟包的粽子的数量是解题的关键.25.如图,在正方形ABCD中,AB=4,E为BD上一点,BE=3,过点E作EF⊥BD交AD于点H,交BA延长线于点F,M为AD上一点,过点E作EN⊥EM交CD于点N,EN=,连接BN,FM,G为FM中点,连接EG,则EG=.解:过点G作∥AD,过E作EK⊥AD于K,与PQ交于点P,如图,∵四边形ABCD为正方形,AB=4,∴BD=AB=4,∠ADB=∠CDB=∠ABD=45°,∵BE=3,EF⊥BD,∴EF=BE=3,DE=EH=BD﹣BE=,∠EHD=45°,∴EK=DK=KH=1,∵EN⊥EM,∴∠MEN=∠DEH=90°,∴∠NED=∠MEH,∴△DEN≌△HEM(ASA),∴EN=EM=,∴MK=,∴DM=DK﹣MK=,∴AM=AD﹣DM=4﹣,∵AH=AD﹣DH=4﹣2=2,HF=EF﹣EH=3,∴AF=,∵G为MF的中点,PQ∥AD,∴AQ=,GQ=,∵∠AKP=∠KAQ=∠AQP=90°,∴四边形AKPQ为矩形,∴PK=AQ=1,PQ=AK=4﹣1=3,∴EP=EK+PK=1+1=2,PG=PQ﹣GQ=3﹣,∴.故答案为:.五、解答题(共3个小题,共30分)26.一个四位整数abcd(千位数字为a,百位数字为b,十位数字为c,个位数字为d),若满足a+b=c+d=k,那么,我们称这个四位整数abcd为“k类等和数”.例如:3122是一个“4类等和数”,因为:3+1=2+2=4;5417不是一个“k类等和数”,因为5+4=9,1+7=8,9≠8.(1)写出最小的“3类等和数”是1203,最大的“8类等和数”是8080.(2)若一个四位整数是“k类等和数”且满足+=56(a,c≠0),求满足条件的所有“k类等和数”的个数,并把它们写出来.解:(1)最小的“3类等和数”是1203,最大的“8类等和数”是8080.(2)∵+=56(a,c≠0),∴b+d=6或16,∴b=0,d=6(不合题意);b=1,d=5(不合题意);b=2,d=4(不合题意);b=3,d=3(不合题意);b=4,d=2(不合题意);b=5,d=1(不合题意);b=6,d=0(不合题意);b=7,d=9,a=3,c=1,即3719;b=8,d=8,a=2,c=2,即2828;b=9,d=7,a=1,c=3,即1937.综上所述,满足条件的所有“k类等和数”的个数是3,分别是3719,2828,1937.故答案为:1203,8080.27.如图,在平面直角坐标系中,直线y=与x轴、y轴分别交于A、C两点,在x轴的正半轴有一点B满足OA=2OB,连接CB.(1)如图1,点E在线段CB上,点F在直线AC上,连接EF且满足EF平行于y轴,且S△AEF=S△ABC,请求出此时点E的坐标.若点P为直线AC上一动点,求PB+PE的最小值;(2)如图2,现将△OBC绕O点逆时针旋转60°,得到△OB′C′,将△AOC沿着直线OC'平行移动得到△A′O′C″,若在平移过程中当△C″C'B'是等腰三角形,请直接写出点C″的坐标.解:(1)对于y=,令y==0,解得x=﹣4,令x=0,则y=,故点A、C的坐标分别为(﹣4,0)、(0,),∵OA=2OB=4,则OB=2,故点B(2,0),由点B、C的坐标得,直线BC的表达式为y=﹣x+,则S△ABC=×AB×CO×=××6×==S△AEF,设点E(m,﹣m+),则点F(m,m+),则S△AEF=×EF×(x E﹣x A)=(m++m﹣)×(m+4)=,解得m=﹣5(舍去)或1,故点E的坐标为(1,);作点B关于直线AC的对称点B′,连接EB′交AC于点P,则点P为所求点.理由:PB+PE=PB′+PE=B′E为最小,由直线AC的表达式知,∠BAC=30°,连接AB',根据图形的对称性,则∠BAB′=60°,连接BP,则△ABB′为边长为6的等边三角形,则点B′(﹣1,3);由点B′和点E的坐标得,直线B′E==,即PB+PE的最小值为;(2)将△OBC绕O点逆时针旋转60°,连接BB′,则△OBB′为等边三角形,同理可得,点B′的坐标为(1,),分别过点B′、C′作x轴的垂线,垂足分别为H、M,∵∠C′OM+∠MC′O=90°,∠C′OM+∠B′OH=90°,∴∠B′OH=∠OC′M,∴Rt△OMC′∽Rt△B′HO,∵C′O=CO=,OB′=OB=2,∴Rt△OMC′和Rt△B′HO的相似比为:2=,∴OM=×B′H=×=2,同理可得C′M=,故点C′的坐标为(﹣2,),则OM:C′M=:1,故设图形向左平移m个单位,则向上平移了m个单位,故点C″的坐标为(﹣2﹣m,+m),由点C、′C″、B′的坐标得:C′C″2=(m)2+m2,C″B′2=(3+m)2+(m ﹣)2,B′C′2=,当C′C″=C″B′时,则(m)2+m2=(3+m)2+(m﹣)2,解得:m=﹣;当C″C′=B′C′时,(m)2+m2=,解得,m=;当C″B′=B′C′时,(3+m)2+(m﹣)2=,解得,m=0或﹣;故点C″的坐标为(﹣,)或(﹣2﹣,+)或(﹣2+,﹣)或(﹣2,)或(2,﹣).28.如图,平行四边形ABCD中,BC=BD,点F是线段AB的中点,过点C作CG⊥DB交BD于点G,CG延长线交DF于点H,且CH=DB.(1)如图1,若DH=1,求FH的值;(2)如图1,连接FG,求证:DB=FG+HG;(3)如图2,延长CH交AD于点M,延长FG交CD于点N,直接写出的值.【解答】(1)证明:如图1中,∵四边形ABCD是平行四边形,∴AD=BC,AB=CD,AB∥CD,∵BD=BC,∴AD=BD,∵AF=FB,∴DF⊥AB,∴DF⊥DC,∵CG⊥BD,∴∠CDH=∠CGD=∠DFB=90°,∴∠BDF+∠CDG=90°,∠CDG+∠DCH=90°,∴∠BDF=∠DCH,∵CH=DB,∴△DFB≌△CDH(AAS),∴DH=BF,CD=DF,∴AB=DF,∵AB=2BF,∴DF=2DH=2,∴FH=DH=1.(2)解:如图1中,过点F作FJ⊥BD于J,FK⊥CH交CH的延长线于K.过点D作DT⊥DF交FG的延长线于T,连接CT,设FT交CD于N.∵∠K=∠FJG=∠KGJ=90°,∴四边形FKGJ是矩形,∴∠FKJ=90°,∵∠DFB=90°,∴∠KFH=∠BFJ,∵∠K=∠FJB=90°,FH=FB,∴△FKH≌△FJB(AAS),∴FK=FJ,∵FK⊥GK,FJ⊥GJ,∴FG平分∠KGJ,∴∠FGH=∠FGJ=45°,∵∠DGT=∠FGJ=45°,∠GDT=90°,∴DG=DT,∵∠FDC=∠GDT=90°,∴∠FDG=∠CDT,∵DF=DC,∴△FDG≌△CDT(SAS),∴FG=CT,∠DFN=∠TCN,∵∠DNF=∠CNF,∴∠FDN=∠CTN=90°,∵∠TGC=∠FGK=45°,∴TG=TC,CG=CT=FG,∴BD=CH=GH+CG=GH+FG,∴DB=FG+HG.(3)解:如图2中,过点N作NT⊥DG于T,NQ⊥CG于Q.设AF=FB=FH=DH=a,则AB=DF=CD=2a,BD=CH=a,由(2)可知,∠NGT=∠NGQ=45°,∵NT⊥DG于T,NQ⊥CG于Q,∴NT=NQ,∴===,∵DG==a,∴BG=a,CG==a,∴==,∴CN=a,∵DG:BG=2:3,DM∥BC,∴DM:BC=DG:BG=2:3,∴DM=×a=a,∴==.。

2019-2020学年山东省济宁市曲阜市八年级下学期期末数学试卷 (解析版)

2019-2020学年山东省济宁市曲阜市八年级下学期期末数学试卷 (解析版)

