3.5长方体和正方体体积的计算1
长方体、正方体表面积、体积所有计算公式
长方体:
1、长方体的棱长和=(长+宽+高)×4
包装礼盒用的绳子=长×2+宽×2+高×4+绳头长
2、长方体的表面积= 长×宽×2+长×高×2+宽×高×2
(没有盖的)长方体的表面积=长×宽+长×高×2+宽×高×2 (上下面不计算)长方体的表面积=长×高×2+宽×高×2
3、通风管的表面积=长×宽×4(长与宽相等)
通风管的面积=长×宽×2+宽×高×2(长与宽不相等)4、长方体的体积=长×宽×高
长方体的体积=底面积×高
正方体:
1、正方体的棱长和=棱长×12
2、正方体的表面积= 棱长×棱长×6
(没有盖的)正方体的表面积= 棱长×棱长×5
(上下面不计算)正方体的表面积=棱长×棱长×4
3、正方体的体积=棱长×棱长×棱长
正方体的体积=底面积×高。
长方体和正方体的体积计算
156学习版长方体和正方体的体积计算■文/易 娟教学内容:人教版五年级下册第三单元《长方体和正方体的体积计算》。
教学目标:1.知识与技能:理解并掌握长方体和正方体体积的计算方法,能正确计算长方体、正方体的体积,并能运用所学知识解决一些实际问题。
2.过程与方法:在观察、操作、探索的过程中,感知长方体的体积大小与它的长、宽、高有关,探索并掌握长方体、正方体体积的计算方法,培养迁移、类推能力和抽象概括能力,进一步发展学生的空间观念;3.情感态度价值观:在个人及小组的探究活动中,培养团队协作,勇于探索的品质,体会数学的应用价值。
教学重点:引导学生探索长方体体积的计算方法。
教学难点:体验公式的推导过程。
教具学具准备:多媒体教学课件,每组24个棱长为1厘米的小正方体、学案记录单。
教学方法:启发式教学法、探究法、类比迁移、抽象概括教学过程:一、回顾旧知,揭示主题。
师:同学们,大家好,欢迎进入易老师的云课堂,上节课我们学习了体积和体积单位,和老师共同回忆下什么是物体的体积?计量体积要用体积单位,常用的体积单位有哪些?:长方体和正方体的体积指的是什么呢?(预设:长方体和正方体所占空间的大小就是长方体和正方体的体积)我们该如何计量他们的体积呢?今天我们就来学习人教版小学数学五年级下册第三单元的内容《长方体和正方体的体积计算》。
二、回忆经验,促进迁移。
师:同学们,先想一想,我们以前计量过长度和面积。
(出示:一条线段图)请看这条线段长几米?(4米)你是怎样得到的?(预设:这条线段包含4个1米或如果要计量一条线段有多长,就要看它包含多少个相同的长度单位)师:(出示:一个长方形)同样如果我们用1平方厘米做计量单位,要量这个长方形的面积有多大,看什么?(预设:看这个长方形里有多少个相同的面积单位)仔细观察这个长方形的面积是多少平方厘米?(演示过程)(预设:6平方厘米,因为用面积1平方厘米的正方形去度量,需要度量6次)师:今天我们研究长方体和正方体的体积,你有什么想法?(出示:一个长方体)(预设:那就看这个长方体里有多少个体积单位)大家利用计量长度和面积的经验,联想到计量物体体积的办法,为我们进一步的研究和思考找到了方向,其实这种思考问题的方式就是我们经常说的迁移。
西师大版五年级数学下册第三单元 长方体 正方体3.5 问题解决 教案
3.5 问题解决◆教学内容教材第53-55页“运用表面积和体积的计算方法解决实际问题”,课堂活动及练习十六的相关内容。
◆教材提示本节课是问题解决课,在本节课里要解决三个问题:第一个问题是一个粉刷墙壁的问题。
第二个问题是依据体积求物体质量的实际问题。
第三个问题是“等积”转化问题。
在教学中,我们要注意引导学生理解,解决实际问题结合现实考虑。
如粉刷墙壁,要考虑到地面是不用粉刷的,还有门窗和黑板等现实因素。
而等积转化,就是把正方体转化成长方体。
而转化的过程中,体现一个体积不变的道理。
要让学生多观察和思考,让学生发现或引导学生发现和明白现实中的求表面积的方法与求长方体表面积的异同,求形状改变而体积未变的转化的问题。
学会变通的思想,提高学生解决问题的能力。
◆教学目标知识与技能:进一步巩固长方体和正方体表面积的计算方法。
能运用所学的知识解决生活中的一些简单问题,体会数学与生活的联系。
过程与方法:获得综合运用所学知识测量不规则物体体积的活动经验和具体方法,培养小组合作精神和问题解决的能力。
情感、态度和价值观:感受数学知识之间的相互联系,体会数学与生活的密切联系,树立运用数学解决实际问题的自信心。
◆重点、难点重点培养学生综合运用长方体和正方体的表面积和体积的知识来解决问题。
难点灵活运用表面积和体积的知识解决生活中的实际问题。
◆教学准备教师准备:红薯、量杯,课件。
学生准备:草稿本。
◆教学过程(一)新课导入:1.旧知铺垫。
提问:什么是长方体、正方体的表面积?怎样计算长方体、正方体的表面积?怎样求长方体和正方体的体积?鼓励学生自由回答。
