中考数学一元二次方程运用
人教版初中数学中考复习一轮复习——一元二次方程解法及其应用(1)
D 1.(2021·河南) 若方程 x2-2x+m=0没有实数根,则 m的值可以是( )
A.-1
B.0
C.1
D. 3
2.(2021•岳阳)已知关于x的一元二次方程x2+6x+k=0有两个相等 的实数根,则实数k的值为 k 9.
3.(2021•台州)关于x的方程x2﹣4x+m=0有两个不相等的实数根,
a 1,b 3, c 4
b2 4ac -3 2 41(- 4) 9 16 25 0
所以方程有两个不等实数根
x b 3 25 3 5
2a
2
2
x1 4, x2 1
考点二:一元二次方程的解法
1x2 3x 4
2x2 6x 7 0
32 x2 4x 5 0
解:a 1,b (k 3),c 1 k
b2 4ac (k 3)2 41 (1 k) k 2 2k 5 k 2 2k 1 4 (k 1)2 4
因为(k 1)2 4 0, 所以方程有两个不等实数根。
考点三:判别式和一元二次方程根的情况
5.(2021•烟台)已知关于x的一元二次方程x2﹣mnx+m+n=0,其中
考点二:一元二次方程的解法
2.配方法
对应练习: 1x2 4x 1 0
22x2 8x 3 0
12x2 1 3x
22x2 8x 3 0 x2 4x 3 0
2
x2 4x 3 2
x2 4x 4 3 4 2
x22 11 2
x 2 22 2
x1 2
22 ,x 2
变式2.若方程ax2+2x+1=0有两个不相等的实数根,则实数a的 取值范围是(a 1且a 0 )
人教版中考数学考点系统复习 第二章 方程(组)与不等式(组) 第二节 一元二次方程及其应用
解:设参加交流会的茶叶制作商有 m 人.依题意得 m(m-1)=380,解得 m1=20,m2=-19(舍去). 答:参加交流会的茶叶制作商有 20 人.
4.(2022·荆州第 7 题 3 分)关于 x 的方程 x2-3kx-2=0 实数根的情况,
下列判断中正确的是
(B)
A.有两个相等实数根
B.有两个不等实数根
C.没有实数根
D.有一个实数根
5.(2020·荆州第 9 题 3 分)定义新运算“a*b”:对于任意实数 a,b,都
有 a*b=(a+b)(a-b)-1,其中等式右边是通常的加法、减法、乘法运
解:设小路宽为 x m, 由题意,得(16-2x)(9-x)=112. 整理,得 x2-17x+16=0. 解得 x1=1,x2=16>9(不合题意,舍去).∴x=1. 答:小路的宽应为 1m.
17.(数学文化)《田亩比类乘除捷法》是我国古代数学家杨辉的著作, 其中有一个数学问题:“直田积八百六十四步,只云长阔共六十步,问长 多阔几何?”意思是:一块矩形田地的面积为 864 平方步,只知道它的 长与宽共 60 步,问它的长比宽多多少步?根据题意,长比宽多__112__步.
100.8
解:设后两次采购价格的平均增长率为 x,依题意得 480(1+x)2=480+100.8,解得 x1=0.1,x2=-2.1(舍). 答:后两次采购价格的平均增长率为 10%.
解:设售价为 y 元/袋时,每周的销售额为 32 400 元.依题意可列方程
y-260
为 y100-
10
=32 400,解得 y1=360,y2=900.
第二节 一元二次方程及 其应用
【考情分析】湖北近 3 年主要考查:1.选择合适的方法解一元二次方程, 常在压轴题中涉及考查;2.用一元二次方程根的判别式判断方程根的情 况或者根据根的情况求字母系数的取值范围,根与系数的关系的应用; 3.一元二次方程的应用主要以选择题的形式考查列方程,常在解答题中 与不等式、函数的实际应用结合考查,难度较大,分值一般 3-10 分.
中考数学专题复习(一)一元二次方程
专题一:一元二次方程知识要点扫描归纳一 基本概念二、一元二次方程的解法 1.直接开方法(1)用直接开平方求一元二次方程的解的方法叫做直接开平方法.如果一个一元二次方程,左边是一个含有未知数的完全平方式,右边是一个非负数,就可以用直接开平方法求解. 2.配方法(1)用配方法解方程是以配方为手段,以直接开平方法为基础的一种解题方法.是中学数学中常用的数学方法.(2)配方的关键步骤是:在方程两边同时加上一次项系数的绝对值一半的平方.理论根据是:222)(2b a b ab a ±=+±(3)配方的结果是使方程的一边化为一个完全平方式,另一边为非负实数,再利用直接开平方法求解. 3.公式法(1)用求根公式解一元二次方程的方法叫求根公式法.(2)一元二次方程)0(02≠=++a c bx ax 求根公式是:aac b b x 242-±-=(3)在解一元二次方程时,先把方程化为一般开式,确定c b a ,,的值,在042≥-ac b 的情况下:代入求根公式即可求解. 4.因式分解法1. 对于在一元二次方程的一边是0,而另一边易于分解成两个一次因式的积时,可用因式分解法来解这个方程。
2. 理论依据:两个因式的积等于零,那么这两个因式中至少有一个等于零。
例如:如果0)5)(1(=+-x x ,那么x -1=0或x +5=0。
因式分解法简便易行,是解一元二次方程的最常用的方法。
3. 因式分解法解一元二次方程的一般步骤 (1)将方程的右边化为零;(2)将方程左边分解成两个一次因式的乘积; (3)令每个因式分别为零,得两个一元一次方程; (4)解这两个一元一次方程,它们的解就是原方程的解。
4.形如()002≠=+a bx ax 的方程,可用提公因式法求方程的根:()0021≠-==a abx x ,。
5.形如()()022=+-+n bx m ax )(22b a ≠的方程,可用平方差公式把左边分解。
全国中考真题分类汇编 一元二次方程及其应用
精品基础教育教学资料,仅供参考,需要可下载使用!一元二次方程及其应用考点一、 一元二次方程的解法 (10分) 1、直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
直接开平方法适用于解形如b a x =+2)(的一元二次方程。
根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。
2、配方法配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。
配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。
3、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
一元二次方程)0(02≠=++a c bx ax 的求根公式:)04(2422≥--±-=ac b aac b b x4、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。
考点二、一元二次方程根的判别式 (3分)根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆考点三、一元二次方程根与系数的关系 (3分)如果方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么ab x x -=+21,acx x =21。
也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。
考点四、分式方程 (8分)1、分式方程分母里含有未知数的方程叫做分式方程。
一元二次方程中考经典题型
一元二次方程是中考数学中的重要内容,以下是几个经典的中考题型:
1.已知一元二次方程x² - kx - 6 = 0 的两根分别是2 和3,则k 的值为多少?
解析:由求根公式可知,一元二次方程ax² + bx + c = 0 的两根分别为x1 = (-b + √(b² - 4ac)) / 2a 和x2 = (-b - √(b² - 4ac)) / 2a。
题目已知方程x² - kx - 6 = 0 的两根为2 和3,根据求根公式可得2 + 3 = k,即k = 5。
2. 若一元二次方程x² - x - a = 0 的两根之差为3,则a 的值为多少?
解析:根据题意,设该方程的两根为x1 和x2,则有x2 - x1 = 3。
根据求和公式可知,x1 + x2 = 1。
而根据一元二次方程的求根公式,x1 + x2 = 1/a。
将上述两个式子联立,可得1/a = 3,即a = 1/3。
3. 若一元二次方程x² - 5x + b = 0 的两根之比为2:3,则
b 的值为多少?
解析:根据题意,设该方程的两根为x1 和x2,则有x1/x2 = 2/3。
根据求根公式可知,x1 + x2 = 5,x1x2=b。
将x1/x2 = 2/3代入得x1=2x2/3,代入x1+x2得5=8x2/3,即x2=15/8。
代入x1/x2=2/3得x1=10/3。
于是b=x1x2=15/8*10/3=25/4。
中考数学中的一元二次方程考题形式多样,需要学生结合具体的知识点进行综合练习和思考,提高解题技能和水平。
一元二次方程的应用【优秀5篇】
一元二次方程的应用【优秀5篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、计划大全、策划方案、报告大全、心得体会、演讲致辞、条据文书、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of classic sample essays for everyone, such as work summaries, plan summaries, planning plans, report summaries, insights, speeches, written documents, essay summaries, lesson plan materials, and other sample essays. If you want to learn about different formats and writing methods of sample essays, please stay tuned!一元二次方程的应用【优秀5篇】数学,是一门有趣而又很有学问的学科。
中考数学之一元二次方程应用题精选含标准答案(经典之中经经典)
一元二次方程应用题精选一、数字问题1有两个连续整数,它们的平方和为25,求这两个数。
2、一个两位数,十位数字与个位数字之和是6,把这个数的个位数字与十位数字对调后,所得的新两位数与原来的两位数的积是1008,求这个两位数.解:设原两位数的个位数字为x,十位数字为(6-x),根据题意可知,[10 (6-x) +x][10x+ (6-x) ]=1008 ,即x2-6x+8=0,解得x仁2, x2=4 ,「. 6-x=4,或6-x=2 ,•'•IO (6-x) +x=42 或10 ( 6-x) +x=24 ,答:这个两位数是42或24.二、销售利润问题3、某市场销售一批名牌衬衫,平均每天可销售20件,每件赢利40元•为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当降价措施•经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.求:(1 )若商场平均每天要赢利1200元,每件衬衫应降价多少元?(2)要使商场平均每天赢利最多,请你帮助设计方案.解:设每天利润为w元,每件衬衫降价x元,根据题意得w= (40-x) (20+2x) =-2x2+60x+800=-2 (x-15) 2+1250(1)当w=1200 时,-2x2+60x+800=1200 ,解之得x1=10 , x2=20 .根据题意要尽快减少库存,所以应降价20元.答:每件衬衫应降价20元.(2)解:商场每天盈利(40-x) (20+2x) =-2 (x-15) 2+1250 .当x=15时,商场盈利最多,共1250元.答:每件衬衫降价15元时,商场平均每天盈利最多.4•某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家家电下乡”政策的实施,商场决定采取适当的降价措施,调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台,商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?解:设每台冰箱应降价x元,那么x(8+ 50X 4) X (2400 —x —2000)=4800 所以(x - 200)(x - 100)=0x = 100或200 所以每台冰箱应降价100或200元.5•西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元?解:设应将每千克小型西瓜的售价降低x元根据题意,得:x答:应将每千克小型西瓜的售价降低 0.2或0.3元。
中考数学总复习考点知识讲解课件30---一元二次方程及其应用
C.x2-x+1=0
D.x2=1
百变四:已知方程系数关系,判断方程根的情况 4.(2016·河北)a,b,c为常数,且(a-c)2>a2+c2,则关于x的方程ax2 +bx+c=0的根的情况( ) A.有两个相等的实数根 B.有两个不相等的实数根 C.无实数根 D.有一根为0
【解析】 ∵(a-c)2=a2+c2-2ac>a2+c2,∴ac<0.∴在方程ax2+bx+ c=0中,b2-4ac≥-4ac>0,∴方程ax2+bx+c=0有两个不相等的实数 根.故选B.
【自主解答】 解:(1)四 x= (2)x2-2x-24=0, 移项,得x2-2x=24, 配方,得x2-2x+1=24+1, 即(x-1)2=25, 两边开平方,得x-1=±5, ∴x1=6,x2=-4.
解一元二次方程的注意点
(1)在运用公式法解一元二次方程时,要先把方程化为一般形式,再确定 a,b,c的值,否则易出现符号错误; (2)用因式分解法确定一元二次方程的解时,一定要保证等号的右边化为 0,否则易出现错误; (3)如果一元二次方程的常数项为0,不能在方程两边同时除以含有未知数 的相同因式; (4)对于含有不确定量的方程,需要把求出的解代入原方程检验,避免增 根.
知识点二 一元二次方程的解法
x=b b2 4ac 2a
知识点三 一元二次方程根的判别式
b2-4ac叫做一元二次方程ax2+bx+c=0(a≠0)的根的判别式.判别式 的符号决定了方程根的情况,即
(1)b2-4ac>0⇔方程有两个 _不__相__等__的实数根;
(2)b2-4ac_=__0⇔方程有两个相等的实数根; (3)b2-4ac<0⇔方程__没__有___实数根.
【分析】由每个月的平均增长率相同,可分别表示二月份和三月份的工业 产值,再结合第一季度总产值为175亿元列方程即可. 【自主解答】由平均每月增长的百分率为x,则二月的工业产值为50(1+x) 亿元,三月的工业产值为50(1+x)2 亿元,则根据题意可得方程:50+ 50(1+x)+50(1+x)2=175,故选D.