2019-2020学年山东济宁市曲阜市八年级第二学期期末数学试卷一、选择题(共10小题).1.要使二次根式有意义,x的值可以是()A.﹣2B.﹣3C.﹣4D.﹣52.一次函数y=2﹣x与x轴的交点为()A.(1,1)B.(0,2)C.(2,0)D.(3,0)3.在▱ABCD中、如果∠A=65°、那么∠C的度数是()A.115°B.65°C.25°D.35°4.某青年排球队l2名队员的年龄情况如下表所示:年龄1819202122人数14322则这12名队员的平均年龄是()A.18岁B.19岁C.20岁D.21岁5.以下列各组数为边长,能构成直角三角形的是()A.5,12,13B.1,2,C.,,2D.4,5,66.下列运算结果正确的是()A.=﹣3B.(﹣)2=2C.÷=2D.=±4 7.已知四边形ABCD是平行四边形,下列结论不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是菱形8.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15B.13,15C.13,20D.15,159.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0 10.已知:如图,矩形ABCD中,AB=5,BC=12,对角线AC、BD相交于点O,点P是线段AD上任意一点,且PE⊥AC于点E,PF⊥BD于点F,则PE+PF等于()A.B.C.D.二、填空题(共6小题).11.正比例函数图象经过(3,﹣6),则这个正比例函数的解析式是.12.已知:x=,y=﹣2,代数式x2﹣2xy+y2的值为.13.已知,如图,一小船以20海里/时的速度从港口A出发向东北方向航行,另一小船以15海里/时的速度同时从港口A出发向东南方向航行,离开港口1小时后,则两船相距.14.将直线y=2x﹣5向上平移2个单位,所得直线解析式为.15.如图,菱形ABCD中,对角线AC、BD相交于点O,H为AB边中点,菱形ABCD的周长为24,则OH的长等于.16.如图,正方形ABCD的边长是2,对角线AC、BD相交于点O,点E、F分别在边AD、AB上,且OE⊥OF,则四边形AFOE的面积为.三、解答题:共72分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.计算:×+6﹣.18.如图,每个小正方形的边长都为1(1)求四边形ABCD的周长;(2)求∠BCD的大小.19.甲、乙两名同学5次数学练习的成绩如下表:(单位:分)测试日期2月10日2月20日3月5日3月18日3月27日甲126127130133134乙130125130135130已知甲同学这5次数学练习成绩的平均数为130分,方差为10分2.(1)乙同学这5次数学练习成绩的平均数为分,方差为分2;(2)甲、乙都认为自己在这5次练习中的表现比对方更出色,请分别写出一条支持他们俩观点的理由.20.如图,在平行四边形ABCD中,E、F为对角线BD上的两点,且∠BAF=∠DCE.求证:BE=DF.21.如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(﹣2,6),且与x 轴相交于点B,与y轴交于点D,与正比例函数y=3x的图象相交于点C,点C的横坐标为1.(1)求k,b的值;(2)请直接写出不等式kx+b﹣3x>0的解集;(3)M为射线CB上一点,过点M作y轴的平行线交y=3x于点N,当MN=OD时,求M点的坐标.22.“双剑合璧,天下无敌”,其意思是指两个人合在一起,取长补短,威力无比.在二次根式中也常有这种相辅相成的“对子”,如:(2+)(2﹣)=1,=3,它们的积中不含根号,我们说这两个二次根式是互为有理化因式,其中一个是另一个的有理化因式,于是,二次根式除法可以这样解:,=7+4.像这样通过分子、分母同乘一个式子把分母中的根号化去的方法,叫做分母有理化.解决下列问题:(1)将分母有理化得;+1的有理化因式是;(2)化简:=;(3)化简:……+.23.如图,矩形ABCD中,点P是线段AD上的一个动点,O为BD的中点,PO的延长线交BC于Q.(1)求证:OP=OQ;(2)若AD=8cm,AB=6cm,点P从点A出发,以1cm/s的速度向点D运动(不与D 重合).设点P运动的时间为t秒,请用t表示PD的长;并求出t为何值时,四边形PBQD是菱形?参考答案一、选择题(共10小题).1.要使二次根式有意义,x的值可以是()A.﹣2B.﹣3C.﹣4D.﹣5解:由题意得,x+2≥0,解得,x≥﹣2,故选:A.2.一次函数y=2﹣x与x轴的交点为()A.(1,1)B.(0,2)C.(2,0)D.(3,0)解:令y=0,则2﹣x=0,解得x=2,所以一次函数y=2﹣x与x轴的交点坐标是(2,0),故选:C.3.在▱ABCD中、如果∠A=65°、那么∠C的度数是()A.115°B.65°C.25°D.35°解:∵四边形ABCD是平行四边形,∴∠C=∠A=65°,故选:B.4.某青年排球队l2名队员的年龄情况如下表所示:年龄1819202122人数14322则这12名队员的平均年龄是()A.18岁B.19岁C.20岁D.21岁解:(18+4×19+3×20+2×21+2×22)÷12=(18+76+60+42+44)÷12=240÷12=20(岁).故这l2名队员的平均年龄是20岁.故选:C.5.以下列各组数为边长,能构成直角三角形的是()A.5,12,13B.1,2,C.,,2D.4,5,6解:A、52+122=132,能构成直角三角形,故选项符合题意;B、12+22≠()2,不能构成直角三角形,故选项不合题意;C、()2+22≠()2,不能构成直角三角形,故选项不合题意;D、42+52≠62,不能构成直角三角形,故选项不合题意.故选:A.6.下列运算结果正确的是()A.=﹣3B.(﹣)2=2C.÷=2D.=±4解:A、=3,故本选项不符合题意;B、(﹣)2=2,故本选项符合题意;C、÷=,故本选项不符合题意;D、=4,故本选项不符合题意;故选:B.7.已知四边形ABCD是平行四边形,下列结论不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是菱形解:A、∵四边形ABCD是平行四边形,AB=BC,∴四边形ABCD是菱形,故正确;B、∵四边形ABCD是平行四边形,AC⊥BD,∴四边形ABCD是菱形,故正确;C、∵四边形ABCD是平行四边形,∠ABC=90°,∴四边形ABCD是矩形,故正确;D、∵四边形ABCD是平行四边形,AC=BD,四边形ABCD是矩形,故错误.故选:D.8.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15B.13,15C.13,20D.15,15解:把这组数据从小到大排列:10、13、15、15、20,最中间的数是15,则这组数据的中位数是15;15出现了2次,出现的次数最多,则众数是15.故选:D.9.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0解:∵一次函数y=kx+b的图象经过一、二、四象限,∴k<0,b>0.故选:C.10.已知:如图,矩形ABCD中,AB=5,BC=12,对角线AC、BD相交于点O,点P是线段AD上任意一点,且PE⊥AC于点E,PF⊥BD于点F,则PE+PF等于()A.B.C.D.解:连接PO,∵矩形ABCD的两边AB=5,BC=12,∴S矩形ABCD=AB•BC=60,OA=OC,OB=OD,AC=BD,AC===13,∴S△AOD=S矩形ABCD=15,OA=OD=AC=,∴S△AOD=S△AOP+S△DOP=OA•PE+OD•PF=OA(PE+PF)=××(PE+PF)=15,∴PE+PF=,故选:A.二、填空题(每题3分,满分18分,将答案填在答题纸上)11.正比例函数图象经过(3,﹣6),则这个正比例函数的解析式是y=﹣2x.解:设这个正比例函数的解析式为y=kx(k≠0),∵正比例函数的图象经过点(3,﹣6),∴﹣6=3k,解得k=﹣2,∴y=﹣2x.故答案是:y=﹣2x.12.已知:x=,y=﹣2,代数式x2﹣2xy+y2的值为4.解:∵x=,y=﹣2,∴x﹣y=2,∴原式=(x﹣y)2=4,故答案为:413.已知,如图,一小船以20海里/时的速度从港口A出发向东北方向航行,另一小船以15海里/时的速度同时从港口A出发向东南方向航行,离开港口1小时后,则两船相距25海里.解:由题意得:两船的行驶方向为直角,向东北方向航行的小船行驶路程为:20×1=20(海里),向东南方向航行的小船行驶路程为:15×1=15(海里),两船的距离:=25(海里),故答案为:25海里.14.将直线y=2x﹣5向上平移2个单位,所得直线解析式为y=2x﹣3.解:由“上加下减”的原则可知,将函数y=2x﹣5向上平移,2个单位所得函数的解析式为y=2x﹣5+2,即y=2x﹣3.故答案为:y=2x﹣3.15.如图,菱形ABCD中,对角线AC、BD相交于点O,H为AB边中点,菱形ABCD的周长为24,则OH的长等于3.解:∵菱形ABCD的周长等于24,∴AB==6,∵四边形ABCD是菱形,∴AC⊥BD,∵H为AB边中点,∴在Rt△AOB中,OH为斜边上的中线,∴OH=AB=3.故答案为:3.16.如图,正方形ABCD的边长是2,对角线AC、BD相交于点O,点E、F分别在边AD、AB上,且OE⊥OF,则四边形AFOE的面积为1.解:∵四边形ABD是正方形,∴OA=OB,∠OAE=∠OBF=45°,AC⊥BD,∴∠AOB=90°,∵OE⊥OF,∴∠EOF=90°,∴∠AOE=∠BOF,在△AOE和△BOF中,,∴△AOE≌△BOF(ASA),∴△AOE的面积=△BOF的面积,∴四边形AFOE的面积=正方形ABCD的面积=×22=1;故答案为:1.三、解答题:共72分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.计算:×+6﹣.解:原式=+2﹣=2+2﹣=3.18.如图,每个小正方形的边长都为1(1)求四边形ABCD的周长;(2)求∠BCD的大小.解:(1)由勾股定理得:DC==,BC==2,AD==,AB==,所以四边形ABCD的周长为AB+BC+cd+ad=+2++=+3+;(2)连接BD,由勾股定理得:BD==5,∵DC=,BC=2,∴DC2+BC2=BD2,∴∠BCD=90°.19.甲、乙两名同学5次数学练习的成绩如下表:(单位:分)测试日期2月10日2月20日3月5日3月18日3月27日甲126127130133134乙130125130135130已知甲同学这5次数学练习成绩的平均数为130分,方差为10分2.(1)乙同学这5次数学练习成绩的平均数为130分,方差为10分2;(2)甲、乙都认为自己在这5次练习中的表现比对方更出色,请分别写出一条支持他们俩观点的理由.解:(1)乙的平均分=(130+125+130+135+130)=130,方差=[(130﹣130)2+(125﹣130)2+(130﹣130)2+(135﹣130)2+(130﹣130)2]=10.故答案为130,10.(2)答案不唯一,如:甲的数学成绩逐渐进步,更有潜力;乙的数学成绩在130分以上(含130分)的次数更多.20.如图,在平行四边形ABCD中,E、F为对角线BD上的两点,且∠BAF=∠DCE.求证:BE=DF.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABF=∠CDE,在△ABF和△CDE中,∴△ABF≌△CDE(ASA),∴ED=BF,∴BD﹣CF=BD﹣DE,∴BE=DF.21.如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(﹣2,6),且与x 轴相交于点B,与y轴交于点D,与正比例函数y=3x的图象相交于点C,点C的横坐标为1.(1)求k,b的值;(2)请直接写出不等式kx+b﹣3x>0的解集;(3)M为射线CB上一点,过点M作y轴的平行线交y=3x于点N,当MN=OD时,求M点的坐标.解:(1)当x=1时,y=3x=3,∴C点坐标为(1,3).直线y=kx+b经过(﹣2,6)和(1,3),则,解得:k=﹣1,b=4;(2)x<1;(3)当x=0时,y=﹣x+4=4,∴D点坐标为(0,4),∴OD=4.设点M的横坐标为m,则M(m,﹣m+4),N(m,3m),∴MN=3m﹣(﹣m+4)=4m﹣4∵MN=OD,∴4m﹣4=4,解得m=2.即M点坐标为(2,2).22.“双剑合璧,天下无敌”,其意思是指两个人合在一起,取长补短,威力无比.在二次根式中也常有这种相辅相成的“对子”,如:(2+)(2﹣)=1,=3,它们的积中不含根号,我们说这两个二次根式是互为有理化因式,其中一个是另一个的有理化因式,于是,二次根式除法可以这样解:,=7+4.像这样通过分子、分母同乘一个式子把分母中的根号化去的方法,叫做分母有理化.解决下列问题:(1)将分母有理化得;+1的有理化因式是﹣1;(2)化简:=﹣;(3)化简:……+.解:(1)==,(+1)(﹣1)=()2﹣12=2﹣1=1,即+1的有理化因式是﹣1,故答案为:,﹣1;(2)===﹣,故答案为:﹣.(3)原式=﹣1+﹣+﹣+…+﹣=﹣1=10﹣1=9.23.如图,矩形ABCD中,点P是线段AD上的一个动点,O为BD的中点,PO的延长线交BC于Q.(1)求证:OP=OQ;(2)若AD=8cm,AB=6cm,点P从点A出发,以1cm/s的速度向点D运动(不与D 重合).设点P运动的时间为t秒,请用t表示PD的长;并求出t为何值时,四边形PBQD是菱形?解:(1)∵四边形ABCD是矩形,∴AD∥BC,∴∠PDO=∠QBO,∵O为BD的中点,∴DO=BO,在△PDO和△QBO中,,∴△PDO≌△QBO(ASA),∴OP=OQ;(2)由题意知:AD=8cm,AP=tcm,∴PD=8﹣t,∵PB=PD,∴PB2=PD2,即AB2+AP2=PD2,∴62+t2=(8﹣t)2,解得t=,∴当t=时,PB=PD.。