2.引入新课:今天我们就用这些知识来解决生活中的一些实际问题。
板书课题:问题解决设计意图:通过直接讲解并引导学生回忆长方体和正方体的表面积和体积的计算方法,使学生明确学习目标和做好必要的知识储备。
(二)探究新知:1、运用表面积解决问题。
(1)课件出示第53页例1:要求粉刷的面积,就是求这个长方体房间的表面积。
《长方体和正方体的体积》ppt课件
06 课堂小结与回顾
关键知识点总结
长方体和正方体的体积公式
长方体的体积V=a×b×c,正方体的体积V=a^3,其中a、 b、c分别为长方体的长、宽、高,a为正方体的棱长。
体积单位的认识与换算
常见的体积单位有立方厘米(cm³)、立方分米(dm³)、立方 米(m³)等,需掌握各单位之间的换算关系。
实际问题的应用
提出改进方案
03
针对可能出现的误差,提出相应的改进方案,如提高测量精度、
使用更精确的计算方法等。
05 拓展延伸:不规则物体体 积估算方法
排水法原理及应用
原理
将不规则物体完全浸没于水中,通过计算物体排开水的体积来估 算物体的体积。
应用
适用于易溶于水或与水发生反应的物体以外的任何不规则物体。 如石块、金属块等。
公式应用注意事项
单位统一
在应用公式计算体积时,需要确 保长度、宽度和高度的单位统一,
避免出现错误结果。
公式适用范围
长方体和正方体的何体需要采用其他方
法进行计算。
公式变形应用
在实际应用中,可以根据需要对 公式进行变形,如已知体积和其
中两个维度求第三个维度等。
体积单位换算
1立方米=1000立方分米,1立 方分米=1000立方厘米。
实物体积感受
常见物体体积
列举生活中常见物体的体积,如 一个苹果的体积约为200立方厘米, 一个电冰箱的体积约为0.5立方米
等。
体积比较
通过比较不同物体的体积大小,让 学生感受体积的概念。
体积估算
通过估算物体的体积,培养学生的 空间想象力和估算能力。
02 长方体和正方体认识
长方体特点与性质
01
02
《长方体和正方体的体积》优秀教学设计(7篇)
《长方体和正方体的体积》优秀教学设计(7篇)《长方体和正方体的体积》优秀教学设计篇1教材分析长方体和正方体是最基本的立体图形。
学生在认识一些平面图形的基础上学习三维图形,是一个飞跃。
本单元基本了解了长方体、正方体的特点和性质,学会了表面积的计算,掌握了体积的概念和体积的常用单位。
这节课,我们要学习长方体和正方体的体积计算,知道体积公式的来源,掌握公式的意义和用法。
学情分析体积对学生来说是一个新概念,从学习平面图形扩展到学习立体图形是学生的一次飞跃。
课前,学生已经了解了体积和体积的单位,对物体的体积有一个模糊的认识。
在教学中,教师要注重学生空间概念的培养,从学生实际出发,充分利用和创造条件,使学生在轻松愉快的氛围中学习;利用交互式多媒体课程,引导学生通过观察、测量、组合、绘制和制作物体和模型来丰富对身体的感知,从而培养其初步的空间概念和抽象概括能力。
教学目标1.体验长方体、正方体体积与长、宽、高关系的探索过程,了解并掌握长方体、正方体体积的计算方法。
2.根据正方体和长方体的隶属关系,理解和掌握正方体的体积计算方法。
3、能运用长方体、正方体体积计算公式正确进行简单体积计算,并解决简单问题。
4.体验数学学习活动,培养学生分析问题、解决问题的能力。
教学重点和难点教学重点:长方体体积计算方法。
教学难点:推导长方体体积计算公式。
教学过程一、创设情景,导入新课。
1.展示课件中的长方体和正方体,让学生说出它们的体积是多少。
2、如果较大的物体用1立方厘米来测量呢?可以用学过的数学知识来计算吗?二、师生互动,探究新知。
1、实验探究(1)每五人一组做实验并记录:取12块1立方厘米的小正方体积木,任意拼摆长方体,然后把数字记录在表格里面。
(2)通过课件演示,根据学生的记录表格,验证操作。
小组讨论:填表发现了什么?2.总结(1)研究数字间关系分组讨论(2)概括体积公式。
由学生自己总结出长方体的体积公式。
长方体体积=长×宽×高V=a×b×h=abh(3)根据长方体与正方体之间的关系,我们可以推出正方体的体积计算公式。
五年级数学《长方体和正方体的体积》教案
五年级数学《长方体和正方体的体积》教案五年级数学《长方体和正方体的体积》教案作为一名老师,总不可避免地需要编写教案,教案是实施教学的主要依据,有着至关重要的作用。
如何把教案做到重点突出呢?下面是小编为大家整理的五年级数学《长方体和正方体的体积》教案,希望能够帮助到大家。
五年级数学《长方体和正方体的体积》教案1教学内容教科书第51--52页的例1、例2,课堂活动及练习十二的1--3题。
教学目标1.知识与技能:引导学生通过实验发现并探究出长方体和正方体体积的计算公式,理解长方体和正方体体积的计算方法。
2.过程与方法:会运用公式正确计算长方体和正方体的体积。