中考总复习数学第3节 一元二次方程及其应用
边的长是方程 x2-8x+12=0 的解,则这个三角形的周
长是 17 .
3. (2020·无锡)解方程:x2+x-1=0.
解:x1=-1+2
5,x2=-1-2
5 .
4. (2020·荆州)阅读下列“问题”与“提示”后,将 解方程的过程补充完整,求出 x 的值.
【问题】解方程:x2+2x+4 x2+2x-5=0. 【提示】可以用“换元法”解方程. 解:设 x2+2x=t(t≥0),则有 x2+2x=t2, 原方程可化为:t2+4t-5=0. 【续解】
-4ac > 0.即可得到关于 a 的不等式,从而求得 a 的 范围.(2)将 x=1 代入方程 x2+2x+a-2=0 得到 a
的值,再根据根与系数的关系求出另一根.
【自主作答】(1)b2-4ac=22-4×1×(a-2)=12- 4a>0,解得 a<3.
(2)设方程的另一根为 x1,由解的定义及根与系数的 1+2+a-2=0, a=-1,
关系,得 1×x1=a-2, 解得 x1=-3,则 a 的值是 -1,该方程的另一根为-3.
类型3:一元二次方程的应用 ►例3沅江市近年来大力发展芦笋产业,某芦笋生产 企业在两年内的销售额从 20 万元增加到 80 万元.设这 两年的销售额的年平均增长率为 x,根据题意可列方程为 () A.20(1+2x)=80 B.2×20(1+x)=80 C.20(1+x2)=80 D.20(1+x)2=80
数学 中考总复习
第3节 一元二次方程及其应用
类型1:一元二次方程的解法 ►例1分别用两种不同的方法解下列一元二次方程: (1)x2+6x=1; (2)(x-3)2+4x(x-3)=0.
分析:公式法是解一元二次方程通用的方法,在运
中考数学复习之一元二次方程与应用题,概念与应用练习题
9. 一元二次方程知识过关1. 一元二次方程的概念及一般形式:只含有一个未知数,未知数的高最次数是2的___方程.一元二次方程的一般开式是_______________2. 一元二次方程的解的概念:使一元二次方程左右两边相等的未知数的值是一元二次方程的根.3. 一元二次方程的解法:(1)直接开平方法:c b ax a x =+=22)(、(2)配方法:(3)公式法:aac b b x 2422,1-±-= (4)因式分解法:4.一元二次方程根的判别式:__________叫做一元二次方程02=++c bx ax 的根的判别式,用“∆”表示.(1))0(00≠=++⇔>∆a c bx ax 有两个________实数根.(2))0(00≠=++⇔>∆a c bx ax 有两个________实数根.(3))0(00≠=++⇔>∆a c bx ax 有两个________实数根.(4))0(00≠=++⇔>∆a c bx ax 有两个________实数根.5.列一元二次方程解应用题的一般步骤审题—设_____列出一元二次方程—解一元二次方程—检验—写出答案6. 应用题中常见的数量关系(1) 平均增长率、降低率问题若基数为a ,平均增长率为x ,则一次增长后的值为a (1+x ),两次增长后的值为a (1+x )2(2) 利润问题利润=售价-______;利润率=%100⨯-进价进价售价 打折后的价格=原价⨯打折数×101 (3) 利息问题利息=本金利率期数本息和=本金+利息=本金(1+利率⨯期数)利息税=利息⨯____贷款利息=贷款数额⨯____⨯期数(4) 面积问题、传染病问题、握手问题、面积问题等.考点分类考点1 一元二次方程的相关概念例1 (1)下列方程中是关于x 的一元二次方程是( )A. 0122=+xx B.02=++c bx ax C.1)2)(1(=+-x x D.052322=--y xy x(2) 关于x 的一元二次方程01||)1(2=-++-a x x a 的一个根为0,则实数a 的值为( )A. -1B.0C.1D.-1或1考点2 一元二次方程的解法例2 (1)方程1)2)(1(+=-+x x x 的解是( )A.2B.3C.-1,2D.-1,3(2)解方程:0142=+-x x考点3 一元二次方程的判别式例3 已知关于x 的一元二次方程012)1(2=+--x x a 有两个不相等的实数根,则a 的取值范围是( )A. a <2B.a >2C.a <2且a ≠1D.a <-2考点4 一元二次方程的应用例4 为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建立力度,2018年市政府共投资了2亿人民币建设了廉租房8万平方米,预计到2020年底三年共累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,求到2020年底共建设了多少万平方米的廉租房.真题演练1.设α、β是方程x2+2019x﹣2=0的两根,则(α2+2022α﹣1)(β2+2022β﹣1)的值为()A.6076B.﹣6074C.6040D.﹣60402.有两个人患了流感,每轮传染中平均一个人传染了x个人,则两轮传染后患流感的人数共有()A.x(x+2)人B.(x+1)2人C.(x+2)2人D.2(x+1)2人3.若m,n是方程2x2﹣4x﹣3=0的两个根,则2m2﹣5m﹣n的值为()A.9B.1C.﹣1D.54.一元二次方程x2﹣6x﹣5=0配方可变形为()A.(x﹣3)2=14B.(x﹣3)2=4C.(x+3)2=14D.(x+3)2=4 5.如果关于x的方程x2﹣x﹣m=0有两个不相等的实数根,则m的取值范围是()A.m≥−14B.m<−14C.m>−14D.m≤−146.对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若a+b+c=0,则b2﹣4ac≥0;②若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若x0是一元二次方程ax2+bx+c=0的根,则b2−4ac=(2ax0+b)2其中正确的()A.只有①②B.只有①②④C.①②③④D.只有①②③7.若一个等腰三角形的一边为4,另外两边为x2﹣12x+m=0的两根,则m的值为()A.32B.36C.32或36D.不存在8.如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644平方米,则道路的宽应为多少米?设道路的宽为x米,则可列方程为()A.100×80﹣100x﹣80x=7644B.(100﹣x)(80﹣x)+x2=7644C.(100﹣x)(80﹣x)=7644D.100x+80x=3569.某玩具商店出售一种“小猪佩奇”玩具,平均每天可销售50个,每个盈利36元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,若每个玩具降价1元,平均每天可多售出5个,商店要想平均每天销售这种玩具盈利2400元,则每个玩具应降价多少元?设每个玩具应降价x 元,可列方程为 .10.如图,在△ABC 中,AB =3cm ,BC =6cm ,AC =5cm ,蚂蚁甲从点A 出发,以2.5cm /s 的速度沿着三角形的边按A →B →C →A 的方向行走,甲出发1s 后蚂蚁乙从点A 出发,以2cm /s 的速度沿着三角形的边按A →C →B →A 的方向行走,那么甲出发 s 后,甲乙第一次相距2.5cm .10. 由于新冠疫情的影响,口罩需求量急剧上升,但在有关部门大力调控下,口罩价格没有上涨.经调查发现,某社区药店把口罩定价为每包10元时,一天可以卖出30包,每降价1元,可以多卖出5包.如果该药店想一天获得315元口罩销售额,并且尽可能让顾客获得更大的优惠,应该降价多少元?课后作业1.下列一元二次方程中,两实数根之和为2的是( )A .x 2+2x +1=0B .x 2﹣2=0C .﹣x 2+2x ﹣3=0D .12x 2﹣x −32=02.设a ,b 是方程x 2+x ﹣2020=0的两个实数根,则(a ﹣1)(b ﹣1)的值为( )A .﹣2022B .2018C .﹣2018D .20223.关于x的一元二次方程x2﹣4x+1=2k有两个不相等的实数根,则k的取值范围为()A.k>32B.k>1C.k<1D.k>−324.方程x(x﹣1)=x的解是()A.x=0B.x=2C.x1=0,x2=2D.x1=0,x2=1 5.如图,在一个长为60m,宽为40m的矩形场地内修筑两条等宽的道路,剩余部分为绿化用地,如果绿化用地的面积为2204m2,那么道路的宽为m.6.某水果店以相同的进价购进两批车厘子,第一批80千克,每斤16元出售;第二批60千克,每斤18运出售,两批车厘子全部售完,店主共获利960元.(1)求车厘子的进价是每千克多少元?(2)该水果店一相同的进价购进第三批车厘子若干,第一天将车厘子涨价到每千克20元出售,结果仅售出40千克;为了尽快售完第三批车厘子,第二天店主决定在第一天售价的基础上降价促销,若在第一天售价基础上每降价1元,第二天的销售量就在第一天的基础上增加10千克.到第二天晚上关店时车厘子售完,店主销售第三批车厘子获得的利润为850元,求第二天车厘子的售价是每千克多少元?7.已知k为实数,关于x的方程为x2﹣kx=3(k+3).(1)请证明不论k取何值,这个方程总有两个实数根;(2)若方程的两个根分别记为x1,x2,且满足x12+x22=9,求k值.冲击A+已知,在菱形ABCD中,∠BCD=60°,将边CD绕点C顺时针旋转α(0<α<120°),得到线段CE,连接ED、ED或其延长线交∠BCE的角平分线于点F.(1)如图1,若α=20°,直接写出∠E与∠CFE的度数;(2)如图2,若60°<α<120°.求证:EF﹣DF=CF;(3)如图3,若AB=6,点G为AF的中点,连接BG,则DC旋转过程中,BG的最大值为.。
中考数学一轮复习专题突破练习—一元二次方程及其应用
中考数学一轮复习专题突破练习—一元二次方程及其应用一、单选题1.(2022·全国九年级课时练习)下列方程是一元二次方程的是( ) A .20ax bx c ++=B .()223232x x x -=-C .213x x-=D .242x x x -= 【答案】D 【分析】根据一元二次方程的概念判断即可.只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程. 【详解】解:A 、20ax bx c ++=,a ≠0时,是一元二次方程,故此选项错误;B 、()223232x x x -=-,整理得:-2x +6=0,是一元一次方程,故此选项错误;C 、213x x-=,是分式方程,故此选项错误; D 、242x x x -=,是一元二次方程,故此选项正确; 故选:D .2.(2022·全国九年级课时练习)下列各数是方程212x x -=的根的是( ) A .3x = B .4x =C .5x =D .10x =【答案】B 【分析】分别将3x =,4x =,5x =,10x =代入方程中,如果方程左右两边相等,那么此时的值即为方程的解. 【详解】解:将3x =,4x =,5x =,10x =代入方程中, 可得当4x =时,左边=右边, 故4x =是方程212x x -=的根, 故选B .3.(2022·全国九年级课时练习)已知方程2(3)210k x x -++=有两个实数根,则k 的取值范围是( ) A .4k < B .4k ≤C .4k <且3k ≠D .4k ≤且3k ≠【答案】D 【分析】若一元二次方程有两个实数根,则根的判别式△=b 2-4ac ≥0,建立关于k 的不等式,求出k 的取值范围.还要注意二次项系数不为0. 【详解】解:∵方程有两个实数根,∴30k -≠且22Δ4241(3)0b ac k =-=-⨯⨯-≥, 解得4k ≤且3k ≠, 故选D .4.(2022·全国九年级课时练习)一元二次方程24410x x -+=的根的情况是( ) A .没有实数根 B .只有一个实数根 C .有两个相等的实数根D .有两个不相等的实数根【分析】根据一元二次方程根的判别式可直接进行求解. 【详解】解:∵2Δ(4)4410=--⨯⨯=,∴一元二次方程24410x x -+=有两个相等的实数根. 故选C .5.(2022·全国九年级课时练习)用配方法解下列方程时,配方有错误的是( ) A .22990x x --=化为2(1)100x -=B .2890x x ++=化为2(4)25x +=C .22740t t --=化为2781416t ⎛⎫-= ⎪⎝⎭D .23420x x --=化为221039x ⎛⎫-= ⎪⎝⎭ 【答案】B 【分析】根据配方的步骤计算即可解题. 【详解】()2222890,89,816916,47x x x x x x x ++=+=-++=-++=故B 错误.且ACD 选项均正确, 故选:B6.(2022·珠海市九洲中学九年级一模)已知关于x 的一元二次方程2210-+=ax x 有两个不相等的实数根,则实数a 的取值范围是( ) A .1a = B .1a >且0a ≠ C .1a <且0a ≠ D .1a ≤或0a ≠【答案】C由关于x 的一元二次方程2210-+=ax x 有两个不相等的实数根,即可得判别式△0>以及0a ≠,由此即可求得a 的范围.【详解】解:关于x 的一元二次方程2210-+=ax x 有两个不相等的实数根,∴△224(2)41440b ac a a =-=--⨯⨯=->,解得:1a <,方程2210-+=ax x 是一元二次方程,0a ∴≠,a ∴的范围是:1a <且0a ≠.故选:C .7.(2022·全国九年级课时练习)已知一个三角形的一边长为5,其他两边的长是方程(2)(4)0x x --=的根,则这个三角形的周长是( ) A .9 B .11C .11或13D .9或11【答案】C 【分析】首先解一元二次方程,再根据三角形三边关系的性质,分三种情况分析,通过计算即可得到答案. 【详解】∵(2)(4)0x x --=, ∴12x =,24x =当三角形的三边长分别为2,4,5时,其周长为11;当三角形的三边长分别为4,4,5时,其周长为13; 当三角形的三边长分别为2,2,5时,无法构成三角形; ∴这个三角形的周长是11或13. 故选:C .8.(2022·全国九年级课时练习)宾馆有50间房供游客居住,当每间房每天定价为180元时,宾馆会住满;当每间房每天的定价每增加10元时,就会空闲一间房如果有游客居住,宾馆需对居住的每间房每天支出20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价比定价180元增加x 元,则有( ) A .180(20)501089010x x -⎛⎫--= ⎪⎝⎭B .1805050201089010x x -⎛⎫--⨯= ⎪⎝⎭ C .