2019-2020学年四川省成都市天府新区八年级下学期期末数学试卷 (解析版)

2019-2020学年四川省成都市天府新区八年级下学期期末数学试卷  (解析版)

2019-2020学年四川省成都市天府新区八年级下学期期末数学试卷一、选择题(共10小题).1.下列各式中,是分式的是()A.B.x2C.D.(x﹣y)2.下列图形中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.3.若代数式有意义,则实数x的取值范围是()A.x=0B.x=2C.x≠0D.x≠24.据中央气象台报道,某日我市最高气温是33℃,最低气温是25℃,则当天气温t(℃)的变化范围是()A.t>25B.t≤25C.25<t<33D.25≤t≤335.在平面直角坐标系中,将△ABC各点的纵坐标保持不变,横坐标都加上3,则所得图形与原图形的关系是:将原图形()A.向左平移3个单位B.向右平移3个单位C.向上平移3个单位D.向下平移3个单位6.将分式中的x,y的值同时扩大为原来的3倍,则分式的值()A.扩大6倍B.扩大9倍C.不变D.扩大3倍7.能判定四边形ABCD是平行四边形的是()A.AB∥CD,AB=CD B.AB=BC,AD=CDC.AC=BD,AB=CD D.AB∥CD,AD=CB8.若解分式方程=产生增根,则m=()A.1B.0C.﹣4D.﹣59.如图,已知直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,则关于x的不等式x+b≤kx﹣1的解集在数轴上表示正确的是()A.B.C.D.10.如图,四边形ABCD是平行四边形,点E是边CD上一点,且BC=EC,CF⊥BE交AB于点F,P是EB延长线上一点,下列结论:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC.其中正确结论的个数为()A.1B.2C.3D.4二、填空题(本大题共4个小题,每小题4分,共16分)11.若一个多边形的每一个外角都等于40°,则这个多边形的边数是.12.若分式的值为0,则x的值为.13.如图,在△ABC中,点D,E,F分别是AB,AC,BC的中点,已知∠ADE=65°,则∠CFE的度数为.14.如图,△ABC是等腰直角三角形,BC是斜边,P为△ABC内一点,将△ABP绕点A 逆时针旋转后与△ACP′重合,如果AP=3,那么线段PP′的长等于.三、解答题(本大题共6个小题,共54分.解答应写出必要的文字说明、证明过程或演算步骤)15.(1)分解因式:ax2﹣2ax+a;(2)解不等式组:,并写出所有非负整数解.16.先化简,再求值:(﹣1)÷,其中x=2020.17.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,3),B(2,5),C(4,2)(每个方格的边长均为1个单位长度)(1)将△ABC平移,使点A移动到点A1,请画出△A1B1C1;(2)作出△ABC关于O点成中心对称的△A2B2C2,并直接写出A2,B2,C2的坐标;(3)△A1B1C1与△A2B2C2是否成中心对称?若是,请写出对称中心的坐标;若不是,请说明理由.18.如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.19.某工厂制作甲、乙两种窗户边框,已知同样用12米材料制成甲种边框的个数比制成乙种边框的个数少1个,且制成一个甲种边框比制成一个乙种边框需要多用20%的材料.(1)求制作每个甲种边框、乙种边框各用多少米材料?(2)如果制作甲、乙两种边框的材料共640米,要求制作乙种边框的数量不少于甲种边框数量的2倍,求应最多安排多少米材料制作甲种边框?(不计材料损耗)20.如图,BC为等边△ABM的高,AB=5,点P为射线BC上的动点(不与点B,C 重合),连接AP,将线段AP绕点P逆时针旋转60°,得到线段PD,连接MD,BD.(1)如图①,当点P在线段BC上时,求证:BP=MD;(2)如图②,当点P在线段BC的延长线上时,求证:BP=MD;(3)若点P在线段BC的延长线上,且∠BDM=30°时,请直接写出线段AP的长度.四、填空题(本大题共5个小题,每小题4分,共20分)21.若m2+4=3n,则m3﹣3mn+4m=.22.关于x的不等式组的整数解共有6个,则a的取值范围是.23.有六张大小形状相同的卡片,分别写有1~6这六个数字,将它们背面朝上洗匀后,任意抽取一张,记卡片上的数字为a,则a的值使得关于x的分式方程﹣1=有整数解的概率为.24.如图1,在平面直角坐标系中,将平行四边形ABCD放置在第一象限,且AB∥x轴.直线y=﹣x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2,那么平行四边形ABCD的面积为.25.如图,在△ABC中,∠ACB=90°,∠A=30°,AB=2,点P是AC上的动点,连接BP,以BP为边作等边△BPQ,连接CQ,则点P在运动过程中,线段CQ长度的最小值是.五.解答题(本大题共3个小题,共30分,解答应巧出必要的文字说明.证明过程或演算步骤)26.为建设天府新区“公园城市”.天府新区某公司生产一种产品面向全国各地销售.该公司经过实地考察后,现将200件该产品运往A,B,C三地进行销售,已知运往A地的运费为30元/件,运往B地的运费为8元/件,运往C地的运费为25元/件,要求运往C地的件数是运往A地件数的2倍,设安排x件产品运往A地.(1)试用含x的代数式表示总运费y元;(2)若运往B地的件数不多于运往C地的件数,总运费不超过4000元,则有几种运输方案?A,B,C三地各运多少件时总运费最低?最低总运费是多少元?27.已知点E,F分别是平行四边形ABCD的边BC,CD上的点,∠EAF=60°.(1)如图1,若AB=2,AF=5,点E与点B,点F与点D分别重合,求平行四边形ABCD的面积;(2)如图2,若AB=BC,∠B=∠EAF=60°,求证:AE=AF;(3)如图3,若BE=CE,CF=3DF,AB=4,AF=6,求AE的长度.28.如图1,平面直角坐标系中,直线y=﹣x+m交x轴于点A(4,0),交y轴正半轴于点B.(1)求△AOB的面积;(2)如图2,直线AC交y轴负半轴于点C,AB=BC,P为线段AB(不含A,B两点)上一点,过点P作y轴的平行线交线段AC于点Q,设点P的横坐标为t,线段PQ的长为d,求d与t之间的函数关系式;(3)在(2)的条件下,M为线段CA延长线上一点,且AM=CQ,在直线AC上方的直线AB上是否存在点N,使△QMN是以QM为斜边的等腰直角三角形?若存在,请求出点N的坐标;若不存在,请说明理由.参考答案一、选择题(共10小题).1.下列各式中,是分式的是()A.B.x2C.D.(x﹣y)【分析】根据分式的定义(注意分式的分母中不含有字母,)逐个判断即可.解:A、分母中不含有字母,不是分式,故本选项不符合题意;B、分母中不含有字母,不是分式,故本选项不符合题意;C、分母中含有字母,是分式,故本选项符合题意;D、分母中不含有字母,不是分式,故本选项不符合题意;故选:C.2.下列图形中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念判断.解:A、是轴对称图形,但不是中心对称图形;B、既是轴对称图形,又是中心对称图形;C、不是轴对称图形,是中心对称图形;D、既是轴对称图形,又是中心对称图形.故选:A.3.若代数式有意义,则实数x的取值范围是()A.x=0B.x=2C.x≠0D.x≠2【分析】根据分式有意义的条件列出不等式,解不等式得到答案.解:由题意的,2﹣x≠0,解得,x≠2,故选:D.4.据中央气象台报道,某日我市最高气温是33℃,最低气温是25℃,则当天气温t(℃)的变化范围是()A.t>25B.t≤25C.25<t<33D.25≤t≤33【分析】最高气温与最低气温之间的气温即为当天气温t(℃)的变化范围.解:当天气温t(℃)的变化范围是25≤t≤33,故选:D.5.在平面直角坐标系中,将△ABC各点的纵坐标保持不变,横坐标都加上3,则所得图形与原图形的关系是:将原图形()A.向左平移3个单位B.向右平移3个单位C.向上平移3个单位D.向下平移3个单位【分析】利用平移中点的变化规律求解即可.解:在平面直角坐标系中,将三角形各点的横坐标都加上3,纵坐标保持不变,所得图形与原图形相比,向右平移了3个单位.故选:B.6.将分式中的x,y的值同时扩大为原来的3倍,则分式的值()A.扩大6倍B.扩大9倍C.不变D.扩大3倍【分析】将原式中的x、y分别用3x、3y代替,化简,再与原分式进行比较.解:∵把分式中的x与y同时扩大为原来的3倍,∴原式变为:==9×,∴这个分式的值扩大9倍.故选:B.7.能判定四边形ABCD是平行四边形的是()A.AB∥CD,AB=CD B.AB=BC,AD=CDC.AC=BD,AB=CD D.AB∥CD,AD=CB【分析】根据平行四边形的判定方法即可判断;解:∵AB∥CD,AB=CD,∴四边形是平行四边形(一组对边平行且相等的四边形是平行四边形),故选:A.8.若解分式方程=产生增根,则m=()A.1B.0C.﹣4D.﹣5【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出m的值.