3.情感、态度与价值观:渗透"猜测--实验探究--验证"的学习方法,发挥学生的主体性,为今后学习其他立体图形体积的计算打下基础。
教具学具学生准备12个体积是1cm3的小正方体木块。
教师准备多媒体课件,及表格一和表格二。
教学重点1.理解长方体和正方体的体积公式的推导过程。
2.会计算长方体和正方体的体积。
教学难点长方体、正方体的体积计算的推导过程。
教学过程一、问题引入1.师:小朋友,你们喜欢搭积木游戏吗?这是老师用1cm3的正方体拼成的积木,(课件出示)你能说说它们的体积吗?师:你是怎样想的?教师:我们要计量一个物体的体积,就要看这个物体中含有多少个体积单位。
2.师(出示一个长方体模型):要知道它的体积是多少,你有什么办法?生1:可以将这个长方体切成小的体积单位,看它包含着多少个这样的体积单位,就可以知道它的体积是多少。
生2:将这个长方体浸没在水中,根据水面上升的刻度读出长方体的体积。
生3:量出长方体的长、宽、高,用长×宽×高。
教师:比较一下,哪种方法更适用呢?在生活中,有许多长方体是不能切开来数的。
把什么物体都浸没在水中,看水面上升的刻度也比较麻烦。
那么,生3的方法是否成立?这就是我们这节课要学习的内容。
(板书课题:长方体和正方体的体积计算)[简评:从学生熟悉的搭积木游戏开始,沟通学生已有知识连接点:要计量一个物体的体积,就要看这个物体中含有多少个体积单位。
《长方体和正方体的体积》优秀教学设计
《长方体和正方体的体积》优秀教学设计教材分析学情分析教学目标1、经历探索长方体和正方体的体积与长、宽、高的关系的过程,理解掌握长方体和正方体体积的计算方法。
2、根据正方体和长方体的从属关系理解掌握正方体的体积计算的方法。
3、能运用长方体、正方体的体积计算公式正确地进行简单的体积计算,并解决简单的问题。
4、经历数学学习活动,培养学生分析与解决问题的能力。
教学重点和难点教学重点:长方体体积计算方法。
教学难点:推导长方体体积计算公式。
教学过程一、创设情景,导入新课。
1、课件出示长方体和正方体,让学生说出他们的体积各是多少?2、如果较大的物体用1立方厘米去量好不好?我们能不能用学过的数学知识来计算呢?二、师生互动,探究新知。
1、实验探究(1)每五人一组做实验并记录:取12块1立方厘米的小正方体积木,任意拼摆长方体,然后把数字记录在表格里面。
(2)通过课件演示,根据学生的记录表,操作验证。
小组讨论:通过填表,你发现了什么?2、归纳概括(1)研究数字间关系分组讨论(2)概括体积公式。
由学生自己总结出长方体的体积公式。
长方体体积=长某宽某高V=a某b某h=abh(3)根据长方体与正方体之间的关系,我们可以推出正方体的体积计算公式。
正方体体积=棱长某棱长某棱长V=a?a?a=a3(V=a?a?a,也可以写成a3读作a的立方,表示三个a相乘,不要误认为а与3相乘。
写“а3”时,3写在a的右上角。
)三、反馈练习,实践运用。
(1)、堆积木,算体积。
(2)、通过让学生完成教科书第34页的“做一做”的第一题,先让学生动作操作,这样有助于学生理解长方体的体积与它的长、宽、高的关系,记住长方体的体积计算公式。
(3)、做第34页“做一做”的第二题,先学生独立完成,这道题是巩固刚学过的“立方”的知识,要使学生弄清,什么情况下可以写成一个数的立方,一个数立方应该怎样计算。
做题时,如果发现学生把3个相同数连加与连乘混淆起来,教师应及时纠正。
人教版五年级数学下册第三单元《长方体和正方体的体积》PPT课件
36立方厘米
24立方厘米
27立方厘米
要知道一个物体的体积,就要看这个物体含有多少个体积单位
物体含有多少个体积单位,体积就是多少。
二 新课探究
?
长方体所占空间的大小叫做长方体的体积。 长方体的体积可以怎样算呢? 数体积单位个数的方法求长方体的体积。
下面的长方体都是用棱长1cm的小正方 体摆成的,你知道这个长方体的体积吗?
答:这个铁球的体积是70立方分米。
用12个棱长为1厘米的小正方体摆出不同的长方体
长(厘米) 宽(厘米) 高(厘米) 正方体的个数 体积(厘米3)
第一个长 方体
第二个长 方体
第三个长 方体
第四个长 方体
长 12 cm
高 1 cm
宽 1 cm
高 1 cm 长 6 cm
宽 2 cm
高 1 cm 长 4 cm
?
正方体的体积怎么样计算呢? 正方体的是特殊的长方体是 长宽高都相等的长方体。
棱长
棱长
棱长
正长方体的体积 =棱长长 × 棱宽长 ×棱高长
棱长a a棱长
棱a长
正方体的体积V == 棱a长长a×a棱宽长 ×棱高长 V = a3
V = a3 3a
a×a×a
{
a+a+ 3 ×a
a
比较a×3和a3 a×3表示3和a相乘 a3表示3个a相乘
一个长方体,长7cm,宽4cm,高3cm,它的体 积是多少?