(18020)501089010x x ⎛⎫+--= ⎪⎝⎭D .(180)5050201089010x x ⎛⎫+--⨯= ⎪⎝⎭【答案】A 【分析】设房价定为x 元,根据利润=房价的净利润×入住的房间数可得. 【详解】解:设房价定为x 元, 根据题意,得()18020501089010x x -⎛⎫--= ⎪⎝⎭故选A .9.(2022·全国九年级课时练习)如图,在宽为20m ,长为30m 的矩形地面上修建两条宽均为m x 的小路(阴影),余下部分作为草地,草地面积为2551m ,根据图中数据,求得小路宽x 的值为( )A .1B .1.5C .2D .2.5【答案】A 【分析】剩余部分可合成长为(30-x )m ,宽为(20-x )m 的矩形,利用矩形的面积公式结合草地面积为551m 2,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论. 【详解】解:根据题意,得(30)(20)551x x --=, 整理,得250490x x -+=, 解得121,49x x ==,∵当249x =时,20290x -=-<, ∴249x =舍去, ∴小路宽x 的值为1. 故选A .10.(2022·全国九年级课时练习)某市2012年有人口100万,2013年人口增长率为5%,“单独二胎”政策开放后,2014年人口增长率约为7%,若2013年、2014年人口年平均增长率为x ,则( ) A .6%x = B .6%x >C .6%x <D .不能确定【答案】C【分析】根据题意可得等量关系为:2012年的人口数×(1+增长率)2=2014年的人口数,把相关数值代入即可列出方程.【详解】依题意列方程为2x+=++,100(1)100(15%)(17%)整理得2x+=++=,(1)(15%)(17%) 1.1235++=>,∵(16%)(16%) 1.1236 1.1235∴6%x<.故选:C二、填空题11.(2022·沭阳县怀文中学九年级月考)国家统计局统计数据显示,我国快递业务收入逐年增加.2018年至2020年我国快递业务收入由5000亿元增加到7500亿元.设我国2018年至2020年快递业务收入的年平均增长率为x.则可列方程为________________.【答案】()2+=x500017500【分析】根据题意可得等量关系:2018年的快递业务量×(1+增长率)2=2020年的快递业务量,根据等量关系列出方程即可.【详解】解:设我国2018年至2020年快递业务收入的年平均增长率为x,由题意得:5000(1+x)2=7500,故答案为:5000(1+x)2=7500.12.(2020·沭阳县怀文中学九年级月考)已知关于x的方程x2﹣14=0有两个不相等的实数根,则k的取值范围是_______.【答案】k≥0【分析】根据一元二次方程根的判别式列出不等式,解不等式即可.【详解】解:∵关于x的方程x2﹣14=0有两个不相等的实数根,∴2﹣4×1×(﹣14)>0且k≥0,k+1>0且k≥0,解得k≥0,故答案为:k≥0.13.(2020·沭阳县怀文中学九年级月考)九年级(1)班部分学生去秋游时,每人都和同行的其他每一人合照一张双人照,共照了双人照片36张,则同去秋游的人数是____人.【答案】9【分析】设同去春游的人数是x人,由每人都和同行的其他每一人合照一张双人照且共照了双人照片36张,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【详解】解:设同去春游的人数是x人,依题意,得:12x (x ﹣1)=36, 解得:x 1=9,x 2=﹣8(舍去). 故答案是:9.14.(2020·沭阳县怀文中学九年级月考)关于x 的一元二次方程(m ﹣2)x 2+3x +m 2﹣4=0有一个解是0,则m 的值为_____. 【答案】﹣2 【分析】把x =0代入方程(m ﹣2)x 2+3x +m 2﹣4=0中,解关于m 的一元二次方程,注意m 的取值不能使原方程对二次项系数为0. 【详解】解:把x =0代入方程(m ﹣2)x 2+3x +m 2﹣4=0中,得 m 2﹣4=0, 解得m =﹣2或2,当m =2时,原方程二次项系数m ﹣2=0,舍去, 故答案是:﹣2.15.(2022·全国九年级课时练习)认真观察下列方程,指出使用何种方法求解比较适当.(1)245x =,应选用________法; (2)2165x x +=,应选用_______法;(3)2(2)(1)(2)(4)x x x x +-=++,应选用__________法; (4)22330x x --=,应选用__________法.【答案】直接开平方 配方 因式分解 公式【分析】(1)将方程的二次项系数化为1得到254x =,用直接开平方法求解;(2)根据配方法在方程两边同时加上一次项系数一半的平方,左边得到完全平方式,右边为常数,选用配方法;(3)先移项,然后提出公因式(2)x +,用因式分解法;(4)二次项系数不为1,不易用配方法和因式分解法,选公式法. 【详解】解:(1)可直接开平方,故选择直接开平方法;(2)2165x x +=的两边都加上64,易配方得2(8)69x +=,故选配方法; (3)方程2(2)(1)(2)(4)x x x x +-=++,移项得2(2)(1)(2)(4)0x x x x +--++=,直接提公因式(2)x +求解即可,故选因式分解法;(4)22330x x --=,二次项系数不为1,不易用配方法和因式分解法,故应选用公式法求解.故答案为:直接开平方;配方;因式分解;公式 三、解答题16.(2022·福建省福州杨桥中学九年级开学考试)解方程:230x x +-=.【答案】12x x ==【分析】根据公式法解一元二次方程即可. 【详解】解:1,1,3a b c ===-2411213b ac ∴∆=-=+=x ∴==12x x ∴=. 17.(2020·沭阳县怀文中学九年级月考)解方程:(1)3x 2﹣4x =1;(2)(3y ﹣2)2=(2y ﹣3)2.【答案】(1)x 1x 2(2)y 1=1,y 2=﹣1 【分析】(1)由题意先把方程化为一般式,然后利用求根公式解方程;(2)根据题意先移项得到(3y ﹣2)2﹣(2y ﹣3)2=0,然后利用因式分解法解方程.【详解】解:(1)3x 2﹣4x ﹣1=0,∵Δ=(﹣4)2﹣4×3×(﹣1)=28>0,∴x 273,∴x 1x 2 (2)(3y ﹣2)2﹣(2y ﹣3)2=0,(3y ﹣2+2y ﹣3)(3y ﹣2﹣2y +3)=0,3y ﹣2+2y ﹣3=0或3y ﹣2﹣2y +3=0,解得y 1=1,y 2=﹣1.18.(2022·贵阳市第十九中学九年级月考)随着国内新能源汽车的普及,为了适应社会的需求,全国各地都在加快公共充电桩的建设,某省2018年公共充电桩的数量为2万个,2020年公共充电桩的数量为2.88万个.(1)求2018年至2020年该省公共充电桩数量的年平均增长率;(2)按照这样的增长速度,预计2022年该省将新增多少万个公共充电桩?【答案】(1)2018年至2020年该省公共充电桩数量的年平均增长率为20%.(2)预计2022年该省将新增0.576万个公共充电桩.【分析】(1)设2018年至2020年该省公共充电桩数量的年平均增长率为x,根据该省2018年及2020年公共充电桩,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)根据该省2022年公共充电桩数量=该省2020年公共充电桩数量×增长率,即可求出结论.【详解】解:(1)设2018年至2020年该省公共充电桩数量的年平均增长率为x,依题意得:2(1+x)2=2.88,解得:x1=0.2=20%,x2=-2.2(不合题意,舍去).答:2018年至2020年该省公共充电桩数量的年平均增长率为20%.(2)2.88×20%=0.576(万个).答:预计2022年该省将新增0.576万个公共充电桩.19.(2022·重庆市育才中学九年级开学考试)中秋来临之际,重百超市看准商机,连续两周进行节日大促销活动,该超市从厂家购进A,B两种月饼进行销售,每周都用25000元购进250盒A种月饼和150盒B种月饼.重百超市在第一周销售时,每盒A 种月饼的售价比每盒B 种月饼的售价的2倍少10元,且两种月饼在一周之内全部售完,总盈利为5000元.(1)求重百超市在第一周销售B 种月饼每盒多少元?(2)重百超市在第二周销售时,受到各种因素的影响,每盒A 种月饼的售价比第一周A 种月饼的售价每盒增加了53%m ,但A 种月饼的销售盒数比第一周A 种月饼的销售盒数下降了%m ;每盒B 种月饼的售价比第一周B 种月饼的售价每盒下降了%m ,但B 种月饼的销售盒数与第一周B 种月饼的销售盒数相同,结果第二周的总销售额为30000元,求m 的值.【答案】(1)重百超市在第一周销售B 种月饼每盒50元,则销售A 种月饼每盒为90元;(2)m =20【分析】(1)设重百超市在第一周销售B 种月饼每盒x 元,则销售A 种月饼每盒为(2x -10)元,然后根据题意可列方程求解;(2)由(1)及题意可知第二周A 种月饼销售价为%59013m ⎛⎫+ ⎪⎝⎭元,销量为()2501m -%盒,而B 种月饼销售额为()150501m ⨯-%元,进而根据题意可列方程求解.【详解】解:(1)设重百超市在第一周销售B 种月饼每盒x 元,则销售A 种月饼每盒为(2x -10)元,由题意得:()250210150250005000x x -+-=,解得:50x =,∴销售A 种月饼每盒为2×50-10=90(元);答:重百超市在第一周销售B 种月饼每盒50元,则销售A 种月饼每盒为90元;(2)由(1)及题意得:()()5901250115050130000%3m m m ⎛⎫+⨯-+⨯-= ⎪⎝⎭%%, 化简得:2200m m -=,解得:1220,0m m ==(不符合题意,舍去),∴m =20.20.(2022·西安高新一中实验中学九年级开学考试)解方程:(1)24142x x x x +=-+ (2)22530x x +-=(3)2(2)36x x +=+【答案】(1)原方程无解;(2)112x =,23x =-;(3)12x =-,21x =.【分析】(1) 方程两边都乘以公分母得()2424x x x x +-=-,解方程得2x =-检验分母为零即可;(2)因式分解得()()2310x x +-=分别解每一个一元一次方程即可;(3)先因式分解()()210x x +-=在分别解每一个一元一次方程即可.【详解】解:(1)24142x x x x +=-+ , 方程两边都乘以()()22x x +-得()2424x x x x +-=-,整理得24x =-,解得2x =-,当2x =-时,()()()()2222220x x +-=-+--=,∴2x =-时原方程的增根,∴原方程无解;(2)22530x x +-=,因式分解得()()2130x x -+=,当210x -=,解得112x =,当30x +=,解得23x =-;∴方程的解为112x =,23x =-;(3)2(2)36x x +=+,()2(2)320x x -++=, ()()2230x x ++-=,()()210x x +-=,当20x +=,解得12x =-,当10x -=,解得21x =.∴方程的解为12x =-,21x =.21.(2022·广州市黄埔华南师范大学附属初级中学)已知:关于x 的方程()228440--+=x m x m 有两个不相等的实数根1x ,2x .(1)求实数m 的取值范围.(2)若方程的两个实数根1x ,2x 满足1212x x x x +=,求出符合条件的m 的值.【答案】(1)1m <;(2)2m =-【分析】(1)根据根的判别式大于零求解即可;(2)根据根与系数的关系及根的定义得出关于m 的方程求解即可;【详解】解:(1)由题意知,22(84)440m m ∆=--⨯>即64640m ->∴1m <;(2)由根与系数关系得:1284x x m +=-,2124x x m =,∵1212x x x x +=∴2844m m -=,∴220m m +-=,解得,12m =- ,21m =∵1m <,∴2m =-.22.(2022·陕西九年级月考)用一块长8dm ,宽6dm 的矩形薄钢片制作成一个无盖的长方体盒子,可先在薄钢片的四个角上截去四个相同的小正方形(如图①),然后把四边折合起来(如图②).(1)若要做成的盒子的底面积为15dm 2时,求截去的小正方形的边长;(2)当这个无盖的长方体盒子的侧面积与底面积之比为5:6时,求截去的小正方形的边长.【答案】(1)32dm;(2)1dm.【分析】(1)设截去的小正方形的边长为x dm,则做成的盒子的底面为长(8﹣2x)dm,宽(6﹣2x)dm的长方形,根据做成的盒子的底面积为215dm,即可得出关于x 的一元二次方程,解之取其符合题意的值,即可得出截去的小正方形的边长;(2)设截去的小正方形的边长为y dm,则做成的盒子的底面为长(8﹣2y)dm,宽(6﹣2y)dm的长方形,根据这个无盖的长方体盒子的侧面积与底面积之比为5:6,即可得出关于y的一元二次方程,解之取其符合题意的值,即可得出截去的小正方形的边长.【详解】解:(1)设截去的小正方形的边长为x dm,则做成的盒子的底面为长(8﹣2x)dm,宽(6﹣2x)dm的长方形,依题意得:(8﹣2x)(6﹣2x)=15,整理得:4x2﹣28x+33=0,解得:x1=32,x2=112,当x=32时,6﹣2x=6﹣2×32=3,符合题意,当x=112时,6﹣2x=6﹣2×112=﹣5,不合题意,舍去,答:截去的小正方形的边长为32 dm.(2)设截去的小正方形的边长为y dm,则做成的盒子的底面为长(8﹣2y)dm,宽(6﹣2y)dm的长方形,依题意得:2×[(8﹣2y)y+(6﹣2y)y]:(8﹣2y)(6﹣2y)=5:6,整理得:17y2﹣77y+60=0,解得:y1=6017,y2=1,当y=6017时,6﹣2y=6﹣2×6017=﹣1817,不合题意,舍去,当y=1时,6﹣2y=6﹣2×1=4,符合题意,答:截去的小正方形的边长为1dm.23.(2022·宁波市海曙外国语学校九年级开学考试)某商场销售一种进价为20元/台的台灯,经调查发现,该台灯每天的销售量与销售单价基本满足一次函数关系,并且当销售单价为26元时,每天销售量28台;当销售单价为32元时,每天销售量16台,设台灯的销售单价为x(元),每天的销售量为y(台).(1)求y与x之间的函数关系式;(2)当销售单价定为多少元时,每天的利润最大?最大利润是多少?(3)若该商场每天想获得150元的利润,在保证销售量尽可能大的前提下,应将销售单价定为多少元?【答案】(1)y=-2x+80;(2)单价定为30元时,每天的利润最大,最大利润是200元;(3)25元【分析】(1)设y=kx+b,根据题意,利用待定系数法确定出y与x的函数关系式即可;(2)根据题意结合销量×每本的利润=w,进而利用二次函数增减性求出答案;(3)根据题意结合销量×每本的利润=150,进而求出答案.【详解】解:(1)设y=kx+b,由题意2628 3216k bk b+=⎧⎨+=⎩,解得:280kb=-⎧⎨=⎩,∴y=-2x+80.(2)设每天的利润为W,W=(x-20)(-2x+80)=-2x2+120x-1600=-2(x-30)2+200,此时当x=30时,w最大=200,答:当销售单价定为30元时,每天的利润最大,最大利润是200元.(3)根据题意得(x-20)(-2x+80)=150,整理得:x2-60x+875=0,(x-25)(x-35)=0,解得:x1=25,x2=35,∵销售量尽可能大,∴x=25答:每本纪念册的销售单价是25元.。