解:方程两边都乘(x+4),得x﹣1=m,∵原方程增根为x=﹣4,∴把x=﹣4代入整式方程,得m=﹣5,故选:D.9.如图,已知直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,则关于x的不等式x+b≤kx﹣1的解集在数轴上表示正确的是()A.B.C.D.【分析】观察函数图象得到当x≤﹣1时,函数y1=x+b的图象都在y2=kx﹣1的图象下方,所以不等式x+b≤kx﹣1的解集为x≤﹣1,然后根据用数轴表示不等式解集的方法对各选项进行判断.解:根据题意得当x≤﹣1时,y1≤y2,所以不等式x+b≤kx﹣1的解集为x≤﹣1.故选:D.10.如图,四边形ABCD是平行四边形,点E是边CD上一点,且BC=EC,CF⊥BE交AB于点F,P是EB延长线上一点,下列结论:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC.其中正确结论的个数为()A.1B.2C.3D.4【分析】分别利用平行线的性质结合线段垂直平分线的性质以及等腰三角形的性质分别判断得出答案.【解答】证明:∵BC=EC,∴∠CEB=∠CBE,∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CEB=∠EBF,∴∠CBE=∠EBF,∴①BE平分∠CBF,正确;∵BC=EC,CF⊥BE,∴∠ECF=∠BCF,∴②CF平分∠DCB,正确;∵DC∥AB,∴∠DCF=∠CFB,∵∠ECF=∠BCF,∴∠CFB=∠BCF,∴BF=BC,∴③正确;∵FB=BC,CF⊥BE,∴B点一定在FC的垂直平分线上,即PB垂直平分FC,∴PF=PC,故④正确.故选:D.二、填空题(共4个小题)11.若一个多边形的每一个外角都等于40°,则这个多边形的边数是9.【分析】根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.解:360÷40=9,即这个多边形的边数是9.12.若分式的值为0,则x的值为2.【分析】根据分式的值为零的条件可以得到,从而求出x的值.解:由分式的值为零的条件得,由2x﹣4=0,得x=2,由x+1≠0,得x≠﹣1.综上,得x=2,即x的值为2.故答案为:2.13.如图,在△ABC中,点D,E,F分别是AB,AC,BC的中点,已知∠ADE=65°,则∠CFE的度数为65°.【分析】利用三角形的中位线的性质解决问题即可.解:∵AD=DB,AE=EC,∴DE∥BC,∴∠ADE=∠B=65°,∵AE=EC.CF=BF,∴EF∥AB,∴∠CFE=∠B=65°,故答案为65°.14.如图,△ABC是等腰直角三角形,BC是斜边,P为△ABC内一点,将△ABP绕点A 逆时针旋转后与△ACP′重合,如果AP=3,那么线段PP′的长等于.【分析】根据旋转的性质,知:旋转角度是90°,根据旋转的性质得出AP=AP′=3,即△PAP′是等腰直角三角形,腰长AP=3,则可用勾股定理求出斜边PP′的长.解:∵△ABP绕点A逆时针旋转后与△ACP′重合,∴△ABP≌△ACP′,即线段AB旋转后到AC,∴旋转了90°,∴∠PAP′=∠BAC=90°,AP=AP′=3,∴PP′=3.三、解答题(共6小题).15.(1)分解因式:ax2﹣2ax+a;(2)解不等式组:,并写出所有非负整数解.【分析】(1)利用提公因式、公式法进行因式分解即可;(2)利用解不等式组的解法步骤进行解答即可.解:(1)ax2﹣2ax+a=a(x2﹣2x+1)=a(x﹣1)2;(2),解不等式①得,x≥﹣1,解不等式②得,x<3将两个不等式的解集在数轴上表示为:∴不等式组的解集为﹣1≤x<3:∴非负整数解有:0,1,2.16.先化简,再求值:(﹣1)÷,其中x=2020.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.解:原式=[﹣1]÷=(﹣)÷=•=﹣,当x=2020时,原式=﹣=﹣.17.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,3),B(2,5),C(4,2)(每个方格的边长均为1个单位长度)(1)将△ABC平移,使点A移动到点A1,请画出△A1B1C1;(2)作出△ABC关于O点成中心对称的△A2B2C2,并直接写出A2,B2,C2的坐标;(3)△A1B1C1与△A2B2C2是否成中心对称?若是,请写出对称中心的坐标;若不是,请说明理由.【分析】(1)利用点A和A1坐标的关系确定平移的方向与距离,关于利用此平移规律写出B1、C1的坐标,然后描点即可;(2)利用关于点对称的点的坐标特征写出A2,B2,C2的坐标,然后描点即可;(3)连接A1A2,B1B2,C1C2,它们都经过点P,从而可判断△A1B1C1与△A2B2C2关于点P中心对称,再写出P点坐标即可.解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作;点A2,B2,C2的坐标分别为(﹣1,﹣3),(﹣2,﹣5),(﹣4,﹣2);(3)△A1B1C1与△A2B2C2关于点P中心对称,如图,对称中心的坐标的坐标为(﹣2,﹣1).18.如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.【分析】(1)根据AB=CD,BE=DF,利用HL即可证明.(2)只要证明四边形ABCD是平行四边形即可解决问题.【解答】证明:(1)∵BF=DE,∴BF﹣EF=DE﹣EF,即BE=DF.∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,∵AB=CD,BE=DF,∴Rt△ABE≌Rt△CDF(HL).(2)∵△ABE≌△CDF,∴∠ABE=∠CDF,∴AB∥CD,∵AB=CD,∴四边形ABCD是平行四边形,∴AO=CO.19.某工厂制作甲、乙两种窗户边框,已知同样用12米材料制成甲种边框的个数比制成乙种边框的个数少1个,且制成一个甲种边框比制成一个乙种边框需要多用20%的材料.(1)求制作每个甲种边框、乙种边框各用多少米材料?(2)如果制作甲、乙两种边框的材料共640米,要求制作乙种边框的数量不少于甲种边框数量的2倍,求应最多安排多少米材料制作甲种边框?(不计材料损耗)【分析】(1)设制作每个乙种边框用x米材料,则制作甲种边框用(1+20%)x米材料,根据“同样用12米材料制成甲种边框的个数比制成乙种边框的个数少1个”,列出方程,即可解答;(2)根据所需要材料的总长度l=甲的材料的总长度+乙的材料的总长度,列出函数关系式;再根据“乙种边框的数量不少于甲种边框数量的2倍”列出不等式并解答.解:(1)设制作每个乙种边框用x米材料,则制作甲种边框用(1+20%)x米材料,由题意,得﹣1=,解得:x=2,经检验x=2是原方程的解,∴(1+20%)x=2.4(米),答:制作每个甲种用2.4米材料;制作每个乙种用2米材料.(2)设应安排制作甲种边框需要a米,则安排制作乙种边框需要(640﹣a)米,由题意,得≥×2.解得a≤240,则≤100.答:应最多安排制作甲种边框100个.20.如图,BC为等边△ABM的高,AB=5,点P为射线BC上的动点(不与点B,C 重合),连接AP,将线段AP绕点P逆时针旋转60°,得到线段PD,连接MD,BD.(1)如图①,当点P在线段BC上时,求证:BP=MD;(2)如图②,当点P在线段BC的延长线上时,求证:BP=MD;(3)若点P在线段BC的延长线上,且∠BDM=30°时,请直接写出线段AP的长度.【分析】(1)如图①,连接AD,由“SAS”可证△BAP≌△MAD,可得BP=MD;(2)如图②,连接AD,由“SAS”可证△BAP≌△MAD,可得BP=MD;(3)由全等三角形的性质可得∠ABP=∠AMD=30°,可得∠BMD=∠AMB+∠AMD =90°,可得点D在BA的延长线上,由直角三角形的性质和等边三角形的性质可求AP 的长.解:(1)如图①,连接AD,∵△AMB是等边三角形,∴AB=AM,∠BAM=60°由旋转的性质可得:AP=DP,∠APD=60°,∴△APD是等边三角形,∴PA=PD=AD,∠PAD=60°=∠BAM,∴∠BAP=∠BAC﹣∠CAP,∠MAD=∠PAD﹣∠CAP,∴∠BAP=∠MAD,在△BAP与△MAD中,,∴△BAP≌△MAD(SAS),∴BP=MD;(2)如图②,连接AD,∵△AMB是等边三角形,∴AB=AM,∠BAM=60°=∠AMB,由旋转的性质可得:AP=DP,∠APD=60°,∴△APD是等边三角形,∴PA=PD=AD,∠PAD=60°=∠BAM,∴∠BAP=∠BAC+∠CAP,∠MAD=∠PAD+∠CAP,∴∠BAP=∠MAD,在△BAP与△MAD中,,∴△BAP≌△MAD(SAS),∴BP=MD;(3)∵BC为等边△ABM的高,∴∠ABC=30°,∵△BAP≌△MAD,∴∠ABP=∠AMD=30°,∴∠BMD=∠AMB+∠AMD=90°,∴∠BMD=90°,∵∠BDM=30°,∴∠DBM=60°,∴点D在BA的延长线上,如图③,∵∠BDM=30°,∠BMD=90°,∴BD=2BM=10,∴AD=BD﹣AB=5∵PA=PD=AD,∴AP=AD=5.四、填空题(本大题共5个小题,每小题4分,共20分)21.若m2+4=3n,则m3﹣3mn+4m=0.【分析】将m3﹣3mn+4m提取公因式m,得到原式=m(m2﹣3n+4),把m2+4=3n代入,计算即可.