V=abh
=7×4×3 =84(cm3)
计算下面长方体的体积
3 分米
0.8 分米 2 分米
6米 2. 2 米 0. 4 米
V = abh = 2×0.8×3 = 4.8(立方分米)
长方体和正方体的统一体积公式
2、一块木料,横截面的面积是24平方分米, 长4米,35根这样的木料一共是多少立方分米?
3、一个正方体的底面积是25平方厘米,高是5厘米。 它的体积是多少立方米?
盘活教材 有效教学
人教版五年级数学下册教材
说教材流程
数学教学的总体目标 本教材的教学内容
本册教学目标 本教材的编写特点
(1)看完这段叙述,你想到什么?
(2)这段文字中描述的长方体有什么特征? 底面积指的是哪一个面的面积?
2、认识底面
你们知道什么是底面吗?
棱
高
底面 长
底面
宽
棱长
长
棱长
结论:底面一般指长方体、正方体的下面
3、认识底面积
什么是底面积? 底面积:长方体和正方体底面的面积叫做它
们的底面积
1 长方体的底面积如何计算?
本册教材具有下面几特点:。
一、改进因数与倍数教学内容的编排,体现数学 教学改革的新理念,培养学生的数学素养
0.09平方米
V=Sh =0.09×3 =0.27(立方米)
小结:今天我们学到了什么?
课堂练习
1,课本45页第8题 2,一个棱长是200cm的正方体的底面 积是45.8平方米,它的体积是多少立方 米?
家庭作业
(一)完成练习册相应的内容 (二)作业本的作业: 1、一段方钢,长3米,它的横截面是边长为0.2米
8、认识复式折线统计图,能根据需要选择适当的统计图表示数据。 9、经历从实际生活中发现问题、提出问题、解决问题的过程,体会数学在
日常生活中的作用,初步形成综合运用数学知识解决问题的能力。 10、体会解决问题策略的多样性及运用优化的数学思想方法解决问题的有效
长方体、正方体的表面积和体积计算
复习三长方体和正方体的表面积和体积计算一、基本公式:正方体表面积= 棱长×棱长×6= 一个面的面积×6正方体体积= 棱长×棱长×棱长长方体表面积= (长×宽+长×高+宽×高)×2长方体体积= 长×宽×高正方体、长方体都有12条棱、6个面。
正方体的棱长和=棱长×12长方体的棱长和=(长+宽+高)×4二、认识表面积和体积做一个长12厘米,宽6厘米,高5厘米的长方体框架,至少需要铁丝多少厘米?在这个框架外糊一层纸,至少需多少平方厘米的纸,这个纸盒占空间多少立方厘米?三、典型习题1、用铁丝焊成图形/绣花边棱长例题:用一根铁丝刚好焊成一个棱长8厘米的正方体框架,如果用这根铁丝焊成一个长10厘米,宽7厘米的长方体框架,它的高应该是多少厘米?2、占地面积即底面的面积例题:有一个长20米,宽15米,深5米的长方体游泳池,该游泳池占地面积有多大?3、贴瓷砖/给墙壁粉刷面积,要注意是几个面,是否要减门窗等例题:天天游泳池,长25米,宽10米,深1。
6米,在游泳池的四周和池底砌瓷砖,如果瓷砖的边长是1分米的正方形,那么至少需要这种瓷砖多少块?4例题:一个带盖的长方体木箱,体积是0.576立方米,它的长是12分米,宽是8分米,做这样一个木箱至少要用木板多少平方米?5例题:有一个底面积是300平方厘米、高10厘米的长方体,里面盛有5厘米深的水.现在把一块石头浸没到水里,水面上升2厘米。
这块石头的体积是多少立方厘米?6、铁块熔铸成另一图形前后体积不变例题:有一块棱长是80厘米的正方体的铁块,现在要把它溶铸成一个横截面积是20平方厘米的长方体,这个长方体的长是多少厘米?7、切锯后截面积截a次,增加2a个截面,成为a+1段例题:把长1.2米的长方体木料锯成3段,表面积增加48平方分米,原来木料的体积是多少?解题的方法:1、判断是求体积、表面积、棱长、还是单个面的面积?2、根据单位来帮助判断是面积还是体积,还是棱长;练习巩固一、判断1.体积单位比面积单位大,面积单位比长度单位大.()2.正方体和长方体的体积都可以用底面积乘高来进行计算.( ) 3.表面积相等的两个长方体,它们的体积一定相等.()4.长方体的体积就是长方体的容积.()5.如果一个长方体能锯成四个完全一样的正方体,那么长方体前面的面积是底面积的4倍.( )6、正方体的棱长扩大3倍,体积就扩大9倍. ( )7、体积是1立方分米的正方体,可以分成1000个体积是1立方厘米的小正方体.()8、把一块正方体的橡皮泥捏成一个长方体,体积不变.( )9、表面积相等的两个长方体,它们的体积一定相等。
长方体正方体体积计算教案
长方体正方体体积计算教案这是长方体正方体体积计算教案,是优秀的数学教案文章,供老师家长们参考学习。
长方体正方体体积计算教案第1篇课题二:长方体和正方体的体积计算教学要求使学生理解长方体和正方体体积的计算公式,初步学会计算长方体和正方体的体积,培养学生实际*作能力,同时发展他们的空间观念。