中考数学一轮复习专题解析—一元二次方程及其应用
中考数学一轮复习专题解析—一元二次方程及其应用复习目标 1、理解配方法2、会用因式分解法、公式法、配方法解简单的数字系数的一元二次方程; 考点梳理一、一元二次方程的定义只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程. 它的一般形式为20ax bx c ++=(a ≠0).例1.下列是一元二次方程的有( )个.①240x =;②()200++=≠ax bx c a ;③223(1)32x x x -=+;④2120x -=. A .1 B .2 C .3 D .4【答案】B 【分析】一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2.进而可以判断. 【详解】解:①240x =,是一元二次方程;②()200++=≠ax bx c a ,是一元二次方程;③223(1)32x x x -=+,整理得830x -=,是一元一次方程,不是一元一次方程; ④2120x -=,不是整式方程,不是一元二次方程;综上,是一元二次方程的是①②,共2个, 故选:B .二、一元二次方程的解法(1)直接开平方法:把方程变成2x m =的形式,当m >0时,方程的解为x =;当m =0时,方程的解1,20x =;当m <0时,方程没有实数解.(2)配方法:通过配方把一元二次方程20ax bx c ++=变形为222424b b ac x a a -⎛⎫+=⎪⎝⎭的形式,再利用直接开平方法求得方程的解.(3)公式法:对于一元二次方程20ax bx c ++=,当240b ac -≥时,它的解为x =.(4)因式分解法:把方程变形为一边是零,而另一边是两个一次因式积的形式,使每一个因式等于零,就得到两个一元一次方程,分别解这两个方程,就得到原方程的解.注意:直接开平方法和因式分解法是解一元二次方程的特殊方法,配方法和公式法是解一元二次方程的一般方法.例2.关于x 的一元二次方程21x =的根是( ) A .1x = B .11x =,21x =- C .1x =- D .121x x ==【答案】B 【分析】利用直接开平方法求解即可. 【详解】解:∵x 2=1, ∴x 1=1,x 2=-1, 故选:B .三、一元二次方程根的判别式一元二次方程根的判别式为ac 4b 2-=∆.△>0⇔方程有两个不相等的实数根; △=0⇔方程有两个相等的实数根; △<0⇔方程没有实数根.上述由左边可推出右边,反过来也可由右边推出左边. 注意: △≥0⇔方程有实数根.例3.一元二次方程2310x x --=的根的情况为( ) A .有两个相等的实数根 B .有两个不相等的实数根 C .只有一个实数根 D .没有实数根【答案】B 【分析】计算出一元二次方程根的判别式,根据判别式的符号即可判断根的情况. 【详解】∵a =1,b =-3,c =-1∴224(3)41(1)130b ac ∆=-=--⨯⨯-=>∴一元二次方程2310x x --=有两个不相等的实数根 故选:B.四、一元二次方程根与系数的关系如果一元二次方程0c bx ax 2=++(a ≠0)的两个根是21x x 、,那么acx x a b x x 2121=⋅-=+,.例4.方程22x -5x +m =0没有实数根,则m 的取值范围是( ) A .m >258B .m <258C .m ≤258D .m ≥258【答案】A 【分析】利用判别式的意义得到△=(-5)2﹣4×2m <0,然后解关于m 的不等式即可. 【详解】解:∵方程22x -5x +m =0没有实数根, ∴△=(-5)2﹣4×2m <0, 解得m>258. 故选:A .1.(2022·福建省福州杨桥中学九年级开学考试)方程()50x x -=的根是( ) A .5 B .-5,5C .0,-5D .0,5【答案】D 【分析】利用因式分解法求解即可. 【详解】解:∵x (x -5)=0∴x =0或x -5=0, ∴10x =,25x =. 故选D .2.(2022·福建省福州延安中学九年级开学考试)若0x =是一元二次方程2240x b ++-=的一个根,则b 的值是( )A .2B .2-C .2±D .4【答案】A 【分析】根据一元二次方程的解的定义,把0x =代入2240x b ++-=得240b -=,然后解关于b 的方程即可. 【详解】解:把x =0代入2240x b ++-=得b 2-4=0, 解得b =±2, ∵b -1≥0, ∴b ≥1, ∴b =2. 故选:A .3.(2022·云南师范大学实验中学九年级期末)如图,用长为20m 的篱笆,一面利用墙(墙的最大可用长度为11m ),围成中间隔有一道篱笆的长方形花圃,为了方便出入,在建造篱笆花圃时,在BC 上用其他材料做了宽为1m 的两扇小门.若花圃的面积刚好为240m ,设AB 长为x m ,则可列方程为( )A .()22340x x -=B .()20240x x -=C .()18340x x -=D .()20340x x -=【答案】A 【分析】设AB =x 米,则BC =(20-3x +2)米,根据围成的花圃的面积刚好为40平方米,即可得出关于x 的一元二次方程. 【详解】解:设AB =x 米,则BC =(20-3x +2)米=(22-3x )米, 依题意,得:x (22-3x )=40, 故选A .4.(2022·蒙城县第六中学九年级开学考试)国家统计局统计数据 显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由5000亿元增加到7500亿元.设我国2017年至2019年快递业务收入的年平均增长率为x .则可列方程为( ) A .()5000127500x += B .()5000217500x ⨯+= C .()2500017500x +=D .()()2500050001500017500x x ++++= 【答案】C 【分析】设我国2017年至2019年快递业务收入的年平均增长率为x ,根据增长率的定义即可列出一元二次方程. 【详解】解:设我国2017年至2019年快递业务收入的年平均增长率为x , ∵2017年至2019年我国快递业务收入由5000亿元增加到7500亿元, 即2019年我国快递业务收入为7500亿元, ∴可列方程:()2500017500x +=, 故选:C .5.(2022·厦门海沧实验中学九年级开学考试)判断关于x 的方程()2110kx k x -++=(k 是常数,1k <)的根的情况( )A .存在一个k ,使得方程只有一个实数根B .无实数根C .一定有两个不相等的实数根D .一定有两个相等的实数根【答案】A 【分析】当k =0时,可求出方程的根;k ≠0时,利用,Δ=[-(k +1)]2-4k =(k -1)2>0即可判断原方程有实数根. 【详解】 解:∵k <1,∴当k =0时,原方程为-x +1=0, 解得:x =1;当k ≠0时,Δ=[-(k +1)]2-4k =(k -1)2>0, ∴原方程有两个不相等的实数根,故选:A.6.(2022·厦门海沧实验中学九年级开学考试)为响应“坚持绿色低碳,建设一个清洁美丽的世界”的号召,某市今年第一季度进行宣传准备工作,从第二季度开始到今年年底全市全面实现垃圾分类.已知该市一共有285个社区,第二季度已有60个社区实现垃圾分类,第三、四季度实现垃圾分类的社区个数较前一季度平均增长率均为x,则下面所列方程正确的是()A.()2x601285-=x+=B.()2601285C.()()2+++=D.()()2 601601285x x++++=60601601285x x【答案】D【分析】设第三、四季度实现垃圾分类的社区个数较前一季度平均增长率均为x,则第三季度有60(1+x)个社区实现垃圾分类,第四季度有60(1+x)2个社区实现垃圾分类,根据年底全市共285个社区实现垃圾分类,即可得出关于x的一元二次方程,此题得解.【详解】解:设第三、四季度实现垃圾分类的社区个数较前一季度平均增长率均为x,则第三季度有60(1+x)个社区实现垃圾分类,第四季度有60(1+x)2个社区实现垃圾分类,依题意得:60+60(1+x)+60(1+x)2=285.故选:D.7.(2022·深圳市新华中学九年级期末)已知关于x的一元二次方程230+-=x x c没有实数根,即实数c的取值范围是________.【答案】94c <- 【分析】根据题意可知,判别式∆<0,求解即可. 【详解】解:∵方程没有实数根, ∴2340c =+<,解得94c <-故答案为94c <-8.(2022·全国九年级课时练习)已知关于x 的一元二次方程2(21)20ax a x a +++-=有两个不相等的实数根,则a 的取值范围是______. 【答案】112a >-且0a ≠ 【分析】根据一元二次方程的定义,以及根的判别式确定a 的取值范围即可. 【详解】根据题意得0a ≠且2Δ(21)4(2)0a a a =+-->, 解得112a >-且0a ≠. 故答案为:112a >-且0a ≠. 9.(2022·山东省青岛第二十六中学九年级期中)解下列方程: (1)2x 2+7x +3=0(用配方法). (2)5(x +3)2=x 2﹣9.【答案】(1)12132x x =-=-,;(2)x 1=−3,x 2=−92. 【分析】(1)利用配方法求解即可; (2)利用因式分解法求解即可. 【详解】解:(1)方程整理得:27322x x +=-,配方得:22277372424x x ⎛⎫⎛⎫++=-+ ⎪ ⎪⎝⎭⎝⎭,即2725416x ⎛⎫+= ⎪⎝⎭,开方得:7544x +=±,解得:12132x x =-=-,; (2)∵5(x +3)2=(x +3) (x -3), ∴5(x +3)2-(x +3) (x -3)=0, ∴(x +3) [5(x +3)-(x -3)]=0, 即(x +3) (4x +18)=0, ∴x 1=−3,x 2=−92.10.(2020·沭阳县怀文中学九年级月考)某玩具商店以每件50元为成本购进一批新型玩具,以每件80元的价格销售则每天可卖出20件,为了扩大销售,增加盈利,商店决定采取适当的降价措施,经调查发现:若每件玩具每降价1元,则每天可多卖2件.(1)若商店打算每天盈利750元,同时又要使顾客得到更多的实惠,那么每件玩具的售价应定为多少元?最多?最多盈利多少元?【答案】(1)65元;(2)每件玩具的售价定为70元时,商店每天盈利最多,最多盈利为800元【分析】(1)根据题意和题目中的数据,可以写出相应的方程,然后求解即可,注意又要使顾客得到更多的实惠,也就是售价越低越好;(2)根据题意,可以写出利润和售价之间的函数关系,然后根据二次函数的性质解答即可.【详解】解:(1)设每件玩具的售价为a元,由题意可得,(a﹣50)[20+2(80﹣a)]=750,解得a1=65,a2=75,∵要使顾客得到更多的实惠,∴a=65,答:商店打算每天盈利750元,同时又要使顾客得到更多的实惠,那么每件玩具的售价应定为65元;(2)设每件玩具的售价定为x元,商店每天盈利为w元,由题意可得,w=(x﹣50)[20+2(80﹣x)]=﹣2(x﹣70)2+800,∵a=﹣2,∴该函数开口向下,有最大值,∴当x=70时,该函数取得最大值,此时w=800,最多盈利为800元.。
一元二次方程实际问题
一元二次方程实际问题
一元二次方程是数学中的重要概念,它在实际问题中有许多应用。
下面我将从几个不同的角度来讨论一元二次方程在实际问题中的应用。
首先,一元二次方程可以用来解决关于抛物线的实际问题。
例如,当一个物体从特定的高度以特定的初速度被抛出时,它的高度可以用一元二次方程来描述。
这种问题在物理学和工程学中经常出现,通过解一元二次方程可以求解出物体的最高点、飞行时间、落地点等相关信息。
其次,一元二次方程也可以用来解决关于面积和周长的实际问题。
例如,一个矩形的面积是其长和宽的乘积,可以表示为一元二次方程的形式。
通过解这个方程,可以找到给定周长条件下面积最大或最小的矩形,这在数学优化和经济学中有广泛的应用。
另外,一元二次方程还可以用来解决关于速度、时间和加速度的实际问题。
例如,一个物体的运动轨迹可以用一元二次方程来描述,通过对这个方程进行求导可以得到物体的速度和加速度。
这对于物理学和工程学中研究运动的问题非常重要。
此外,一元二次方程还可以用来解决关于金融和投资的实际问题。
例如,复利计算中的本金、利率和时间之间的关系可以表示为一元二次方程。
通过求解这个方程,可以得到投资的最佳方案和最大收益。
总的来说,一元二次方程在实际问题中有着广泛的应用,涉及到物理学、工程学、数学优化、经济学、金融学等多个领域。
通过解一元二次方程,我们可以更好地理解和解决各种实际问题,这使得它成为数学中一个非常重要的概念。
中考数学总复习之一元二次方程及应用 课件
B.难题突破 8.(2020·临沂)一元二次方程 x2-4x-8=0 的 解是( B ) A.x1=-2+2 3,x2=-2-2 3 B.x1=2+2 3,x2=2-2 3 C.x1=2+2 2,x2=2-2 2 D.x1=2 3,x2=-2 3
9.(2020·通辽)关于 x 的方程 kx2-6x+9=0 有 实数根,k 的取值范围是( D )
(2)当 Δ=0 时,原方程有 C.7x2-14x+7=0
两个相等的实数根; D.x2-7x=-5x+3
(3)当 Δ<0 时,原方程没
有实数根.