解:∵m2+4=3n,∴m3﹣3mn+4m=m(m2﹣3n+4)=m(3n﹣3n)=0.故答案为:0.22.关于x的不等式组的整数解共有6个,则a的取值范围是﹣6≤a<﹣5.【分析】解不等式得出其解集为a<x<1,根据不等式组的整数解有6个得出其整数解得情况,从而得出字母a的取值范围.解:解不等式x﹣a>0,得:x>a,解不等式3﹣3x>0,得:x<1,则不等式组的解集为a<x<1,∵不等式组的整数解有6个,∴不等式组的整数解为0、﹣1、﹣2、﹣3、﹣4、﹣5,则﹣6≤a<﹣5,故答案为:﹣6≤a<﹣5.23.有六张大小形状相同的卡片,分别写有1~6这六个数字,将它们背面朝上洗匀后,任意抽取一张,记卡片上的数字为a,则a的值使得关于x的分式方程﹣1=有整数解的概率为.【分析】先把分式方程化为整式方程,解整式方程得到x=且x≠2,利用有理数的整除性得到a=2或3,然后根据概率公式求解.解:把分式方程﹣1=去分母得ax﹣2﹣(x﹣2)=6,∴(a﹣1)x=6,∵分式方程有整数解,∴x=且x≠2,∴a=2或3,∴a的值使得关于x的分式方程﹣1=有整数解的概率==.故答案为.24.如图1,在平面直角坐标系中,将平行四边形ABCD放置在第一象限,且AB∥x轴.直线y=﹣x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2,那么平行四边形ABCD的面积为.【分析】根据函数图象中的数据可以分别求得平行四边形的边AB的长和边AB边上的高的长,从而可以求得平行四边形的面积.解:作DM⊥AB于点M,如右图1所示,由图象和题意可得,AE=7﹣4=3,EB=8﹣7=1,DE=3,∴AB=3+1=4,∵直线DE平行直线y=﹣x,∴DM=ME,∴DM=DE•sin45°=,∴平行四边形ABCD的面积是:4×=.故答案为:.25.如图,在△ABC中,∠ACB=90°,∠A=30°,AB=2,点P是AC上的动点,连接BP,以BP为边作等边△BPQ,连接CQ,则点P在运动过程中,线段CQ长度的最小值是.【分析】如图,取AB的中点E,连接CE,PE.由△QBC≌△PBE(SAS),推出QC =PE,推出当EP⊥AC时,QC的值最小;解:如图,取AB的中点E,连接CE,PE.∵∠ACB=90°,∠A=30°,∴∠CBE=60°,∵BE=AE,∴CE=BE=AE,∴△BCE是等边三角形,∴BC=BE,∵∠PBQ=∠CBE=60°,∴∠QBC=∠PBE,∵QB=PB,CB=EB,∴△QBC≌△PBE(SAS),∴QC=PE,∴当EP⊥AC时,QC的值最小,在Rt△AEP中,∵AE=,∠A=30°,∴PE=AE=,∴CQ的最小值为.五.解答题(本大题共3个小题,共30分,解答应巧出必要的文字说明.证明过程或演算步骤)26.为建设天府新区“公园城市”.天府新区某公司生产一种产品面向全国各地销售.该公司经过实地考察后,现将200件该产品运往A,B,C三地进行销售,已知运往A地的运费为30元/件,运往B地的运费为8元/件,运往C地的运费为25元/件,要求运往C地的件数是运往A地件数的2倍,设安排x件产品运往A地.(1)试用含x的代数式表示总运费y元;(2)若运往B地的件数不多于运往C地的件数,总运费不超过4000元,则有几种运输方案?A,B,C三地各运多少件时总运费最低?最低总运费是多少元?【分析】(1)根据总运费=每件运费×运往该地的件数,即可用含x的代数式表示总运费y元;(2)根据“运往B地的件数不多于运往C地的件数,总运费不超过4000元”,即可得出关于x的一元一次不等式组,解之即可得出x的取值范围,结合x为正整数即可得出运输方案的次数,再利用一次函数的性质即可解决最值问题.解:(1)∵安排x件产品运往A地,∴安排2x件产品运往C地,安排(200﹣x﹣2x)件产品运往B地,∴总运费y=30x+8(200﹣x﹣2x)+25×2x=56x+1600.(2)依题意,得:,解得:40≤x≤42.又∵x为正整数,∴x可以取40,41,42,∴共有3种运输方案.∵在y=56x+1600中k=56>0,∴y随x的增大而增大,∴当x=40时,y取得最小值,最小值=56×40+1600=3840,此时2x=80,200﹣x﹣2x =80.即当运往A地40件、运往B地80件、运往C地80件时,总运费最低,最低总运费是3840元.27.已知点E,F分别是平行四边形ABCD的边BC,CD上的点,∠EAF=60°.(1)如图1,若AB=2,AF=5,点E与点B,点F与点D分别重合,求平行四边形ABCD的面积;(2)如图2,若AB=BC,∠B=∠EAF=60°,求证:AE=AF;(3)如图3,若BE=CE,CF=3DF,AB=4,AF=6,求AE的长度.【分析】(1)过点B作BH⊥AD于H,先求出∠ABH=30°,进而求出BH,由平行四边形的面积公式即可得出结论;(2)先判断出∠BAE=∠CAF,进而判断出△ABE≌△ACF,即可得出结论;(3)延长AE交DC延长线于P,过点F作FG⊥AP于G,证△ABE≌△PCE(ASA),得出AE=PE,PC=AB=CD=4,求出PF=7,由含30°角的直角三角形的性质得出AG=3,由勾股定理得FG=3,PG=,则AP=AG+PG=3+,即可得出答案.【解答】(1)解:过点B作BH⊥AD于H,如图1所示:在Rt△ABH中,∠BAD=60°,∴∠ABH=30°,∵AB=2,∴AH=1,BH===,∴S▱ABCD=AD×BH=AF×BH=5×=5;(2)证明:连接AC,如图2所示:∵AB=BC,∠B=∠EAF=60°,∴△ABC是等边三角形,∴AB=AC,∠BAC=∠ACB=60°,∴∠BAE=∠CAF,∵四边形ABCD是平行四边形,AB=AC,∴四边形ABCD是菱形,∴∠ACF=∠ACB=60°,∴∠B=∠ACF,在△ABE和△ACF中,,∴△ABE≌△ACF(ASA),∴AE=AF;(3)解:延长AE交DC延长线于P,过点F作FG⊥AP于G,如图3所示:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠B=∠ECP,在△ABE和△PCE中,,∴△ABE≌△PCE(ASA),∴AE=PE,PC=AB=CD=4,∵CF=3DF,∴CF=3,∴PF=7,在Rt△AFG中,AF=6,∠EAF=60°,∴∠AFG=30°,∴AG=AF=3,FG===3在Rt△PFG中,由勾股定理得:PG===,∴AP=AG+PG=3+,∴AE=PE=AP=.28.如图1,平面直角坐标系中,直线y=﹣x+m交x轴于点A(4,0),交y轴正半轴于点B.(1)求△AOB的面积;(2)如图2,直线AC交y轴负半轴于点C,AB=BC,P为线段AB(不含A,B两点)上一点,过点P作y轴的平行线交线段AC于点Q,设点P的横坐标为t,线段PQ的长为d,求d与t之间的函数关系式;(3)在(2)的条件下,M为线段CA延长线上一点,且AM=CQ,在直线AC上方的直线AB上是否存在点N,使△QMN是以QM为斜边的等腰直角三角形?若存在,请求出点N的坐标;若不存在,请说明理由.【分析】(1)由于y=﹣x+m交x轴于点A(4,0),求出m的值,可得出OA=4,OB=3,则可得出答案;(2)根据勾股定理得到AB=5=BC,得到点C(0,﹣2),求出直线AC解析式为y =x﹣2,由于P在直线y=﹣x+3上,可设点P(t,﹣t+3),即可得到结论;(3)过点M作MG⊥PQ于G,根据全等三角形的性质得到QG=OC=2,GM=OA=4,过点N作NH⊥PQ于H,过点M作MR⊥NH于点R,推出四边形GHRM是矩形,根据矩形的性质得到HR=GM=4,可设GH=RM=k,根据全等三角形的性质得到HN=RM=k,NR=QH=2+k,得到N(t+1,t+1)根据N在直线AB:y=﹣x+3上,即可得出答案.解:(1)∵y=﹣x+m交x轴于点A(4,0),∴0=﹣×4+m,解得m=3,∴直线AB解析式为y=﹣x+3,令x=0,y=3,B(0,3);∵A(4,0),B(0,3),∴OA=4,OB=3,∵∠AOB=90°,∴==6;(2)∵OA=4,OB=3,∴AB═=5=BC,∴OC=2,∴点C(0,﹣2),设直线AC解析式为y=kx+n,∴,∴,∴直线AC解析式为y=x﹣2,∵P在直线y=﹣x+3上,∴可设点P(t,﹣t+3),∵PQ∥y轴,且点Q在y=x﹣2上,∴Q(t,t﹣2),∴d=(﹣t+3)﹣(t﹣2)=﹣t+5(0<t<4);(3)过点M作MG⊥PQ于G,∴∠QGM=90°=∠COA,∵PQ∥y轴,∴∠OCA=∠GQM,∵CQ=AM,∴AC=QM,在△OAC与△GMQ中,,∴△OAC≌△GMQ(AAS),∴QG=OC=2,GM=OA=4,过点N作NH⊥PQ于H,过点M作MR⊥NH于点R,∴∠MGH=∠RHG=∠MRH=90°,∴四边形GHRM是矩形,∴HR=GM=4,可设GH=RM=k,∵△MNQ是等腰直角三角形,∴∠QNM=90°,NQ=NM,∴∠HNQ+∠HQN=90°,∠HNQ+∠RNM=90°,∴∠RNM=∠HQN,∴△HNQ≌△RMN(AAS),∴HN=RM=k,NR=QH=2+k,∵HR=HN+NR,∴k+2+k=4,∴k=1,∴GH=NH=RM=1,∴HQ=3,∵Q(t,t﹣2),∴N(t+1,t﹣2+3)即N(t+1,t+1),∵N在直线AB:y=﹣x+3上,∴t+1=﹣(t+1)+3,∴t=1,∴P(1,),N(2,)。