教学重点长方体、正方体体积公式的推导。
教学用具教师准备:一大块橡皮泥;1立方厘米的正方体木块24块;投影仪。
学生准备:1立方厘米的正方体12个教学过程一、创设情境填空:1、叫做物体的体积。
2、常用的体积单位有:、、。
3、计量一个物体的体积,要看这个物体含有多少个。
师:我们已经知道计量一个物体的体积,要看这个物体含有多少个体积单位,那么怎样计算任意一个长方体、正方体的体积?这节课我们就来学习长方体、正方体体积的计算方法。
(板书课题)二、实践探索1.小组学习------长方体体积的计算。
出示:一块长4厘米、宽3厘米、高2厘米的长方体橡皮泥,用*将它切成一些棱长1厘米的小正方体。
提问:请你数一数,它的体积是多少?有许多物体不能切开,怎样计算它的体积?实验:师生都拿出准备好的12个1立方厘米的小正方块,按第32页的第(1)题摆好。
观察结果:(1)摆成了一个什么?(2)它的长、宽、高各是多少?板书:长方体:长、宽、高(单位:厘米)431含体积单位数:4×3×1=12(个)体积:4×3×1=12(立方厘米)(3)它含有多少个1立方厘米?(4)它的体积是多少?同桌的同学可将你们的小正方体合起来,照上面的方法一起摆2层,再看:(1)摆成了一个什么?(2)它的长、宽、高各是多少?(3)它含有多少个1立方厘米?(4)它的体积是多少?(同上板书)通过上面的实验,你发现了什么?(可让学生分小组讨论)结论:长方体的体积=长×宽×高。
用字母表示:v=a×b×h=abh应用:出示例1,让学生*解答。
长方体和正方体的周长面积和体积计算公式大全
长方体和正方体的周长面积和体积计算公式大全周长:长方形周长公式=(长+宽)X2正方形周长公式=边长X4直径=半径×2 半径=直径÷2圆的周长=圆周率×直径,或=圆周率×半径×2面积:长方形面积=长X宽正方形面积公式=边长X边长三角形的面积=底×高÷2平行四边形面积=底×高梯形的面积=(上底+下底)×高÷2圆的面积=圆周率×半径×半径容积:容器若能容纳的物体的体积:表面积:长方体或正方体六个面的总面积。
正方体的表面积:S=6a×a(棱长×棱长×6)正方体体积公式:V=a×a×a(棱长×棱长×棱长)长方体的表面积:S=2×(ab+bc+ac)((长×宽+长×高+宽×高)×2)长方体体积公式:长X宽X高长方体棱长总和公式:(长+宽+高)X4正方体体积:Va×b×c(长×宽×高)正方体棱长总:棱长X12圆柱体的侧面积=底面圆的周长×高圆柱体表面积=上下底面面积+侧面积,[或S=2π*r*r+2π*r*h(2×π×半径×半径+2×π×半径×高)]圆柱体的体积=底面积×高,[或V=π *r*r*h(π×半径×半径×高)]圆锥体积:V=S底×h÷3(底面积×高÷3)正方体体积公式:棱长X棱长X棱长通用体积公式:底面积X高截面积X长表面积的变化要会人折。
长方体或正方体被锯开后,一次会增加两个面;反之,两个相同,体或长方体拼在一起,一次会减少两个面。
长方体和正方体的特征,相同点和不同点要牢记。
长方体和正方体的体积说课稿
长方体和正方体的体积说课稿一.说教材.1.教材内容.本节所讲的内容是有关长方体和正方体的体积计算的教学内容。
2.教材简析长方体和正方体是最基本的立体图形,在认识了一些平面图形的基础上学习立体图形,是学生认识上的一次飞跃。
本单元前几课时已经基本上认识了长方体和正方体的特征、性质,学习了表面积的计算,掌握了体积的概念和常用的体积单位。
这节课要学习长方体和正方体的体积计算,认识体积公式的来源,掌握公式的意义和用法。
长方体和正方体的体积计算是今后继续学习几何知识的基础,根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:3.教学目标①知识目标:理解并掌握长方体和正方体体积的计算方法。
能运用长、正方体的体积计算公式,正确进行简单的体积计算。
②能力目标:通过动手操作,找出规律,总结出体积公式,培养学生分析、比较、综合的能力以及归纳推理、抽象概括的能力。
进一步培养学生动手操作能力和空间想象能力。
培养学生运用所学知识解决实际问题的能力。
③情感目标:使学生感悟数学知识内在联系的逻辑之美。
④评价目标:用评价来考察学生的学习状况,激励学生学习的热情,也让学生学会评价他人、评价自己、建立自信。
4.教学重、难点教学重点:引导学生探索长方体体积的计算方法。
教学难点:理解长方体体积公式的意义。
二、说教法按照新课程标准要求,在教学过程中,我采取了直观演示法、设疑诱导法、操作发现法、自学讨论法等方法有机融合的教学策略,引导学生在充分感知的基础上,通过说一说、摆一摆、填一填、做一做、想一想等活动,把学生的视觉、听觉、触觉、运动觉协同起来,由感知-到表象-再到本质,让学生在实践活动中掌握知识、丰富表象、提升经验、形成思考。