4.一元二次方程根与系 4.若方程 x2-5x+2=0
数的关系:
的两个根分别为 x1,x2,
若一元二次方程 ax2+bx 则 x1+x2-x1x2 的值为
答:预计4月份平均日产量为26 620个.
A.夯实基础
1.(2018·柳州)一元二次方程x2-9=0的解是
_x_1=__3_,__x_2_=__-__3_.
2.(2017·广东)如果x=2是方程x2-3x+k=0
的一个根,则常数k的值为( B )
A.1
B.2
C.-1
D.-2
3.(2020·邵阳)设方程 x2-3x+2=0 的两根分
A.1
B.-3
C.3
D.-4
2.(2020·常州)若关于x的方程x2+ax-2=0有 一个根是1,则a=______1__.
3.(2020·扬州)方程(x+1)2=9的根是 __x_1=__2_,__x_2_=__-__4__.
4.(2020·齐齐哈尔)解方程:x2-5x+6=0.
解:因式分解,得(x-2)(x-3)=0 于是得x-2=0或者x-3=0, x1=2,x2=3.
中考数学一元二次方程应用题经典题型汇总
一元二次方程应用题经典题型汇总一元二次方程解应用题中遇到的常见的十大典型题目,举例说明.一、增长率问题例1恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率.解设这两个月的平均增长率是x.,则根据题意,得200(1-20%)(1+x)2=193.6,即(1+x)2=1.21,解这个方程,得x1=0.1,x2=-2.1(舍去).答这两个月的平均增长率是10%.说明这是一道正增长率问题,对于正的增长率问题,在弄清楚增长的次数和问题中每一个数据的意义,即可利用公式m(1+x)2=n求解,其中m<n.对于负的增长率问题,若经过两次相等下降后,则有公式m(1-x)2=n即可求解,其中m>n.二、商品定价例2益群精品店以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品售价a元,则可卖出(350-10a)件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400元,需要进货多少件?每件商品应定价多少?解根据题意,得(a-21)(350-10a)=400,整理,得a2-56a+775=0,解这个方程,得a1=25,a2=31.因为21×(1+20%)=25.2,所以a2=31不合题意,舍去.所以350-10a=350-10×25=100(件).答需要进货100件,每件商品应定价25元.说明商品的定价问题是商品交易中的重要问题,也是各种考试的热点.三、储蓄问题例3王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.(假设不计利息税)解设第一次存款时的年利率为x.则根据题意,得[1000(1+x)-500](1+0.9x)=530.整理,得90x2+145x-3=0.解这个方程,得x1≈0.0204=2.04%,x2≈-1.63.由于存款利率不能为负数,所以将x2≈-1.63舍去.答第一次存款的年利率约是2.04%.说明这里是按教育储蓄求解的,应注意不计利息税.四、趣味问题例4一个醉汉拿着一根竹竿进城,横着怎么也拿不进去,量竹竿长比城门宽4米,旁边一个醉汉嘲笑他,你没看城门高吗,竖着拿就可以进去啦,结果竖着比城门高2米,二人没办法,只好请教聪明人,聪明人教他们二人沿着门的对角斜着拿,二人一试,不多不少刚好进城,你知道竹竿有多长吗?解设渠道的深度为x m,那么渠底宽为(x+0.1)m,上口宽为(x+0.1+1.4)m.则根据题意,得12(x+0.1+x+1.4+0.1)·x=1.8,整理,得x2+0.8x-1.8=0.解这个方程,得x1=-1.8(舍去),x2=1.所以x+1.4+0.1=1+1.4+0.1=2.5.答渠道的上口宽2.5m,渠深1m.说明求解本题开始时好象无从下笔,但只要能仔细地阅读和口味,就能从中找到等量关系,列出方程求解.五、古诗问题例5读诗词解题:(通过列方程式,算出周瑜去世时的年龄).大江东去浪淘尽,千古风流数人物;而立之年督东吴,早逝英年两位数;十位恰小个位三,个位平方与寿符;哪位学子算得快,多少年华属周瑜?解设周瑜逝世时的年龄的个位数字为x,则十位数字为x-3.则根据题意,得x2=10(x-3)+x,即x2-11x+30=0,解这个方程,得x=5或x=6.当x=5时,周瑜的年龄25岁,非而立之年,不合题意,舍去;当x=6时,周瑜年龄为36岁,完全符合题意.答周瑜去世的年龄为36岁.说明 本题虽然是一道古诗问题,但它涉及到数字和年龄问题,通过求解同学们应从中认真口味.六、象棋比赛例6 象棋比赛中,每个选手都与其他选手恰好比赛一局,每局赢者记2分,输者记0分.如果平局,两个选手各记1分,领司有四个同学统计了中全部选 手的得分总数,分别是1979,1980,1984,1985.经核实,有一位同学统计无误.试计算这次比赛共有多少个选手参加.解 设共有n 个选手参加比赛,每个选手都要与(n -1)个选手比赛一局,共计n (n -1)局,但两个选手的对局从每个选手的角度各自统计了一次,因此实际比赛总局数应为12n (n -1)局.由于每局共计2分,所以全部选手得分总共为n (n -1)分.显然(n -1)与n 为相邻的自然数,容易验证,相邻两自然数乘积的末位数字只能是0,2,6,故总分不可能是1979,1984,1985,因此总分只能是1980,于是由n (n -1)=1980,得n 2-n -1980=0,解得n 1=45,n 2=-44(舍去).答 参加比赛的选手共有45人.说明 类似于本题中的象棋比赛的其它体育比赛或互赠贺年片等问题,都可以仿照些方法求解.七、情景对话例7 春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如图1对话中收费标准. 某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元.请问该单位这次共有多少员工去天水湾风景区旅游?解 设该单位这次共有x 名员工去天水湾风景区旅游.因为1000×25=25000<27000,所以员工人数一定超过25人.则根据题意,得[1000-20(x -25)]x =27000.整理,得x 2-75x +1350=0,解这个方程,得x 1=45,x 2=30. 当x =45时,1000-20(x -25)=600<700,故舍去x 1; 当x 2=30时,1000-20(x -25)=900>700,符合题意. 答:该单位这次共有30名员工去天水湾风景区旅游.说明 求解本题要时刻注意对话框中的数量关系,求得的解还要注意分类讨论,从中找出符合题意的结论.如果人数超过25人,每增加1人,人均旅游费用降低20元,但人均旅游费用不得低于700如果人数不超过25人,人均旅游费用为1000八、等积变形例8 将一块长18米,宽15米的矩形荒地修建成一个花园(阴影部分)所占的面积为原来荒地面积的三分之二.(精确到0.1m )(1)设计方案1(如图2)花园中修两条互相垂直且宽度相等的小路. (2)设计方案2(如图3)花园中每个角的扇形都相同.以上两种方案是否都能符合条件?若能,请计算出图2中的小路的宽和图3中扇形的半径;若不能符合条件,请说明理由.解 都能.(1)设小路宽为x ,则18x +16x -x 2=23×18×15,即x 2-34x +180=0, 解这个方程,得x =344362,即x ≈6.6. (2)设扇形半径为r ,则3.14r 2=23×18×15,即r 2≈57.32,所以r ≈7.6. 说明 等积变形一般都是涉及的是常见图形的体积,面积公式;其原则是形变积不变;或形变积也变,但重量不变,等等.九、动态几何问题例9 如图4所示,在△ABC 中,∠C =90°,AC =6cm ,BC =8cm ,点P 从点A 出发沿边AC 向点C 以1cm/s 的速度移动,点Q 从C 点出发沿CB 边向点B 以2cm/s 的速度移动.(1)如果P 、Q 同时出发,几秒钟后,可使△PCQ 的面积为8平方厘米?(2)点P 、Q 在移动过程中,是否存在某一时刻,使得△PCQ 的面积等于△ABC 的面积的一半.若存在,求出运动的时间;若不存在,说明理由.图2Q PC BA 图4图3解 因为∠C =90°,所以AB =22AC BC +=2268+=10(cm ).(1)设x s 后,可使△PCQ 的面积为8cm 2,所以 AP =x cm ,PC =(6-x )cm ,CQ =2x cm. 则根据题意,得12·(6-x )·2x =8.整理,得x 2-6x +8=0,解这个方程,得x 1=2,x 2=4. 所以P 、Q 同时出发,2s 或4s 后可使△PCQ 的面积为8cm 2. (2)设点P 出发x 秒后,△PCQ 的面积等于△ABC 面积的一半. 则根据题意,得12(6-x )·2x =12×12×6×8.整理,得x 2-6x +12=0. 由于此方程没有实数根,所以不存在使△PCQ 的面积等于ABC 面积一半的时刻.说明 本题虽然是一道动态型应用题,但它又要运用到行程的知识,求解时必须依据路程=速度×时间.十、梯子问题例10 一个长为10m 的梯子斜靠在墙上,梯子的底端距墙角6m. (1)若梯子的顶端下滑1m ,求梯子的底端水平滑动多少米? (2)若梯子的底端水平向外滑动1m ,梯子的顶端滑动多少米?(3)如果梯子顶端向下滑动的距离等于底端向外滑动的距离,那么滑动的距离是多少米?解 依题意,梯子的顶端距墙角22106-=8(m ).(1)若梯子顶端下滑1m ,则顶端距地面7m.设梯子底端滑动x m. 则根据勾股定理,列方程72+(6+x )2=102,整理,得x 2+12x -15=0, 解这个方程,得x 1≈1.14,x 2≈-13.14(舍去), 所以梯子顶端下滑1m ,底端水平滑动约1.14m.(2)当梯子底端水平向外滑动1m 时,设梯子顶端向下滑动x m. 则根据勾股定理,列方程(8-x )2+(6+1)2=100.整理,得x 2-16x +13=0. 解这个方程,得x 1≈0.86,x 2≈15.14(舍去).所以若梯子底端水平向外滑动1m ,则顶端下滑约0.86m. (3)设梯子顶端向下滑动x m 时,底端向外也滑动x m.则根据勾股定理,列方程 (8-x )2+(6+x )2=102,整理,得2x 2-4x =0, 解这个方程,得x 1=0(舍去),x 2=2.