2019-2020学年江西省萍乡市八年级下学期期末数学试卷 (解析版)

2019-2020学年江西省萍乡市八年级下学期期末数学试卷 (解析版)

2019-2020学年江西省萍乡市八年级第二学期期末数学试卷一、选择题(共10小题).1.“x的2倍与3的差不大于6”,用不等式表示是()A.2x﹣3<6B.2x﹣3>6C.2x﹣3≤6D.2x﹣3≥62.已知等腰三角形△ABC中,腰AB=8,底BC=5,则这个三角形的周长为()A.21B.20C.19D.183.若分式有意义,则x的取值范围是()A.x≠3B.x=3C.x<3D.x>34.如图,在平行四边形ABCD中,F是AD上的一点,CF=CD,若∠B=72°,则∠AFC 的度数是()A.144°B.108°C.102°D.78°5.已知点P(1﹣2a,a﹣1)在第三象限内,则a的取值范围在数轴上表示正确的是()A.B.C.D.6.如图,将等腰直角三角形ABC绕点A逆时针旋转15°后得到△AB′C′,若AC=1,则图中阴影部分的面积为()A.B.C.D.7.已知a﹣b=1,则a2﹣b2﹣2b的值为()A.4B.3C.1D.08.如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF 的长度为()A.B.4C.D.9.若1<x<2,则的值是()A.﹣3B.﹣1C.2D.110.在四边形ABCD中,AB∥CD,∠A=90°,AB=1,BD⊥BC,BD=BC,CF平分∠BCD交BD、AD于E、F,则△EDC的面积为()A.2﹣2B.3﹣2C.2﹣D.﹣1二、填空题(本大题共8个小题,每小题3分,共24分,请把答案填在答题卡上.)11.“直角三角形只有两个锐角”的逆命题是,该逆命题是一个命题(填“真”或“假”).12.分解因式:a3﹣4a2b+4ab2=.13.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是.14.在平面直角坐标系中,线段AB的两个端点的坐标分别为A(﹣2,1),B(1,3),将线段AB经过平移后得到线段A′B′,若点A的对应点为A′(3,2),则点B的对应点B′的坐标是.15.如图,在Rt△ABC中,∠C=90°,∠ABC=60°,AB的垂直平分线分别交AB与AC于点D和点E,若CE=2,则AB的长为16.若关于x的方程=+1无解,则a的值是.17.如图,在四边形ABCD中,P是对角线BD的中点,E、F分别是AB、CD的中点,AD=BC,∠FPE=100°,则∠PFE的度数是.18.如图,六边形ABCDEF的六个内角都相等,若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于.三、(本大题共3个题,其中第19题8分,第20,21题各5分,共18分.)19.(1)解不等式组,并把解集在数轴上表示出来.(2)解方程:﹣1.20.先化简,再求值:(﹣1)÷,其中x为﹣1≤x≤2中的整数.21.在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2,并直接写出点B2、C2的坐标.四、(本大题共2个小题,每小题5分,共10分.)22.如图,△ABC的外角∠DAC的平分线交BC边的垂直平分线于P点,PD⊥AB于D,PE⊥AC于E.(1)求证:BD=CE;(2)若AB=6cm,AC=10cm,求AD的长.23.某校利用暑假进行田径场的改造维修,项目承包单位派遣一号施工队进场施工,计划用40天时间完成整个工程:当一号施工队工作5天后,承包单位接到通知,有一大型活动要在该田径场举行,要求比原计划提前14天完成整个工程,于是承包单位派遣二号与一号施工队共同完成剩余工程,结果按通知要求如期完成整个工程.(1)若二号施工队单独施工,完成整个工程需要多少天?(2)若此项工程一号、二号施工队同时进场施工,完成整个工程需要多少天?五、(本大题共2小题,第24题5分,第25题6分,共11分.)24.如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.求证:(1)AC=EF;(2)四边形ADFE是平行四边形;(3)AC⊥DF.25.有大小两种货车,3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨.(1)请问1辆大货车和1辆小货车一次可以分别运货多少吨?(2)目前有33吨货物需要运输,货运公司拟安排大小货车共计10辆,全部货物一次运完.其中每辆大货车一次运货花费130元,每辆小货车一次运货花费100元,请问货运公司应如何安排车辆最节省费用?六、(本大题共1小题,共7分.)26.【课题研究】旋转图形中对应线段所在直线的夹角(小于等于90°的角)与旋转角的关系.【问题初探】线段AB绕点O顺时针旋转得到线段CD,其中点A与点C对应,点B与点D对应,旋转角的度数为α,且0°<α<180°.(1)如图①,当α=60°时,线段AB、CD所在直线夹角(锐角)为;(2)如图②,当90°<α<180°时,直线AB与直线CD所夹锐角与旋转角α存在怎样的数量关系?请说明理由;【形成结论】旋转图形中,当旋转角小于平角时,对应线段所在直线的夹角与旋转角.【运用拓广】运用所形成的结论解决问题:(3)如图③,四边形ABCD中,∠ABC=60°,∠ADC=30°,AB=BC,CD=3,BD=,求AD的长.参考答案一、选择题(本大题共10个小题,每小题3分,共30分,每小题只有一个正确答案.)1.“x的2倍与3的差不大于6”,用不等式表示是()A.2x﹣3<6B.2x﹣3>6C.2x﹣3≤6D.2x﹣3≥6【分析】x的2倍即2x,与3的差即减去3,不大于6即≤6,据此列不等式.解:由题意得:2x﹣3≤6.故选:C.2.已知等腰三角形△ABC中,腰AB=8,底BC=5,则这个三角形的周长为()A.21B.20C.19D.18【分析】由于等腰三角形的两腰相等,题目给出了腰和底,根据周长的定义即可求解.解:8+8+5=16+5=21.故这个三角形的周长为21.故选:A.3.若分式有意义,则x的取值范围是()A.x≠3B.x=3C.x<3D.x>3【分析】根据分式有意义的条件是分母不为0;分析原分式可得关系式3﹣x≠0,解可得答案.解:根据题意可得3﹣x≠0;解得x≠3;故选:A.4.如图,在平行四边形ABCD中,F是AD上的一点,CF=CD,若∠B=72°,则∠AFC 的度数是()A.144°B.108°C.102°D.78°【分析】根据平行四边形的性质得到∠D=∠B=72°,根据等腰三角形的性质求出∠DFC,根据邻补角的意义即可求出答案.解:∵四边形ABCD是平行四边形,∴∠D=∠B=72°,∵CF=CD,∴∠DFC=∠D=72°,∴∠AFC=180°﹣∠DFC=108°,故选:B.5.已知点P(1﹣2a,a﹣1)在第三象限内,则a的取值范围在数轴上表示正确的是()A.B.C.D.【分析】解两个不等式得出其解集,再根据不等式的解集在数轴上的表示可得答案.解:∵点P(1﹣2a,a﹣1)在第三象限,∴,解不等式1﹣2a<0,得:a>0.5,解不等式a﹣1<0,得:a<1,故选:C.6.如图,将等腰直角三角形ABC绕点A逆时针旋转15°后得到△AB′C′,若AC=1,则图中阴影部分的面积为()A.B.C.D.【分析】根据旋转的性质可得AC′=AC,∠BAC′=30°,然后利用∠BAC′的正切求出C′D的长度,再利用三角形的面积公式列式计算即可求解.解:根据题意,AC′=AC=1,∵∠B′AB=15°,∴∠BAC′=45°﹣15°=30°,∴C′D=AC′tan30°=,∴S阴影=AC′•C′D=×1×=.故选:B.7.已知a﹣b=1,则a2﹣b2﹣2b的值为()A.4B.3C.1D.0【分析】先将原式化简,然后将a﹣b=1整体代入求解.解:∵a﹣b=1,∴a2﹣b2﹣2b=(a+b)(a﹣b)﹣2b=a+b﹣2b=a﹣b=1.故选:C.8.如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF 的长度为()A.B.4C.D.【分析】先证明AD=BD,再证明∠FBD=∠DAC,从而利用ASA证明△BDF≌△CDA,利用全等三角形对应边相等就可得到答案.解:∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEB=∠ADC=90°,∴∠EAF+∠AFE=90°,∠FBD+∠BFD=90°,∵∠AFE=∠BFD,∴∠EAF=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABC,∴AD=BD,在△ADC和△BDF中,∴△ADC≌△BDF,∴DF=CD=4,故选:B.9.若1<x<2,则的值是()A.﹣3B.﹣1C.2D.1【分析】在解绝对值时要考虑到绝对值符号中代数式的正负性,再去掉绝对值符号.解:∵1<x<2,∴x﹣2<0,x﹣1>0,x>0,∴原式=﹣1+1+1=1,故选:D.10.在四边形ABCD中,AB∥CD,∠A=90°,AB=1,BD⊥BC,BD=BC,CF平分∠BCD交BD、AD于E、F,则△EDC的面积为()A.2﹣2B.3﹣2C.2﹣D.﹣1【分析】先过点E作EG⊥CD于G,再判定△BCD、△ABD都是等腰直角三角形,并求得其边长,最后利用等腰直角三角形,求得EG的长,进而得到△EDC的面积.解:过点E作EG⊥CD于G,又∵CF平分∠BCD,BD⊥BC,∴BE=GE,BC=GC,∵BD⊥BC,BD=BC,∴△BCD是等腰直角三角形,∴∠BDC=45°,∵AB∥CD,∴∠ABD=45°,又∵∠A=90°,AB=1,∴等腰直角三角形ABD中,BD===BC,∴Rt△BDC中,CD==2,∴DG=DC﹣GC=2﹣,∵△DEG是等腰直角三角形,∴EG=DG=2﹣,∴△EDC的面积=×DC×EG=×2×(2﹣)=2﹣.故选:C.二、填空题(本大题共8个小题,每小题3分,共24分,请把答案填在答题卡上.)11.“直角三角形只有两个锐角”的逆命题是只有两个锐角的三角形是直角三角形,该逆命题是一个假命题(填“真”或“假”).【分析】逆命题就是原来的命题的题设和结论互换,写出“直角三角形有两个角是锐角”的逆命题并用反例证明它是假命题.解:“直角三角形只有两个角是锐角”这个命题的逆命题是“只有两个锐角的三角形是直角三角形”假设三角形一个角是30°,一个角是45°,有两个角是锐角,但不是直角三角形.故是假命题.故答案为:只有两个锐角的三角形是直角三角形;假.12.分解因式:a3﹣4a2b+4ab2=a(a﹣2b)2.【分析】首先提公因式a,然后利用完全平方公式即可分解.解:原式=a(a2﹣4ab+4b2)=a(a﹣2b)2.故答案是:a(a﹣2b)2.13.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是x>1.【分析】利用函数图象,写出一次函数y1=x+b的图象在一次函数y2=kx+4的图象上方所对应的自变量的范围即可.解:根据图象得,当x>1时,x+b>kx+4,即关于x的不等式x+b>kx+4的解集为x>1.故答案为:x>1.14.在平面直角坐标系中,线段AB的两个端点的坐标分别为A(﹣2,1),B(1,3),将线段AB经过平移后得到线段A′B′,若点A的对应点为A′(3,2),则点B的对应点B′的坐标是(6,4).【分析】根据点A到A′确定出平移规律,再根据平移规律列式计算即可得到点B′的坐标.解:∵A(﹣2,1),A′(3,2),∴平移规律为横坐标加5,纵坐标加1,∵B(1,3),∴1+5=6,3+1=4,∴点B′的坐标为(6,4).故答案为:(6,4).15.