教学时,根据学生的年龄特点,也注重发挥多媒体教学的优势,把静态的教学内容动态化,抽象的教学材料直观化,力图通过形象生动的教学手段吸引学生,调动每一位学生的学习兴趣,从而做到教法、学法的最优组合,促使每一位学生真正参与到探索新知的学习进程。
长方体和正方体的体积计算方法
长方体和正方体的体积计算方法长方体和正方体的体积计算方法教材分析学生在第一学段已经初步认识了一些简单的立体图形,已经能够识别出长方体、正方体、圆柱和球,本单元在此基础上系统教学长方体和正方体的有关知识。
长方体和正方体是最基本的立体图形。
通过学习长方体和正方体,可以使学生对自己周围的空间和空间中的物体形成初步的空间观念,是进一步学习其他立体几何图形的基础。
另外,长方体和正方体体积的计算,也是学生形成体积的概念、掌握体积的计量单位和计算各种几何形体体积的基础。
长方体体积计算公式,教材是通过让学生动手操作,自主探索出来的。
教材先提出怎样知道一个长方体的体积是多少呢?”让学生进行讨论,学生可能会想到把长方体切成小正方体,看有多少个小正方体。
但受客观条件的限制,有些物体是不能切割的,由此想到长方形的面积有计算公式,长方体的体积也应该有计算公式,由此激发学生实验、探究的动机和愿望。
在体积的教学中,要让学生亲自动手去做实验,感受到物体占空间,不同物体所占空间有大有小,从而深刻地理解体积的含义。
通过用小正方体来摆不同形状的长方体,来观察、猜测、归纳、推理出长方体的计算公式,通过启发学生根据长方体和正方体的关系,推导出正方体的体积计算方法。
在用字母表示正方体的公式时,教材介绍了“立方”的含义,说明三个相同的数连乘就是这个数的立方。
长方体、正方体体积公式的教育价值,不能局限于知道公式和应用公式。
况且,记忆和照公式列式计算的思维含量较低。
得出体积公式能加强对体积意义、体积单位的理解;能发展解决问题的策略,积累数学活动经验;能培养创新精神和实践能力,有利于形成积极的情感态度。
因此,教材十分重视探索体积公式的过程,设计、安排了认知线索和主要的探索活动。
教学目标:1理解并掌握长方体和正方体体积的计算方法.2•能运用长、正方体的体积计算解决一些简单的实际问题.3.培养学生归纳推理,抽象概括的能力.教学重点长方体和正方体体积的计算方法.教学难点长方体和正方体体积公式的推导.教学用具教具:1立方厘米的立方体12块,学具:两人一组,每组1立方厘米的立方体12块.教学方法合作探究法,归纳法教学过程㈠.复习旧知1. 什么叫体积,常用的体积单位有哪些?物体所占空间的大小叫物体的体积,常用的体积单位有立方米,立方分米,立方厘米。
长方体和正方体体积统一公式
长方体和正方体体积的统一计算公式一、教学内容1、让学生经历长方体和正方体的统一体积计算公式的推导过程,进一步认识两种几何体的基本特征及它们之间的关系。
2、在理解底面积的基础上掌握长方体和正方体体积的统一计算公式,会应用长方体、正方体体积的统一计算公式解决一些简单的实际问题。
3、让学生知道我国古代数学家在两千多年前就掌握了长方体体积的计算方法,增强学生的民族自豪感和勇超先贤的信心和决心。
4、进一步培养学生归纳整理、抽象概括的能力。
教学重点:1、理解长方体、正方体体积的统一计算公式。
2、会应用长方体、正方体体积的统一计算公式解决一些简单的实际问题。
教学难点:几何知识与一般应用题的综合题。
教学准备:长方体模型、多媒体课件教学过程:一、复习检查:1、我们已经学过长方体和正方体的体积计算,谁来说一说如何计算长方体、正方体的体积?学生答,老师板书。
长方体的体积=长×宽×高正方体体积=棱长×棱长×棱长生:(正方体底面的面积)师:那谁能说一说什么是底面积?学生答。
老师小结:对,我们把长方体或正方体底面的面积叫做它们的底面积。
(板书)课件演示师:既然我们已经知道长乘宽可以用底面积表示,棱长乘棱长可以用底面积表示,那能不能把长方体和正方体的这两个体积公式用一个统一的公式来表示呢?(边说边出示课件)学生答,老师板书。
师:如果用S表示底面积,那上面的公式可以怎么表示?学生答。
老师板书并出示课件长方体的体积=长×宽×高正方体的体积=棱长×棱长×棱长底面积底面积长方体(或正方体)的体积=底面积×高V =sh学生齐读公式。
2、发展学生空间观念师:闭上眼睛,想象你面前有一个长方体和一个正方体,想想它们的底面在哪里?高在哪里,怎样求长方体或正方体的体积呢?我们知道了长方体和正方体的体积的统一计算公式,在解决求体积的一些实际问题时,就可以运用这一公式了。
《长方体和正方体体积》数学教案