所以梯子顶端向下滑动2m 时,底端向外也滑动2m.说明 求解时应注意无论梯子沿墙如何上下滑动,梯子始终与墙上、地面构成直角三角形. 十一、航海问题例11 如图5所示,我海军基地位于A 处,在其正南方向200海里处有一重要目标B ,在B 的正东方向200海里处有一重要目标C ,小岛D 恰好位于AC 的中点,岛上有一补给码头;小岛F 位于BC 上且恰好处于小岛D 的正南方向,一艘军舰从A 出发,经B 到C 匀速巡航.一艘补给船同时从D 出发,沿南偏西方向匀速直线航行,欲将一批物品送往军舰.(1)小岛D 和小岛F 相距多少海里?(2)已知军舰的速度是补给船的2倍,军舰在由B 到C 的途中与补给船相遇于E 处,那么相遇时补给船航行了多少海里?(精确到0.1海里)解(1)F 位于D 的正南方向,则DF ⊥BC .因为AB ⊥BC ,D 为AC 的中点,所以DF =12AB =100海里,所以,小岛D 与小岛F 相距100海里.(2)设相遇时补给船航行了x 海里,那么DE =x 海里,AB +BE =2x 海里,EF =AB +BC -(AB +BE )-CF =(300-2x )海里.在Rt △DEF 中,根据勾股定理可得方程x 2=1002+(300-2x )2,整理,得3x 2-1200x +100000=0.解这个方程,得x 1=200-10063≈118.4,x 2=200+10063(不合题意,舍去). 所以,相遇时补给船大约航行了118.4海里.说明 求解本题时,一定要认真地分析题意,及时发现题目中的等量关系,并能从图形中寻找直角三角形,以便正确运用勾股定理布列一元二次方程.十二、图表信息例12 如图6所示,正方形ABCD 的边长为12,划分成12×12个小正方形格,将边长为n (n 为整数,且2≤n ≤11)的黑白两色正方形纸片按图中的方式,黑白相间地摆放,第一张n ×n 的纸片正好盖住正方形ABCD 左上角的n ×n 个小正方形格,第二张纸片盖住第一张纸片的部分恰好为(n -1)×(n -1)个小正方形.如此摆放下去,直到纸片盖住正方形ABCD 的右下角为止.请你认真观察思考后回答下列问题:F EDC B A图5(1)由于正方形纸片边长n的取值不同,•完成摆放时所使用正方形纸片的张数也不同,请填写下表:纸片的边长n 2 3 4 5 6使用的纸片张数(2)设正方形ABCD被纸片盖住的面积(重合部分只计一次)为S1,未被盖住的面积为S2.①当n=2时,求S1∶S2的值;②是否存在使得S1=S2的n值?若存在,请求出来;若不存在,请说明理由.解(1)依题意可依次填表为:11、10、9、8、7.(2)S1=n2+(12-n)[n2-(n-1)2]=-n2+25n-12.①当n=2时,S1=-22+25×2-12=34,S2=12×12-34=110.所以S1∶S2=34∶110=17∶55.②若S1=S2,则有-n2+25n-12=12×122,即n2-25n+84=0,解这个方程,得n1=4,n2=21(舍去).所以当n=4时,S1=S2.所以这样的n值是存在的.说明求解本题时要通过阅读题设条件及提供的图表,及时挖掘其中的隐含条件,对于求解第(3)小题,可以先假定问题的存在,进而构造一元二次方程,看得到的一元二次方程是否有实数根来加以判断.十三、探索在在问题例13将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于12cm2吗? 若能,求出两段铁丝的长度;若不能,请说明理由.解(1)设剪成两段后其中一段为x cm,则另一段为(20-x)cm.则根据题意,得24x⎛⎫⎪⎝⎭+2204x-⎛⎫⎪⎝⎭=17,解得x1=16,x2=4,当x=16时,20-x=4,当x=4时,20-x=16,图6答 这段铁丝剪成两段后的长度分别是4cm 和16cm.(2)不能.理由是:不妨设剪成两段后其中一段为y cm ,则另一段为(20-y )cm.则由题意得24y ⎛⎫ ⎪⎝⎭+2204y -⎛⎫ ⎪⎝⎭=12,整理,得y 2-20y +104=0,移项并配方,得(y -10)2=-4<0,所以此方程无解,即不能剪成两段使得面积和为12cm 2.说明 本题的第(2)小问也可以运用求根公式中的b 2-4ac 来判定.若b 2-4ac ≥0,方程有两个实数根,若b 2-4ac <0,方程没有实数根,本题中的b 2-4ac =-16<0即无解.十四、平分几何图形的周长与面积问题例14 如图7,在等腰梯形ABCD 中,AB =DC =5,AD =4,BC =10.点E •在下底边BC 上,点F 在腰AB 上.(1)若EF 平分等腰梯形ABCD 的周长,设BE 长为x ,试用含x 的代数式表示△BEF 的面积; (2)是否存在线段EF 将等腰梯形ABCD 的周长和面积同时平分?若存在,求出此时BE 的长;若不存在,请说明理由;(3)是否存在线段EF 将等腰梯形ABCD 的周长和面积同时分成1∶2的两部分?若存在,求此时BE 的长;若不存在,请说明理由.解(1)由已知条件得,梯形周长为12,高4,面积为28. 过点F 作FG ⊥BC 于G ,过点A 作AK ⊥BC 于K . 则可得,FG =125x-×4, 所以S △BEF =12BE ·FG =-25x 2+245x (7≤x ≤10). (2)存在.由(1)得-25x 2+245x =14,解这个方程,得x 1=7,x 2=5(不合题意,舍去), 所以存在线段EF 将等腰梯形ABCD 的周长与面积同时平分,此时BE =7. (3)不存在.假设存在,显然有S △BEF ∶S 多边形AFECD =1∶2, 即(BE +BF )∶(AF +AD +DC )=1∶2.则有-25x 2+165x =283, 整理,得3x 2-24x +70=0,此时的求根公式中的b 2-4ac =576-840<0,所以不存在这样的实数x .即不存在线段EF 将等腰梯形ABCD 的周长和面积同时分成1∶2的两部分.FE DC B A 图7K G说明 求解本题时应注意:一是要能正确确定x 的取值范围;二是在求得x 2=5时,并不属于7≤x ≤10,应及时地舍去;三是处理第(3)个问题时的实质是利用一元二次方程来探索问题的存在性.十五、利用图形探索规律例15 在如图8中,每个正方形有边长为1 的小正方形组成:(1)观察图形,请填写下列表格:正方形边长 1 3 5 7 … n (奇数) 黑色小正方形个数…正方形边长 2 4 6 8 … n (偶数) 黑色小正方形个数…(2)在边长为n (n ≥1)的正方形中,设黑色小正方形的个数为P 1,白色小正方形的个数为P 2,问是否存在偶数..n ,使P 2=5P 1?若存在,请写出n 的值;若不存在,请说明理由.解(1)观察分析图案可知正方形的边长为1、3、5、7、…、n 时,黑色正方形的个数为1、5、9、13、2n -1(奇数);正方形的边长为2、4、6、8、…、n 时,黑色正方形的个数为4、8、12、16、2n (偶数).(2)由(1)可知n 为偶数时P 1=2n ,所以P 2=n 2-2n .根据题意,得n 2-2n =5×2n ,即n 2-12n =0,解得n 1=12,n 2=0(不合题意,舍去).所以存在偶数n =12,使得P 2=5P 1.说明 本题的第(2)小问是属于存在性问题,求解时,可以先假设结论存在,进而从中找到数量关系,使问题获解.图8。
2023中考一轮复习:一元二次方程及其应用
考点05一元二次方程及其应用【命题趋势】一元二次方程这个考点是中考数学,特别是几何数学中计算的基础,像二次函数以及相似的问题中,经常需要用到解一元二次方程,其根的判别式以及韦达定理也经常在二次函数图形问题中占据重要地位。
但是,在浙江中考中,一元二次方程单独出题的几率却不是很大,单独出题时,也常以选择或者填空题考察其简单应用,偶尔会在简答题17题出一元二次方程的求解问题,综合题出一元二次方程则基本是和其他知识点结合在22题统一考察。
单独出题在一张试卷里占分并不大。
【中考考查重点】一、一元二次方程及其解法二、一元二次方程根的判别式三、一元二次方程根与系数的关系四、一元二次方程的简单应用考向一:一元二次方程及其解法1.一元二次方程的一般形式:)0(02≠=++a c bx ax 判断一元二次方程的特征:是整式方程③次未知数的最高次数是②只含有一个未知数①.2..2.一元二次方程的解法:1.下列方程中,是关于x 的一元二次方程的是()A .1﹣x =3xB .ax 2+bx +c =0C .x 2﹣2x ﹣1=x 2D .(x ﹣2)2+1=02.已知关于x 的一元二次方程(a ﹣3)x 2﹣2x +a 2﹣9=0的常数项是0,则a =,方程的根为.3.用配方法解一元二次方程x 2﹣x =0,配方后的方程为()A .(x ﹣)2=B .(x +)2=C .(x ﹣9)2=62D .(x +9)2=624.方程(5x ﹣1)2=3(5x ﹣1)的解是.5.方程7x 2﹣6x ﹣5=0的解为.6.用适当的方法解下列方程:(1)(x ﹣1)2=9;(2)x 2+4x ﹣1=0.(3)3(x ﹣5)2=4(5﹣x ).(4)x 2﹣4x +10=0.2考向二:一元二次方程根的判别式对于一元二次方程的一般形式:)0(02≠=++a c bx ax ,(1)042>ac b -方程有两个不相等的实数根(2)042=-ac b 方程有两个相等的实数根(3)42<ac b -方程没有实数根【易错警示】【同步练习】1.如果关于x 的一元二次方程x 2﹣8x +2k =0有两个不相等的实数根,那么实数k 的取值范围是()A .k ≤8B .k <8C .k ≥8D .k >82.若一元二次方程ax 2+bx +c =0的系数满足ac <0,则方程根的情况是()A .没有实数根B .有两个不相等的实数根C .有两个相等的实数根D .无法判断3.下列一元二次方程中有两个相等实数根的是()A .x 2﹣8=0B .x 2﹣4x +4=0C .2x 2+3=0D .x 2﹣2x ﹣1=04.如果关于x 的方程ax 2+2x +3=0有两个相等的实数根,那么a =.5.已知关于x 的一元二次方程(a ﹣3)x 2﹣4x +3=0,若方程有实数根,求满足条件的正整数a 的值.6.求证:无论m 取任何实数,关于x 的方程mx 2﹣(3m ﹣1)x +2m ﹣2=0恒有实数根.考向三:一元二次方程根与系数的关系若一元二次方程)0(02≠=++a c bx ax 的两个根为21x x 、,则有a b x x -21=+,ac x x =∙21【同步练习】1.