如图,在Rt△ABC中,∠C=90°,∠ABC=60°,AB的垂直平分线分别交AB与AC于点D和点E,若CE=2,则AB的长为4【分析】由ED是线段AB的垂直平分线,根据线段垂直平分线定理得到EA=EB,根据等边对等角可得∠A和∠ABE相等,由∠A的度数求出∠ABE的度数,得出∠EBC=∠EBA=30°,再由角平分线上的点到角的两边的距离相等得出DE=CE=2.由30°角所对的直角边等于斜边的一半,可得AE=2ED=4,由勾股定理求出AD,那么AB=2AD.解:∵在Rt△ABC中,∠C=90°,∠ABC=60°,∴∠A=30°,∵DE是线段AB的垂直平分线,∴EA=EB,ED⊥AB,∴∠A=∠EBA=30°,∴∠EBC=∠ABC﹣∠EBA=30°,又∵BC⊥AC,ED⊥AB,∴DE=CE=2.在直角三角形ADE中,DE=2,∠A=30°,∴AE=2DE=4,∴AD==2,∴AB=2AD=4.故答案为:4.16.若关于x的方程=+1无解,则a的值是2或1.【分析】把方程去分母得到一个整式方程,把方程的增根x=2代入即可求得a的值.解:x﹣2=0,解得:x=2.方程去分母,得:ax=4+x﹣2,即(a﹣1)x=2当a﹣1≠0时,把x=2代入方程得:2a=4+2﹣2,解得:a=2.当a﹣1=0,即a=1时,原方程无解.故答案是:2或1.17.如图,在四边形ABCD中,P是对角线BD的中点,E、F分别是AB、CD的中点,AD=BC,∠FPE=100°,则∠PFE的度数是40°.【分析】根据三角形中位线定理得到EP=AD,FP=BC,得到PE=PF,根据等腰三角形的性质、三角形内角和定理计算即可.解:∵P是对角线BD的中点,E是AB的中点,∴EP=AD,同理,FP=BC,∵AD=BC,∴PE=PF,∵∠FPE=100°,∴∠PFE=40°,故答案为:40°.18.如图,六边形ABCDEF的六个内角都相等,若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于15.【分析】凸六边形ABCDEF,并不是一规则的六边形,但六个角都是120°,所以通过适当的向外作延长线,可得到等边三角形,进而求解.解:如图,分别作边AB、CD、EF的延长线和反向延长线使它们交于点G、H、P.∵六边形ABCDEF的六个角都是120°,∴六边形ABCDEF的每一个外角的度数都是60°.∴△AHF、△BGC、△DPE、△GHP都是等边三角形.∴GC=BC=3,DP=DE=2.∴GH=GP=GC+CD+DP=3+3+2=8,FA=HA=GH﹣AB﹣BG=8﹣1﹣3=4,EF=PH ﹣HF﹣EP=8﹣4﹣2=2.∴六边形的周长为1+3+3+2+4+2=15.故答案为:15.三、(本大题共3个题,其中第19题8分,第20,21题各5分,共18分.)19.(1)解不等式组,并把解集在数轴上表示出来.(2)解方程:﹣1.【分析】(1)分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解:(1)由①得:x<3,由②得:x≤2,则不等式组的解集为x≤2;;(2)去分母得:6(x+3)=x(x﹣2)﹣(x﹣2)(x+3),解得:x=﹣,经检验x=﹣是分式方程的根.20.先化简,再求值:(﹣1)÷,其中x为﹣1≤x≤2中的整数.【分析】根据分式的减法和除法可以化简题目中的式子,然后从﹣1≤x≤2中选取一个使得原分式有意义的整数代入化简后的式子即可解答本题.解:(﹣1)÷===,∵x为﹣1≤x≤2中的整数且(x+1)(x﹣1)≠0,x≠0,∴x=2,当x=2时,原式==﹣2.21.在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2,并直接写出点B2、C2的坐标.【分析】(1)利用点平移的规律写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(2)利用网格特点和旋转的性质画出点B、C的对应点B2、C2,从而得到△AB2C2,再写出点B2、C2的坐标.解:(1)如图,△A1B1C1即为所求;(2)如图,△AB2C2即为所求,点B2(4,﹣2),C2(1,﹣3).四、(本大题共2个小题,每小题5分,共10分.)22.如图,△ABC的外角∠DAC的平分线交BC边的垂直平分线于P点,PD⊥AB于D,PE⊥AC于E.(1)求证:BD=CE;(2)若AB=6cm,AC=10cm,求AD的长.【分析】(1)连接BP、CP,根据线段垂直平分线上的点到两端点的距离相等可得BP =CP,根据角平分线上的点到角的两边距离相等可得DP=EP,然后利用“HL”证明Rt△BDP和Rt△CEP全等,根据全等三角形对应边相等证明即可;(2)利用“HL”证明Rt△ADP和Rt△AEP全等,根据全等三角形对应边相等可得AD =AE,再根据AB、AC的长度表示出AD、CE,然后解方程即可.【解答】(1)证明:连接BP、CP,∵点P在BC的垂直平分线上,∴BP=CP,∵AP是∠DAC的平分线,∴DP=EP,在Rt△BDP和Rt△CEP中,,∴Rt△BDP≌Rt△CEP(HL),∴BD=CE;(2)解:在Rt△ADP和Rt△AEP中,,∴Rt△ADP≌Rt△AEP(HL),∴AD=AE,∵AB=6cm,AC=10cm,∴6+AD=10﹣AE,即6+AD=10﹣AD,解得AD=2cm.23.某校利用暑假进行田径场的改造维修,项目承包单位派遣一号施工队进场施工,计划用40天时间完成整个工程:当一号施工队工作5天后,承包单位接到通知,有一大型活动要在该田径场举行,要求比原计划提前14天完成整个工程,于是承包单位派遣二号与一号施工队共同完成剩余工程,结果按通知要求如期完成整个工程.(1)若二号施工队单独施工,完成整个工程需要多少天?(2)若此项工程一号、二号施工队同时进场施工,完成整个工程需要多少天?【分析】(1)设二号施工队单独施工需要x天,根据一号施工队完成的工作量+二号施工队完成的工作量=总工程(单位1),即可得出关于x的分式方程,解之经检验后即可得出结论;(2)根据工作时间=工作总量÷工作效率,即可求出结论.解:(1)设二号施工队单独施工需要x天,根据题意得:+=1,解得:x=60,经检验,x=60是原分式方程的解.答:若由二号施工队单独施工,完成整个工期需要60天.(2)根据题意得:1÷(+)=24(天).答:若由一、二号施工队同时进场施工,完成整个工程需要24天.五、(本大题共2小题,第24题5分,第25题6分,共11分.)24.如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.求证:(1)AC=EF;(2)四边形ADFE是平行四边形;(3)AC⊥DF.【分析】(1)首先Rt△ABC中,由∠BAC=30°可以得到AB=2BC,又因为△ABE 是等边三角形,EF⊥AB,由此得到AE=2AF,并且AB=2AF,然后即可证明△AFE ≌△BCA,再根据全等三角形的性质即可证明AC=EF;(2)根据(1)知道EF=AC,而△ACD是等边三角形,所以EF=AC=AD,并且AD ⊥AB,而EF⊥AB,由此得到EF∥AD,再根据平行四边形的判定定理即可证明四边形ADFE是平行四边形;(3)先求∠EAC=90°,由▱ADFE得AE∥DF,可以得∠AGD=90°,则AC⊥DF.【解答】证明:(1)∵Rt△ABC中,∠BAC=30°,∴AB=2BC,又∵△ABE是等边三角形,EF⊥AB,∴AB=2AF,AB=AE,∴AF=BC,在Rt△AFE和Rt△BCA中,∵,∴△AFE≌△BCA(HL),∴AC=EF;(2)∵△ACD是等边三角形,∴∠DAC=60°,AC=AD,∴∠DAB=∠DAC+∠BAC=90°又∵EF⊥AB,∴EF∥AD,∵AC=EF,AC=AD,∴EF=AD,∴四边形ADFE是平行四边形;(3)∵∠EAC=∠EAF+∠BAC=60°+30°=90°,∵四边形ADFE是平行四边形,∴AE∥FD,∴∠EAC=∠AGD=90°,∴AC⊥DF.25.有大小两种货车,3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨.(1)请问1辆大货车和1辆小货车一次可以分别运货多少吨?(2)目前有33吨货物需要运输,货运公司拟安排大小货车共计10辆,全部货物一次运完.其中每辆大货车一次运货花费130元,每辆小货车一次运货花费100元,请问货运公司应如何安排车辆最节省费用?【分析】(1)设1辆大货车和1辆小货车一次可以分别运货x吨和y吨,根据“3辆大货车与4辆小货车一次可以运货18吨、2辆大货车与6辆小货车一次可以运货17吨”列方程组求解可得;(2)因运输33吨且用10辆车一次运完,故10辆车所运货不低于10吨,且因为大货车运费高于小货车,故用大货车少费用就小进行安排即可.解:(1)设1辆大货车和1辆小货车一次可以分别运货x吨和y吨,根据题意可得:,解得:,答:1辆大货车和1辆小货车一次可以分别运货4吨和1.5吨;(2)设货运公司拟安排大货车m辆,则安排小货车(10﹣m)辆,根据题意可得:4m+1.5(10﹣m)≥33,解得:m≥7.2,令m=8,大货车运费高于小货车,故用大货车少费用就小则安排方案有:大货车8辆,小货车2辆,六、(本大题共1小题,共7分.)26.【课题研究】旋转图形中对应线段所在直线的夹角(小于等于90°的角)与旋转角的关系.【问题初探】线段AB绕点O顺时针旋转得到线段CD,其中点A与点C对应,点B与点D对应,旋转角的度数为α,且0°<α<180°.(1)如图①,当α=60°时,线段AB、CD所在直线夹角(锐角)为60°;(2)如图②,当90°<α<180°时,直线AB与直线CD所夹锐角与旋转角α存在怎样的数量关系?请说明理由;【形成结论】旋转图形中,当旋转角小于平角时,对应线段所在直线的夹角与旋转角相等或互补.【运用拓广】运用所形成的结论解决问题:(3)如图③,四边形ABCD中,∠ABC=60°,∠ADC=30°,AB=BC,CD=3,BD=,求AD的长.【分析】【问题初探】(1)由旋转的性质可得AB=CD,OA=OC,BO=DO,可证△AOB≌△COD(SSS),可得∠B=∠D,由三角形内角和定理可求解;(2)由旋转的性质可得AB=CD,OA=OC,BO=DO,可证△AOB≌△COD(SSS),可得∠B=∠D,由平角的定义和四边形内角和定理可求解;【形成结论】由(1)(2)可知对应线段所在直线的所夹锐角角与旋转角:相等或互补;【运用拓广】(3)将△BCD绕点B顺时针旋转60°,得到△BAF,连接FD,由旋转的性质可得BF=BD,AF=CD=3,由三角形内角和定理可求∠FAD=90°,由勾股定理可求解.解:(1)如图1,延长DC交AB于F,交BO于E,∵α=60°,∴∠BOD=60°,∵线段AB绕点O顺时针旋转得线段CD,∴AB=CD,OA=OC,BO=DO,∴△AOB≌△COD(SSS),∴∠B=∠D,∵∠B=∠D,∠OED=∠BEF,∴∠BFE=∠EOD=60°,故答案为:60°;(2)直线AB与直线CD所夹锐角角与旋转角α互补,理由如下:如图2,延长AB,DC交于点E,∵线段AB绕点O顺时针旋转得线段CD,∴AB=CD,OA=OC,BO=DO,∴△AOB≌△COD(SSS),∴∠ABO=∠D,∵∠ABO+∠EBO=180°,∴∠D+∠EBO=180°,∵∠EBO+∠E+∠D+∠BOD=360°,∴∠E+∠BOD=180°,∴直线AB与直线CD所夹锐角角与旋转角α互补.【形成结论】由(1)(2)(3)可知:旋转图形中,当旋转角小于平角时,对应线段所在直线的所夹锐角角与旋转角:相等或互补.故答案为:相等或互补.【运用拓广】(3)如图3,将△BCD绕点B顺时针旋转60°,得到△BAF,连接FD,延长FA,DC交于点E,∴旋转角∠ABC=60°,∵△BCD≌△BAF,∴∠AED=∠ABC=60°,AF=CD=3,BD=BF,∵∠ADC=30°,∴∠FAD=∠AED+∠ADC=90°,又∵∠FBD=∠ABC=60°,BF=BD,∴△BFD是等边三角形,∴BF=BD=DF,∴在Rt△DAF中,AD===.。