《长方体和正方体体积》数学教案《长方体和正方体体积》数学教案1教学内容:长方体、正方体的体积计算教学目标:1.通过讲授,引导学生找出规律,总结出体积的公式。
2.指导学生运用公式正确计算长方体、正方体的体积。
3.培养学生积极思考、探索新知的思维品质。
教学重点:长方体、正方体体积计算。
教学难点:长方体、正方体体积计算教具运用:正方体木块若干。
教学过程:一、复习导入1.什么叫体积?计量物体的体积常用的单位有哪些?2.怎样计算一个物体的体积呢?二、新课讲授1.长方体体积的计算。
教师课件出示一块长方体积木,一块盖房用的大型砖板。
(1)提问:它们的体积是多少?你是怎样想的?引导学生回答:长方体积木的体积可以用1立方厘米的正方体去摆,有几个1立方厘米的正方体,它的体积就是多少立方厘米,但是相对于大型砖板再用1cm3或1dm3去量就比较麻烦。
教师:请同学们想一想,如果要知道较大物体的体积,我们能不能用学过的数学知识来计算。
(2)观察操作,探究长方体的体积公式。
小组合作,用准备好的24块1cm3的小正方体木块,任意摆出不同的长方体,然后把数据填入下表。
学生拼摆,然后填表,集体汇报,老师把有代数性的数字写在表中。
说明学生拼摆长方体的样式非常多,这里只列举几个。
观察:从这张表中,你发现了什么?学生独立思考,然后小组内讨论交流,得出结论。
小结:长方体的体积等于长方体所含体积单位的数量,所含体积单位的数量正好等于长方体长、宽、高的乘积。
板书:长方体的体积=长宽高讲述:如果用字母V表示长方体的体积公式可以写成:V=abh (3)质疑:求长方体的体积公式需要知道什么条件?2.探究正方体的体积公式。
(1)启发。
根据正方体与长方体的关系,联系长方体积公式,想一想正方体的体积应该怎样计算。
(2)引导学生明确。
正方体的体积=棱长棱长棱长(板书)用字母表示:V=aaa=a3(a表示棱长)(a3读作a的立方,表示3个a相乘)3.运用长方体的体积公式解决问题。
(新)苏教版六年级数学上册《长方体和正方体的体积 第一课时》教案精品
长方体和正方体的体积(一)教材第16、第17页的内容。
1.使学生理解并掌握长方体和正方体的体积计算公式。
会正确地计算长方体和正方体的体积。
2.使学生通过拼摆,能够找出规律,总结出长方体和正方体的体积公式。
3.使学生初步学会运用长方体和正方体的体积公式解决有关的简单实际问题。
4.提高学生的空间想象能力。
1.理解长方体和正方体体积公式的推导过程。
2.运用公式计算长方体和正方体的体积。
若干个1立方厘米的小正方体木块。
课件出示下面两个图形,请学生说出哪个体积大,大多少。
通过观察学生能说出左边的长方体体积大,但比右边正方体体积大多少,学生不确定。
提问:要想知道长方体的体积比正方体的体积大多少,必须知道什么条件?(必须知道长方体和正方体的体积分别是多少)怎样计算长方体和正方体的体积呢?这节课我们共同来探究这个问题。
板书:长方体和正方体的体积(一)1.观察操作,探索长方体的体积公式。
让学生以小组为单位,用若干个1立方厘米的正方体摆出4个不同的长方体,并填写下表。
长/cm宽/cm高/cm小正方体的个数体积/cm3长方体①长方体②长方体③长方体④(1)分组实验操作,并记录。
(2)做完后,请各组汇报。
甲组:我们小组用12个1立方厘米的小正方体摆了一个长方体,每排摆了4个,也就是长4cm,摆了3排,宽就是3cm,高是1cm,这个长方体的体积是12cm3。
乙组:我们组用4个1立方厘米的小正方体摆了一个长方体,它的长是4cm,宽是1cm,高也是1cm,这个长方体的体积是4cm3。
丙组:我们组摆的长方体的长是8cm,宽是3cm,高是1cm,共用了24个1立方厘米的小正方体,体积是24cm3。
……随着同学们的叙述,教师板书:长/cm宽/cm高/cm小正方体的个数体积/cm3431121241144831242422288321664322424…………………………(3)观察,思考,讨论。
①你是怎样得出长方体的长、宽、高的?学生边操作边说明:用4个1立方厘米的正方体摆一排,每个正方体的棱长是1厘米,每排摆4个,那么长就是4厘米,照这样摆两排,每个正方体的棱长是1厘米,宽就是2厘米,像这样摆3层,每个正方体的棱长是1厘米,高就是3厘米。
长方体和正方体的体积一教案及反思五年级数学
第 3单元长方体和正方体第6课时长方体和正方体的体积(1)【教学内容】教材第29~31页的内容,教材第30页的例1及第32页练习七的第5~6题。
1. 通过操作、实践,理解体积、容积的含义。
2. 认识体积、容积的计量单位(立方米,立方分米,立方厘米,升,毫升),会进行单位之间的换算,理解1立方米、1立方分米、1立方厘米、1升、1毫升的实际意义。
3. 探索并掌握长方体、正方体体积的计算方法,能解决简单的实际问题。