已知关于x 的一元二次方程x 2﹣kx +k ﹣3=0的两个实数根分别为x 1,x 2,且x 12+x 22=5,则k 的值是()A .﹣2B .2C .﹣1D .12.如果方程x 2﹣x ﹣2=0的两个根为α,β,那么α2+β﹣2αβ的值为()A .7B .6C .﹣2D .03.若x 1,x 2是方程x 2﹣4x ﹣2020=0的两个实数根,则代数式x 12﹣2x 1+2x 2的值等于()A .2020B .2019C .2029D .20284.若a 、b 为方程x 2﹣2x ﹣5=0的两个不相等的实数根,则+的值为.5.已知关于x 的一元二次方程x 2+2mx +m 2+m =0有实数根.(1)求m 的取值范围;(2)若该方程的两个实数根分别为x 1、x 2,且x 12+x 22=12,求m 的值.考向四:一元二次方程的实际应用列方程解应用题的一般步骤:【同步练习】1.新冠肺炎是一种传染性极强的疾病,如果有一人患病,经过两轮传染后有81人患病,设每轮传染中平均一个人传染了x个人,下列列式正确是()A.x+x(1+x)=81B.1+x+x2=81C.1+x+x(1+x)=81D.x(1+x)=812.如图是一个长20cm,宽15cm的矩形图案,其中有两条宽度相等,互相垂直的彩条,彩条所占面积是图案面积的,设彩条的宽度为xcm,则下列方程正确的是()A.B.C.D.3.永德利商场某书包原价144元,连续两次降价a%后售价为81元,下列所列方程正确的是()A.144(1+a%)2=81B.144(1﹣a%)2=81C.144(1﹣2a%)2=81D.144(1﹣a2%)2=814.某一皮衣专卖店销售某款皮衣,其进价为每件750元,经市场调查发现,按每件1100元出售,平均每天可售出30件,每件降价50元,平均每天的销售量可增加10件,皮衣专卖店若想要平均每天获利12000元,则每件皮衣定价为多少元?(1)以下是小明和小红的两种不同设法,请帮忙填完整:小明:设每件皮衣降价x元,由题意,可列方程:.小红:设每件皮衣定价为y元,由题意,可列方程:.(2)请写出一种完整的解答过程.5.某学校为美化校园,准备在长35米,宽20米的长方形场地上,修建若干条宽度相同的道路,余下部分作草坪,并请全校学生参与方案设计,现有3位同学各设计了一种方案,图纸分别如图1、图2和图3所示(阴影部分为草坪).请你根据这一问题,在每种方案中都只列出方程不解.①甲方案设计图纸为图1,设计草坪的总面积为600平方米.②乙方案设计图纸为图2,设计草坪的总面积为600平方米.③丙方案设计图纸为图3,设计草坪的总面积为540平方米.1.(2021秋•越秀区校级期中)方程4x2﹣3x﹣2=0的二次项系数、一次项系数、常数项分别是()A.4,3,2B.4,﹣3,2C.4,﹣3,﹣2D.4,3,﹣22.(2021秋•越秀区校级期中)若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2018的值为()A.2018B.2019C.2020D.20213.(2021秋•天津期中)用配方法解方程x2+8x+3=0,正确的变形为()A.(x﹣4)2=13B.(x+4)2=5C.(x+4)2=13D.(x+4)2=﹣54.(2021秋•兴平市期中)若关于x的一元二次方程x2+4x+m=0没有实数根,则m的取值范围是()A.m>﹣4B.m>4C.m≤﹣4D.m<45.(2021秋•偃师市月考)某校八年级组织篮球赛,若每两班之间赛一场,共进行了28场,则该校八年级有()个班级.A.8B.9C.10D.116.(2021秋•常州期中)中秋佳节前某月饼店7月份的销售额是2万元,9月份的销售额是4.5万元,从7月份到9月份,该店销售额平均每月的增长率是()A.20%B.25%C.50%D.62.5%7.(2021秋•温岭市期中)若m是方程2x2﹣3x﹣1=0的一个根,则﹣6m2+9m﹣13的值为()A.﹣16B.﹣13C.﹣10D.﹣88.(2021春•西城区校级期中)已知三角形的两边长是4和6,第三边的长是方程(x﹣3)2=4的根,则此三角形的周长为()A.17B.11C.15D.11或159.(2021春•永嘉县校级期末)方程x2﹣25=0的解为.10.(2021秋•江岸区期中)已知关于x的一元二次方程x2﹣(2m+3)x+m2=0有两根α,β.若=1,则m的值为()A.3B.﹣1C.3或﹣1D.11.(2021秋•奉贤区校级期中)方程的根的情况是.12.(2014秋•东西湖区校级期末)某校准备组织一次排球比赛,参赛的每两个队之间都要比赛一场,赛程计划安排7天,每天安排4场比赛,共有多少个队参加?设有x个队参赛,则所列方程为.13.用合适的方法解下列方程(1)36x2=81.(2)3x2﹣10x+6=0;(3)(x﹣3)2﹣2(x+1)=x﹣7.14.(2021秋•玉田县期中)卫生部疾病控制专家经过调研提出,如果1人传播10人以上而且被传染的人已经确定为新冠肺炎,那么这个传播者就可以称为“超级传播者”.如果某镇有1人不幸成为新冠肺炎病毒的携带者,假设每轮传染的人数相同,经过两轮传染后共有144人成为新冠肺炎病毒的携带者.(1)经过计算,判断最初的这名病毒携带者是“超级传播者”吗?请先写出结论,再说明理由;(2)若不加以控制传染渠道,经过3轮传染,共有多少人成为新冠肺炎病毒的携带者?1.(2021·浙江丽水)用配方法解方程x2+4x+1=0时,配方结果正确的是()A.(x﹣2)2=5B.(x﹣2)2=3C.(x+2)2=5D.(x+2)2=32.(2021·浙江台州)关于x的方程x2﹣4x+m=0有两个不相等的实数根,则m的取值范围是()A.m>2B.m<2C.m>4D.m<43.(2021·浙江舟山)小敏与小霞两位同学解方程3(x﹣3)=(x﹣3)2的过程如下框:小敏:两边同除以(x﹣3),得3=x﹣3,则x=6.小霞:移项,得3(x﹣3)﹣(x﹣3)2=0,提取公因式,得(x﹣3)(3﹣x﹣3)=0.则x﹣3=0或3﹣x﹣3=0,解得x1=3,x2=0.你认为他们的解法是否正确?若正确请在框内打“√”;若错误请在框内打“×”,并写出你的解答过程.4.(2021·浙江湖州)今年以来,我市接待的游客人数逐月增加,据统计,游玩某景区的游客人数三月份为4万人,五月份为5.76万人.(1)求四月和五月这两个月中该景区游客人数平均每月增长百分之几;(2)若该景区仅有A,B两个景点,售票处出示的三种购票方式如下表所示:购票方式甲乙丙可游玩景点A B A和B门票价格100元/人80元/人160元/人据预测,六月份选择甲、乙、丙三种购票方式的人数分别有2万、3万和2万,并且当甲、乙两种门票价格不变时,丙种门票价格每下降1元,将有600人原计划购买甲种门票的游客和400人原计划购买乙种门票的游客改为购买丙种门票.①若丙种门票价格下降10元,求景区六月份的门票总收入;②问:将丙种门票价格下降多少元时,景区六月份的门票总收入有最大值?最大值是多少万元?1.(2020•绍兴月考)用配方法解方程x2﹣6x﹣8=0时,配方结果正确的是()A.(x﹣3)2=17B.(x﹣3)2=14C.(x﹣6)2=44D.(x﹣3)2=12.(2021•莲都区校级模拟)不解方程,判别方程2x2﹣3x=3的根的情况()A.只有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.无实数根3.(2021•吴兴区二模)关于x的一元二次方程x2+(m+4)x+m2=0有实数根,则m的最小整数值为()A.0B.﹣1C.﹣2D.﹣34.(2021•余杭区一模)某市2017年年底自然保护区覆盖率为8%,经过两年努力,该市2019年年底自然保护区覆盖率达到9%,求该市这两年自然保护区面积的平均增长率.设年均增长率为x,可列方程为()A.9%(1﹣x)2=8%B.8%(1﹣x)2=9%C.9%(1+x)2=8%D.8%(1+x)2=9%5.(2021•嘉善县一模)若关于x的一元二次方程mx2+(2m﹣1)x+m﹣=0有实数根,则m的取值范围是.6.(2021•嘉善县一模)新能源汽车节能环保,越来越受到消费者的喜爱,各种品牌相继投放市场.某地2018年新能源汽车的销售量为50.7万辆,销售量逐年增加,到2020年为125.6万辆.若年增长率x不变,则x的值是多少?根据题意可列方程为.7.(2021•南浔区模拟)设x1,x2是方程2x2+3x﹣4=0的两个实数根,则4x12+4x1﹣2x2的值为.8.(2021秋•西城区校级期中)某药品经过两次降价,每瓶零售价由100元降为81元,若设平均每次降价的百分率为x,则由题意可列方程为,可得x=.9.(2021秋•西城区校级期中)如图,在一块长12m,宽8m的矩形空地上,修建同样宽的两条道路(两条道路各与矩形的一条边平行),剩余部分栽种花草,且栽种花草的面积为60m2,求道路的宽是多少m?10.(2021秋•奉贤区校级期中)某单位组织员工前往九棵树艺术中心欣赏上海说唱《金铃塔》的表演.表演前,主办方工作人员准备利用26米长的墙为一边,用48米隔栏绳为另三边,设立一个面积为300平方米的长方形等候区,如图,为了方便群众进出,在两边空出两个各为1米的出入口(出入口不用隔栏绳).假设这个长方形平行于墙的一边为长,垂直于墙的一边为宽,那么围成的这个长方形的长与宽分别是多少米呢?11。
人教版初中数学中考 讲本 第二单元 方程(组)与不等式(组) 第2课时 一元二次方程的实际应用
(2)若矩形围栏ABCD的面积为210 m2,求BC的长; 解:(2)依题意,得(51-3x)x=210, 解得x1=7,x2=10. 当x=7时,AB=51-3x=30>25,不合题意,舍去; 当x=10时,AB=51-3x=21,符合题意. 答:BC的长为10 m.
(3)矩形围栏ABCD的面积是否能为240 m2?若能,求出相应x的值;若不能, 请说明理由.
块矩形田地的面积为
864平方步,只知道它的长与宽共60步,问它的长比宽多多少步?若设宽为x
步,根据题意可列方程 x(60-x)=864 .
4.(2022·泰州)如图,在长为50 m,宽为38 m的矩形场地四周修筑同样宽的道 路,余下的铺上草坪.要使草坪的面积为1 260 m2,则道路的宽应为 4 m.
(2)小明的线下实体商店也销售同款商品,每件标价为62.5元.为提高市场竞争 力,促进线下销售,小明决定对该商品进行打折销售,使其销售价格不超过 (1)中的售价,则该商品至少需打几折销售?
答:该商品至少需打八折销售.