四川省南充市营山县2019-2020学年八年级下学期期末数学试题含答案

四川省南充市营山县2019-2020学年八年级下学期期末数学试题含答案

营山县2019-2020学年度下期期末教学质量监测八年级数学试卷一、选择题1. 如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,那么( )A. a 2+b 2> c 2B. a 2+b 2<c 2C. a 2+b 2= c 2D. a 2+b 2≠c 2 2.x 的取值范围是( )A. x ≠2B. x >2C. x ≤2D. x ≥23. 下列函数中,正比例函数是( ) A. 2x y = B. y =2x 2 C. 2y x = D. y =2x +14. 下列说法错误的是( )A. 平行四边形的对角相等B. 平行四边形的对角线相等C. 平行四边形的对边相等D. 平行四边形的对角线互相平分 5. 下列计算结果正确的是:( )=B. 3=== 6. 一组数据:18、21、18、17、24、16、26,下列说法错误的是( )A. 平均数是20B. 极差是10C. 众数是18D. 中位数是17 7. 等腰三角形的底边长为6,底边上的中线长为4,它的腰长为( )A. 1B. 5C. 7D. 498. 已知数据甲:2、4、6、8、10,数据乙:1、3、5、7、9.用S 甲2和S 乙2分别表示这两组数据方差,则下列结论正确的是( )A. S 甲2=S 乙2B. S 甲2>S 乙2C. S 甲2<S 乙2D. 无法确定 9. 如图,点P 是矩形ABCD 对角线AC 上一点,过点P 作EF ∥BC ,分别交AB ,CD 于E 、F ,连接PB 、PD .若AE=2,PF=8.则图中阴影部分的面积为( )A. 10B. 12C. 16D. 1810. 在同一条道路上,甲车从A 地到B 地,乙车从B 地到A 地,乙先出发,图中的折线段表示甲、乙两车的之间的距离y(千米)与行驶时间x(小时)的函数关系的图象,下列说法错误的是()A. 乙先出发的时间为0.5小时B. 甲的速度是80千米/小时C. 甲出发0.5小时后两车相遇D. 甲到B地比乙到A地早一小时二、填空题11. =__.12. 如果在一次函数y=(k-+y随自变量x的增大而增大,那么k的范围为_____.13. 已知x1,x2…x10的平均数是a;x11,x12,…x30的平均数是b,则x1,x2…x30的平均数是____.14. 如图,已知在长方形ABCD中,将△ABE沿着AE折叠至△AEF的位置,点F在对角线AC上,若BE=3,EC=5,则线段CD的长是__________.15. 如图,已知一条直线经过点C(﹣1,0)点D(0,﹣2),将这条直线向右平移与x轴、y轴分别交于点B、点A,若DB=DC,则直线AB的函数解析式为_____.16. 以正方形ABCD 的边AD 作等边△ADE ,则∠BEC 的度数是_____.三、解答题17. 计算:(1(2|()03π-18. 已知一次函数y=kx+1,当x=1时,y=-2,求此函数解析式,并在平面直角坐标系中画出该函数的图象.19. 已知平行四边形ABCD ,对角线AC 、BD 交于点O ,线段EF 过点O 交AD 于点E ,交BC 于点F .求证:OE=OF .20. 某学校欲招聘一名新教师,对甲、乙、丙三名应试者进行了笔试、面试和才艺三个方面的量化考核,他们的各项得分(百分制)如表所示:的(1)如果根据三项得分的平均分,从高到低确定应聘者,谁会被录用?(2)学校规定:笔试、面试、才艺得分分别不得低于80分、80分、70分,并按照40%、50%、10%的比例计入个人总分,从高到低确定应聘者,谁会被录用?21. 如图,在9x7的网格中,每个小正方形边长都是1,其顶点叫做格点,如图A 、B .D .E 均为格点,ABD 为格点三角形.(1)请在给定网格中画平行四边形ABCD ,要求C 点在格点上:(2)在(1)中平行四边形BCD 右侧,以格点E 为其中的一个顶点,画格点EFG ,并使EF=5,FG=3,22. 某校八年级学生开展踢毽子比赛活动,每班派5名学生参加.按团体总分多少排列名次,在规定时间每人踢100个以上(含100个)为优秀,表--是 成绩最好的甲班和乙班5名学生的比赛数据(单位:个),经统计发现两班总分相等,而冠军只能有一个,怎样才能确定冠军呢?此时有学生建议,可通过考查数据中的其他信息作为参考进行名次排列.请你完成下列解答: (1)根据表中提供数据求出表二中a 1、b 1、c 1、a 2、b 2、c 2数据; (2)根据表二信息,你认为应该把冠军奖状发给哪一个班级?简述理由.的23. 如图,在ABC中,∠BAC=90°,DE是△ABC的中位线,AF是ABC的中线,求证DE=AF.(要求用两种不同的方法证明)24. 某文具店销告功能完全相同的A、B两种品牌的计算器,若购买2个A品牌和3个B品牌的计算器共需156元;购买3个A品牌和1个B品牌的计算器共需122元.(1)求这两种品牌计算器的单价;(2)开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的八折销告,B品牌计算器超出5个的部分按原价的七折销售,设购买x个A品牌的计算器需婴y1元,购买x个B品牌的计算器需要y2元,请分别求出y1、y2关于x的函数关系式;(3)当需要购买50个计算器时,买哪种品牌的计算器更合算?25. 如图1.在平面直角坐标系中,四边形OBCD是正方形,D点的坐标是(0,3),点E是OB延长线上一点,M是线段OB上动点(不包括O、B),作MNLDM交ZCBE的平分线于点N.(1)直接写出点C的坐标:(2)求证:MD=MN;(3)如图2,若M点的坐标是(2,0),在OD上找一点P,使四边形MNCP是平行四边形,并求出直线PN 的解析式;(4)如图3,连接DN交BC于F,连接FM,下列两个结论:①FM的长为定值;②MN平分∠FMB,其中只有一个正确,选择正确的结论并证明.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020年八年级下学期期末考试数学试卷 (I)
考生须知1.本试卷共8页,四道大题,27道小题,满分120分。

考试时间120分钟。

2.在试卷和答题卡上认真填写学校名称、班级、姓名、考场号和座位号。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答。

5.考试结束,请将本试卷、答题卡和草稿纸一并交回。

2.一元二次方程4x2+x=1的二次项系数、一次项系数、常数项分别是()A.4,0,1 B.4,1,1 C.4,1,-1 D.4,1,0 3.内角和等于外角和的多边形是()
A.三角形B.四边形C.五边形D.六边形
4.将方程x2+4x+2=0配方后,原方程变形为()
A.(x+4)2=2 B.(x+2)2=2 C.(x+4)2=-3 D.(x+2)2=-5 5.下列图形中,既是轴对称图形,又是中心对称图形的是()
A.角B.等边三角形C.平行四边形D.矩形
6.若关于x的方程(m-2)x2-2x+1=0有两个不等的实根,则m的取值范围是()A.m<3 B.m≤3 C.m<3且m≠2 D.m≤3且m≠2 7.已知点(-5,y1),(2,y2)都在直线y=-2x上,那么y1与y2大小关系是()A.y1≤y2 B.y1≥y2 C.y1<y2 D.y1>y2
8.直线y=-x-2不经过()
A.第一象限B.第二象限C.第三象限D.第四象限9.在菱形ABCD中,对角线AC与BD交于点O,如果∠ABC=60°,AC=4,那么该菱形的面积是()
A.163B.16 C.83D.8
10.如图,在平面直角坐标系xOy中,以点A(2,3)为顶点作一直角∠PAQ,使其两边分别与x轴、y轴的正半轴交于点P,Q.连接PQ,
过点A作AH⊥PQ于点H.如果点P的横坐标为x,
AH的长为y,那么在下列图象中,能表示y与x的
函数关系的图象大致是()。

相关文档
最新文档