4. 探索某些不规则物体的体积的测量方法。
5. 在观察、操作等活动中,培养动手操作能力和空间观念。
【教学目标】1.通过讲授,引导学生找出规律,总结出体积的公式。
2.指导学生运用公式正确计算长方体、正方体的体积。
3.培养学生积极思考、探索新知的思维品质。
【教学重难点】重点:掌握长方体、正方体体积计算方法。
难点:理解长方体、正方体体积公式的推导过程。
【教学过程】一、复习导入1.什么叫体积?计量物体的体积常用的单位有哪些?2.怎样计算一个物体的体积呢?二、新课讲授1.长方体体积的计算。
教师课件出示一块长方体积木,一块盖房用的大型砖板。
(1)提问:它们的体积是多少?你是怎样想的?引导学生回答:长方体积木的体积可以用1立方厘米的正方体去摆,有几个1立方厘米的正方体,它的体积就是多少立方厘米,但是相对于大型砖板再用1cm3或1dm3去量就比较麻烦。
教师:请同学们想一想,如果要知道较大物体的体积,我们能不能用学过的数学知识来计算。
(2)观察操作,探究长方体的体积公式。
小组合作,用准备好的24块1cm3的小正方体木块,任意摆出不同的长方体,然后把数据填入下表。
学生拼摆,然后填表,集体汇报,老师把有代数性的数字写在表中。
说明学生拼摆长方体的样式非常多,这里只列举几个。
观察:从这张表中,你发现了什么?学生独立思考,然后小组内讨论交流,得出结论。
小结:长方体的体积等于长方体所含体积单位的数量,所含体积单位的数量正好等于长方体长、宽、高的乘积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长方体和正方体体积的计算
【教学内容】
教材第29-30页内容
【教学目标】
1、理解并掌握长方体和正方体体积的计算公式,能运用公式解决简单的实际问题。
2、通过学生的自主探索和合作交流,培养学生分析、比较和综合归纳的能力,进一步发展学生的空间观念。
【教学重难点】
重点:能熟练地运用公式计算长方体、正方体的体积
难点:理解长方体、正方体体积公式的推导过程
【教学准备】
课件、小正方体若干
【教学过程】
一、谈话引入
师:我们已经知道了常用的体积单位,并且知道计量一个物体的体积,就是要算这个物体含有多少个体积单位。
怎样计算一个物体的体积呢?
我们今天就一起来探究这个问题。
(板书课题:长方体、正方体体积的计算)
二、新知探究
1、长方体体积的计算
(1)教师出示体积为1cm³的小正方体拼成的长方体,说明这个长方体的长、宽、高各是多少。
教师:我们想要知道这个长方体的体积,就是要知道它含有多少个1立方厘米,现在把这个长方体拆成1立方厘米的小正方体,看看他到底含有多少个1立方厘米(课件演示拆的过程,拆完后数一数)(2)学生数,教师归纳:共有多少个1立方厘米的小正方体,原来这个长方体的体积就是多少立方厘米。
(3)用拆开数一数的方法,能计量出长方体的体积,但是有许多物体是拆不开的或不能拆的,那么怎样才能简便的准确的计算长方体的体积呢?
(4)实验:请同学们拿出准备好的12个棱长是1厘米的小正方体,以4人小组为单位展开研究。
①摆一摆,看可以摆出长、宽、高分别是多少的长方体?
说说,怎样计算长方体所含的体积单位呢?教师巡视,指导学生讨论,再用课件把学生摆成的长方体展示出来。
②要求学生把上面4种不同的长方体的相关数据填入课本第29页的表格(课件展示)
师:对于这些形状不同的长方体,你是如何得到它们所含的体积单位数的?并且发现了什么?学生讨论后汇报,教师归纳:只要用一排放的体积单位的个数(即长)乘以排数(即宽),得到一层含的体积单位数,再乘以竖着所放的层数(即高),就能得到这个长方体里所含的体积单位的数量,所含的体积单位的数量正好等于长方体的长、宽、高的乘积。
提出公式:长方体的体积=长×宽×高
(5)教师讲述:如果用字母V表示长方体的体积,用a,b,h分别表示长方体的长、宽、高,那么长方体的体积公式可以写成V=abh 2、正方体体积的计算
师:根据正方体和长方体的关系,联系长方体的体积公式,想一想,正方体的体积应该怎样计算?用字母怎样表示?
学生先小组讨论,教师引导学生归纳得出:
正方体的体积=棱长×棱长×棱长
V=a·a·a=a³(V是正方体的体积,a是棱长)
3、教学例1
学生读题,理解题意,指名板演,集体订正。
三、巩固训练
1、完成教材第31页“做一做”第1题
2、完成教材第32,33页第6-9题
【课堂小结】
这节课我们学习了很多知识,你们都学会了什么?
【板书设计】
长方体和正方体体积的计算长方体的体积=长×宽×高V=abh 正方体的体积=棱长×棱长×棱长V=a³
例1:V=abh=7×3×4=84(cm³)
V=a³=6³=6×6×6=216(dm³)。