2.(2022·龙东地区)已知2022年北京冬奥会女子冰壶比赛中有若干支队伍参加了 单循环比赛,且单循环比赛共进行了45场,则参加比赛的队伍有( B )
A.8支B.10支Fra bibliotekC.7支
D.9支
3.《田亩比类乘除捷法》是我国古代数学家杨辉的著作,其中有这样一个数学问
题:“直田积八百六十四步,只云长阔共六十步,问长多阔几何”.意思是:一
1.取一张长与宽之比为5∶2的长方形纸板,剪去四个边长为5 cm的小正方形(如 图),并用它做一个无盖的长方体形状的包装盒.要使包装盒的容积为200 cm3 (纸板的厚度略去不计),则这张长方形纸板的长为( B )
一元二次方程的实际应用 2023年九年级数学中考复习
一元二次方程的实际应用2023九年级数学中考复习1.2022年北京冬奥会吉祥物冰墩墩深受大家的喜欢.某商家两次购进冰墩墩进行销售,第一次用22000元,很快销售一空,第二次又用48000元购进同款冰墩墩,所购进数量是第一次的2倍,但单价贵了10元.(1)求该商家第一次购进冰墩墩多少个?(2)若所有冰墩墩都按相同的标价销售,要求全部销售完后的利润率不低于20%(不考虑其他因素),那么每个冰墩墩的标价至少为多少元?2.吾悦广场销售甲、乙两种商品,甲种商品每件售价45元,利润率为50%;乙种商品每件进价50元,售价70元.(1)甲种商品每件进价为,每件乙种商品利润率为;(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价为2200元,求购进甲种商品多少件?(3)在“元旦”期间,该商场只对甲乙两种商品进行如下的优惠促销活动:按上述优惠条件:若小华一次性购买乙种商品实际付款540元,求小华在该商场购买乙种商品应付款多少元?3.便民超市经销甲、乙两种商品,现有如下信息:请根据以上信息,解答下列问题:(1)甲、乙两种商品的进货单价各多少元?(2)该商店平均每天卖出甲商品500件和乙商品300件,经调查发现,甲、乙两种商品零售价分别每降0.1元,这两种商品每天可多销售50件,为了使每天获取更大的利润,商店决定把甲、乙两种商品的零售单价读下降m元,在不考虑其他因素的条件下,当m定为多少时,才能使商店每天的销售甲、乙两种商品获得的利润最大?每天的最大利润是多少?4.2021年新冠肺炎依然在肆虐,“石家庄加油!中国加油!”每个人都在为抗击疫情而努力.市场对口罩的需求依然很大,某公司销售一种进价为20元/袋的口罩,其销售量y(万袋)与销售价格x(元/袋)的变化如表:同时,销售过程中的其他开支(不含进价)总计40万元.(1)观察并分析表中的y与x之间的对应关系,用所学过的一次函数,反比例函数,或二次函数的有关知识写出y(万袋)与x(元/袋)的函数解析式.(2)求出该公司销售这种口罩的净得利润w(万元)与销售价格x(元/袋)的函数解析式,当销售价格定为多少元时净利润最大,最大利润是多少?(3)该公司要求净利润不能低于40万元,请写出销售价格x(元/袋)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?5.2022年第二十四届冬奥会在我国成功举办,吉祥物“冰墩墩”以其呆萌可爱、英姿飒爽形象,深受大家喜爱.某商店第一次用3000元购进一批“冰墩墩”玩具,很快售完;该商店第二次购进该“冰墩墩”玩具时,进价提高了20%,同样用3000元购进的数量比第一次少了10件.(1)求第一次购进的“冰墩墩”玩具每件的进价;(2)若两次购进的“冰墩墩”玩具每件售价均为75元,且全部售完,求两次的利润总和.6.国家推行“节能减排,低碳经济”政策后,新能源汽车比较畅销,某4S店在甲厂家花240万元购进一批A品牌新能源汽车,在乙厂家花450万元购进一批B品牌新能源汽车,若所购B品牌新能源汽车数量是A 品牌新能源汽车的2倍,且每辆的进价比A品牌便宜5000元.(1)A,B品牌新能源汽车每辆的进价分别是多少万元?(2)如果两批汽车按相同的标价销售,最后的5辆汽车元旦大促销,顾客在大促销期间购车享受了各种优惠政策后,相当于九四折优惠购车,要使两批新能源汽车全部售完后利润不低于30%(不考虑其他因素),那么每辆新能源汽车的标价至少是多少万元?7.“冰墩墩”和“雪容融”作为第24届北京冬奥会和残奥会的吉祥物深受大家喜爱,某文旅店订购“冰墩墩”花费6000元,订购“雪容融”花费3200元,其中“冰墩墩”的订购单价比“雪容融”的订购单价多20元,并且订购“冰墩墩”的数量是“雪容融”的1.25倍.(1)求文旅店订购“冰墩墩”和“雪容融”的数量分别是多少个;(请列分式方程作答)(2)该文旅店以100元和80元的单价销售“冰墩墩”和“雪容融”,在“冰墩墩”售出34,“雪容融”售出12后,文旅店为了尽快回笼资金,决定对剩余的“冰墩墩”每个打a折销售,对剩余的“雪容融”每个降价2a元销售,很快全部售完,若要保证文旅店总利润不低于6060元,求a的最小值.8.怡然美食店的A、B两种菜品,每份成本均为14元,售价分别为20元、18元,这两种菜品每天的营业额共为1120元,总利润为280元.(1)该店每天卖出这两种菜品共多少份?(2)该店为了增加利润,准备降低A种菜品的售价,同时提高B种菜品的售价,售卖时发现,A种菜品售价每降0.5元可多卖1份;B种菜品售价每提高0.5元就少卖1份,如果这两种菜品每天销售总份数不变,那么这两种菜品一天的总利润最多是多少?9.疫情期间,某口罩公司生产A、B两种类型医用口罩.一家超市4月份向该公司订购了1500件A型口罩和1500件B型口罩,一共花了5700元;5月份又花5600元订购了2000件A型口罩和1000件B型口罩.(1)求该公司A、B两种类型医用口罩的单价.(2)6月份,该超市决定只卖A型口罩.经调查发现,当销售单价定为2元时,每天可售出100件,销售单价每涨价0.1元,每天销售量减少10件.设每天销售量为y件,销售单价为x元(2 2.5)x.①求y与x的函数关系式.②该超市决定每销售一件口罩便向某慈善机构捐赠a元(0.20.4)a.当销售单价为多少元时,当月获得的利润最大?最大利润为多少元?10.某商场购进甲、乙两种商品共100箱,全部售完后,甲商品共盈利900元,乙商品共盈利400元,甲商品比乙商品每箱多盈利5元.(1)求甲、乙两种商品每箱各盈利多少元?(2)甲、乙两种商品全部售完后,该商场又购进一批甲商品,在原每箱盈利不变的前提下,平均每天可卖出100箱.如调整价格,每降价1元,平均每天可多卖出20箱,那么当降价多少元时,该商场利润最大?最大利润是多少?11.端午节前夕,某超市从厂家分两次购进A、B两种品牌的粽子,两次进货时,两种品牌粽子的进价不变.第一次购进A品牌粽子100袋和B品牌粽子150袋,总费用为7000元;第二次购进A品牌粽子180袋和B品牌粽子120袋,总费用为8100元.(1)求A、B两种品牌粽子每袋的进价各是多少元;(2)当B品牌粽子销售价为每袋54元时,每天可售出20袋,为了促销,该超市决定对B品牌粽子进行降价销售.经市场调研,若每袋的销售价每降低1元,则每天的销售量将增加5袋.当B品牌粽子每袋的销售价降低多少元时,每天售出B品牌粽子所获得的利润最大?最大利润是多少元?12.空气净化器越来越被人们认可,某商场购进A、B两种型号的空气净化器,如果销售5台A型和10台B型空气净化器的销售总价为20000元,销售10台A型和5台B型空气净化器的销售总价为17500元.(1)求每台A型空气净化器和B型空气净化器的销售单价;(2)该商场计划一次购进两种型号的空气净化器共100台,其中B型空气净化器的进货量不超过A型空气净化器的2倍,设购进A型空气净化器m台,这100台空气净化器的销售总价为y元.①求y关于m的函数关系式;②当销售总价最大时,该公司购进A型、B型空气净化器各多少台?(3)在(2)的条件下,若A型空气净化器每台的进价为800元,B型空气净化器每台的进价z(元)满足=-+的关系式,则销售完这批空气净化器能获取的最大利润是多少元?10700z m13.跳绳项目在中考体考中易得分,是大多数学生首选的项目,在中考体考来临前,某文具店看准商机购进甲、乙两种跳绳.已知甲、乙两种跳绳进价单价之和为32元;甲种跳绳每根获利4元,乙种跳绳每根获利5元;店主第一批购买甲种跳绳25根、乙种跳绳30根一共花费885元.(1)甲、乙两种跳绳的单价分别是多少元?(2)若该文具店预备第二批购进甲、乙两种跳绳共60根,在费用不超过1000元的情况下,如何进货才能保证利润W最大?(3)由于质量上乘,前两批跳绳很快售完,店主第三批购进甲、乙两种跳绳若干,当甲、乙两种跳绳保持原有利润时,甲、乙两种跳绳每天分别可以卖出120根和105根,后来店主决定将甲、乙两种跳绳的售价同时提高相同的售价,已知甲、乙两种跳绳每提高1元均少卖出5根,为了每天获取更多利润,请问店主将两种跳绳同时提高多少元时,才能使日销售利润达到最大?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学上学期第二章检测题
一、填空题(3分×8=24分)
1. 方程()()-267-x 5x =+,化为一般形式为 ,其中二次项系数和一次项系数的和为 。
2.方程(x ﹣1)(x + 2)= 2(x + 2)的根是 .
3、已知关于x 的方程260x mx +-=的一个根为2,则m=_____,另一根是_______. 4.已知一元二次方程0562=--x x 的两根为a 、b ,则b
a
11
+的值是____________.
5、在实数范围内定义一种运算“#”,其规则为a#b=a 2-b 2,根据这个规则,方程(x-3)#5=0的解为 .
6. 我国政府为解决老百姓看病难问题,决定下调药品价格。
某种药品经过两次降价,由每盒60元调至
52
元。
若设每次降价的百分率为
x ,则由题意可列方程
为 .
7. 已知三角形的两边的长分别为2和8,第三边是方程070172=+-x x 的两根之一,则此三角形
的周长是 ;
8. 如图所示,某小区规划在一个长为40 m 、宽为26 m 的矩形场地ABCD 上修建三条同样宽的甬路,使其中两条与AB 平行,另一条与AD 平行,其余部分种草.若使每一块草坪的面积为144 m 2,求甬
路的宽度. 若设
甬路的宽度为xm ,则x 满足的方程为 . 二、选择题(3分×8=24分)
9. 下列方程中,是关于x 的一元二次方程的是( )
A.()()12132+=+x x
B.
021
12
=-+x x
C.02=++c bx ax
D. 1222-=+x x x 10. 下面是李刚同学在一次测验中解答的填空题,其中答对的是 ( ) A . 若x 2=4,则x =2 B .方程x (2x -1)=2x -1的解为x =1 C .若
x 2+2x +k =0
有一根为2,则8=-k D .若分式1
2
32-+-x x x 值为零,则x =1,2
11.用配方法解下列方程是,配方错误的是 ( )
A 、100)1(099222=+=-+x x x 化为
B 、4
65)2
7(04722=-=--m m m 化为 C 、25)4(09822=+=++x x x 化为 D 、9
10)3
2(024322=
-=--x x x 化为 12.已知关于x 的方程x 2
+bx +a =0有一个根是-a (a≠0),则a -b 的值为( )A :-1 B.0
C .1
D .2
………………………………..密………………………………………….封……………………………………….线…………………………………………….
2 1.1x x -=的一个近似解是( )
x
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
2x x - 0.11 0.24 0.39 0.56 0.75 0.96 1.19 1.44 1.71
A 0.11
B 1.6
C 1.7
D 1.19
14、关于x 的方程2210x kx k ++-=的根的情况描述正确的是( )
A . k 为任何实数,方程都没有实数根
B . k 为任何实数,方程都有两个不相等的实数根
C . k 为任何实数,方程都有两个相等的实数根
D. 根据 k 的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种
15关于x 的一元二次方程013)1(22=-++-m x x m 的一根为0,则m 的值是( )
A 、1±
B 、2±
C 、-1
D 、-2
16.如图,在矩形ABCD 中,AB=1,BC=2,将其折叠,使AB 边落在对角线AC 上,得到折痕AE ,则点E 到点B 的距离为( )
A .212- B. 2
1
3- C.
215- D.2
16- 三、解答题:(共18分)
17、03522=-+x x (用配方法解)
18、()x x x 21124-=- (用分解因式法)
(20题图)
19、2
x=
5x
+(用公式法解,否则不给分)
2
3
四、本大题共两小题,每小题8分,共16分。
20、试证明无论X 取何实数时,代数式2 x2 +4x+7的值一定是正数。
21、如图所示,在△ABC中,∠C=90o,点P从B点开始沿BC边向点C以1cm/s的速度移动,点Q从点C开始沿CA边向点C以2cm/s的速度移动.如果P,Q分别从A,B同时出发,经几秒钟,使△PQC 的面积等于8cm2?
五、本大题共两小题,每小题9分,共18分 22、.阅读下面的例题:
解方程022=--x x
解:(1)当x ≥0时,原方程化为x 2 – x –2=0,解得:x 1=2, x 2= - 1(不合题意,舍去) (2)当x <0时,原方程化为x 2 + x –2=0,解得:x 1=1,(不合题意,舍去)x 2= -2∴原方程的根是x 1=2, x 2= - 2
请参照例题解方程0112=---x x
23、为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2011年市政府共投资2亿元人民币建设了廉租房8万平方米,预计到2012年底三年共累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.
(1)求每年市政府投资的增长率;
(2)若这两年内的建设成本不变,求到2012年底共建设了多少万平方米廉租房.
六、(本大题共两小题,每小题10分,共20分)
24、如图4,有一块梯形铁板ABCD,AB∥CD,∠A=90°,AB=6 m,CD=4 m,AD=2 m,现在梯形中裁出一内接矩形铁板AEFG,使E在AB上,F在BC上,G在AD上,若矩形铁板的面积为5 m2,则矩形的一边EF长为多少?
25、械加工需要用油进行润滑以减少摩擦,若加工一台大型机械设备润滑用油量为a千克,用油的重复利用率为q,按此计算,加工一台大型机械设备的实际耗油量为b=a(1-q)千克;某企业加工一台大型机械设备润滑用油90千克,用油的重复利用率为60%,按此计算,加工一台大型机械设备的实际耗油为36千克。
为了建设节约型社会,减少油耗,该企业的甲,乙两个车间都组织了人员为减少实际耗油量进行攻关。
(1)甲车间通过技术改革后,加工一台大型机械设备润滑用油量下降到70千克,用油的重复利用率仍为60%,问甲车间技术革新后,加工一台大型机械设备实际耗油量是多少千克?
(2)乙车间通过技术改革后,不仅降低了润滑用油量,同时也提高了用油的重复利用率,并且发现在技术革新的基础上,润滑用油量每减少1千克,用油量的重复利用率将增加1.6%,这样乙车间加工一台大型机械设备的实际耗油量下降到12千克,问乙车间通过技术改革后,加工一台大型机械设备润滑用油量是多少千克?拥有的重复利用率是多少?。